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1. Introduction

Dimensionally reduced gravity and supergravity are well known to possess hidden

symmetries [1, 2]. Of special interest in this context is the case of two dimensions,

where these symmetries become infinite dimensional, generalizing the so-called Ge-

roch group of general relativity [3, 4, 5]. The existence of infinite dimensional sym-

metries in these models is intimately linked to their integrability, which is borne out

by the existence of linear systems for their classical equations of motion, both for

the bosonic models [6, 7, 4] and their locally supersymmetric extensions [8, 9]. In

this paper, we will focus attention on the maximally extended N =16 supergravity,

whose scalar sector is governed by an E8(8)/SO(16) nonlinear σ-model, and whose

equations of motion admit a rigid non-compact E9(9) symmetry.
1

The canonical structure of these models and the Lie-Poisson realization of the

associated infinite dimensional symmetries were analyzed only quite recently [13, 14].

As shown there, the affine Lie algebra seen at the level of the classical equations

of motion is converted into a quadratic algebra of Yangian type in the canonical

formulation. One key feature of this result, which we exploit in this paper, is that

the quadratic algebra, and therefore at least part of the model, can be quantized

directly by replacing the Poisson algebra of charges by an exchange algebra involving

a suitable R matrix, whereas a standard field theoretic quantization would appear

to be prohibitively difficult. The relevant R-matrix based on the exceptional group

E8 has already been derived in [15]. The structure that appears upon quantization

1This symmetry acts as a solution generating “isometry group”, or as a group of “dressing

transformations” [4, 7, 10, 11, 12].
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is the Yangian Y (e8). As a consequence, the physical states of the quantized theory

must belong to multiplets of Y (e8) rather than multiplets of the affine algebra e9 as

one might have naively expected.

The Yangian of the exceptional algebra e8 is distinguished from the Yangians of

the classical Lie algebras by the fact that its fundamental representation is reducible

over e8, namely decomposes into 249 = 1⊕248. The R-matrix associated to this
representation has been given by Chari and Pressley in [15]. Using their result and

the general analysis of Drinfeld [16] we obtain the RTT presentation of Y (e8) which

may be viewed [17] as the quantization of group-valued E8 matrices endowed with the

symplectic structure of dimensionally reduced gravity. The full quantum structure

that appears upon quantization of the algebra of classical nonlocal charges is a cen-

trally extended twisted version of the Yangian double, that reflects the E8(8)/SO(16)

coset structure of the classical model.

The presence of this extra coset structure and its quantum consistency require

further properties of the Y (e8) R-matrix beyond those discussed in [15]. We explain

these in detail here. In particular, for a discrete set of values of the central extension,

the algebra DY (e8)c possesses nontrivial ideals which may be divided out to reduce
the number of degrees of freedom. Remarkably there is only one among the altogether

eight “exceptional” values of the central extension, which admits a non-trivial ideal

for which the quantum monodromy matrix becomes symmetric in the limit ~→ 0
and the associated ideal can be consistently divided out to recover the classical coset

space E8/SO(16) of N=16 supergravity. The relevant value of the central extension

(c = 1 with our normalization) differs from the critical value c = 15 for which the

quantum algebra admits an additional infinite-dimensional center [18].

The main open problem which remains is the compatibility of the local super-

symmetry constraints with the Y (e8) charge algebra at the quantum level. In this

paper we have concentrated on the direct quantization of the algebra of nonlocal

charges which are classically invariant under supersymmetry, i.e. Poisson commute

weakly with the supersymmetry generators. A complete treatment should in addi-

tion contain a quantum version of the supersymmetry constraint algebra (an N=16

superconformal algebra) which could serve to define the physical states as its ker-

nel. The Yangian structure exhibited in this paper would then become a spectrum

generating algebra for N =16 supergravity. Let us emphasize, however, that the in-

terplay between canonical constraints and non-local conserved charges in integrable

field theories has so far not been studied at all at the quantum level, as the existing

literature deals exclusively with flat space models rather than the generally covariant

and locally supersymmetric models we are concerned with here.

Our results underline the importance of quantum group structures for dimen-

sionally reduced gravity and supergravity. The ultimate aim here is the identification

of a “quantum Geroch group” which would act on the space of physical states in the

same way as the classical Geroch group acts on the moduli space of classical solu-
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tions. The relevance of these structures for string and M-theory seems also obvious.

After all, the resulting symmetries can be regarded as quantum deformations of the

infinite dimensional U -duality symmetries that have been conjectured to appear in

compactified string and M-theory [19]. However, our results also indicate that some

widely held perceptions and expectations may need to be revised. In particular, the

underlying symmetry of the full quantum theory may turn out to be related to some

(hyperbolic?) extension of Y (e8), rather than just the arithmetic duality groups

E9(9)(Z) and E10(10)(Z).

2. E8 preliminaries

In this section we collect some basic facts on the exceptional algebra e8 thereby

fixing the notation for the following. In particular, we give very explicit expressions

for the projectors onto the irreducible parts of the tensor product of two adjoint

representations of e8.

The generators of e8 in the adjoint (and thus fundamental) representation are

denoted by Xa. We are here interested its non-compact maximally split form with

maximal compact subalgebra so(16), giving rise to the coset space E8(8)/SO(16).

Accordingly, we split E8 indices a, b, . . . as ([IJ ], A), . . ., with I, J = 1, . . . , 16 and

A = 1, . . . , 128 corresponding to the decomposition 248→ 120⊕ 128 of the adjoint
representation of e8 into the adjoint and the fundamental spinor representation of

so(16). The generators satisfy the commutation relations

[Xa, Xb] = fabcX
c , (2.1)

with the convention that summation over antisymmetrized pairs of indices [IJ ] is

always accompanied by a factor 1
2
, viz.

XaYa ≡ XAYA + 1
2
XIJYIJ .

The structure constants are most conveniently given in their fully antisymmetric

form obtained by raising the index c with the help of the Cartan-Killing form ηab.

For the adjoint representation, the latter is defined by

ηab :=
1

60
tr (XaXb) =

1

60
facdf

bd
c , (2.2)

which yields

ηAB = δAB , ηIJ KL = −2 δIJKL . (2.3)

The e8 structure constants are then completely characterized by

f IJ,KL,MN = −8 δI[K δL]JMN , f IJ,A,B = −1
2
ΓIJAB , (2.4)
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where the matrices ΓIJAB are obtained from the so(16) Γ-matrices in the standard

fashion

ΓI
AȦ
ΓJ
ȦB
= δIJδAB + Γ

IJ
AB . (2.5)

The maximal compact subalgebra so(16) can be characterized alternatively as the

subalgebra invariant under the symmetric space involution

τ(Xa) = −(Xa)T . (2.6)

For the formulation of the Yang Baxter equation we will need to deal with

operators acting on the tensor product 248⊗248. The associated matrices will be
denoted as Oab

cd, where we refer to the indices ab as “incoming” and to the indices

cd as “outgoing”. The product of two such matrices O and P is consequently given

by

(OP )ab
cd := Oab

efPef
cd .

As with the generators above, the Cartan-Killing metric must be used whenever

indices are raised or lowered from their “canonical” position on such matrices. We

define
21

Oab
cd :=

12

Oba
dc . (2.7)

To write down the projectors we need the operators 11, Π (i.e. the identity and the

exchange operator, respectively), and Π̃, which are given by

11ab
cd = δca δ

d
b , Πab

cd = δda δ
c
b , Π̃ab

cd = ηab η
cd . (2.8)

A further important operator is the symmetric Casimir element defined in the adjoint

representation by

Ωe8 ≡ ηab Xa⊗Xb

= −1
2
XIJ⊗XIJ +XA⊗XA ∈ so(16)⊗ so(16) + k⊗ k . (2.9)

In terms of the structure constants of E8, the Casimir element can be alternatively

expressed as

(Ωe8)ab
cd = f ea

cfeb
d . (2.10)

We will also need the twisted Casimir element Ωτe8 , defined by

Ωτe8 ≡ ηabXa ⊗ τ(Xb)
= −1
2
XIJ⊗XIJ −XA⊗XA , (2.11)

i.e. in indices:

(Ωτe8)ab
cd = −(Ωe8)cbad = −feacfebd . (2.12)

The twisted Casimir element is obviously not E8 but only SO(16) invariant.
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The tensor product of two adjoint representations of E8 splits into its irreducible

components according to 248⊗248 = 1⊕248⊕3875⊕27000⊕30380. The corre-
sponding projectors are given by:

P1 = 1

248
Π̃,

P248 = 1
60
(Ωe8Π− Ωe8) ,

P3875 = 1
14

(
11− 1
4
Π̃ + Π− 1

2
(Ωe8Π+ Ωe8)

)
,

P27000 = 1
7

(
3 11 +

3

31
Π̃ + 3Π +

1

4
(Ωe8Π+ Ωe8)

)
,

P30380 = 1
2
11− 1
2
Π +

1

60
(Ωe8 − Ωe8Π) . (2.13)

To verify that these operators indeed satisfy orthogonal projection relations, one

needs the following relation

Ω2e8 = 12 11 + 12Π + 12 Π̃− 20Ωe8 + 10Ωe8Π , (2.14)

whose validity we have established with the help of a computer. In terms of the e8
structure constants this relation becomes

f eagfbehf
gicfi

hd = 24δ c(aδ
d
b) + 12ηabη

cd − 20f eacfebd + 10f eadfebc .

In indices, the projectors read:

(P1)abcd = 1

248
ηabη

cd,

(P248)abcd = − 1
60
f eabfe

cd,

(P3875)abcd = 1
7
δ c(aδ

d
b) −

1

56
ηabη

cd − 1
14
f ea

(cfeb
d),

(P27000)abcd = 6
7
δ c(aδ

d
b) +

3

217
ηabη

cd +
1

14
f ea

(cfeb
d),

(P30380)abcd = δc[aδdb] +
1

60
f eabfe

cd. (2.15)

All these projectors are manifestly symmetric w.r.t. interchange of the two subspaces,

i.e.
12P j=

21P j. Furthermore, any E8 matrix V obeys

Pj V ⊗ V = V ⊗ V Pj , (2.16)

which together with the normalization detV = 1 can be taken as defining relations
for the group elements of E8.
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3. R-matrix and the Yangian Y (e8)

Here, we review the Yangian algebra Y (e8) and the R-matrix associated to its fun-

damental representation 249 [15]. The Yangian Y (e8) [16] is recursively defined as

the associative algebra with generators X a and Ya (a = 1, . . . , 248) and relation[X a,X b] = i~fabcX c , [X a,Yb] = i~fabc Yc ,[Ya [Yb,X c]]− [X a [Yb,Yc]] = −~2Labc ,
with Labc =

1

24
fadgf

be
hf
cf
if
ghi{X d,X e,X f} ,

and {X 1,X 2,X 3} =
∑
σ

X σ(1)X σ(2)X σ(3) . (3.1)

It admits a nontrivial coproduct and antipode structure whose explicit form will not

be needed here, see e.g. Thm. 12.1.1 of [20] for details.

Due to the fact that Labc does not vanish when the X a are evaluated in the
fundamental representation of e8, it is not possible to lift this representation of e8 to

a representation of Y (e8). Rather, the minimal representation of Y (e8) is reducible

over e8 and contains an additional trivial representation of e8 [16]. With respect to

so(16) we thus have the decomposition

249→ 1⊕ 120⊕ 128 . (3.2)

For compactness of notation, we will label the extra singlet by 0 and use hatted

indices which run over all 249 dimensions, i.e. 0 ≤ â, b̂, . . . ≤ 248.
The R-matrix associated with the fundamental representation of Y (e8) is the

solution R(w) to the Quantum Yang-Baxter Equation (≡ QYBE)
12

R (u− v) 13R (u) 23R (v) =23R (v) 13R (u) 12R (u− v) , (3.3)

or, with indices written out,

Râb̂
ĝĥ(u−v)Rĝĉ p̂̂i(u)Rĥîq̂r̂(v) = Rb̂ĉĥî(v)Râî ĝr̂(u)Rĝĥp̂q̂(u−v) , (3.4)

The classical limit is

R(w) = 11− i~
w
Ωe8 +O

(
~
2

w2

)
for w →∞ . (3.5)

where the definition of the Casimir element Ωe8 is extended to 1⊕248 by the trivial
(zero) action on the 1. We also impose the standard normalization condition

R(0) = Π . (3.6)

Within the tensor product 249⊗249 we introduce in addition to the operators
from (2.13) the projector P0 onto the one-dimensional space 1⊗1 and the projectors
P+ and P− onto the symmetric and antisymmetric part of the space (248⊗1) ⊕
(1⊗248), respectively. Furthermore, there are e8 invariant intertwining operators
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between subspaces of the same dimension, which we denote by I01, I10, I+248, and
I248+. They are defined by

I01I10 = P0 I10I01 = P1 ,
I+248I248+ = P+ I248+I+248 = P248 , (3.7)

respectively, up to relative factors between the intertwiners which drop out in the

above relations. Explicitly, the new projectors and intertwiners are given by

(P0)0000 = 1,
(P+)a0b0 = (P+)a00b = (P+)0ab0 = (P+)0a0b = 1

2
δab ,

(P−)a0b0 = −(P−)a00b = −(P−)0ab0 = (P−)0a0b = 1
2
δab ,

(I01)00ab = ηab,
(I10)ab00 = 1

248
ηab,

(I+248)0abc = (I+248)a0bc = 1

120
fa
bc,

(I248+)abc0 = (I248+)ab0c = −fabc, (3.8)

with all other components vanishing. Again all operators are symmetric w.r.t. inter-

change of the two subspaces with the exception of the intertwiners I+248 and I248+,
which obey

12I+248= −
21I+248 ,

12I 248+= −
21I 248+ . (3.9)

As shown in [15], the R-matrix associated to the fundamental representation of

Y (e8) in terms of these projectors and intertwiners is given by

f−1(w)R(w)=
w + i~

w − i~ P30380 + P27000 +
w3 + 15w2i~+ 44w(i~)2 + 60(i~)3

(w − i~)(w − 6i~)(w − 10i~) P248 +

+
(w + i~)(w + 6i~)

(w − i~)(w − 6i~)P3875 +
w3− 15w2i~+ 44w(i~)2− 60(i~)3
(w − i~)(w − 6i~)(w − 10i~) P++

+
w + i~

w − i~P−+
w4+ 30w3i~+ 269w2(i~)2+ 660w(i~)3+ 900(i~)4

(w − i~)(w − 6i~)(w − 10i~)(w− 15i~) P1+

+
w4 − 30w3i~+ 269w2(i~)2 − 660w(i~)3 + 900(i~)3

(w − i~)(w − 6i~)(w − 10i~)(w − 15i~) P0 +

+
w(i~)3

α2(w − i~)(w − 6i~)(w − 10i~)(w − 15i~) I01 +

+
248(60α)2w(i~)3

(w − i~)(w − 6i~)(w − 10i~)(w − 15i~) I10 −

− 60
√
2w(i~)2

α(w − i~)(w − 6i~)(w − 10i~) I+248 +

+
30
√
2αw(i~)2

(w − i~)(w − 6i~)(w − 10i~) I248+ .
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We rewrite this in the form

f−1(w)R(w) = 11 +
4∑
j=1

Rj
w − wj , (3.10)

where the poles are located at

w1 = i~ , w2 = 6i~ , w3 = 10i~ , w4 = 15i~ , (3.11)

and the associated residues are

R1 = 2P30380 − 14
5
P3875 + 8

3
P248 − 2

3
P+ + 2P− − 62

21
P1 −

− 16
21
P0 − 4

√
2

3α
I+248 + 2

√
2α

3
I248+ − 9920α

2

7
I10 − 1

630α2
I01 ,

R2 = 84
5
P3875 − 54P248 + 6P+ + 124P1 + 8P0 + 18

√
2

α
I+248 −

− 9√2α I248+ + 29760α2 I10 + 1

30α2
I01 ,

R3 = 250
3
P248 − 10

3
P+ − 1240

3
P1 − 20

3
P0 − 50

√
2

3α
I+248 +

+
25
√
2α

3
I248+ − 49600α2 I10 − 1

18α2
I01 ,

R4 = 2480
7
P1 + 10

7
P0 + 148800α

2

7
I10 + 1

42α2
I01 . (3.12)

The scalar function f is uniquely defined by its functional equation

f(w)f(w− 15i~) = (w − i~)(w − 6i~)(w − 10i~)(w − 15i~)
w(w − 5i~)(w − 9i~)(w − 14i~) , (3.13)

and its asymptotic behavior

f(w) = 1− 2i~
w
+O

(
1

w2

)
for w → ±∞ . (3.14)

It allows an explicit expression in terms of Γ-functions which however is not of par-

ticular interest for the following. Observe that (3.13) and (3.14) already imply the

relations

f(w)f(−w) = 1 , f(w)∗ = f(−w∗) .
The free parameter α which appears in the solution of the QYBE is basically a

consequence of the fact that the singlet in (3.2) may be rescaled with an arbitrary

factor; two R matrices (3.10) with different values of α are related by conjugation

with diag(α1α
−1
2 , 11120, 11128)⊗ diag(α1α−12 , 11120, 11128). Without loss of generality we

can thus fix the parameter α to

60α2 := −1 . (3.15)
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For this value only, the R-matrix obeys the additional non-covariant relation

Râb̂
ĉd̂(w) = Rĉd̂

âb̂(w) , (3.16)

which is proved by inspection and by use of the special (non-covariant) property

fa
bc = −fabc of the E8(8) structure constants (2.4).
The following further properties of the R-matrix are easily verified:

12

R (w)
21

R (−w) = 11, (3.17)
12

R (w)
∗ =

21

R (−w∗) , (3.18)

where the second equation is only valid for imaginary α, which is compatible with

our choice (3.15) above. In the context of two-dimensional scattering theory, these

relations express the requirements of unitarity and hermiticity of the S-matrix, re-

spectively. With indices written out they acquire the following explicit form

Râb̂
ĝĥ(w)Rĥĝ

ĉd̂(−w) = δd̂âδĉb̂ , (3.19)(
Râb̂

ĉd̂(w)
)∗
= Rb̂â

d̂ĉ(−w∗) . (3.20)

The occurrence of poles at w = wj and relation (3.17) together imply that R(w) is

non-invertible at the points w = −wj . More specifically, (3.17) yields the relations
12Rj

21

R (−wj) = 0 . (3.21)

From the formulae given above it is straightforward to check that the residue R4
at w4 = 15i~ is singled out by its property of being proportional to a one-dimensional

projector:

(R4)âb̂ ĉd̂ =
10

7
ηâb̂η

ĉd̂ , (3.22)

where ηâb̂ denotes the natural extension of the Cartan-Killing form into 249 ⊗ 249
given by the additional entry η00 = 60α

2 = −1. Evaluating the QYBE (3.4) at
u−v = 15i~ then gives rise to the following relation

(R4)âb̂ ĝĥRĝĉ p̂̂i(u)Rĥ̂iq̂r̂(u−15i~) = δr̂ĉ (R4)âb̂ p̂q̂ . (3.23)

From these observations, we can deduce the crossing invariance property of the R-

matrix:

Rb̂
âd̂
ĉ(w) ≡ ηâĝRb̂ĝ d̂ĥ(w)ηĥĉ = Rĉb̂âd̂(15i~− w) . (3.24)

The knowledge of the R-matrix associated with an irreducible representation

of (3.1) now gives rise to another equivalent presentation of the Yangian algebra

itself [16]. Consider the associative algebra with generators (T(n))â
b̂, (0 ≤ â, b̂ ≤ 248),

n ∈ N and defining relations
Râb̂

êf̂(u− v)Têĉ(u)Tf̂ d̂(v) = Tb̂f̂(v)Tâê(u)Rêf̂ ĉd̂(u− v) , (3.25)
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where Tâ
b̂(u) denotes the formal series

Tâ
b̂(u) = δb̂â +

∞∑
n=1

(T(n))â
b̂ u−n . (3.26)

The QYBE (3.4) ensures compatibility of the exchange relations (3.25) with associa-

tivity of the multiplication. Their evaluation at u− v = 15i~ shows that there exists
an invariant scalar quantity q(T (u)), the “quantum determinant”, which is bilinear

in the matrix entries of T :

q(T (u))R4 := R4
1

T (u+15i~)
2

T (u) =
2

T (u)
1

T (u+15i~) R4 . (3.27)

Using (3.23) one checks that q(T (u)) lies in the center of the algebra (3.25). Thus,

we may pass to the quotient of this algebra over the two-sided ideal generated by the

central element by setting q(T ) = 1 or equivalently

Tâ
ĉ(u− 15i~)Tb̂d̂(u)ηĉd̂ = ηâb̂ . (3.28)

It has been stated by Drinfeld [16] that this quotient is isomorphic to the Yangian

Y (e8) as defined at the beginning of this section (3.1).
2 The precise isomorphism

requires knowledge of the universal R-matrix of Y (e8) which is certainly beyond our

scope here; one may however easily identify the generating elements X a and Ya

X a = tr [XaT(1)] , Ya = tr
[
Xa
(
T(2) − 1

2
T(1)T(1)

)]
. (3.29)

We can further expand (3.25) around u=∞ and use (3.5) to obtain the commutator[ 1
T (1) ,

2

T (w)
]
= i~

[
Ωe8 ,

2

T (w)
]
, (3.30)

which in particular reproduces the first two commutation relations of (3.1). We close

the general discussion here with two well-known properties of the presentation (3.25)

of the Yangian

• Any representation ρ of Y (e8) defines a one-parameter family of representations
ρa labeled by a complex number a:

ρa(T (w)) := ρ(T (w−a)) . (3.31)

The fundamental representation 249 in particular gives rise to the family 249a:

ρ249a (T (w)) := R(w−a) , (3.32)

with the R-matrix from (3.10). Note that the relation (3.28) in these represen-

tations corresponds to the normalization (3.23) of the R-matrix.

• The coproduct of Y (e8) takes the simple form:
∆
(
Tâ
b̂(w)

)
= Tâ

ĉ(w)⊗ Tĉb̂(w) . (3.33)

2However, we presently cannot exclude the possibility that the center of (3.25) contains elements

of higher degree in the T ’s which are not generated by q(T ).

10



J
H
E
P
0
4
(
1
9
9
9
)
0
2
3

4. Classical Yangian symmetries in N=16 supergravity

This section is a brief review of the classical symmetries and the algebra of nonlocal

charges in two-dimensional N = 16 supergravity [13, 14]. The scalar sector of this

model is described by an E8(8)-valued matrix V which transforms under a global E8
symmetry and a local SO(16) gauge symmetry in the usual way

V(x) 7→ gV(x)h(x) , g ∈ E8(8) , h(x) ∈ SO(16) . (4.1)

Thus, its bosonic configuration space is given by the coset space E8(8)/SO(16). It

may be parametrized by the symmetric E8-valued matrix

M≡ VVT , i.e. Mab ≡ VacVbc =Mba , (4.2)

which is evidently gauge (= SO(16)) invariant. The symmetry ofM may be charac-
terized algebraically by the fact that it is annihilated by the antisymmetric projectors

(P248)abcdMcd = 0 = (P30380)abcdMcd , (4.3)

whereas for the symmetric projectors from (2.15) one finds the following identities

(P1)abcdMcd =
1

31
ηab ⇐⇒ ηabMab = 8 ,

(P3875)abcdMcd = 0 ,

(P27000)abcdMcd =Mab − 1
31
ηab . (4.4)

To verify these relations one needs the E8-invariance of the projectors and the Cartan-

Killing form:

(Pj)abcdMcd = VacVbd(Pj)cdee , VacVbd ηcd = ηab .

The second relation in (4.4) requires the additional formula

fdacfdbc =

{
8δIJKL if (ab) = (IJ,KL)

0 otherwise ,

where the summation over the E8 index c is with the “wrong metric” (i.e. with the

SO(16)-covariant δab rather than ηab).

The scalar fields represented by the matrixM satisfy equations of motion which
allow a Lax pair formulation [7, 6, 4, 8, 9] similar to the principal chiral model.

In particular this allows the construction of an infinite family of nonlocal integrals

of motion which are obtained from the transition matrices associated to the Lax

pair [13, 14]. These integrals of motion are encoded in a symmetric E8-valued matrix

M(w) obtained by integrating the Lax connection over certain space intervals and
depending on a complex spectral parameter w. This matrix parametrizes the full
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scalar sector of the phase space in the sense that for real values of w the matrix

M(w) coincides with the physical scalar fields M(x) evaluated on the particular
axis in space-time where the dilaton field ρ vanishes

M(w) =M(x)
∣∣∣
ρ(x)=0, ρ̃(x)=w

. (4.5)

This relation has been formulated in the coordinate system where the two-dimen-

sional world-sheet is parametrized by the dilaton field ρ and its dual axion ρ̃. For

instance, for cylindrically symmetry spacetimes the matrixM(w) carries the values
of physical scalar fields along the symmetry axis.

We may further introduce its Riemann-Hilbert decomposition

Mab(w) ≡ U+(w)ac U−(w)bc , (4.6)

into E8-valued functions U±(w) which are holomorphic in the upper and the lower
half of the complex w-plane, respectively. They are related by complex conjugation

(U+(w))
∗ = U−(w∗) . (4.7)

In [13, 14] it was shown that these phase space quantities are subject to the

following symplectic structure:

{Mab(v),Mcd(w)} = 1

v − w
(
(Ωe8)ac

mnMmb(v)Mnd(w) +

+Mam(v)Mcn(w)(Ωe8)bd
mn −Mam(v)(Ω

τ
e8
)mc

bnMnd(w)−
−Mcm(w)(Ω

τ
e8
)an
mdMnb(v)

)
, (4.8)

with Ωe8 and Ω
τ
e8
from (2.10) and (2.12), respectively. One may check that these Pois-

son brackets are covariant under E8 and compatible with the symmetry ofM (4.3),

as required for consistency. For the purpose of quantization to be addressed in the

next section it is further convenient to decompose this structure according to (4.6)

into the following brackets{
1

U± (v) ,
2

U± (w)
}
=

[
2Ωe8
v − w ,

1

U± (v)
2

U± (w)
]
,{

1

U± (v) ,
2

U∓ (w)
}
=
2Ωe8
v − w

1

U± (v)
2

U∓ (w)−
1

U± (v)
2

U∓ (w)
2Ωτe8
v − w . (4.9)

In a theory with local symmetries, observables such as the conserved non-local

charges contained in U±(w) must weakly commute with the associated canonical
constraints. For the above charges this was shown to be the case in [14]. Namely,

for the traceless components T ′µν := Tµν − 1
2
gµνT

ρ
ρ of the energy momentum tensor

(generating local translations along the lightcone), we simply have{
T ′µν(z) , U±(w)

}
= 0 . (4.10)

12
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This relation expresses the invariance of the charges U±(w) under general coordinate
transformations, which thus indeed constitute “observables” in the sense of Dirac.

In supergravity, we have in addition the constraints SIα(z) generating N = 16

local supersymmetry transformations (α is a spinor index in two dimensions). As

shown in [14], the relations expressing the invariance of the charges U±(w) under local
supersymmetry are considerably more complicated than (4.10). Recalling that the

integrals of motion U±(w) are obtained from certain transition matrices U(x, y;w)
associated to the Lax pair of the model, we found that they obey Poisson bracket of

the following type (for x < z < y):{
U(x, y;w), SIα(z)

}
∼ U(x, z;w)XIJSJα(z)U(z, y;w) , (4.11)

which vanish indeed on the constraint surface SIα(x) = 0. Apart from questions of

operator ordering, it is clear from the form of (4.11) that the combined algebra of

nonlocal charges and supersymmetry constraints does not close. It remains an open

problem at this point whether one can arrive at a closed structure upon sufficient

enlargement of the algebra. Its quantization would entail the existence of a novel

type of exchange relations between the conserved charges and the local supersymme-

try constraints. The full algebra should then contain the Yangian charge algebra to

be presented in the next section as well as a quantized version of the N =16 super-

conformal algebra, into which the supersymmetry constraints close.3 Note however,

that a consistent quantum formulation of the latter is a highly nontrivial task due to

the nonlinear nature of the N =16 superconformal algebra. For instance, — and in

contrast to the standard extended superconformal algebras — free field realizations

are not even known at the classical level.

5. Quantization

We now wish to quantize the symplectic structure of the classical charge algebra

by means of the R-matrix described above. This amounts to replacing the Poisson

brackets (4.9) by quantum exchange relations, leading to a “twisted” Yangian dou-

ble with central extension c. More precisely, we employ the construction (3.25) to

replace the classically conserved non-local charges U±(w) (which by their definition
are 248× 248 matrices) by a corresponding set of 249 × 249 matrices T±(w) with
operator-valued entries subject to the exchange relations

12

R (v−w)
1

T± (v)
2

T± (w) =
2

T± (w)
1

T± (v)
12

R (v−w) , (5.1)
12

R (v−w−i~c)
1

T− (v)
2

T+ (w) =
2

T+ (w)
1

T− (v)
12

Q(v−w) , (5.2)

3There exist alternative extended superconformal algebras with N > 8 in the literature, see [22,

23, 24]. However, the N = 16 algebra considered here and in [14] does not fit into any of these

schemes.
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where for the “twisted” R-matrix Q we require the classical expansion (cf. (3.5))

Q(w) = 11− i~
w
Ωτe8 + O

(
~
2

w2

)
, (5.3)

and the compatibility relations

12

Q (u−v)
13

Q(u)
23

R (v) =
23

R (v)
13

Q(u)
12

Q(u−v) ,
12

R (u−v)
13

Q(u)
23

Q(v) =
23

Q (v)
13

Q(u)
12

R (u−v) , (5.4)

whose derivation is completely analogous to (3.4). For 60α2 = −1, the solution is
given by

Qâb̂
ĉd̂(w) := Rd̂â

b̂ĉ(−w) = Rb̂ĉd̂â(−w) , (5.5)

i.e. by interchanging the two subspaces and taking the transpose of the original

R-matrix in one of them. The interchange of subspaces here is necessary because
12

R 6=21R. It is easy to check that the above definition yields the correct first order term
displayed in (5.3). Furthermore, although transposing the indices is a non-covariant

operation, it turns out that all summations in (5.4) are again covariant, such that

with a little algebra these relations can be reduced to the original QYBE (3.4).

We emphasize that the shift c (alias the central charge) in (5.2) is compatible

with all of our requirements so far and therefore still arbitrary at this point. It is

important here that the algebras for different c are not isomorphic; in particular,

they may have different ideals. The central charge c will be fixed later by requiring

symmetry of the quantum monodromy matrix. Note that a possible additional shift

in the argument of Q in (5.5) has been absorbed into a redefinition of T−.
As for the singular points, there is an important difference between eqs. (5.1)

and (5.2): whereas the poles on the l.h.s. and r.h.s. of (5.1) always match, this is

not so for (5.2) due to the shift. Thus, either some of the mixed operator products

are singular, or the regularity on one side imposes the vanishing of certain residues

on the other side. These questions as well as the proper quantum analogue of the

classical holomorphy properties of the T±’s may however only be addressed after
specializing to a particular representation of (5.1), (5.2). To be on the safe side here,

we will use the exchange relations only at the generic points where the R-matrices

are nonsingular.

In addition to these exchange relations we demand that the quantum determinant

for both T+ and T− be equal to unity, viz. (3.28)

T±(w − 15i~)âĉ T±(w)b̂d̂ ηĉd̂ = ηâb̂ . (5.6)

Due to (3.13), Q in (5.5) is normalized such that the l.h.s. of this equation indeed lies

in the center of the full algebra (5.1), (5.2). The hermiticity (3.18) of the R-matrix
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shows that the full quantum algebra is compatible with the following ∗-structure —
suggested by the classical relation (4.7) —(

T±(w)âb̂
)∗
= T∓(w∗)âb̂ , (5.7)

for the purely imaginary choice of the parameter α we have made.4

Let us show that the algebra (5.1)–(5.7) has the correct classical limit for ~ →
0. If we embed the original non-local charges U±(w) by identifying them with the
upper left 248 × 248 block of T±(w), the exchange relations (5.1), (5.2) reduce to
the Poisson brackets (4.9) in the limit ~→ 0. The U±(w) being E8-valued matrices,
the condition (5.6) can then be viewed as the quantum analog of the statement that

any element of E8(8) also belongs to SO(128, 120). While this submatrix of T± is
evidently the quantum analog of the classical charges, one may wonder about the

significance of the extra components T0
a(w), Ta

0(w) and the singlet T0
0(w). The

exchange relations may be read in such a way, that the off-diagonal components can

be solved to become functions of the 248 degrees of freedom originally present. In

order to make the dependence explicit, we evaluate the defining relation (3.25) at

the remaining poles u − v = wj (j = 1, . . . , 3) (the residue at w4 has already been
exploited to derive (3.28)):

12Rj
1

T (u)
2

T (u−wj) =
2

T (u−wj)
1

T (u)
12Rj .

After expansion around u = ∞ this equation can be solved order by order to get
expressions for the off-diagonal components (T(n))0

a and (T(n))a
0, respectively. In

first order this yields
12Pj

1

T (1)+
2

T (1) =
2

T (1)+
1

T (1)
12P j ,

for all projectors from (2.15) and (3.8). Hence,

(T(1))a
b ∈ e8 , and (T(1))0

a = (T(1))a
0 = (T(1))0

0 = 0 . (5.8)

In second order we get the equations

12Rj
( 1
T (2) − 1

2
(
1

T (1))
2+

2

T (2) − 1
2
(
2

T (1))
2 + wj

2

T (1) +
1
2

[ 1
T (1),

2

T (1)

])
=

=
( 1
T (2) − 1

2
(
1

T (1))
2+

2

T (2) − 1
2
(
2

T (1))
2 + wj

2

T (1) − 1
2

[ 1
T (1),

2

T (1)

]) 12Rj .
4It is helpful to note that like for g = sl2 [13] the algebra (5.1), (5.2) may in fact be mapped to

the usual (untwisted) centrally extended Yangian double DY (e8)c by the (noncovariant) map

T+(w)â
b̂ 7→ T+(w)â ĉηĉb̂ , T−(w)â b̂ 7→ T−(w)â b̂ .

The additional relation (3.16) is required to show that this is indeed an automorphism of (5.1). With

respect to (5.7) this map is, however, no ∗-isomorphism; the representation theory of (5.1), (5.2)
will thus differ considerably from the one of DY (e8)c. (Needless to say that even the latter is far
from being developed.)
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Together with (3.30), (3.28) and the explicit form of the residues of the R-matrix

in (3.12) these relations can be used to deduce

(
T(2) − 1

2
T(1)T(1)

)
a

b ∈ e8 ,

(T(2))0
a =

√
2

α
i~fabc (T(1))c

b , (T(2))0
0 = 0 , etc. (5.9)

In this fashion one may in principle determine the components T (w)0
a, T (w)a

0 in all

orders as functions of the T (w)a
b which vanish in the classical limit ~ → 0. Thus,

we have consistently

T±(w)âb̂ −−−→
~→0

(
U±(w)ab 0
0 1

)
. (5.10)

Recall now that the classical phase space was parametrized by the symmetric

E8-valued matrix Mab(w). On the quantum side we define this object in analogy

to (4.6) as

Mâb̂(w) ≡ T+(w)âĉ T−(w)b̂ĉ , (5.11)

where the operator ordering on the r.h.s. is fixed by this relation. The matrix entries

of M are distinguished elements in the algebra (5.1), (5.2) in that they satify the

exchange relations

T+(v)ĉ
d̂Mâb̂(w)=Râĉ

p̂k̂(w−v)Mp̂q̂(w)Rb̂k̂
q̂l̂(w−v−i~c)T+(v)l̂d̂ ,

T−(v)ĉd̂Mâb̂(w)=Râĉ
p̂k̂(w−v+i~c)Mp̂q̂(w)Rb̂k̂

q̂l̂(w−v)T−(v)l̂ d̂ , (5.12)

as well as the closed algebra

Râb̂
m̂n̂(v−w)Mm̂k̂(v) Rĉn̂

k̂l̂(v−w−i~c)Ml̂d̂(w) =

=Mb̂m̂(w) Rk̂â
m̂n̂(w−v−i~c)Mn̂l̂(v) Rd̂ĉ

k̂l̂(w−v) , (5.13)

which we hence view as the quantized version of (4.8).5

While the classical matrix M was manifestly symmetric (cf. (4.3), (4.4)) this

is not necessarily true for its quantum analog. Rather, we must now impose some

quantum version of this condition in order to ensure that the number of degrees of

freedom in the quantum structure matches the classical phase space. In other words,

we still have to implement the quantum analogue of the classical coset structure.

In algebraic language this amounts to dividing out another ideal from (5.1)–(5.2).

Unlike the quantum determinant condition (5.6) (which we still assume to hold), this

new condition will involve T+ and T− simultaneously.
5Like its classical counterpart (4.8) the algebra (5.13) belongs to the general class of quadratic

algebras which has been considered in [21].
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To this end we return to the exchange algebra (5.1)–(5.2) with arbitrary, but

fixed central charge c, and consider the set of elements

φâb̂(w) ≡


Res
∣∣∣
v=i~c
Râb̂

ĉd̂(v)Mĉd̂(w) if R(i~c) is singular

Râb̂
ĉd̂(i~c)Mĉd̂(w) else .

(5.14)

Use of the exchange relations (5.12) then yields in a first step

T+(u)ĉ
d̂ φâb̂(w) = Râb̂

p̂q̂(i~c)Rp̂ĉ
m̂k̂(w−u)Rq̂k̂n̂l̂(w−u−i~c)Mm̂n̂(w)T+(u)l̂

d̂ .

The necessity of the choice v = i~c in (5.14) becomes evident at this point: it is

the only value of the argument of the R-matrix in (5.14) for which we can exploit

the QYBE to re-arrange the indices (this would not be possible if the first factor on

the r.h.s. were Râb̂
p̂q̂(v) with arbitrary argument v). Thus, by use of (3.4) we finally

obtain

= Rb̂ĉ
q̂k̂(w−u−i~c)Râk̂p̂l̂(w−u)Rp̂q̂m̂n̂(i~c)Mm̂n̂(w)T+(u)l̂

d̂

= Rb̂ĉ
q̂k̂(w−u−i~c)Râk̂p̂l̂(w−u) φp̂q̂(w)T+(u)l̂ d̂ . (5.15)

A similar calculation for T−(u) gives the same result. We conclude that the elements
φâb̂(w) constitute the basis of a two-sided ideal of (5.1)–(5.2). Obviously, these ideals

are nontrivial only if (5.14) does not contain M entirely, i.e. only if R(i~c) or the

relevant residue is singular or non-invertible. This happens only at the special values

c = ±wj.6
There is (of course) a more group-theoretical interpretation of this construction:

in view of (3.32) and (3.33), the exchange relations (5.12) express the fact, that un-

der the adjoint action of T+(v) and T−(v), respectively, the matrixM(w) transforms
in the tensor product 249w ⊗ 249w−i~c. I.e. the existence of nontrivial ideals inM
amounts to the reducibility of the tensor product 249i~c⊗249 which is in correspon-
dence with the singular points of the associated R-matrix [15] as we have explicitly

seen here.

Returning to the problem of identifying the proper quantum analogue of the

symmetry of M, let us now examine (5.14) for all critical choices of the central
extension c with the desired conditions (4.3), (4.4). With the explicit form of (3.12)

one confirms that there is a unique value of c such that the algebra (5.1)–(5.2) has

an ideal which in the classical limit indeed reduces to (4.3) and (4.4). The correct

choice is

c = 1 . (5.16)

6Together with the fact (3.22) that R4 is proportional to a one-dimensional projector, (5.15) in
particular shows the well-known infinite-dimensional enlargement of the center of the algebra (5.1)–

(5.2) at the critical level c = 15 [18]. However, to achieve consistency with the classical coset

structure E8/SO(16) we need another value of the central extension here.
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Dividing out the ideal corresponding to (5.14) now amounts to imposing the addi-

tional set of relations φâb̂ = 0, or

(R1)âb̂ ĉd̂Mĉd̂(w) = 0 . (5.17)

The ensuing relations can be written more succinctly by splitting R1 into the E8-
invariant projectors:

(P248)abcdMcd = −α
8
fab
c(M0c +Mc0) , (5.18)

(P3875)abcdMcd = 0 ,

(P30380)abcdMcd = 0 ,

M0c =Mc0 ,

M00 = − 1

480α2
ηabMab .

Since the off-diagonal components M0a are of order O(~) by (5.10), it now follows
with our choice 60α2 = −1 that the relations (5.18) indeed encompass the classical
coset relations (4.3) and (4.4) in the limit ~→ 0.
In conclusion, the quantum algebra which replaces the classical Poisson alge-

bra (4.9) is given by (5.1)–(5.7) with central extension c = 1 divided by the ideal

which is generated by (5.18). The operator (5.11) consistently represents the quan-

tum analogue of the classical matrix M(w) related to the physical scalar fields on
a certain axis in space-time. Matrix elements of (5.11) in particular representa-

tions should thus carry the information about quantum spectra and fluctuations of

the original fields. These issues as well as the general representation theory of the

twisted Yangian doubles remain to be investigated.
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