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Abstract. We discuss the quantization of a class of string cosmology models that are characterized
by scale factor duality invariance. We compute the amplitudes for the full set of classically allowed
and forbidden transitions by applying the reduce phase space and the path-integral methods. We
show that these approaches are consistent. The path-integral calculation clarifies the meaning
of the instanton-like behaviour of the transition amplitudes that was first pointed out in previous
investigations.

PACS numbers: 0460K, 9880C, 9880H

1. Introduction

String theory, thanks to its duality symmetries, provides a cosmological scenario [1–3] in
which the Universe starts from the perturbative vacuum of (super)string theory and evolves in
a ‘pre-big bang’ (PRBB) phase [1, 2]§ characterized by an accelerated growth of the curvature
and of the string coupling.

One of the main problems of string cosmology is the understanding of the mechanism
responsible for the transition (‘graceful exit’) from the inflationary PRBB phase to the
deflationary ‘post-big bang’ phase (POBB) with decreasing curvature that is typical of the
standard cosmological scenario. Necessarily, the graceful exit involves a high-curvature,
strong-coupling, regime where higher derivatives [4] and string loop terms must be taken
into account. In [5] it has been shown that for any choice of the (local) dilaton potential,
no cosmological solutions that connect smoothly the PRBB and POBB phases exist.
Consequently, at the classical level higher-order corrections cannot be ‘simulated’ by any
realistic dilaton potential.

At the quantum level the dilaton potential may induce the transition from the PRBB phase
to the POBB phase. In this context, using the standard Dirac method of quantization based on
the Wheeler–De Witt equation [6] a number of minisuperspace models have been investigated
in the literature [7–9]. The result of these investigations is a finite, non-zero, transition
probability PRBB→ POBB with a typical ‘instanton-like’ dependence (∼ exp{−1/g2}) on
the string coupling constant [7, 8].
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The aim of this paper is to present a refined analysis of the quantization of string
cosmological models. To this end we reconsider the minisuperspace models that have been
previously investigated in [7–9]. We have several motivations for doing this.

First of all, these systems are invariant under reparametrization of time. So their
quantization requires a careful discussion of the subtleties that are typical of the quantization
of gauge-invariant systems (e.g. gauge fixing) [10, 11]. Furthermore, we want to investigate
the graceful exit in string cosmology using different techniques of quantization and illustrate a
consistent approach to the problem that can be successfully applied to a large class of models.

We deal with a class of string-inspired models—see (2.8) and (2.9) below—that are
exactly integrable and we apply the standard techniques for the canonical quantization of
constrained systems [12–14]. Using the reduced-phase space formalism we determine the
positive norm Hilbert space of states. We construct the PRBB and POBB wavefunctions that
are normalized with respect to the inner product of the Hilbert space. These wavefunctions
are then used to compute transition amplitudes. Further, we compute the (semiclassical)
transition amplitude PRBB→ POBB by the path-integral approach. The result agrees with
the semiclassical limit of the transition amplitude that has been obtained in the reduced-phase
space approach and makes clear the instanton-like structure pointed out in [7, 8]. Let us
stress that our investigation is important for at least two reasons: first, the model that we are
discussing is (to our knowledge) the only known example of a minisuperspace model where
exact transition probabilities between two classically disconnected backgrounds have been
calculated. Secondly, our analysis completes the previous investigations of [7–9] and allows
for a systematic discussion of both classically allowed and classically forbidden transitions.

The outline of the paper is as follows. Section 2 is devoted to the classical theory. We
derive the solutions of the equations of motion and discuss the classical behaviour of the PRBB
and POBB branches. In section 3 we quantize the model. This task is completed using first the
canonical approach and then the path-integral formalism. Eventually, we state our conclusions
in section 4.

2. Classical theory

We consider the string-inspired model ind + 1 dimensions described by the action (we assume
that only the metric and the dilaton contribute non-trivially to the background)

S = 1

2λd−1
s

∫
dd+1x

√
|g| e−φ (R + ∂µφ∂

µφ − V (gµν, φ)), (2.1)

whereφ is the dilaton field,λs = (α′)1/2 is the fundamental string length parameter and
V (gµν, φ) is a potential term. When the latter is absent, equation (2.1) coincides with the tree-
level, lowest order inα′, string effective action [15] defined in the ‘string frame’, where the
metricgµν coincides with theσ -model background metric that couples directly to the strings.

We deal with isotropic, spatially flat, cosmological backgrounds parametrized by

gµν = diag
(−N2(t), a2(t)δij

)
, a = exp

[
2(t)/

√
d
]
, φ = φ(t), (2.2)

wherei, j = 1, . . . , d. We also assume that the spatial sections have finite volume. For this
class of backgrounds the action (2.1) reads

S =
∫

dt L, L = λs

2

(
1

µ
(2̇2 − 8̇2)− µ e−28V (2,8)

)
, (2.3)

where dots represent differentiation with respect to cosmic timet , µ(t) = N(t) e8, and8 is
the ‘shifted’ dilaton field

8 = φ − log
∫

ddx/λds −
√
d 2. (2.4)
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(In (2.3) we have neglected surface terms that are inessential for our purposes.) In this paper
we restrict attention to models with a potential term depending on the shifted dilaton8 only.
In this case (2.3) is invariant under scale factor duality transformations [1, 16]

8→ 8 or φ→ φ − 2d loga, (2.5)

2→−2 or a→ 1

a
. (2.6)

Let us introduce the conjugate momenta to2 and8 by the Legendre transformation

52 = λs

µ
2̇, 58 = −λs

µ
8̇. (2.7)

Equation (2.3) can be cast in the canonical form

S =
∫

dt [2̇52 + 8̇58 −H], (2.8)

where

H = µ(t)H, H = 1

2λs

(
52
2 −52

8 + λ2
sV (8) e−28

)
. (2.9)

In the canonical formalismµ plays the role of a non-dynamical variable that enforces the
constraintH = 0. As we expect for a time-reparametrization-invariant system, the total
HamiltonianH is proportional to the constraint [13, 14]. The equations of motion are

d2

dτ
= 52

λs
,

d8

dτ
= −58

λs
, (2.10)

d52

dτ
= 0,

d58

dτ
= λs

2

(
2V − dV

d8

)
e−28, (2.11)

whereτ(t) is

τ(t) =
∫ t

ds µ(s). (2.12)

The gauge parameterτ(t) is related to the synchronous-gauge timet (sg) (N = 1) by the relation

t (sg)(τ ) =
∫ τ

ds e−8. (2.13)

We consider potentials of the form

V (8) = λ e−28(q−1), (2.14)

whereλ > 0 is a dimension-two quantity (in natural units) andq is a dimensionless parameter.
(This class of potentials has been first discussed in [9].) Forq 6= 0 the explicit solution of the
equations of motion (2.10) and (2.11) is

2 = 20 +
k

λs
(τ − τ0), e8 =

[√
λλs

|k| sinh

( |kq|
λs
|τ − τ0|

)]1/q

,

52 = k, 58 = −k coth

[
kq

λs
(τ − τ0)

]
.

(2.15)

(The caseq = 0 corresponds—modulo a redefinition ofk—to the ‘vacuum’ solutions discussed
in [1–3].) Let us determine which values ofq do allow for the existence of an inflationary
expanding PRBB branch and a decelerating POBB branch. According to the general analysis
of [1, 2], the expanding PRBB and POBB branches are defined by

PRBB: H > 0, Ḣ > 0, 8̇ > 0, (2.16)

POBB: H > 0, Ḣ < 0, 8̇ < 0, (2.17)
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where

H = d

dt (sg)
(loga) = 1√

d

k

λs
e8, (2.18)

Ḣ = d

dt (sg)
H = 1√

d

k

2λs

d

dτ
(e28), (2.19)

8̇ = d

dt (sg)
8 = d

dτ
(e8). (2.20)

From (2.18) it is straightforward to see that expanding and contracting backgrounds are
identified byk > 0 andk < 0 respectively.k = 0 corresponds to the flat(d + 1)-dimensional
Minkowski space. Since we are interested in expanding backgrounds here and throughout the
paper we shall consider only positive values ofk, i.e. solutions with52 > 0. Forq 6 1 we
have two distinct branches corresponding to PRBB and POBB states. (The limiting caseq = 1
corresponds to a positive constant potential in (2.1). The relative classical solutions have been
discussed in [17].) The PRBB(+) and POBB(−) branches are identified by negative and
positive values of58, respectively. Asymptotically, for 0< q 6 1 we have

lim
8→+∞

5
(±)
8 = ∓k, lim

8→−∞
5
(±)
8 ∼ ∓λs

√
λe−q8, (2.21)

in the strong- and weak-coupling regime, respectively. Conversely, forq < 0 we have

lim
8→+∞

5
(±)
8 ∼ ∓λs

√
λe−q8, lim

8→−∞
5
(±)
8 = ∓k. (2.22)

Substituting (2.15) in (2.13) the synchronous-gauge timet (sg) can be written explicitly in terms
of τ . There are two different cases:

(a) q 6= 1/(2m + 1),m = 0, 1, 2, . . .

t (sg) − t (sg)0 = −σ(q)σ (τ − τ0)√
λ|q − 1|

(√
λλs

k

)1−1/q

×[sinh(x)]1−1/qF

(
1

2
,
q − 1

2q
,

3q − 1

2q
,− sinh2 x

)
,

whereσ is the sign function,F is the hypergeometric function [20], and

x = k

λs
|q(τ − τ0)|;

(b) q = 1/(2m + 1),m = 0, 1, 2, . . .

t (sg) − t (sg)0 = −σ(τ − τ0)

2
√
λ|q|

(√
λλs

k

)1−1/q
0(m + 1/2)√
π0(m + 1)

f (m, x),

where

f (0, x) = 4 arcoth(ex),

and

f (m, x) = (−1)m f (0, x) + cosh(x)
m−1∑
k=0

(−1)k0(m− k)√π
0(m + 1

2 − k)[sinh(x)]2(m−k)

for m > 0.

The above relations determine the PRBB and POBB branches in terms of the synchronous-
gauge timet (sg) for different values of the parameterq. In particular, we have:
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(a) q < 0. In this case the PRBB and POBB branches are defined for

−∞ < τ − τ0 < 0 → −∞ < t(sg) − t (sg)0 < 0,

0< τ − τ0 <∞ → 0< t(sg) − t (sg)0 <∞, (2.23)

respectively.
(b) q = 1/(2m + 1). The PRBB and the POBB branches are defined for

0< τ − τ0 <∞ → −∞ < t(sg) − t (sg)0 < 0,

−∞ < τ − τ0 < 0 → 0< t(sg) − t (sg)0 <∞, (2.24)

respectively. This can be checked using the asymptotic expansions off (m, x) for x → 0
andx → +∞.

(c) 0< q < 1, q 6= 1/(2m + 1). The PRBB branch is defined for

0< τ − τ0 <∞ → ∞ < t(sg) − t (sg)0 < −T , (2.25)

and the POBB branch for

−∞ < τ − τ0 < 0 → T < t(sg) − t (sg)0 <∞, (2.26)

where

T = 1

2
√
π |q|

(√
λλs

k

)1−1/q

0

(
q − 1

2q

)
0

(
1

2q

)
. (2.27)

As has been pointed out in [8, 9], in terms of the synchronous-gauge timet (sg) the
PRBB and POBB branches are separated by a finite interval1t(sg) = 2T . However,
the separation between the two branches has no physical meaning. Indeed, due to the
presence of a singularity in the curvature and in the string coupling the PRBB and POBB
solutions are disjoint. Therefore, it is possible to define the initial value oft such that the
singularity occurs att (sg) = 0 in both branches.

3. Quantum theory

The string cosmological model of section 2 is described by a time-reparametrization-invariant
Hamiltonian system with two degrees of freedom. Though its quantization involves subtleties
typical of gauge-invariant systems [10, 11, 18], the standard techniques of quantization of
constrained systems can be applied straightforwardly thanks to the integrability properties of
the model [12–14].

The starting point is the canonical action (2.8). Since the constraintH is of the form
H = H2(2) + H8(8), the time parameter can be defined by a single degree of freedom.
In the previous section we have seen that the sign of52 determines the contracting versus
expanding behaviour of the solutions and the sign of58 identifies the PRBB versus POBB
phases. Since we are interested in the calculation of the quantum transition probability from
an (expanding) PRBB phase to an (expanding) POBB phase, it is natural to use the(2,52)

degree of freedom to define the time of the system and fix the gauge. In this case, the eigenstates
of the effective Hamiltonian are identified by a continuous quantum numberk corresponding
to the classical value of52. Wavefunctions that describe expanding (contracting) solutions
are eigenstates of the effective Hamiltonian withk > 0 (k < 0).

Let us consider the canonical transformation [10](2,52,8,58) → (6,56,8,58)

where

6 = λs 2
52

, 56 = 1

2λs
52
2. (3.1)
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In terms of the new canonical variables the constraint (2.9) reads

H(6,56,8,58) = 56 − 1

2λs

[
52
8 − λλ2

se
−2q8

] = 0. (3.2)

From (3.2) it is straightforward to see that6 is canonically conjugate toH . Thus it defines a
global time parameter [11, 19]. In particular, the gauge-fixing identity can be chosen as

F(6; t) ≡ 6 + t = 0. (3.3)

Equation (3.3) fixes the Lagrange multiplier asµ = −1. The gauge-fixed action reads

Seff =
∫ t2

t1

dt [8̇58 − Heff(8,58)], (3.4)

where the effective Hamiltonian is

Heff(8,58) = 1

2λs

(
52
8 − λλ2

se
−2q8

)
. (3.5)

The system described by the effective Hamiltonian (3.5) is free of gauge degrees of freedom and
its quantization can be performed using the standard techniques. In the next two subsections
we shall discuss the reduced phase space and path-integral quantization procedures.

3.1. Reduced phase space quantization

The reduced phase space is described by a single degree of freedom with canonical coordinates
(8 ∈ R,58 ∈ R). Thus there are no ambiguities in the choice of the measure in the Hilbert
space: d[µ] = d8. In the standard operator approach the quantization of the model is obtained
by identifying the canonical coordinates with operators. In the Schrödinger representation the
self-adjoint operators with respect to the measure d[µ] are

8→ 8̂ = 8, 58→ 5̂8 = −i
∂

∂8
. (3.6)

Since the effective Hamiltonian is quadratic in the momenta there are no factor ordering
ambiguities. The Schrödinger equation reads

−i
∂

∂t
9(8; t) = 1

2λs

[
∂2

∂82
+ λλ2

se
−2q8

]
9(8; t), (3.7)

wheret is defined by (3.3). Finally, the inner product in the Hilbert space is

(92, 91) =
∫ +∞

−∞
d89∗2(8; t) 91(8; t). (3.8)

The general solution of the Schrödinger equation (3.7) can be written as

9q(8; t) =
∫

dk A(k)ψk,q(8) e−ik2t/2λs , (3.9)

whereψk,q(8) is the solution of the stationary Schrödinger equation̂Heffψ = Eψ with energy
E = k2/2λs [

d2

d82
+ λλ2

se
−2q8

]
ψk,q(8) = −k2ψk,q(8). (3.10)

Forq 6= 0 we have

ψk,q(z) = A1(k, q) Jiν(z) +A2(k, q) Yiν(z), (3.11)
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whereA1(k, q) andA2(k, q) are arbitrary functions, andJiν(z), Yiν(z) are the Bessel functions
of the first and second kind of indexiν = i|k/q| and argument

z =
√
λλs exp(−q8)/|q|, (3.12)

respectively [20].
Since the space of the solutions (3.11) is two dimensional we have two sets of (real)

orthonormal functions with respect to the inner product (3.8) [10, 21]

χ(1)ν (z) = C(1)[e−πν/2H(1)
iν (z) + eπν/2H(2)

iν (z)
]
, (3.13)

χ(2)ν (z) = iC(2)
[
e−πν/2H(1)

iν (z)− eπν/2H(2)
iν (z)

]
, (3.14)

where

C(1) =
√
ν cosh(πν/2)

4 sinh(πν/2)
, C(2) =

√
ν sinh(πν/2)

4 cosh(πν/2)
, (3.15)

andH(1)
iν (z) andH(2)

iν (z) are the Hankel functions of the first and second kind, respectively,
[20].

Now let us identify the stationary wavefunctions that correspond to expanding PRBB and
POBB phases. We discuss in detail the case 0< q 6 1 leaving to the end of this subsection
the discussion of negative values ofq.

From (3.1) and (3.2) it follows that12λs
52
2 = Heff . Thus phases that are expanding

(contracting) are described by eigenstates of the effective Hamiltonian withk > 0 (k <
0). Expanding wavefunctions that correspond to PRBB and POBB can be identified by
investigating the asymptotic behaviours of (3.13) and (3.14) in the weak- and strong-coupling
regimes. Forz → ∞, i.e. in the weak-coupling regime, the wavefunctions (3.13) and (3.14)
behave as

χ(1)ν (z) ≈
√

2

πz
C(1)

[
ei(z−π/4) + e−i(z−π/4)], (3.16)

χ(2)ν (z) ≈ i

√
2

πz
C(2)

[
ei(z−π/4) − e−i(z−π/4)]. (3.17)

By applying the momentum operator5̂8 to the linear combinationsχ(±)ν = C(2)χ(1)ν ∓iC(1)χ(2)ν
we find

5̂8χ
(±)
ν ∼ ∓λs

√
λ e−q8χ(±)ν . (3.18)

Thus the wavefunctions corresponding to PRBB and POBB in the weak-coupling regime are
proportional to the linear combinationsχ(±)ν , respectively. The normalized PRBB and POBB
wavefunctions in the weak-coupling regime are

ψ
(±)
W =

1√
2 coth(πν)

[√
tanh(πν/2)χ(1)ν ∓ i

√
coth(πν/2)χ(2)ν

]
. (3.19)

By a similar argument we find that the normalized wavefunctions that correspond to expanding
PRBB and POBB phases in the strong-coupling regime are

ψ
(±)
S =

1√
2

[
χ(1)ν ∓ iχ(2)ν

]
. (3.20)

Using the two sets of wavefunctions (3.19) and (3.20) it is possible to compute the amplitudes
that correspond to the different transitions. They are schematically represented in figure 1,
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Figure 1. Different transitions in the weak- and strong-coupling regimes.

where the amplitudesA1, . . . , A6 are given by the following expressions:

A1 ≡
(
ψ
(+)
S , ψ

(+)
W

) = 1√
1 + e−2πk/q

,

A2 ≡
(
ψ
(−)
S , ψ

(−)
W

) = 1√
1 + e−2πk/q

,

A3 ≡
(
ψ
(−)
S , ψ

(+)
W

) = −e−πk/q√
1 + e−2πk/q

,

A4 ≡
(
ψ
(−)
W , ψ

(+)
S

) = −e−πk/q√
1 + e−2πk/q

,

A5 ≡
(
ψ
(−)
S , ψ

(+)
S

) = 0,

A6 ≡
(
ψ
(−)
W , ψ

(+)
W

) = −2e−πk/q

1 + e−2πk/q
.

(3.21)

Let us discuss in depth the transition amplitudes (3.21). The amplitudesA1 andA2 correspond
to classically allowed transitions. The relative transition probabilities (P

(+,+)
S,W ≡ |A1|2,

P
(−,−)
S,W ≡ |A2|2) are

P
(+,+)
S,W = P (−,−)S,W = 1

1 + e−2πk/q
. (3.22)

Fork→∞, i.e. in the semiclassical limit, (3.22) becomes

P
(+,+)
S,W = P (−,−)S,W ∼ 1 + O(e−2πk/q), (3.23)
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in agreement with the classical theory. The amplitudesA3 andA4 describe classically forbidden
transitions. The relative transition probabilities (P

(+,−)
W,S ≡ |A3|2, P (+,−)S,W ≡ |A4|2) are

P
(+,−)
W,S = P (+,−)S,W = e−2πk/q

1 + e−2πk/q
. (3.24)

In the semiclassical limit (3.24) becomes

P
(+,−)
W,S = P (+,−)S,W ∼ e−2πk/q + O

(
e−4πk/q

)
. (3.25)

The transition probabilities (3.24) become highly suppressed fork � 1 where the evolution
follows essentially the classical trajectory. In the limitk → 0 equations (3.22) and (3.24)
become

P
(+,+)
S,W = P (−,−)S,W ∼ P (+,−)W,S = P (+,−)S,W ∼ 1

2 + O(k). (3.26)

In the small-k limit quantum effects are significant: the PRBB (POBB) phase in the weak-
coupling regime has the same probability of evolving in the PRBB or in the POBB phase in
the strong-coupling regime (and vice versa).

The probability of the transition PRBB→ POBB in the strong-coupling regime (P (+,−)S,S =
|A5|2) is identically zero. This can be understood looking at the asymptotic form of the
potential for8 → ∞ (z → 0). Indeed, for large values of8 the potential term in (3.10)
goes asymptotically to zero. Consequently, PRBB and POBB wavefunctions in the strong-
coupling regime behave asymptotically as free plane waves with opposite58 momentum.
Since reflection of free plane waves is forbidden, the quantum transition from PRBB to POBB
in the strong-coupling regime does not take place.

The last and most interesting result is the probability of transition from the PRBB phase
in the weak-coupling regime to the POBB phase in the weak-coupling regime

P
(+,−)
W,W ≡ |A6|2 = 4

e−2πk/q

(1 + e−2πk/q)2
. (3.27)

The semiclassical limit of (3.27) is

P
(+,−)
W,W ∼ 4e−2πk/q + O(e−4πk/q). (3.28)

For q = 1 the semiclassical result coincides, apart from a normalization factor, with the
‘reflection coefficient’ of [7, 8]. However, the result of [7, 8] should be considered as a ratio
between two different transition probabilities rather than a transition probability by itself.
Precisely, the reflection coefficient defined in [7, 8] is

R ≡ P
(−,+)
S,W

P
(+,+)
S,W

= e−2πk/q . (3.29)

Note that the (classically forbidden) transition from the strong-coupling PRBB phase to the
weak-coupling POBB phase is suppressed by a factor of e−2πk/q with respect to the (classically
allowed) transition from the strong-coupling PRBB phase to the weak-coupling PRBB phase.

Equations (3.23), (3.25) and (3.28) also give the asymptotic behaviours for small values of
q at givenk. In this case quantum effects are negligible. When 0< q � 1, the potential in the
Schr̈odinger equation is nearly constant and the PRBB and POBB solutions are approximated
by plane waves of opposite momentum along8. In this case reflection of waves is highly
suppressed.

A similar analysis can be performed for negative values ofq. Forq < 0 the wavefunctions
that correspond to expanding PRBB and POBB phases are

ψ
(±)
W =

1√
2

[
χ(1)ν ± iχ(2)ν

]
,

ψ
(±)
S =

1√
2 coth(πν)

[√
tanh(πν/2)χ(1)ν ± i

√
coth(πν/2)χ(2)ν

]
.
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The amplitudes for the various transitions can be read from (3.21) with the substitutions
A1↔ A2, A5↔ A6 andq → −q. Now the transition from the weak-coupling PRBB phase
to the strong-coupling POBB phase is forbidden for negative values ofq.

The results from this section show that the probabilities of classically forbidden transitions
can be expressed, in the semiclassical limit, as power series of e−2πk/|q|. Following [7, 8], from
(2.18) and (2.4) we find

exp(−2πk/|q|) = exp

(−√4d π�s
|q|g2

s λ
d
s

)
, (3.30)

where�s is the proper spatial volume andgs = eφs/2 is the value of the string coupling when
H = 1/λs . The ‘instanton-like’ behaviour of (3.30) shows that the probabilities of classically
forbidden transitions are peaked in the strong-coupling regime—as has already been pointed
out in [7, 8]—where all powers of e−2πk/|q| have to be taken into account. The occurrence of
this instanton-like behaviour will be clarified in the next subsection.

3.2. Path-integral quantization

The string cosmology model that we are considering can also be quantized using the functional
approach. The aim of this subsection is to show how to compute, using the path-integral
formalism, the probabilityP (+,−)W,W in the semiclassical limit. While in the case under
investigation the semiclassical path-integral calculation seems devoid of interest—we already
know the exact transition probability (3.27)—nevertheless, the semiclassical calculation is of
primary importance if the system cannot be quantized exactly. We shall show that the functional
approach, when performed appropriately, reproduces the exact result in the limit of largek.
So it seems not unreasonable to assume that the semiclassical path-integral calculation also
gives a sound approximation of the exact result for those models that are not exactly solvable.
In future, we aim to apply the formalism of this subsection to more realistic and interesting
models of string cosmology.

The starting point of the functional approach is the path-integral in the reduced space
[14, 22]

I =
∫ 8(t2)

8(t1)

D8D58 exp(iSeff [8,58]), (3.31)

where the effective action is given by (3.4) and (3.5). The transition amplitudeA6 is defined
by (3.31) where the integral is evaluated on all paths that satisfy the boundary conditions

8(−∞) = −∞, 8(∞) = −∞. (3.32)

Since the effective Hamiltonian is quadratic in58 the integral in58 can be evaluated
immediately. We obtain

I =
∫ 8(t2)

8(t1)

D8 exp

(
i
∫ t2

t1

dt Leff [8, 8̇]

)
, (3.33)

where the effective Lagrangian is

Leff = 1
2λs
(
8̇2 + λe−2q8

)
. (3.34)

It is advisable to use the variablez defined in (3.12). Equation (3.34) becomes

Leff = 1

2λs

(
λ2
s

q2

ż2

z2
+ q2z2

)
. (3.35)
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Let us first consider the case where 0< q 6 1. The path integral (3.33) must be evaluated on
all trajectories that satisfy the boundary conditions

z(−∞) = ∞, z(∞) = ∞. (3.36)

The effective Lagrangian (3.35) is singular whenz = 0. So there are no classical solutions
describing a (smooth) transition between PRBB and POBB phases (see section 2). However, it
is possible to construct quasi-classical trajectories that satisfy the boundary conditions (3.36)
and interpolate between the PRBB and POBB phases.

Let us consider the analytical continuation of the variablez into the complex plane. The
effective Lagrangian is analytical in any point of the complex plane(Re(z), Im(z)) except for
z = 0. Classically, the transition from the weak-coupling PRBB phase to the weak-coupling
POBB phase would correspond to the trajectory starting atz = +∞, going left along the real
axis (PRBB phase,̇8 > 0), reaching the origin, and finally going right along the real axis to
z = +∞ (POBB phase,̇8 < 0). Clearly, since the Lagrangian is singular inz = 0 a classical
continuous and differentiable solution does not exist.

Now consider generic analytical trajectories in the complex plane that start at Re(z) = ∞,
Im(z) > 0, and end at Re(z) = ∞, Im(z) < 0 (see figure 2(a)). We can divide this class of
trajectories into three (topologically) distinct categories.

• Trajectories that do not cross the imaginary axis, i.e. trajectories that cross the real axis at
(at least) one pointz = z0, Re(z0) > 0, Im(z0) = 0 (curveγ0 in figure 2(a)).

Figure 2. Contours of integration in the complexz-plane.
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• Trajectories that cross the imaginary axis twice, i.e. trajectories that cross the real axis
once inz = z0, Re(z0) < 0, Im(z0) = 0 (curveγ1 in figure 2(a)).
• Trajectories that cross the imaginary axis 2n times (n = 2, 3, . . .), i.e. trajectories that

cross the positive real axisn − 1 times and the negative real axisn times (curveγn in
figure 2(a) for n = 2).

Since the action is analytical over the entire complex plane except forz = 0 trajectories
of type γ0 can be deformed continuously to a (two-folded) trajectory lying entirely on the
real positive axis and defined in the interval(Re(z0),∞). These curves correspond to
classical solutions with the dilaton field evolving from8 = −∞ to a maximum value
8 = − ln[q Re(z0)/

√
λλs ]/q and then decreasing to8 = −∞. A straightforward calculation

shows that the action evaluated on this path is identically zero. Since (3.34) is positive definite
Seff = 0 can be obtained only by a time reflection, i.e. by a PRBB (POBB) phase that is covered
twice. Therefore, these trajectories do not describe transitions from PRBB to POBB phases.

Let us focus our attention on trajectories of typeγ1. They can be deformed continuously to
a trajectory that lies entirely on the real positive axis except aroundz = 0, where the singularity
is avoided by the (small) circlez = εeiξ , ε→ 0, 06 ξ < 2π (see figure 2(b)). This trajectory
describes a transition from the weak-coupling PRBB phase to the weak-coupling POBB phase
and corresponds to a classical solution except in a small region in the strong-coupling limit,
where the singularity of the classical solution is avoided by the analytical continuation in the
complex plane. We shall see that the path-integral evaluated on this trajectory gives the leading
contribution to the semiclassical approximation of the transition amplitudeA6. Trajectories
of typeγn (with n > 1) give contributions of higher order.

It is worth spending a few words on examining the meaning of the analytical continuation
of the variablez in the complex plane. Settingz = Reiξ and using (2.2) and (3.12) the metric
is cast in the form

ds2 = −
(
qR√
λλs

)2/q

e2iξ/qµ2 dt2 + a2(t) dxi dxi. (3.37)

The signature of (3.37) is a function ofξ . In particular, the metric (3.37) is real hyperbolic for
ξ = πqn and real Riemannian forξ = πq(2n+1)/2, wheren is an integer number. Therefore,
the analytic continuation of figure 2(b) can be interpreted as a sort of Euclidean analytical
continuation in the space of metrics. Any trajectory that circlesz = 0 can be considered as
an ‘n-instanton’ solution (with no well defined signature) labelled by a winding numbern that
corresponds to the number of times that the trajectory wraps around the singularity inz = 0.
In the semiclassical limit, the transition amplitudeP (+,−)W,W is given by the path-integral (3.33)
evaluated on the class ofn-instanton solutions.

Let us consider the contribution to (3.33) of the one-instanton solution

I (1)sc = C1 exp
(
iSeff

[
zγ1, żγ1

])
, (3.38)

whereC1 is a normalization factor and the subscriptγ1 means that the effective action is
evaluated along the curveγ1 of figure 2(b). For a trajectory with energyk2/2λs the effective
action can be cast into the form

Seff =
∫
γ1

dz

z

1√
z2 + k2/q2

(
z2 + k2/2q2

)
. (3.39)

As we expect, the effective Lagrangian has one isolated singularity atz = 0 (pole of order
one). Moreover, forz → ∞ the action (3.39) shows a linear divergence. The latter is due
to the asymptotic behaviour of the PRBB and POBB wavefunctions in the weak-coupling
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regime. Indeed, using (3.38) and (3.39) the wavefunctions corresponding to the PRBB and
POBB phases in the semiclassical approximation are

ψ(+) ∼ exp

[
i
∫ z

∞

dz′

z′
1√

z′2 + k2/q2

(
z′2 + k2/2q2

)]
, (3.40)

ψ(−) ∼ exp

[
i
∫ ∞
z

dz′

z′
1√

z′2 + k2/q2

(
z′2 + k2/2q2

)]
. (3.41)

In the weak-coupling regime (Im(z) = 0, z → ∞), equations (3.40) and (3.41) behave
asymptotically as

ψ(+)
z→∞ ∼ eiz, ψ(−)

z→∞ ∼ e−iz, (3.42)

in agreement with the asymptotic behaviour of (3.20).
The integral (3.39) can be made convergent by subtracting the asymptotic phase

contribution forz → ∞. Then, using the residue theorem, we obtainSeff = π ik/q. The
amplitude (3.38) is given by

I (1)sc = C1e−πk/q . (3.43)

The semiclassical one-instanton amplitude (3.43) approximates the (exact) result for large
values ofk. This proves the consistency of the reduced phase space and path-integral
quantization methods. The contribution of then-instanton (n > 1) to the transition amplitude
A6 is

I (n)sc = Cne−πnk/q . (3.44)

Hence, n-instanton terms give higher-order contributions in the large-k expansion.
Equations (3.43) and (3.44) show that the instanton-like dependence (3.30) on the string
coupling constant of the amplitudes that correspond to classically forbidden transitions can be
traced back to the existence, in the semiclassical regime, of trajectories that connect smoothly
the PRBB and POBB phases.

Let us conclude this section with two remarks. In the computation of (3.39) we have
chosen only anticlockwise trajectories (see figures 1(a) and (b)). If we considered clockwise
paths the residue theorem would giveSeff = −π ik/q and the generic contribution to the
transition amplitude would be

Ĩ (n)sc = Cneπnk/q . (3.45)

This result violates, in the semiclassical limit, the unitarity bound. However, there is a simple
argument that allows one to remove this pathology. Let us consider the asymptotic behaviour
of PRBB and POBB wavefunctions in the weak-coupling regime. For complex values ofz

(3.42) read

ψ(+)(z→∞) ∼ ei Re(z)−Im(z), ψ(−)(z→∞) ∼ e−i Re(z)+Im(z). (3.46)

Since the system must be classical in the weak-coupling regime, the contribution to the path-
integral of the trajectories that approach the real axis forz→∞must dominate the contribution
of the trajectories with a non-zero value of Im(z). The above requirement is verified if we
integrate along the anticlockwise trajectories. (In this case the PRBB and POBB branches are
identified by Im(z) > 0 and Im(z) < 0, respectively.)

For q < 0 the transition amplitudeA6 is identically zero. Indeed, settingw = 1/z, the
effective Lagrangian (3.35) becomes

Leff = 1

2λs

(
λ2
s

q2

ẇ2

w2
+
q2

w2

)
(3.47)
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and the path integral (3.33) must be evaluated on trajectories that satisfy the boundary conditions
w(−∞) = ∞, w(∞) = ∞. The action evaluated on a genericn-instanton solution is
identically zero. Therefore, the semiclassical trajectories do not correspond to a transition
between PRBB and POBB phases.

4. Conclusions

The graceful exit, i.e. the transition from the inflationary ‘pre-big-bang phase’ to the
deflationary ‘post-big-bang’ phase is a fundamental subject of research in (quantum) string
cosmology.

In this paper we have addressed this topic by investigating a special class of minisuperspace
models that are invariant under scale factor duality transformations. Though this particular
class of models had been considered previously in the literature [7–9] a deeper discussion
was needed. Indeed, our analysis clarifies some issues of previous investigations such as the
meaning of the reflection coefficient and the instanton-like behaviour of the PRBB→ POBB
transition, and provides new, interesting results, for instance, the analysis of the full set of
transition amplitudes and the role of the semiclassical approximation.

We have shown, through a concrete example, that the reduced phase space and the path-
integral approaches are extremely powerful techniques of quantization for a large class of
string cosmology models. The two methods can be applied straightforwardly to any isotropic,
spatially flat, model as long as the latter is characterized by scale factor duality invariance. In
particular, the functional method may be very useful when the system cannot be integrated
explicitly, i.e. when the Schrödinger equation (or, alternatively, the equivalent Wheeler–De Witt
equation) cannot be solved exactly. Indeed, the calculation of the (semiclassical) transition
amplitude between the PRBB and POBB phases in the weak-coupling regime is reduced to a
simple evaluation of a definite integral by means of the residue theorem. No explicit solutions
of the classical equations of motion nor exact wavefunctions are needed.

The path-integral method also makes clear a couple of other interesting features of
quantum string cosmology models. First, we have proved that the instanton-like nature of
the PRBB→ POBB transition amplitude [7, 8] is just a consequence of the presence of
the classical singularity in the strong-coupling regime. Indeed, the mere existence of the
singularity implies that any semiclassical trajectory gives ann-instanton contribution to the
PRBB→ POBB transition amplitude. Secondly, we have clarified the role of the functional
form of the dilaton potential in the transition process. We have mentioned that the dilaton
potential may ‘mimic’ (at the quantum level) high-order corrections to the low-energy effective
string theory action. The path-integral approach shows that the calculation of the semiclassical
transition amplitude PRBB→ POBB does not require the knowledge of the exact functional
form of the dilaton potential. The semiclassical contribution to the transition amplitude is
determined uniquely by the behaviour of the dilaton potential in the strong-coupling region.
Thus for any dilaton potential whose asymptotic behaviour for8 → ∞ is V ∼ ea8, where
a is a real positive parameter, the transition amplitude (in the semiclassical approximation) is
known.

Let us conclude with an interesting speculation. The transition from the PRBB phase to
the POBB phase can be described (phenomenologically) by an analytical continuation of the
dilaton field to complex values. We have seen in section 3.2 that this analytical continuation
can be interpreted in terms of a set of (complex) metrics with no well defined signature. This
way of looking at an analytically continued solution as a quantum bridge connecting two
classical hyperbolic spaces has a strong resemblance to the semiclassical Euclidean wormhole
picture. Euclidean wormholes are classical instanton solutions of gravity–matter systems
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that (asymptotically) connect two manifolds [23]. They are usually interpreted as tunnelling
between the two asymptotic configurations. In our case the transition from the PRBB phase
to the POBB phase, at the semiclassical level, can be seen precisely as a wormhole-like effect.
Our investigation provides the first example of the calculation of a wormhole-like tunnelling
probability beyond the semiclassical level. This interpretation is very intriguing and supports
the interesting suggestion that singularities in the classical domain of physical, hyperbolic
solutions in gravity theories can be avoided by complex solutions joining two spaces, as
happens in the case that we have discussed here.
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[18] Cavaglìa M, de Alfaro V and Filippov A T 1995Int. J. Mod. Phys.A 10611
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