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We perform numerical simulations of the critical gravitational collapse of a spherically symmetric scalar
field in 6 dimensions. The critical solution has discrete self-similarity. We find the critical exporam the
self-similarity periodA. [S0556-282(99)00424-5
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I. INTRODUCTION II. SCHWARZSCHILD METRIC IN N DIMENSIONS

Critical behavior in gravitational collapse, as first found The Schwarzschild metric in spacetime dimensions is
by Choptuik[1], occurs at and near the threshold of black[5]
hole formation 2]. For a one-parameter family of initial data
slightly above the threshold, the mass of the black hole, dsz=—(1— 167 M )dtz
Mgy, scales like p—p*) ?. Herep is the parametep* is (n—2)A,_5 ¢n-3
its critical value andy is a constant that depends on the type
of matter, but not on the family of data. For initial data
slightly below the threshold, the maximum curvature scales
like (p* — p) ~2” wherey is the same constant as in the black
hole mass scaling laf8]. [The definition of the scaling ex- whereA,_,=27""YV3T'[(n—1)/2] is the area of the unit
ponenty must be slightly generalized imspacetime dimen- (n—2)-sphere. The quantityl in the metric(1) is the space-
sions, whereM g, has dimension (lengtR) 3 see Sec. I].  time mass. M is normalized so that when E#). is the ex-
The critical solution p=p*) has either continuous self simi- terior metric of a nearly Newtonian static fluid ball, thehis
larity or discrete self similarity, depending on the type of J TodV. With this normalization, the force on a static unit-
matter. mass particle at distance approaches[8m(n—3)/(n

While critical gravitational collapse has been studied in—2)An—IM/r"~* asr—o.
many types of matter, the work has, in general, been done in It is important to note tha has dimension (lengtf) °.
4 spacetime dimensionéThe exception is work on analogs This implies the following scaling behaviors for critical phe-
of gravitational collapse in 3 spacetime dimensipfls) One  homena inn dimensions. If below threshold the maximum
might therefore wonder whether critical behavior occurs incurvature [which has dimension (lengthf] scales like
gravitational collapse im spacetime dimensions for>4,  (p*—p) 2", then above thresholdVgy, scales as ff

-1
167 M
1- ) dr’+r2dQ2_, (1)

2R, s

and if so, how the properties of the critical behavior depend- p*) =37,
onn.
In this work, we perform numerical simulations of the lll. EVOLUTION EQUATIONS

collapse of a spherically symmetric scalar field in 6 space-
time dimensions. We find that the critical solution has dis-
crete self-similarity. We find the scaling exponenand the
self-similarity periodA. Section Il reviews the Schwarzs-
child solution inn dimensions and shows how the definition 1
of the y exponent should be generalized to thdimensional Tap=VadVpd— =VhV hap- 2
case. Section lll gives the equations for the evolution of the 2

scalar field and the metric in a form suitable for our numeri-In n spacetime dimensions, a spherically symmetric metric
cal simulations. The numerical method is presented in Seq‘.as the form '

IV and our results in Sec. V.

Our matter model is the one used in Rf]: a massless,
minimally coupled, self gravitating scalar fieftl The stress-
energy of the field is

ds?=—e?’du?—2e" Mdudr+r2d3? ©)
*Email address: garfinkl@oakland.edu whered3.? is the metric of the unitif— 2)-sphere and and
"Email address: cutler@aei-potsdam.mpg.de \ are functions ofu andr. The coordinate is a generaliza-
*Email address: gcd@chandra.bgsu.edu tion of the usual area radius. The coordinatis constant on
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outgoing radial null geodesics. Here, we also require that on In principle, Eqs(11)—(13) could be used for a numerical

the world line of the central observerjs equal to the proper
time of that observer. This gives rise to the condition0 at
r=0. DefineE,,=G,,—87T,, whereG,y, is the Einstein
tensor, so the Einstein-scalar equations areBygst 0. Note
that as a consequence of the Bianchi identiti#snust sat-
isfy the wave equation.

In 4 spacetime dimensions, Christodoulf8] showed

treatment of the Einstein-scalar equations. Givkron an
initial light cone, Eqs(11) and(12) could be used to find the
metric on that light cone. Equatidi3) could then be used to
evolve ¢ to a nearby light cone. However, in 4 spacetime
dimensions, Christodoulo[8] finds that a change of vari-
ables gives rise to a nicer form of the wave equation. Define
the operatoD by D=e”n?V,. ThenD is a derivative along

how to write the spherically symmetric Einstein-scalar equaingoing light rays and we have
tions as an integro-differential equation for the scalar field.

We now generalize the method of Ref8] to the
n-dimensional case. Define the null vectéfsandn? by

INEAS
|%=e A(&T) (4)
a_ vV J : 1 -\ J :
n“=e (% —Ee E . (5)

Then some straightforward but tedious calculations give

n—2 d

ajb_ -2\
Gapl?l e ar(}‘+ V), (6)

- , N—2[n—-3 R e g N
apl "M =—2— |~z (1-e )= ———(v=0) .

(7)

One can show that the equations
Eapl?°=0, E,l%nP=0, V,V3p=0 (8)

plus the condition of regularity at the origin impB,,=0

D=——-g—. (14)

Now in 4 spacetime dimensions define (d/dr)(r ¢). Then
the wave Eq(13) becomes

R
Dh=5-(g—g)(h—h) (15

whereh=r~1f{hdr. For the purposes of numerical simula-
tions, the nice property of Eq15) is that it involves a de-
rivative only in the direction of ingoing light rays. Another
nice feature of Eq(15) is that in the absence of gravityg (

=g=1), the right hand side vanishes. This is related to the
fact that in general, the right hand side vanishes tikeas
r—0. (The metric is smooth, and therefore in a neighbor-
hood of the origin it behaves like a flat metric to some order
in r.) This property is important for the following reason:
spherically symmetric metrics have coordinate singularities
at the origin. These coordinate singularities are reflected in
the appearance of inverse powers @f Eq. (13), which can
lead to instabilities or inaccuracies in a numerical simulation.
These considerations suggest that instead of a numerical

everywhere. Thus we need to impose only those three equaimulation of Eq.(13) in n dimensions, we should instead

tions.
Using Egs.(6), (7) and (2), we find that the first two of
Egs.(8) yield

n—-2 49 (%)2

P

Tﬁ()\_F v)—8m

9)

2-n d n—3
I P ) W ANy BENP) R
> e m(u N) ; (1—e )} 0. (10
Defineg=e”** andg=e”"*. Then the solution of Eq<9)
and(10) is
& f i) (11
=exg——=| r|—| dr
g n—=2Jo \ gr
— n—3 M4~ A
9=1n3 " g(r)dr. (12)
The wave equation foe in this metric is
Fp n-24d¢p 3|
20 T " e\ 970 (13

search for a new variable that satisfieDh=0 in the ab-
sence of gravity. Note that a quantity that satisfids=0 is
constant along ingoing light rays and therefore satisfies Huy-
gens’ principle. However, it is well known that solutions of
the wave equation in flat spacetime satisfy Huygens’ prin-
ciple only in even spacetime dimensio®y. Therefore, we
should only expect to find an appropriate new variable in
even spacetime dimensions. Letbe even and definen
=(n—2)/2. For any¢ define

(m—1)!

h=Gm-1r

(}] m
1-m| 2m-1
r (ar) (r?m ). (16
(Here, the numerical factor is chosen for later convenignce.
If ¢ is a solution of the flat space wave equatj@y. (13)

with g=1], thenh satisfiesDh=0. That is, in the absence
of gravity, a solution of the wave equati@hgives rise to an

h that is constant along ingoing light rays. One can demon-
strate this property oh by using Eq.(13) (with g=1) and
mathematical induction om.

The advantage of using as the basic variable is that it
tends to make computer simulations more stable and accu-
rate, especially near the origin. The disadvantageslarie
method only works in even dimensior() a separate com-
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FIG. 1. h plotted vs the rescaled coordinaies
andT.

puter code must be written for each valuenoand (3) asn Using Eqs(17)—(21) in Eq. (13) we find that the wave equa-
gets larger, the equations become more complicated. We exon for ¢ in 6 spacetime dimensions becomes

pect that some numerical technique can be used to evolve the
Einstein-scalar equations mdimensions with a single code,
with n as a free parameter, stably and with enough accuracy
to treat critical gravitational collapse. However, we have
been unable to devise such a technique. Therefore, in thigsquations(17)—(22) are the full set of equations that are
work we useh as our basic variable. Due to the increase inevolved in 6 spacetime dimensions.

complication with increasing, we treat only the case of 6

3 _ _ 277 g —
Dh="(g-g)(h+5-25)+—~ “(s-5)° (22

spacetime dimensions. IV. NUMERICAL METHOD
We now specialize to the case of 6 dimensions. The vari-
ableh is given by The numerical method used is that of Garfinjig. This
method is based on numerical work of Goldwirth and Piran
1 & 3 [7], which is in turn based on the analytical work of
h= 6r W(r ®). 17 Christodoulou[8]. The spatial grid is a set of points on an

outgoing null cone, and each spatial grid point is evolved

We must now use Eq1l) to expresgy in terms ofh and along an ingoing light ray. Giveh on a light cone, the code

integrals involvingh. Define the quantities ands by 08 et : : :
2 (fn o . 2 F g
s= —ZJ rh(r)dr, (18) . l:,.;nﬂﬂﬁmmz
r~Jo [ a® ]
o1 | g .
L EI
— 3 . . ok = 3
s= —3J r2s(r)dr. (19 ! o®
r~Jo L
h 01 F - .
[ @
Then, using Eqs(17)—(19) and (11) we find N o ]
02 b a b
_ o ]
N Q
rdr —2 -0.3 -_ UUU _-
g=expg 187 | —(s—s)°|. (20 : U.;U ]
0 r ]
' 04 [ Un"u ]
I ]
Equation (12) specialized to 6 spacetime dimensions be- 05 9“'.]. I I P I
comes “o 01 02 03 04 05
R
g= %jr?zg(f)d?. (21 FIG. 2. h plotted vsR at two times when the minimum dfis at
r~Jo r=0. Note that the two curves agree.
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FIG. 3. InR, plotted vs Inp*—p) along
with the best straight line fit. The curve is a
straight line with a periodic wiggle and the slope
of the line is—27.
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performs several integrals in turn: Eq48)—(21). Near the  amine the periodicity more closely, in Fig. 2 we plots R
origin, these integrals are approximated by a Taylor serieat two different times where the minimum bfoccurs atr

and evaluated using the slope bfat r=0. At all other =0. Note that the curves agree, demonstrating periodicity of
points, the integrals are evaluated using Simpson’s rule.  h. The period ot is A=3.03. Thus, in each period a typical

For each time step the quantityis evolved using Eq22)  length of the system shrinks by a factoredf~21. For com-
and the quantity is evolved using parison, recall that fon=4, A=3.445.

To compute the scaling exponepive use the method of
Ref.[3]. We evolve data for a range of parameters below the
threshold of black hole formation. For each evolution we
find the maximum of the absolute value of the scalar curva-
These are essentially a set of uncoupled ordinary differentiaure on the world line of the central obseriy,.,. Plotting
equationg ODES), one for each grid point. In the scheme of In Ry, vs In(p* —p) the result is a straight line with a peri-
[6] as the evolution proceeds grid points that pass througbdic wiggle, where the slope of the line is2y. We use 50
r=0 are lost. When half of the grid points are lost, they arevalues ofp equally spaced in Ip¢ —p). Figure 3 is a plot of
put back, interpolated between the remaining grid pointsin Ry, Vs In(p* —p) along with the best straight line fit to the
The critical solution is found by a search of a 1-parametepoints. The slope allows us to fing. The result isy
space of evolved data to find the boundary between those 0.424, soMgy=(p—p*) 2" Recall that forn=4, 1y
data that form black holes and those that do not. The outer=0.374. Note thaty can also be found by evolving data
most gridpoint is chosen to be the light ray that hits theabove the threshold of black hole formation and plotting
singularity of the critical solution. This choice maintains |n Mg, vs In(o—p*). We have done this and the result is a

NlQ |

Dr=— (23

resolution throughout the evolution. straight line with a periodic wiggle where the slope of the
line is ~1.27. However, our method gives a more accurate
V. RESULTS treatment of subcritical collapse than of supercritical col-

lapse. For that reason, we have used subcritical collapse to

All runs were done with 300 spatial grid points. The COdecaIcuIatey.

was run in quadruple precision on Dec alpha workstations Comparison of our results for 6 dimensions with Choptu-

and in douple precision on a Cray YMP8. The initial data forik’s results for 4 dimensionkl] seems to indicate that is a
the scalar field were chosen to be of the form

decreasing function of the dimensionality of spacetime.
H(0r)=priexd —(r—rgy)%/ a?]. (24)  The quantityy seems to be an increasing functionroflt

would be interesting to obtain more information about these
Here, p is our parameter, ant, and o are constants. The functions by studying critical collapse for other valuesnof
critical solution was found to have discrete self-similarity.
Letu* be the value ol at the origin at the singularity of the
critical solution. Define the coordinatds= —In(u* —u) and
R=re'. Then discrete self similarity means tHatconsid- This work was partially supported by NSF grant PHY-
ered as a function off and R, is periodic inT. Figure 1 9722039 to Oakland University. We acknowledge the use of
showsh plotted as a function o and R. Note that after the Ohio Supercomputer Center, where some of the compu-
some initial transient behavioh becomes periodic. To ex- tations were performed.
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