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Abstract

We investigate the relation between supersymmetry and geometry for two-dimensional sigma
models with target spaces of arbitrary signature, and Lorentzian or Euclidean world-sheets. In

Ž .particular, we consider twisted forms of the two-dimensional p,q supersymmetry algebra.
Ž .Superspace formulations of the p,q heterotic sigma models with twisted or untwisted supersym-

Ž .metry are given. For the twisted 2,1 and the pseudo-Kahler sigma models, we give extended¨
superspace formulations. q 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

w x w x Ž . Ž .In Ref. 1 , the analysis of Refs. 2–4 on the geometry of 1,0 and 1,1 supersym-
metric sigma models was generalised to the case in which the target space had arbitrary
signature, and the conditions for the theory to be invariant under extra supersymmetries

Ž .were investigated. Covariantly constant complex structures, i.e. 1,1 tensors J satisfy-
ing J 2 sy1, led to extra supersymmetries, each satisfying the usual superalgebra

2 Ž . 2Q ;P, while covariantly constant real structures, i.e. 1,1 tensors S satisfying S s1,
w xled to extra twisted supersymmetries 1 , each satisfying the twisted superalgebra

Q2 ;yP. The number of structures of either type depended on the target space
holonomy of a certain connection which had torsion if the sigma model had a

Ž .Wess–Zumino term. For example, if the holonomy is contained in USp 2m , there are
Ž .three complex structures I, J, K satisfying the quaternion algebra with SU 2 commuta-

Ž .tion relations, while if the holonomy is contained in Sp 2m,R , there is one complex
structure J and two real structures S,T satisfying the pseudo-quaternion algebra with

Ž .SU 1,1 commutation relations. The aim of this paper is to give the superspace
formulation of these models and to investigate their structure further.

Extended world-sheet supersymmetries have had two different uses in string theory.
In the study of heterotic or type II strings, complex manifolds such as Calabi–Yau
spaces have played an important role. In these cases, the string theory only has gauged
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Ž . Ž . Ž . Ž .1,1 or 1,0 world-sheet supersymmetry, but the 1,1 or 1,0 sigma model on a
suitable background can have extra rigid world-sheet supersymmetries; on a Kahler¨
manifold, for example, Ns1 world-sheet supersymmmetry is extended to Ns2, and
Ns2 superconformal field theory has played a central role in the study of such
compactifications. There are also string theories in which an extended world-sheet
supersymmetry is gauged, such as those with Ns2 local world-sheet supersymmetry,
and in these a target space with either four Euclidean dimensions, or with two space and
two time dimensions naturally arises. Our results on general signature have applications

w x Ž .to both heterotic or type II strings in general signature 5,6 and to 2, p strings in 2q2
w xdimensions 7–10 .
w xIn Refs. 5,6 , new string theories were found in which the ten-dimensional space-time

Žhad arbitrary signature, and in some cases the world-sheet was Lorentzian signature
. Ž .1q1 , while in others it was Euclidean signature 2q0 . All of these were linked to the

usual string theories with target space signature 9q1 and Lorentzian world-sheets by
w xchains of dualities 5,6 . The world-sheet formulation of these string theories is a sigma

model with target space of the appropriate signature. Target spaces that admit extra
supersymmetries play an important role in the study of solutions of these theories, just as
in the case of compactifying on Euclidean signature internal spaces.

Another context in which non-Lorentzian signature target spaces have played a role is
Ž . Ž . Ž .in Ns2 strings, or more generally in strings with 2,0 , 2,1 or 2,2 world-sheet

Ž .supersymmetry. In these theories, the target spaces had signature 2q2 or 4q0 , and
Ž .the heterotic theories were reduced via a null reduction to ones with signature 1q1 or

Ž .2q1. The 2,1 string is of particular interest. It was shown by Kutasov and Martinec
x w x Ž .11 , and by the same authors with O’Loughlin 12 , that different vacua of the 2,1

superstring describe the D1-string or the D2-brane, and via dualities these are linked to
all usual types of ten-dimensional superstrings and to the eleven-dimensional supermem-

w x Ž .brane 11,12 . This led to the suggestion that the 2,1 heterotic string may provide many
of the degrees of freedom of M theory, although this approach has so far only yielded

w xspecially symmetric points in the moduli space of vacua of M-theory 13,14 . Martinec
w x Ž .15–17 has proposed an interpretation of the 2,1 string as describing the continuum

w xlimit of the matrix model of M-theory 18 with all spatial dimensions compactified.
Ž . w xThe 2,1 heterotic string 10 has a four-dimensional target space-time with signature

Ž .2,2 that is required to have an isometry generated by a null Killing vector, which must
w xbe gauged. In general there are obstructions to the gauging of a given isometry 19,20 ,

Ž .and the isometry is required to be one for which these are absent. For 2,2 signature,
Ž . Žthis null reduction yields either a space with signature 2,1 corresponding to a

w x. Ž . Žmembrane world-volume 11,12 or a space with signature 1,1 corresponding to a
w x. Ž .string world-sheet 11,12 . The theory defined on a space-time with signature 2,2

before null reduction is a theory of self-dual gravity with torsion coupled to self-dual
w xYang–Mills gauge fields 10 . The exact classical effective action for the gravitational,

w xantisymmetric tensor and gauge degrees of freedom was given in 14 and derived
w x Ž w x .independently in 1 using sigma-model techniques see Refs. 13,17 for reviews . In

w xRef. 21 , this action was simplified using an auxiliary metric and shown to be Weyl
invariant at the classical level in four dimensions. A dual form of this action was found;
in four dimensions, the dual geometry is self-dual gravity without torsion coupled to a
scalar field.
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Ž .The heterotic sigma models which describe the target spaces of 2,1 strings have
w xbeen discussed in Refs. 2–4 . The geometry is Hermitean with torsion and the field

equations imply that the curvature with torsion is self-dual in four dimensions, or
satisfies generalised self-duality equations in higher dimensions. The conditions under

w xwhich these models have isometry symmetries were analysed in Ref. 19 , while the
Ž .gauging of such isometries and the construction of manifestly 2,1 supersymmetric

w xgauged actions were discussed in Refs. 19,20,22,23 .
This paper is organised as follows. In Section 2 we discuss untwisted and twisted

Ž .p,q supersymmetry in two dimensions and introduce a superspace for the general
Ž .p,q superalgebra. In Section 3 we construct the corresponding two-dimensional
non-linear sigma models on target spaces of general signature, and derive the geometric
conditions imposed by supersymmetry. In Section 4 we give a superspace formulation of

Ž .the models with twisted p,q supersymmetry and discuss their isometry symmetries. In
Section 5 we review the geometry and the extended superspace formulation of the sigma

Ž .model with the usual 2,1 supersymmetry. An extended superspace formulation of the
Ž .sigma model with twisted 2,1 supersymmetry is given in Section 6. In Section 7 we

discuss the various possible Ns2 sigma models and in particular give superspace
formulations of the pseudo-Kahler sigma models with or without torsion. We summarise¨
the results in Section 8, and close with some remarks on a reformulation with ‘double
numbers’.

2. Superalgebras and superspaces

In two-dimensional Minkowski space, the global supersymmetry algebra of type
Ž . w x w xp,q was defined in Ref. 2 . There also exists a twisted form of this algebra 1 and the
general case is

Q I ,Q J s2h I JP , Q I X

,Q J X

s2h I X J X

P , Q I ,Q J X

s0, 1Ž .� 4 � 4 � 4q q q y y y q y

where Q I , Is1, . . . , p, are the p positive-chirality supersymmetry charges, Q I X

,q y
I X s1, . . . ,q are the q negative-chirality charges and q,y are chiral spinor indices; our

w xsuperspace conventions are as in 24 . The supercharges Q are 1-component Majo-"

rana–Weyl spinors which, in our conventions, are real, Q) sQ . Consider the" "
I Ž .right-handed superalgebra generated by the Q . In the conventional untwisted superal-q

w x I J I J I J Ž .gebra of 2 , h sd , while in the general case h in 1 can be an arbitrary
symmetric matrix. If invertible, it can be brought to the form

1 0uI Jh s 2Ž .ž /0 y1 t

with uq tsp. Then Q I for Is1, . . . ,u are normal supersymmetries that square toq
P , while Q I for Isuq1, . . . , p are twisted supersymmetries that square to yP ,q q q
and we refer to the superalgebra as being twisted. This can be generalised further to
allow non-invertible metrics

1 0 0u

I J 0 y1 0h s 3Ž .t� 00 0 0Õ
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Ž .with Õ zeroes as well as u q1’s and t y1’s tquqÕsp ; there would then be Õ
I Ž 2 .nilpotent supercharges Q for Isuq tq1, . . . , p i.e. Q s0 . Note that for e.g. theq

Ž . " 1 2 Ž ". 2twisted 2,0 algebra, the supercharges Q sQ "Q are each nilpotent, Q s0,q q q
but they do not anti-commute with each other. It would be interesting to study the
cohomology associated with such nilpotent supercharges. The discussion of the left-
handed superalgebra generated by the Q I is similar, and there are correspondingy
expressions for h I X J X

with p and q interchanged.
The above can be extended further to allow central charges Z I J X

with

Q I ,Q J X

sZ I J X

, 4Ž .� 4q y

or vectorial charges X I J, X I X J X

withq y

Q I ,Q J sX I J , Q I X

,Q J X

sX I X J X

, 5Ž .� 4 � 4q q q y y y

but this will not be discussed further here.
Twisted superalgebras are possible in higher dimensions also; for instance the

ten-dimensional type II ) string theories related by timelike T-duality to the usual type II
w xsuperstring theories have twisted IIA or IIB superalgebras in ten dimensions 5 .

Ž . Ž .It is straightforward to introduce a superspace for the general p,q superalgebra 1 .
There are two real bosonic coordinates sqss 1 qs 2, syss 1 ys 2, p real positive-
chirality Fermi coordinates uq and q real negative-chirality Fermi coordinates uy

X . TheI I

supersymmetry generators

E E E EX X XI I J q I I J y
XQ s y ih u , Q s y ih u , 6Ž .q J y Jq q y q

XEu Es Eu EsI I

Ž .satisfy the superalgebra 1 ; the corresponding supercovariant derivatives are

E E E EX X XI I J q I I J y
XD s q ih u , D s q ih u , 7Ž .q J y Jq q y q

XEu Es Eu EsI I

and satisfy the anticommutators

D I , D J s2 ih I JE , D I X

, D J X

s2 ih I X J X

E , D I , D I X

s0. 8Ž .� 4 � 4 � 4q q q y y y q y

For Minkowski world-sheets, there are one-component Majorana–Weyl spinors, but
for Euclidean signature there are no Majorana–Weyl spinors, so the analysis is different.
A Dirac spinor

cq
c s 9Ž .a ž /cy

Ž .)has two complex components c . One can impose a Majorana condition c sc" q y
Ž .)or a pseudo-Majorana condition c syc , or a Weyl condition c s0 or c s0;q y q y

there are thus various types of minimal spinor with two real components, but none with
one component.

There are then various types of superalgebras in two Euclidean dimensions. There is
Ž . Ia p,q algebra with p right-handed Weyl supercharges with complex components Qq

and q left-handed Weyl supercharges with complex components Q I X

, and the superalge-y
Ž .bra is again 1 , but with all charges complex, and P 'P " iP . For N Majorana" 1 2
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I Žspinors Q , Is1, . . . , N, the general algebra without central charges or extra vectora
.charges is

Q I ,Q J sM I JP g mC qN I JP g 3g mC , 10Ž . Ž .� 4 Ž .aba b m m ab

where C is the two-dimensional charge conjugation matrix, the g m are two-dimensional
Dirac matrices, g 3 s ig 0g 1 and M I J, N I J are some symmetric matrices. The matrix

I J Ž .M can be taken to be diagonal with eigenvalues q1,y1 and 0, as in 3 . This can be
Ž .obtained from the N, N algebra with N left-handed and N right-handed Weyl

1I ) I I J I JŽ . Žsupercharges by imposing the Majorana condition Q sQ , with M s h qq y 2X X 1 X XI J I J I J I J. Ž .h and N s h yh . For pseudo-Majorana supercharges, the result is simi-2

Ž .lar. The general N, M,r,s superalgebra with N Majorana supercharges, M pseudo-
Majorana supercharges, r right-handed Weyl supercharges and s left-handed Weyl

Ž .supercharges can be obtained from the p,q superalgebra with psNqMqr, qsN
Ž I .) I X XqMqs, by imposing the Majorana condition Q sQ for Is I s1, . . . , N andq y

Ž I .) I X Xthe pseudo-Majorana condition Q syQ for Is I sNq1, . . . , MqN. Thus allq y
Ž .cases are contained in the Euclidean p,q algebra, and much of the analysis of the

Ž . Ž .Minkowski p,q models carries over to the Euclidean p,q theories; in particular, the
Ž . " 1 2Euclidean p,q superspace has two complex bosonic coordinates s ss " is , p

complex positive-chirality Fermi coordinates uq and q complex negative-chirality onesI
y Ž . Ž .Xu , with supercharges and derivatives again given by 6 and 7 .I

( )3. p,q Sigma models with general target space signature

We now turn to the construction of non-linear two-dimensional sigma models with
Ž .twisted or untwisted p,q supersymmetry on target spaces of arbitrary signature.

Ž .It is convenient to first consider the 1,1 supersymmetric sigma model with
w xsuperspace action 24

2 q y i jS s d s du du g f qb f D f D f , 11Ž . Ž . Ž .HŽ1,1. i j i j q y

where the f i are superfields which can be viewed as coordinates on some D-dimen-
sional manifold M with metric g and torsion 3-form H given by the curl of thei j

antisymmetric tensor b ,i j

3
H s E b . 12Ž .i jk w i jk x2

Ž . Ž .The action 11 is invariant under 1,1 supersymmetry, general coordinate transforma-
tions on the target manifold M and antisymmetric tensor gauge transformations

d b sE l . 13Ž .i j w i j x

This model will be conformally invariant at one loop if there is a function F such
that

RŽq.y= = FyH k= Fs0, 14Ž .i j Ž i j. i j k
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where RŽq. is the Ricci tensor for a connection with torsion. We define the connectionsi j

with torsion

iŽ" . i iG s "H , 15Ž .jk jk½ 5jk

i
where is the Christoffel connection, and the corresponding covariant derivatives½ 5jk
= Ž" .. The curvature and Ricci tensors with torsion are

RŽq.k sE G Žq.k yE G Žq.k qG Žq.kG Žq.m yG Žq.kG Žq.m , RŽq.sRŽq.k .l i j i jl j i l im jl jm i l i j i k j

16Ž .
Ž .Eq. 14 can be obtained by varying the action

1 2D y2F 2< <(Ss d x e g Ry H q4 =F . 17Ž . Ž .H ž /3

Ž .We now seek the conditions on the target space geometry under which the 1,1
Ž .superspace action 11 is invariant under extra supersymmetries, generalising the

w xanalysis of Refs. 2–4,25 to arbitrary signature and giving a superspace derivation of
w xthe results of Ref. 1 . If there are py1 right-handed and qy1 left-handed extra

supersymmetry transformations, then they must be of the form

df i s´ rT i D f j q´ rX

T i
X D f j 18Ž .Žq.r j q Žy.r j y

Ž . i Ž . i X
Xfor some tensors T , T with rs1, . . . , py1 and r s1, . . . ,qy1. Invari-Žq.r j Žy.r j

Ž . i i
Xance of the action 11 requires that the tensors T , T satisfyŽq.r j Žy.r j

g T k qg T k s0, g T k
X qg T k

X s0, 19Ž .k i Žq.r j k j Žq.r i k i Žy.r j k j Žy.r i

and

= Žq.T i s= Žy.T i
X s0. 20Ž .k Žq.r j k Žy.r j

Ž .If the supersymmetry transformations 18 are to satisfy a superalgebra, which may be
twisted or untwisted, then the matrices T and T X must satisfy anticommutationr Žq. r Žy.
relations of the form

T ,T sy2h , T X ,T X sy2h X X , 21� 4 � 4 Ž .Ž . Ž . Ž . Ž .q r q s r s y r y s r s

for some metrics h r s, h rX sX

. In addition, the generalised Nijenhuis concomitants
Ž r s . Ž rX sX . Ž .NN T ,T and NN T ,T must vanish. For any 1,1 tensors T and T the generalisedq q y y 1 2

w xNijenhuis concomitant is defined by 26
i l i l i i l i lNN T ,T sT E T yT E T yT E T yT E T q 1™2 22Ž . Ž . Ž .jk1 2 1 j l 2 k 1k l 2 j 1 l j 2 k 1 l k 2 j

Ž . Ž . Ž . iso that NN T ,T sNN T ,T and NN T ,T is antisymmetric in the indices j,k. Then1 2 2 1 1 2 jk
1 Ž . Ž .NN T ,T 'NN T is the usual Nijenhuis tensor of T ,4

NN k T sT lT k yT lT k . 23Ž . Ž .i j i w j , l x j w i , l x

Ž .The condition NN T s0 implies that T is integrable, i.e. that a coordinate system can
be chosen in which it is constant. However, if there are several integrable such tensors, it
will usually not be possible to choose coordinates in which they are simultaneously
integrable.
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Ž .If the above conditions are satisfied, then the supersymmetry transformations 18
Ž . Ž .together with the manifest 1,1 supersymmetries satisfy the algebra 1 with

1 0 X X 1 0I J I J X Xh s , h s . 24Ž .r s r sž / ž /0 h 0 h

Diagonalising h r s, h rX sX

, we find that each tensor T squares to either q1, y1 or 0;
those satisfying T 2 sy1 are complex structures while those satisfying T 2 s1 are

Ž w x.sometimes referred to as real structures as in Refs. 27,28 and sometimes as almost
Ž w x.product structures as in Ref. 24 .

Consider first the case of the right-handed supersymmetries with the tensors T sT .r Žq.r

Each is Hermitean, T syT , and covariantly constant with respect to the connectioni j ji

G Žq., and so the py1 tensors T must be singlets under the holonomy group HH ofr

G Žq.. We will restrict ourselves to the cases in which the holonomy is irreducible. For
Ž . Ž .signature m,n , HH is O n,m , or a subgroup thereof, as the metric with signature

Ž .m,n is covariantly constant. There will be a covariantly constant complex structure J,
2 Ž .with J sy1, if m,n are even, ns2n ,ms2n , so that the signature is 2n ,2 n ,1 2 1 2

Ž .and if HH:U n ,n . If there are two covariantly constant complex structures, I, J, then1 2

Ks IJ is a third covariantly constant complex structure and the I, J, K satisfy the
quaternion algebra

I 2 sJ 2 sK 2 sy1, IJsyJIsK , JKsyKJs I , KIsyIKsJ
25Ž .

Ž .with I, J, K satisfying SO 3 commutation relations. This requires that the holonomy
Ž .group is contained in USp 2m for Euclidean spaces of even complex dimension

Ž Ž . Ž . Ž .ns2m where USp 2m is compact, with the convention that USp 2 sSU 2 ; we use
w x.the definitions of groups and their non-compact forms given in Ref. 29 . For spaces of

Ž . Ž . Žsignature 4n,4m , this requires that the holonomy is contained in USp 2n,2 m this is
Ž . .the subgroup of U 2n,2 m preserving a symplectic structure .

For a real structure S satisfying S2 s1, the hermiticity condition implies that the
Ž .metric, if it is to be non-degenerate, has to be of signature m,m , and the holonomy

Ž . � 4group has to be in GL m,R . If there are two real structures, S,T with S,T s0, then
JsST is a complex structure and J,S,T must satisfy the pseudo-quaternion algebra

J 2 sy1, S2 sT 2 s1,
STsyTSsyJ , TJsyJTsS, JSsySJsT 26Ž .

Ž .with J,S,T satisfying SO 2,1 commutation relations, so that there is a pseudo-quater-
w xnionic structure 27,28 . Similarly, if there is a complex structure J and a real structure S

� 4with S, J s0, then TsJS is another real structure and J,S,T again satisfy the
Ž .pseudo-quaternion algebra 26 . The existence of such a covariantly constant pseudo-

quaternionic structure requires that m is even, ms2k, and the holonomy is in
Ž .Sp 2k,R . If p)4, the tensors T satisfy an octonion or pseudo-octonion algebra and the

holonomy must be trivial. Similar results apply for the left-handed supersymmetries, the
number of which depends on the holonomy of the connection G Žy..

The currents

1
i jj s T c c 27Ž .Ž" .r Ž" .r i j2
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generate left- and right-handed Kac–Moody algebras. The right-handed currents jˇ Žq.r
Ž . Ž .generate an affine SO 2 or SO 3 if there are ps2 or ps4 untwisted supersymme-
Ž .tries, and an affine SO 1,1 if ps2 and one of the supersymmetries is twisted, and an

Ž .affine SO 2,1 if ps4 and two of the supersymmetries are twisted. In the latter case,
Ž . Ž .the SO 2,1 Kac–Moody algebra is part of a non-compact twisted form of the smallˇ

Ž . I J Ž .Ns4 superconformal algebra with global limit given by 1 , where h is the O 2,2
w xinvariant metric 1 .

In the special case in which the torsion vanishes, then G Žq.sG Žy.sG and the
number of left-handed supersymmetries is the same as the number of right-handed

Ž .supersymmetries, psq. For 2,2 untwisted supersymmetry the geometry is Kahler, for¨
Ž . Ž .4,4 untwisted supersymmetry the geometry is hyper-Kahler, while for 2,2 twisted¨

Ž .supersymmetry we shall call the geometry pseudo-Kahler, and for 4,4 twisted super-¨
symmetry we shall call the geometry pseudo-hyper-Kahler. The pseudo-Kahler geometry¨ ¨
shares many of the features of Kahler geometry; in particular, the metric can in both¨
cases be given in terms of a scalar potential, as we shall see in Section 6.

4. Extended superspace and isometries

Ž .A superspace formulation of the models with twisted p,q supersymmetry can be
Ž .given in p,q superspace using a formalism which generalises that proposed by Howe

w xand Papadopoulos in Refs. 30,31 . Let

" y q ˜y ˜q
X Xs ,u ,u ,u ,u 28Ž .m m n nž /˜ ˜

X X Žwith ms0, . . . ,u, msuq1, . . . , py1 and n s0, . . . ,Õ, n sÕq1, . . . ,qy1 1(u˜ ˜
.(py1, 1(Õ(qy1 be the superspace coordinates. The non-vanishing anticommuta-

tors of the flat superspace derivatives D and D X aremq m y

D , D s2 id E , D X , D X s2 id X X E ,� 4 � 4mq nq mn q m y n y m n y
29Ž .

X X X XD , D sy2 id E , D , D sy2 id E .� 4 � 4mq nq mn q m y n y m n y˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

D and D X anticommute with the supercharges Q and Q X , while D and D X
mq m y mq m y mq m y˜ ˜

Ž .Xanticommute with Q and Q . The generalised p,q non-linear sigma model ismq m y˜ ˜
i Ž .described by a superfield w which is a map from the p,q superspace to M. The

w xchirality constraints 30,31

D w i sT i D w j , rs1, . . . , py1,rq Žq.r j 0q

D X w i sT i
X D w j , rX s1, . . . ,qy1, 30Ž .r y Žy.r j 0y

Ž . Žimply that the p,q supersymmetry transformation of either type generated by Q ,mq
. Ž . Ž . Ž .X XQ and Q , Q reduce to the transformations 18 on expanding into 1,1m y mq m y˜ ˜

superfields.
Ž .The twisted or untwisted p,q -supersymmetric sigma model action in the corre-

Ž . w xsponding p,q superspace is then 30,31

2 q y i jSsyi d s du du g D w D wH 0 0 i j 0q 0y

2 q y j kq d s dt du du H E D w D w , 31Ž .H 0 0 i jk t 0q 0y
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Ž . Ž . Ž . Ž .where the p,q superfields satisfy the constraints 30 . If Eqs. 19 and 20 hold, then
Ž . Ž .using the constraints 30 it can be shown that the action 31 is independent of the extra

Ž . Ž .Xsupercoordinates u , u , and as a result is invariant up to surface terms under ther r
Ž . Ž .X Xnon-manifest supersymmetries generated by Q , Q and Q , Q .rq r y rq r y˜ ˜

Ž .Now consider p,q infinitesimal superspace transformations of the form

dw i sla j i w 32Ž . Ž .a

with constant parameters la. These will constitute proper symmetries of the sigma
Ž .model action 31 if the metric and torsion are Lie invariant,

LL g s0, LL H s0, 33Ž . Ž . Ž .i j i jka a

and if in addition

LL T sLL T X s0, 34Ž .a Žq.r a Žy.r

i.e. the real or complex structures are also Lie invariant. Then the j i are Killing vectorsa

which are holomorphic with respect to each complex structure, or ‘holomorphic’ in a
generalised sense with respect to each real structure. This implies locally on M that

j iH s2E u , 35Ž .a i jk w j k xa

where u is a locally defined one-form u which is determined in every coordinate patchi a

of M up to an exact Lie-algebra valued one-form. It follows that there are generalised
Killing potentials X , X X satisfyingŽq.r a Žy.r a

g j j qu sT j E X sT j
X E X X 36Ž .i j a i a Žq.r i j Žq.r a Žy.r i j Žy.r a

for every rs1, . . . , py1 and rX s1, . . . ,qy1.

( )5. 2,1 Sigma models

Ž .In this section we review the 2,1 sigma model with untwisted supersymmetry; the
Ž .model with twisted 2,1 supersymmetry will be discussed in Section 6. The geometric

Ž . Ž .conditions for the 1,1 model to have untwisted 2,1 world-sheet supersymmetry were
w xfirst obtained in Ref. 2 , and follow from the general discussion given above. The

Ž .manifold must be complex with dimension Ds2n with metric g of signaturei j
Ž . i2m ,2 m with m qm sn and a complex structure J which is covariantly constant1 2 1 2 j

Žq. Ž .with respect to the connection with torsion G defined in 15 and with respect to
which the metric is Hermitean, so that J sg J k is antisymmetric. Introducingi j i k j

a b b )Ž .complex coordinates z , z s z in which the complex structure is constant and
diagonal,

d b 0aiJ s i , 37Ž .j bž /0 yd a
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Ž .any N-form can be decomposed into a set of r,s forms with r factors of dz and s
Ž . Ž .factors of dz, where rqssN. The conditions above then imply that the 0,3 and 3,0

parts of the three-form H vanish and H is given in terms of the fundamental two-form

1
i j a bJs J df ndf syig dz nz 38Ž .i j a b2

by

Hs i EyE J . 39Ž . Ž .
The exterior derivative decomposes in the complex coordinate system as dsEqE , so
the closure of the three-form H implies

iEE Js0. 40Ž .
Ž . aIt follows that locally a 1,0 form ksk dz exists such thata

Js i E kqE k . 41Ž .Ž .
Ž .The metric and torsion potential are then given in a suitable gauge by

g sE k qE k , b sE k yE k . 42Ž .ab a b b a a b a b b a

If k sE K for some K then the torsion vanishes and the manifold is Kahler with¨a a

Ž . Ž .Kahler potential K and the 2,1 supersymmetric model in fact has 2,2 supersymmetry,¨
w xbut if dk/0, then M is a Hermitean manifold with torsion 2 . The metric and torsion

w xare invariant under 19

d k s iE xqu , 43Ž .a a a

Ž .where x is real and u is holomorphic, E u s0, but b as defined in 42 transformsa b a a b

as

d b sy2 iE E x , 44Ž .ab a b

Ž .which is an antisymmetric gauge transformation 13 with parameter l s2 iE x .a a

Much of the above structure can be found using superspace methods. We start by
Ž .seeking the most general 2,1 supersymmetric sigma model that can be written in a

m q q y qŽ .2,1 superspace parametrised by s , u , u , u , where u su q iu is a complex1 2

Weyl spinor and the corresponding supercovariant derivatives are

E E E
q q yD s q iu E , D s q iu E , D s q iu E , 45Ž .q q q q y yq yqEu EuEu

so that

� 4D , D s2 iE , D , D s D , D s0. 46Ž .� 4 � 4q q q q y q y

a a a )Ž . Ž .We introduce complex 2,1 scalar superfields w , w s w satisfying the chiral
constraint

a aD w s0, D w s0. 47Ž .q q



( )M. Abou Zeid, C.M. HullrNuclear Physics B 561 1999 293–315 303

a < aThe lowest components w sz of the superfields are bosonic complex coordinatesus0

w xof the target space. The general sigma-model action is 32

2 q q y a aSs i d s du u du k D w yk D w 48Ž .H ž /a y a y

a a a aŽ . Ž .for some local vector potentials k w ,w , k w ,w , which are required to bea a
)Ž . Ž .complex conjugate if the action 48 is to be real, k s k . Expanding in compo-a a

nents, the bosonic part of the action is a bosonic sigma model with metric g andab

Ž .torsion potential b given in terms of k by 42 , so that we find the geometry describedab

above. In particular, if k sE K for some scalar K , then the torsion vanishes and thea a

metric is given by

g sE E K 49Ž .ab a b

so it is Kahler.¨
The additional geometric conditions under which the model has isometry symmetries

w xhave been analysed in Ref. 19 . There it was shown that the geometry determines the
Ž . Ž .potentials x and u that appear in Eq. 43 . The construction of gauged 2,1 superspace

w xactions was discussed in Refs. 19,20,22 .
It will be useful to define the vector

wi sH J i j J k l 50Ž .jk l

Ž .together with the U 1 part of the curvature

C Žq.sJ l RŽq.k 51Ž .i j k l i j

Ž . Ž .and the U 1 part of the connection 15 ,

Ž .Žq. k Žq. j q a Žq.aG sJ G s i G yG . 52Ž .Ž .i j i k i a i a

Note that C is a representative of the first Chern class, and that it can be written asi j

C Žq.s2E G Žq. in a complex coordinate system. If the metric has Euclidean signature,i j w i j x
Ž Ž" .. Ž .the holonomy of any metric connection including G is contained in O 2n , while

Ž . Ž .if it has signature 2m ,2 m with m qm sn, it will be contained in O 2m ,2 m .1 2 1 2 1 2
Ž Žq..As the complex structure is covariantly constant, the holonomy HH G of the

Žq. Ž .connection with torsion G is contained in U m ,m , but it will be contained in1 2
Ž . Žq.SU m ,m if in addition C s0; a necessary condition for this is the vanishing of the1 2 i j

first Chern class.
w xIt was shown in Refs. 4,25,33 that geometries for which

G Žq.s0 53Ž .i

in some suitable choice of coordinate system will satisfy the conditions for one-loop
Ž .conformal invariance 14 provided the dilaton is chosen as

1
< <Fsy log det g , 54Ž .ab2

which implies

E FsÕ . 55Ž .i i
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Moreover, the one-loop dilaton field equation is also satisfied for compact manifolds, or
w xfor non-compact ones in which =F falls off sufficiently fast 1 . This implies that

Ž Žq.. Ž .HH G is contained in SU m ,m . These geometries generalise the Kahler Ricci-flat¨1 2

or Calabi–Yau geometries, and reduce to these in the special case in which Hs0.
Ž . w xHowever, they are not the most general solutions of the conditions 14 1 .

Žq. Ž .The condition that the connection G has SU m ,m holonomy can be cast as a1 2

generalised self-duality condition on the curvature. Defining the four-form

f i jk l 'y3J w i j J k l x , 56Ž .
Ž Žq.. Ž . w xthe condition that HH G :SU m ,m is equivalent to 211 2

1
Žq. m n p q Žq.R s g g f R . 57Ž .i jk l im jn p qk l2

For Ds4, f i jk l sye i jk l and this is the usual anti-self-duality condition.
Ž .Eq. 53 can be viewed as a field equation for the potential k , and can be obtaineda

w xby varying the action 1,13,14

D < <Ss d x det g , 58Ž .(H ab

Ž .where g is given in terms of k by 42 . This action can be rewritten asab a

D < <1r4Ss d x det g 59Ž .H i j

which is non-covariant but is invariant under volume-preserving diffeomorphisms. This
w xcan be rewritten in the classically equivalent alternative form 21

1r4X X D i j< <S sT d x g g g y Dy4 c , 60Ž . Ž .H4 i j

X Ž .where g is an auxiliary metric, gsdetg and c,T are real constants. In the speciali j i j 4
Ž .case of four dimensions, the constant term in the action 60 vanishes and there is a

generalised Weyl symmetry under

g ™v x g . 61Ž . Ž .i j i j

Ž . w xThe dualisation of the action 58 was discussed in Ref. 21 . This is achieved by
adding a Lagrange multiplier term imposing the constraint g sE k qE k . Theab a b b a

vector potentials k ,k are then Lagrange multipliers for a certain constraint, anda a

w xsolving this leads to a dual form of the action 21 . In four dimensions, the dual
geometry is self-dual gravity without torsion coupled to a scalar field, while in D)4
dimensions the dual geometry is Hermitean and determined by a Dy4 form potential
K which generalises the Kahler potential of the four-dimensional case. The coupling to¨

Ž .the Yang–Mills fields is through a term Kn tr FnF and leads to a Uhlenbeck–Yau
˜i j w xfield equation J F s0 21 .i j

( )6. Twisted 2,1 sigma models

Ž .Consider now the case of space-time signature d,d , which was called Kleinian in
w x Ž .Ref. 28 . We start by considering the 2,1 superspace formulation to obtain the
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Žgeometry in a special coordinate system the analogue of the complex coordinates of
.Section 5 , then show how the same results can be obtained in a coordinate independent

Ž .manner using the results of Section 3. Using the 2,1 superspace introduced in Section
2, we define

1 2 ˜ ˜1 ˜ 2u su qu , u su yu 62Ž .q q q q q q

and the supercharges

E E E E
˜ ˜Q s yu , Q s yu , 63Ž .q q q qq q˜Eu Es EsEuq q

satisfying the algebra

˜ 2 ˜2Q ,Q s2E , Q sQ s0, 64Ž .� 4q q q q q

together with the superderivatives

E E E E
q q˜ ˜D s qu , D s qu , 65Ž .q qq q qq˜Eu Es EsEu

which satisfy the anticommutators

˜ ˜ ˜� 4D , D s D , D s0 D , D s2E . 66Ž .� 4½ 5q q q q q q q

˜ Ž .Thus the structure associated with u ,u in the twisted 2,1 case is similar to thatq q
Ž .associated with u ,u in the untwisted 2,1 case, with the important difference that inq q

)Ž .the usual case u ,u are complex and related by u su , while in the twisted caseq q q q
˜u ,u are independent real coordinates.q q

Ž . Ž .The twisted 2,1 supersymmetric sigma model can be formulated in a twisted 2,1
a ã˜extended superspace as follows. First we introduce chiral scalar superfields U and V

satisfying

a ã˜ ˜D U s0, D V s0. 67Ž .q q

a ã˜ ˜Note that as D , D are independent real derivatives, we take U ,V as independentq q
real superfields. Here as1, . . . ,n and as1, . . . ,n for some n,n. The general twisted˜ ˜ ˜
superspace action is

2 q q y a ã˜ ˜ ˜Ssy d s du du du k D U yk D V 68Ž .H ž /a y a y˜

a ã a ã˜ ˜ ˜Ž . Ž .for some independent real vector potentials k U ,V ,k U ,V . The correspondinga ã

˜qŽ .Lagrangian in 1,1 superspace can be obtained by integrating over u . Up to a total2

derivative term, we find the action

˜2 q y a b˜Ss d s du du g qb D u D Õ , 69Ž .˜ ˜H 1 a b a b 1q y
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˜where u,Õ are the lowest components of the superfields U and V. The metric and torsion˜
potential are given by

˜g sE k qE k , 70Ž .˜ ˜ ˜ab a b b a

˜b sE k yE k 71Ž .˜ ˜ ˜ab a b b a

with g sb s0. The target space line element isab a b

˜2 a bds s2 g u ,Õ du dÕ 72Ž . Ž .˜˜ab

˜a bso that ErE u and ErE Õ are null vectors. If n/n, the metric constructed in this way˜ ˜
is degenerate in general; we will not consider this case further and restrict ourselves to
the case nsn.˜

The condition for the torsion to vanish is

˜k syE k , k sE k 73Ž .˜˜ ˜a a b b

for some locally defined potentials k ,k . If this is satisfied, then the metric is given in˜
˜terms of a scalar potential Kskyk ,˜

E 2

˜g s K , 74Ž .˜ab ˜a bE u E Õ

giving a real-structure analogue of Kahler geometry, pseudo-Kahler geometry.¨ ¨
The same geometry can be obtained using the results of Section 3 as follows. The

Ž . Ž .1,1 sigma models with target space signature n,n and a covariantly constant real
Ž .structure S will have twisted 2,1 supersymmetry with global limit given by the

Ž . I J Ž .supersymmetry algebra 1 , where I, Js1,2 and h sdiag 1,y1 . The holonomy is
Ž Žq.. Ž .HH G :GL n,R . The integrable real structure S squares to q1,

Si Sk sqd i . 75Ž .k j j

Ž . iTwisted 2,1 supersymmetry requires S to be covariantly constant with respect to thej

connection with torsion G Žq.,

= Žq.Si s0 76Ž .k j

and to be antisymmetric

S syS . 77Ž .i j ji

i Ž Ž . .As S is integrable i.e. its Nijenhuis tensor 23 vanishes , there is a coordinatej

system in which it is constant and diagonal. Choosing such adapted real coordinates ua,
ã Ž .Õ as1,2; as1,2 , the real structure takes the form˜

d a 0b
iS s . 78Ž .j ã0 ydž /b̃

The fundamental two-form is then

1 ˜i j a bSs S df ndf syg du ndÕ , 79Ž .˜i j a b2
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˜a bŽ .and the line element takes the form 72 , so that ErE u and ErE Õ are null vectors.˜
Ž .Any N-form can be decomposed into a set of r,s forms with r factors of du and s

factors of dÕ with rqssN. The exterior derivative decomposes as dsE qE whereu Õ

E :H Ž r , s.
™H Ž rq1, s. and E :H Ž r , s.

™H Ž r , sq1..u Õ

Ž .Consider first the case in which there is no torsion, Hs0. Then the conditions 76
Ž .and 77 imply that the geometry is given in terms of some locally defined scalar

˜ Ž .potential K , and the metric takes the form 74 in adapted coordinates; the sigma model
with this geometry will be considered further in the next section.

Ž . Ž .If H/0, then the conditions 76 and 77 imply that the torsion three-form is given
Ž .in terms of the fundamental two-form 79 by

Hs E yE S. 80Ž . Ž .u Õ

The condition dHs0 then implies

E E Ss0 81Ž .u Õ

˜a b˜ ˜Ž . Ž .so that locally there is a 1,0 form ksk du and a 0,1 form ksk dÕ such that˜a b

˜SsE kqE k . 82Ž .u Õ

˜The potentials k,k are independent real 1-forms. The metric and torsion potential are
Ž .given, in a suitable gauge, by Eq. 71 , so that

˜HsE E kqk . 83Ž .Ž .u Õ

Ž .If the condition 73 holds for some locally defined potentials k , k , then the torsion˜
vanishes and

SsE E kyk , 84Ž . Ž .˜u Õ

˜Ž .so that 74 is satisfied with potential Kskyk . We thus recover the results obtained˜
from extended superspace; the extended superspace approach gives the general solution
to the geometric constraints immediately, without having to integrate differential equa-
tions.

Ž .If Hs0, then the curvature two-form is a 1,1 form and the only non-vanishing
components of the curvature are R . It follows that the Ricci tensor R is˜ ˜ ˜abgd a b

˜proportional to C and is given by˜ab

< <R sE E log det g 85Ž .˜ ˜ ˜ab a b gd

Ž .with R s0. Thus the Einstein equation R s0 is equivalent to demanding SL d,Rab i j

holonomy and gives, with a suitable choice of coordinates,

< <det g s1 86Ž .˜gd

˜which is a Monge–Ampere equation for K ,`
2E

˜det K s1. 87Ž .˜a bE u E Õ

If H/0, then the metric and torsion are preserved by the gauge transformations

˜ ˜d k sE xqu , d k syE xqu , 88Ž .a a a a a a˜ ˜ ˜
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˜ Ž . Ž . Ž .where E u sE u s0. In analogy with Eqs. 50 , 51 , 52 , it is useful to define theb̃ a b ã

vector

w sH S jk 89Ž .˜ i i jk

Ž .together with the GL 1,R part of the curvature

˜Žq. l Žq.kC sS R 90Ž .i j k l i j

Ž . Ž .and the GL 1 part of the connection 15 ,

Žq. k Žq. j Žq.a Žq. ãG̃ sS G sG yG . 91Ž .i j i k ia i ã

Ž . Žq.For Kleinian signature n,n , the holonomy of the connection G is contained in
˜Žq.Ž . Ž .GL n,R . It will be contained in SL n,R if in addition C s0.i j

Ž .If H/0, the condition 53 of the complex case is replaced by

˜ Žq.G s0 92Ž .i

Ž .and this implies that the one-loop field Eq. 14 is satisfied, provided the dilaton is
˜Žq.Ž . Ž .chosen as in 54 . Furthermore, the condition 92 implies C s0 and so thei j

Ž .holonomy is in SL n,R .
Ž . Ž .The field equation 92 can be obtained from the action 59 , but where now the

˜Ž .metric is given by 70 in terms of the potentials k, k corresponding to the real structure
Ž .S, and it is these that are varied to give the field equation 92 .

˜The real 1-form potentials k, k can be dualised in the same way as in the complex
case to obtain a new form of the dual action as well as the dual of the real geometry

Ž .presented above. The first step is to add to 58 a Lagrange multiplier term of the form

1 ˜ab˜ ˜L g yE k yE k . 93Ž .˜ ˜ ˜ž /ab a b b a2
˜ab˜ Ž .Eliminating L from the resulting action, one recovers the action 58 subject to the

˜ ˜constraint g sE k qE k . Integrating over the vectors k , k instead yields the˜ ˜ ˜ ˜ab a b b a a b

constraints

˜ ˜ab a b˜ ˜E L s0, E L s0 94Ž .˜a b

˜which in four dimensions are solved locally in terms of a scalar K by

˜ ˜ab a b˜ ˜L sL , 95Ž .
˜ab˜ ˜where L is the ‘field strength’ of K given by

˜ ˜ ˜ab agbd˜ ˜ ˜L 'e E E K 96Ž .˜g d

˜ ˜ ˜ ˜agbd 1122Ž .and e is the antisymmetric tensor density with e s1 .
˜Ž .The solution 96 implies that the pseudo-Kahler metric G sE E K satisfies the¨ ˜ ˜ab a b

constraint

detG sy1 97Ž .˜ab
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Ž . Ž .for signature 2,2 , or detG sq1 for signature 4,0 . Writing G sh qE E w̃˜ ˜ ˜ ˜ab a b a b a b

w xwhere h is a flat background metric, the analysis of Ref. 21 then leads to the dual˜ab

Ds4 action

1 ˜ab˜ ˜ ˜ ˜ ˜'EwEwq wEwnEEwq G G E VE V 98Ž .˜ ˜ ˜ ˜ ˜ ˜H H a b3!
˜for some scalar V . Thus the dual geometry in four dimensions is a real form of self-dual

˜ ˜gravity without torsion determined by the potential K coupled to the harmonic scalar V .
The generalisation to dimensions D)4 is straightforward, and the results are analogous

w xto those obtained in Ref. 21 for the complex case.

( )7. 2,2 Supersymmetric sigma models

Ž .If the 2,2 supersymmetry closes off-shell, the sigma model can be formulated in
Ž . Ž .terms of off-shell 2,2 superfields. For the usual untwisted 2,2 supersymmetry, we

a Ž .introduce the complex superspace coordinates z as1, . . . ,d , u , u together with1 q y
the supersymmetry generators and supercovariant derivatives

E E
q yQ s y iu E , Q s y iu E 99Ž .q q y yq yEu Eu

and

E E
q yD s q iu E , D s q iu E . 100Ž .q q y yq yEu Eu

a b Ž .One can either introduce chiral superfields U , U a ,bs1, . . . ,d satisfying1

a bD U s0, D U s0, 101Ž ." "

i j Ž .or twisted chiral superfields V , V i, js1, . . . ,d satisfying the constraints2

i i j jD V s0, D V s0, D V s0, D V s0. 102Ž .q y y q

The action for the Kahler sigma model is¨

2 4Ss d s d u K U,U , 103Ž . Ž .H
Ž .where K is the Kahler potential, so that the metric is given by Eq. 49 . The action and¨

metric are invariant under the Kahler gauge transformations¨

dKs f U q f U . 104Ž . Ž . Ž .
w xThe action 24

2 4Ss d s d u K U,U,V ,V 105Ž .Ž .H
defines a supersymmetric non-linear sigma model with torsion on a target space of

m Ž .complex dimension d qd with coordinates x s u,u,Õ,Õ , where u, u, Õ and Õ are1 2
Ž .the lowest components of the superfields U, U, V and V. The action 105 is invariant

under generalised Kahler gauge transformations¨

dKs f U,V q f U,V q f U,V q f U,V . 106Ž . Ž . Ž . Ž .Ž .1 2 1 2
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The bosonic part of the component sigma model action is

1
2 m a n a b m nSs d s g E x E x qb e E x E x , 107Ž .Ž .H mn a mn a b2

where the metric g and the torsion potential b are given bymn mn

g sK , g syK , b sK , b sK . 108Ž .ab a b i j i j a j a j ib i b

All other components of g and b not related to these by complex conjugation ormn mn

symmetry vanish, and K denotes the partial derivative E E . . . E K. The geometrymn . . . r m n r

is that of a Hermitean locally product space with two commuting complex structures
J Ž" .m. In the special case in which either d s0 or d s0, the torsion vanishes and then 1 2

target space is Kahler.¨
Ž . Ž .For twisted 2,2 supersymmetry with the superalgebra 1 , we introduce the real

m ˜ ˜superspace coordinates z , u , u , u , u together with the supersymmetry generatorsq q y y
and supercovariant derivatives

E E
q y˜ ˜Q s yu E , Q s yu E ,q q y yq yEu Eu

E E
q y˜ ˜Q s yu E , Q s yu E 109Ž .q q y yq y˜ ˜Eu Eu

and

E E
q y˜ ˜D s qu E , D s qu E ,q q y yq yEu Eu

E E
q y˜ ˜D s qu E , D s qu E . 110Ž .q q y yq y˜ ˜Eu Eu

˜a b˜One can either introduce superfields U , U satisfying the constraints

˜ ˜b a a b˜ ˜ ˜ ˜D U s0, D U s0, D U s0, D U s0, 111Ž .q y q y

˜i j˜or superfields V , V satisfying the twisted constraints

˜ ˜j j i i˜ ˜ ˜ ˜D V s0, D V s0, D V s0, D V s0. 112Ž .q y q y

The pseudo-Kahler sigma model action is then¨

2 2 2˜ ˜ ˜Ss d x d u d u K U,U . 113Ž .Ž .H
The action, metric and torsion are left invariant under the pseudo-Kahler transformations¨

˜ ˜ ˜dKs f U q f U . 114Ž . Ž .Ž .
The action

2 2 2˜ ˜ ˜ ˜Ss d s d u d u K U,U,V ,V 115Ž .Ž .H
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defines a supersymmetric non-linear sigma model with torsion on a target space of
Ž . m Ž .dimension 2 d qd with coordinates x s u,u,Õ,Õ , where u, u, Õ and Õ are the˜ ˜ ˜ ˜1 2

˜ ˜ Ž .lowest components of the superfields U, U, V and V. The action 115 is invariant under
generalised pseudo-Kahler gauge transformations¨

˜ ˜ ˜ ˜ ˜ ˜dKs f U,V q f U,V q f U,V q f U,V . 116Ž . Ž .Ž . Ž .Ž .1 2 1 2

Ž .The bosonic part of the component sigma model action is again given by 107 ,
where the metric g and the torsion potential b are given bymn mn

g sK , g syK , b sK , b sK . 117Ž .˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ab a b i j i j a j a j ib i b

All other components of g and b not related to these by ‘real’ conjugation ormn mn

symmetry vanish. The geometry is that of a real locally product space with two
Ž" .m w xcommuting real structures S ; see Ref. 24 for details. In the special case in whichn

either d s0 or d s0, the torsion vanishes and the target space is pseudo-Kahler.¨1 2
Ž . Ž . Ž .The metrics and torsion potentials 49 , 108 and 117 will define consistent string

backgrounds if the corresponding sigma model is conformally invariant. For the Kahler¨
model, this will be the case if the metric is Ricci-flat or equivalently if the curvature is

Ž .self-dual or anti-self-dual , i.e.

1
ltwR s e R s"R . 118Ž .mnrs mn ltrs mnrs2

There are also generalisations of these self-dual solutions to the condition for one-loop
conformal invariance with non-trivial dilaton, some of which were discussed in Ref.
w x23 .

Ž . w xThe sigma model with action 105 was shown in 4 to be one-loop conformally
Ž . Ž" .invariant provided the U 1 parts of the two curvature tensors R vanish,mnrs

C Ž" .s0, 119Ž .mn

Ž" . Ž .so that both connections G have SU d qd holonomy and the first Chern class1 2
w xvanishes; see 34 for a discussion of higher loops. For the twisted case with action

Ž . Ž" .105 , the condition for one-loop conformal invariance is that both connections G

Ž .have SU d ,d holonomy.1 2
Ž .Similarly, for the pseudo-Kahler sigma model with action 115 , one-loop conformal¨

Ž . Žinvariance will hold provided the GL 1,R parts of the two curvature tensors defined as
Ž ..in Eq. 90 vanish,

˜Ž" .C s0. 120Ž .mn

Ž" . Ž .If this condition holds, then both connections G will have SL d qd ,R holonomy.1 2
w x Ž .In Refs. 36,37 it was argued that all sigma models with the usual 2,2 supersymme-

w xtry can be formulated in superspace using chiral, twisted chiral and semi-chiral 38
superfields. Semi-chiral superfields have twice as many components as chiral or twisted
chiral ones, half of which are auxiliary. Here we note that a real analogue of the
semi-chirality condition can be imposed, viz.

˜ ˜ ˜a b j j˜ ˜ ˜ ˜ ˜D W s0, D W s0, D X s0, D X s0. 121Ž .q q y y
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w xThis leads to a straightforward generalisation of many of the results of 36,37 to twisted
Ž .2,2 supersymmetric theories.

8. Summary and discussion

Ž .To summarise, the usual supersymmetry algebra of type p,q can be generalised to
Ž . Ž .include the possibility of twisted heterotic supersymmetry, as in 1 and 2 , and a

superspace for this can be defined. The geometry of the heterotic sigma models which
realise this algebra is a generalisation of Kahler geometry with torsion, or a further¨
generalisation involving real structures squaring to q1.

A superspace formulation of the supersymmetric non-linear sigma models with
Ž .untwisted or twisted p,q supersymmetry was given in Section 3 in a formalism in

Ž .which 1,1 supersymmetry is manifest. For such sigma models, more general isometries
Ž .of the form 32 can be considered, where the vectors j are Killing vectors which area

holomorphic with respect to each complex structure, or ‘holomorphic’ in a generalised
sense with respect to each real structure. The gauging of such isometries can be obtained

w xfrom a straightforward extension of the results of Refs. 30,31,35 .
The results concerning the amount and type of supersymmetry that can be realised

can be summarised in terms of the holonomy group of the connection with torsion. The
various possibilities, which depend on the signature of the target space, are listed in
Table 1.

Ž .For example, in the case of target spaces of Kleinian signature d,d with a single
Ž .real structure, the holonomy group is contained in GL d,R and the model has twisted

Ž . Ž .2,1 supersymmetry. The geometry generalises that of the usual 2,1 sigma model: in
˜Ž . Ž .particular, the metric and torsion potential are given by 70 , 71 where k and k are

independent real forms. This model can be formulated in superspace as shown in
Section 6. Sigma models with untwisted or twisted Ns2 supersymmetry can also be

Ž .formulated in superspace, and this leads to new pseudo-Kahler without torsion and¨
Ž .twisted pseudo-Kahler with torsion sigma models whose geometry is determined by a¨

w xscalar potential analogous to the twisted Kahler potential of Ref. 24 . If the torsion¨
Ž .vanishes, then the twisted 2,1 supersymmetric model reduces to the pseudo-Kahler¨

model. These real models are listed in Table 2.
It is remarkable how much of the geometry based on a complex structure J carries

over to the case of a real structure S. Instead of using complex numbers, it is useful to

Table1
The relation of right-handed supersymmetry to the holonomy of the connection with torsion G Žq.. We give
the type of target space geometry for the case in which the torsion vanishes

Žq.Target signature Holonomy of G Geometry when torsion-free Supersymmetry

Ž . Ž . Ž .d ,d O d ,d no restriction 1,11 2 1 2
Ž . Ž . Ž .2n ,2 n U n ,n Kahler 2,1¨1 2 1 2
Ž . Ž . Ž .4m ,4m USp 2m ,2 m hyper-Kahler 4,1¨1 2 1 2
Ž . Ž . Ž .2n,2 n GL n,R pseudo-Kahler twisted 2,1¨
Ž . Ž . Ž .4m,4m Sp 2m,R pseudo-hyper-Kahler twisted 4,1¨
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Table2
Geometry, superfields and supersymmetry of some sigma models with real target spaces

Target geometry Superfields Supersymmetry

˜ Ž .real with torsion U ,V twisted 2,1Ž2,1. Ž2,1.
˜ Ž .pseudo-Kahler U ,U twisted 2,2¨ Ž2,2. Ž2,2.
˜ Ž .twisted-pseudo-Kahler U ,V twisted 2,2¨ Ž2,2. Ž2,2.

w xintroduce double numbers in this context 28 . These are based on a real unit e which
satisfies

e2 sq1 122Ž .
instead of the usual imaginary unit i satisfying i2 sy1. It is useful to define a real

Ž .)conjugation taking e™ye, so that xqey sxyey for real numbers x, y.
Ž .For example, consider the formulation of the twisted 2,1 sigma model of Section 6

using double numbers. The real structure Si takes the formj

d a 0b
iS se 123Ž .j ã0 ydž /b̃

in an adapted coordinate system. The fundamental two-form is then

1 ˜i j a bSs S df ndf syeg du ndÕ . 124Ž .˜i j a b2

If H/0, the torsion is given in terms of the fundamental two form by

Hse E yE S. 125Ž . Ž .u Õ

The closure of H then implies

eE E Ss0 126Ž .u Õ

Ž . Ž .and the geometry is given, in a suitable gauge, by Eqs. 70 – 83 . The metric and
torsion are preserved by the gauge transformations

˜ ˜d k seE xqu , d k syeE xqu , 127Ž .a a a a a a˜ ˜ ˜

˜where E u sE u s0. The superspace action isb̃ a b ã

2 q q y a ã˜ ˜ ˜Ssye d s du du du k D U yk D V , 128Ž .H ž /a y a y˜

a ã˜where the superfields U , V are chiral with respect to the superderivatives

E E E E
q q˜ ˜D s qeu , D s qeu . 129Ž .q qq q qq˜Eu Es EsEu

Ž . Ž .If the twisted 2,1 superspace action 128 is required to be real self-conjugate with
respect to the conjugation e™e) sye, i. e. if

SsS) , 130Ž .
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˜then we find that the potentials k and k are real conjugates,

˜ )ksk . 131Ž .
This is the generalisation to the double numbers of the reality condition

SsS) 132Ž .
)Ž . Ž .on the action 48 , which implies that ks k ; in turn, this implies hermiticity of the

Ž .metric and antihermiticity of the torsion potential given in 42 . For the general models
˜Ž .we have discussed, the condition 132 does not hold, the potentials k and k are

independent and the action is not real self-conjugate.
Setting es1, the formulations of previous sections are recovered, but introducing e

is a useful book-keeping device. In particular, it leads to the introduction of the real
conjugation operation, and makes the structure similar to that of the complex case.
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