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Second-order rotational effects on ther-modes of neutron stars
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Techniques are developed here for evaluating ther-modes of rotating neutron stars through second order in
the angular velocity of the star. Second-order corrections to the frequencies and eigenfunctions for these modes
are evaluated for neutron star models. The second-order eigenfunctions for these modes are determined here by
solving an unusual inhomogeneous hyperbolic boundary-value problem. The numerical techniques developed
to solve this unusual problem are somewhat non-standard and may well be of interest beyond the particular
application here. The bulk-viscosity coupling to ther-modes, which appears first at second order, is evaluated.
The bulk-viscosity time scales are found here to be longer than previous estimates for normal neutron stars, but
shorter than previous estimates for strange stars. These new time scales do not substantially affect the current
picture of the gravitational radiation driven instability of ther-modes either for neutron stars or for strange
stars.@S0556-2821~99!01518-0#

PACS number~s!: 04.40.Dg, 04.30.Db, 97.10.Sj, 97.60.Jd
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I. INTRODUCTION

Recently ther-modes have been found to play an intere
ing and important role in the evolution of hot young rapid
rotating neutron stars. Andersson@1# and Friedman and Mor
sink @2# were the first to show that gravitational radiatio
tends to drive ther-modes unstable in all rotating stars. Lin
blom, Owen, and Morsink@3# then showed that the couplin
of gravitational radiation to ther-modes is sufficiently strong
to overcome internal fluid dissipation effects and so dr
these modes unstable in hot young neutron stars. This re
has been verified by Andersson, Kokkotas, and Schutz@4#.
This result seemed somewhat surprising at first because
dominant coupling of gravitational radiation to ther-modes
is through the current multipoles rather than the more fam
iar and usually dominant mass multipoles. But it is now ge
erally accepted that gravitational radiation does drive
stable any hot young neutron star with angular veloc
greater than about 5% of the maximum~the angular velocity
where mass shedding occurs!. This instability therefore pro-
vides a natural explanation for the lack of observed very
pulsars associated with young supernova remnants.

The r-mode instability is also interesting as a possib
source of gravitational radiation. In the first few minutes
ter the formation of a hot young rapidly rotating neutron s
in a supernova, gravitational radiation will increase the a
plitude of the r-mode ~with spherical harmonic indexm
52) to levels where non-linear hydrodynamic effects b
come important in determining its subsequent evoluti
While the non-linear evolution of these modes is not w
understood as yet, Owenet al. @5# have developed a simpl
non-linear evolution model to describe it approximate
This model predicts that within about one year the neut
0556-2821/99/60~6!/064006~13!/$15.00 60 0640
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star spins down~and cools down! to an angular velocity~and
temperature! low enough that the instability is again sup
pressed by internal fluid dissipation. All of the excess an
lar momentum of the neutron star is radiated away via gra
tational radiation. Owenet al. @5# estimate the detectability
of the gravitational waves emitted during this spindown, a
find that neutron stars spinning down in this manner may
detectable by the second-generation~‘‘enhanced’’! LIGO in-
terferometers out to the Virgo cluster. Bildsten@6# and
Andersson, Kokkotas, and Stergioulas@7# have raised the
possibility that ther-mode instability may also operate i
older colder neutron stars spun up by accretion in low-m
x-ray binaries. The gravitational waves emitted by some
these systems~e.g. Sco X-1! may also be detectable by en
hanced LIGO@8#. Thus, ther-modes of rapidly rotating neu
tron stars have become a topic of considerable interes
relativistic astrophysics.

The purpose of this paper is to explore further the pro
erties of ther-modes of rotating neutron stars. The initi
analyses of ther-mode instability@1–3# were based on a
small angular-velocity expansion for these modes develo
originally by Papaloizou and Pringle@9#. This expansion in
powers of the angular velocity kept only the lowest-ord
terms in the expressions for the various quantities associ
with the mode: the frequency, velocity perturbation, etc. T
lowest-order expansion is sufficient to explore many of
interesting physical properties of these modes, including
gravitational radiation instability. However, some importa
physical quantities vanish at lowest order and hence
second-order analysis is needed@10#. For example the cou-
pling of ther-modes to bulk viscosity vanishes in the lowes
order expansion. Estimates of this important bulk-viscos
coupling to the r-modes have been given by Lindblom
©1999 The American Physical Society06-1
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Owen, and Morsink@3#, Andersson, Kokkotas, and Schu
@4,11#, and Kokkotas and Stergioulas@12#. But ~as discussed
in more detail in Sec. VI below! none of these is based o
the fully self-consistent second-order calculation needed
evaluate this coupling properly. Since bulk viscosity is e
pected to be the dominant internal fluid dissipation mec
nism in hot young neutron stars, it is important to extend
analysis so that this important physical effect can be ev
ated accurately.

The dominant internal fluid dissipation mechanism
neutron stars colder than about 109 K is thought to be a
superfluid effect called mutual friction@13# caused by the
scattering of electrons off the magnetic fields in the cores
vortices. Levin@14# has shown that the importance of th
r-mode instability in low-mass x-ray binaries depends c
cially on the details of the mutual friction damping of the
modes. Unfortunately the mutual friction dissipation al
vanishes at lowest order in a small angular velocity exp
sion of the superfluidr-modes. Thus in order to evaluate th
effect properly, it is also necessary to determine the struc
of the r-modes of superfluid neutron stars through seco
order in the angular velocity. This provides another motiv
tion then for developing the tools needed to evaluate
second-order rotational effects in ther-modes.

In this paper we develop a new formalism for explori
the higher-order rotational effects in ther-modes. Our analy-
sis is based on the two-potential formalism@15# in which all
physical properties of a mode of a rotating star are expres
in terms of two scalar potentials: a hydrodynamic poten
dU and the gravitational potentialdF. We define a small
angular velocity expansion for ther-modes in terms of thes
potentials, and derive the equations explicitly for the seco
order terms. This expansion provides a straightforward
relatively simple way to determine the second-order effe
such as the bulk viscosity coupling, which are of interest
us here. The equations that determine the second-order t
in the r-modes form an inhomogeneous hyperbolic bound
value problem that is not amenable to solution by stand
numerical techniques. Therefore we have developed new
merical techniques which could well have applications
yond the present problem. In particular these techniques
also be needed to solve the analogous superfluid pulsa
equations that determine the effects of mutual friction
these modes.

The time scales derived here for the bulk viscosity dam
ing of ther-modes differ considerably from earlier estimate
We find the bulk-viscosity coupling to these modes to
weaker for normal neutron stars than any previous estima
Consequently the gravitational radiation-driven instability
somewhat more effective at driving unstable ther-modes in
hot young neutron stars than earlier estimates suggested
though quantitatively different from earlier estimates, o
new values for the bulk-viscosity damping time do not su
stantially alter the expected spindown scenario in hot yo
neutron stars. We re-evaluate the critical angular velo
curve ~above which ther-mode instability sets in! and find
no qualitative change from earlier estimates. Our new va
for the minimum critical angular velocity is somewhat low
than earlier estimates: about 5% compared to about 8%
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the maximum. In very hot young neutron stars there is
possibility that bulk viscosity could re-heat the neutron s
~due in part to non-linear effects in the bulk viscosity! and so
suppress the instability to some extent@16#. This could result
in a significant increase in the time scale required to s
down young neutron stars, and could therefore decrease
nificantly the detectability of the gravitational radiation em
ted. Our new calculation of the bulk viscosity time sca
indicates that reheating will not be a major factor in t
evolution of young neutron stars. Our calculations also sh
that the bulk-viscosity coupling in strange stars is somew
stronger than the initial estimates by Madsen@17#. We find
that bulk viscosity completely suppresses ther-mode insta-
bility in strange stars hotter thanT*53108 K, in good
qualitative agreement with Madsen.

In Sec. II we review the structure of equilibrium stella
models through second order in the angular velocity of
star. In Sec. III we review the two-potential formalism fo
describing the modes of rotating stars, and derive the sm
angular velocity expansion of these equations through s
ond order. In Sec. IV we focus our attention on the ‘‘clas
cal’’ r-modes, the modes found previously to be subject
the gravitational radiation driven instability. We obtain an
lytical expressions for the second-order corrections to
frequencies of these modes, and present numerical result
polytropes and for more realistic neutron star models. In S
V we develop the numerical techniques needed to find
second-order eigenfunctions for ther-modes; we use thos
techniques to find those eigenfunctions, and we present
results graphically. In Sec. VI we use our new second-or
expressions for ther-modes to compute the effects of bu
viscosity on the evolution of these modes. In the Appen
we discuss the convergence of the numerical relaxation te
nique used in Sec. V to solve the unusual hyperbolic bou
ary value problem for the second-order eigenfunctions.

II. SLOWLY ROTATING STELLAR MODELS

Our analysis of ther-modes of rotating stars is based o
expanding the equations as power series in the angular
locity V of the star. The first step therefore in obtaining the
equations is to find the structures of equilibrium stellar mo
els in a similar power series expansion. This section
scribes how to solve the equilibrium structure equations
uniformly rotating barotropic stars in such a slow rotati
expansion. The solutions will be obtained here up to a
including the terms of orderV2.

Let h(p) denote the thermodynamic enthalpy of the ba
tropic fluid:

h~p!5E
0

p dp8

r~p8!
, ~2.1!

wherep is the pressure andr is the density of the fluid. This
definition can always be inverted to determinep(h). The
barotropic equation of state,r5r(p), then determines
r(h)5r@p(h)#. The equations which determine the fami
6-2
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SECOND-ORDER ROTATIONAL EFFECTS ON THEr- . . . PHYSICAL REVIEW D 60 064006
of stationary, axisymmetric uniformly rotating barotrop
stellar models are Euler’s equation, which for this case
the simple form

05¹a@h2 1
2 r 2~12m2!V22F#, ~2.2!

and the gravitational potential equation,

¹a¹aF524pGr. ~2.3!

In these expressionsr andm5cosu are the standard spher
cal coordinates, andF is the gravitational potential.

We seek solutions to Eqs.~2.2! and~2.3! as power series
in the angular velocityV. To that end, we define

h~r ,m!5h0~r !1h2~r ,m!
V2

pGr̄0

1O~V4!, ~2.4!

r~r ,m!5r0~r !1r2~r ,m!
V2

pGr̄0

1O~V4!,

~2.5!

F~r ,m!5F0~r !1F2~r ,m!
V2

pGr̄0

1O~V4!,

~2.6!

wherer̄0 is the average density of the non-rotating star in
family. Using these expressions then, the first two terms
the solution to Eq.~2.2! are given by

C05h0~r !2F0~r !, ~2.7!

C25h2~r ,m!2 1
2 pGr̄0r 2~12m2!2F2~r ,m!, ~2.8!

whereC0 andC2 are constants. The non-rotating model c
be determined in the usual way by solving the gravitatio
potential equation,

1

r 2

d

dr S r 2
dF0

dr D524pGr0 , ~2.9!

together with Eq.~2.7!. The integration constant,C0, can be
shown to beC052GM0 /R0 by evaluating Eq.~2.7! at the
surface of the star. The constantsM0 and R0 are the mass
and radius of the non-rotating star.

The second-order contributions to the stellar structure
determined by solving the gravitational potential, Eq.~2.3!,
together with Eq.~2.8!. The second-order density perturb
tion r2 is related toh2 by

r2~r ,m!5S dr

dhD
0

h2~r ,m!. ~2.10!

Thus using Eq.~2.8!, the equation for the second-ord
gravitational potential can be written in the form
06400
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¹a¹aF214pGS dr

dhD
0

F2

524pGS dr

dhD
0

$C21 1
3 pGr̄0r 2@12P2~m!#%,

~2.11!

where P2(m)5 1
2 (3m221). We note that the right side o

Eq. ~2.11! splits into a function depending only onr plus a
function of r multiplied by P2(m). Since the operator on th
left side of Eq.~2.11! acting onP2(m) gives a function ofr
multiplied by P2(m), it follows that the second-order grav
tational potentialF2 must have a similar splitting:

F2~r ,m!5F20~r !1F22~r !P2~m!. ~2.12!

Thus the partial differential equation~2.11! for F2 reduces to
a pair of ordinary differential equations for the potentialsF20
andF22:

1

r 2

d

dr S r 2
dF20

dr D14pGS dr

dhD
0

F20

524pGS dr

dhD
0

~C21 1
3 r 2pGr̄0!, ~2.13!

1

r 2

d

dr S r 2
dF22

dr D2
6

r 2 F2214pGS dr

dhD
0

F22

5 4
3 p2G2r̄0r 2S dr

dhD
0

. ~2.14!

Appropriate boundary conditions are needed to select
unique physically relevant solutions to Eqs.~2.13! and
~2.14!. In order to ensure that the gravitational potential
non-singular at the center of the star,r 50, we must require
that F20 andF22 satisfy the following boundary condition
there:

05S dF20

dr D
r 50

5F22~0!. ~2.15!

The potentialF22 must also fall to zero asr˜`. We can
ensure this by requiring thatF22 match smoothly at the sur
face of the star to a potential that in the exterior of the sta
proportional toP2(m)/r 3. It is sufficient therefore to require
that F22 satisfy the condition

S dF22

dr D
r 5R0

52
3F22~R0!

R0
. ~2.16!

An additional condition is also needed to fixF20. It is cus-
tomary to consider families of rotating stars which have
same total mass. In this case the monopole part of the e
rior gravitational potential is the same for all members of t
family. To ensure this, we must require that the potentialF20
and its derivative vanish on the surface of the star:
6-3
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05F20~R0!5S dF20

dr D
r 5R0

. ~2.17!

It might appear that Eqs.~2.15! and ~2.17! now over con-
strain the potentialF20. This would be the case, except th
the constantC2 that appears on the right side of Eq.~2.13! is
still undetermined. The boundary conditions, Eqs.~2.15!–
~2.17!, are just sufficient, however, to fix uniquely the pote
tials F20 and F22 together with the integration constantC2
as solutions to Eqs.~2.13! and~2.14!. We also note that thes
boundary conditions ensure that

05E
21

1 E
0

R0
r 2r2~r ,m!drdm. ~2.18!

In summary, then, the thermodynamic functionsh(r ,m)
andr(r ,m) in slowly rotating barotropic stars are given b
Eqs. ~2.4! and ~2.5!, wherer2(r ,m) and h2(r ,m) are given
by

r2~r ,m!5S dr

dhD
0

h2~r ,m!

5S dr

dhD
0

$C21F20~r !1 1
3 pGr̄0r 2

1@F22~r !2 1
3 pGr̄0r 2#P2~m!%. ~2.19!

These expressions forh(r ,m) and r(r ,m) depend only on
the structures of the non-rotating star through the functi
h0(r ), r0(r ), and (dr/dh)0, the potentialsF20 and F22
from Eqs.~2.13! and ~2.14!, and the constantC2.

It is also instructive to work out an expression for t
surfacer 5R(m,V) of the rotating star. This surface occu
where the thermodynamic potentialh@R(m,V),m#50. Solv-
ing this equation, we find

R~m,V!5R01R2~m!
V2

pGr̄0

1O~V4!, ~2.20!

whereR2(m) is given by

R2~m!5R201R22P2~m!

5
3

4pGr̄0R0

$C21 1
3 pGr̄0R0

2

1@F22~R0!2 1
3 pGr̄0R0

2#P2~m!%. ~2.21!

We have developed a computer code that solves th
equations numerically for stars with an arbitrary equation
state. We have tested this code against analytical expres
which can be obtained for a polytropic neutron star equa
of state,p5Kr2, with K chosen so that a 1.4M ( model has
a radius ofR0512.533 km. We find that the constants th
determine the slowly rotating model for this polytropic ca
have the valuesC25.09802C0 , R205.15198R0, and R22
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52.37995R0. Our numerical results agree with the analy
cal to floating-point precision.

III. THE PULSATION EQUATIONS

The modes of any uniformly rotating barotropic stell
model can be described completely in terms of two sca
potentialsdU and dF @15#. The potentialdF is the New-
tonian gravitational potential, whiledU determines the hy-
drodynamic perturbation of the star:

dU5
dp

r
2dF, ~3.1!

wheredp is the Eulerian pressure perturbation, andr is the
unperturbed density of the equilibrium stellar model. We
sume here that the time dependence of the mode iseivt and
that its azimuthal angular dependence iseimw, wherev is the
frequency of the mode andm is an integer. The velocity
perturbationdva is determined in this case by

dva5 iQab¹bdU. ~3.2!

The tensorQab depends on the frequency of the mode a
the angular velocity of the equilibrium star:

Qab5
1

~v1mV!224V2

3F ~v1mV!dab2
4V2

v1mV
zazb22i¹avbG .

~3.3!

In Eq. ~3.3! the unit vectorza points along the rotation axis
of the equilibrium star,dab is the Euclidean metric tenso
~the identity matrix in Cartesian coordinates!, andva is the
velocity of the equilibrium stellar model.

In general, the potentialsdU anddF are solutions of the
following system of equations@15#:

¹a~rQab¹bdU !52~v1mV!
dr

dh
~dU1dF!, ~3.4!

¹a¹adF524pG
dr

dh
~dU1dF!, ~3.5!

subject to the appropriate boundary conditions at the sur
of the star fordU and at infinity fordF. In order to discuss
these boundary conditions in more detail we letS denote a
function that vanishes on the surface of the star, and wh
has been normalized so that its gradient,na5¹aS, is the
outward directed unit normal vector there,nana51. The
boundary condition on the functiondU at the surface of the
star,S50, is to require that the Lagrangian perturbation
the enthalpyh vanish there,Dh50. This condition can be
written in terms of the variables used here by noting that

Dh5dh1S dva

ikV D¹ah, ~3.6!
6-4
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wherek is related to the frequency of the mode by

kV5v1mV. ~3.7!

Thus using Eqs.~3.1! and ~3.2! the boundary condition can
be written in terms ofdU anddF as

05@kV~dU1dF!1Qab¹ah¹bdU#S↑0 . ~3.8!

The perturbed gravitational potentialdF must vanish at in-
finity, lim r˜`dF50. In additiondF and its first derivative
must be continuous at the surface of the star. The problem
finding the modes of uniformly rotating barotropic stars
reduced therefore to finding the solutions to Eqs.~3.4! and
~3.5! subject to the boundary condition in Eq.~3.8!.

The equation for the hydrodynamic potentialdU, Eq.
~3.4!, has a complicated dependence on the frequency o
mode and the angular velocity of the star throughQab as
given in Eq. ~3.3!. In the analysis that follows it will be
necessary to have those dependences displayed more e
itly. To that end, we re-write Eq.~3.4! and the boundary
condition, Eq.~3.8!, in the following equivalent forms:

¹a@r~k2dab24zazb!¹bdU#1
2mk

Ã
Ãa¹ar dU

52k2~k224!V2
dr

dh
~dU1dF!, ~3.9!

F ~k2dab24zazb!¹ah¹bdU

1
2mk

Ã
Ãa¹ah dU1k2~k224!V2~dU1dF!G

S↑0

50. ~3.10!

Here we use the notationÃ for the cylindrical radial coor-
dinate,Ã5rA12m2, andÃa to denote the unit vector in th
Ã direction.

Our purpose now will be to derive solutions to Eqs.~3.5!
and ~3.9! as power series in the angular velocity of the st
To that end we define the expansions of the potentialsdU
anddF as

dU5R0
2V2FdU01dU2

V2

pGr̄0

1O~V4!G , ~3.11!

dF5R0
2V2FdF01dF2

V2

pGr̄0

1O~V4!G .

~3.12!

The normalizations ofdU anddF have been chosen to mak
the dUi and dF i dimensionless under the assumption th
the lowest order terms scale asV2. Here we have limited our
consideration to the generalizedr-modes@18#: modes which
are dominated by rotational effects and whose frequen
vanish linearly therefore in the angular velocity of the star.
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this casek @as defined in Eq.~3.7!# is finite in the small
angular velocity limit, and so we may expand

k5k01k2

V2

pGr̄0

1O~V4!. ~3.13!

Using these expansions, together with those for the struc
of the equilibrium star from Eqs.~2.4! and ~2.5!, it is
straightforward to write down order by order the equatio
for the mode. The lowest order terms in the expansions
Eqs.~3.9! and ~3.5! are the following,

¹a@r0~k0
2dab24zazb!¹bdU0#1

2mk0

Ã
Ãa¹ar0 dU050,

~3.14!

¹a¹adF0524pGS dr

dhD
0

~dU01dF0!. ~3.15!

Similarly, the lowest order term in the expansion of t
boundary condition is

F ~k0
2dab24zazb!¹ah0¹bdU01

2mk0

Ã
Ãa¹ah0 dU0G

r 5R0

50. ~3.16!

Continuing on to second order, the equations for the
tentials are

¹a@r0~k0
2dab24zazb!¹bdU2#1

2mk0

Ã
Ãa¹ar0 dU2

1¹a@r2~k0
2dab24zazb!¹bdU012k0k2r0¹adU0#

1
2m

Ã
Ãa~k2¹ar01k0¹ar2!dU0

52k0
2~k0

224!pGr̄0S dr

dhD
0

~dU01dF0!, ~3.17!

¹a¹adF2524pGS dr

dhD
0

~dU21dF2!

24pGS d2r

dh2D
0

h2~dU01dF0!. ~3.18!

The second-order boundary condition is somewhat m
complicated; it must include two types of terms. The fi
type comes from the second-order terms in the expansio
Eq. ~3.8! in powers of the angular velocity. The second ty
comes from the fact that the boundary condition is to
imposed on the actual surface of the rotating star, not
surfacer 5R0. This second type of term is the correction
the lowest-order boundary condition, Eq.~3.16!, needed to
impose it on the actual boundary of the star~to second order
in the angular velocity!. Hence the terms of the second typ
are proportional toR2, the second-order change in the radi
of the star from Eq.~2.21!. The resulting boundary condition
is
6-5
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H ~k0
2dab24zazb!¹ah0¹bdU21

2mk0

Ã
Ãa¹ah0dU21~k0

2dab24zazb!¹ah2¹bdU01
2mk0

Ã
Ãa¹ah2dU0

12k0k2¹ah0¹adU01
2mk2

Ã
Ãa¹ah0dU01k0

2~k0
224!pGr̄0~dU01dF0!

1R2r c¹cF ~k0
2dab24zazb!¹ah0¹bdU01

2mk0

Ã
dU0Ãa¹ah0G J

r 5R0

50. ~3.19!
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In summary, then, Eqs.~3.17! and ~3.18! together with the
boundary condition, Eq.~3.19!, determine the second-orde
terms in the structure of any generalizedr-mode.

IV. CLASSICAL r-MODES

There exists a large class of modes in rotating barotro
stellar models whose properties are determined primarily
the rotation of the star@18,19#. We refer to these as genera
ized r-modes. In this section we restrict our attention ho
ever to those modes which contribute primarily to the gra
tational radiation driven instability. These ‘‘classical
r-modes~which were studied first by Papaloizou and Pring
@9#! are generated by hydrodynamic potentials of the fo
~see e.g. Lindblom and Ipser@18#!

dU05aS r

R0
D m11

Pm11
m ~m!eimw. ~4.1!

It is straightforward to verify that thisdU0 is a solution to
Eq. ~3.14! if the eigenvaluek0 has the value

k05
2

m11
. ~4.2!

This dU0 and k0 also satisfy the boundary condition, E
~3.16!, without further restriction at the boundary~and at
every point within the star as well!. The gravitational poten-
tial dF0 must have the same angular dependence asdU0.
Thus,dF0 must~through a slight abuse of notation! have the
form

dF05adF0~r !Pm11
m ~m!eimw. ~4.3!

The gravitational potential, Eq.~3.15!, reduces to an ordinary
differential equation then fordF0(r ):

d2dF0

dr2 1
2

r

ddF0

dr
1F4pGS dr

dhD
0

2
~m11!~m12!

r 2 GdF0

524pGS dr

dhD
0
S r

R0
D m11

. ~4.4!

OncedU0 anddF0 are known, it is straightforward to evalu
ate the perturbations in other thermodynamic quantities
this order. For exampledp05r0dh05r0(dU01dF0). And
it is straightforward to evaluate then the velocity perturbat
to this order using Eq.~3.2!.
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We next consider the second-order contributions to
r-modes. First, let us analyze the second-order equation
the potentialdU, Eq. ~3.17!. This equation contains two
types of terms: those proportional todU2 and those that are
not. We will consider those terms not proportional todU2 as
source terms, and we evaluate them now. It is convenien
break these source terms into three groups. The first grou
proportional tor2. These terms can be simplified by reca
ing thatdU0 satisfies Eq.~3.14! for anyspherically symmet-
ric density distribution. Then, using the fact from Eq.~2.19!
that r2(r ,m)5r20(r )1r22(r )P2(m), we find

¹a@r2~k0
2dab24zazb!¹bdU0#1

2mk0

Ã
Ãa¹ar2dU0

52
12m~m12!

~m11!2

r22

r 2
dU0 . ~4.5!

The second group of terms is proportional tok2. These terms
have the following simplified form:

¹a~2k0k2r0¹adU0!1
2mk2

Ã
Ãa¹ar0dU0

52~m12!k2

1

r

dr0

dr
dU0 . ~4.6!

Thus, combining together these terms with those on the r
side of Eq.~3.17!, we obtain the following expression for th
equation that determinesdU2 for the classicalr-modes:

¹aH r0F 4dab

~m11!2
24zazbG¹bdU2J 1

4mÃa¹ar0

~m11!Ã
dU2

5
12m~m12!

~m11!2

r22

r 2
dU022~m12!k2

1

r

dr0

dr
dU0

116pGr̄0

m~m12!

~m11!4 S dr

dhD
0

~dU01dF0!. ~4.7!

A similar reduction can also be made on the second-or
boundary condition, Eq.~2.19!. We collect similar terms to-
gether to obtain the following simplifications:
6-6
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~k0
2dab24zazb!¹ah2¹bdU01

2mk0

Ã
Ãa¹ah2 dU0

52
12m~m12!

~m11!2

h22

r 2
dU0 , ~4.8!

R2r c¹cF ~k0
2dab24zazb!¹ah0¹bdU01

2mk0

Ã
dU0Ãa¹ah0G

50. ~4.9!

The latter follows from the fact that the expression in E
~3.16! is zero everywhere ifdU0 is given by Eq.~4.1!. Com-
bining these simplified expressions together gives the follo
ing form for the boundary condition that constrainsdU2:

H F 4dab

~m11!2
24zazbG¹ah0¹bdU21

4mÃa¹ah0

~m11!Ã
dU2

2
12m~m12!

~m11!2

h22

r 2
dU012~m12!k2

1

r

dh0

dr
dU0

2
16m~m12!

~m11!4 pGr̄0~dU01dF0!J
r 5R0

50. ~4.10!

We note that the operator on the left side of Eq.~4.7!
which acts ondU2 is identical to the operator that acts o
dU0 from the lowest-order equation~3.14!. We also note that
the right side of Eq.~4.7! is a function ofr multiplied by the
angular functionPm11

m (m)eimw. These facts allow us to de
rive a simple formula for the second-order eigenvaluek2 in
terms of known quantities. Multiply the left side of Eq.~4.7!
by dU0* and integrate over the interior of the star. This in
gral vanishes because this operator is symmetric anddU0*
also satisfies Eq.~3.14!. This implies that the integral ofdU0*
multiplied by the right side of Eq.~4.7! also vanishes. This
integral gives the following expression for the eigenvaluek2
once the angular integrals are performed:

k2E
0

R0S r

R0
D 2m12

r
dr0

dr
dr

5
6m

~m11!2E
0

R0
r22S r

R0
D 2m12

dr1
8pGr̄0m

~m11!4

3E
0

R0
r 2S r

R0
D m11F S r

R0
D m11

1dF0~r !G S dr

dhD
0

dr.

~4.11!

We have evaluated Eq.~4.11! numerically to determine
k2 for a variety of equations of state. Table I presents
values ofk2 for the classicalr-modes with 2<m<6 of stars
with polytropic equations of state. We also present in Fig
a graph of the frequencyv/V5k22 of them52 classical
r-modes computed for 1.4M( stellar models based on seve
realistic equations of state@20#. The dashed line in Fig. 1
06400
.
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-

e

1

corresponds to the lowest-order approximation of ther-mode
frequencyv/V5k022, which is the same for any equatio
of state. The solid curves are based on the second-order
mula v/V5k0221k2V2/pGr̄0. It is interesting to see in
Fig. 1 that the higher-order terms make only small~up to
about 12% at the highest angular velocities! corrections to
the frequencies of these modes for stars with realistic eq
tions of state. We also note that the general tendency of
frequency of these modes to be smaller than that predi
by the lowest-order expression is consistent with the res
found by Lindblom and Ipser@18# for the Maclaurin sphe-
roids. An analytical expression fork2 can be obtained from
Eq. ~4.11! for the uniform density case by performing th
indicated integrals analytically. The resulting expression
equivalent to Eq.~6.10! of Lindblom and Ipser@18#.

V. NUMERICAL SOLUTIONS FOR dU2

In this section we discuss the numerical solution of t
equations that determine the second-order corrections to

TABLE I. The second-order eigenvaluesk2 of the classical
r-modes for stars with polytropic equations of statep5Kr111/n.

n m52 m53 m54 m55 m56

0.0 .57407 .59766 .54720 .49074 .44044
0.5 .41718 .43861 .40415 .36406 .32782
1.0 .29883 .32054 .29946 .27250 .24729
1.5 .21183 .23426 .22369 .20693 .19019
2.0 .14777 .17084 .16846 .15961 .14942
2.5 .10091 .12426 .12808 .12532 .12016
3.0 .06716 .09024 .09859 .10039 .09905
3.5 .04334 .06556 .07699 .08210 .08357
4.0 .02692 .04773 .06102 .06839 .07186
4.5 .01589 .03487 .04896 .05768 .06252

FIG. 1. Angular velocity dependence of the frequencies of
classicalm52 r-modes for 1.4M( stellar models based on seve
realistic neutron star equations of state. The dashed curve is b
on the lowest-order expression forv/V5k022, while the solid
curves are based on the second-order expressionv/V5k022

1k2V2/pGr̄0.
6-7
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eigenfunctionsdU2 anddF2 of the classicalr-modes. Once
dU2 is known, the solution of Eq.~3.18! to determinedF2 is
straightforward. Thus our discussion will concentrate on
more difficult problem of solving Eq.~4.7! for dU2. It will
be convenient to introduce the notation

D~dU2!5¹aH r0F 4dab

~m11!2
24zazbG¹bdU2J

1
4mÃa¹ar0

~m11!Ã
dU2 , ~5.1!

for the differential operator that appears on the left side
Eq. ~4.7!. Thus Eq.~4.7! can be written in the form

D~dU2!5F, ~5.2!

where

F5
12m~m12!

~m11!2

r22

r 2
dU022~m12!k2

1

r

dr0

dr
dU0

116pGr̄0

m~m12!

~m11!4 S dr

dhD
0

~dU01dF0!. ~5.3!

The problem of solving Eq.~5.2! numerically is a somewha
non-standard problem that is made difficult by two fac
First, the operatorD has a non-trivial kernel:D(dU0)50.
Many of the straightforward numerical techniques fail in th
case. Second, the operatorD is hyperbolic. There appears t
be little previous work on solving hyperbolic boundary val
problems of this type.

We solve Eq.~5.2! here using a variation of the standa
relaxation method commonly used to solve elliptic part
differential equations@21#. To that end we introduce a ficti
tious time parameterl and convert Eq.~5.2! into an evolu-
tion equation

]ldU25D~dU2!2F. ~5.4!

The idea is to impose as initial data for Eq.~5.4! a guess for
dU2, and then to evolve these data~as a function ofl) until
a stationary (]ldU250) state is reached. If successful, t
late time solution (liml˜`dU2) to Eq. ~5.4! will also be a
solution to Eq.~5.2!.

We implement the relaxation method to solve Eq.~5.2! by
using a discrete representation of the functions and diffe
tial operators. Letun

i denote the discrete representation of t
functiondU2 evaluated at the fictitious timeln . The indexi
~and laterj andk as well! takes on values from 1 toN where
N is the dimension of the particular discretization used. Si
larly the discrete representation of the differential operatoD
of Eq. ~5.2! is denotedD j

i , and the representation of th
right side of Eq.~5.2! is denotedF j . Thus the discrete rep
resentation of Eq.~5.2! is simply

D j
iu

i5F j . ~5.5!
06400
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Summation is implied for pairs of repeated indices@e.g. i on
the left side of Eq.~5.5!#. The algebraic equation~5.5!
cannot be solved by the most straightforward direct num
cal techniques because the operatorD has a nontrivial kernel
~mentioned above!. Consequently the matrixD j

i has no in-
verse.

Thus we are lead to introduce the evolution equat
~5.4!. We use the ‘‘implicit’’ form of the discrete represen
tation of Eq.~5.4!:

Oj
iun11

i [S D j
i2

1

Dl
I j

i Dun11
i 5F j2

1

Dl
un

j . ~5.6!

In Eq. ~5.6!, I j
i is theN dimensional identity matrix, andDl

is the relaxation time step. Givenun
i we solve Eq.~5.6! for

un11
i by direct solution of the linear algebraic equation. W

use the band-diagonal linear equation solverLINSIS from
EISPACK to compute (O21) i

j (F
j2un

j /Dl). We find that this
can be computed stably and accurately for almost any va
of the relaxation timestepDl.

Unfortunately solving Eq.~5.6! iteratively does not yield
the desired solution to Eq.~5.5! in the limit of largen. In-
stead the solution grows exponentially, becoming in the lim
of large n closer and closer to a non-trivial solution to th
homogeneous equation,dU0. Fortunately, this malady is eas
ily corrected. Letūi denote the discrete representation
dU0; thusD j

i ū
i'0 sincedU0 is in the kernel ofD. Also we

let ūi denote the discrete representation of the co-vector
sociated withūi . In particular chooseūi so thatūi ūi is the
discrete representation of the integral ofudU0u2. Then the
matrix

Pj
i5I j

i2
ū j ūi

ūkūk

~5.7!

is the discrete representation of the operator that proj
functions into the subspace orthogonal todU0. We use this
projection in conjunction with Eq.~5.6! to define a modified
relaxation scheme to determineun11

i iteratively:

un11
i 5Pi

j~O21! j
kS Fk2

un
k

Dl D . ~5.8!

By applying the projectionPi
j after each relaxation step w

ensure that the exponentially growing kernel is remov
from the solution. We find that the iteration scheme defin
in Eq. ~5.8! does converge quickly and stably to a solution
Eq. ~5.5!. In the Appendix we discuss the reason this nume
cal relaxation method works even in the case of the unus
hyperbolic boundary-value problem considered here.
show that convergence is guaranteed for sufficiently la
values of the relaxation time stepDl, and that it also con-
verges for either sign ofDl.

In order to implement this inversion scheme we need
plicit discrete representations of these operators. We find
convenient to work in spherical coordinatesr andm5cosu.
In terms of these coordinates then, the differential operatoD
has the form
6-8
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D~dU2!5
4r0

~m11!2 F]2dU2

]r 2 1
12m2

r 2

]2dU2

]m2 1
2

r

]dU2

]r
2

2m

r 2

]dU2

]m
2

m2dU2

r 2~12m2!G
24r0Fm2

]2dU2

]r 2 1
2m~12m2!

r

]2dU2

]r ]m
1

~12m2!2

r 2

]2dU2

]m2 1
12m2

r

]dU2

]r
2

3m~12m2!

r 2

]dU2

]m G
1

4

~m11!2 S dr

dhD
0

dh0

dr F @12~m11!2m2#
]dU2

]r
2~m11!2

m~12m2!

r

]dU2

]m
1m~m11!

dU2

r G . ~5.9!

A similar spherical representation is also needed for the boundary condition, Eq.~3.11!,

H @12~m11!2m2#
dh0

dr

]dU2

]r
1m~m11!

1

r

dh0

dr
dU22~m11!2m~12m2!

1

r

dh0

dr

]dU2

]m

1~m12!F 1
2 ~m11!2k2

1

r

dh0

dr
23m

h22

r 2 GdU02
4m~m12!

~m11!2 pGr̄0~dU01dF0!J
r 5R0

50. ~5.10!
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The operators in Eqs.~5.9! and ~5.10! are transformed
into the discrete matrix representation of the operatorDi

j
using the techniques discussed in Ipser and Lindblom@15#.
In particular we use a grid of points (r j ,mk) where ther j are
equally spaced in the radial direction and themk are the zeros
of one of the odd-order Legendre polynomials@22#. We use
standard three-point difference formulas for the derivati
in the radial direction and the higher-order multi-point fo
mulas for the angular derivatives described in Ipser a
Lindblom @15#. Using this discretization of the operatorD,
we find that the iteration scheme described in Eq.~5.8! con-
verges rapidly. We begin the iteration by settingu0

i 50 and
find that after about five steps withDl52106R0

2/rc ~where
rc is the central density! the changes inun

i from one iteration
to the next become negligible.

Since the eigenfunctiondU2 is somewhat complicated w

FIG. 2. FunctionsdU2(r ,mk) for a range of values of the angu
lar coordinatemk . The numbers along the right vertical axis are t
values ofk. These range sequentially fromm150 at the equator of
the star, tom10'0.992 near the rotation axis. The equation of st
is the polytrope discussed in the text.
06400
s

d

present several different representations of it graphica
Figure 2 depicts the functionsdU2(r ,mk) with mk located at
the grid points used in our integration: the roots ofP19(mk)
50 in this case. We present in Fig. 3 another representa
of this dU2 in which we graph the functionsdU2(r k ,m) for
r k5(k/5)R0. This graph gives a clearer picture of the ang
lar structure ofdU2. Finally we give in Fig. 4 another rep
resentation of the functiondU2 in which we decompose the
angular structure ofdU2 into spherical harmonics by defin
ing the functionsf k(r ):

dU2~r ,m!5 (
k>1

f k~r !Pm12k21
m ~m! . ~5.11!

We find numerically that thef k(r ) are negligibly small ex-
cept for the smallest few values ofk. In Fig. 4 we graph the
first threef k(r ).

To measure the degree to whichdU2 satisfies the original
differential equation, we define

e5

E uD~dU2!2Fu2r 2drdm

E uFu2r 2drdm

. ~5.12!

We find that the value ofe achieved by a given solution i
approximatelye'(4.3/Nr)

4 whereNr is the number of ra-
dial grid points used in the discretization@23#. It is instruc-
tive to comparee to the quantity

e05

E uD~dU0!u2r 2drdm

E uFu2r 2drdm

. ~5.13!

which measures the degree to whichdU0 is in the kernel of
D. Since analyticallyD(dU0)50, the deviation ofe0 from
zero is a measure of the accuracy of our discrete represe

e

6-9
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tion of D. We find thate0 is approximatelye0'(7.7/Nr)
4 in

our numerical solutions. This scaling is what is expec
from the truncation errors involved in the three-point diffe
ence formulas used to constructD j

i . Sincee,e0 in our nu-
merical solutions, we see thatdU2 is a good solution to Eq
~5.2!.

VI. BULK VISCOSITY TIME SCALES

One of our primary interests in evaluating these mo
through second order in the angular velocity is our desire
obtain the lowest-order expression for the bulk viscos
damping of these modes. Bulk viscosity is driven by t
expansion,ds5¹adva, of the fluid perturbation which can
be expressed in terms of the scalar perturbation quant
dU anddF as

ds52 ikV
Dr

r

52
i

r

dr

dh
@Qab¹ah¹bdU1kV~dU1dF!#. ~6.1!

FIG. 3. FunctionsdU2(r k ,m) for a range of values ofr k /R0.

FIG. 4. Functionsf k(r ) that determine the spherical harmon
decomposition ofdU2 as defined in Eq.~5.11!.
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Each of the terms on the right side of Eq.~6.1! is propor-
tional to V3 at lowest order. And thus the second-ord
quantitiesdU2 , k2 etc. that we have evaluated in the prece
ing sections are needed to evaluateds.

Bulk viscosity causes the energy associated with a per
bation to be dissipated according to the formula

S dẼ

dt
D

B

52E zdsds* d 3x, ~6.2!

wherez is the bulk viscosity coefficient, andẼ is the energy
of the perturbation as measured in the co-rotating frame
the fluid. The energyẼ can be expressed as an integral of t
fluid perturbations:

Ẽ5 1
2 E ~r dvadva* 1dUdr* !d 3x. ~6.3!

Bulk viscosity causes the energy in a mode to decay~or
grow! exponentially with time. We can evaluate the imag
nary part of the frequency of a mode that results from bu
viscosity effects by combining Eqs.~6.2! and ~6.3!. The re-
sult, which defines the bulk-viscosity damping time,tB , is
given by

1

tB
52

1

2Ẽ
S dẼ

dt
D

B

. ~6.4!

In order to evaluate 1/tB we need to have explicit expres
sions for the various terms that appear in the integrand
Eqs. ~6.2! and ~6.3!. The energyẼ, for example, can be
expressed as the integral

Ẽ5
a2p

2m
~m11!3~2m11!!R0

4V2E
0

R0
r0~r !S r

R0
D 2m12

dr

1O~V4!, ~6.5!

by performing the angular integrals indicated in Eq.~6.3!
@24#.

In the dissipation integral, Eq.~6.2!, an explicit expres-
sion for the bulk viscosityz is needed. In standard neutron
star matter the dominant form of bulk viscosity is due to t
emission of neutrinos via the modified URCA process@25#.
An approximate expression for this form of the bul
viscosity coefficient is@26#

z56.0310259
r2T6

k2V2 , ~6.6!

where all quantities are expressed in cgs units. For the c
of the classicalr-modes the expansionds that appears in Eq
~6.2! can be expressed explicitly in terms of the potenti
dU0 , dF0, anddU2:
6-10
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ds5
i

r0
S dr

dhD
0

R0
2V3

pGr̄0

m11

2m~m12!

3H m~m11!

r

dh0

dr
dU21@12~m11!2m2#

dh0

dr

]dU2

]r

2~m11!2
m~12m2!

r

dh0

dr

]dU2

]m
23m~m12!h22

dU0

r 2

1k2

~m12!~m11!2

2r

dh0

dr
dU0

24pGr̄0

m~m12!

~m11!2 ~dU01dF0!J 1O~V5!. ~6.7!

It will be of some interest to evaluate the accuracy
some previously published approximations for the bu
viscosity time scale. One of these@3# is based on an approxi
mationds'ds for the expansion of the mode, where

ds[2 ikV
dr

r

52
2i

m11

1

r0
S dr

dhD
0

~dU01dF0!R0
2V31O~V5!.

~6.8!

We note thatds is just the last term in the expression give
in Eq. ~6.7! for ds. It is the only term in Eq.~6.7! that
depends only on the lowest-order perturbation quantities:
others depend on higher-order corrections throughdU2 , k2
or h22. We define the approximate bulk-viscosity time sca
t B̃ in analogy with Eq.~6.4! by replacingds with ds in Eq.
~6.2!.

The bulk-viscosity contribution to the imaginary part
the frequency, 1/tB , is proportional toV2. This follows
from Eqs.~6.2! and ~6.4! becauseẼ scales asV2 from Eq.
~6.5!, z asV22 from Eq.~6.6!, andds asV3 from Eq.~6.7!.
~We note that a previous calculation of this bulk-viscos
time scale by Andersson, Kokkotas, and Schutz@4# reported
that 1/tB was proportional toV1.77.! The bulk-viscosity
damping time, 1/tB , also scales with temperature asT6.
Thus it is convenient to definet̃B : the bulk viscosity time
scale evaluated atV25pGr̄0 andT5109 K,

1

tB
5

1

t̃B
S T

109 K
D 6S V2

pGr̄0
D 1O~V4!. ~6.9!

We have evaluatedt̃B numerically for them52 r-mode~the
one most unstable to gravitational radiation! of a 1.4M( stel-
lar model with the polytropic equation of state discussed
Sec. II, and findt̃B52.0131011 s. This value is longer by

the factor 3.7(ApGr̄0/V)0.23 than that found by Andersson
Kokkotas and Schutz@4#. This discrepancy may be due to th
fact that their calculation was based on the second-order
malism of Saio which was reported to contain errors
Smeyers and Martens@11#.
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For comparison, we have also re-evaluated the appr
mate timescalet B̃ described above and findt̃ B̃57.043109 s.
This approximation was based on the assumption that
average value of the Lagrangian change in the densityDr
@which appears on the right side of Eq.~6.1!# would be simi-
lar in magnitude to the average value of the Eulerian cha
in the densitydr @which appears on the right side of Eq
~6.8!#. Our results here show thatdr is on average a factor o
5.3 larger thanDr for the m52 r-mode. We also note tha
the value of the approximate time scalet̃ B̃ found here is
about 10 times the value reported by Lindblom, Owen, a
Morsink @3#. This discrepancy is due to an error in Eq.~4! of
that paper: the right side of that equation should be mu
plied by an additional overall factor of (2l 11)/@ l ( l
11)A2l 13#. Consequently the numerical bulk viscosi
damping time estimatet B̃ given there must be multiplied by
l 2( l 11)2(2l 13)/(2l 11)2, or about 10.08 for thel 52
case, in agreement with our present calculation.

The most interesting application of these dissipat
timescales is to evaluate the stability of rotating neutron s
to the gravitational radiation driven instability in ther-modes
@3#. The imaginary part of the frequency of ther-modes, 1/t,
includes contributions from gravitational radiationt̃GR in ad-
dition to sheart̃S and bulkt̃B viscosity effects. The genera
expression fort(V,T), a function of the temperatureT and
angular velocityV of the star, is given by

1

t~V,T!
5

1

t̃GR
S V2

pGr̄
D 3

1
1

t̃S
S 109 K

T D 2

1
1

t̃B
S T

109 K
D 6S V2

pGr̄
D . ~6.10!

The bulk viscosity time scalet̃B52.0131011 s has been
evaluated in this paper, while the gravitational radiation tim
scale, t̃GR523.26 s, and the shear viscosity timescalet̃S
52.523108 s, were obtained by Lindblom, Owen and Mo
sink @3# for the polytropic stellar model discussed in Sec.
It is interesting to determine from this expression the criti
angular velocityVc :

1

t~Vc ,T!
50. ~6.11!

For stars at a given temperature, those withV.Vc are un-
stable to the gravitational radiation driven instability in th
r-modes, while those rotating more slowly are stable. Fig
5 depictsVc for a range of temperatures relevant for h
young neutron stars. For stars cooler than about 109 K, su-
perfluid effects change the dissipation processes comple
and the analysis presented here is no longer relevant.
dashed curve in Fig. 5 represents the critical angular vel
ties computed using the approximate bulk viscosity damp
time t̃ B̃57.053109 s instead of the exact value. We see th
even thought̃B'29t̃ B̃ , the qualitative shape of theVc curve
is not affected. The minimum of theVc(T) curve depicted in
6-11
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Fig. 5 occurs at minVc50.0301ApGr̄0 which is 4.51% of

the approximate maximum angular velocity2
3
ApGr̄0.

Stars composed of strange quark matter are subject
different form of bulk viscosity caused by weak interactio
that transformd quarks tos quarks. The bulk viscosity coef
ficient that results from this process is given approximat
by @27#

z53.23103
rT2

k2V2S ms

100 MeVD
4

, ~6.12!

where all quantities~exceptms , the mass of thes quark! are
given in cgs units. We have used this form of the bulk v
cosity to estimate the damping time of ther-modes in strange
stars. We find that in strange stars this damping time sc
as

1

tB
5

1

t̃B
S T

109 K
D 2S V2

pGr̄0
D S ms

100 MeVD
4

. ~6.13!

Using the polytropic stellar model described in Sec. II,
have computed the bulk-viscosity damping time of t
r-mode to bet̃B50.886 s for strange stars. This value
smaller~by about a factor of 7! than that found by Madsen
@17#, who used a very rough estimate of the bulk-viscos
damping time@12# for the r-modes. We also note that ou
expression fortB does not scale with angular velocity in th
same way as Madsen’s. Nevertheless, our calculations
firm Madsen’s prediction that bulk viscosity completely su
presses ther-mode instability in hot strange stars. Using o
expression fortB we estimate that ther-mode instability is
suppressed in all strange stars withT*53108 K.

FIG. 5. Critical angular velocities for ther-mode instability as a
function of temperature. The dashed curve gives the critical ang
velocities based on the approximate bulk viscosity damping t
t B̃ .
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APPENDIX: NUMERICAL RELAXATION

The operatorD defined in Eq.~5.1! is symmetric, in the
sense that

E g* D~ f !d 3x5F E f * D~g!d 3xG* , ~A1!

for arbitrary functionsf and g in any stellar model where
r050 on the surface. Thus the discrete representation of
operatorDi j will be a Hermitian matrix, and consequent
Di

j will have a complete set of eigenvectors. Letea
i denote

the eigenvector corresponding to eigenvalueda : Di
jea

j

5daea
i . Since these eigenvectors form a complete set,

can express any vector as a linear combination of them. T
we takeFi5(aFaea

i , un
i 5(aun

aea
i , etc. The numerical re-

laxation scheme indicated in Eq.~5.8! can be re-expresse
therefore in the eigenvector basis as

un11
a 5

DlFa2un
a

Dlda21
. ~A2!

The role of the projection operatorPi
j is merely to remove

from Eq. ~A2! the component corresponding to the zero
genvalue. The recurrence relation, Eq.~A2!, can be solved
analytically:

un11
a 5xaDlFa(

k50

n

~2xa!k, ~A3!

where

xa5
1

Dlda21
. ~A4!

This series converges as long asuxau,1. Since the projec-
tion operator has eliminated the one equation whereda50,
it is easy to chooseDl so thatuxau,1 for all a, e.g., by
taking Dl sufficiently large. Thus, the sequenceun11

a con-
verges to

ar
e
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lim
n˜`

un
a5

xaDlFa

11xa
5

Fa

da
. ~A5!

Thus the implicit relaxation scheme converges to the des
solution to Eq.~5.2!.

In contrast to the implicit relaxation method defined
Eq. ~5.8!, the analogous explicit relaxation method does
converge at all for this problem. An analysis similar to th
tt.

. J

o,

ys

ibe
la
er
de
in
b

f
b

a

n
th

ity
lly
p-

06400
d

t
t

carried out above reveals that the criterion for converge
of the explicit scheme is thatuDlda11u,1. Clearly this can
only hold for operatorsD where the eigenvalues all have th
same sign~as is the case whenD is elliptic! and only when
Dl has the correct sign. Our limited experience with hyp
bolic operatorsD is that their eigenvalues have both sign
Consequently it is not surprising that our attempts at expl
numerical relaxation fail in this case.
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