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Abstract. We discuss the quantization of a class of string cosmology models that are characterized
by scale factor duality invariance. We compute the amplitudes for the full set of classically allowed
and forbidden transitions by applying the reduce phase space and the path-integral methods. We
show that these approaches are consistent. The path-integral calculation clarifies the meaning
of the instanton-like behaviour of the transition amplitudes that was first pointed out in previous
investigations.
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1. Introduction

String theory, thanks to its duality symmetries, provides a cosmological scenario [1-3] in
which the Universe starts from the perturbative vacuum of (super)string theory and evolves in
a ‘pre-big bang’ (PRBB) phase [1, 2]§ characterized by an accelerated growth of the curvature
and of the string coupling.

One of the main problems of string cosmology is the understanding of the mechanism
responsible for the transition (‘graceful exit’) from the inflationary PRBB phase to the
deflationary ‘post-big bang’ phase (POBB) with decreasing curvature that is typical of the
standard cosmological scenario. Necessarily, the graceful exit involves a high-curvature,
strong-coupling, regime where higher derivatives [4] and string loop terms must be taken
into account. In [5] it has been shown that for any choice of the (local) dilaton potential,
no cosmological solutions that connect smoothly the PRBB and POBB phases exist.
Consequently, at the classical level higher-order corrections cannot be ‘simulated’ by any
realistic dilaton potential.

At the quantum level the dilaton potential may induce the transition from the PRBB phase
to the POBB phase. In this context, using the standard Dirac method of quantization based on
the Wheeler—De Witt equation [6] a number of minisuperspace models have been investigated
in the literature [7-9]. The result of these investigations is a finite, non-zero, transition
probability PRBB— POBB with a typical ‘instanton-like’ dependence éxp{—1/g?}) on
the string coupling constant [7, 8].
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The aim of this paper is to present a refined analysis of the quantization of string
cosmological models. To this end we reconsider the minisuperspace models that have been
previously investigated in [7-9]. We have several motivations for doing this.

First of all, these systems are invariant under reparametrization of time. So their
quantization requires a careful discussion of the subtleties that are typical of the quantization
of gauge-invariant systems (e.g. gauge fixing) [10, 11]. Furthermore, we want to investigate
the graceful exit in string cosmology using different techniques of quantization and illustrate a
consistent approach to the problem that can be successfully applied to a large class of models.

We deal with a class of string-inspired models—see (2.8) and (2.9) below—that are
exactly integrable and we apply the standard techniques for the canonical quantization of
constrained systems [12—-14]. Using the reduced-phase space formalism we determine the
positive norm Hilbert space of states. We construct the PRBB and POBB wavefunctions that
are normalized with respect to the inner product of the Hilbert space. These wavefunctions
are then used to compute transition amplitudes. Further, we compute the (semiclassical)
transition amplitude PRBB> POBB by the path-integral approach. The result agrees with
the semiclassical limit of the transition amplitude that has been obtained in the reduced-phase
space approach and makes clear the instanton-like structure pointed out in [7,8]. Let us
stress that our investigation is important for at least two reasons: first, the model that we are
discussing is (to our knowledge) the only known example of a minisuperspace model where
exacttransition probabilities between two classically disconnected backgrounds have been
calculated. Secondly, our analysis completes the previous investigations of [7—9] and allows
for a systematic discussion of both classically allowed and classically forbidden transitions.

The outline of the paper is as follows. Section 2 is devoted to the classical theory. We
derive the solutions of the equations of motion and discuss the classical behaviour of the PRBB
and POBB branches. In section 3 we quantize the model. This task is completed using first the
canonical approach and then the path-integral formalism. Eventually, we state our conclusions
in section 4.

2. Classical theory

We consider the string-inspired modekir 1 dimensions described by the action (we assume
that only the metric and the dilaton contribute non-trivially to the background)

1
= S / A" /gl €7 (R +0,00"¢ = V (8, $)), (2.1)

where¢ is the dilaton field,x, = («)¥? is the fundamental string length parameter and

V(guw, ¢) is a potential term. When the latter is absent, equation (2.1) coincides with the tree-

level, lowest order inv’, string effective action [15] defined in the ‘string frame’, where the

metricg,,, coincides with ther-model background metric that couples directly to the strings.
We deal with isotropic, spatially flat, cosmological backgrounds parametrized by

gu = diag(—N?(1), a*0)8;),  a=exgO®)/Vd], ¢ = o). (2.2)
wherei, j = 1,...,d. We also assume that the spatial sections have finite volume. For this
class of backgrounds the action (2.1) reads
As (1. -
S:/ dr L, L= > (-(@2—c1>2) —Mez‘bV(@,CD)), (2.3)
n

where dots represent differentiation with respect to cosmic timgt) = N(¢) €®, and® is
the ‘shifted’ dilaton field

c1>=¢—|ogf dix/ad —Vd ©. (2.4)
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(In (2.3) we have neglected surface terms that are inessential for our purposes.) In this paper
we restrict attention to models with a potential term depending on the shifted ddatory.
In this case (2.3) is invariant under scale factor duality transformations [1, 16]

- P or ¢ — ¢ —2d loga, (2.5)

®— -0 or a— 2. (2.6)
Let us introduce the conjugate momentatand® by the Legendre transformation

e = As o, Mo = kg (2.7)

u U

Equation (2.3) can be cast in the canonical form

S = /dt [OI + Iy — H], (2.8)
where

H=pn)H, H = z—is(nﬁ) — I3 + 22V (d) e 2®). (2.9)

In the canonical formalismu plays the role of a non-dynamical variable that enforces the
constraintH = 0. As we expect for a time-reparametrization-invariant system, the total
Hamiltonian is proportional to the constraint [13, 14]. The equations of motion are

d@ H(..) dCI) HCD
—_— = _— =, 2.10
dr A’ dr As (2.10)
dl'I(.) de) )\s dv —20
-0 =D oy = 2= 2.11
dr d&c 2 < v dcl>>e ’ (2.11)
wherez (¢) is
t
(1) :/ ds w(s). (2.12)
The gauge paramete(z) is related to the synchronous-gauge tiffi€ (N = 1) by the relation
198 (¢) = / dse™®. (2.13)
We consider potentials of the form
V(®) = e 226D, (2.14)

where) > 0is a dimension-two quantity (in natural units) ani a dimensionless parameter.
(This class of potentials has been first discussed in [9].)yF8r0 the explicit solution of the
equations of motion (2.10) and (2.11) is

k s 1k Ya
®:®O+A_(T_TO)’ e® = [\/_T 5|nh(|kq||r—r0|>:| ,
Me = k, Mg = —k coth[k—q(r - ro)].

(The casg = 0 corresponds—modulo a redefinitiorkef-to the ‘vacuum’ solutions discussed

in [1-3].) Let us determine which values g@fdo allow for the existence of an inflationary
expanding PRBB branch and a decelerating POBB branch. According to the general analysis
of [1, 2], the expanding PRBB and POBB branches are defined by

PRBB: H >0, H >0, ® > 0, (2.16)

POBB: H >0, H <0, ® <0, (2.17)
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where
H= dt(im H= % 2]>is % (€*), (2.19)
= dt(i@ d = % €®). (2.20)

From (2.18) it is straightforward to see that expanding and contracting backgrounds are
identified byk > 0 andk < O respectivelyk = O corresponds to the flat + 1)-dimensional
Minkowski space. Since we are interested in expanding backgrounds here and throughout the
paper we shall consider only positive valueskpf.e. solutions withllg > 0. Forg < 1 we

have two distinct branches corresponding to PRBB and POBB states. (The limitingeate
corresponds to a positive constant potential in (2.1). The relative classical solutions have been
discussed in [17].) The PRBBt+) and POBB(—) branches are identified by negative and
positive values of1g, respectively. Asymptotically, for & ¢ < 1 we have

MM TG =Fk, lim TIGY ~ FaVAe, (2.21)
in the strong- and weak-coupling regime, respectively. Conversely, o0 we have
GJim S ~ Fav/ae®, Jim ny’ = k. (2.22)

Substituting (2.15) in (2.13) the synchronous-gauge tif¥iecan be written explicitly in terms
of t. There are two different cases:

@qg#1/2m+1),m=0,12,...

(60 t((,sg) _ _o(g)o(r —10) (\/X)\s)ll/q
Vilg — 1 k
x[sinh(x)]ll/qF<%, qz—_ql, 3‘12; 1 sinhzx>,
whereo is the sign functionF is the hypergeometric function [20], and
k
X = /\—Slq(r — 0)l;

©)g=1/@m+1),m=0,1,2,...

where

f(0, x) =4 arcothie"),
and

fm, x) = (=" f(0,x) +coshx) jzzj F(m(_:;-)irk()r?si;:()x\)/]f(m—k)
form > 0.

The above relations determine the PRBB and POBB branches in terms of the synchronous-
gauge time “# for different values of the parameter In particular, we have:
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(a) ¢ < 0. In this case the PRBB and POBB branches are defined for

—00<T—179<0 — —oo<t(-vg)_tévg><0’

, 2.23
O<t—19<00 — O<t(sg)—té“g><oo, ( )
respectively.
(b) ¢ = 1/(2m +1). The PRBB and the POBB branches are defined for
— _ (sg) _ 4(s8)
O<t—1m<00 — oo <t tyo <0, (2.24)

—co<tT—T9<0 — 0<t0®_

tésg) < 00,

respectively. This can be checked using the asymptotic expansigiig:of) for x — 0
andx — +oo.
(c)0<gq <1,q#1/(2mn+1). The PRBB branch is defined for

O<t—19<00 — o00<t"®— tésg) < T, (2.25)
and the POBB branch for

—0<T—T9<0 = T <1518 <o, (2.26)

T = ﬁ <‘/?’)H/q r(qz—_ql> F(%). (2.27)

As has been pointed out in [8,9], in terms of the synchronous-gaugetifiethe

PRBB and POBB branches are separated by a finite intexv&’ = 27. However,

the separation between the two branches has no physical meaning. Indeed, due to the
presence of a singularity in the curvature and in the string coupling the PRBB and POBB
solutions are disjoint. Therefore, itis possible to define the initial valuesath that the
singularity occurs at“¢’ = 0 in both branches.

where

3. Quantum theory

The string cosmological model of section 2 is described by a time-reparametrization-invariant
Hamiltonian system with two degrees of freedom. Though its quantization involves subtleties
typical of gauge-invariant systems [10, 11, 18], the standard techniques of quantization of
constrained systems can be applied straightforwardly thanks to the integrability properties of
the model [12-14].

The starting point is the canonical action (2.8). Since the constfaiig of the form
H = Hg(B®) + Hy (®), the time parameter can be defined by a single degree of freedom.
In the previous section we have seen that the sigh gfdetermines the contracting versus
expanding behaviour of the solutions and the sigmlgfidentifies the PRBB versus POBB
phases. Since we are interested in the calculation of the quantum transition probability from
an (expanding) PRBB phase to an (expanding) POBB phase, it is natural to Y&, tfig)
degree of freedom to define the time of the system and fix the gauge. Inthis case, the eigenstates
of the effective Hamiltonian are identified by a continuous quantum nuiberresponding
to the classical value dflg. Wavefunctions that describe expanding (contracting) solutions
are eigenstates of the effective Hamiltonian witk O (k < 0).

Let us consider the canonical transformation [1®] [1g, ®, [1y) — (=, [Ix, O, [1e)
where

¢ 1,

Y= —, My = —TI2. 3.1
o z =5 06 (3.1)
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In terms of the new canonical variables the constraint (2.9) reads

1
H(Z, Mg, @, Me) =My — X[Hé —aZe %] = 0. (3.2)

From (3.2) it is straightforward to see thatis canonically conjugate t&. Thus it defines a
global time parameter [11, 19]. In particular, the gauge-fixing identity can be chosen as

F(Z;t)=X +t=0. (3.3)
Equation (3.3) fixes the Lagrange multiplieras= —1. The gauge-fixed action reads
S = [ C o Mo — Hor(®, o)), (3.4)
1
where the effective Hamiltonian is
Heft (@, TIp) = Z—i(nﬁ, — AZeH?), (3.5)

The system described by the effective Hamiltonian (3.5) is free of gauge degrees of freedom and
its quantization can be performed using the standard techniques. In the next two subsections
we shall discuss the reduced phase space and path-integral quantization procedures.

3.1. Reduced phase space quantization

The reduced phase space is described by a single degree of freedom with canonical coordinates
(® € R, I1g € R). Thus there are no ambiguities in the choice of the measure in the Hilbert
space: dit] = d®. Inthe standard operator approach the quantization of the model is obtained
by identifying the canonical coordinates with operators. In the@&tihger representation the
self-adjoint operators with respect to the measuyd dfe

A A a
P o =9, IT e = —i—. 3.6
g o — llo 3P (3.6)
Since the effective Hamiltonian is quadratic in the momenta there are no factor ordering
ambiguities. The Scbdinger equation reads

—ia— U (P; 1) = e + %€ 2% | W (d; 1) (3.7)
dt T 2 a2 s o '
wherer is defined by (3.3). Finally, the inner product in the Hilbert space is
+00
(Wawp) = [ 0w wa@in, (3.8)

The general solution of the Sddinger equation (3.7) can be written as
U, (0;1) = / dk A(k) Yo (D) €K1/2 (3.9)

wherey , () is the solution of the stationary Sduinger equatioileyy = E with energy
E = k?/2),

d2
[W ¥ Mfem} Vg (D) = =k (). (3.10)

Forg # 0 we have
Viq(2) = Aa(k, ) Jiv(2) + A2(k, q) Yiv(2), (3.11)
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whereA;(k, g) andAz(k, g) are arbitrary functions, andl, (z), Y;,(z) are the Bessel functions
of the first and second kind of indéx = i|k/q| and argument

2= Vi exp—q®)/Iql, (3.12)

respectively [20].
Since the space of the solutions (3.11) is two dimensional we have two sets of (real)
orthonormal functions with respect to the inner product (3.8) [10, 21]

X]Sl) () = C(l) [e—nU/ZHi(‘jl-) (2) + er[v/ZHi(UZ) (Z)] , (313)
x2(2) =iC®Ple™2H{P () — €"2H? (2)], (3.14)

a _ vcoshmv/2) @ _ v sinh(rv/2)
¢ | 4sinh(rv/2)’ cr= 4 coshv/2)’ (3.15)

and H'” (z) and H? (z) are the Hankel functions of the first and second kind, respectively,
[20].

where

Now let us identify the stationary wavefunctions that correspond to expanding PRBB and
POBB phases. We discuss in detail the case § < 1 leaving to the end of this subsection
the discussion of negative valuesqof

From (3.1) and (3.2) it follows tha;ﬁ—r M2 = Hes. Thus phases that are expanding
(contracting) are described by eigenstates of the effective HamiltoniankwithO (¢ <
0). Expanding wavefunctions that correspond to PRBB and POBB can be identified by
investigating the asymptotic behaviours of (3.13) and (3.14) in the weak- and strong-coupling
regimes. For — oo, i.e. in the weak-coupling regime, the wavefunctions (3.13) and (3.14)
behave as

X]Sl)(z) ~ /T[_ZZ C(l) [ei(z—n/4) + e—i(z—7‘[/4):|7 (316)

[2 - -
x2 @) ~i,/ — CP[e/d _ grimm/H], (3.17)

By applying the momentum operatds, to the linear combinationg® = C® y W xic® 5@
we find

Mox® ~ Favae 1. (3.18)

Thus the wavefunctions corresponding to PRBB and POBB in the weak-coupling regime are
proportional to the linear combinationg®, respectively. The normalized PRBB and POBB
wavefunctions in the weak-coupling regime are

$)=—%01ﬂw [Vtanhmv/2)x P Fiy/coth(mv/2) x?]. (3.19)

By a similar argument we find that the normalized wavefunctions that correspond to expanding
PRBB and POBB phases in the strong-coupling regime are

1
(*) O i, @
— [x® Fix?]. 3.20

Using the two sets of wavefunctions (3.19) and (3.20) it is possible to compute the amplitudes
that correspond to the different transitions. They are schematically represented in figure 1,
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Weak PRBB A Weak POBB
VY (+) > ¥ )
W w
A, A,
A 1 A2
Strong PRBB As Strong POBB
\P (+) —_— \P )
S S

—> C(lassically allowed transition

— (lassically forbidden transition

Figure 1. Different transitions in the weak- and strong-coupling regimes.

where the amplitudedy, ..., Ag are given by the following expressions:
A= (0P, ) = 1
5 Vi+ezki
1
Ay = (v, ) = ’
2 ( s w ) 1+e2kd
As= (pO, ) = —= a
N /1 + e 2rk/q (3.21)
— () g ® —e T
A4 = ( w S ) iy ——
1+ e 2rk/q
— () D
AS = ( s »¥Ys ) = O»
_2e7k/q
— () (D) _
A6=( W W)_1+e—2ﬂk/q'

Let us discuss in depth the transition amplitudes (3.21). The amplidasdA, correspond
to classically allowed transitions. The relative transition probabilitiEjs}Z) = |A1?

Py = 1A2%) are

1

(+,4) (=—)
Pgy =Psw = 1rezhi (3.22)

Fork — oo, i.e. in the semiclassical limit, (3.22) becomes

P& = PGy ~ 1+ 0Tk, (3.23)
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in agreementwith the classical theory. The amplitusigandA 4 describe classically forbidden
transitions. The relative transition probabilitie&(;’ = |A3l?, S, = |A4l?) are
e—Z”k/‘l

(=) _ pth—) _
Pys = Psy = 1+e2q (3.24)
In the semiclassical limit (3.24) becomes
Py = Py ~ ek o(enh), (3.25)

The transition probabilities (3.24) become highly suppressed for 1 where the evolution
follows essentially the classical trajectory. In the lirhit> O equations (3.22) and (3.24)
become
P = PoyT ~ P = PO ~ 3+ O(k). (3.26)

In the smallk limit quantum effects are significant: the PRBB (POBB) phase in the weak-
coupling regime has the same probability of evolving in the PRBB or in the POBB phase in
the strong-coupling regime (and vice versa).

The probability of the transition PRBB> POBB in the strong-coupling regim@fs”) =
|As|?) is identically zero. This can be understood looking at the asymptotic form of the
potential for® — oo (z — 0). Indeed, for large values @ the potential term in (3.10)
goes asymptotically to zero. Consequently, PRBB and POBB wavefunctions in the strong-
coupling regime behave asymptotically as free plane waves with opddsgitsmomentum.
Since reflection of free plane waves is forbidden, the quantum transition from PRBB to POBB
in the strong-coupling regime does not take place.

The last and most interesting result is the probability of transition from the PRBB phase
in the weak-coupling regime to the POBB phase in the weak-coupling regime
87271k/q

The semiclassical limit of (3.27) is

Py ~ de 2kl 4 O(e 4k, (3.28)
For ¢ = 1 the semiclassical result coincides, apart from a normalization factor, with the
‘reflection coefficient’ of [7, 8]. However, the result of [7, 8] should be considered as a ratio
between two different transition probabilities rather than a transition probability by itself.
Precisely, the reflection coefficient defined in [7, 8] is

Py =1Ae* =4 (3.27)

= e kg, (3.29)

Note that the (classically forbidden) transition from the strong-coupling PRBB phase to the
weak-coupling POBB phase is suppressed by a factordf & with respect to the (classically
allowed) transition from the strong-coupling PRBB phase to the weak-coupling PRBB phase.
Equations (3.23), (3.25) and (3.28) also give the asymptotic behaviours for small values of
g at givenk. In this case quantum effects are negligible. When § « 1, the potential in the
Schiddinger equation is nearly constant and the PRBB and POBB solutions are approximated
by plane waves of opposite momentum alebg In this case reflection of waves is highly
suppressed.
A similar analysis can be performed for negative valueg dforq < 0 the wavefunctions
that correspond to expanding PRBB and POBB phases are

& _ D 4, @
w ﬁ[xv Xv ]
1 .
;i) = —[,/tanl”(nv/Z)X‘El) +i COth(nv/Z)lez)].

/2 coth(rv)
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The amplitudes for the various transitions can be read from (3.21) with the substitutions
A1 < Ay, As < Agandg — —g. Now the transition from the weak-coupling PRBB phase
to the strong-coupling POBB phase is forbidden for negative valugs of

The results from this section show that the probabilities of classically forbidden transitions
can be expressed, in the semiclassical limit, as power serie€dflé!. Following [7, 8], from
(2.18) and (2.4) we find

—\/4d71§2§>
lglg2ad )’

where$, is the proper spatial volume ang = e%+/? is the value of the string coupling when

H = 1/),. The ‘instanton-like’ behaviour of (3.30) shows that the probabilities of classically
forbidden transitions are peaked in the strong-coupling regime—as has already been pointed
out in [7, 8]—where all powers of /14| have to be taken into account. The occurrence of
this instanton-like behaviour will be clarified in the next subsection.

exp(—2rk/|q|) = exp( (3.30)

3.2. Path-integral quantization

The string cosmology model that we are considering can also be quantized using the functional
approach. The aim of this subsection is to show how to compute, using the path-integral
formalism, the probabilitva(lZ‘v;) in the semiclassical limit. While in the case under
investigation the semiclassical path-integral calculation seems devoid of interest—we already
know the exact transition probability (3.27)—nevertheless, the semiclassical calculation is of
primary importance if the system cannot be quantized exactly. We shall show that the functional
approach, when performed appropriately, reproduces the exact result in the limit of large
So it seems not unreasonable to assume that the semiclassical path-integral calculation also
gives a sound approximation of the exact result for those models that are not exactly solvable.
In future, we aim to apply the formalism of this subsection to more realistic and interesting
models of string cosmology.

The starting point of the functional approach is the path-integral in the reduced space
[14, 22]

®(12)
I :[ D® DIy eXpliSer[@, o)), (3.31)
®(11)

where the effective action is given by (3.4) and (3.5). The transition amplityds defined
by (3.31) where the integral is evaluated on all paths that satisfy the boundary conditions

P (—00) = —00, ®(00) = —o0. (3.32)

Since the effective Hamiltonian is quadratic i, the integral inlls can be evaluated
immediately. We obtain

D(12) 12 .
1 =/ Do exp(if dr Lew[ D, d)]), (3.33)
@ (1) 151
where the effective Lagrangian is
Leff = 30, (D2 +21e72%), (3.34)

It is advisable to use the variabledefined in (3.12). Equation (3.34) becomes

1 )\‘2 22
Lo = _<_xz_ +q2Z2>_ (3.35)

2hs \ g2 72
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Let us first consider the case where<Q; < 1. The path integral (3.33) must be evaluated on
all trajectories that satisfy the boundary conditions
7(—00) = o0, z(00) = oo. (3.36)

The effective Lagrangian (3.35) is singular wher= 0. So there are no classical solutions
describing a (smooth) transition between PRBB and POBB phases (see section 2). However, it
is possible to construct quasi-classical trajectories that satisfy the boundary conditions (3.36)
and interpolate between the PRBB and POBB phases.

Let us consider the analytical continuation of the varighileto the complex plane. The
effective Lagrangian is analytical in any point of the complex pldR&z), Im(z)) except for
z = 0. Classically, the transition from the weak-coupling PRBB phase to the weak-coupling
POBB phase would correspond to the trajectory starting-at+oo, going left along the real
axis (PRBB phasep > 0), reaching the origin, and finally going right along the real axis to
7z = +o00 (POBB phase¢ < 0). Clearly, since the Lagrangian is singulariga:= 0 a classical
continuous and differentiable solution does not exist.

Now consider generic analytical trajectories in the complex plane that startatRex,
Im(z) > 0, and end at Re) = oo, Im(z) < 0 (see figure Z)). We can divide this class of
trajectories into three (topologically) distinct categories.

o Trajectories that do not cross the imaginary axis, i.e. trajectories that cross the real axis at
(at least) one point = zg, R&(zg) > 0, Im(zg) = 0 (curveyy in figure 2@)).

@ Im(z)

/AR
L/
Y

(b) Im(2)

L z=eeid
Y, PRBB
P -
\ R T T Re(z)
|- POBB

Figure 2. Contours of integration in the complexplane.
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e Trajectories that cross the imaginary axis twice, i.e. trajectories that cross the real axis
once inz = zg, R&(zp) < 0, Im(zg) = 0 (curvey; in figure 2@)).

e Trajectories that cross the imaginary axistines ¢ = 2, 3,...), i.e. trajectories that
cross the positive real axis— 1 times and the negative real axigimes (curvey, in
figure 2@) for n = 2).

Since the action is analytical over the entire complex plane except fer 0 trajectories
of type yp can be deformed continuously to a (two-folded) trajectory lying entirely on the
real positive axis and defined in the intervd@e(zg), o0). These curves correspond to
classical solutions with the dilaton field evolving frofm = —oo to a maximum value
® = —In[g Re(z0)/+/A1,]/q and then decreasing b = —oo. A straightforward calculation
shows that the action evaluated on this path is identically zero. Since (3.34) is positive definite
Seff = 0 can be obtained only by a time reflection, i.e. by a PRBB (POBB) phase that is covered
twice. Therefore, these trajectories do not describe transitions from PRBB to POBB phases.

Let us focus our attention on trajectories of type They can be deformed continuously to
atrajectory that lies entirely on the real positive axis except arguad, where the singularity
is avoided by the (small) circle= €%, ¢ — 0,0< & < 27 (see figure A¢)). This trajectory
describes a transition from the weak-coupling PRBB phase to the weak-coupling POBB phase
and corresponds to a classical solution except in a small region in the strong-coupling limit,
where the singularity of the classical solution is avoided by the analytical continuation in the
complex plane. We shall see that the path-integral evaluated on this trajectory gives the leading
contribution to the semiclassical approximation of the transition amplitgleTrajectories
of typey, (with n > 1) give contributions of higher order.

It is worth spending a few words on examining the meaning of the analytical continuation
of the variablez in the complex plane. Setting= Re? and using (2.2) and (3.12) the metric
is cast in the form

ds? = —< qR )Z/quiS/"uz dr? + a?(t) dx; dx’ (3.37)
N o '

The signature of (3.37) is a function f In particular, the metric (3.37) is real hyperbolic for
& = wgn and real Riemannian fgr= ¢ (2n+1)/2, wheren is an integer number. Therefore,
the analytic continuation of figure B can be interpreted as a sort of Euclidean analytical
continuation in the space of metrics. Any trajectory that cireles 0 can be considered as
an ‘n-instanton’ solution (with no well defined signature) labelled by a winding numlbest
corresponds to the number of times that the trajectory wraps around the singularityn
In the semiclassical limit, the transition amplituﬂé{’v;) is given by the path-integral (3.33)
evaluated on the class efinstanton solutions.

Let us consider the contribution to (3.33) of the one-instanton solution

I = Crexp(iSefi[2,. 2 ])- (3.38)

where C; is a normalization factor and the subscrigtmeans that the effective action is
evaluated along the curyg of figure 2p). For a trajectory with energi?/2, the effective
action can be cast into the form

dz 1
n < 2 +k?/q?
As we expect, the effective Lagrangian has one isolated singularity=a0 (pole of order

one). Moreover, for — oo the action (3.39) shows a linear divergence. The latter is due
to the asymptotic behaviour of the PRBB and POBB wavefunctions in the weak-coupling

Seff =

(2% +Kk2/242). (3.39)
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regime. Indeed, using (3.38) and (3.39) the wavefunctions corresponding to the PRBB and
POBB phases in the semiclassical approximation are

[T dZ 1
™~ expli = = (7?+k%/24? ], 3.40
v ~exli [ 5 a2 (3.40)
. [ dZ 1
) ~e T (:%+k? 2}, 3.41
v efi [ 5 (e e G40

In the weak-coupling regime (I@) = 0, z — o©0), equations (3.40) and (3.41) behave
asymptotically as

v ~ €, Vi ~ e (3.42)

=0

in agreement with the asymptotic behaviour of (3.20).

The integral (3.39) can be made convergent by subtracting the asymptotic phase
contribution forz — oco. Then, using the residue theorem, we obt&ip = wik/q. The
amplitude (3.38) is given by

1Y = cie7k, (3.43)

The semiclassical one-instanton amplitude (3.43) approximates the (exact) result for large
values ofk. This proves the consistency of the reduced phase space and path-integral
quantization methods. The contribution of thinstanton ¢ > 1) to the transition amplitude
Agis

I = C,e7, (3.44)

Hence, n-instanton terms give higher-order contributions in the ldrgexpansion.
Equations (3.43) and (3.44) show that the instanton-like dependence (3.30) on the string
coupling constant of the amplitudes that correspond to classically forbidden transitions can be
traced back to the existence, in the semiclassical regime, of trajectories that connect smoothly
the PRBB and POBB phases.

Let us conclude this section with two remarks. In the computation of (3.39) we have
chosen only anticlockwise trajectories (see figured atd @)). If we considered clockwise

paths the residue theorem would gi¥ig; = —nik/g and the generic contribution to the
transition amplitude would be
I = c,em, (3.45)

This result violates, in the semiclassical limit, the unitarity bound. However, there is a simple
argument that allows one to remove this pathology. Let us consider the asymptotic behaviour
of PRBB and POBB wavefunctions in the weak-coupling regime. For complex valuges of
(3.42) read

1p(+)(z — 00) ~ eiRe(z)flm(z)’ 1)0(7) (z — 00) ~ —i Re(z)+|m(z). (3.46)

Since the system must be classical in the weak-coupling regime, the contribution to the path-
integral of the trajectories that approach the real axis for co must dominate the contribution
of the trajectories with a non-zero value of (fh. The above requirement is verified if we
integrate along the anticlockwise trajectories. (In this case the PRBB and POBB branches are
identified by Im(z) > 0 and Im(z) < 0, respectively.)

Forg < 0 the transition amplituddg is identically zero. Indeed, setting = 1/z, the
effective Lagrangian (3.35) becomes

1 /32w g2
Lop= — (2 4+ 3.47
ot 2 <q2 w? w2> (347
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andthe pathintegral (3.33) mustbe evaluated on trajectories that satisfy the boundary conditions
w(—00) = o0, w(co) = oo. The action evaluated on a generidgnstanton solution is
identically zero. Therefore, the semiclassical trajectories do not correspond to a transition
between PRBB and POBB phases.

4. Conclusions

The graceful exit, i.e. the transition from the inflationary ‘pre-big-bang phase’ to the
deflationary ‘post-big-bang’ phase is a fundamental subject of research in (quantum) string
cosmology.

Inthis paper we have addressed this topic by investigating a special class of minisuperspace
models that are invariant under scale factor duality transformations. Though this particular
class of models had been considered previously in the literature [7—9] a deeper discussion
was needed. Indeed, our analysis clarifies some issues of previous investigations such as the
meaning of the reflection coefficient and the instanton-like behaviour of the RRBBDBB
transition, and provides new, interesting results, for instance, the analysis of the full set of
transition amplitudes and the role of the semiclassical approximation.

We have shown, through a concrete example, that the reduced phase space and the path-
integral approaches are extremely powerful techniques of quantization for a large class of
string cosmology models. The two methods can be applied straightforwardly to any isotropic,
spatially flat, model as long as the latter is characterized by scale factor duality invariance. In
particular, the functional method may be very useful when the system cannot be integrated
explicitly, i.e. when the Sclidinger equation (or, alternatively, the equivalent Wheeler—De Witt
equation) cannot be solved exactly. Indeed, the calculation of the (semiclassical) transition
amplitude between the PRBB and POBB phases in the weak-coupling regime is reduced to a
simple evaluation of a definite integral by means of the residue theorem. No explicit solutions
of the classical equations of motion nor exact wavefunctions are needed.

The path-integral method also makes clear a couple of other interesting features of
quantum string cosmology models. First, we have proved that the instanton-like nature of
the PRBB — POBB transition amplitude [7, 8] is just a consequence of the presence of
the classical singularity in the strong-coupling regime. Indeed, the mere existence of the
singularity implies that any semiclassical trajectory givesidgnstanton contribution to the
PRBB — POBB transition amplitude. Secondly, we have clarified the role of the functional
form of the dilaton potential in the transition process. We have mentioned that the dilaton
potential may ‘mimic’ (at the quantum level) high-order corrections to the low-energy effective
string theory action. The path-integral approach shows that the calculation of the semiclassical
transition amplitude PRBB> POBB does not require the knowledge of the exact functional
form of the dilaton potential. The semiclassical contribution to the transition amplitude is
determined uniquely by the behaviour of the dilaton potential in the strong-coupling region.
Thus for any dilaton potential whose asymptotic behavioudfors oo is V ~ &%, where
a is a real positive parameter, the transition amplitude (in the semiclassical approximation) is
known.

Let us conclude with an interesting speculation. The transition from the PRBB phase to
the POBB phase can be described (phenomenologically) by an analytical continuation of the
dilaton field to complex values. We have seen in section 3.2 that this analytical continuation
can be interpreted in terms of a set of (complex) metrics with no well defined signature. This
way of looking at an analytically continued solution as a quantum bridge connecting two
classical hyperbolic spaces has a strong resemblance to the semiclassical Euclidean wormhole
picture. Euclidean wormholes are classical instanton solutions of gravity—matter systems



Quantization of string cosmology models 1415

that (asymptotically) connect two manifolds [23]. They are usually interpreted as tunnelling
between the two asymptotic configurations. In our case the transition from the PRBB phase
to the POBB phase, at the semiclassical level, can be seen precisely as a wormhole-like effect.
Our investigation provides the first example of the calculation of a wormhole-like tunnelling
probability beyond the semiclassical level. This interpretation is very intriguing and supports
the interesting suggestion that singularities in the classical domain of physical, hyperbolic
solutions in gravity theories can be avoided by complex solutions joining two spaces, as
happens in the case that we have discussed here.
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