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Abstract. This work completes the task of solving locally the Einstein–Ashtekar equations for
degenerate data. The two remaining degenerate sectors of the classical(3 + 1)-dimensional theory
are considered. First, with all densitized triad vectors linearly dependent and second, with only
two independent ones. It is shown how to solve the Ashtekar–Einstein equations completely by
suitable gauge fixing and choice of coordinates. Remarkably, the Hamiltonian weakly Poisson
commutes with the conditions defining the sectors. The summary of degenerate solutions is given
in an appendix.

PACS number: 0420

1. Introduction

Einstein’s standard gravity theory corresponds to an open region in the real section of the
Ashtekar theory phase space. The boundary† of that region is set up by degenerate data.
There are several motivations to study the degenerate sector. First, a natural question which
arises is whether or not the evolution could throw some data out of the Einstein theory region.
However, then, since reality is preserved, the evolving data should cross the degenerate sector.
Secondly, according to loop quantization, quantum excitations of the gravitational field are
lower dimensional and define degenerate, non-invertible metric tensors (see [1]).

The degenerate data can be classified with respect to the rank of the densitized triad, and
the rank of the squared triad (see the next section). It should be noted that all the considerations
in this paper are local. Our classification of the degeneracy, in particular, applies only to open
regions of the surface of initial data, whereas in a general case the types can vary from one
region to another.

All the solutions of the Einstein–Ashtekar equations of types(1, 1) and(2, 2)were derived
in [6, 7]. In the first case [6], a general solution is the congruence of the integral curves defined
by the triad and foliating6 which behave like(1 + 1)-dimensional vacuum spacetimes with
a pair of massless complex-valued fields propagating along them. In the(2, 2) case [7], it
was shown that the preservation of reality by the evolution implies the existence of a foliation
of 6 into the integral 2-surfaces tangent to a given triad. Analogously to Jacobson’s case,
the equations of(3 + 1) gravity make the 2-surfaces behave like(2 + 1)-dimensional empty
spacetimes with an extra massless complex field assigned to each surface and propagating
along it. An important observation was that the conditions defining each of the sectors Poisson
commute with the Hamiltonian modulo themselves and the constraints.

† Meaning here just the closure of the region minus the region itself.
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In the present paper, the Einstein–Ashtekar equations will be solved for the remaining two
types of degenerate data. In the first(1, 0) case the solution is spacetime which is a ‘set of
independently evolving points’. In the second(2, 1) case, the general solution is such that the
surface of initial data6 is foliated by integral curves of the vector field from the triad. Nine
complex fields evolve along these curves. As in the previously studied cases, it is shown that
the conditions defining each degeneracy sector weakly (in the same sense as above) Poisson
commute with the Hamiltonian†.

Before the systematic study of the Ashtekar equations in the degenerate sector which was
started by Jacobson [6], various aspects of the degenerate sector were discussed, for instance,
by Jacobson and Romano [3], Bengtsson [2], Reisenberger [4] and Matschull [5] (see also
more recent work [9]).

2. Ashtekar’s theory

For the reader’s convenience we shall briefly review Ashtekar’s theory.
It is a canonical theory on a spacetime manifold6 × R, where6 is a 3-real-surface of

initial data (the ‘space’) andR is the one-dimensional space of values for a time parameter.
The phase space consists of the pairs of fields(A,E), whereA is an algebrasl(2,C)-valued
1-form on6 andE is ansl(2,C)-valued vector density field of weight 1 defined on6. Using
local coordinates(xa) = (x1, x2, x3) on6 and a basis(τi) = (τ1, τ2, τ3) of sl(2,C) we write

A = Aiaτi ⊗ dxa, E = Eiaτi ⊗ ∂a, (1)

whereAia, E
ia are complex-valued functions on6. We fix the standard bilinear complex-

valued inner product insl(2,C) by

k(v,w) := −2 tr(vw) (2)

for any v,w ∈ sl(2,C). The variables(A,E) are canonically conjugate, the only non-
vanishing Poisson bracket is

{Aia(x), Ejb(y)} = ikij δbaδ(x, y). (3)

Data(A,E) are accompanied by Lagrange multipliers, a−1 weight densityN (the densitized
lapse function), a vector fieldNa (the familiar shift) and ansl(2,C)-valued function3, all
defined on6. The Hamiltonian is given by

H = CN + C EN + G3, (4)

CN :=
∫
6

d3x NC(A,E) := − 1
2

∫
6

d3x NF iabE
jaEkbcijk, (5)

C EN :=
∫
6

d3x NaCa(A,E) := −i
∫
6

d3x NaF iabE
b
i , (6)

G3 :=
∫
6

d3x 3iGi (A,E) := i
∫
6

d3x 3iDaE
ia, (7)

where

F := 1
2F

i
abτi ⊗ dxa ∧ dxb := dA +A ∧ A (8)

† Another interesting derivation of our result on the possibility of the evolution of non-degenerate data into degenerate
data was given in [8].
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is the curvature ofA, and

Daw
i := ∂awi + cijkA

j
aw

k (9)

is the covariant derivative (wi is a function on6). cijk are the structure constants ofsl(2,C)
defined by

[τi, τj ] = ckij τk. (10)

The constraintsCN , C EN , G3 generate, respectively, the time evolution, diffeomorphisms of6

and the Yang–Mills gauge transformations

A 7−→ g−1Ag + g−1 dg, (11)

E 7−→ g−1Eg, (12)

whereg is anySL(2,C)-valued function on6.
Apart from the resulting constraint equations, the data(A,E) are subject to the following

reality conditions:

Im(EiaEbi ) = 0, (13)

Im({EiaEbi , CN }) = 0. (14)

As long as the matrix(Eia)i,a=1,2,3 is of rank 3 and the signature of the symmetric matrix
(EiaEbi )a,b=1,2,3 is (+,+,+) one constructs ADM data from(A,E) and the Ashtekar theory is
equivalent to the Einstein gravity with the Lorentzian signature. However, the theory naturally
extends to degenerate cases, when the ranks are lower than 3.

Classification of degeneracies.

Since theE field is complex valued, in general the rank of the ‘2-area matrix’ (see, e.g., [7])
(EiaEbi ) is lower or equal to the rank of the(Eia) matrix. If we restrict ourselves to the
semi-positive definite case of the 2-area matrix, the possible cases are(0, 0), (1, 0), (1, 1),
(2, 1), (2, 2) and(3, 3), where the numbers indicate the ranks of the triad matrix and the 2-area
matrix, respectively.

The examples of triad vector fields falling into specific sectors could be as follows:

(0, 0) E = 0, (1, 0) E = (τ1 + iτ2)⊗
(
∂

∂x1

)
, (1, 1) E = τ1⊗

(
∂

∂x1

)
,

(2, 1) E = (τ1 + iτ2)⊗
(
∂

∂x1

)
+ τ3⊗

(
∂

∂x3

)
,

(2, 2) E = τ1⊗
(
∂

∂x1

)
+ τ2⊗

(
∂

∂x2

)
,

(3, 3) E = τ1⊗
(
∂

∂x1

)
+ τ2⊗

(
∂

∂x2

)
+ τ3⊗

(
∂

∂x3

)
.

3. Sector (1, 0)

Sector(1, 0) is defined as the one for which rank
(
Eia

) = 1, sign
(
EiaEbi

) = (0, 0, 0) at the
surface of initial data6. In this paragraph the Ashtekar equations for the sector(1, 0) will
be solved. At the beginning, it is useful to choose a convenient gauge. One may show the
following.
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Lemma 1.[(
EiaEbi = 0

) ∧ (rank
(
Eia

) = 1
)]

⇒ [∃g ∈ SL(2,C): g−1Eg = (τ1 + iτ2)⊗
(
E1a∂a

)]
.

Proof. Let us assume that

rank(Eia) = 1, (15)

EiaEbi = 0. (16)

Equality (15) implies that

E = λτ1⊗ E3 +µτ2⊗ E3 + τ3⊗ E3, (17)

whereλ,µ are functions on6 andE3 := E3a∂a 6= 0.
From (17) and (16) we conclude that

1 +λ2 +µ2 = 0. (18)

By the fact given in the appendix we can make a gauge transformation such that Imλ = 0. It
can be easily shown that we can transformE with realλ to

E = λ′τ1⊗ E3 +µτ2⊗ E3, (19)

with some new real functionλ′. It can be done using

g =
(

cosφ, − sinφ
sinφ, cosφ

)
with a suitably chosenφ ∈ R (see the appendix).

From fact 1 it follows that

λ′ 2 +µ2 = 0, (20)

henceµ = ±iλ′.
Our field variable takes now the simple form

E = λ′(τ1± iτ2)⊗ E3. (21)

By another gauge, with

g =
(

i 0
0 −i

)
,

we obtain the required form

E = (τ1 + iτ2)⊗ E+, (22)

which ends the proof. �
Now, let us change the basis insl(2,C) to (τ+, τ−, τ0), whereτ+ := τ1+iτ2, τ− := τ1− iτ2,

τ0 := τ3. The expression for the fieldE takes the simple form

E = τ+ ⊗ E+, (23)

whereE+ := E+a∂a = E1a∂a. It is easy to calculate that in the new basis

c+−0 = 2i = c[+−0], (24)

and

(kij ) =
 0 2 0

2 0 0
0 0 1

, (25)

wherei, j = +,−, 0.
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Constraints

The constraint equations read now as follows:

C ≡ 0, G− ≡ 0,

Ca = −2i
(
i(E+)F−

)
a
= 0, (26)

G0 = −2i(E+)A− = 0, (27)

G+ = i∂aE
+a + i(E+)A0 = 0, (28)

where i denotes the inner product and we use the convention forA−, A0, to be defined
analogously toE+ andF− := dA− + (A ∧ A)−. We will also use this convention for the
other components of the field variables.

SinceF− = dA− − iA− ∧ A0, the following equality is true, provided the constraint
equations are fulfilled:

i(E+)
(
dA− ∧ A−) = i(E+)

(
F− ∧ A−) = (i(E+)F−

) ∧ A− + F−
(
i(E+)A−

) = 0.

Hence the 3-form dA−∧A− = 0. Therefore, there exist coordinates on6 such thatA− = α dz̄,
whereα is a function on6 andz̄ = x − iy (x, y are two of the three real coordinates on6)
or z̄ ∈ R (in this case(x, y, z̄) are the real coordinates on6).

If α 6= 0 we can make gauge transformation withg = eiλτ3, whereλ = − logα. This
givesA− = dz̄ and leaves the form ofE unchanged. Indeed, letg = eλτ0, with λ any complex
function on6. We know thatg−1 = e−λτ0. Therefore,

g−1τ±g = e−λτ0τ±eλτ0 = e−λτ0τ±(1 +λτ0 + 1
2λ

2τ 2
0 + · · ·)

= e−λτ0(τ± + λτ±τ0 + 1
2λ

2τ±τ 2
0 + · · ·)

= e−λτ0(τ± + λτ0τ± ∓ iλτ± + 1
2λ

2τ0τ±τ0 ∓ 1
2iλ2τ±τ0 + · · ·)

= e−λτ0(τ± + λτ0τ± ∓ iλτ± + 1
2λ

2τ 2
0 τ± ∓ iλ2τ0τ± + 1

2(iλ)
2τ± ± + · · ·)

= e−λτ0eλ(τ0∓i)τ± = e∓λiτ±,

g−1τ0g = τ0,

g−1 dg = e−λτ0 d(eλτ0) = e−λτ0
(
(dλ)τ0 + 1

2(dλ
2)τ 2

0 + · · ·) = e−λτ0(dλ)τ0eλτ0 = (dλ)τ0.

We will now solve the constraint equations separately for three possible cases.

(a) A− = dz̄, z̄ = x − iy, x, y ∈ R.
It follows from (27) that

E+ = E+z ∂

∂z
+E+u ∂

∂u
,

whereu ∈ R, z = x + iy. Since dA− = 0, from (26) and (27) we obtain

i(E+)A0 = 0= G+ − i∂aE
+a,

hence we need to solve the equation

∂aE
+a = 0. (29)

The general solution of this equation is

E+a = εabc9b,c, (30)

where9 is any complex function on6. The conditionE+z̄ = 0 gives9z = 8,u and
9u = 8,z with some complex function8.
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To solve the constraint equations completely we only have to consider the condition

i(E+)A0 = 0.

This is a simple algebraic equation forA0, providedE+ is fixed. To end this discussion,
it should be noted that there are no constraints forA+.

(b) A− = dz̄, z̄ ∈ R.
From (27) we obtain

E+ = E+x ∂

∂x
+E+y ∂

∂y

with (x, y, z̄) coordinates on6. It is easy to see that we can solve this case in the same
way as we solved point (a). We should only exchangez with x andu with y.

(c) A− = 0.
In this caseF− = 0, henceCa ≡ 0. Moreover,G0 ≡ 0. We only have to solve

∂aE
+a = iE+aA0

a. (31)

For any givenE+ it is a simple equation forA0. We can see that in this case we have no
constraints onE+ andA+.

Evolution equations

If we take the conditionsE− = 0,E0 = 0 andA− − dz̄ = 0 as the additional constraints, it is
easy to see that they weakly commute with the Hamiltonian so their vanishing is preserved by
the time evolution provided the constraints are satisfied. In particular, the simple form ofE is
preserved by the time evolution. In fact,

Ė−a = −i(c−−kE−b + c−0kE
0b)(DbE

ka) = 0, (32)

Ė0a = E+b(∂bE
−a + iA0

bE
−a − iA−b E

0a)− E−bDbE
+a = 0. (33)

The gauge fixingA− = dz̄ is also unchanged by the evolution. Namely,

Ȧ−a = E−aF 0
ba − E0aF−ba = 0. (34)

The variableE is independent of time:

Ė+a = E+b(∂bE
0a + 2iA−b E

+a − 2iA+
bE
−a)− E0bDbE

+a = 0. (35)

Moreover,

Ȧ0
a = 2E+bF−ba − 2E−bF +

ba = 0, (36)

and

Ȧ+
a = −E+bF 0

ba +E0bF +
ba = E+b(∂aA

0
b − ∂bA0

a + 2iA−a A
+
b). (37)

In order to calculate all the above time derivatives we used constraint equations. We can show
that the part ofA+

a tangential toE+a is independent of time and the transversal components are
linear functions of time. In fact,

∂

∂t
(E+aA+

a) = E+aȦ+
a = 2E+aE+b∂[aA

0
b] = 0.

Hence the right-hand side of (37) is independent of time and∂
∂t
Ȧ+
a = 0. Now, it can be easily

checked that the reality conditions are satisfied identically for the solutions of the constraint
and the evolution equations.
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Summary

We have solved completely the(1, 0) sector of Ashtekar gravity. The general solution for
this case (for a certain gauge fixing and choice of coordinates) is as follows. The fieldsE−,
E0 vanish. The fieldE+ is given by (30) and vanishing of the component transversal toA−

if A− 6= 0 or E+ is arbitrary ifA− = 0. A− is any closed 1-form on6, A0 is given by
equation (31) andA+ is an arbitrary 1-form. All the fields are constant in time except forA+

which is constant in the direction ofE+ and is linear in time in the other directions.
An interesting feature of these solutions is that after imposing certain initial constraints

on the field variables att = t0, at each point they evolve independently of the other points.
The points of6 ‘cannot see each other during the evolution’.

4. Sector (2, 1)

Sector(2, 1) is defined by rank
(
Eia

) = 2 and sign
(
EiaEbi

) = (+, 0, 0) at t = t0 (on the
surface6). The complete local solution of the Ashtekar–Einstein equations in the sector
(2, 1) will be given in the present section. We will start from fixing a gauge freedom and a
useful choice of coordinates.

Lemma 2.[(
sign

(
EiaEbi

) = (+, 0, 0)) ∧ (rank
(
Eia

) = 2
)]

⇒ [∃g ∈ SL(2,C): g−1Eg = τ+ ⊗ E+ + τ0⊗ E0 and A′ 03 = 0
]
,

whereA′ def= g−1Ag + g−1 dg andE0 is real.

Proof. We assume that

rank(Eia) = 2, (38)

sign(EiaEbi ) = 1. (39)

Let us choose such a real basis(e1, e2, e3) in the tangent space to6 that (EiaEbi ) =
diag(0, 0, 1). From the fact in the appendix we conclude that there exists gauge transformation
such that

E = Eklτk ⊗ el + τ3⊗ e3, (40)

wherek, l = 1, 2.
The rank assumption (38) implies thatE2 = fE1, wheref is a complex function on6.

Equation (39) givesf = ±i. The minus sign can be removed in the same way as in (21),
which completes the proof. �

From now on let us use the gauge given by the above lemma. We can make use of the
reality ofE0 by choosing a convenient coordinate system(x1, x2, x3) such that

E0 = ∂

∂x3
. (41)
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Constraints

Constraint equations now read as follows:

C = 4iE+aE0bF−ab = 0, (42)

Ca = E0bF 0
ab + 2E+bF−ab = 0, (43)

G+ = ∂aE+a + i(A+
aE

0a − A0
aE

+a) = 0, (44)

G0 = ∂aE0a + 2iA−a E
+a = 0, (45)

G− = −iA−a E
0a = 0. (46)

Due to (41), equation (46) is solved byA−3 = 0. Since∂aE0a = 0, equation (45) is equivalent
toA−a E

+a = 0, or

A−1E
+1 = −A−2E+2. (47)

Equation (42) gives

E+aE0bF−ab = −E+1∂3A
−
1 − E+2∂3A

−
2 = 0.

Let us assume thatE+2 6= 0. Because of (47) we have

A−1 ∂3A
−
2 = A−2 ∂3A

−
1 . (48)

If we assumeA−1 6= 0, this is equivalent to the condition thatA−2 = �A−1 , where� is a
complex function on6 such that∂3� = 0. Thus

A− = A−1
(
dx1 +�

(
x1, x2

)
dx2

)
(49)

and

E+ = −�E+2 ∂

∂x1
+E+2 ∂

∂x2
+E+3 ∂

∂x3
. (50)

We know, however, that the coordinatesx1 andx2 can be chosen in such a way that instead of
� we can put i (if Im� 6= 0) or 0 (if Im� = 0). Let us assume then, that from now on� = 0
or� = i.

In order to solve the constraints completely we have to solve two more equations, namely
(43) and (44). Straightforward calculation shows that

E+bF−ab = −E+b∂bA
−
a − iE+bA0

bA
−
a ,

and

E0bF 0
ab = −∂3A

0
a + 2iA−a A

+
3.

Hence (43) gives

2E+b∂bA
−
a + ∂3A

0
a = 2iA−a (A

+
3 − E+bA0

b).

Substituting (44) into the above equation gives

∂3A
0
a = −2∂b(E

+bA−a ). (51)

With a givenE+ andA−, the above equation describes the dependence ofA0 on the coordinate
x3.



Degenerate sectors of the Ashtekar gravity 3065

To end the analysis of the constraints we should add (44), which can be treated as the
constraint onA+

3, providedE+ andA0 are known

A+
3 = i∂aE

+a +A0
aE

+a. (52)

Finally, the caseE+1 = E+2 = 0 should be considered separately. However, the only difference
in the family of solutions for this case is in the form ofA−. Now, we have no restrictions on
A−1 andA−2 .

ForA−1 = 0 we obtain from (47) thatA−2 = 0 orE+2 = 0, but these cases are included in
the other ones.

Hence we have solved the constraint equations completely for the sector(2, 1).

Evolution

Let us now consider conditionsE− = 0, E0 − ∂/∂x3 = 0, A−3 = 0 as the new additional
constraints on the initial data. One can show that they commute weakly with the Hamiltonian,
hence they are preserved by the evolution. In fact,

Ė−a = E0b∂bE
−a + iG−E0a + iE0bA0

bE
−a − E−bDbE

0a = 0, (53)

Ė0a = −2E+b∂bE
−a − E0a∂bE

0b + G0E0a − 2iE+bA0
bE
−a + 2E−bDbE

+a = 0, (54)

Ȧ0
3 = 2E+bF−b3− 2E−bF +

b3 = E0bF 0
3b = 0. (55)

Moreover, due to constraint equations, we obtain

Ȧ−a = E−bF 0
ba − E0bF−ba = F−a3, (56)

thus

Ȧ−3 = 0, (57)

Ȧ−1 = −∂3A
−
1 , (58)

Ȧ−2 = −∂3A
−
2 . (59)

In order to find the evolution ofE+, let us first calculate

Ȧ+
3 = −E+bF 0

b3 +E0bF +
b3 = −E0aE+bF 0

ba = −E+bCb = 0. (60)

Now we have

Ė+a = −ic+
ijE

ib(∂bE
ja + cj klA

k
bE

la), (61)

thus

Ė+a = E+b∂bE
0a − E0b∂bE

+a − 2iA+
bE
−bE+a +E+aG0 − 2i(∂bE

0b)E+a

−iE0aE0bA+
b + iE+aE0bA0

b,

and since the constraints show thatE0bA0
b = A0

3 = 0, we obtain

Ė+a = −∂3E
+a − iE0aA+

3. (62)

SinceE0aA+
3 does not depend on time, equation (62) can be easily integrated forE+a(t).

We obtain similar equations for the components ofA0. In the same way as in (55) we find
thatȦ0

a = F 0
a3, hence

Ȧ0
a = −∂3A

0
a + 2iA−a A

+
3. (63)

Again we have a simple linear equation forA0.
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The last thing we need to do to solve the evolution equations completely is to find the
functionA+(t). Let us calculate

Ȧ+
a = −E+bF 0

ba +E0bF +
ba. (64)

This gives

Ȧ+
a = −2E+b∂[bA

0
a] − G0A+

a + (∂bE
0b)A+

a + 2iE+bA+
bA
−
a + 2E0b∂[bA

+
a] + 2iE0bA+

[bA
0
a] .

Using the constraints we obtain

Ȧ+
a = −2E+b∂[bA

0
a] + 2iE+bA+

bA
−
a + 2∂[3A

+
a] + 2iA+

[3A
0
a], (65)

thus

Ȧ+
a = ∂3A

+
a + 2iA−a E

+bA+
b − ∂aA+

3 + iA0
aA

+
3 − 2E+b∂[bA

0
a] . (66)

We can see that due to the second term on the right-hand side of the above equationA+
1 depends

onA+
2 and vice versa. However, we can simplify this equation using the results of constraint

analysis. Let us consider two different possibilities.

(a) E+1 = E+2 = 0.
In this caseE+bA+

b = 0 and we obtain simple linear equations forA+
1 andA+

2, namely

Ȧ+
a = −∂3A

+
a − ∂aA+

3 + iA0
aA

+
3 − 2E+b∂[bA

0
a] . (67)

(b) E+2 6= 0,E+1 = −�E+2 (� = 0 or i).
It is easy to calculate that

∂

∂t
(A+

2 −�A+
1) = ∂3(A

+
2 −�A+

1)− (∂2 −�∂1)A
+
3 + iA+

3(A
0
2 −�A0

1)

−E+b
[
∂b
(
A0

2 −�A0
1

)− (∂2 −�∂1) A
0
b

]
.

Hence we have a simple linear equation for(A+
2−�A+

1)(t). Substituting�A+
1(t)+ (A

+
2−

�A+
1)(t) for A+

2(t) in (66) we obtain the linear equation forA+
1(t). It can be integrated if

A−, E+, A+
3, A0 are known.

This solves the evolution equations. One can see that the reality conditions are satisfied
for all the solutions we have found.

Summary

Let us summarize the general solution of the Ashtekar–Einstein equations in the sector
(2, 1). First, we haveE−(t) = 0 andE0(t) = ∂/∂x3. The fieldsE+a propagate along the
integral curves ofE0 according to equation (62). The componentsE+2 andE+3 are arbitrary
functions of the ‘spatial‘ coordinates (butE+3 6= 0) and the remaining component is given by
E+1 = −�E+2, equation (50) (� = 0 or i). If E+2 6= 0,A− is given by (49) with the same
� as above, and ifE+2 = 0, arbitrary 1-formA− with A−3 = 0 is the solution. FieldsA−1
andA−2 propagate along the integral curves ofE0 at the speed of light.A0 is any field which
propagates along the same curves asA− andE+ according to equation (63) and depends on
the coordinatex3 according to equation (51).

The fieldA+
3 does not depend on time and is given by equation (52).A+

1 andA+
2 are any

functions on6 with the dependence on time given by (66).
It should be noted that, as in sector(2, 2), the characteristic feature of our solutions is the

fact that evolution takes place on the curves, namely the curves defined byx1, x2 = constant.
During the evolution these curves do not interact.
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5. Concluding remarks

As indicated in the introduction, all the possible degenerate sectors of Ashtekar’s gravity have
been solved. They all have certain important features in common.

First of all, the conditions defining the degeneracy sectors commute weakly with the
Hamiltonian. Therefore, ift = t0 corresponds to the surface of initial data6, then there is an
ε > 0 such that for allt betweent0 andt0+ε the degeneracy type is the same (evolution preserves
the degeneracy locally, where the word ‘local’ refers to both space and time). Hence if the
initial data on6 are specified in such a way that all of them belong to the same degeneracy
sector, the generic behaviour will be such that the evolution preserves the character of the
degeneracy. On the other hand, if there are regions on6 with different types of data then the
above need not be true (see [9]).

The other important feature is that for all the sectors, the surface of initial data6 is foliated
by sub-manifolds of dimension equal to the rank of the densitized inverse 3-metricqqab on6.
The evolution always takes place in such a way that these sub-manifolds evolve independently.
The time derivatives of the field variables on a fixed leaf of the foliation depend only on the
values of these fields on the leaf and on the derivatives along the leaf.qqab decides that
the fields evolve along the surfaces [7], along the curves (sector(2, 1) and [6]), at the points
independently (sector(1, 0)) or do not evolve at all (Eia = 0 for all i, a).
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Appendix

Useful fact

Fact 1. Let ui , vi , wi be such vectors insl(2,C) that uiui = vivi = wiwi = 1 and
uivi = uiwi = viwi = 0. Then, there existsg ∈ SL(2,C) such that

g−1ug = τ1, g−1vg = τ2, g−1wg = τ3,

where(τi) is an orthonormal basis insl(2,C) such that[τi, τj ] = εij kτk.

Proof. Let us fix

τ1 = 1

2

(
0 i
i 0

)
, τ2 = 1

2

(
i 0
0 −i

)
, τ3 = 1

2

(
0 1
−1 0

)
. (A1)

Let us check what transformation is made by

g3 =
(

cosφ i sinφ
i sinφ cosφ

)
∈ SL(2,C), (A2)

with φ ∈ R. It is easy to calculate that

g−1
3 τ1g3 = cos(2φ)τ1− sin(2φ)τ2, (A3)

g−1
3 τ2g3 = sin(2φ)τ1 + cos(2φ)τ2, (A4)

g−1
3 τ3g3 = τ3. (A5)
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Hence, choosing properφ ∈ Rwe can make any rotation around theτ3-axis in the vector space
sl(2,C).

Analogously we can check that

g1 =
(

eiφ 0
0 e−iφ

)
and g2 =

(
cosφ − sinφ
sinφ cosφ

)
(A6)

give rotations around theτ1, τ2 axes, respectively.
The above fact now follows from the properties of rotations in three-dimensional vector

space. �

Complete set of local solutions for degenerate gravity.

We shall list here the general solutions obtained for all possible kinds of degeneracy which
can potentially occur in Ashtekar’s theory for the Lorentzian signature. The interpretation and
some properties of these solutions are given in the preceding sections.

Sector (0, 0). WhereEia = 0,Aia are arbitrary, constant in time.

Sector (1, 0). E−a = 0,E0a = 0. There are two possibilities forE+ andA−:

(a) A−a = 0,E+a is arbitrary and constant in time, or
(b) A−a = (dz̄)a (z̄ is a real or complex coordinate on6), E+a = εabc9b,c, where9a is

constant in time and9z = 8,u,9u = 8,z with8 an arbitrary function on6 andz,z̄ = 0,
u,z̄ = 0.

A0
a is given by∂aE+a = iE+aA0

a andA+
a is given byȦ+

a = E+b(∂aA
0
b − ∂bA0

a + 2iA−a A
+
b).

Sector (1, 1).

E1a = E2a = 0, E3a =
(
∂

∂x3

)a
, Ai3 = 0,

whereA3
a is arbitrary, constant in time andx3, A1

a, A
2
a are given by∂t (A1

a ± iA2
a) =

±∂3(A
1
a ± iA2

a).

Sector (2, 1).

E−a = 0, E0a =
(
∂

∂x3

)a
,

where (E+2, E+3) are arbitrary functions of spatial coordinates (E+3 6= 0),

E+1 = −�E+2

(� = 0 or i).

If E+2 6= 0, thenA−a = A−1
(
dx1 +� dx2

)
a
.

If E+2 = 0, thenA−a is an arbitrary function of spatial coordinates withA−3 = 0.

For both cases:̇A−1 = −∂3A
−
1 andȦ−2 = −∂3A

−
2 .

A0
a depends on spatial coordinates according to∂3A

0
a = −2∂b(E+bA−a ).

A+
3 is constant in time and given byA+

3 = i∂aE+a +A0
aE

+a.
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Evolution ofA0
a is given byȦ0

a = −∂3A
0
a + 2iA−a A

+
3.

Evolution ofE+a is determined fromĖ+a = −∂3E
+a − iE0aA+

3.

A+
1 andA+

2 are arbitrary functions evolving according to

(a) Ȧ+
a = −∂3A

+
a − ∂aA+

3 + iA0
aA

+
3 − 2E+b∂[bA

0
a],

if E+1 = E+2 = 0, or

(b)
∂

∂t
(A+

2 ±�A+
1) = ∂3(A

+
2 ±�A+

1)− (∂2 ±�∂1)A
+
3 + iA+

3(A
0
2 ±�A0

1)

−E+b
[
∂b
(
A0

2 ±�A0
1

)− (∂2 ±�∂1) A
0
b

]
,

if E+2 6= 0.

Sector (2, 2).

E1a =
(
∂

∂x1

)a
, E2a =

(
∂

∂x2

)a
, E3a = 0,

Ai1 = 0, Ai2 = 0, A1
3 = −λ,2, A2

3 = λ,1, A3
3 = iλ,t ,

whereλ is any complex function satisfyingλ,tt − λ,11− λ,22 = 0.
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