
J
H
E
P
0
9
(
1
9
9
9
)
0
2
3

Received: September 16, 1999, Accepted: September 22, 1999
HYPER VERSION

Non-commutative world-volume geometries:

branes on SU(2) and fuzzy spheres

Anton Yu. Alekseev

Institute for Theoretical Physics, Uppsala University

Box 803, S–75108 Uppsala, Sweden

E-mail: alekseev@teorfys.uu.se

Andreas Recknagel

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut

Am Mühlenberg 1, D–14424 Potsdam, Germany;

E-mail: anderl@aei-potsdam.mpg.de

Volker Schomerus

II. Institut für Theoretische Physik, Universität Hamburg

Luruper Chaussee 149, D–22761 Hamburg, Germany

E-mail: vschomer@x4u.desy.de

Abstract: The geometry of D-branes can be probed by open string scatter-

ing. If the background carries a non-vanishing B-field, the world-volume becomes

non-commutative. Here we explore the quantization of world-volume geometries in

a curved background with non-zero Neveu-Schwarz 3-form field strength H = dB.

Using exact and generally applicable methods from boundary conformal field the-

ory, we study the example of open strings in the SU(2) Wess-Zumino-Witten model,

and establish a relation with fuzzy spheres or certain (non-associative) deformations

thereof. These findings could be of direct relevance for D-branes in the presence of

Neveu-Schwarz 5-branes; more importantly, they provide insight into a completely

new class of world-volume geometries.

Keywords: Bosonic Strings, D-branes, Conformal Field Models in String Theory,

Boundary Quantum Field Theory.

mailto:alekseev@teorfys.uu.se
mailto:anderl@aei-potsdam.mpg.de
mailto:vschomer@x4u.desy.de
http://jhep.sissa.it/stdsearch?keywords=Bosonic_Strings+D-branes+Conformal_Field_Models_in_String_Theory+Boundary_Quantum_Field_Theory
http://jhep.sissa.it/stdsearch?keywords=Bosonic_Strings+D-branes+Conformal_Field_Models_in_String_Theory+Boundary_Quantum_Field_Theory


J
H
E
P
0
9
(
1
9
9
9
)
0
2
3

Contents

1. Introduction 1

2. World-volume geometry — from the flat case to arbitrary back-

grounds 3

3. D-branes in the SU(2) WZW model 5

3.1 Semi-classical analysis. 5

3.2 Exact CFT description. 7

4. D-brane geometry, fuzzy two-spheres, and quantum groups 9

5. Summary and outlook 12

A. (Quasi-)associativity 14

1. Introduction

It was observed by Douglas and Hull [1] that D-branes on T2 with a constant Neveu-

Schwarz (NS) two-form potential B give rise to an effective world-volume theory on

a non-commutative torus. Even though this initial observation was re-considered

and generalized by many authors [2, 3, 4], all the subsequent work is restricted to

flat backgrounds. A perturbative analysis along the lines of [4], on the other hand,

shows that the quantization of world-volume geometries should be a much more

general phenomenon which persists in the case of curved backgrounds.

In this work we shall present the first non-perturbative (in α′) investigation of
world-volume geometries in a curved string background with non-vanishing NS 3-

form field H = dB.1 An exact treatment of D-branes in curved backgrounds is

possible within the framework of boundary conformal field theory. Here we illustrate

the basic techniques and some general features of the resulting world-volume geome-

tries in a particular example, namely the SU(2) WZW theory, and study D-branes in

the WZW model associated with the gluing condition Ja = J̄a. We shall argue that

their world-volumes may be regarded as fuzzy two-spheres when the level k is sent

to infinity, i.e. when the background becomes flat. For finite level, H is non-zero and

1Recall that the curvature is linked to the field strength H by the string’s equation of motion.
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we shall find non-associative deformations of these fuzzy spheres, which are closely

linked to the theory of quantum groups. While the infinite level result can be pre-

dicted from the semi-classical analysis in [5] together with the general phenomenon

of world-volume quantization in flat backgrounds [1], our results on the finite level

provide a non-trivial extension of the standard rules. Apparently, many features

of the world- volume geometry are not captured by the perturbative treatment of

D-branes on group manifolds that was suggested recently in [6].

We shall follow a general procedure which allows us to extract world-volume

geometry from the world-sheet description of any (generalized) D-brane, even when

it is given in purely algebraic terms. The essential input data are the operator

product expansions (OPE) of boundary fields (open string vertex operators). Since

they depend on the ordering of the operators, it is not surprising that the brane

world-volume obtained in this way is a non-commutative space, in general. We shall

see that non-associativity may show up as well.

Our approach is inspired by a project ini-

Figure 1: World-sheet diagrams for

closed resp. open string interaction.

Having assigned vertex operators to

the legs, they can be read as struc-

ture constants for the multiplication

of two operators, projected on the

third channel. In the closed string

case, the in-coming operators can be

interchanged with the help of world-

sheet diffeomorphisms, while the or-

dering of open string vertices is fixed

up to cyclic permutations.

tiated by J. Fröhlich and K. Gawȩdzki in [7]

(see also [8] for earlier ideas in the same direc-

tion), where the authors proposed to construct

non-commutative target space geometries from

OPEs of closed string vertex operators. This

was developed further in [9, 10]. It appears,

however, that non-commutative geometry

emerges in a more natural way and on a more

fundamental level in the open string case, cf.

the picture.

Our findings add to the growing evidence

that brane physics surpasses classical geome-

try — even though the emergence of a non-

commutative world-volume need not necessar-

ily mean that a D-brane behaves non-geome-

trically in the sense of the criterion formulated

in [11]. This criterion rests on a comparison of

low-energy effective field theories in the stringy

and in the large-volume regime, and we do not

attempt to test it in the present paper. But we would like to point out that the struc-

tures contained in the non-commutative world-volume also form the main ingredient

of the effective action of the brane.

While we have chosen the SU(2)k example mainly because of its simplicity and

because there exists a semi-classical curved background picture, it is also an impor-

tant ingredient of the CFT formulation of the Neveu-Schwarz 5-brane, see e.g. [12].

Given that questions like stability of the configuration can be clarified, our findings
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should be relevant for the geometry of D-branes in the presence of a stack of 5-branes.

Similarly, our SU(2) WZW results could be applicable in the study of branes on an

AdS3 × S3 string background, see e.g. [13, 14].

2. World-volume geometry — from the flat case to arbitrary

backgrounds

Before we show how one can read off fuzzy geometry from branes in the WZW

model, let us briefly review the emergence of non-commutative spaces in the more

standard case of branes in flat n-dimensional Euclidean space Rn, or on a flat torus

Tn. Consider a D-brane which is localized along a p-dimensional hyper-plane Vp
in the target, with tangent space TVp. The conformal field theory associated with

such a Euclidean D-brane is defined on the upper half of the complex plane. It

contains an n-component free bosonic field X = (Xµ(z, z̄)), µ = 1, . . . , n, subject to

Neumann boundary conditions in the directions along TVp and Dirichlet boundary

conditions for components perpendicular to the world-volume of the brane. From the

free bosons, one may obtain various new fields, in particular the open string vertex

operators

Vk(x) = : exp(ikX(x)) : for all k ∈ TVp ,
which can be inserted at any point x on the real line. When there is no magnetic

field on the brane, the OPE of these U(1)-primaries reads (with α′ = 1/2 and for
x1 > x2)

Vk1(x1)Vk2(x2) = (x1 − x2)k1k2/2 Vk1+k2(x2) + · · · , (2.1)

where the dots indicate less singular non-primary contributions. We can rewrite this

relation by introducing the objects

f(X(x)) ≡ V [f ](x) :=
1

(2π)p/2

∫
TVp

dpk f̂(k) Vk(x)

for each function f : Vp → C with Fourier transform f̂(k). Then the boundary OPE

(2.1) translates into a “definition” of pointwise multiplication of functions,

V [ f ](1) V [ g ](0) = V [ f · g ](0) + · · · . (2.2)

We have specialized to coordinates x1 = 1 and x2 = 0 for convenience, arbitrary

insertion points can be recovered via conformal covariance.

The effect of switching on a B-field is described by adding the term

SB =
1

2π

∫
dzdz̄ Bµν∂X

µ(z, z̄)∂̄Xν(z, z̄) (2.3)

to the action of the original theory without B-field. One can easily see that this is a

pure boundary term with no influence on the bulk properties of the theory. It only
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changes the boundary conditions. If we assume for definiteness that Vp is spanned

by the first p coordinates xµ, µ = 1, . . . , p, the new boundary conditions read (with

z = x+ iy)

∂yX
µ(z, z̄) = Bµν∂xX

ν(z, z̄) for z = z̄ and µ, ν = 1, . . . , p . (2.4)

This means that the (exact) free boson propagator becomes (x1, x2 ∈ R)

〈Xµ(x1)Xν(x2) 〉B = − (δµν +ΘµνS ) log |x1 − x2| − i
π

2
ΘµνA sign(x1 − x2) , (2.5)

where ΘS and ΘA denote the symmetric resp. anti-symmetric part of the matrix

Θ = (1− B)(1 +B)−1 . Explicitly,

ΘA =
2

B −B−1 . (2.6)

In particular, when B is large we obtain ΘA ≈ 2B−1, which means that ΘA is the
Poisson bi-vector corresponding to the symplectic form B. Eq. (2.5) immediately

yields the boundary OPE for a non-vanishing B-field,

Vk1(1)Vk2(0) = e
−iπ
2
kt1ΘAk2 Vk1+k2(0) + · · · .

As before, this can be used to define a (deformed) product ? for functions through

V [f ](1)V [g](0) = V [f ? g](0) + · · · , where now

( f ? g )(x) := ei
π
2
ΘµνA ∂

x
µ∂
y
ν f(x)g(y) |y=x . (2.7)

This is the associative, non-commutative Moyal-Weyl product of functions f, g on

the world-volume Vp of the brane. In the context of the derivation we have given,

non-commutativity of ? arises because the ordering of boundary fields in general does

matter, cf. the sign-term in eq. (2.5). The algebra of functions with product (2.7) is,

of course, the non-commutative brane world-volume uncovered by Douglas and Hull

using a different approach. It is a deformation of the ordinary algebra of functions,

with deformation parameter(s) given by (the matrix) ΘA.

In [4], the term (2.3) was viewed as a bulk perturbation of the B = 0 theory, i.e.

techniques of conformal perturbation theory were applied to the operator exp(−SB)
being inserted into arbitrary correlation functions of the B = 0 theory. This pertur-

bative analysis, which can be extended to arbitrary σ-models (at least in the case

dB = 0), leads to a string theoretic picture of Kontsevich’s quantization of Poisson

manifolds [15], see also the work of Cattaneo and Felder [16]. It clearly displays that

the quantization of world-volume geometries should be expected beyond the case of

constant B-fields. This will be confirmed through our exact analysis of the WZW

model (see discussion of the limit k → ∞ below). As we remarked in the introduc-
tion, new phenomena are bound to occur when dB does not vanish. In such cases,

4



J
H
E
P
0
9
(
1
9
9
9
)
0
2
3

the classical world-volume of a brane comes equipped with some generalization of

an ordinary Poisson-structure, and there exists no general notion of “quantization”

for such geometries. Hence, the investigation of branes in a non-vanishing NS 3-

form field strength H = dB can teach us new lessons on how to quantize certain

non-Poisson geometries. In our example of branes on SU(2) we shall recover some

variants of well-known quantum group algebras.

Our formulation of the simple example of flat branes in a constant B-field moti-

vates the following general procedure: When we want to associate non-commutative

spaces to branes which are given as boundary conditions on the world-sheet, we take

the OPE of boundary fields (open string vertex operators corresponding to inter-

nal excitations of the brane) as a basic input. Then we choose a suitable subset of

boundary fields (e.g. primaries as above) and use them as abstract generators of an

algebra of “functions” on the (non-commutative) world-volume of the brane, with

multiplication table given by the boundary OPE (projected onto the subset, and

evaluated at x1 = 1 and x2 = 0, say).

Further comments on this general prescription will be given later, but now we

would like to test it in the case of SU(2) WZW models, where the semi-classical

picture provides certain expectations as to how the “quantized world-volume” of

branes should look like.

3. D-branes in the SU(2) WZW model

3.1 Semi-classical analysis.

The SU(2) WZW model at level k describes strings moving on a three-sphere S3 of

radius R ∼ √k, which is equipped with a constant NS 3-form field strength

H ∼ 1√
k
Ω =

1√
k
fabc θ

a ∧ θb ∧ θc ,

where Ω denotes the usual volume form on the unit sphere, and θa are components

of the 1-form dgg−1. In superstring theory, this geometry appears in the space
transverse to a stack of k NS 5-branes. These branes act as sources for k units of

NS 3-form flux through a three-sphere surrounding their (5+1)-dimensional world-

volume.

The world-sheet swept out by an open string in S3 is parametrized by a map

g : H → SU(2) from the upper half-plane H into the group manifold SU(2) ∼= S3.

From this field g one obtains Lie algebra valued chiral currents

J(z) = −k (∂g)g−1 , J̄(z̄) = k g−1∂̄g

as usual. We shall be interested in maximally symmetric D-branes on SU(2), which

are characterized by the gluing condition J(z) = J̄(z̄) along the boundary z = z̄.
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They were analyzed from a semi-classical point of view in [5], and we shall briefly

recall the findings of this approach. (For a detailed path integral description of branes

in SU(2), see [17].)

We first decompose the tangent space ThSU(2) at each point h ∈ SU(2) into a
part T

||
h SU(2) tangential to the conjugacy class through h and its orthogonal com-

plement T⊥h SU(2) (with respect to the Killing form). In [5], the following two basic
observations were made:

1. With gluing conditions of the type J = J̄ , the endpoints of open strings on

SU(2) are confined to conjugacy classes, i.e.

(g−1∂xg)⊥ = 0 .

2. Along the individual branes, i.e. along the conjugacy classes of SU(2), the

gluing condition becomes

(g−1∂yg)|| =
Ad(g) + 1

Ad(g)− 1(g
−1∂xg)|| .

Except for two degenerate cases, namely the points e and −e on the group manifold,
the conjugacy classes are two-spheres in SU(2). Taking into account the usual corre-

spondence between
√
kg−1∂g and the flat space coordinate ∂X and comparing with

the gluing conditions (2.4), we infer that the D-branes associated with J = J̄ carry

a non-vanishing B-field

B =
Ad(g) + 1

Ad(g)− 1 . (3.1)

In the limit k → ∞ the three-sphere grows and approaches flat 3-space. One can
parameterize it by a parameter X taking values in the Lie algebra su(2), such that

g ≈ 1−X. Then, the formula for the B-field reads

B ≈ −2 (ad(X))−1 .

This is the Kirillov 2-form on the spheres in the algebra su(2) = R3.

Extrapolating formula (2.6) to our curved background, we can construct a bi-

vector

ΘA =
2

B − B−1 =
1

2
(Ad(g)−Ad(g−1)) .

Introducing an orthonormal basis ea in su(2), and the left- and right-invariant vector

fields eaL, e
a
R on the group manifold, one can give an elegant formula for the bi-

vector ΘA,

ΘA =
1

2
eaL ∧ eaR .

6
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The Schouten bracket of ΘA (which generally characterizes the deviation from the

Jacobi identity) is of the form

φ := [ΘA,ΘA] =
1

6
fabc (e

a
L − eaR)(ebL − eaR)(ecL − ecR) .

Here fabc are the Lie algebra structure constants, the same as those in the expression

for the field strength H . This calculation makes sense for an arbitrary simple Lie

group. In general, the right hand side does not vanish and gives the obstruction for

the Jacobi identity. In the case of G = SU(2), φ vanishes for dimensional reasons: It

is a 3-vector tangent to the 2-dimensional conjugacy classes. In the infinite volume

limit k→∞, the bi-vector ΘA becomes
ΘA = ad(X) ,

which is the Kirillov-Kostant Poisson bi-vector. Consequently, the geometry of the

limiting theory k =∞ is very close to the well-known situation of flat branes in a flat
background with constant B-field, and we expect that the world-volume algebras of

our branes in the WZW model will be quantizations of two-spheres.

For finite k, however, the background is curved and carries a non-vanishing NS 3-

form H . This will result in a non-associative deformation of the k =∞ theory. Since
the three indices of the new object H can relate three-fold products with different

positions of brackets, the violation of associativity will turn out to be rather mild.

The semi-classical extension of the above analysis shows that, for fixed gluing

conditions, only a finite number of SU(2) conjugacy classes satisfy a Dirac-type flux

quantization condition [5]. These “integer” conjugacy classes are the two points e

and −e along with k − 1 of the spherical conjugacy classes (those passing through
the points diag(exp(iπj/k), exp(−iπj/k)) for j = 1, . . . , k− 1).

3.2 Exact CFT description.

The WZW model on the upper half-plane is known in enough detail to support

and specify the rather crude arguments of the previous subsection by an exact CFT

analysis. In fact, for the situation we are dealing with (gluing conditions J = J̄ in a

“parent” CFT on the full complex plane with diagonal modular invariant partition

function), Cardy [19] was able to list all [20] possible boundary conditions. There

exist k + 1 of them, differing in the bulk field one-point functions (brane charges)

and labeled by an index α = 0, 1/2, . . . , k/2. Without entering a detailed description

of these boundary theories [19], we recall that their state spaces have the form

Hα =
⊕

J
NJαα HJ (3.2)

where HJ , J = 0, 1/2, . . . , k/2, denote irreducible highest weight representations of
the affine Lie algebra ŜU(2)k, and where N

K
IJ are the associated fusion rules. Note

that only integer spins J appear on the right hand side of (3.2).
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There exists a variant of the state-field correspondence which assigns a bound-

ary field ψ(x) to each element |ψ〉 ∈ Hα (see e.g. [21]). In particular, the SU(2)
WZW boundary theory labeled by α contains SU(2)-multiplets associated to pri-

mary boundary fields, namely

ΨJ(x) = (ψJm(x)) with J = 0, 1, . . . ,min(2α, k− 2α)

and m = −J, . . . , J . All these boundary fields are defined for arguments x on the
real line and their correlators have, in general, no unique analytic continuation into

the upper half-plane.

In the flat target case, we chose U(1)-primaries as generating elements of the

world-volume algebra. Now, it is more appropriate not to break the group symmetry

by hand and, therefore, to keep the full SU(2)-multiplets ΨJ(x). For a fixed order

x > y of arguments on the real line, the OPE of two such boundary fields reads

ψIi (x) ψ
J
j (y) ∼

∑
K,k
(x− y)hI+hJ−hK

[
I J K

i j k

]
ck,αIJKψ

K
k (y) , (3.3)

where hJ is the conformal dimension of Ψ
J and [:::] denote the Clebsch-Gordan

coefficients of the group SU(2). The latter simply compensate for the different trans-

formation behavior of the fields on the left and right hand side under the action of

the zero-mode subalgebra of ŜU(2)k. Hence, the non-trivial information in (3.3) is

contained in the new structure constants C = (ck,αIJK).
In a consistent theory, these must obey sewing constraints, which were first ana-

lyzed by Lewellen in [22]; see also [20]. Recently, these constraints were reconsidered

by Runkel [23] for the A-series of Virasoro minimal models. His findings carry over to

SU(2) WZW models on the upper half-plane and show that the only possible solution

to the sewing constraints is given by the fusing matrix F of the WZW theory,

ck,αIJK = FαK

[
αα

I J

]
k
. (3.4)

It is one of the fundamental results on the relation between quantum groups and

conformal field theory (see e.g. [24]) that the fusing matrix of the WZW model is

obtained from the 6J symbols of the quantum group algebra Uq(su(2)) according to

FαK

[
αα

I J

]
k
=
{
I J K

ααα

}
q

where q = e
2πi
k+2 . (3.5)

In the limit q → 1, the 6J symbols of the quantum group algebra approach those
of the classical algebra U(su(2)), thus the structure constants ck,αIJK of the boundary

OPE become 6J symbols of the group SU(2) when the level k is sent to infinity. Note

that in this limit, the conformal dimensions hJ = J(J + 1)/(k + 2) tend to zero so

that the OPEs (3.3) of boundary fields become regular as in a topological theory.
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4. D-brane geometry, fuzzy two-spheres, and quantum groups

We are now prepared to follow the procedure sketched at the end of section 2 and to

read off the world-volume geometry of branes in the SU(2)-WZW model. So let us

think of the boundary fields ψIi = V (Y Ii ) as being assigned to elements Y
I
i of some

vector space, and let us use the operator product expansion (3.3), (3.4) and (3.5) to

define a multiplication by the prescription

Y Ii ? Y Jj =
∑

K,k

[
I J K

i j k

]
ck,αIJK Y Kk . (4.1)

As in (3.3), the summation on the right hand side runs fromK = 0 to a maximal spin

Kmax = min(I + J, k− I − J, 2α, k− 2α). First, we shall investigate this product in
the limiting case k =∞, where it produces a familiar algebraic structure. Passing to
finite levels leads to the following two changes: There is a k-dependent deformation

of structure constants C, cf. (3.5), and the range of the summation in (4.1) becomes
a function of the level, Kmax = Kmax(k). We shall separate these two phenomena

by looking at an intermediate case where k is non-rational and where we omit the

k-dependent restriction on the K-summation.

Infinite level k = ∞: recall that, in the case of infinite level, the structure con-
stants C in eq. (4.1) are given by the 6J symbols of the group SU(2). The semi-
classical analysis showed that H → 0, so we expect the world-volume algebra to be
associative. Indeed this can be confirmed using the Biedenharn-Elliot (or pentagon)

relation for the 6J symbols, along with the fact that 6J symbols of the form (3.5)

vanish whenever K > 2α. Hence, for infinite level our relations define an infinite

set of associative algebras S2α, α = 0, 1/2, . . . , with finite linear bases consisting of

dim (S2α) = (2α + 1)
2 elements.

Since the dimension of each of these algebras is a perfect square, one may already

suspect that they are full matrix algebras, i.e. that S2α
∼= MN (C) with N = 2α + 1.

To describe the isomorphism, we first note that MN(C) admits an action of the

group SU(2) by conjugation with group elements evaluated in the N -dimensional

representation of SU(2). Under this action, the SU(2)-module MN (C) decomposes

into a direct sum of irreducible representations V J ,

MN(C) ∼=
⊕N−1

J=0
V J . (4.2)

Only integer J appear, so this agrees with the decomposition of the state space Hα,
α = (N − 1)/2, in eq. (3.2) for boundary WZW models at sufficiently large (or
infinite) level k. Thus, we can identify our elements Y Jj with a basis of the spaces

V J . The isomorphism (4.2) allows to work out multiplication rules for any two such

basis elements from the multiplication of N ×N -matrices. The result [25] turns out
to coincide with our formula (4.1), which shows that S2α and MN (C), N = 2α + 1,

are indeed isomorphic as associative algebras.
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The non-commutative spaces S2α are known as fuzzy spheres and are obtained

when one quantizes functions on a two-sphere with the usual Poisson structure (see

e.g. [26] and references therein). The two-spheres may also be identified with co-

adjoint orbits of SU(2). According to Kirillov, their quantization gives all represen-

tations of the Lie algebra su(2) or of its universal enveloping algebra U(su(2)). Note

that the size N = 2α+1 of our matrices agrees with the number of components for an

su(2)-multiplet of spin α. Hence, through the investigation of maximally symmetric

branes on SU(2) at k =∞, we have recovered Kirillov’s theory of co-adjoint orbits.
Finite non-rational level k: let us stress that this case does not appear among

the exact boundary theories above (for non-compact WZW models, it is the generic

situation). We include it here merely as an intermediate step before presenting the

structure for finite integer level k. To be more precise, we consider the algebras

spanned by Y Jj with relations (4.1) in which the structure constants C are given by
the 6J symbols (3.5) of the quantum group algebra Uq(su(2)), but with summation

over the same range as in the case k =∞.
The resulting algebras S2α,q with q = exp(2πi/(k + 2)) not a root of unity cease

to be associative. But they are still quasi-associative in the sense that

Y Ii ? (Y
J
j ? Y

K
k )(τ

I
in ⊗ τJjm ⊗ τKkl )(ϕ) = (Y In ? Y Jm) ? Y Kl (4.3)

where the τL denote representations of U(su(2)) and where ϕ ∈ U(su(2))⊗3 is Drin-
feld’s “re-associator” [27]. The proof of this statement is sketched in the appendix.

When we perform a standard quasi-classical limit, commutators are replaced

by the brackets corresponding to the bi-vector ΘA. For a general compact simple

Lie group ΘA fails to satisfy the Jacobi identity. This corresponds to the leading

non-vanishing term in the 1/k-expansion of the re-associator ϕ,

ϕ = 1 +
1

6k
fabc e

a ⊗ eb ⊗ ec + · · ·

where ea is, as above, an orthonormal basis in the Lie algebra, and fabc are the cor-

responding structure constants. When applied to the relation (4.3), the Lie algebra

generators ea act by the adjoint vector fields (eaL − eaR). In the case of G = SU(2)
this leads to vanishing of the first order correction to the associativity law. This is

in accordance with vanishing of [ΘA,ΘA] in this case. Note that even in the SU(2)

case higher order corrections to the associativity law do not vanish.

Let us briefly mention that our quasi-associative algebras S2α,q are closely con-

nected to associative deformations of the fuzzy sphere which employ the Clebsch-

Gordan coefficients of the deformed Uq(su(2)) instead of their classical analogs. Some

details on these algebras and their associativity can be found in the appendix. For

now, let us only remark that they are factors of the quantum spheres introduced

by Podleś in [28]. Their relation to our algebras S2α,q is based on the fact that one
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can obtain the Clebsch-Gordon maps of classical Lie algebras from their q-deformed

counterparts with the help of Drinfeld’s “twist element” F ∈ U(su(2))⊗2. The latter
provides the following factorization formula for the re-associator:

ϕ = (id⊗∆)(F−1) (e⊗ F−1) (F ⊗ e) (∆⊗ id)(F )

where ∆ denotes the co-product of U(su(2)). Combining these two roles of the

twist element F , one can show that our algebras S2α,q are “twist equivalent” to as-

sociative factors of a Podleś sphere or, more explicitly, to the same matrix algebras

MN (C), N = 2α + 1, as in the case of infinite level. Hence, we simply recover

the representations for the usual q-deformation of U(su(2)) at generic values of the

deformation parameter.

Finite integer level k: the associated algebras Akα are spanned by the generators

Y Jm with the label J chosen from the set J = 0, 1, . . . ,min(2α, k−2α). Multiplication
of these elements is defined through eq. (4.1) with structure constants C now given
by the 6J symbols of Uq(su(2)) at the root of unity q = exp(2πi/(k + 2)). In

addition, the summation on the right hand side is now restricted to run from K = 0

to min(I + J, k− I − J, 2α, k− 2α). Viewed as SU(2)-modules, the linear spaces Akα
decompose as follows:

Akα
∼=



S2α for 0 ≤ α ≤ k

4
,

S2k/2−α for
k

4
≤ α ≤ k

2
.

Again, the algebras Akα are only quasi-associative, and they provide examples of the

geometries considered in [29]. Using the concept of representations introduced in [30],

it is not difficult to show that each of the quasi-associative algebras Akα possesses

precisely one indecomposable representation on a vector space W α of dimension

dimW α =



2α + 1 for 0 ≤ α ≤ k

4
,

k− 2α + 1 for
k

4
≤ α ≤ k

2
.

According to our previous discussion, the algebras Akα and their representations on

W α, α = 0, 1/2, . . . , k/2, generalize Kirillov’s theory of co-adjoint orbits to quantum

groups at roots of unity. In other words, the algebras Akα we obtain are “quanti-

zations” of integer conjugacy classes on SU(2). Summing over all possible brane

sectors, i.e. over the index α, we construct a deformed universal enveloping algebra.

Of course, quantum group algebras were constructed within the framework of

chiral conformal field theory before, see e.g. [27, 31, 32, 33]. As long as we avoid

roots of unity, our new derivation from boundary conformal field theory reproduces

well-known algebraic structures. Differences between the two approaches occur only
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when q is a root of unity. In that case, boundary conformal field theory improves

upon the old constructions in two respects. First of all, the theory gives “physical”

representations exclusively so that there is no need for additional truncations. Fur-

thermore, the dimensions dimW α of the representation spaces are invariant under

the simple current symmetry which interchanges α and k/2− α.
When we increase the level k, the radius of the three-sphere grows and we can

fit more and more branes into the background. At the same time, the 3-form field

strength decreases and the world-volume algebras become “more associative” —

while their non-commutativity survives.

This is to be compared to the non-commutative targets obtained in [7, 9, 10]

from closed strings: The k → ∞ limit of these targets is simply the classical group
SU(2). The different behavior of closed and open string geometry may be explained

as follows: Both closed and open strings feel the presence of the NS 3-form field

H at finite level. Open strings are also sensitive to the concrete choice of a 2-form

potential B, while closed strings “see” only its cohomology class. In the flat space

limit k = ∞, the cohomology becomes trivial while B itself stays non-zero and is
responsible for non-commutativity on the brane.

5. Summary and outlook

We have derived non-commutative world-volume algebras for D-branes in the SU(2)

WZW model, using a general scheme that can be applied to arbitrary branes given

as conformal boundary conditions, including supersymmetric cases. In the process,

we have seen how abstract objects from the CFT description, like Cardy’s boundary

states and Runkel’s OPE coefficients, acquire a geometrical meaning — if in terms of

non-commutative (and sometimes non-associative) spaces. The SU(2) WZW model

provides just the simplest example of a string background with a non-vanishing

3-form field strength H , but we think that it illustrates quite nicely much of the

behavior one should expect from more complicated backgrounds. In particular, the

discussion of SU(2) branes carries over to boundary WZW models with other struc-

ture groups G (at least in the compact case) and leads to a quantization of integer

conjugacy classes in G. It might be interesting to investigate also branes that are not

maximally symmetric, i.e. where the gluing conditions respect only a subalgebra of

the maximal chiral symmetry algebra [34].

Boundary CFT yields world-volumes independently of whether limiting classical

pictures are available or not, and it actually provides more structure than a mere

set of non-commutative algebras. Connes’ program [35] shows that, in order to

talk about the geometry of a non-commutative space, it is necessary to fix further

“spectral data”, including a Hilbert space on which the (associative) world-volume

algebra and a generalized Dirac or Laplace operator act. How these data can be

extracted from a CFT has been discussed, for the bulk case, in [7, 9]. The importance
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of the Laplace operator, which is related to the conformal Hamiltonian L0, can also

be seen in the context of our definition of non-commutative world-volumes: In order

to re-derive the OPE of boundary operators from the algebraic structure of the world-

volume, the spectrum of conformal dimensions must be known, cf. the remark after

eq. (2.2).

In a CFT on the upper half-plane, additional structure is available, e.g. in the

form of boundary condition changing operators which induce transitions between

two different boundary conditions α, β. The OPE of the boundary fields ΨI(x) with

boundary condition changing operators gives rise to bi-modules Bαβ over the world-

volume algebras of the two associated branes. In the case of D-branes on a group

manifold, these bi-modules allow to construct tensor products for representations of

the associated quantum group. OPEs involving two boundary condition changing

operators provide even more data, namely a full braided tensor category.

Some comments on our general scheme to extract a world-volume algebras from

the boundary CFT description of branes are in order. It involves a choice of “gener-

ating elements” among the boundary fields. From a pure CFT perspective, one could

restrict to primary operators only, or one could work with all boundary operators

and thus with an infinite-dimensional world-volume. In a sense, the latter algebra

would include all internal excitations of the “static” space defined using primary

fields. The WZW case, where it proved natural to keep the full group multiplets

associated with primary boundary fields, suggests that there are distinguished “in-

termediate” choices. For a large class of CFTs, the appropriate generalization of the

lowest-dimension spaces of WZWmodels is likely to be given by the special subspaces

introduced in [36]; see also [37].

Placing the CFT into a string theory context can remove the arbitrariness and

provide clear guidelines as to which world-volume generators to select from the

boundary fields: String theory contains additional parameters like α′, and the rel-
evant generators of the world-volume algebra are those surviving in some limiting

regime. E.g. in the flat background case, one can remove all higher excitations by

sending α′ to zero while keeping the B-field finite; see [38] and also [1]. It may be
possible that a number of interesting limits exists; then one expects that the world-

volume of a brane can look very different in different regimes, and that full string

theory can “interpolate” between those geometries.

The next task would be to calculate the effective action on the — in general non-

commutative — world-volume of the brane. The lowest-order terms are, of course,

already given by our “multiplication table” (the OPE coefficients). In principle,

higher-order contributions can be computed from the same data, but in practice one

still needs to integrate over world-sheet moduli.

In the context of the Douglas-Hull model, the effective field theories were found

to be non-commutative supersymmetric gauge theories with some amount of non-

locality [1, 2, 3, 39, 40, 41]. Seiberg and Witten could show that these models are

13



J
H
E
P
0
9
(
1
9
9
9
)
0
2
3

equivalent to ordinary gauge theories on a flat brane [38]. It remains to be seen

whether classical structures are stretched further when more general CFT back-

grounds are taken as a starting point. Perhaps it is worthwhile to compare the

induced field theories with existing models on fuzzy geometries (see e.g. [42]).

It would also be interesting to investigate further the relation between world-

volume non-commutativity as introduced in [1] and non-commuting moduli as dis-

covered by Witten [43]. Both phenomena can be traced back to failures in locality

properties of boundary fields — see [44, 45] for the case of moduli — so that there

exists a direct connection between the brane’s intrinsic “fuzziness” and the way it

“perceives” its ambient target.
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A. (Quasi-)associativity

Here we collect some basic material on Clebsch-Gordan maps, 6J-symbols and the

(quasi-)associativity of various algebras mentioned in the main text. Let us denote

by τ I the irreducible representation of Uq(su(2)) with spin I. By definition, Clebsch-

Gordan maps Cq(IJ |K) : V I⊗V J → V K intertwine between the actions of Uq(su(2))

on the product module V I ⊗ V J and the irreducible module V K . 6J symbols enter
the theory through the basic relation

Cq(MK|L) (Cq(IJ |M)⊗ idK) =
∑
P

{
LKM

I J P

}
q
Cq(IP |L) (idI ⊗ Cq(JK|P )) . (A.1)

They obey a number of fundamental equations. For our purposes, the Biedenharn-

Elliot (pentagon) relation is the most important one. With the spin labels set to the

values that we need below, it implies

∑
M

{
LKM

I J P

}
q

{
I J M

ααα

}
q

{
MKL

α α α

}
q
=
{
J K P

αα α

}
q

{
I P L

αα α

}
q

(A.2)

Relations (A.1) and (A.2) hold for generic q and at the classical point q = 1 where

we are dealing with representation theory of ordinary Lie algebras.
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Let us now study the algebra generated by Y Ii for I = 0, 1, . . . , 2α and |i| ≤ I

with the multiplication rules

Y Ii ? Y
J
j =

∑
K,k

[
I J K

i j k

]
q

{
I J K

ααα

}
q
Y Kk . (A.3)

The Clebsch-Gordan coefficients on the right hand side are obtained from the maps

C(IJ |K) once we have selected a basis in each representation space V L. Associativity
of this algebra is rather easy to prove with the help of eqs. (A.1) and (A.2):

( Y Ii ? Y
J
j ) ? Y

K
k =

∑
L,l,M,m

[
I J M

i j m

]
q

[
MKL

m k l

]
q

{
I J M

ααα

}
q

{
MKL

α α α

}
q
Y Ll

=
∑

L,l,M,P,p

[
J K P

j k p

]
q

[
I P L

i p l

]
q

{
LKM

I J P

}
q

{
I J M

ααα

}
q

{
MKL

α α α

}
q
Y Ll

=
∑
L,l,P,p

[
J K P

j k p

]
q

[
I P L

i p l

]
q

{
J K P

αα α

}
q

{
I P L

αα α

}
q
Y Ll

= Y Ii ? ( Y
J
j ? Y

K
k )

For the special case q = 1 this computation proves the associativity of the world-

volume algebra in the limit k = ∞. When the level k is finite and non-rational,
however, the defining relation for our algebra S2α,q from section 4 employs the un-

deformed Clebsch-Gordan maps along with the deformed 6J symbols. Hence, using

relation (A.1) for q = 1, we generate an undeformed 6J symbol in our computation

above. The latter cannot be absorbed with the help of the pentagon identity, since

we have to deal with a product of one undeformed and two deformed 6J symbols.

At this point, Drinfeld’s re-associator ϕ ∈ Uq(su(2))⊗3 plays a decisive role be-
cause of its fundamental property

C(MK|L) (C(IJ |M)⊗ idK)(ϕ−1)IJK =
∑
P

{
LKM

I J P

}
q
C(IP |L) (idI ⊗ C(JK|P )) ,

(A.4)

where

(ϕ−1)IJK = (τ I ⊗ τJ ⊗ τK)(ϕ−1) : V I ⊗ V J ⊗ V K → V I ⊗ V J ⊗ V K . (A.5)

Note that this relation involves Clebsch-Gordan maps of the Lie algebra and q-

deformed 6J-symbols at the same time. ϕ allows to modify the proof we have given

for the associativity of the algebra (A.3) such that we obtain the quasi-associativity

property (4.3).

A relation between our quasi-associative algebra S2α,q and the associative q-

deformation of the fuzzy sphere can be established with the help of Drinfeld’s twist
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element F . By definition, it maps the deformed and undeformed Clebsch Gordan

maps onto each other,

Cq(IJ |K)(τ I ⊗ τJ )(F ) = C(IJ |K) .

This property becomes crucial in showing that the quasi-associative algebra for non-

rational k is “twist-equivalent” to the associative q-deformed fuzzy sphere. Some

details on the notion of twist equivalence can be found e.g. in section 7.3 of [46].
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[17] K. Gawȩdzki, Conformal field theory: a case study, hep-th/9904145.

[18] A.Yu. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Diff.

Geom. 48 (1998) 445.

[19] J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys.

B 324 (1989) 581.

[20] G. Pradisi, A. Sagnotti, Y.S. Stanev, Completeness conditions for boundary operators

in 2d conformal field theory, Phys. Lett. B 381 (1996) 97 [hep-th/9603097].

[21] A. Recknagel, V. Schomerus, D-branes in Gepner models, Nucl. Phys. B 531 (1998)

185 [hep-th/9712186].

[22] D.C. Lewellen, Sewing constraints for conformal field theories on surfaces with bound-

aries, Nucl. Phys. B 372 (1992) 654.

[23] I. Runkel, Boundary structure constants for the A-series Virasoro minimal models,

Nucl. Phys. B 549 (1999) 563 [hep-th/9811178].
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