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This talk is about hidden symmetries in eleven dimensions, but

it is equally a tribute to a scientist and friend, who is eminently

visible in four space-time dimensions: François Englert, in whose

honor this meeting is being held. Therefore, before entering dans

le vif du sujet I would like to express my gratitude for having had

the opportunity and privilege to learn from him and to work with

him, and for all the fun we have had — involving, amongst other

things, dinosaurs within dinosaurs [1] (the ancestor of all modern

inflationary theories) and their eleven-dimensional avatars [2], as

well as higher states of consciousness [3] and monster strings [4].

These days, many of us who have not yet attained the wisdom

that comes with an émeritat, but who share François’ enthusiasm
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for all of physics’ mysteries, are participants in the hunt for a still

elusive theory, called “M Theory”, which is to unify all known con-

sistent string theories and to relate them through a web of non-

perturbative dualities [5, 6]. This theory would also accommodate

d = 11 supergravity [7] as a strong coupling limit via the relations

R11 = ℓsgs ℓ3
P = ℓ3

sgs

where ℓP is the d = 11 Planck length, ℓs the string length, gs the

string coupling constant, and R11 the radius of the circle on which

d = 11 supergravity is compactified to ten dimensions (the limit is

taken in such a way that ℓP stays finite while gs → ∞ and ℓs → 0,

hence R11 → ∞). It is clear from these relations that present

knowledge covers only the “boundary” of M Theory (where either

the massive string modes or the d = 11 Kaluza Klein modes are

sent to infinity), but tells us almost nothing about its “bulk” — the

true domain of quantum gravity. Still, we can probably anticipate

that it will be a pregeometrical theory in the sense that space time

as we know it will emerge as a derived concept and that it should

possess a huge symmetry group involving new types of Lie algebras

(such as hyperbolic Kac Moody algebras) and perhaps even more

general structures such as quantum groups.

According to the currently most popular proposal, M Theory

“is” the N → ∞ limit of the maximally supersymmetric quantum

mechanical SU(N) matrix model (see e.g. [8] for reviews and many

references). This model had already appeared in an earlier study

of the d = 11 supermembrane in a flat background in the light cone

gauge, and for any finite N , it can alternatively be obtained by

dimensional reduction of the maximally extended supersymmetric

Yang Mills theory in d = 10 with gauge group SU(N) to one (time)

dimension. However, while matrix theory is pregeometrical in the
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sense that the target space coordinates are replaced by matrices,

thus implying a kind of non-commutative geometry, the symmetries

of dimensionally reduced supergravities that we are concerned with

here, are hard to come by.

In this contribution, I will briefly describe some recent work

done in collaboration with S. Melosch [9], and with K. Koepsell

and H. Samtleben [10], which was motivated by recent advances in

string theory (as well as the possible existence of an Ashtekar-type

canonical formulation of d = 11 supergravity). Although, at first

sight, this work may seem to have little to do with the issues raised

above, it could actually be relevant in the context of M Theory, as-

suming (as we do) that further progress will crucially depend on the

identification of the underlying symmetries, and that the hidden ex-

ceptional symmetries of maximal supergravity theories discovered

long ago [11, 12] may provide important clues as to where we should

be looking. Support for this strategy derives from the fact that

some local symmetries of the dimensionally reduced theories can

be “lifted” back to eleven dimensions. More precisely, it was shown

in [13, 14] that there exist new versions of d = 11 supergravity with

local SO(1, 3)× SU(8) and SO(1, 2)× SO(16) tangent space sym-

metry, respectively. In both versions the supersymmetry variations

acquire a polynomial form from which the corresponding formulas

for the maximal supergravities in four and three dimensions can

be read off directly and without the need for complicated duality

redefinitions. This reformulation can thus be regarded as a step

towards the complete fusion of the bosonic degrees of freedom of

d = 11 supergravity (i.e. the elfbein and the antisymmetric tensor

AMNP ) in a way which is in harmony with the hidden symmetries

of the dimensionally reduced theories.

The existence of alternative versions of d = 11 supergravity,
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which, though equivalent on-shell to the original version of [7], dif-

fer from it off-shell, strongly suggests the existence of a novel kind of

“exceptional geometry” for d = 11 supergravity, and thus the big-

ger theory containing it. This new geometry would be intimately

tied to the special properties of the exceptional groups, and would

be characterized by relations which have no analog in ordinary Rie-

mannian geometry. Much of the ongoing work centers on the role

of extended objects (such as 2- and 5-branes in eleven dimensions),

which couple to the antisymmetric tensor fields present in d = 11

and d = 10 supergravities. Since these antisymmetric tensors are

here “dualized away”, our formulation might open new vistas on a

unified description of the basic “objects” of M Theory.

We will here concentrate on the SO(1, 2) × SO(16) invariant

version of d = 11 supergravity [14]. To derive it from the original

formulation of d = 11 supergravity, one first breaks the original

tangent space symmetry SO(1,10) to its subgroup SO(1, 2)×SO(8)

through a partial choice of gauge for the elfbein, and subsequently

enlarges it again to SO(1, 2) × SO(16) by introducing new gauge

degrees of freedom. The construction thus requires a 3+8 split

of the d = 11 coordinates and indices, implying a similar split

for all tensors of the theory. The symmetry enhancement of the

transverse (helicity) group SO(9) ⊂ SO(1, 10) to SO(16) requires

suitable redefinitions of the bosonic and fermionic fields, or, more

succinctly, their combination into tensors w.r.t. the new tangent

space symmetry. It is important, however, that the dependence on

all eleven coordinates is retained throughout.

In the bosonic sector, the elfbein and the three-index photon

are combined into new objects covariant w.r.t. to d = 3 coordinate

reparametrizations and the new tangent space symmetry SO(1, 2)×

SO(16) (similar redefinitions must be made for the fermionic fields,
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but we will not give explicit formulas here for lack of space). In a

special Lorentz gauge the elfbein takes the form

E A
M =

(
∆−1e a

µ B m
µ e a

m

0 e a
m

)

where curved d = 11 indices are decomposed as M = (µ, m) with

µ = 0, 1, 2 and m = 3, ..., 10 (with a similar decomposition of the

flat indices), and ∆ := det e a
m . It thus contains the (Weyl rescaled)

dreibein and the Kaluza Klein vectors Bµ
m, all of which are left

untouched. By contrast, we will trade the internal achtbein e a
m

for a rectangular 248-bein em
A ≡ (em

IJ , em
A ) containing the remaining

“matter-like” degrees of freedom, where the index A ≡ ([IJ ], A)

labels the 248-dimensional adjoint representation of E8(8) in the

SO(16) decomposition 248 → 120 ⊕ 128. This 248-bein, which

in the reduction to three dimensions contains all the propagating

bosonic matter degrees of freedom of d = 3, N = 16 supergravity,

is defined in a special SO(16) gauge by

(em
IJ , em

A ) :=

{
∆−1e m

a Γa
αβ̇

if [IJ ] or A = (αβ̇)

0 otherwise

where the SO(16) indices IJ or A are decomposed w.r.t. the diag-

onal subgroup SO(8) ≡ (SO(8)×SO(8))diag of SO(16) (see [14] for

details). Being the inverse densitized internal achtbein contracted

with an SO(8) Γ-matrix, this object is similar to the inverse densi-

tized triad in Ashtekar’s reformulation of Einstein’s theory [15].

In addition we need composite fields QA
µ ≡ (QIJ

µ , P A
µ ) and QA

m ≡

(QIJ
m , P A

m), which together make up an E8(8) connection again in

eleven dimensions. Their explicit expressions in terms of the d =

11 coefficients of anholonomity and the four-index field strength

FMNPQ are, however, too lengthy to reproduce here [14].
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The new geometry is encoded into constraints between the viel-

bein components, which rely in an essential way on special proper-

ties of the exceptional group E8(8). With the E8(8) indices A,B, . . . (=

1, . . . , 248), we have

(Pj)AB
CDem

C en
D = 0

where Pj are the projectors onto the j = 1 , 248 and 3875 represen-

tations of E8(8). (Note that the projectors onto the j = 27000 and

30380 representations do not vanish.) In addition, the 248-bein

and the new connection fields are subject to a “vielbein postulate”

similar to the usual vielbein postulate, which states the covariant

constancy of the 248-bein w.r.t. to an E8(8) covariant derivative

involving the E8(8) connection QA
M . For instance, for M = m we

have

∂men
A + fAB

CQB

men
C = 0

where fABC are the E8(8) structure constants. (The relations with

M = µ involve the Kaluza Klein vectors Bµ
m and are slightly more

complicated). The supersymmetry variations of d = 11 supergrav-

ity can now be re-expressed entirely in terms of these new variables

and their fermionic partners [14, 9].

Despite the “E8(8) covariance” of these relations, it must be

stressed, however, that the full theory does not respect E8(8) invari-

ance, as is already obvious from the fact that the fermions do not

fit into representations of E8(8). However, the algebraic relations

given above can be exploited to show [10] that there exists an E8(8)

matrix V in eleven dimensions such that

em
A =

1

60
Tr
(
ZmVXAV

−1
)

where the XA are the generators of E8(8), and the Zm span an

eight-dimensional nilpotent subalgebra of E8(8) (there are altogether
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36 = 8 + 28 such nilpotent generators, whose role in relating the

various dualized forms of dimensionally reduced supergravity has

been explained in [16]). Because the fundamental and the adjoint

representations of E8(8) are the same, we have VXAV
−1 = XBV

B
A

and can thus rewrite this relation in the form

em
A = Vm

A

This means that the (inverse densitized) achtbein, which itself is

part of the elfbein of d = 11 supergravity, has become part of an

E8(8) matrix V in eleven dimensions! Furthermore, it then follows

from the generalized vielbein postulate stated above that the M =

m part of the E8(8) connection QA
M can be simply expressed in terms

of this matrix via

Qm = V−1∂mV

This simple formula, however, does not work for the low dimen-

sional components QA
µ .

The results obtained so far suggest further extensions incorpo-

rating infinite dimensional symmetries. More specifically, the fact

that the construction outlined above works with a 4+7 and 3+8

split of the indices suggests that we should be able to construct

versions of d = 11 supergravity with infinite dimensional tangent

space symmetries, which would be based on a 2+9 or even a 1+10

split of the indices. This would also be desirable in view of the fact

that the new versions are “simple” only in their internal sectors, as

put in evidence by the above formula for QA
m. The general strategy

would thus be to further enlarge the internal sector by absorbing

more and more degrees of freedom into it, such that in the final

step, only an einbein would be left in the low dimensional sector.

However, it is also clear that the elaboration of these ideas will not

be an easy task. After all, it took a considerable effort extending
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over many years to show that the general pattern continues when

one descends to d = 2 and that the hidden symmetries become infi-

nite dimensional, generalizing the Geroch group of general relativity

[17].

There is some reason to believe that a generalization along these

lines will take us beyond d = 11 supergravity. The fundamental ob-

ject of the theory could then turn out to be an infinite generalization

of the vierbein of general relativity, which would be acted upon from

one side by a vast extension of the Lorentz group, containing not

only space-time, but also internal symmetries, and perhaps even

local supersymmetries. For the left action, one would have to ap-

peal to some kind of generalized covariance principle, which would

involve the E11−d symmetries.

To put these ideas into perspective, let us recall some facts about

dimensionally reduced maximal supergravity to two dimensions.

Following the empirical rules of dimensional reduction one is led

to predict E9 = E
(1)
8 as a symmetry for the dimensional reduction

of d = 11 supergravity to two dimensions [12, 18]. This expectation

is borne out by the existence of a linear system for maximal N = 16

supergravity in two dimensions [19] (see [20] for the bosonic theory,

and [21] for a more recent summary). As is usually the case for

integrable systems, the linear system requires the introduction of

an extra spectral parameter t, and the extension of the σ-model

matrix V(x) to a matrix V̂(x; t) depending on this extra parameter

t. An unusual feature is that, due to the presence of gravitational

degrees of freedom, this parameter becomes coordinate dependent,

i.e. we have t = t(x; w), where w is an integration constant, some-

times referred to as the “constant spectral parameter” whereas t

itself is called the “variable spectral parameter”.

The (finite dimensional) coset structure of the higher dimen-
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sional theories has a natural continuation in two dimensions, with

the only difference that the symmetry groups are infinite dimen-

sional. This property is manifest from the transformation proper-

ties of the linear system matrix V̂, with a global affine symmetry

acting from the left, and a local symmetry corresponding to some

“maximal compact” subgroup acting from the right:

V̂(x; t) −→ g(w)V̂(x; t)h(x; t)

Here g(w) ∈ E9(9) with affine parameter w, and the subgroup

to which h(x; t) belongs is defined as follows [18, 20, 21]. Let

τ be the involution characterizing the coset space E8(8)/SO(16):

then h(t) ∈ SO(16)∞ is defined to consist of all τ∞ invariant el-

ements of E9(9), where the extended involution τ∞ is defined by

τ∞(h(t)) := τh(εt−1), with ε = +1 (or −1) for a Lorentzian (Eu-

clidean) worldsheet. Observe that SO(16)∞ is different from the

affine extension of SO(16) for either choice of sign.

Introducing a suitable triangular gauge and taking into account

the compensating SO(16)∞ transformations to re-establish the cho-

sen gauge where necessary, one finds that these symmetries are re-

alized in a non-linear and non-local fashion on the basic physical

fields. Moreover, they act as duality transformations in the sense

that they mix scalar fields with their duals. At the linear level, a

scalar field ϕ and its dual ϕ̃ in two dimensions are related by

∂µϕ̃ = ǫµν∂
νϕ

If we were just dealing with free fields (as in conformal field theory),

there would not be much more to duality than this simple equation,

since a second dualization obviously brings us back to the original

field (up to an integration constant). The crucial difference here is

that, as a consequence of the non-linearity of the field equations,
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there are infinitely many dual potentials because each dualization

now produces a new (i.e. higher order) dual potential. It is ba-

sically this non-linearity inherited from Einstein’s equations which

explains why the group of duality transformations becomes infinite

dimensional in two dimensions. Remarkably, however, already the

free field relation above (with ϕ replaced by any target space coor-

dinate) is central to modern string duality — for instance implying

the emergence of D(irichlet) branes through the interchange of Neu-

mann and Dirichlet boundary conditions for open strings [22]. It is

furthermore well known that the integration constant arising in the

dualization of a compactified string target space coordinate is as-

sociated with string winding modes, and that duality interchanges

Kaluza Klein and winding modes. Since we here get infinitely many

such integration constants (i.e. one for every dualization), we are

led to predict the existence of an infinite tower of novel “winding

modes” over and above the ones seen so far seen in string theory.

These could be related to the mysterious states found in [23] that

cannot be accounted for by the standard counting arguments.

By representing the “moduli space of solutions” M of the bosonic

equations of motion of d = 11 supergravity with nine commuting

space-like Killing vectors as

M =
solutions of field equations

diffeomorphisms
=

E9(9)

SO(16)∞

one has managed to endow this space, which a priori is very com-

plicated, with a group theoretic structure that makes it much easier

to handle. In particular, the integrability of the system is directly

linked to the fact that M possesses an infinite dimensional “isome-

try group” E9(9). The introduction of infinitely many gauge degrees

of freedom embodied in the subgroup SO(16)∞ linearizes and local-

izes the action of this isometry group on the space of solutions. Of
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course, in making such statements, one should keep in mind that

a mathematically rigorous construction of such spaces is a thorny

problem. We can ignore these subleties here, not least because these

spaces ultimately will have to be “quantized” anyway.

Elevating the local symmetries of maximal supergravity in two

dimensions to eleven dimensions would thus require the existence

of yet another extension of the theory, for which the Lorentz group

SO(1, 10) is replaced by SO(1, 1)×SO(16)∞ (the subgroup SO(16)∞

can be interpreted as an extension of the transverse group SO(9)

in eleven dimensions). Accordingly, we would now decompose the

elfbein into a zweibein and nine Kaluza Klein vectors B m
µ (with

m = 2, ..., 10). The remaining internal neunbein would have to be

replaced by an “Unendlichbein” (or “∞-bein”, for short) em
A(x; t).

The parameter t is necessary in order to parametrize the infinite di-

mensional extension of the symmetry group; whether it would still

be a “spectral parameter” in the conventional sense of the word for

the “lifted” theory, remains to be seen. One important difference

with the dimensionally reduced theory is, however, clear: in eleven

dimensions, there is no anolog of the dualization mechanism, which

would ensure that despite the existence of infinitely many dual po-

tentials, there are only finitely many physical degrees of freedom.

This means that the construction will almost certainly take us be-

yond d = 11 supergravity.

Some information can be deduced from the requirement that in

the dimensional reduction to d = 2, there should exist a formula

relating em
A(x; t) to the linear system matrix V̂(x; t), analogous to

the one relating em
A(x) to the E8(8) matrix V(x) before. For this

purpose, we would need a ninth nilpotent generator to complement

the Zm’s; an obvious candidate is the central charge generator c,

since it obeys 〈c|c〉 = 〈c|Zm〉 = 0 for all m = 3, ..., 10. The param-
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eter t, introduced somewhat ad hoc for the parametrization of the

∞-bein, must coincide in the dimensional reduction with the spec-

tral parameter of the d = 2 theory. Furthermore, the generalized

“∞-bein postulate” should reduce to the linear system of d = 2

supergravity in this reduction.

One difference with the previous situation, where the tangent

space symmetry was still finite, is that the Lie algebra of SO(16)∞

also involves the non-compact E8(8) generators, but in such a way

that the generalized Cartan Killing form on E9(9) is still positive on

all these generators. This follows from consideration of the t de-

pendence of the linear system of the dimensionally reduced theory

and shows that the new connections would constitute an SO(16)∞

rather than an E9(9) gauge connection. This means that the co-

variantizations in the generalized vielbein postulate would be in

precise correpondence with the local symmetries, in contrast with

the previous relations which looked E8(8) covariant, whereas the full

theory was actually invariant only under SO(16). Another curious

feature is the following: in two dimensions, the linear system ma-

trix contains all degrees of freedom, including the fermionic ones,

and the local N = 16 supersymmetry can be bosonized into a local

SO(16)∞ gauge transformation [24]. This could mean that there is

a bosonization of fermions in the sense that em
A(x; t) would describe

bosonic and fermionic degress of freedom.

What has been said here could be summarized as follows: in

searching for a possible candidate M Theory, one should not only

concentrate on dimensionally reduced maximally extended rigidly

supersymmetric theories (= supersymmetric Yang Mills theories),

but also consider the dimensionally reduced maximally extended

locally supersymmetric theory. The idea (already proposed in [19])

is that a third quantized version of maximal supergravity in two
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dimensions would give rise via a kind of bootstrap to a theory be-

yond d = 11 supergravity that would contain the latter in the same

way as superstring theories contain d = 10 supergravity and d = 10

super-Yang-Mills theories as special limits. However, it is not clear

how (and if) this idea fits with presently accepted points of view.
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