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Geometrodynamical formulation of two-dimensional dilaton gravity
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Two-dimensional matterless dilaton gravity with an arbitrary dilatonic potential can be discussed in a unitary
way, both in the Lagrangian and canonical frameworks, by introducing suitable field redefinitions. The new
fields are directly related to the original spacetime geometry and in the canonical picture they generalize the
well-known geometrodynamical variables used in the discussion of the Schwarzschild black hole. So the model
can be quantized using the techniques developed for the latter case. The resulting quantum theory exhibits the
Birkhoff theorem at the quantum levé50556-282199)01708-7

PACS numbd(s): 04.60.Ds, 04.20.Fy, 04.60.Kz

I. INTRODUCTION According to their integrability properties, dilaton gravity
models can be roughly divided into three classes.

Recently, a lot of attention has been devoted to the inves- (i) Completely integrable modelse., models that can be
tigation of lower-dimensional gravityl]. The interest in di- expressed in terms of free fields by a canonical transforma-
mensionally reduced theories of gravity relies essentially onion. Some remarkable examples are matterless dilaton grav-
their connection to string theory, black hole physics, andty with an arbitrary potential3] and the CGHS modéb,6].
gravitational collapse. In this context, two-dimensional mod-  (ji) Completely solvable modelse., models that cannot
els of dilaton gravity play a very important role because ofpe analytically solved in terms of free fields but whose gen-
their relation to higher-dimensional gravity and integrableeral| solution is known. The two-dimensional effective gen-

systems. eralized theory of 21 cylindrical gravity minimally
~ Two-dimensional dilaton gravity is described by the ac-coupled to a massless scalar figgj and dilaton gravity with
tion [2] constant or linear dilatonic potential minimally coupled to
B 5 @ 5 massless Dirac fermior®,10] belong to this class.
SDGM—Ld XN=y[UHR D (y) + )+ W) (V )] (iii ) Partially integrable modelsi.e., models that are in-
tegrable in a (@ 1)-dimensional sector only, namely, after
+Sul d, vuu il (1) reduction to a finite number of degrees of freedom. In this

whereld, V, and W are arbitrary functions of the dilaton, cateégory we find, for example, dilaton gravity minimally

R @ is the two-dimensional Ricci scalar, afg, represents coupled to massless Dirac fermions with arbitrary potential
the contribution of matter field§; which include any field [9] and two-dimensional effective models describing un-
but the dilatong and the gravitony,,, . charged bIapr—.branes inN dimensiong 13]. . .

Most of the models studied in some detail in the literature, COMPpletely integrable models are of particular interest
are special cases of the model described by (Egwhere ~ ToM the quantum point of view. In this case we are able to
dilaton gravity is coupled to scalar, gauge, and fermionduantize the theoryin the free-field representatiprand,
fields. (See, for instance, Refs3—13 and references hopefully, to discuss quantization subtleties and nonpertur-

therein) For a givenSy,, Eq.(1) describes a family of mod- bative quadntum effe_ctsI(See, e.g.l, Re;s_|[5,6,18 fo.r the
els whose elements are identified by the choice of the diIa-C2GHS mcl; el Indpart:jcu ar.,bmabtlterkeshsl mtor:jgravgy—Eq. f
tonic potential. Indeedclassicallywe may always choose (2)—can be used to describe black holes and, in the case o
U($)= ¢ and locally sebAV(4)=0 by a Weyl rescaling of coupling with scalar matter, gravitational collapse. So the

the metric[2]. (In this paper we will always make this choice quantization program is worth exploring.
for simplicity [14].) So the matterless sector of Hd) reads Although the classical properties of the model based upon
[2] Eqg. (2) are well known, a conclusive word about its quanti-

zation is not knowr{2,19,20, even in the simplestCGHS
Spe= f d?x\=g[#R?(g)+V(¢)], (2)  case. Let us recall the two most fruitful attempts to construct
> a quantum theory of the CGHS model that are described in
whereg,,, and R®) are the two-dimensional, Weyl-rescaled, Refs.[5,6,18 and Ref.[21], respectively.
metric and Ricci scalar, respectively. Different choices of The first approach is based on a canonical transformation
V(¢) identify different theories. Some remarkable examplesmapping the original system to a system described by free-
are the Callan-Giddings-Harvey-Stroming@GHS model  fields. Then the theory is quantized in the free-field represen-
[15] (V=const), the Jackiw-Teitelboim modgl6] (V=¢), tation. The main drawback of this approach is that the new
and the dimensionally reduced theory of four-dimensionakanonical variables are not directly related to the original
spherically symmetric Einstein gravity integrated on a two-spacetime geometry and important physical quantities cannot
sphere of area 164 [V=1/(2\¢)] [2,17]. be expressed in terms of the new fields]. Further, it is not
clear how to generalize the canonical transformation for an
arbitrary dilatonic potential(Recently, a proof of the exis-
*Email address: cavaglia@aei-potsdam.mpg.de tence of a canonical transformation that generalizes the ca-
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nonical transformation used in the CGHS case has been de- The outline of the paper is as follows. In the next section

rived by Cruz and Navarro-Salas; see R2R]. Even though we present the classical theory of two-dimensional dilaton

it seems reasonable to guess the existence of a canoniaggavity (see Refs[2,19,26,2% following the approach de-

transformation in the general case, the relation between thesloped by Filippov[3]. Although this section reviews es-

new fields and the original geometrical variables remains &entially previous work, its content is useful to set up the

puzzle) notation and make the paper more self-contained and read-
The “geometrodynamical approach” was originally de- able. In Sec. Ill we introduce the point transformation and

veloped by Kucharfor a canonical description of the the new Lagrangian. This result follows from the integrabil-

Schwarzschild black hol23]. This approach uses variables ity properties of the system and constitutes the main contri-

that are directly related to the spacetime geometry and dodsution of the paper. Indeed, the Lagrangian formulation is at

not make use of the field redefinitions of Ref$,6,18. the basis of the canonical formalism and leads straightfor-

Again, only the CGHS model has been quantized using thisvardly to the geometrodynamical variables. The canonical

formalism[21]. framework is discussed in Sec. IV. First, we derive the ca-
In this paper we assume a different attitude and quantizeonical transformation to the geometrodynamical variables

the general matterless dilaton gravity model described by for the general model. Then we present a careful treatment of

Eqg. (2) using a transformation of the configuration spacefalloff conditions which are essential in establishing the

performed at the Lagrangian level. The transformation isHamiltonian quantization. The discussion of falloff condi-

suggested by the topological nature of two-dimensional gravtions involves subtleties related to the definition of boundary

ity and by the existence of a local integral of motion inde-conditions for arbitrary spacetimes. In Sec. V we quantize

pendent of the coordinates first discussed by Filipp®y  the system. Thanks to the geometrodynamical variables the

The new fields have clear physical meaning—they are theguantization of the general model can be achieved by imple-

dilaton and the “mass” of the system—thus avoiding prob-menting the formalism developed by KucHar the quanti-

lems related to their interpretation in terms of the geometrization of the Schwarzschild black ho[@3]. Finally, we

cal variables. show that the ensuing quantum theory is equivalent to the
In the canonical framework the new fields generalize thequantum mechanical theory which is obtained by imposing

geometrodynamical variablesf Kuchar[23] and Varadara- the Birkhoff theorem at the classical level. In Sec. VI we

jan [21] to a generic dilatonic potential. Thus the quantiza-state our conclusions.

tion is straightforward and can be completed along the lines

of Refs.[23,21]. The quantum theory reduces to quantum II. CLASSICAL THEORY

mechanics and the Hilbert space coincides with the Hilbert

space obtained by quantizing the theory first reducing it to a Let us consider Eq2). Varying the action with respect to

0+1 dynamical system with a finite number of degrees ofthe metric and the dilaton we obt&i5]

freedom and then imposing t\?g guantization algoriffs®e 1

Ref. [27] for the caseV=1/(2\¢)]. This result represents _ o - _

the quantum generalization of the well-knoBirkhoff theo- V¥V~ 9w VoV é+ 50,,V($)=0, @

rem[24,25 for spherically symmetric gravity in four dimen-

sions. (A somewhat different derivation of the so-called dav

quantum Birkhoff theorerfor the CGHS model is discussed R+ @:0! ®

in Ref. [18]. The approach of Ref.18] makes use of the

canonical transformation to free fields. Here we extend thgynere the symboV represents covariant derivatives with
results of Ref[18] to the general model with an arbitrary regpect to the metrig
nv:

dilatonic potential using a different and more powerful ap- |t js easy to prove that Eq5) is satisfied if Eq.(4) is

proach) . _ . ~ satisfied provided that
The quantum Birkhoff theorem is schematically defined
by the following diagram: H(g,.,.$)#0, (6)
1+1 Classical Birkhoff . 041 Classical whereH(g,,,,$)=V,¢V’”¢. This condition can be lifted if
Theory Theorem Theory one requires the continuity of the fields and of their deriva-

tives at any spacetime point. We will see in a moment—see
‘ ‘ Eq. (17) below—that the equatioH(g,,, ,¢) =0 defines the
Quantization Quantization horizon(s) of the two-dimensional metric. So by requiring
Algorithm Algorithm the continuity of the fields and their derivatives across the
horizon(s) Eq. (4) implies Eq.(5) everywhere.
The field equationg4),(5) can be solved performing a

Quantum Quantum | Quantum Backlund transformation(see Ref.[3]). In covariant lan-
Field Theory Birkhoff Theorem’ Mechanics guage the Beklund transformation reads
¢ ! !
3 M=N($)=V,4V"¢, N<¢>>=f d¢'V("),  (7)
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Vv, theory. In Sec. V we will see how this property influences
V= —"—, (8)  the quantization of the theory.
V,6VP e Let us briefly discuss the local geometrical properties of

the solution(16). The horizors) of the metric are deter-

whereM(t,x) andy(t,x) are the transformed fieldsM(and  ined by the equation

N coincides—apart from constant factors —@oand J of

Refs. [19,2] respectively. Note that the transformation is M= _
singular for H(g,,,#)=0. Using the new fields Eq(4) N(¢)=M=H(g,,,$)=0. (7
reads For a given choice of the dilatonic potential, Efj7) is an
V VEy=0, (9) algebraic equation i whose solutiong ¢;} determine the
. values of the radial coordinate where the horigprare lo-
v, ,M=0. (10) cated. So the request of continuity of the solution—and of its

derivatives(see Ref[23])—across the horizons enforces the

Since the transformatiori7),(8) is defined when Eq(6)  continuity of the fieldsp and ¢ at the pointsH(g,, ,®)
holds, Eqgs(9),(10) are equivalent to the original field equa- =0 and vice versa. This justifiesposteriorithe assumption
tions (4),(5) except at the horizas). Equationg9),(10) have  of continuity made below Ed6). With this assumption Egs.
a deep significance. The first equation implies thas a free  (4),(5) are equivalent to Eq€9),(10) everywhere.
(D’Alembert) field. From the second equation we find that The local asymptotic structure of the solutidr6) and the
is a locally conserved quantity. existence of singularities depend on the choice of the dila-

In two dimensions any metric is locally conformally flat tonic potential. In particular, from Ed5) one finds that sin-
[28]. So there exists a coordinate transformation whichgularities of the metric are determined by singular points of

brings the metric into the form the first derivative ofV(¢) with respect to¢. The local
asymptotic structure can be also roughly investigated using
ds?=4p(u,v)dudv, (11 Eq. (5). For instance, let us suppose that the asymptotic re-

gion is defined byp—«~ and that the behavior of the dila-
where u=(t+x)/2, v=(t—x)/2. Using conformal light- tonic potential at infinity isV( )~ ¢*, wherek is a constant
cone coordinates Eqs9),(10) can be explicitly integrated. parameter. Thus the two-dimensional spacetime is asymp-
The general solution is totically flat for ¢—o if k<1, and has constant curvature

for p—oo if k=1.

$=U(u+V(v), M=M,. (12) Let us conclude this section with a concrete example and

derive the Schwarzschild solution using the formalism de-
scribed above. The dimensional reduction of the four-
dimensional vacuum Einstein gravity,

The original fieldp and ¢ are can be written as functions of
¢ andM using Eqgs(7),(8). With a little algebra one finds

dy 1

_— (13 1

dé N(4)—M sEfﬁfzd“x —gR¥(g), (18)
p=[N(¢)—M1d,1d, . (14)

can be obtained using the ansatz
Equations(12)—(14) imply that the general solution of the

model is actually (&-1) dimensional, i.e., that any solution 1
possesses a Killing vectp29]. Indeed, using the coordinates ds(24)=—gw,dx“dx”+ 4¢4d02, $=0, (19)
(U,V) the general solution reads \/5

ds’=4[N(¢)—M]dUdV, ¢=¢p(U+V), (159  where 9., is a two-dimensional metric with signature
(—1,1) anddQ? is the line element of the unit two-sphere.
Using Eq.(19), and integrating on the two-sphere, the four-
d2= —[N(d)— MTdT2+TN(S) —M1-1de2 (16 d|me|f1$|onal Emsteln-HlIbertlacuon can be ca;tmto the form
[N($) ] [N($) 17d¢ (16 (2) with V(¢)=1/(2\/¢). Using Eq.(16) the line element
Thus the general solution depends on the single varigble (19) reads
(With a somewhat improper terminology we call these solu-

or, using the coordinatesp(T=U—V),

tions static, even though the Killing vector may not be time- M ) d¢? )

like and hypersurface orthogonal on the entire manijold. d3<24):_ 1_\/—— dT°+ +44dQs3.
This result constitutes a generalization of the classical ¢ bl 1- —

Birkhoff theorem[25,24,3,29. (For spherically symmetric Vo

Einstein gravity the “local integral of motion independent of (20

the coordinates” is just the Schwarzschild ma3$e reduc-
tion of the theory to a finite-dimensional dynamical system Clearly Eq.(20) reduces to the standard Schwarzschild
signals that pure dilaton gravity is actually a topologicalsolution with the substitution &= R2.
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Ill. LAGRANGIAN FORMALISM volves derivatives with respect tandx. We call it a “point
transformation” because it can be implemented at the La-
rangian level,

Varying Eq.(22) we find

The Baklund transformation introduced in the previous
section can be used to find a transformation from the originag
fields, @.,,¢), to new fields K;), i=1,...,4,where one
of the new fieldsX; coincides withM. SinceM is a locally V VEG—V(h)=0 (25)
conserved quantity, this transformation simplifies drastically " '
the dilaton gravity Lagrangian in Eq2). 1

The key of the construction is the observation that in two V6V, M- g
dimensions the Ricci scal& is a total divergence and can e 271
be locally written as

V, 6V M=0, (26)

V,MVAM +V, V"¢V, VEM =0, 27)
VAV XYV x—V V'xV#x
5 = VAR A= V xVx . (21)  Equations(25)—(27) are equivalent to the field equations ob-
P tained from Eq(2). Equation(25) corresponds to the trace of
wherey is an arbitrary, nonconstant, function of the coordi- EG- (4). Further, by differentiation of Eq.7) one finds that
nates. Equatiori2l) can be easily checked using conformal EQS-(26),(27) are satisfied if Eq(4) is satisfied because Eq.
coordinates. Since Edq21) is a generally covariant expres- (4) implies V,M=0. The converse latter statement is also
sion, and any two-dimensional metric can be locally cast iffue provided that Eq(6) is satisfied. When this condition
the form(11) by a coordinate transformati¢@g], Eq.(21)is  holds Eq.(26) implies V , ,M =0. By requiring the continuity
valid in any system of coordinates. of the fle_lds Eqgs(25—(27) and Egs.(4),(5) are _eq_uwal_ent.
Differentiating Eq.(7), and choosingy= ¢, both V() The e_quwalence of Eqs_(.25)—(27) and the_ original f|el_d
andR can be written as functions & andV , ¢. Finally, by equations can also be directly checked using the metric pa-

an integration per parts we find rametrization defined in Eq24).
vV, VM IV. CANONICAL FORMALISM
S= f d?x \— gNM(ﬁ——M +S;, (22
% (¢) The canonical formalism is an essential step in the quan-
) tization procedure. Starting from E(®), and using the met-
whereS, is the surface term: ric parametrization, Eq(24), the action can be cast in the

Hamiltonian form[2]
S{;=2Ld2x V=gV, [VFp+ pA“]. (23) " . .
S=f dtf dx[7,p+ 74— aHo— BH1l, (28
Let us check that Eq22) has the same number of degrees of B

freedom(DOF) of the original actior(2). In two dimensions  here the overdots represent derivatives with respect to the
a generic metric can be written timelike coordinatet, (p,¢,7,,m,) are the phase space
- variables, andH,, H; are the Arnowitt-Deser-Misner

(a -B B ) (ADM) super-Hamiltonian and supermomentum, respec-

tively:
In the canonical formalisna(t,x) and B(t,x) play the role
of the lapse function and of the shift vector respectively;
p(t,x) is the dynamical DOF. As a result of the chosen pa-
rametrization, the Lagrangian in E@) is a functional of the Hy=—¢' my+p' m,+ zpw;)_ (29
two dynamical fields §,#) and of the two nondynamical
variables @,B). Now let us use Eq(24) in Eq. (22) and  Here primes represent derivatives with respect to the spatial
neglect the surface term. The new Lagrangian is again goordinatex. Equationg(29) include, as particular cases, the
functional of two fields ¥,¢) and of two nondynamical models discussed in RgR1] and Ref.[23]. Denoting with
variables @,B). Indeed, since Eq(22) only contains the subscriptsy andk the canonical variables of Ref21] and
Weyl-invariant combinations/—gg**, the transformed ac- [23], respectively, we have
tion is invariant under changes of coordinates which belong

(24

!

p li "
Ho=pm,my+ ;fﬁ —2¢"—pV(9),

to the conformal group ang,,, does not contribute any dy- R2 R,Pr —A,P,
namical DOF to the action. As a consequence, the transfor- d= Z” quZZ%,
mation (p,¢,a,8)—(M,d,a,B) is a “point transforma- R,

tion” with M=M(p, ¢, a,B) defined by Eq(7). [Quotation

marks are due to the fact that the transformation P
(p,¢,a,8)—(M,,a,B) should not be regarded as a point p=RIAZ, m,=—F—,
transformation according to the usual lore because it in- 2R/A,
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for the CGHS model {=const), and

RZ 2R¢Pr, —AkPy,
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2 d’—_
WM[N(@—M]
N
mu[N(¢)—M]

After some tedious calculations one can check that the only
nonvanishing Poisson brackets at equal tinaee

(30

Ty=Tgy+ V@) gt

77 (34)

[M(tix)7WM(t!X’)]= 5(X_X,)1

[&(t,%), mg(t,X")]= 6(x—x"); (39

31) so Egs.(33),(34) define a canonical map. Finally, the differ-
ence of the Liouville forms reads

for the Schwarzschild black hol= —1/(2\/¢). [The mi-

nus sign ofV is due to the choice of the metric signature in
Eq. (24) that is opposite to the signature used in Ef).]
Starting from Eq.(22) the super-HamiItonianEnd super-

momentum readfor later convenience we sei= ¢)

Ho=[N(¢)—M]mgmu+[N(¢p)—M] 1p'M’,

H]_:_a”ﬂ'g_MIWM .

Eventually, both canonical actions must be complemented by
a boundary term at the spatial boundaries. This can be done
along the lines of Refd.23,21] as we will see later in this

section.

The two charts §,7,,p,7,) and @ m5,M,my) are re-

lated by the transformation

Xp . - Xp . .
fx dx(M 7TM+¢7Tg)—fX dx(p m,+ ¢ my)
=F(¢,7m5,M,my), (36)

where

F(¢,m5,M,my)

o8 s
= | dxj2¢’ arctan) ———
Xa [N(¢)—M]my

—2(N(¢)—M)my

(32

Xb - g’ !
— | dx§2 t _ . 3
La X{ ¢ar°a”{[N<¢>—M]wM] 37

2_2 12
peT,— b
M=N(¢)— ——,
The canonical variablesa, m5,M,my) are a generaliza-
o2 tion of the geometrodynamical variables introduced by Ku-
™= 5 £ " char[23] and Varadarajaf21]. This can be easily proved
prm,— @ using Egs(30),(31) and Eqs.(33),(34).
. Now we must take care of boundary terms and define
b=, falloff conditions at the spatial boundaries. We set
2 AW o o (a,b)
p?m, & ¢'=[N(¢)—M](1+e€ ), (38)
Te=Tp— < 2 2 V(¢)+27Tp — . (33
prm,— ¢ PTp —  (ab)
(b: €-— ’
The transformation given above is easily invertible. The re- ¢
sult is M = M(a,b)(t)(l_i_e('\;l,b))'
¢’ ’
-2 Ty - (a,b)
p=my[N($)—M]| 1 ( — el
N(¢)—M
1
= — 2 )
| 1— — 7TM=_7T—M
17 L muINGg) - M] N(6)—M
b=, a=a@P(t)(1+ 2P,
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_ (ab)
B= €3

where e®P) are functions ot andx vanishing at the spatial
boundariesx, andx,, i.e.,

PHYSICAL REVIEW D 59 084011

Following [30] we must complement the action by a
boundary term to allow functional differentiability of the ac-
tion. Using the falloff conditiong38) we have that the sole
nonvanishing boundary term due to the variation of the ac-

tion with respect to the canonical variables has the form

lim €@P(t,x)=0 (39
X—Xgq X
° f dt[—a® () SMP + @ (1) sM@]; (44)
and
@b so we add to the action the boundary term
lim W—¢_
x—xa xpN(¢) =M Shoundary™ f dt[a®(ME(t) — 2@ ()M@(1)],
E(wah',,b) (45
lim N($)— :O’ where a(®P)(t) parametrize the action at the boundary and
X=¥a e are interpreted as prescribed valueg ¢ee Ref[23] for a
(ab)’ more detailed discussion about this pint
em’ -0 (40) The canonical field equations and the constraihtg

xﬂllT,be(g)— M =0, H,=0 are easily solved using the geometrodynamical
chart (¢ 74, M,my). The general solution of the constraints
The exact behavior of the!®?) functions depends on the s
particular potential under consideration. By requiring that
€@b) go to zero rapidly enough, both the Liouville form and
the super-Hamiltonian and supermomentum are well defined . _
and the difference of the Liouville formE(E, 75 M, my) Equations(46) have the same physmal content Qf EfO).
reduces to an exact form. For instance, in the Schwarzschild¥°te thatM weakly commutes with the constraints, as ex-
black hole cas®l(¢) = /¢ the spatial boundaries are located pected for a local integral O_f mot_ldrEquathn(g) is a direct
at x,= —o andx,=+o and with a little algebra one can consequence of the canonical field equations.
check that the falloff condition638) become

75=0, M'=0. (46)

V. QUANTIZATION

The quantization of the full £ 1 theory can be imple-
mented using the geometrodynamical canonical variables.
From Eqgs(46) we read thaM does not depend on the space-
like coordinatex. The effective Hamiltonian is simply given
by the boundary terni45) and the reduced action reads

dm
Seff:f d7'

Epm_m ’

— X2 —
=11+ dulx| 717+ 0 (X 2],

M=M_.(t)[1+O0"*(|x| 9],

mg=0""(|x|7*79),

=0="(|x| 19,

(47)

Tm

=a.()[1+0™*(|x|7 9],
a=a= (0] (=91 where m=M®(t)=M@(t), p,=/dxmy, and 7(t)
=[dt'[a@(t")— a®(t')]. The theory reduces formally to

gquantum mechanics and the quantization can be carried on as
In this case the super-Hamiltonian and supermomentum fabsual The Schidinger equation is

off as

B=0""(|x|7¢), 0<es<l. (41

+ o0 —1—-€ + o0 —1—¢€ . a
Ho=0"*(|x| 7179, Hy=0""(|x|"179), (42 - W(mi7)=Hey W(Mi7), Heg=m (49)

and the Liouville form ) ] .
The stationary states are the eigenfunctiongroéind the

Hilbert space coincides with the Hilbert space obtained in the
0-+1 approach. Let us see briefly this point in detail.

In the 0+ 1 approach we take advantage that every solu-
tion is static—according to the definition given below Eq.
is well defined. Finally, using Eq$41) the second term on (16—and set from the beginning,,=g,.(t), ¢=¢(t).
the right-hand side of E(37) vanishes at spatial infinities The action(density reads
and the difference of the Liouville forms is an exact form.
The above falloff conditions coincide with those used by
Kucharin Ref.[23].

fjmdx(MwMJrEEw;), My + b= 0="(|x| "2~
(43

so+1=f dt[pm,+ 74— aH], (49)
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where « is a Lagrange multiplier enforcing the constraint to any dilaton gravity model. We have seen that the general
H=0. (H corresponds to the-01 slice of Hy. The super- dilaton gravity action, Eq(2), can be cast into the forii22)
momentum constrairit{; vanishes identically. and the system can be described both in the canonical and
So in the O+ 1 sector of the theory we can express theLagrangian frameworks using the dilaton and the mass as
field equations as a canonical system in a finitex@-  new variables. The quantization of the general dilaton grav-
dimensional, phase space. The equations of motion are angy model becomes straightforward and the resulting quan-
lytically integrable and their solution coincides with the fi- tum theory exhibits at the quantum level the Birkhoff theo-
nite gauge transformation generated by the constragint (em.
=0. We can find a couple of gauge-invariant canonically \ye pelieve that Eq22) and Eqs(32) can be used to look
conjugate quantitiesn and p, corresponding to the 81 4t two-dimensional gravity from a new perspective. Up to
sections oM andy, introduced in Eqs(33). The canonical oy physicists have struggled themselves to find a canonical
\{anablesm and p,, can be identified with the quantities de- {4nsformation mapping the general dilaton gravity theory
fined below Eq(47). . . . based upon Eq2) into a system described by free fields—
NOW we can construct the maximal _gauge—lnvarlant Ca5ee for instance, Ref22]. Even though it seems reasonable
nonical chart ,pm,*,7) and useTto fix the gauge. -y 5oqme the existence of such a canonical transformation,

deed, the t_ransformation properties Tﬁfunder thg gauge e know from the CGHS casihe simplest possible case
transformation generated by imply that time defined by that the relation between the free fields and the “physical”

this variable covers once and only once the symplectic Manke|4s (metric, dilaton, masss highly nonlinear. Further, the

fold; i.e., time defined by'is a global time. The quantization .,nqnjcal transformation may be pathological and subtleties
bgcomes trivial and the Hilbert space is spanned _by theng ambiguities may arise. For instance, in the CGHS case
eigenvectors of the sole—apart from its conjugatee gayge-invariant operat cannot be expressed as a
momentum—gauge-invariant operator corresponding 10 nction of the new free fields, as we would expect imple-
the mass of t_he system. . . menting a canonical transformatigb8]. This means that the

_ This quantization program has been implemented in detail,qnical transformation to free fields is ill defined. Indeed, a
in Ref. [27] for the case of spherically symmetric Einstein 5 ef analysis shows that the transformation cannot be in-
gravity but can be easily generalized to an arbittdyp).  \erted and, in order to make it invertible, one has to supple-
(See, for instance, Ref31].) In the O+ 1 approach one can ment the new field variables by an extra pair of conjugate
go further and discuss the self-adjointness properties of thgyjaples related to the value of the fields at the boundary.
mass operator. It turns out that the Hermitian operaion  (gee for instancd18] and[6].) In spite of these difficulties,
the gauge-fixed, positive-norm, Hilbert space is not selfyhe cGHS model can still be managed and different ap-
adjoint, while its square is a self-adjoint operator with pOSi'proaches to the quantization can be carried on, leading to a
tive eigenvalues. This result is due to the fact that the congggistent quantum theof§,6,18. However, we find it very
jugate variable to the mas§)y, has positive support, harq 1o believe that models with more complicated dilatonic
analogously to what happens for the radial momentum ifygtentials can be dealt with using free fields. Eventually, one
ordinary quantum mechanics. However, the relevant point i§,5nts quantum operators corresponding to the physical
that the massn—or its square—is the only gauge-invariant quantities of the model, i.e., quoting Kuch&omano, and
observable of the systefapart from the conjugate variable, yaradarajan,* .. the interesting questions in dilatonic grav-
of coursg and the Hilbert space of the#0l approach coin- iy are precisely those which are concerned with the physical

cides with the Hilbert space of the full quanturt-1 theory  spacetire...” [6]. Free fields are very distant from this pic-
obtained through the geometrodynamical formalism. This g e

the essence of the quantum Birkhoff theorem. Note that our conyersely, the canonical variables defined in B9),
definition of the quantum Birkhoff theorem differs from the peing directly related to the spacetime geometry, do not suf-
definition that can be found in the previous literatl®e19].  fer from the problems outlined above. Thus a quantum
(Actually, in the previous literature a precise definition of thetheory in which quantum operators have a clear physical
quantum Birkhoff theorem is missing.We define the meaning is easily achieved. Finally, E82) may (hopefully)
Birkhoff theorem as the equivalence of theQ)- and (1 provide a completely new starting point in the investigation
+1)-dimensional quantization procedures—see the diagrargt open issues as, for instance, the thermodynamics of black

at the end of Sec. I. This definition gives a clear meaning tholes and gravitational collapgeshen matter is coupled to
the quantum Birkhoff theorem that up to now was simply the systern

intended as the property that quantum states depend on a
single parametefthe mass of the systemwhile conclusions
are identical, conceptual differences are great. ACKNOWLEDGMENTS
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