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Choptuik scaling in six dimensions
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We perform numerical simulations of the critical gravitational collapse of a spherically symmetric scalar
field in 6 dimensions. The critical solution has discrete self-similarity. We find the critical exponentg and the
self-similarity periodD. @S0556-2821~99!00424-5#
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I. INTRODUCTION

Critical behavior in gravitational collapse, as first foun
by Choptuik @1#, occurs at and near the threshold of bla
hole formation@2#. For a one-parameter family of initial dat
slightly above the threshold, the mass of the black ho
MBH , scales like (p2p*) g. Herep is the parameter,p* is
its critical value andg is a constant that depends on the ty
of matter, but not on the family of data. For initial da
slightly below the threshold, the maximum curvature sca
like (p* 2p)22g whereg is the same constant as in the bla
hole mass scaling law@3#. @The definition of the scaling ex
ponentg must be slightly generalized inn spacetime dimen-
sions, whereMBH has dimension (length)n23; see Sec. II.#
The critical solution (p5p*) has either continuous self simi
larity or discrete self similarity, depending on the type
matter.

While critical gravitational collapse has been studied
many types of matter, the work has, in general, been don
4 spacetime dimensions.~The exception is work on analog
of gravitational collapse in 3 spacetime dimensions@4#.! One
might therefore wonder whether critical behavior occurs
gravitational collapse inn spacetime dimensions forn.4,
and if so, how the properties of the critical behavior depe
on n.

In this work, we perform numerical simulations of th
collapse of a spherically symmetric scalar field in 6 spa
time dimensions. We find that the critical solution has d
crete self-similarity. We find the scaling exponentg and the
self-similarity periodD. Section II reviews the Schwarzs
child solution inn dimensions and shows how the definitio
of theg exponent should be generalized to then-dimensional
case. Section III gives the equations for the evolution of
scalar field and the metric in a form suitable for our nume
cal simulations. The numerical method is presented in S
IV and our results in Sec. V.

*Email address: garfinkl@oakland.edu
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II. SCHWARZSCHILD METRIC IN N DIMENSIONS

The Schwarzschild metric inn spacetime dimensions i
@5#

ds252S 12
16p

~n22!An22

M

r n23D dt2

1S 12
16p

~n22!An22

M

r n23D 21

dr21r 2dVn22
2 ~1!

whereAn2252p (n21)/2/G@(n21)/2# is the area of the unit
(n22)-sphere. The quantityM in the metric~1! is the space-
time mass. M is normalized so that when Eq.~1! is the ex-
terior metric of a nearly Newtonian static fluid ball, thenM is
*T00dV. With this normalization, the force on a static un
mass particle at distancer approaches@8p(n23)/(n
22)An22#M /r n24 as r→`.

It is important to note thatM has dimension (length)n23.
This implies the following scaling behaviors for critical ph
nomena inn dimensions. If below threshold the maximu
curvature @which has dimension (length)22] scales like
(p* 2p)22g, then above thresholdMBH scales as (p
2p*) (n23)g.

III. EVOLUTION EQUATIONS

Our matter model is the one used in Ref.@1#: a massless,
minimally coupled, self gravitating scalar fieldf. The stress-
energy of the field is

Tab5¹af¹bf2
1

2
¹cf¹cfgab . ~2!

In n spacetime dimensions, a spherically symmetric me
has the form

ds252e2ndu222en1ldudr1r 2dS2 ~3!

wheredS2 is the metric of the unit (n22)-sphere andn and
l are functions ofu andr. The coordinater is a generaliza-
tion of the usual area radius. The coordinateu is constant on
©1999 The American Physical Society07-1
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outgoing radial null geodesics. Here, we also require tha
the world line of the central observer,u is equal to the prope
time of that observer. This gives rise to the conditionn50 at
r 50. DefineEab[Gab28pTab whereGab is the Einstein
tensor, so the Einstein-scalar equations are justEab50. Note
that as a consequence of the Bianchi identities,f must sat-
isfy the wave equation.

In 4 spacetime dimensions, Christodoulou@8# showed
how to write the spherically symmetric Einstein-scalar eq
tions as an integro-differential equation for the scalar fie
We now generalize the method of Ref.@8# to the
n-dimensional case. Define the null vectorsl a andna by

l a5e2lS ]

]r D
a

~4!

na5e2nS ]

]uD a

2
1

2
e2lS ]

]r D
a

. ~5!

Then some straightforward but tedious calculations give

Gabl
al b5

n22

r
e22l

]

]r
~l1n!, ~6!

Gabl
anb5

n22

2 Fn23

r 2 ~12e22l!2
e22l

r

]

]r
~n2l!G .

~7!

One can show that the equations

Eabl
al b50, Eabl

anb50, ¹a¹af50 ~8!

plus the condition of regularity at the origin implyEab50
everywhere. Thus we need to impose only those three e
tions.

Using Eqs.~6!, ~7! and ~2!, we find that the first two of
Eqs.~8! yield

n22

r

]

]r
~l1n!28pS ]f

]r D 2

50 ~9!

22n

2r Fe22l
]

]r
~n2l!2

n23

r
~12e22l!G50. ~10!

Defineg[en1l and ḡ[en2l. Then the solution of Eqs.~9!
and ~10! is

g5expF 8p

n22E0

r

r̂ S ]f

] r̂
D 2

dr̂G ~11!

ḡ5
n23

r n23E
0

r

r̂ n24g~ r̂ !dr̂. ~12!

The wave equation forf in this metric is

2
]2f

]u]r
1

n22

r

]f

]u
2r 22n

]

]r S r n22ḡ
]f

]r D50. ~13!
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In principle, Eqs.~11!–~13! could be used for a numerica
treatment of the Einstein-scalar equations. Givenf on an
initial light cone, Eqs.~11! and~12! could be used to find the
metric on that light cone. Equation~13! could then be used to
evolve f to a nearby light cone. However, in 4 spacetim
dimensions, Christodoulou@8# finds that a change of vari
ables gives rise to a nicer form of the wave equation. Defi
the operatorD by D[enna¹a . ThenD is a derivative along
ingoing light rays and we have

D5
]

]u
2

1

2
ḡ

]

]r
. ~14!

Now in 4 spacetime dimensions defineh[(]/]r )(rf). Then
the wave Eq.~13! becomes

Dh5
1

2r
~g2ḡ!~h2h̄! ~15!

whereh̄[r 21*0
r hdr. For the purposes of numerical simula

tions, the nice property of Eq.~15! is that it involves a de-
rivative only in the direction of ingoing light rays. Anothe
nice feature of Eq.~15! is that in the absence of gravity (g

5ḡ51), the right hand side vanishes. This is related to
fact that in general, the right hand side vanishes liker 2 as
r→0. ~The metric is smooth, and therefore in a neighb
hood of the origin it behaves like a flat metric to some ord
in r.! This property is important for the following reason
spherically symmetric metrics have coordinate singularit
at the origin. These coordinate singularities are reflected
the appearance of inverse powers ofr in Eq. ~13!, which can
lead to instabilities or inaccuracies in a numerical simulati

These considerations suggest that instead of a nume
simulation of Eq.~13! in n dimensions, we should instea
search for a new variableh that satisfiesDh50 in the ab-
sence of gravity. Note that a quantity that satisfiesDh50 is
constant along ingoing light rays and therefore satisfies H
gens’ principle. However, it is well known that solutions
the wave equation in flat spacetime satisfy Huygens’ pr
ciple only in even spacetime dimensions@9#. Therefore, we
should only expect to find an appropriate new variable
even spacetime dimensions. Letn be even and definem
[(n22)/2. For anyf define

h[
~m21!!

~2m21!!
r 12mS ]

]r D
m

~r 2m21f!. ~16!

~Here, the numerical factor is chosen for later convenien!
If f is a solution of the flat space wave equation@Eq. ~13!

with ḡ51], thenh satisfiesDh50. That is, in the absenc
of gravity, a solution of the wave equationf gives rise to an
h that is constant along ingoing light rays. One can dem
strate this property ofh by using Eq.~13! ~with ḡ51) and
mathematical induction onm.

The advantage of usingh as the basic variable is that
tends to make computer simulations more stable and a
rate, especially near the origin. The disadvantages are~1! the
method only works in even dimensions,~2! a separate com
7-2
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FIG. 1. h plotted vs the rescaled coordinatesR
andT.
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puter code must be written for each value ofn and ~3! asn
gets larger, the equations become more complicated. We
pect that some numerical technique can be used to evolve
Einstein-scalar equations inn dimensions with a single code
with n as a free parameter, stably and with enough accur
to treat critical gravitational collapse. However, we ha
been unable to devise such a technique. Therefore, in
work we useh as our basic variable. Due to the increase
complication with increasingn, we treat only the case of 6
spacetime dimensions.

We now specialize to the case of 6 dimensions. The v
ableh is given by

h[
1

6r

]2

]r 2~r 3f!. ~17!

We must now use Eq.~11! to expressg in terms ofh and
integrals involvingh. Define the quantitiess and s̄ by

s[
2

r 2E
0

r

r̂ h~ r̂ !dr̂, ~18!

s̄[
3

r 3E
0

r

r̂ 2s~ r̂ !dr̂. ~19!

Then, using Eqs.~17!–~19! and ~11! we find

g5expF18pE
0

r dr̂

r̂
~s2 s̄!2G . ~20!

Equation ~12! specialized to 6 spacetime dimensions b
comes

ḡ5
3

r 3E
0

r

r̂ 2g~ r̂ !dr̂. ~21!
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Using Eqs.~17!–~21! in Eq. ~13! we find that the wave equa
tion for f in 6 spacetime dimensions becomes

Dh5
3

r
~g2ḡ!~h1 s̄22s!1

27p

2

g

r
~s2 s̄!3. ~22!

Equations~17!–~22! are the full set of equations that ar
evolved in 6 spacetime dimensions.

IV. NUMERICAL METHOD

The numerical method used is that of Garfinkle@6#. This
method is based on numerical work of Goldwirth and Pir
@7#, which is in turn based on the analytical work o
Christodoulou@8#. The spatial grid is a set of points on a
outgoing null cone, and each spatial grid point is evolv
along an ingoing light ray. Givenh on a light cone, the code

FIG. 2. h plotted vsR at two times when the minimum ofh is at
r 50. Note that the two curves agree.
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FIG. 3. lnRmax plotted vs ln(p*2p) along
with the best straight line fit. The curve is
straight line with a periodic wiggle and the slop
of the line is22g.
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performs several integrals in turn: Eqs.~18!–~21!. Near the
origin, these integrals are approximated by a Taylor se
and evaluated using the slope ofh at r 50. At all other
points, the integrals are evaluated using Simpson’s rule.

For each time step the quantityh is evolved using Eq.~22!
and the quantityr is evolved using

Dr 52
ḡ

2
. ~23!

These are essentially a set of uncoupled ordinary differen
equations~ODEs!, one for each grid point. In the scheme
@6# as the evolution proceeds grid points that pass thro
r 50 are lost. When half of the grid points are lost, they a
put back, interpolated between the remaining grid poin
The critical solution is found by a search of a 1-parame
space of evolved data to find the boundary between th
data that form black holes and those that do not. The ou
most gridpoint is chosen to be the light ray that hits t
singularity of the critical solution. This choice maintain
resolution throughout the evolution.

V. RESULTS

All runs were done with 300 spatial grid points. The co
was run in quadruple precision on Dec alpha workstati
and in double precision on a Cray YMP8. The initial data
the scalar field were chosen to be of the form

f~0,r !5pr2exp@2~r 2r 0!2/s2#. ~24!

Here, p is our parameter, andr 0 and s are constants. The
critical solution was found to have discrete self-similari
Let u* be the value ofu at the origin at the singularity of the
critical solution. Define the coordinatesT[2 ln(u*2u) and
R[reT. Then discrete self similarity means thath, consid-
ered as a function ofT and R, is periodic in T. Figure 1
showsh plotted as a function ofT and R. Note that after
some initial transient behavior,h becomes periodic. To ex
10400
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amine the periodicity more closely, in Fig. 2 we ploth vs R
at two different times where the minimum ofh occurs atr
50. Note that the curves agree, demonstrating periodicity
h. The period ofh is D53.03. Thus, in each period a typica
length of the system shrinks by a factor ofeD'21. For com-
parison, recall that forn54, D53.445.

To compute the scaling exponentg we use the method o
Ref. @3#. We evolve data for a range of parameters below
threshold of black hole formation. For each evolution w
find the maximum of the absolute value of the scalar cur
ture on the world line of the central observerRmax. Plotting
ln Rmax vs ln(p*2p) the result is a straight line with a per
odic wiggle, where the slope of the line is22g. We use 50
values ofp equally spaced in ln(p*2p). Figure 3 is a plot of
ln Rmax vs ln(p*2p) along with the best straight line fit to th
points. The slope allows us to findg. The result isg
50.424, soMBH}(p2p*) 1.27. Recall that forn54, g
50.374. Note thatg can also be found by evolving dat
above the threshold of black hole formation and plotti
ln MBH vs ln(p2p*). We have done this and the result is
straight line with a periodic wiggle where the slope of t
line is '1.27. However, our method gives a more accur
treatment of subcritical collapse than of supercritical c
lapse. For that reason, we have used subcritical collaps
calculateg.

Comparison of our results for 6 dimensions with Chop
ik’s results for 4 dimensions@1# seems to indicate thatD is a
decreasing function of the dimensionalityn of spacetime.
The quantityg seems to be an increasing function ofn. It
would be interesting to obtain more information about the
functions by studying critical collapse for other values ofn.
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