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Geometrodynamical formulation of two-dimensional dilaton gravity
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Two-dimensional matterless dilaton gravity with an arbitrary dilatonic potential can be discussed in a unitary
way, both in the Lagrangian and canonical frameworks, by introducing suitable field redefinitions. The new
fields are directly related to the original spacetime geometry and in the canonical picture they generalize the
well-known geometrodynamical variables used in the discussion of the Schwarzschild black hole. So the model
can be quantized using the techniques developed for the latter case. The resulting quantum theory exhibits the
Birkhoff theorem at the quantum level.@S0556-2821~99!01708-7#

PACS number~s!: 04.60.Ds, 04.20.Fy, 04.60.Kz
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I. INTRODUCTION

Recently, a lot of attention has been devoted to the inv
tigation of lower-dimensional gravity@1#. The interest in di-
mensionally reduced theories of gravity relies essentially
their connection to string theory, black hole physics, a
gravitational collapse. In this context, two-dimensional mo
els of dilaton gravity play a very important role because
their relation to higher-dimensional gravity and integrab
systems.

Two-dimensional dilaton gravity is described by the a
tion @2#

SDGM5E
S
d2xA2g @U~f!R ~2!~g!1V~f!1W~f!~¹f!2#

1SM@f,gmn , f i #, ~1!

whereU, V, andW are arbitrary functions of the dilaton
R (2) is the two-dimensional Ricci scalar, andSM represents
the contribution of matter fieldsf i which include any field
but the dilatonf and the gravitongmn .

Most of the models studied in some detail in the literatu
are special cases of the model described by Eq.~1! where
dilaton gravity is coupled to scalar, gauge, and ferm
fields. ~See, for instance, Refs.@3–13# and references
therein.! For a givenSM , Eq. ~1! describes a family of mod
els whose elements are identified by the choice of the d
tonic potential. Indeed,classically we may always choose
U(f)5f and locally setW(f)50 by a Weyl rescaling of
the metric@2#. ~In this paper we will always make this choic
for simplicity @14#.! So the matterless sector of Eq.~1! reads
@2#

SDG5E
S
d2xA2g @fR~2!~g!1V~f!#, ~2!

wheregmn andR(2) are the two-dimensional, Weyl-rescale
metric and Ricci scalar, respectively. Different choices
V(f) identify different theories. Some remarkable examp
are the Callan-Giddings-Harvey-Strominger~CGHS! model
@15# (V5const), the Jackiw-Teitelboim model@16# (V5f),
and the dimensionally reduced theory of four-dimensio
spherically symmetric Einstein gravity integrated on a tw
sphere of area 16pf @V51/(2Af)# @2,17#.

*Email address: cavaglia@aei-potsdam.mpg.de
0556-2821/99/59~8!/084011~8!/$15.00 59 0840
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According to their integrability properties, dilaton gravit
models can be roughly divided into three classes.

~i! Completely integrable models, i.e., models that can be
expressed in terms of free fields by a canonical transfor
tion. Some remarkable examples are matterless dilaton g
ity with an arbitrary potential@3# and the CGHS model@5,6#.

~ii ! Completely solvable models, i.e., models that canno
be analytically solved in terms of free fields but whose ge
eral solution is known. The two-dimensional effective ge
eralized theory of 211 cylindrical gravity minimally
coupled to a massless scalar field@8# and dilaton gravity with
constant or linear dilatonic potential minimally coupled
massless Dirac fermions@9,10# belong to this class.

~iii ! Partially integrable models, i.e., models that are in
tegrable in a (011)-dimensional sector only, namely, afte
reduction to a finite number of degrees of freedom. In t
category we find, for example, dilaton gravity minimal
coupled to massless Dirac fermions with arbitrary poten
@9# and two-dimensional effective models describing u
charged blackp-branes inN dimensions@13#.

Completely integrable models are of particular inter
from the quantum point of view. In this case we are able
quantize the theory~in the free-field representation! and,
hopefully, to discuss quantization subtleties and nonper
bative quantum effects.~See, e.g., Refs.@5,6,18# for the
CGHS model.! In particular, matterless dilaton gravity—Eq
~2!—can be used to describe black holes and, in the cas
coupling with scalar matter, gravitational collapse. So
quantization program is worth exploring.

Although the classical properties of the model based u
Eq. ~2! are well known, a conclusive word about its quan
zation is not known@2,19,20#, even in the simplest~CGHS!
case. Let us recall the two most fruitful attempts to constr
a quantum theory of the CGHS model that are described
Refs.@5,6,18# and Ref.@21#, respectively.

The first approach is based on a canonical transforma
mapping the original system to a system described by fr
fields. Then the theory is quantized in the free-field repres
tation. The main drawback of this approach is that the n
canonical variables are not directly related to the origi
spacetime geometry and important physical quantities can
be expressed in terms of the new fields@18#. Further, it is not
clear how to generalize the canonical transformation for
arbitrary dilatonic potential.~Recently, a proof of the exis
tence of a canonical transformation that generalizes the
©1999 The American Physical Society11-1
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MARCO CAVAGLIÀ PHYSICAL REVIEW D 59 084011
nonical transformation used in the CGHS case has been
rived by Cruz and Navarro-Salas; see Ref.@22#. Even though
it seems reasonable to guess the existence of a cano
transformation in the general case, the relation between
new fields and the original geometrical variables remain
puzzle.!

The ‘‘geometrodynamical approach’’ was originally d
veloped by Kucharˇ for a canonical description of th
Schwarzschild black hole@23#. This approach uses variable
that are directly related to the spacetime geometry and d
not make use of the field redefinitions of Refs.@5,6,18#.
Again, only the CGHS model has been quantized using
formalism @21#.

In this paper we assume a different attitude and quan
the general matterless dilaton gravity model described
Eq. ~2! using a transformation of the configuration spa
performed at the Lagrangian level. The transformation
suggested by the topological nature of two-dimensional gr
ity and by the existence of a local integral of motion ind
pendent of the coordinates first discussed by Filippov@3#.
The new fields have clear physical meaning—they are
dilaton and the ‘‘mass’’ of the system—thus avoiding pro
lems related to their interpretation in terms of the geome
cal variables.

In the canonical framework the new fields generalize
geometrodynamical variablesof Kuchař @23# and Varadara-
jan @21# to a generic dilatonic potential. Thus the quantiz
tion is straightforward and can be completed along the li
of Refs. @23,21#. The quantum theory reduces to quantu
mechanics and the Hilbert space coincides with the Hilb
space obtained by quantizing the theory first reducing it t
011 dynamical system with a finite number of degrees
freedom and then imposing the quantization algorithm†see
Ref. @27# for the caseV51/(2Af)‡. This result represent
the quantum generalization of the well-knownBirkhoff theo-
rem @24,25# for spherically symmetric gravity in four dimen
sions. ~A somewhat different derivation of the so-calle
quantum Birkhoff theoremfor the CGHS model is discusse
in Ref. @18#. The approach of Ref.@18# makes use of the
canonical transformation to free fields. Here we extend
results of Ref.@18# to the general model with an arbitrar
dilatonic potential using a different and more powerful a
proach.!

The quantum Birkhoff theorem is schematically defin
by the following diagram:

~3!
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The outline of the paper is as follows. In the next secti
we present the classical theory of two-dimensional dila
gravity ~see Refs.@2,19,26,25#! following the approach de-
veloped by Filippov@3#. Although this section reviews es
sentially previous work, its content is useful to set up t
notation and make the paper more self-contained and r
able. In Sec. III we introduce the point transformation a
the new Lagrangian. This result follows from the integrab
ity properties of the system and constitutes the main con
bution of the paper. Indeed, the Lagrangian formulation is
the basis of the canonical formalism and leads straight
wardly to the geometrodynamical variables. The canon
framework is discussed in Sec. IV. First, we derive the
nonical transformation to the geometrodynamical variab
for the general model. Then we present a careful treatmen
falloff conditions which are essential in establishing t
Hamiltonian quantization. The discussion of falloff cond
tions involves subtleties related to the definition of bound
conditions for arbitrary spacetimes. In Sec. V we quant
the system. Thanks to the geometrodynamical variables
quantization of the general model can be achieved by im
menting the formalism developed by Kucharˇ for the quanti-
zation of the Schwarzschild black hole@23#. Finally, we
show that the ensuing quantum theory is equivalent to
quantum mechanical theory which is obtained by impos
the Birkhoff theorem at the classical level. In Sec. VI w
state our conclusions.

II. CLASSICAL THEORY

Let us consider Eq.~2!. Varying the action with respect to
the metric and the dilaton we obtain@25#

~¹~m¹n)2gmn¹s¹s!f1
1

2
gmnV~f!50, ~4!

R1
dV

df
50, ~5!

where the symbol¹ represents covariant derivatives wi
respect to the metricgmn .

It is easy to prove that Eq.~5! is satisfied if Eq.~4! is
satisfied provided that

H~gmn ,f!Þ0, ~6!

whereH(gmn ,f)5¹rf¹rf. This condition can be lifted if
one requires the continuity of the fields and of their deriv
tives at any spacetime point. We will see in a moment—
Eq. ~17! below—that the equationH(gmn ,f)50 defines the
horizon~s! of the two-dimensional metric. So by requirin
the continuity of the fields and their derivatives across
horizon~s! Eq. ~4! implies Eq.~5! everywhere.

The field equations~4!,~5! can be solved performing a
Bäcklund transformation~see Ref.@3#!. In covariant lan-
guage the Ba¨cklund transformation reads

M5N~f!2¹rf¹rf, N~f!5Ef

df8V~f8!, ~7!
1-2
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¹mc5
¹mf

¹rf¹rf
, ~8!

whereM (t,x) andc(t,x) are the transformed fields. (M and
N coincides—apart from constant factors – toC and J of
Refs. @19,2# respectively.! Note that the transformation i
singular for H(gmn ,f)50. Using the new fields Eq.~4!
reads

¹m¹mc50, ~9!

¹mM50. ~10!

Since the transformation~7!,~8! is defined when Eq.~6!
holds, Eqs.~9!,~10! are equivalent to the original field equa
tions ~4!,~5! except at the horizon~s!. Equations~9!,~10! have
a deep significance. The first equation implies thatc is a free
~D’Alembert! field. From the second equation we find thatM
is a locally conserved quantity.

In two dimensions any metric is locally conformally fla
@28#. So there exists a coordinate transformation wh
brings the metric into the form

ds254r~u,v !dudv, ~11!

where u5(t1x)/2, v5(t2x)/2. Using conformal light-
cone coordinates Eqs.~9!,~10! can be explicitly integrated
The general solution is

c5U~u!1V~v !, M5M0 . ~12!

The original fieldsr andf are can be written as functions o
c andM using Eqs.~7!,~8!. With a little algebra one finds

dc

df
5

1

N~f!2M
, ~13!

r5@N~f!2M #]uc]vc. ~14!

Equations~12!–~14! imply that the general solution of th
model is actually (011) dimensional, i.e., that any solutio
possesses a Killing vector@29#. Indeed, using the coordinate
(U,V) the general solution reads

ds254@N~f!2M #dUdV, f[f~U1V!, ~15!

or, using the coordinates (f,T[U2V),

ds252@N~f!2M #dT21@N~f!2M #21df2. ~16!

Thus the general solution depends on the single variablef.
~With a somewhat improper terminology we call these so
tionsstatic, even though the Killing vector may not be time
like and hypersurface orthogonal on the entire manifo!
This result constitutes a generalization of the class
Birkhoff theorem @25,24,3,29#. ~For spherically symmetric
Einstein gravity the ‘‘local integral of motion independent
the coordinates’’ is just the Schwarzschild mass.! The reduc-
tion of the theory to a finite-dimensional dynamical syste
signals that pure dilaton gravity is actually a topologic
08401
h

-

.
l

l

theory. In Sec. V we will see how this property influenc
the quantization of the theory.

Let us briefly discuss the local geometrical properties
the solution~16!. The horizon~s! of the metric are deter-
mined by the equation

N~f!2M[H~gmn ,f!50. ~17!

For a given choice of the dilatonic potential, Eq.~17! is an
algebraic equation inf whose solutions$f i% determine the
values of the radial coordinate where the horizon~s! are lo-
cated. So the request of continuity of the solution—and of
derivatives~see Ref.@23#!—across the horizons enforces th
continuity of the fieldsr and f at the pointsH(gmn ,f)
50 and vice versa. This justifiesa posteriorithe assumption
of continuity made below Eq.~6!. With this assumption Eqs
~4!,~5! are equivalent to Eqs.~9!,~10! everywhere.

The local asymptotic structure of the solution~16! and the
existence of singularities depend on the choice of the d
tonic potential. In particular, from Eq.~5! one finds that sin-
gularities of the metric are determined by singular points
the first derivative ofV(f) with respect tof. The local
asymptotic structure can be also roughly investigated us
Eq. ~5!. For instance, let us suppose that the asymptotic
gion is defined byf→` and that the behavior of the dila
tonic potential at infinity isV(f)'fk, wherek is a constant
parameter. Thus the two-dimensional spacetime is asy
totically flat for f→` if k,1, and has constant curvatur
for f→` if k51.

Let us conclude this section with a concrete example
derive the Schwarzschild solution using the formalism d
scribed above. The dimensional reduction of the fo
dimensional vacuum Einstein gravity,

SEH5
1

16pES
d4xA2g R~4!~g!, ~18!

can be obtained using the ansatz

ds~4!
2 5

1

Af
gmndxmdxn14f dV2, f>0, ~19!

where gmn is a two-dimensional metric with signatur
(21,1) anddV2 is the line element of the unit two-spher
Using Eq.~19!, and integrating on the two-sphere, the fou
dimensional Einstein-Hilbert action can be cast into the fo
~2! with V(f)51/(2Af). Using Eq.~16! the line element
~19! reads

ds~4!
2 52S 12

M

Af
D dT21

df2

fS 12
M

Af
D 14f dV2

2 .

~20!

Clearly Eq. ~20! reduces to the standard Schwarzsch
solution with the substitution 4f5R2.
1-3
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III. LAGRANGIAN FORMALISM

The Bäcklund transformation introduced in the previo
section can be used to find a transformation from the orig
fields, (gmn ,f), to new fields (Xi), i 51, . . . ,4,where one
of the new fieldsXi coincides withM. SinceM is a locally
conserved quantity, this transformation simplifies drastica
the dilaton gravity Lagrangian in Eq.~2!.

The key of the construction is the observation that in t
dimensions the Ricci scalarR is a total divergence and ca
be locally written as

R

2
5¹mAm, Am5

¹m¹nx¹nx2¹n¹nx¹mx

¹rx¹rx
, ~21!

wherex is an arbitrary, nonconstant, function of the coor
nates. Equation~21! can be easily checked using conform
coordinates. Since Eq.~21! is a generally covariant expres
sion, and any two-dimensional metric can be locally cas
the form~11! by a coordinate transformation@28#, Eq.~21! is
valid in any system of coordinates.

Differentiating Eq.~7!, and choosingx5f, both V(f)
andR can be written as functions ofM and¹mf. Finally, by
an integration per parts we find

S5E
S
d2x A2g

¹mf¹mM

N~f!2M
1S] , ~22!

whereS] is the surface term:

S]52E
S
d2x A2g ¹m@¹mf1fAm#. ~23!

Let us check that Eq.~22! has the same number of degrees
freedom~DOF! of the original action~2!. In two dimensions
a generic metric can be written

gmn5rS a22b2 b

b 21D . ~24!

In the canonical formalisma(t,x) andb(t,x) play the role
of the lapse function and of the shift vector respective
r(t,x) is the dynamical DOF. As a result of the chosen p
rametrization, the Lagrangian in Eq.~2! is a functional of the
two dynamical fields (r,f) and of the two nondynamica
variables (a,b). Now let us use Eq.~24! in Eq. ~22! and
neglect the surface term. The new Lagrangian is aga
functional of two fields (M ,f) and of two nondynamica
variables (a,b). Indeed, since Eq.~22! only contains the

Weyl-invariant combinationsA2ggmn, the transformed ac
tion is invariant under changes of coordinates which belo
to the conformal group andgmn does not contribute any dy
namical DOF to the action. As a consequence, the trans
mation (r,f,a,b)→(M ,f,a,b) is a ‘‘point transforma-
tion’’ with M[M (r,f,a,b) defined by Eq.~7!. @Quotation
marks are due to the fact that the transformat
(r,f,a,b)→(M ,f,a,b) should not be regarded as a poi
transformation according to the usual lore because it
08401
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volves derivatives with respect tot andx. We call it a ‘‘point
transformation’’ because it can be implemented at the
grangian level.#

Varying Eq.~22! we find

¹m¹mf2V~f!50, ~25!

¹~mf¹n)M2
1

2
gmn¹sf¹sM50, ~26!

¹mM¹mM1¹nf¹nf¹m¹mM50. ~27!

Equations~25!–~27! are equivalent to the field equations o
tained from Eq.~2!. Equation~25! corresponds to the trace o
Eq. ~4!. Further, by differentiation of Eq.~7! one finds that
Eqs.~26!,~27! are satisfied if Eq.~4! is satisfied because Eq
~4! implies ¹mM50. The converse latter statement is al
true provided that Eq.~6! is satisfied. When this condition
holds Eq.~26! implies ¹mM50. By requiring the continuity
of the fields Eqs.~25!–~27! and Eqs.~4!,~5! are equivalent.
The equivalence of Eqs.~25!–~27! and the original field
equations can also be directly checked using the metric
rametrization defined in Eq.~24!.

IV. CANONICAL FORMALISM

The canonical formalism is an essential step in the qu
tization procedure. Starting from Eq.~2!, and using the met-
ric parametrization, Eq.~24!, the action can be cast in th
Hamiltonian form@2#

S5E dt E
xa

xb
dx @prṙ1pfḟ2aH02bH1#, ~28!

where the overdots represent derivatives with respect to
timelike coordinatet, (r,f,pr ,pf) are the phase spac
variables, andH0 , H1 are the Arnowitt-Deser-Misne
~ADM ! super-Hamiltonian and supermomentum, resp
tively:

H05rprpf1
r8

r
f822f92rV~f!,

H152f8pf1r8pr12rpr8 . ~29!

Here primes represent derivatives with respect to the sp
coordinatex. Equations~29! include, as particular cases, th
models discussed in Ref.@21# and Ref.@23#. Denoting with
subscriptsv and k the canonical variables of Ref.@21# and
@23#, respectively, we have

f5
Rv

2

4
, pf52

RvPRv
2LvPLv

Rv
2

,

r5Rv
2Lv

2 , pr5
PLv

2Rv
2Lv

,

1-4
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a52
Nv

Lv
, b52Nv

r , ~30!

for the CGHS model (V5const), and

f5
Rk

2

4
, pf5

2RkPRk
2LkPLk

Rk
2

,

r5
RkLk

2

2
, pr5

PLk

RkLk
,

a52
Nk

Lk
, b52Nk

r , ~31!

for the Schwarzschild black holeV521/(2Af). @The mi-
nus sign ofV is due to the choice of the metric signature
Eq. ~24! that is opposite to the signature used in Eq.~19!.#

Starting from Eq.~22! the super-Hamiltonian and supe
momentum read~for later convenience we setf5f̄)

H05@N~f̄ !2M #pf̄pM1@N~f̄ !2M #21f̄8M 8,

H152f̄8pf̄2M 8pM . ~32!

Eventually, both canonical actions must be complemented
a boundary term at the spatial boundaries. This can be d
along the lines of Refs.@23,21# as we will see later in this
section.

The two charts (f,pf ,r,pr) and (f̄,pf̄ ,M ,pM) are re-
lated by the transformation

M5N~f!2
r2pr

22f82

r
,

pM5
r2pr

r2pr
22f82

,

f̄5f,

pf̄5pf2
r2pr

r2pr
22f82FV~f!12prS f8

rpr
D 8G . ~33!

The transformation given above is easily invertible. The
sult is

r5pM
2 @N~f̄ !2M #F12S f̄8

pM@N~f̄ !2M #
D 2G ,

pr5
1

pMF12S f̄8

pM@N~f̄ !2M #
D 2G ,

f5f̄,
08401
y
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pf5pf̄1V~f̄ !pM1

2S f̄8

pM@N~f̄ !2M #
D 8

F12S f̄8

pM@N~f̄ !2M #
D 2G . ~34!

After some tedious calculations one can check that the o
nonvanishing Poisson brackets at equal timet are

@M ~ t,x!,pM~ t,x8!#5d~x2x8!,

@f̄~ t,x!,pf̄~ t,x8!#5d~x2x8!; ~35!

so Eqs.~33!,~34! define a canonical map. Finally, the diffe
ence of the Liouville forms reads

E
xa

xb
dx ~Ṁ pM1 ḟ̄ pf̄!2E

xa

xb
dx ~ ṙ pr1ḟ pf!

5F~f̄,pf̄ ,M ,pM !, ~36!

where

F~f̄,pf̄ ,M ,pM !

5E
xa

xb
dx H 2f̄8 arctanhF f̄8

@N~f̄ !2M #pM
G

22~N~f̄ !2M !pMJ –

2E
xa

xb
dx H 2ḟ̄ arctanhF f̄8

@N~f̄ !2M #pM
G J 8

. ~37!

The canonical variables (f̄,pf̄ ,M ,pM) are a generaliza-
tion of the geometrodynamical variables introduced by K
chař @23# and Varadarajan@21#. This can be easily proved
using Eqs.~30!,~31! and Eqs.~33!,~34!.

Now we must take care of boundary terms and defi
falloff conditions at the spatial boundaries. We set

f̄85@N~f̄ !2M #~11e
f
¯
8

~a,b!
!, ~38!

ḟ̄5e
ḟ̄

~a,b!
,

M5M ~a,b!~ t !~11eM
~a,b!!,

pf̄5
epf̄

~a,b!

N~f̄ !2M
,

pM5
epM

~a,b!

N~f̄ !2M
,

a5a~a,b!~ t !~11ea
~a,b!!,
1-5
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b5eb
~a,b! ,

wheree (a,b) are functions oft andx vanishing at the spatia
boundariesxa andxb , i.e.,

lim
x→xa ,xb

e~a,b!~ t,x!50 ~39!

and

lim
x→xa ,xb

epf̄

~a,b!

N~f̄ !2M
50,

lim
x→xa ,xb

epM

~a,b!

N~f̄ !2M
50,

lim
x→xa ,xb

eM
~a,b!8

N~f̄ !2M
50. ~40!

The exact behavior of thee (a,b) functions depends on th
particular potential under consideration. By requiring th
e (a,b) go to zero rapidly enough, both the Liouville form an
the super-Hamiltonian and supermomentum are well defi
and the difference of the Liouville formsF(f̄,pf̄ ,M ,pM)
reduces to an exact form. For instance, in the Schwarzsc
black hole caseN(f)5Af the spatial boundaries are locate
at xa52` and xb51` and with a little algebra one ca
check that the falloff conditions~38! become

f̄5
x2

4
@11f̄6uxu212e1O6`~ uxu222e!#,

M5M 6~ t !@11O6`~ uxu2e)#,

pf̄5O6`~ uxu222e!,

pM5O6`~ uxu212e!,

a5a6~ t !@11O6`~ uxu2e!#,

b5O6`~ uxu2e!, 0,e<1. ~41!

In this case the super-Hamiltonian and supermomentum
off as

H05O6`~ uxu212e!, H15O6`~ uxu212e!, ~42!

and the Liouville form

E
2`

1`

dx ~ṀpM1 ḟ̄pf̄!, ṀpM1 ḟ̄pf̄5O6`~ uxu212e!

~43!

is well defined. Finally, using Eqs.~41! the second term on
the right-hand side of Eq.~37! vanishes at spatial infinitie
and the difference of the Liouville forms is an exact form
The above falloff conditions coincide with those used
Kuchař in Ref. @23#.
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Following @30# we must complement the action by
boundary term to allow functional differentiability of the ac
tion. Using the falloff conditions~38! we have that the sole
nonvanishing boundary term due to the variation of the
tion with respect to the canonical variables has the form

E dt @2a~b!~ t !dM ~b!1a~a!~ t !dM ~a!#; ~44!

so we add to the action the boundary term

Sboundary5E dt @a~b!~ t !M ~b!~ t !2a~a!~ t !M ~a!~ t !#,

~45!

wherea (a,b)(t) parametrize the action at the boundary a
are interpreted as prescribed values oft ~see Ref.@23# for a
more detailed discussion about this point!.

The canonical field equations and the constraintsH0
50, H150 are easily solved using the geometrodynami
chart (f̄,pf̄ ,M ,pM). The general solution of the constrain
is

pf̄50, M 850. ~46!

Equations~46! have the same physical content of Eq.~10!.
~Note thatM weakly commutes with the constraints, as e
pected for a local integral of motion.! Equation~9! is a direct
consequence of the canonical field equations.

V. QUANTIZATION

The quantization of the full 111 theory can be imple-
mented using the geometrodynamical canonical variab
From Eqs.~46! we read thatM does not depend on the spac
like coordinatex. The effective Hamiltonian is simply given
by the boundary term~45! and the reduced action reads

Seff5E dtFdm

dt
pm2mG , ~47!

where m[M (b)(t)5M (a)(t), pm[*xa

xbdx pM , and t(t)

5* tdt8@a (a)(t8)2a (b)(t8)#. The theory reduces formally to
quantum mechanics and the quantization can be carried o
usual. The Schro¨dinger equation is

i
]

]t
C~m;t!5Heff C~m;t!, Heff[m. ~48!

The stationary states are the eigenfunctions ofm and the
Hilbert space coincides with the Hilbert space obtained in
011 approach. Let us see briefly this point in detail.

In the 011 approach we take advantage that every so
tion is static—according to the definition given below E
~16!—and set from the beginninggmn[gmn(t), f[f(t).
The action~density! reads

S0115E dt @ ṙpr1ḟpf2aH#, ~49!
1-6
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where a is a Lagrange multiplier enforcing the constrai
H50. (H corresponds to the 011 slice ofH0 . The super-
momentum constraintH1 vanishes identically.!

So in the 011 sector of the theory we can express t
field equations as a canonical system in a finite, (232)-
dimensional, phase space. The equations of motion are
lytically integrable and their solution coincides with the
nite gauge transformation generated by the constrainH
50. We can find a couple of gauge-invariant canonica
conjugate quantitiesm and pm corresponding to the 011
sections ofM andpM introduced in Eqs.~33!. The canonical
variablesm andpm can be identified with the quantities de
fined below Eq.~47!.

Now we can construct the maximal gauge-invariant
nonical chart (m,pm ,H,T) and useT to fix the gauge. In-
deed, the transformation properties ofT under the gauge
transformation generated byH imply that time defined by
this variable covers once and only once the symplectic m
fold; i.e., time defined byT is a global time. The quantizatio
becomes trivial and the Hilbert space is spanned by
eigenvectors of the sole—apart from its conjuga
momentum—gauge-invariant operatorm corresponding to
the mass of the system.

This quantization program has been implemented in de
in Ref. @27# for the case of spherically symmetric Einste
gravity but can be easily generalized to an arbitraryV(f).
~See, for instance, Ref.@31#.! In the 011 approach one can
go further and discuss the self-adjointness properties of
mass operator. It turns out that the Hermitian operatorm in
the gauge-fixed, positive-norm, Hilbert space is not s
adjoint, while its square is a self-adjoint operator with po
tive eigenvalues. This result is due to the fact that the c
jugate variable to the mass,pm , has positive support
analogously to what happens for the radial momentum
ordinary quantum mechanics. However, the relevant poin
that the massm—or its square—is the only gauge-invaria
observable of the system~apart from the conjugate variable
of course! and the Hilbert space of the 011 approach coin-
cides with the Hilbert space of the full quantum 111 theory
obtained through the geometrodynamical formalism. This
the essence of the quantum Birkhoff theorem. Note that
definition of the quantum Birkhoff theorem differs from th
definition that can be found in the previous literature@2,19#.
~Actually, in the previous literature a precise definition of t
quantum Birkhoff theorem is missing.! We define the
Birkhoff theorem as the equivalence of the (011)- and (1
11)-dimensional quantization procedures—see the diag
at the end of Sec. I. This definition gives a clear meaning
the quantum Birkhoff theorem that up to now was simp
intended as the property that quantum states depend
single parameter~the mass of the system!. While conclusions
are identical, conceptual differences are great.

VI. CONCLUSIONS AND PERSPECTIVES

Let us conclude with few remarks. We have derived
canonical transformation to geometrodynamical variab
that generalizes the transformation of Ref.@21# and Ref.@23#
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to any dilaton gravity model. We have seen that the gen
dilaton gravity action, Eq.~2!, can be cast into the form~22!
and the system can be described both in the canonical
Lagrangian frameworks using the dilaton and the mass
new variables. The quantization of the general dilaton gr
ity model becomes straightforward and the resulting qu
tum theory exhibits at the quantum level the Birkhoff the
rem.

We believe that Eq.~22! and Eqs.~32! can be used to look
at two-dimensional gravity from a new perspective. Up
now physicists have struggled themselves to find a canon
transformation mapping the general dilaton gravity theo
based upon Eq.~2! into a system described by free fields—
see for instance, Ref.@22#. Even though it seems reasonab
to assume the existence of such a canonical transforma
we know from the CGHS case~the simplest possible case!
that the relation between the free fields and the ‘‘physica
fields ~metric, dilaton, mass! is highly nonlinear. Further, the
canonical transformation may be pathological and subtle
and ambiguities may arise. For instance, in the CGHS c
the gauge-invariant operatorM cannot be expressed as
function of the new free fields, as we would expect imp
menting a canonical transformation@18#. This means that the
canonical transformation to free fields is ill defined. Indeed
careful analysis shows that the transformation cannot be
verted and, in order to make it invertible, one has to supp
ment the new field variables by an extra pair of conjug
variables related to the value of the fields at the bounda
~See, for instance,@18# and@6#.! In spite of these difficulties,
the CGHS model can still be managed and different
proaches to the quantization can be carried on, leading
consistent quantum theory@5,6,18#. However, we find it very
hard to believe that models with more complicated dilato
potentials can be dealt with using free fields. Eventually, o
wants quantum operators corresponding to the phys
quantities of the model, i.e., quoting Kucharˇ, Romano, and
Varadarajan, ‘‘ . . . the interesting questions in dilatonic grav
ity are precisely those which are concerned with the phys
spacetime . . . ’’ @6#. Free fields are very distant from this pic
ture.

Conversely, the canonical variables defined in Eq.~33!,
being directly related to the spacetime geometry, do not s
fer from the problems outlined above. Thus a quant
theory in which quantum operators have a clear phys
meaning is easily achieved. Finally, Eq.~22! may~hopefully!
provide a completely new starting point in the investigati
of open issues as, for instance, the thermodynamics of b
holes and gravitational collapse~when matter is coupled to
the system!.
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