Class. Quantum Gra®6 (1999) 3057-3069. Printed in the UK PlI: S0264-9381(99)04790-5

Degenerate sectors of the Ashtekar gravity

Jerzy Lewandowski and Jacek §iiewski

Instytut Fizyki Teoretycznej, Wydziat Fizyki, Uniwersytet Warszawski, ulzelé9, 00-681,
Warszawa, Poland

Received 3 June 1999

Abstract. This work completes the task of solving locally the Einstein—Ashtekar equations for
degenerate data. The two remaining degenerate sectors of the clé®sidaidimensional theory

are considered. First, with all densitized triad vectors linearly dependent and second, with only
two independent ones. It is shown how to solve the Ashtekar—Einstein equations completely by
suitable gauge fixing and choice of coordinates. Remarkably, the Hamiltonian weakly Poisson
commutes with the conditions defining the sectors. The summary of degenerate solutions is given
in an appendix.

PACS number: 0420

1. Introduction

Einstein's standard gravity theory corresponds to an open region in the real section of the
Ashtekar theory phase space. The boundaryt of that region is set up by degenerate data.
There are several motivations to study the degenerate sector. First, a natural question which
arises is whether or not the evolution could throw some data out of the Einstein theory region.
However, then, since reality is preserved, the evolving data should cross the degenerate sector.
Secondly, according to loop quantization, quantum excitations of the gravitational field are
lower dimensional and define degenerate, non-invertible metric tensors (see [1]).

The degenerate data can be classified with respect to the rank of the densitized triad, and
the rank of the squared triad (see the next section). It should be noted that all the considerations
in this paper are local. Our classification of the degeneracy, in particular, applies only to open
regions of the surface of initial data, whereas in a general case the types can vary from one
region to another.

Allthe solutions of the Einstein—Ashtekar equations of tyfie4) and(2, 2) were derived
in[6, 7]. In the first case [6], a general solution is the congruence of the integral curves defined
by the triad and foliatingc which behave likg1 + 1)-dimensional vacuum spacetimes with
a pair of massless complex-valued fields propagating along them. I{2tBg case [7], it
was shown that the preservation of reality by the evolution implies the existence of a foliation
of T into the integral 2-surfaces tangent to a given triad. Analogously to Jacobson’s case,
the equations of3 + 1) gravity make the 2-surfaces behave lifg+ 1)-dimensional empty
spacetimes with an extra massless complex field assigned to each surface and propagating
along it. Animportant observation was that the conditions defining each of the sectors Poisson
commute with the Hamiltonian modulo themselves and the constraints.

Tt Meaning here just the closure of the region minus the region itself.
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In the present paper, the Einstein—Ashtekar equations will be solved for the remaining two
types of degenerate data. In the fi¢t0) case the solution is spacetime which is a ‘set of
independently evolving points’. In the secof®tl 1) case, the general solution is such that the
surface of initial data& is foliated by integral curves of the vector field from the triad. Nine
complex fields evolve along these curves. As in the previously studied cases, it is shown that
the conditions defining each degeneracy sector weakly (in the same sense as above) Poisson
commute with the Hamiltoniant.

Before the systematic study of the Ashtekar equations in the degenerate sector which was
started by Jacobson [6], various aspects of the degenerate sector were discussed, for instance,
by Jacobson and Romano [3], Bengtsson [2], Reisenberger [4] and Matschull [5] (see also
more recent work [9]).

2. Ashtekar’s theory

For the reader’s convenience we shall briefly review Ashtekar’s theory.

It is a canonical theory on a spacetime manif@ldx R, whereX is a 3-real-surface of
initial data (the ‘space’) ank is the one-dimensional space of values for a time parameter.
The phase space consists of the pairs of fiellsE), whereA is an algebra/ (2, C)-valued
1-form onX andE is ans/(2, C)-valued vector density field of weight 1 defined Bn Using
local coordinategx?) = (x1, x2, x3) on = and a basisr;) = (11, 12, 73) 0f 51(2, C) we write

A=Al ®dx, E=E"“"t®0,, 1)

whereA!, E'“ are complex-valued functions ad. We fix the standard bilinear complex-
valued inner product in/ (2, C) by

k(v, w) .= =2tr(vw) (2)

for any v, w € sl(2,C). The variables(A, E) are canonically conjugate, the only non-
vanishing Poisson bracket is

{AL(x), EP ()} = ik 888 (x, ). ®)

Data(A, E) are accompanied by Lagrange multipliers; Aweight densityV (the densitized
lapse function), a vector field/* (the familiar shift) and am/(2, C)-valued functionA, all
defined onz. The Hamiltonian is given by

H =Cy+Cj+Ga, (4)

Cy = /2 d®x NC(A, E) := -1 /E &Bx NF., E/*E* ¢, (5)

Cy :=/2d3xN“Ca(A,E) = —i/ng’x N°Fi, E?, (6)

Ga :=/Ed3x AG'(A,E) ::i/Zde A;D E™, @)
where

Fi=3F,@dx“ Adx’ :==dA+A N A (8)

T Another interesting derivation of our result on the possibility of the evolution of non-degenerate data into degenerate
data was given in [8].
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is the curvature ofi, and

Dawi = Bawi + cijkAgwk 9
is the covariant derivativeu(’ is a function onx). ¢’ ;; are the structure constantssét2, C)
defined by

[z, 7] = ck,-jrk. (10)
The constraint€y, C, Ga generate, respectively, the time evolution, diffeomorphisms of
and the Yang—Mills gauge transformations

Ar— g tAg+ghdg, (11)

E+— g lEg, (12)

whereg is anySL (2, C)-valued function ork.
Apart from the resulting constraint equations, the dataF) are subject to the following
reality conditions:

Im(E“E?) =0, (13)
Im({E"“E?, Ccy}) = 0. (14)

As long as the matrixE'®); ,—1 . 3 is of rank 3 and the signature of the symmetric matrix
(E'a Ef’)a,bzl,g,g is (+, +, +) one constructs ADM data froifti, E) and the Ashtekar theory is
equivalent to the Einstein gravity with the Lorentzian signature. However, the theory naturally
extends to degenerate cases, when the ranks are lower than 3.

Classification of degeneracies.

Since thek field is complex valued, in general the rank of the ‘2-area matrix’ (see, e.g., [7])
(E"“Ef) is lower or equal to the rank of the£’¢) matrix. If we restrict ourselves to the
semi-positive definite case of the 2-area matrix, the possible casé€s, &e (1, 0), (1, 1),
(2, 1), (2, 2) and(3, 3), where the numbers indicate the ranks of the triad matrix and the 2-area
matrix, respectively.

The examples of triad vector fields falling into specific sectors could be as follows:

. ol 0
(O, 0) E == 0, (1, 0) E = ('L'j_ + |T2) ® <ﬁ)’ (1, 1) E =T ® (ﬁ)’

0 0
2,1) E=(r+i — )+ —
2.1 (71 |Tz)®<axl> T3®(8x3>,
0 0
(2s2) E:H@(ﬁ)*ﬁZ@(ﬁ)’
0 0 0
B3 E=u® Il +1,® Py +13® a3 )

3. Sector (1 0)

Sector(1, 0) is defined as the one for which rafk’*) = 1, sign(E™“E?) = (0, 0, 0) at the
surface of initial data&z. In this paragraph the Ashtekar equations for the sedtdd) will

be solved. At the beginning, it is useful to choose a convenient gauge. One may show the
following.
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Lemma 1.
[(E“E? = 0) A (rank(E™) = 1)]
= [3g € SL(2C): g 'Eg = (11 +it2) ® (E™3,)].

Proof. Let us assume that

rank(E'®) = 1, (15)

E“E’ =0. (16)
Equality (15) implies that

E=MQE +un,® E3+13Q E3, (17)

wherex, u are functions ok andE® := E39, # 0.
From (17) and (16) we conclude that

1+A1%+pu%=0. (18)
By the fact given in the appendix we can make a gauge transformation such that In It
can be easily shown that we can transfatrwith real A to

E=N1®E}+unQE®, (19)
with some new real functioi’. It can be done using

cosp, —sing
- < sing,  cos¢ )
with a suitably chosen € R (see the appendix).
From fact 1 it follows that

N2+ u? =0, (20)
henceu = £i)'.
Our field variable takes now the simple form
E=N(r1tin) Q E>. (21)

By another gauge, with
i 0
e=(o %)
we obtain the required form
E=(n1+in) ®E", (22)
which ends the proof. |

Now, let us change the basissi(2, C) to (t+, T_, 19), Wherer, ;= 1y +itp, T_ = 11—l 1,
7o ;= 3. The expression for the field takes the simple form

E=1.QE", (23)
whereE* := E*%9, = E¥9,. Itis easy to calculate that in the new basis
C+—0 = 2i = cp_q], (24)
and
( 0 2 0)
kp=|2 0 0| (25)
0 01

wherei, j =+, —, 0.
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Constraints

The constraint equations read now as follows:

C=0, G =0,

Co=—2i(i(E"F), =0, (26)

G%=-2i(EHA =0, (27)

Gt =10, E* +i(E"HA° =0, (28)
wherei denotes the inner product and we use the conventiomfar A°, to be defined
analogously toE* and F~ := dA™ + (A A A)~. We will also use this convention for the
other components of the field variables.

Since F~ = dA~ —iA~ A A%, the following equality is true, provided the constraint

equations are fulfilled:
i(E") (A" AAT)=i(E"(F" AA™)=(i(ENF)AA+F (i(E")A7) =0.
Hence the 3-formd~ A A~ = 0. Therefore, there exist coordinates®suchthad~ = « dz,
whereq is a function onX andz = x — iy (x, y are two of the three real coordinates B
orz € R (in this case(x, y, 7) are the real coordinates atj.

If « # 0 we can make gauge transformation with= €*%, wherex = —loga. This

givesA~ = dz and leaves the form df unchanged. Indeed, lgt= €™, with » any complex
function onX. We know thatg~! = e~*%. Therefore,

g g =etor e = et (1+arp+ %Azrg +.00)
=e (7, + AtiTg + %)\Zrirz +..0)
= e’“o(ri + AToT+ FidTy + %)\21'01}1’0 F %i)\.zfifo +..4)
= e (7. + AToTy FiATy + %)thgti Firlrory + %(ik)zti ++..0)

— %roe?»(roqti).[i — e]FMT;t
)

g 108 = 10,
g tdg = e d(E™) = e ((dM) 1o+ F([AAD)TF + -+ -) = e (dA) 108" = (dM)To.
We will now solve the constraint equations separately for three possible cases.
@A =dz,z=x—liy,x,y eR.
It follows from (27) that

E" = E+Zi + E*“i
9z ou’

whereu € R, z = x +iy. Since A~ = 0, from (26) and (27) we obtain
i(ENA°=0=¢G"—i3,E™,
hence we need to solve the equation

0, E™ =0. (29)
The general solution of this equation is
E+u — 8abcqu’c’ (30)

whereW is any complex function oit. The conditionE** = 0 gives¥, = &, and
v, = &, with some complex functiord.
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To solve the constraint equations completely we only have to consider the condition
i(ENHA° = 0.
This is a simple algebraic equation faP, providedE* is fixed. To end this discussion,
it should be noted that there are no constraintsAfar
(b) A= =dz,z e R.
From (27) we obtain

E" = E*Xi + E”‘i
ax ay
with (x, y, z) coordinates orE. It is easy to see that we can solve this case in the same
way as we solved point (a). We should only exchangéth x andu with y.
(c) A— =0.
In this caseF~ = 0, hence&Z, = 0. Moreoverg® = 0. We only have to solve

B ET =iE™ AL, (31)

For any givenE™ it is a simple equation foA°. We can see that in this case we have no
constraints orE™ andA*.

Evolution equations

If we take the condition&~ = 0, E° = 0 andA~ — dz = O as the additional constraints, it is
easy to see that they weakly commute with the Hamiltonian so their vanishing is preserved by
the time evolution provided the constraints are satisfied. In particular, the simple fdrisof
preserved by the time evolution. In fact,

E™% = —i(c” 4E "+ E®)(D,E*) =0, (32)

E% = EY(3,E~ +iAYE~" —iA; E™) — E"D,E* = 0. (33)
The gauge fixingA~ = dz is also unchanged by the evolution. Namely,

A; =EF2 —E%F, =0. (34)
The variableE is independent of time:

E* = E*(3,E% + 2iA, E* — 2IA; E~%) — E¥D,E™ = 0. (35)
Moreover,

A =2E*F, —2E7"F} =0, (36)
and

AY = —E"F2 + E¥F} = E™(9,A% — 9,A0 + 2iA7 A}). (37)

In order to calculate all the above time derivatives we used constraint equations. We can show
that the part oo’ tangential taE* is independent of time and the transversal components are
linear functions of time. In fact,

a .
—(EYAY) = E™A* = 2E"E*5,A% = 0.
9t a a [ap]

Hence the right-hand side of (37) is independent of time%\ﬂq = 0. Now, it can be easily
checked that the reality conditions are satisfied identically for the solutions of the constraint
and the evolution equations.
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Summary

We have solved completely th@, O) sector of Ashtekar gravity. The general solution for
this case (for a certain gauge fixing and choice of coordinates) is as follows. TheHields
EC vanish. The fieldE* is given by (30) and vanishing of the component transversadlto
if A= # 0or E*is arbitrary if A~ = 0. A~ is any closed 1-form orE, A is given by
equation (31) andi™ is an arbitrary 1-form. All the fields are constant in time except46r
which is constant in the direction &* and is linear in time in the other directions.

An interesting feature of these solutions is that after imposing certain initial constraints
on the field variables at = 1y, at each point they evolve independently of the other points.
The points ofZ ‘cannot see each other during the evolution’.

4. Sector (21)

Sector(2, 1) is defined by rankE’®) = 2 and signE“E?) = (+,0,0) ats = 1o (on the
surfaceX). The complete local solution of the Ashtekar—Einstein equations in the sector
(2, 1) will be given in the present section. We will start from fixing a gauge freedom and a
useful choice of coordinates.

Lemma 2.
[(sign(E"*E?) = (+,0,0)) A (rank(E) = 2)]
= [3g e SLR,C): g 'Eg=nu®E +1®E° and Ay =0]

whered’ &' ¢~14¢ + ¢~1dg and E is real.

Proof. We assume that
rank(E'®) = 2, (38)
Sign(E"E?) = 1. (39)

Let us choose such a real basis, s, e3) in the tangent space t& that (E“E?) =
diag(0, 0, 1). From the fact in the appendix we conclude that there exists gauge transformation
such that

E = Ekl‘lfk®€1+‘53®€3, (40)

wherek, [ =1, 2.

The rank assumption (38) implies théf = fE!, wheref is a complex function orx.
Equation (39) givesf = +i. The minus sign can be removed in the same way as in (21),
which completes the proof. O

From now on let us use the gauge given by the above lemma. We can make use of the
reality of EC by choosing a convenient coordinate systarh x2, x%) such that

E° (41)

TSN
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Constraints

Constraint equations now read as follows:

C=4E"EYF, =0, (42)
C,=EYF% +2E"F; =0, (43)
Gt =0, E" +i(ATE™ — APE*) =0, (44)
G% = 9,E% +2iA; E* = 0, (45)
G =—iAJE% =0. (46)

Due to (41), equation (46) is solved g = 0. Sinced, E% = 0, equation (45) is equivalent
toAJE*™ =0, or

ATE™ = —AJE* (47)
Equation (42) gives

E™EYF, = —E™93A] — E*?33A, = 0.
Let us assume that*? = 0. Because of (47) we have

A733A; = A, 3347 (48)

If we assumed; # O, this is equivalent to the condition tha, = QA;, whereQ is a
complex function or such that;2 = 0. Thus

A" =A7 (d)c1 +Q (xl, xz) de) (49)
and
0 d d
E'=-QE? — +EZ — +E® 50
ax1t 9x2 9x3 (50)

We know, however, that the coordinate/sandx? can be chosen in such a way that instead of
Q we can puti (if Im # 0) or O (if ImQ = 0). Let us assume then, that from now@n= 0
orQ =i.
In order to solve the constraints completely we have to solve two more equations, namely
(43) and (44). Straightforward calculation shows that

E™F, =—E"8,A; —iE"AJA;,
and
E®FY = —93A% + 2iA- A
Hence (43) gives
2E*3,A; +33A0 = 2iA, (A5 — E™AD).
Substituting (44) into the above equation gives
33A° = —20,(E* A}). (51)

With a givenE* andA~, the above equation describes the dependendé of the coordinate

x3,
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To end the analysis of the constraints we should add (44), which can be treated as the
constraint om}, providedE* and A° are known

Ay =193, E* + A2E™. (52)

Finally, the cas&*! = E*? = 0 should be considered separately. However, the only difference
in the family of solutions for this case is in the form 4f . Now, we have no restrictions on
A7 andAj.

For A] = 0 we obtain from (47) that, = 0 or E*2 = 0, but these cases are included in
the other ones.

Hence we have solved the constraint equations completely for the $2ctor

Evolution

Let us now consider condition~ = 0, E® — 3/9x® = 0, A; = 0 as the new additional
constraints on the initial data. One can show that they commute weakly with the Hamiltonian,
hence they are preserved by the evolution. In fact,

E'-—a — EObabE—a + ig—EOa + iEOhAgE—a _ E—bDbEOa — 0, (53)
E% = 2E"9,E~" — E%3,E® + GPE% — 2iE** AE~" + 2E7"D,E** = 0, (54)
A3 =2E"F, - 2E"F}, = E¥F3 =0. (55)
Moreover, due to constraint equations, we obtain
A; =E"F) —E%F,, = Fp, (56)
thus
i; =0, (57)
A7 = —83A7, (58)
A; = —03A;. (59)

In order to find the evolution of™*, let us first calculate

A} = —EPFL+EYFly = —EYE"F) = —E*C, =0. (60)
Now we have

EY = —ic*j E" (9, E/ + ¢/ y AKE!™), (61)
thus
Eta — E+b8bEOa . EObabEm . 2iAZE_}’E+“ + E+ag0 . 2i(abEOh)E+a

—EYE® A} +iETE® AY,
and since the constraints show t¥ A? = A3 = 0, we obtain

E™ = —83E* —E% A3, (62)
SinceE™ A% does not depend on time, equation (62) can be easily integratdtffar).

We obtain similar equations for the componentg\8f In the same way as in (55) we find
thatA® = FY, hence

A% = —95A0 + 2iA; AL (63)
Again we have a simple linear equation f¥.
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The last thing we need to do to solve the evolution equations completely is to find the
function A* (). Let us calculate

Ab = —E"F2 +EYF} . (64)
This gives
A= —2E" 93, AY — GOA; + (EP) A} + 2AEY AJ AL + 2E% 3, Al + 2iEY A[, A
Using the constraints we obtain

AL = —2E" 3, A+ 2E" A A; + 203A% + 2iA7; A? (65)

al’
thus
Ap = B3AL + 204 E A} — 9,A5 +1A0AS — 2E™ 9, A, (66)

We can see that due to the second term on the right-hand side of the above e4jidépends
on A3 and vice versa. However, we can simplify this equation using the results of constraint
analysis. Let us consider two different possibilities.

(@) EXt=E* =0.
In this caseE*” A} = 0 and we obtain simple linear equations fof and A}, namely
Ab = —83A7 — 8,AL +iA%AL — 2E* g, A° (67)

al*

(b) EX2#£0,E*' = —QE* (Q =0ori).
It is easy to calculate that

) .
&(Ag — QA}) = 93(A5 — QAY) — (02 — QB AL +iAF(AT — QA9

—E* 3, (A — QAY) — (3 — Qay) A)].
Hence we have a simple linear equationfds — 2A7)(r). Substituting2 A7 () + (A3 —

QA7) () for A3(1) in (66) we obtain the linear equation fdr (r). It can be integrated if
A=, E*, A}, A® are known.

This solves the evolution equations. One can see that the reality conditions are satisfied
for all the solutions we have found.

Summary

Let us summarize the general solution of the Ashtekar—Einstein equations in the sector
(2,1). First, we haveE~(r) = 0 andE®(t) = 9/9x3. The fieldsE** propagate along the
integral curves of£° according to equation (62). The componeht€ and E*3 are arbitrary
functions of the ‘spatial’ coordinates (bBt # 0) and the remaining component is given by
E*l = —QE™*2, equation (50)Q = 0 ori). If E*2 £ 0, A~ is given by (49) with the same
Q as above, and i£*? = 0, arbitrary 1-formA~ with A; = 0 is the solution. Fieldsi]
andA, propagate along the integral curvesit at the speed of lightA® is any field which
propagates along the same curvesiasand E* according to equation (63) and depends on
the coordinate® according to equation (51).

The field A3 does not depend on time and is given by equation (32)and A} are any
functions onz with the dependence on time given by (66).

It should be noted that, as in sect@r 2), the characteristic feature of our solutions is the
fact that evolution takes place on the curves, namely the curves definédby= constant.
During the evolution these curves do not interact.
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5. Concluding remarks

As indicated in the introduction, all the possible degenerate sectors of Ashtekar’s gravity have
been solved. They all have certain important features in common.

First of all, the conditions defining the degeneracy sectors commute weakly with the
Hamiltonian. Therefore, if = t¢ corresponds to the surface of initial daathen there is an
& > Osuchthatfor all betweeng andro+¢ the degeneracy type is the same (evolution preserves
the degeneracy locally, where the word ‘local’ refers to both space and time). Hence if the
initial data onX are specified in such a way that all of them belong to the same degeneracy
sector, the generic behaviour will be such that the evolution preserves the character of the
degeneracy. On the other hand, if there are regions avith different types of data then the
above need not be true (see [9]).

The other important feature is that for all the sectors, the surface of initiattliattoliated
by sub-manifolds of dimension equal to the rank of the densitized inverse 3-mgtfion X.
The evolution always takes place in such a way that these sub-manifolds evolve independently.
The time derivatives of the field variables on a fixed leaf of the foliation depend only on the
values of these fields on the leaf and on the derivatives along the degf. decides that
the fields evolve along the surfaces [7], along the curves (séZtdy and [6]), at the points
independently (sectafl, 0)) or do not evolve at all§’* = 0 for all i, a).

Acknowledgments

JL was supported by Alexander von Humboldt-Stiftung and the Polish Committee on Scientific
Research (KBN, grant no 2 PO3B 017 12). JW was supported by the Polish Ministry of
Education and Stefan Batory Trust.

Appendix

Useful fact

Fact 1. Let u?, v/, w' be such vectors inl(2, C) that u'u; = vivy; = w'w; = 1 and
u'v; = u'w; = v'w; = 0. Then, there exists € SL(2, C) such that

g_lug =11, g_lvg = To, g_lwg = 13,

where(z;) is an orthonormal basis is/ (2, C) such thafz;, 7;] = e,jkrk.

Proof. Let us fix

1/0 | 1/i 0 1/0 1
”=§<i o)’ ”:E(o —i ) ’3=§<—1 o)' (A1)

Let us check what transformation is made by

g3 = < ics?ﬁi 'CS(;Z;’ ) e SL(2.C), (A2)
with ¢ € R. Itis easy to calculate that

831183 = CO2¢) 11 — SIN(29) 72, (A3)

83 'T2g3 = SIN(2¢) 71 + COK2¢) o, (A4)

93 1383 = Ta. (A5)
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Hence, choosing propere R we can make any rotation around theaxis in the vector space
sl(2,C).
Analogously we can check that

(€ 0 _ ( cosp —sing
g1—< 0 e‘i"’) and gz—( sing  cosg ) (A6)

give rotations around thg, 1, axes, respectively.
The above fact now follows from the properties of rotations in three-dimensional vector
space. |

Complete set of local solutions for degenerate gravity.

We shall list here the general solutions obtained for all possible kinds of degeneracy which
can potentially occur in Ashtekar’s theory for the Lorentzian signature. The interpretation and
some properties of these solutions are given in the preceding sections.

Sector (0, 0). WhereE™® = 0, A/, are arbitrary, constant in time.

Sector (1,0). E~* =0, E% = 0. There are two possibilities f&* andA~:

(@) A, =0, E™ is arbitrary and constant in time, or

(b) A, = (d2), (z is a real or complex coordinate dd), E* = g%, ., whereV, is
constantin time an&’, = ¢ ,, ¥, = ®_, with ® an arbitrary function ot andz; = 0,
uz= 0.

A% is given byd, E** = iE** A% and A is given byA? = E*?(3,A) — 8,40 + 2iA; A}).

Sector (1, 1).

9\ :
EY = E* =0, E¥=(—]. A5=0,
ax3

where A3 is arbitrary, constant in time and®, A, A2 are given by, (Al +i42) =
+d3(AL £iA2).

Sector (2, 1).

a a
E~* =0, E%Y =(—),
ox3

where E*?, E*®) are arbitrary functions of spatial coordinatés'{ £ 0),
E+1 — —QE+2
(2 =0ori).
If E2+£0,thenA; = A7 (d)cl + dez)a.
If E*2=0, thenA; is an arbitrary function of spatial coordinates wit = 0.
For both casesA] = —93A7 andA, = —d3A;.

A% depends on spatial coordinates accordingst = —29,(E*A7).
A} is constant in time and given by} = i9, E* + APE*4.



Degenerate sectors of the Ashtekar gravity

Evolution of A? is given byA9 = —33A0 + 2iA; A3,
Evolution of E** is determined fronE*® = —d3E** — i E% A},

A7 andAj are arbitrary functions evolving according to
(@) AL = —05A} — 9, AT +iADAL — 2E™P 9, AT,

if E¥1=E™2=0,o0r

3069

9 .
(b) o, (A3 £ QA) = 05(A3 £ QA]) — (9 £ QD AT + iA3(AY £ QA9

—E* 3y (A £ QAY) — (32 £ Qay) A]),
if E*2£0.

Sector (2, 2).

3\ 3\
E¥=(—), E¥ =(—), E% =0,
ax? ox2

i =0, L=0, A= -2, A =1y,

wherea is any complex function satisfying,, — A.11 — A 22 = 0.
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