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Abstract

We consider the limit of two-dimensional N = (2, 2) superconformal minimal
models when the central charge approaches ¢ = 3. Starting from a geometric
description as nonlinear sigma models, we show that one can obtain two
different limit theories. One is the free theory of two bosons and two fermions,
the other one is a continuous orbifold thereof. We substantiate this claim by
detailed conformal field theory computations.

PACS numbers: 11.10.Kk, 11.25.Hf

1. Introduction

Sequences of two-dimensional conformal field theories and their limits have been analysed
in [1-8]. The motivation to study them arises on the one hand, because one can use them to
explore non-rational models that occur as limits of sequences of rational theories. On the other
hand, the analysis of such sequences might shed light on the structure of the space of two-
dimensional field theories. There are several ideas about what a good notion of distance on such
a space would be, e.g., the Zamolodchikov metric [9, 10] or g-factors of conformal interfaces
(for a recent discussion see [11]). If one has a notion of distance or more generally a topology,
one can also discuss the question of convergence of sequences of theories. Conversely, lacking
a proper understanding of theory space, one may study sequences of theories in order to learn
more about what the right notion of convergence should be.

The study of limits of sequences of two-dimensional conformal field theories was
pioneered in [1] for the limit of Virasoro minimal models when the central charge approaches
¢ = 1. The general idea of that construction is to define fields in the limit theory as limits of
averages of fields. More precisely, given a smooth, non-negative function f (%) of fast enough
decay that describes a certain averaging over conformal weights, the corresponding limit field
@/ arises from weighted averages

o =) fh) ¢ (1.1
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of primary fields ¢i(k) in the kth model with conformal weight ;. Correlators of limit fields are
then defined as limits of correlators of averaged fields. In order to obtain finite and sensible
correlators in the limit, one can make use of the freedom to rescale fields and correlators and
to redefine the fields ¢i(k) by individual phases. A priori it is not guaranteed that in this way
one arrives at a valid conformal field theory, but in all examples that have been studied over
the years, the limit theory seems to be well behaved.

The above procedure is ambiguous when other quantum numbers are available, because
there is some freedom of how to treat them while taking the limit. In the limit of N = (2, 2)
superconformal minimal models at central charge ¢ = 3, which we explore here, we will
encounter this ambiguity because of the presence of the U(1) current J in the N = 2
superconformal algebra and the corresponding charge Q. On the one hand, we could keep
the charge fixed in the limit and define field averages

Dol =3 f(hi. 009", (12)

corresponding to a certain test function f(h, Q) by an obvious generalization of (1.1). This
leads to the limit theory constructed in [8] with a continuous spectrum of charged primary
fields. On the other hand, one could rescale the charges and define new averaged fields

DO =D i, 0itk+2)) 9. (1.3)

Because of the rescaling, in this theory the primary fields have charge zero, and we will show
that this limit is equivalent to a free theory of two uncompactified bosons and two fermions.
The discrete quantum number that arises from the rescaled charge of the primary fields is
then interpreted as the eigenvalue of the rotation operator on the plane spanned by the two
bosonic fields. In the process of defining the limit theory we will see that in addition to a global
rescaling of the fields we also have to make use of the freedom to redefine the ingredient fields
qﬁi(k) of @ CI>§,k) by individual phases compared to the conventions used for the ingredient fields

in the definition of () Cb;k) in the other limit construction [8].

The appearance of two different limit theories can also be understood from a geometric
point of view. The minimal models can be described by nonlinear sigma models [12] with a
target space having the topology of a disc with infinite circumference but with a finite radius
/7 (k +2)/2, which goes to infinity in the limit k — oo. If one focuses on the region around
the centre while taking the limit, the metric approaches the flat metric on the plane. This is the
free limit theory described above. On the other hand, one could focus on the region close to
the (singular) boundary of the disc. As explained in section 2, one can use T-duality to show
that the corresponding limit theory should be given by a free theory of two bosons and two
fermions orbifolded by the rotation group SO(2). We will verify explicitly that this continuous
orbifold coincides with the limit theory involving the fields (") @}k) that was constructed in [8].

The plan of the paper is the following. We will start our analysis in section 2 by discussing
the two possible limits starting from a geometric description. In section 3 we will confirm that
the limit procedure using the fields ® CD(fk) (see (1.3)) with rescaled charges leads to a free field
theory; we determine the partition function, the three-point function and boundary conditions
in the limit and compare them to the free field theory results. Thereafter in section 4 we show
that the other limit theory involving the fields (" Cb;k) (see (1.2)) is equivalent to a continuous
orbifold by matching the partition function and boundary conditions, and we close in section 5
with a brief discussion.
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2. The geometry of minimal models and the limit

In [12], Maldacena, Moore and Seiberg gave a geometric description of N = (2, 2) minimal
models in terms of a supersymmetric nonlinear sigma model on a two-dimensional target
space with the topology of a disc and with the metric

k+2

1—p?

ds* = (dp* + p*de?), 2.1)

where the radial coordinate p runs from O to 1, and the angular coordinate ¢ is 27 -periodic.
In addition there is a non-trivial dilaton field ® of the form
1

J1=p?

The geometry is such that the boundary at p = 1 is at a finite distance 7+/k +2 from the

e2(.0)=P _ 2.2)

centre at p = 0, but the circumference of a circle at radius p is 27 p 1’%22, and it diverges as
p— 1.

Given the geometric interpretation, we now want to analyse what happens for large levels
k. One way to take the geometric limit is to introduce a new coordinate

p'=~k+2p, (2.3)

such that the metric reads

1
1 —p?/(k+2)
Keeping p’ fixed while taking the limit k — oo leads to the flat metric on the plane.

From this analysis one would like to conclude that the limit of N = (2, 2) minimal models
for k — oo is a free theory. At first sight this is in conflict with the analysis in [8], where the
limit of minimal models was shown to be a theory containing fields with a continuous U (1)
charge that should not be present in a free theory. This conflict can be resolved by comparing
more carefully how the limits are taken in these two approaches.

In a minimal model of level k, Neveu—Schwarz primary fields ¢; ,, are labelled by two
integers satisfying 0 < I < k, |m| < [ and [ 4+ m even. In [8] the fields in the limit theory
arise from fields ¢; ,, where / and m grow linearly with k in the limit, while the difference
| — |m| =: 2n is kept fixed. To compare this procedure to the geometric limit we need a
geometric interpretation of the fields ¢y ,, which was also given in [12]. The fields ¢y,
correspond to wavefunctions

ds*> = (dp”? + p"dg?). (2.4)

; m| +1 m| —1
Vin(p. 9) = oM F, (' e P e, p2> , @5)
which are eigenfunctions of the (dilaton-corrected) Laplacian,
(=3V2+ (VO) - V) Y1u(0, 9) = 2h1m Y1 (0. ). (2.6)
Here, »F) is the hypergeometric function, and
I(1+2)—m?
Im =~ 2.7
4(k +2)

is the conformal weight of the field ¢y ,,.
When we now take the geometric limit to the flat plane, the wavefunctions v ,, should
approach the eigenfunctions of the flat Laplacian. In radial coordinates, these are given by

Vom0, 9) = " J (pp)), (2.8)
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where J is a Bessel function of the first kind. They satisfy

2
- % ViaVra (0, @) = % Y (o' @) (2.9)
flat
p.m .
m should be kept fixed in the limit. For the eigenvalue 4, ,, to approach &, = %, the label / has
to grow with the square root of k, namely [ & p+/k + 2. Then the wavefunctions v ,, behave
as

Comparing the angular dependence of v ,, and one observes immediately that the label

. +1 |m| —1 o'
k 2y, = pmleime, (1 1, ; 12 2.10
(k+2)"™ Yy = "™ Fy >+ 7 |m| + ) (2.10)
(U=imD)/2 (”_2""‘) <_*’;‘m|>
— eim(p n n /\2n+|m| k+ )" 2.11
; T e+ ) (2.11)
_ém”g?” (=1)" (l—mq—h+a>“'<1—mu>
= nl(jml+ 1Dy 2Vk+2 2Vk+2
l+|m|> <l+|m|+2n—2) s 2
X|[— ) [ —}—M———= ntim 2.12
<2«/k+2 2Vk+2 ) 12)
o0
) (_l)np2n272n 5
~ el 7y2n+|m| 2.13
; i . @) (2.13)
~ e Jin (pp'). (2.14)

Thus up to an overall normalization factor the wavefunctions v ,, approach the wavefunctions
of the free theory.

On the one hand, this suggests that there is a free field theory limit of minimal models by
scaling [ = p«/k 4 2 and keeping m fixed. This will be examined further in section 3. On the
other hand, this means that the limit theory found in [8] should correspond to a different way
of taking the geometric limit. Indeed for fixed / — |m| = 2n the wavefunction 1 ,, is, apart
from the angular part, a polynomial in p containing n + 1 terms with powers ranging from p!”!
to p!"*+2% If |m| is large, the wavefunctions are localized close to p = 1, in the region where
the metric and the dilaton diverge and the sigma model description becomes singular, so that
one cannot easily extract a sensible geometric interpretation. It was however observed in [12]
that under a T-duality the minimal model is mapped to its own Z;., orbifold described by

k+2
4 = 22 @+ 5 dg). 2.15)

1—p2

5 1 1
e _ , (2.16)
Vk+2 /1 - p?

2
r=¢+ ——. 2.17
g=¢+i 2.17)
T-duality maps the problematic region around p = 1 to the region close to the conical

singularity of the orbifold at p = 0. This suggests that the limit of minimal models of [8]
corresponds to taking the limit in the orbifolded model by focusing on the region around
p = 0. By introducing again a rescaled variable o' = /k + 20 and keeping o’ fixed in the

4
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limit, the metric ds? approaches the flat metric on the plane. On the other hand, according to
(2.17) all angles have to be identified. The resulting limit theory is thus the theory on a flat
plane R? orbifolded by the rotation group SO(2).

In section 4 we will construct this orbifold conformal field theory and show that it precisely
matches the limit theory of [8].

3. Free field limit

The geometric analysis of section 2 suggests that the N = 2 minimal models have a free
field limit when the labels of the Neveu—Schwarz primary fields ¢, ,, are treated such that
| =~ /k + 2 p and m stays fixed in the limit. As m = —(k 4 2)Q for these fields, we are led to
consider the limit of averaged fields <2)<I>(fk) that uses a charge rescaled by (k + 2) (see (1.3)).
We will first analyse the behaviour of the partition function in the limit. We will then turn
to the actual construction of the fields in the limit theory, and determine the bulk three-point
function and boundary conditions.

3.1. Partition function

We will now reproduce the partition function of the free theory of two uncompactified bosons
and two fermions as the limit of the partition functions of minimal models. We focus on the
Neveu—Schwarz sector, and for the minimal models we define

P (7, v) = Trygs (g0 5120 gl 520 ) 3.1

where Jp is the zero mode of the U (1) current of the N = 2 superconformal algebra, and
g = e*™" and 7 = e*"I. Note that P}js (7, v) does not depend holomorphically on t and v, but
we suppress the dependence on T and v to shorten the notation. Hst is the full supersymmetric

Hilbert space for the Neveu—Schwarz sector,

=P B Hin®Him (3.2)
0<i<k  |ImI<I
I+m even

and the Neveu—Schwarz spectrum of the actual minimal model corresponds to a (GSO-like)
projection thereof. For k — oo the partition function diverges: there are infinitely many
states approaching the same conformal weight and charge. This can be seen by looking at the
contribution of the Neveu—Schwarz ground states,

22 m
P v = Y (g W @), (3-3)

Im|<I<k
[+m even

where we sum over the leading term of the minimal model characters given in equation (A.12).
By introducing the summation variable n = %(l — |m|), we can rewrite the sum and perform
the summation over m,

k—2n -1
PNSES (7 ) = Z(qq) G <Z + ) ) (q9) 3w ()%= (3.4)
m=0  m=—k+2n

241 l

2 (k—2n+1) - —\ 2L (k—2p41) =y k=20t
e | 1 — 2(6+2) 77 1— 2(6+2) 77) k2
Qnt1) (gq)*> @)~ + (99) _ ( ]) L (.5)
1—(q9) 2<k+2> (ZZ)_T“ 1 — (qq)2® > (z7) =2
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Here, | x] denotes the greatest integer smaller or equal x. Now let us cut off the summation over
nbyn < Avk+2withQ < A < 1. In this summation range, the denominators in (3.5) go to
zero, and the summands diverge as kjrrz The sum over n produces a logarithmic divergence,
such that the leading divergence of the partition function is of the form (k+2) log(k+2). The
divergence signals an infinite degeneracy of states. Part of the divergence might be resolved
by introducing additional quantum numbers that lift the degeneracy; on the other hand, there
can be a divergence due to the emergence of a continuous spectrum, in which case we can
regularize the partition function by rescaling the density of states appropriately’.

The fields we are interested in have fixed label m, and their U (1) charges Q = _k’—t_2
(the eigenvalues of Jy) approach zero in the limit. To cure the divergence associated to
the appearance of infinitely many chargeless fields, we want to keep track of the quantum
number m in the limit. In the free field theory, m corresponds to the eigenvalue of the angular
momentum operator M, and we could insert e in the partition function: in this way the
partition function is written as a formal power series in e and e, and the coefficient of e"¢
gives the contribution of states of a given angular momentum m. In the geometric description
of the minimal models, there is a U (1) rotation symmetry in the classical theory, but it is
broken to a Zy, symmetry in the quantum model. The rotation by an angle 27i (r integer)
is realized by the operator g", where g acts on states in H; ,, ® H; , by multiplication with the
phase ¢?"'%2 . To mimic the insertion of €™ in the free field theory, we therefore introduce
the operator gtz ®*2 in the partition function, such that states with a given m will get the
phase e” in the limit.

The regularized partition function therefore becomes (we use standard conventions for
¥ -functions as summarized in appendix A)

k k
i £ (D) | o\ 2w g 2
2 : e migs Loy (k+2)] (z7) "2 E (qq) 4(k+2) |F1(m)(1',1))} s
m=—k I=|ml|
[+m even

D5 (t,v) |?
n3(t)

Py (T v) = ‘

(3.6)

r®

where we used the minimal model characters given in equation (A.12). I, " is defined in

equation (A.14), it is of the form

F(k) = 1 + (subtractions from singular vectors), 3.7

and its behaviour for large k is given in equation (A.17). The contribution of a fixed m is then

(T ) [, VEF2
ro | C 2 /
where we employed the Euler—MacLaurin sum formula (see, e.g., [13, appendix D]) to convert
the sum over / into an integral over p = [/+/k + 2. For fixed m and large [ all singular vectors
disappear and I"(k) — 1. To get the true partition function, i.e. the trace over the projected
Hilbert space, we have to combine P evaluated at v and at v + imr, and we find after rescaling

by an overall factor

dp (g7, (3.8)

k ((p m)(r U) ‘

1
W( b (T V) + Proy (T, v + i)
1 193(1', l)) 2 img d —\p2/4 39
=3 o Z;e pad)” ", (3.9)

! Consider, e.g., a free compact bosonic field ¢ = ¢ + 27R. For R — oo the partition function diverges as the
volume R, and for the noncompact boson one usually considers the regularized partition function rescaled by 1/R.

‘ﬂm, ) [?
n (1)
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which is precisely the Neveu—Schwarz part of the partition function of two free uncompactified
bosons and two fermions (see, e.g., [ 14, chapter 12.2]), weighted by the rotation operator e"¢.
The rescaling can be explained from the analysis in the following subsection: in the interval
[p, p+ Ap] there are @ Ap ground states contributing to the partition function (see (3.12)).

The rescaling therefore corresponds to adjusting the density of states to 1 per unit interval Ap.

3.2. Fields and correlators

We will now define fields ®,,,, in the limit theory, which arise from averaged fields (2)(1)(;«)
with specific averaging functions f. For m = 0, the behaviour of the corresponding fields in
the limit was analysed in [8], and we will closely follow that construction.

In the Neveu—Schwarz sector of the kth minimal model we introduce the averaged fields?

1
(Dé’lrcn = ¢I ms (3 10)
P IN(p, €, k, m)]| leN(gk,m) ’
where ¢, ,, are Neveu—Schwarz primary fields (labelled by two integers with 0 < [/ < &,
|m| < [ and [ 4+ m even), and the set N(p, €, k, m) contains all allowed labels / that are close

to pvk + 2,

l
N(p,e,k,m):{l:l+meven,p—§<m<p+§}. 3.11)

Here, € is a small real number that will be taken to zero at the end. For large k the number of
elements in N(p, €, k, m) is (assuming p — g > 0)

JE¥2
2

IN(p, €, k,m)| =€ + O(1). (3.12)

These averaged fields are used to define fields &, , in the limit theory of conformal weight
h = % and U (1) charge Q = 0. Their correlators are defined as

<q)p|,m| (z1,z1) -+ (bp,,m, (2rs 2r))

= lim lim B(k)*a (k)" (@55, (z1.21) -+ PG5, (2. %)), (3.13)

€—0k—o00 ’ o
with normalization factors « (k) for each field, and an overall normalization factor 82 (k) for
correlators on the sphere. In addition to this rescaling we also have the possibility to redefine the
fields ¢; ,, by individual phases. Compared to the analysis in [8] we change the normalization
by
I—m

Gim = (=1) 2 P (3.14)
The necessity of introducing these signs will become clear when we analyse the three-point
function. With this convention the two-point function in the minimal models is

_ _ Iy —my+lp—my 1
(Dr,.m (21, 2Pt my (22, 22)) = (1) 2 811,128m1+m2,0—|z i
12

1

— (— my J—
_( 1) 811,128m1+m2,0|212|4h1’

(3.15)

where we used that [; 4+ m; is even.

2 In comparison to the discussion around (1.3) we make use of the fact that the spectrum of the rescaled charge
Q(k +2) = —m is discrete so that we can define fields with fixed labels m. For large k our procedure here then
corresponds to using a (discontinuous) averaging function f, ¢ (h) = (1)/6 Z(l)srelp —2vhl <e€/2

k-dependent rescaling of the fields by 2/+/k + 2.

, and in addition a
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By following the analysis of [8] we find a normalized two-point function in the limit,

_ _ 1
(®pym (21, 2D Py (22, 22)) = (=1)™8(P1 — P2)Smy 4m0——— (3.16)
|z1 — 22|

if we choose

k 2 1/4
a(k)B(k) = %

Before moving on, let us compare this to the free field theory of two uncompactified bosons
and two fermions. The primary fields (bf“’e in the Neveu—Schwarz sector are labelled by a

(3.17)

complex momentum p, they have conformal weight h = PE and U (1) charge g = 0. We can
define a new ‘radial’ basis,

free _ | £ /d(p q)fl‘:li 1mgo (3.18)

where the factor in front ensures a proper normalization of the two-point function,

- m 1
(Q,fprlee}nl (z1, Zl)@prfem, (22,22)) = (=D™8(p1 — p2)3m1+m2,0W' (3.19)
21 — 22171
We therefore expect that the fields @, ,, of the limit theory are to be identified with the fields

@gﬁfl of the free field theory. To confirm this we now look at the three-point function.

3.3. Three-point function

The three-point function in the free theory is given by

(D (21, 21) Ppe® (22, 22) Pt (23, Z3)) = 87 (p1 + P2 + P3)
% |le|2(h3*h1*h2)|Z23|2(h1*h2*h3)|z |2(h2*h1*h3) (3.20)

A straightforward calculation (see appendix C) shows that in the basis <I>free it can be expressed

as
W P1p2p3

(@0 (21, 21PN, (22, 22) DI, (23, 23)) = Sy 0~ = T (=™

cos(maay — mctr) |7 20— —ha) |7 200 —ha—hs) |2 (20 —hi—hs) 3.21)
A(p1, p2, P3)
where A(p1, p2, p3) is the area of the triangle with side lengths p;, p, and p3, and «; is the
angle of the triangle opposite of the edge p;. If a triangle with these side lengths does not exist,
the correlator is zero.
The three-point functions in the limit theory are obtained from the three-point functions in
the minimal models [15] (see also [16, 17]). For large k+2 and [; & p;+/k + 2, the three-point
function is given by (see [8])

~
~

1

e L b
(B 1 20 By (2. 2) i (23, 33)) = (1) (,j 2 ,,3)
2 2 2

XV (I + D (b + DUz A+ Dy ol iz 7172 g5 P mhnid g 20n=le=in) - (3.22)
o2 3
K1 M2 U3
in the limit one has to understand the asymptotic behaviour of the 3 j-symbols for large quantum
numbers j;, which we analyse in appendix B. The result (compare with (B.14)) is

I b L 1 L—l-m3 /2 my
<2 m: é)Z(kH)—l/z cD

Here, ) denotes the Wigner 3 j-symbols, and in order to determine the correlator

~

Vv 3A(p1, P2, p3)

L+1—1 —
x Cos< 1t . m‘az) +OK™M. (3.23)

2 2

ol

4
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For large level k the three-point function therefore behaves as

_ _ _ _ 2./P1P2p3
(D1, (21 2Py (220 22)Blymy (232 23)) = (k4 2) A VTI2E
wA(p1, p2, P3)

y (_1)11+122+13 cos? <ll +5L -1 n myot; — mlcxz)

my+my+ms,0

b
4 2
x |Z12|2(h3*h1*h2) |z13 |2(hz*h1*h3) |23 |2(h| *hZ*hz). (3.24)

To obtain the correlator in the limit theory we have to average over the quantum numbers /;.
We observe that

(_1)11+122+13 cos? (ll +€42 - 137[ n moq ;mlaz)

cos? (Zesmer)  for Ath=h — 0 mod 2
=(=Dmxy o (3-25)
—sin” (4e)  for A42=8 = | mod 2.
In average these contributions combine to
1 — — 1
1™ (ot PRI i PRI ) s s i) (326

In total we arrive at

(D (215 2D D py s (225 22) P gy (235 23)) = BERIQ (k) (k +2) ™48, s 0 (—1)™
w YP1P2P3 COSUMA = MG2) - 20—yt 20 —ha—ho) | 2002y —hs)

T A(p1, p2, p3)
(3.27)
which matches the free field theory result (3.21) if we set (respecting (3.17))
1
a(k) = V2 (k+2)""4, Bk) = —=(k+2)"2. (3.28)

27

Hence, we find perfect agreement for the three-point function. Notice that the redefinition of
the minimal model fields ¢, ,, by the sign (—1)% was crucial in matching the expressions.
Without it, the averaging in (3.26) would simply give %(— 1) so that the three-point function
would have a rather trivial dependence on the labels m;.

3.4. A-type boundary conditions

We now want to discuss boundary conditions. In a free theory the simplest boundary
conditions we can discuss are combinations of Dirichlet and Neumann boundary conditions,
and interpreting the free bosonic fields as coordinates of a flat target space, such boundary
conditions can be formulated by specifying a flat submanifold (brane) that encodes the possible
boundary values of the fields. We first focus on one-dimensional branes in our two-dimensional
target. By choosing boundary conditions also for the fermions, we can ensure appropriate
boundary conditions for the supercurrents such that the maximal amount of supersymmetry
is preserved. For our one-dimensional branes, this leads to A-type gluing conditions for the
supercurrents (for a discussion of A- and B-type gluing conditions in N = 2 supersymmetric
field theories see e.g. [18, 19]). In the free theory, a one-dimensional brane is characterized

9
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Figure 1. Illustration of the boundary condition that corresponds to a one-dimensional brane, and
the distance R and the angle v that determine its position.

by a vector Re'V that determines its shortest distance from the origin plus an orientation (see
figure 1). In the Neveu-Schwarz sector the one-point functions are’

(@155 s, = 5 S(peos(y — ) &Hrn0 (3.29)

| 7 — Z|2h” :
The prefactor 1/2 already includes the factor of 27!/2 that arises because we choose the
(GSO-like) projection of our theory such that also the Ramond—-Ramond fields couple to the

one-dimensional brane. In the radial basis, the one-point function is then given by

(q)free(z’ R]// [ £ /d(p elmw @frew (Z, )) Ry (330)

1 . cosRp for m even
=——ce"™.{ (3.3D)
V2 p isinRp for m odd.

In the minimal models, A-type boundary conditions are obtained using the standard Cardy
construction [20]. They are labelled by integers (L, M, S), where 0 < L < k, M is 2k + 4-
periodic, S € {—1,0, 1,2}, and L + M + S is even. In the geometric description (2.1) of [12],
these boundary conditions correspond to branes that are straight lines characterized by the
equation

p cos(¢ — ¢o) = po, (3.32)
where
n(L+1) M
= _ = —. 3.33
po = COs ——— =117 (3.33)

3 A boundary condition corresponding to a d-dimensional brane in a D-dimensional target space that only couples
to the NS-NS sector has the one-point function

(eiﬁ-)2> 22 (a/)¥5(d) (ﬁ”)eiﬁ-m |z — 7|2k,
2
where the conformal weight is i, = ¢ or

the odd-dimensional branes to couple to the R-R sector; in that case there is an additional factor of 212 Tn our
conventions &’ = 1.

10
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Note that boundary labels (L, M, S) and (k— L, M +k+ 2, S+ 2) describe the same boundary
conditions, and we can always choose L < k/2 such that the above defined py is positive. In
the geometric picture (pg, ¢o) are the coordinates of the point on the brane that is closest to
the origin. For large k the distance to the origin is given by p, = vk + 2,09. To make contact
with the free field theory description we want this distance to approach the constant R,

L+1
VE+ 2 cos % SR (3.34)

We can achieve this by scaling the boundary label as

L= %(k+2) - §N/k+2+0(1). (3.35)

Similarly we scale the boundary label M such that the corresponding angle ¢y is constant in
the limit,
k+2
- o+ O(1). (3.36)
We expect ¢y to coincide with the angle ¥ up to a possible additive shift.
The one-point function of a Neveu—Schwarz primary field ¢; ,, for a boundary condition
(L, M, S) is given by (see?, e.g., [12])

M =

=m . g (141 (L+])
" (=D 2 ST a1
Z7Z — e k2 — . 337
(brm (2, D)) JE+2  for a0en |z — 2[2n (3:37)
12

For L and M as in (3.35) and (3.36), this behaves as

—1/4

(k+2)~Y/ (eiRJZTIZ _ ein(l+l)—iR%) ciloo—Zm
2./7p

To obtain the one-point function for the limit field ®, ,, we take expression (3.38), multiply it

by «(k)B (k) given in (3.17) and take the limit k — oo while we keep m constant and scale
| = pa/k + 2. We arrive at the result

(b1.m(z, Z))?L,M,S) = (3.38)

|z — z|2hm

1 . x
A sio—Zm {cos Rp for m even (3.39)

(q)”"")R,Wo - /27 p isinRp for m odd,
which precisely matches the free field theory result (3.31) upon identifying ¥ = @o — 7.

3.5. B-type boundary conditions

B-type boundary conditions in minimal models are labelled by two integers (L, S) where
0 <L < kand S =0, 1. The one-point functions of Neveu—Schwarz primaries are given by
(see’ e.g. [12])

R DD
SIn =

- (l+1)
Sin =75

(b1 DY 5) = V2 Smolz — 7|72, (3.40)

Geometrically these correspond to two-dimensional discs [12] where the coordinate of the
boundary is given by p; = sin % We expect that we can define two limits: one for which
the disc shrinks to a point to describe a zero-dimensional brane in the free theory, and one for
which the disc covers the whole plane corresponding to a two-dimensional brane in the free

theory.

4 The sign (—1) 5 comes from our field redefinition in (3.14).

5 Note that the sign (—1) e that one expects from the field redefinition (3.14) is absorbed by a sign hidden inside
the definition of the B-type Ishibashi states in [12].
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Let us first consider the zero-dimensional brane. We keep the label L fixed, such that the
radius of the disc, p] = vk +2sin® %:’21) , goes to zero. One readily obtains the corresponding
one-point function

(@2, D))y g, = VAL + DSyl — 217, (3.41)
which is an integer multiple of the one-point function for L = 0, so it describes a stack of L+ 1
elementary branes. This is related to the fact that in minimal models the B-type boundary
conditions with L > 0 can be obtained from a superposition of boundary conditions with
L = 0 by a boundary renormalization group flow that becomes short when k — oo [21].
In the free theory, for a zero-dimensional brane at the origin, the one-point function of
Neveu—-Schwarz primary fields CID;;ree is simply®

ree =\B 1 pnd Bl
(@52 D) g, = Elz —z| 7, (3.42)

which in the radial basis reads

1
(@l (2. 2))g, = VAP0 (3.43)

in precise agreement with the minimal model computation.

On the other hand, we can look at two-dimensional branes. There is a one-parameter
family of those that differ in the strength of a constant electric background field. The electric
field can be labelled by an angle’—7 < ¢ < 7 (see e.g. [22, 23] and the discussion in [24]).
The boundary conditions are characterized by the one-point functions

1
q)free(z’ Z) B .
( P >¢ V2 cos %
Instead of working with the delta distribution directly, it is more convenient to apply it on a

test function ¢ (p), i.e. we look at a smeared one-point function
B

. 1
< / &p (PO, z>>¢ givorwilll (3.45)

For a comparison to the minimal model limit, we express it in terms of the radial basis,

5@ (p). (3.44)

) B X B 1
< / dp 3 6y m®le (2. 2) .= < f dp ¢ ()OI (2, Z))¢ = ¢z(0) (3.46)
— ; £p0 (3.47)

where 5 A ‘
Cpm = 4/ o / dgp €™ ¢ (pe”). (3.48)
T

We can reformulate this as
(@2, 2)); =0 form#0 (3.49q)

<~/_ / dp VX (D)5 . z>> = fcos¢X(0) (3.495)
¢

for suitable test functions x on the positive real line.

6 Note that the zero-dimensional brane cannot couple to the R-R sector, because we chose the projection such that
the one-dimensional brane couples to it. Therefore the prefactor is simply 2~2/4 = 2=1/2 (compare the discussion in

footnote 3 on page 10)
7 : o f
Where sin¢ = = —f o)

l+f2 and cos ¢ =

12
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We expect to get these boundary conditions from the minimal models by considering
B-type boundary conditions that correspond to a disc covering the whole two-dimensional
space in the minimal model geometry. These are labelled by (L, S) where L is scaled linearly
with k, L = | A(k + 2)|. The minimal model one-point functions behave as

. [2(k+2) . .
B a~ 2hm
(1.2 D) arn).s) X m sin (@A + 1)) 8uo0lz—2z/77"". (3.50)

The sine function in the numerator oscillates rapidly as a function of /. Therefore the one-point
function of @, is suppressed for non-zero p as expected. To evaluate the contribution at
p = 0, we consider the one-point function for fields smeared by a test function y,

o0 B
<\/§/0 dp /Px (p)®,0(z, Z))

(LA (+2)1.9)

l—

[+1 I+1
klggo \/Z\/E(k—i—Z)_lM Z < + ) X <L> (Pr0(z, Z))?LA(k.q_z)J,s)

[ even v k+2 Y k+2
[+1

= 1lim 2v2 Y sin(wA( + 1)) ( ) 7 —z| 7o

k— 00 l;ﬂ X Vk+2 | |

V2

== x(0), (3.51)

sinw A

which equals twice the result in equation (3.490) if we set
1
¢ =12 <A — 5) . (3.52)

Therefore the limiting boundary condition is not elementary, but a superposition of two
two-dimensional branes in the free theory. A closer analysis (e.g. by looking at the relative
spectrum to the zero-dimensional brane) reveals that in fact it is a superposition of two branes
with opposite electric field (corresponding to the two possible signs of ¢ in (3.52)). This
is in accordance with the identification of B-type boundary states in minimal models under
L < k — L, which amounts to the identification A <> 1 — A corresponding to a switch of the
sign in (3.52).

This concludes our discussion of the free field limit, and we turn now to the continuous
orbifold limit.

4. Continuous orbifold limit

In [8] we constructed a limit of minimal models where both field labels / and m are sent to
infinity such that both the conformal weight and the U (1) charge are kept fixed. The resulting
theory contains a spectrum of primary fields that is continuous in the U (1) charge. In this
section we want to interpret this limit as a continuous orbifold of a free theory, where the U (1)
charge serves as a twist parameter.

The possibility to construct continuous orbifolds by gauging a continuous global symmetry
group was recently explored in [25] where the non-Abelian orbifold SU(2);/SO(3) was
analysed. The theory we want to consider is the N = (2,2) supersymmetric theory of two
uncompactified bosons and two fermions orbifolded by the rotation group SO(2) >~ U (1).

4.1. The orbifold

Notations and conventions follow closely the ones in [24]. We start by defining the real
bosonic coordinates X'(z, 7), X?(z, 7) and their fermionic counterparts ¥!(z, 2), ¥2(z, 2).

13
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We rearrange the fields to work on the complex plane with one free complex fermion, namely
defining

1 1

¢ = E(x‘ +iX?), ¢ = E(x‘ —iX?), (4.1a)
1 1 .2 * 1 1 )

w=ﬁ(lﬁ +iyt) ¢ =E(¢ —1y7), (4.1b)

such that the mode expansion of the (holomorphic) fields reads
3 = —iZamz_’”_l, dp* = —iza;';,z—'"—l, (4.2a)
mez meZ

v= 3w yt= Y e (4.2b)

reZ+n reZ+n

where n = 0, % in the Ramond and Neveu—Schwarz sector, respectively. The antiholomorphic
case is analogous. For simplicity we will restrict the following discussion to the Neveu—
Schwarz sector. The modes respect the algebra of one free complex boson and one free
Neveu—Schwarz complex fermion:

[O[mv Ol:] = msm,—na {Iprv Iﬂ:} = 8)’,—3‘7 (43(1)

[amv O[,,] = [a;:17 a:] =0, {Wr» WY} = ﬁﬂf’ Ws*} =0. (43b)

We can explicitly realize the N = 2 superconformal algebra by defining the generators
through our holomorphic fields as

T =—0¢0¢™ — LW oy +yay™), J=—y*y, (4.4a)

Gt =ivV2y0a¢*, G =iv2y*og, (4.4b)

and similarly for their antiholomorphic counterparts.

We want to end up with an N = (2, 2) theory; we therefore choose the action of the
orbifold group in such a way that the currents in (4.4) are invariant under the transformation
and supersymmetry is not broken. In particular we choose the U (1) action on the fields as
follows

U®) -¢=e¢, U®) ¢*=e"¢", (4.5a)

U@ v =e"y, U® v =ey", (4.5b)
so that in terms of the coordinates X!, X? on the plane it is realized by the rotation matrix

- > (cos® —sind X!

U(G)-X:R9~X_<Sin9 cos9>'<X2>' (4.6)
The action of the group on the field modes is thus

a, — ela,, o e’iea:, 4.7a)

S A A R T/ (4.7b)

14
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4.2. Partition function

We now want to determine the partition function of the orbifold. We first look at the Neveu—
Schwarz part, and work with the full supersymmetric Hilbert space. To compare with the
minimal models we will later perform a (GSO-like) projection by 1 (1 + (—1)"*¥) onto states
of even fermion number.

By inserting a twist operator we obtain the 6-twined characters

0 |%| = TrHEzi (U(Q)qLo_éq_i‘O_%) , 4.8)

NS
free

where we denoted by H
free theory.
The orbifold group acts non-trivially on the vacua labelled by the momentum on the plane,

the (unprojected) Neveu—Schwarz part of the Hilbert space of the

IP) — IRe-P), 4.9)

so that the momentum dependent part of equation (4.8) becomes

)

22 . N 1 2 -\ 12
[ Erd @R =9 @ = [ € om0 @ @0

The 6-twined character is then

D S |
00 =Trype (U(Q)qLO 1 gl s)

. 2
82(13’) N 00 (1+qn+%ela)(l+qn+%e—1a)
fir BBt | e s
det(Rg — 1) o (L=gmtle?) (1 — gmtlei?)
2
Ds(t, 2
_ |2trag) 29”) 4.11)
01(‘[15

We then act with a modular S-transformation on the complex modulus of the torus (t +— — %)
to get from the 6-twined free character to the character of the 9-twisted sector,

60 0 0. 4.12)
We can benefit from known transformation properties of the ¥ -functions, in particular

93(—=1,v)  03(r,v1)

=i , (4.13)
(=L v)  di(r,vr)
so that the 6-twisted sector reads
2
7 193(1—7&)
O=T (Lo—l-Lo—l)z REMAE T4 I 4.14
0= Trogn (47100 ) = |5 (4.14)
X g (] i 2
e | L AR Ch L)) (4.15)
(=g )1 —g"175)

We can now get the 6’-twined character over the 6-twisted sector by acting once more with
the orbifold group on the modes. We get the following:
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0’ |%| = TI‘HL\JS (U(Q/)qLo_éqi‘O_%)

o) Y 12
gt I (14 g+t 5me?) (1 + g7 3e )
(1= g+e?) (1 — g1 =3e )
2
, (4.16)

n=0
0+6'
93(t, i)

= 0+0’
91 (T, B5E5)

which is the expression we are interested in.
The contribution of a f-twisted sector to the unprojected partition function is therefore
obtained by integrating equation (4.16) over the twisting parameter 6’,

2 2 l
P@ twisted — L/ ) do'e’ O = / i % Trys (U(GI)QLO*%@I:[)*%) 4.17)
wiste: 27_[ 0 0 27-[ 5

6
_/er de’
o 0 2

Using some identities of appendix C in [24] the modular functions can be recast in the form

2
046
D3(t, B

046’
ﬂl(tv Tz;t )

(4.18)

ﬂ 1

Us(T,v) ﬁg(r 0)
() =— @) Zcos[Zn(n—l—l/Z)(u—r/Z)] q+“ 4.19)
so that the integral (4.18) becomes
93(2.0)|” — gitigit p
73 I 4.20
—twisted — ‘ 773(_”,) n%::() (1 +q"+%)(1 —i—é’”%) n,n ( )
with
-GS es[(a3) )
I .= —cos|[(n+=)(z@—-m)+0)|cos||n+=)(ETO—-7)+8) 4.21)
’ o 27 2 2
_ S : 0 7 4.22
= cos|:<n+§>(n— )(t—t):|. 4.22)

Inserting (4.22) into (4.20), evaluating the sum over 71, and combining the cosine with the g, g

dependent part of the numerator, we arrive at

P ‘173@, 0) zi q%('ﬂr%)é%(%%) _}.q(lf%)(rﬂr%)q(lf%)(wé) 423)
—twisted — n3(_’:) g (1 +q”+%)(1 +én+%) . .

The unprojected supersymmetric partition function is then obtained by integrating over all

twisted sectors

N /2” a9 Z /2” A A G
C/u) 0 lw1sted o 2 (1 +C]"+2)(1 +én+§)

o0

2
1
| a0 @pes
-1

_‘ (1) 1+qn+‘

=0
o 1
=X dQ\x’ ,
. 101(n+3).0
n=0

where we used the definitions of appendix A for the ¢ = 3 character x'.

, (4.24)

16
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The last expression is ill-defined: the integration over Q gives

1 [050) o= 1— (g9 1
NS
Peway = 5 3 Z 12 1 (4.25)
2ty | n°(T) s |1 +q11+2| n+ s

which exhibits a logarithmic divergence when we sum over n. The fields that contribute to
this divergence are the chargeless ones, as one can see by looking at the large n asymptotic
behaviour of the function (4.24): the fraction in front of the integral tends to one and the
integrand localizes around Q ~ 0. Therefore a sensible regulator would screen away the
untwisted fields. We define

2
93(2,0) |* — 1 ! ) . A
NS,(r) .__ 3 7 2mir
Pera '_’ e s D] rppers /ldQ (g9 ¢ (1 =), (4.26)
n=0 -

which corresponds to inserting 1 — e?*0 in the trace, where Jy is the zero mode of the
U (1) current J(z). We see explicitly that this cures the logarithmic divergences of the sum in
equation (4.24) by performing the integral over the twist Q,

2

2
7)Ns,(,-) _ 3(z, 0) i 1
C/um (1) —~ 1+qn+%
1— ~\n+ 1 1 — 2mir -n+% 1— —2mir -n+%
y (99) 12 B e 1(qc]) __ e 1(6161) I
2ry(n+3)  4dnn(n+y) —2mir  dnn(n+ 5) + 2wir

The summand is suppressed by n~2 for large , and the series converges.
From equation (4.26) it is easy to write down the (GSO-like) projected version of the
regularized partition function, which reads in the Neveu—Schwarz sector

119,07  [04(z,0) %\ &
ZNS,(r) _ ‘ 3 +
( n3 (1) 7 (1) g

cum T 5

2
1
= n+t1 Tir
/ 40 (g9 (1 = 27r0)
—1

(4.28)

14 g2

Comparison with the limit of minimal models. We now want to show that the partition
function of minimal models reproduces the result of equation (4.28) in the limit we analysed in
[8]. We are thus interested in the behaviour of minimal models in the regime in whichn = l_zﬂ
is a fixed non-negative integer, and |m| scales with k. The Neveu—Schwarz contribution to
the partition function for the A, minimal model reads (see appendix A for notations and

details)

k 1
1 _ _
8@ =53 > biniin@ o+ xinkin@ =], (4.29)
=0 T even

where 7 = e?™V. As before we first analyse the partition function before taking the (GSO-like)
projection, i.e. the corresponding trace is taken over the full supersymmetric Hilbert space,

k 1
P =>" > xakin(@.2)

=0 m=-I

m+l[ even
P3(T, v) CRLI 12 —m? 2
= ’ syl p(09)
_‘ peres 120: Zl g w2 T(T,v)| . (4.30)
=0 m=—
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For large level k we expect the same kind of divergence as for the partition function of the
continuous orbifold due to the almost chargeless field. Similarly to our strategy there we insert
the factor (1 — e?1%0) in the trace, and arrive at (we set v = 0 in the following)

L)

PN (1) — ‘ 0 (4.31)
k n(t) ; b
with
k—2n ., 2 m
I}ET) = Z(qq)m (r+3) 4125 (n+) ‘F(k-&)—an(r’ 0)’ (1 — cos <2nrk n 2)> . (4.32)

For large level k, the main contribution comes from small n and large m: the regularization
factor (1 —cos(+)) is small unless m is of order k, while the exponent containing the conformal
weight tells us that for large m only small values of n contribute significantly. In this limit, only
one singular vector survives in I" 1(,];) (the one present in the ¢ = 3 representations of type [ in
appendix A). Using the Euler—MacLaurin formula to convert the sum over m into an integral,

we obtain
2
m
1 —cos|2nr (4.33)
k+2
2

(1 —cos 2nrQ)). 4.34)

k—2n

I;fr,i ~2 Z(qq)%("%)
m=1

1— qm+2n+1

(14 ¢ 2)(1 + g™t

~2(k+2) / dQ(qq)~2("+3)

I+ q”* )
Inserting this into (4.31) and comparing to (4.26) we find

Jim S P @) = PEG (). (435)
The rescaling by a factor 1/(k+2) can be understood as follows: for a fixed » and a given small
interval [Q, O+ AQ] there are roughly (k+2)AQ ground states in the kth minimal model that
contribute with approximately the same weight (¢g)'?/"+2). The rescaling thus corresponds
to a rescaling of the density of states to 1 per unit interval AQ. An analogous relation holds
for the true (projected) partition functions, so that indeed we recover the continuous orbifold
partition function in the limit.

4.3. Boundary conditions

The technology to study boundary conditions on discrete orbifold models is well developed
(see e.g. [26] and references therein), and essentially they are also applicable for the continuous
orbifold we are considering (see also [25]).

For continuous orbifolds one meets the phenomenon that the untwisted fields are in a sense
outnumbered by the twisted fields—in the partition function (4.28) the untwisted, chargeless
fields give a contribution of measure zero. Therefore the only interesting boundary conditions
are those that couple to the twisted sectors, i.e. fractional boundary states. To obtain those we
have to start from boundary conditions in the plane that are invariant under the action of the
orbifold group. In our case, these are the boundary conditions corresponding to a point-like
brane at the origin of the plane, and the boundary conditions corresponding to space-filling
branes.

18
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Let us focus on the point-like brane. The fractional boundary conditions are then labelled
by representations of the orbifold group U (1), i.e. by an integer m. The relative spectrum for
two such boundary conditions labelled by m and m’ follows from the usual orbifold rules,

. 2 49 1
P (@) = / 7 X () Xk (0) Tt poren [U 0)g~ 5], (4.36)
0

where § = ¢*™'7 and x,,(6) = " is a U(1) group character. H°*" denotes the Hilbert
space of boundary fields for the point-like brane, which is just given by the free Neveu—
Schwarz vacuum representation. Note that depending on the projection of the bulk spectrum,
the point-like boundary condition could couple to the Ramond—Ramond sector, in which case
the boundary spectrum would be projected by %(1 + (=1)7). The unprojected spectrum will
be denoted by P, v as introduced above. Evaluating (4.36) we find

2w ~ 6

ao ... 6 U3(T, 37
,Pm,m’ (g) — [ _el(mfm )0 2 Sin e 3(~—2gr)
0 2 2 191 ('L', E)

93(5,0) o~ @it (0 0 1 3
= —4 35 ~ ) a - / — sin = el ("% cos (n—i——) O —7m7),

(@) = 1+4¢"2 Jo 2 2

21
4.37)

where we have made again use of equation (4.19). We can explicitly evaluate the integral,

S N R 1 5
— sin— e cos|(n+ =) (O —7nT)
0 27 2 2
1

= Z [67%(”4—%) (8Am,n - ‘SAm—l.n) + 67_%("+%) (S—Am-kl,n - S—Am,n)]v (438)
where Am = m — m'. Inserting this into (4.37) we find that the spectrum is given by single
N = 2 characters: in the notations of appendix A we obtain

o 9(F,0) (1-4° v~
Pum(q) = ;g(f)) (1 n Z;) = Xo,0 (@) (4.39a)
and (for m # m')
o 03(T,0) ap-t 1—gq oI ~
P (q) = W q 2 R +67|Am‘_%)(1 +g\Am|+%) = X\Amlf%,:l:l(q)’ (4.39b)

where the upper sign applies for Am > 0 and vice versa. This result can now be compared to
the limit of minimal models. In [8] two types of boundary conditions were identified. They
arise as limits of A-type boundary conditions in minimal models, which are labelled by triples
(L, M, S) with the same range as labels for minimal model fields (see appendix A.2 for the
conventions). The first type of boundary conditions is obtained by keeping the boundary labels
fixed while taking the limit. Only for L = 0 one obtains elementary boundary conditions. The
label S can be fixed to even values for a fixed gluing condition for the supercurrents, and the two
remaining choices S = 0, 2 determine the overall sign of the Ramond—Ramond couplings (thus
distinguishing brane and anti-brane). The relative spectrum for two such boundary conditions
reads [12]

Z sy on.5) @ = XoM-br.5-542)(@). (4.40)

This is a projected part of the full supersymmetric character X(I)\E— - For M = M’ this is the
minimal model vacuum character, which for k — oo goes to the ¢ = 3 vacuum character. For
M # M’, using field identification (see (A.11)) the labels can be brought to the standard range,
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O,M—-M)~ (k,M — M F (k+ 2)), where the sign depends on M — M’ being positive or
negative. In the limit X — oo the corresponding character approaches a type III character (see
(A.21) and (A.22)),

+
Jim Gy = Xiar 1 - (4.41)

The unprojected part of the boundary spectrum thus coincides with the spectrum for the
fractional boundary conditions in the continuous orbifold upon identifying M = 2m. On the
other hand, the spectrum in the limit of minimal models is projected. To get agreement we
therefore need that the point-like boundary conditions in the continuous orbifold model couple
to the Ramond-Ramond sector, which specifies the necessary (GSO-like) projection in the
Ramond-Ramond sector. Note that this is precisely opposite from the projection that we need
in the free field theory limit, which is in accordance with the T-duality that we use in the
geometric interpretation of the equivalence of a minimal model and its Z;, orbifold (see the
discussion at the end of section 2).

In [8], instead of the boundary spectrum, the one-point functions have been determined. To
make contact to these results, we perform a modular transformation to get the boundary state
overlap: we rewrite the boundary partition function (4.37) in terms of the modulus t = —%
using the known transformation properties (4.13),

0 93(t, 2£)

P @ 21/Qﬂ e in 2 2 (4.42)
o (§) = 2i —e sin — ——=2~ .
0o 2m 2 9(r, 32)

The ratio of ¥-functions can be rewritten using equation (4.19),

o o}
U3 (T’ ig) _ —ZiﬁS(T’ ) Z cos |:27T(I’l+ 1/2) <_9 - T/2>] lq—

N o 5
193(f 0) Z q(nJr%)% +q(n+%)(17%) s
77 (T) l_l_ql‘l-‘,-% ’

so that we obtain
n+3) £ +q(71+ a-£)

2
L %

Pm,m’ (@) =
773(7) 0o 2w 1+ q”*z
(o9}
_ 2ri(m—m')Q
- X;f dQ 2sin (|Q)) e Xioins 1),0(@- (4.44)

If we do the same analysis for the projected spectrum, we find

© el
aw@=2/<@mw@nWWWQ§Mw@+@MMM@)
n=0 Y "1

+/§dQ sm(n

Comparing with the formulae presented in reference [8, equations (4.5)—(4.7)], we find perfect
agreement with the one-point functions given there for the discrete A-type boundary states of
the limit theory for L = 0 and with the identification M = 2m.

Along similar lines let us briefly discuss boundary conditions that correspond to two-
dimensional branes. As we discussed at the end of section 3.5, there is a one-parameter family
of those that differ in the strength of a constant electric background field, which can be labelled
by an angle ¢. In the orbifold the boundary conditions obtain an additional integer label m
that determines the corresponding representation of U (1). The unprojected part of the annulus

1 2ri(m—m')(Q—1) RO
EDe P Xé,Q(‘I)' (4.45)
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partition function with such a two-dimensional boundary condition labelled by ¢ and m, and
a zero-dimensional boundary condition labelled by m' is then (using again (4.19))

. 9 (7 9+<¢+n>f)
doe . /o1 3( ’ 2
Pgmy.m (@) = / 2—6‘(”’_’"+5)9iﬁ (4.46)
0 27 9 (;7 +<<§:n>r)
D4(F,0) Gz |am+i]
_ 3s(.0) g P (4.47)

773(%) 14+ é|Am+%| ’
where the upper sign corresponds to Am = m — m’ > 0, and the lower one to Am < 0. These
are the type I characters X(I:Jrl)‘Q‘ 0 for charge |Q| = % and n = |Am + %| — % Note that
this is precisely the result we 2expéct from the limit of minimal models: in [8] we constructed
a continuous family of A-type boundary states labelled by Q, N as a limit of minimal model
boundary states with labels

(LM, S) = (I[-=Q(k+2)]|+ 2N, | -0k +2)],0), (4.48)

where |x| denotes the greatest integer smaller or equal x. Their relative spectrum (without
projection) to a boundary condition (0, M’, 0) with fixed M’ is simply given by ngsw_ > and
in the limit we find (see appendix A.3)

r >0, N> M
Kot |v—2 1] 0 Q 2
e M
) >0, N < =%
I L P @9
[l—Qk+2)||4+2N, |- Q (k+2) | —M' Xr / 0<0, N> _MT’ :
0l [N+4 410
x' ) 0 <0, N < —1%/
l0+1 ‘N+”’7+H,Q+1
These are the type I characters that we found above in (4.47) if we identify
1 1 1
=2r|-Q*x- ), m=—E£|N+=<], 4.50
¢ ( 0 2) m > ( + 2) (4.50)

where the upper sign applies for Q > 0, and the lower for QO < 0.

5. Discussion

We have shown that one can obtain two different limits of the sequence of N = (2, 2) minimal
models, and we have discussed how these limits can be understood geometrically. The first
limit theory is simply a free field theory, the second limit theory is the non-rational theory of
[8], and we have shown that it can be described as a continuous orbifold C/U (1). The latter
observation is reminiscent of the recent interpretation of the limit of Virasoro minimal models
as a continuous orbifold SU (2),/SO(3) [25].

It would be interesting to explore similar limits in the case of other series of N = (2, 2)
superconformal models, like the Grassmannian Kazama-Suzuki models [27] based on
SU(n + 1)/U (n). Again one might expect to find different possible limit theories; in fact
there might be a greater variety of limits, because in addition to the U (1) charge there are
charges associated to currents of higher spin for which one might have the freedom to scale
them while taking the limit. One is tempted to speculate that the limit theory corresponding
to fixed charges is again described by a continuous orbifold C"/U (n). It would be interesting
to study this in detail. This could also be of relevance in the context of the supersymmetric
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generalization of minimal model holography [28, 29], where a limit of Kazama—Suzuki models
occurs in the conjectured holographic dual of supersymmetric higher-spin theories on three-
dimensional asymptotically anti-de Sitter space-times [30-34].
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Appendix A. Characters

In this appendix we collect results about characters for N = 2 theories and their limits. A
general character over a sector H;, o labelled by h, Q (eigenvalues of the Ly, Jy generators
respectively) of the N = 2 superconformal algebra is defined as

Xn0(@: 2) = Try, oq" " 52", (A1)

with ¢ = e¥7, z = €™, In the main text we often make use of the following shorthand
notation for characters specialized to z = 1,

Xn.0(@) = xno(q, 1. (A2)
Throughout the text we use ¥ and n functions with the following conventions:

[o¢]
Di(r.v) = —izigs [ [ — g™ =gz (1 — g™,
n=0

o0
D) =g [[A+a D0+ ) —g"h,
n=0

o0
1 1
93t v) =[ [0 +¢"2 00 +¢" 2 HA — g,

n=0
o0
1 1
9a(r,v) =[[A =g —g"" 227 HA =g,
n=0
o0
L n
n(@) =qg» [Ja—g"™.
n=0

A.l. ¢ = 3 characters

We discuss here the characters of the unitary fully supersymmetric irreducible representations
of the N = 2 superconformal algebra at ¢ = 3. The Verma modules of the N = 2
superconformal algebra contain several singular submodules®, which have to be taken into
account. The structure of the singular submodules can be read off from the embedding diagrams
of the representations (for further details we refer to [36, 37]); we will follow the classification
of [35]. Let us explain the procedure at the example of the characters for the representations
of type I* in the notations of the aforementioned paper; the labels satisfy % €eZ+ % with

8 In general there are also subsingular submodules, but they do not show up for unitary representations [35].
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positive & and Q € Z. In this case we have only one charged singular vector. The singular
vectors at level ‘h@ =n+ % can be recognized to be’

G, G;...G, G',GY, ...G",G' |n,0), for O0>0

2 2 !~ —ot! -3 2 (A3)
GtGtY...G% G ,G, ...G,G ,|n,Q), for Q<0

2 3 ! @ Tot! -3 —2

and they have relative charge +1 and —1, respectively. Here, Gf denote the modes of the
supercurrents of the N = 2 superconformal algebra. In the character of the irreducible
representation we have to subtract the contribution of the submodule associated to them.
The result is

0 m+ 1 mtt_—1 n+1 _sgnQ
* _ b1, (I+4g""22)(1+4"227) q"" 2z
nolq,2) = 2 8z l—— . (A4
X ,Q(q )=¢q |:l—[ (1- qm+l)2 1 +q”+§ZSgnQ ( )

m=0

The other cases are analogous, and we can write:

e vacuum: (Q = h =0)

93(T, v 2z 277!
Xo.0(q.2) = 3( )(1 1 1 ); (A.5q)

n(r) g —i—q%z T —i—q%z—l

type 0: (Q =0, he R\ {0})
pU3(T, V)

: A.5b
n (1) (A.30)

Xno(q.2) =q

type I*: (0 < |Q] <1, h=1Ql(n+3), n € Zx)

1
* 1 ¥3(t, v) gzl
X\IQI(H%),Q(Q’ z) = q"20I0 (1 - : (A50)

773 ('L') 1 + qn+%zsgnQ

type II¥: (Q = +1, h € Rsy)

+ 19 (Ta l))
I (g 2y = ¢'2 2 1 —q'9); A5
Xio(@:9) = 4"~ 55 (1—4") (A.5d)

.00 1
type I (Q = £1, he Z + 3)

e 1.0 D3(T, v) thSgH(Q) qh+2ngn(Q)
Xh,Q(‘IaZ)ZqZ 3 l—g-— h Q) h+1 .
n (t) 1+ q Z5en [¢] 1 + C]H_ ZSg“(Q)

Ramond characters can be obtained from the Neveu—Schwarz characters by spectral flow
(see e.g. [38]). We give an example: let us denote spectral flowed operators and sectors by
an upper label 1, which indicates the amount of spectral flow units to use. Under a flow of
n = £1/2, primary vectors of the Neveu—Schwarz sector become Ramond primaries, and the
same happens for Neveu—Schwarz singular vectors, which flow to Ramond singular vectors.
The Ramond characters can then be computed using the formula

(A.5e)

—_ £ n__c U
X, o (g,2) = Tth').Qn qLo gl — Tth.QqLo 21 70 , (A.6)
with the spectral flowed operators

() c
LZ = Ln - T}Jn + ET) 5,1,(), J;] = J,, — 3778”’0. (A7)

9 One can, for instance, follow the spectral flow of Neveu—Schwarz null vectors starting from the (anti)chiral
primaries.
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Forc=3andn=%,Ll/2—L0—1J0+—andJ _JO——Wehave
Xpirz, gir (q,2) = CISZ : xno(q, q ZZ)- (A.8)
Starting, e.g., from the type I characters in the Neveu—Schwarz sector we find the characters
Qo
WL ey 1 1
X10(a:2) = AR ) 5 < 0 < 5 (A.9)

q"9z2  9(t,v)

L+ gqzen@ pi(r)
where in the first character the lowest lying state is a Ramond ground state, whereas in the
second character there are two lowest lying states of charges Q + %

R —
XE 0100 D) = 0<lol<1, n>1, (Al10)

A.2. Minimal model characters and partition function

Unitary irreducible representations for the bosonic subalgebra of the N = 2 superconformal
algebra at central charge ¢ = 3% 713 are labelled by three integers (/,m, s) with 0 < I < k,
m = m+2k+4,s = s+4,and I +m+s even. Not all triples label independent representations,
and they are identified according to

(Lms)~(k—1Lm+k+2,s+2). (A.11)

Representations of the full superconformal algebra are then obtained by combining
representations labelled by (I, m, s) and (I, m, s + 2).

Explicit expressions for the characters of the N = 2 superconformal algebra can be found
e.g. in [39]. In the Neveu—Schwarz sector for |m| < [ they read

X0 (q.2) = (Xm0 + Xam2) (g, 2)

a+D2—m? 1 1+ q”+2z)(1 + q”+2z h
= g WD sz =] |:l_[ =) X F](rlz)(‘[, V), (A.12)
n=0

and in the Ramond sector (for |m| <1+ 1)
X[I?m((], 2) = (Xam1) + xXtm—-1)(q. 2)

o) n+1 n+1,—1
= q(lt1(113+2)m z k+2(22 +z 2)|:1_[ (+g” 9U+q )j| F(k)(f V),

o (1 _ qn+1)2
(A.13)
where the structure of the singular vectors is summarized in I 1(,];),
00 [EESE ST
F(k)(r by = Zq‘k+2)1’z+(l+l)1’ - q<k+2)P+ z B q(k+2)p+ Tz 1
‘ 1+q(k+2)p+1+m+‘z 1+q(k+2>p+% -1
p:
l+m+l _ 1m+1
) 2P (4 - q(k+2)p z 1 q(k+2)p z Ald
— Zq (k+2) l+m+1 _1 - (e 2)p— Lzt . ( . )
1+ g" P~ ¢ 1+ gW+2r==2" ¢
The Neveu—Schwarz part of the minimal model partition function is given by
k I
ZEEv) =Y Y xum0(@DXam0 @ 2D + Xam2 (G D Xam2 (G 2)
=0 m=—1
l-&tnm even
1k 1
=352 2 (n@ 9@ D+ xine —9In @ —2). (A.15)
=0 m=—

I+m even
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It can be seen as a (GSO-like) projection of the trace over the full supersymmetric Neveu—
Schwarz Hilbert space Hy® = @ mj<i<iH) o © H)o

1L,m>

P (z,v) = Z Z (Xm0 (@ D) + Xum2@0) Xamn (@, 2) + Xam2@.5)

=0 m=-I
I+m even
k !
(T, v) | ‘ P o Cm
— R F (7; 1)) (zz) "2, (A.16)
‘ n(T) 120: mZ
[+m even

A.3. Limit of minimal model characters

In the limit kK — oo in the expression (A.14) for I" 1(:1) in each sum only the first summand can
contribute,

Q%Z ql—r;+1 Z_l
Fl(li(’l)(r’ v)~(1- LEmtl =t
l+qg 2z 14q 2 27!
q2k715m+3 Z_l q Zkfl:»m#»:‘ z
_qk_l+1 1 - Ylmts 2—tmt3 ’ (A.17)
1+q 2 z 1+qg 2 z

and the precise behaviour of the character depends on the details of how / and m behave in the
limit.
For our analysis we need to consider the following cases in the Neveu—Schwarz sector:

(1) I = m = 0: the limit character is simply the N = 2 vacuum character,

lim 20 = X (A.18)
(2) I +m = 2n finite, m/(k + 2) - —0, 0 < Q < 1: only one singular vector survives and
we find
: NS _ I
klggo Xim|+2n,m = XQ(n+%)’Q' (A19)

(3) I —m = 2nfinite, m/(k+2) — —Q, —1 < Q < 0: only one singular vector survives and
we find

- NS I
M 0 onm = Xigine 1y.0° (A.20)

(4) [4+m = 2nfinite, [ = k: the first summand in (A.17) gives one positively charged singular
vector, the second produces one uncharged one and adds one positively charged singular
submodule. We find

. +
Jim S = Koy (A21)
(5) I — m = 2n finite, [ = k: analogously to the previous case we obtain

JLLIP D ST (A22)

25



J. Phys. A: Math. Theor. 46 (2013) 045402 S Fredenhagen and C Restuccia

There are several other cases, depending on the behaviour of [ =m for large k; in these other
situations the limiting character decomposes into a sum of N = 2 characters. We illustrate this
in the example of fixed labels /, m: in this instance the conformal weights and U (1) charge of
all the primary fields approach zero, the second line of equation (A.17) gets suppressed, but
the first line stays finite. The character then takes the form

19 (‘E’ U) q1+/g+| Z q/fI;H»l Z_l

. 3 9 9

lim XINVE (q.2) = 3 - Lmtl —mtl : (A.23)
k=00 n°(7) l+qg 2 z 14+qg 2 z7!

Noticing the relation

B3(t,v) [ gTrzE! gz -
3 1 - 3 = X,H_l +1 (Q» Z)v (A24)
() \1+gazE 14 gtigH! L
it is easy to show that
Hmg Lm_g
H NS __ _, vac 1t -
klinc}o Xim = Xoo + Z Xim_(1ipa T Z Xim _(Lijy 1 (A.25)
Jj=0 j=0

Following similar lines it is possible to show that this kind of decomposition is common to all
the cases we have not listed explicitly.

Appendix B. Asymptotics of Wigner 3j-symbols

We are interested in the region of the parameter space of 3 j-symbols in which the angular
momentum labels j; scale like j; o< +/k and the magnetic labels u; stay finite in the limit
of large k. In this range we are deeply inside the classically allowed region (see e.g. the
appendix A of [8] for more details), and we can use the approximation methods derived in
[40]. In particular we find there [40, equation (3.23)]

g B ey |3 cosx+ 5w D]
- J1M1J2M213M3( ) . 12 s ( . )
Hi o M2 (3 2j3+1  (4mA(r1, Ao, A2))Y

where x is defined as
1 1 1
X = (jl + E) v+ (jz + E) Y2+ (js + 5) V3 + u2fi — 1B (B.2)

We use the Ponzano—Regge angles y 3, 81,2 (see [41] and figure B1) which through their
cosines read

L ) 2, 2 9 5 ) )
+tin—k) - +J5 — MB4+A3—A
cosyy = PULE B R) —mli+ 5= p) (o MMM B0
4A(J1s Jos J3)M 2XoX3
) D2 9 ) 5 )
Thoi) - +Ji— A3 —
cos y2 = il s = f) il H A2 0) - pr= 2, (B.3b)

4A(j1»j2»j3))\2 2)\1)\,3

2 %) 2 2 2 2
+Jj5—J5) — +j5 —
cos ys = w2 (ji + J3 J%) ' ,Uv'l s+ Jz ]1)' (B.3¢)
4A(j1, Jo» J3)A3

Here,

n=Jp-p  i=123, (B.4)
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Figure B1. Ponzano-Regge angles defined in equations (B.3) and (B.13): the «; are the internal
angles of the triangle formed by the j; labels; the f; are the internal angles of the triangle projected
on the xy-plane (where the j; measure the z-components of the angular momenta); y; (not present
here) is the angle between the outer normals to the faces adjacent to the edge j;.

and
AQxy, X2, x3) = 33/0 + 31 +30) (=33 + X1 +202) (63 — X1 +x2) (03 + X1 — x2) (B.5)

is the area of the triangle with side lengths x;.
The quantity I}, ., j, u, j, 1, @ppearing in equation (B.1) is defined as

GG+t )
i / BUs+ i+ i+
y SUr+u)fGr—w)fGa+ pa) fGr — w2) f s+ 13) f(Jz — 1)
FGL+ 2+ )G+ ja = J)fGr =+ J)f (=i + 2+ j3)
(B.6)
where f(n) is the square root of the ratio of n! to the Stirling approximation of n!, and has the
following large n behaviour:

I;

f(n) = + 40 (iz) . (B.7)

dannte" 24n n

We now consider the situation where the labels j; are proportional to v/k for large k while
keeping ; finite. In this regime we have

I=14+0 k"7, (B.8)
and the angles behave as follows:
cos 123 = fiaz + Ok, (B.9a)

R ) L )
M +O&"), cosp = M

+ Ok, (B.9b)
2j2j3 2j1J3

cos B =
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where we used the definitions
ws(Jt + i — ;3) — ma(ji — j3 + J3) .

_ 3/ A o« k72, (B.10a)
h 4A(j1, 2, J3)r ’
) ) A 2 222
£ ,ul( JiT +.Js). {L3('J1 + 73 J3) o k’%, (B.10b)
4’A(]l’ J2s .]3).]2
2 2 AN 2 2 -2
fim wa(t =3+ 7) —m(=Jji+ 5 +53) x k7t (B.10c)

4A(j1, ja. J3) 3

Inverting (B.3) and expanding in k we get y123 = 5 —
equation (B.2) becomes

122 + O(k/), so that x of

T, 3 . . . N R
X==0i+jp+j3)+ [—n — Gifi+ jofo + jafs) —prcos T 22103
2 4 2j1j3
_ .2 .2 .2
i cos™! m} + oW, (B.11)
2j2J3

Since ) jif; = 0, we have
T . . . N
cos [x tI m(jz+ 1)] = cos [(]1 + - 13)5 + ooy — maz] (B.12)
with (see figure B1)
2, 2, 2 2 200
—ji+Jj5+ - Jj5+
o] .= arccos M, oy .= arccos w (B.13)
2j2j3 2j1J3
The remaining factor behaves as . / 2/.{11 = Lf (14+O0&™%).
Collecting all the pieces we get

<j1 J» J3) _ (=1)/1—72=Hs
M1 K2 43 N2 A(j1, j2, J3)
T
x cos [ (i + 2 = )5 + Hoar = e | (1+ OG2)). (B.14)

Appendix C. Free field three-point function

In the supersymmetric free field theory of two bosons and two fermions on the plane the three-
point function of Neveu—Schwarz (super-)primary fields CD{I‘” is very simple (see equation
(3.20)). In this appendix we compute the three-point function in a radial basis <I>ge,,e1, which is
needed for the comparison to the limit of minimal models.

The fields @1 are defined as

cbge,; / / q>ff§,3 elme . (C.1)

Their three-point functlon can therefore be expressed as

§ § f -
(@, (21, 20D 5, (22, 2) D05, (23, 23))

= /p(lzl;:)pf / dey dgs des eim|<ﬁ1+imz<ﬁ2+im3<ﬁz(@ﬁ)reee‘w] (z1, Z])@free‘wz (22, Zz)q)freew (23, 73))

pPip2p3 —hy—hy —hy— —h—
@ )3 L AT |2(h3 hy h“)|Z23|2(h' ha h3)|Z13|2(h2 hi—h3)
X / de; dg, dgs eim1<p1+imgtp2+im3<p35(2) (Plei(pl +pzei<ﬁ2 + pSeitﬂa) (C.2)
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P

Figure C1. The triangle spanned by p, p,e'#2 and psel#s.

[ P1P2D3 2(h3—hy—h 2y —hy—h 2hy—hy—h
— T|le|(3 1 2)|Z23|(1 ho 3)|Z13|(2 1—h3)

X 8y ot / dgs des e 1m0 5@ (p) 4 prel? + pyel). (C3)

We now have to evaluate the remaining integral over the angles ¢, and ¢3. Due to the delta-
distribution it only gets contributions if the two-dimensional vectors corresponding to the
complex momenta p;, p,e¥> and ps;e'?> form a triangle. In particular it is zero unless the
inequalities

P2 —p3l < pL<p2tp3 (C4

are satisfied. The triangle condition arising from the delta-distribution can be formulated by
the equations

q1 = p1 + p2cos gy + p3cos gz = 0, (C5)

g2 := pasing, + p3sing; = 0. (C.6)

The angles ¢; take values in the interval [—m, 7 ]. For any solution (¢, ¢3) there is another
solution (—¢, —¢3) that corresponds to the triangle reflected at the side p;. For ¢, > 0 we
have @3 < 0 and the relation to the angles of the triangle is given by (see figure C1)

@2 =y + o, Q3 =0y —T. (C.7)

Evaluating the integral therefore reduces to plugging in the values for ¢, and @3 for the two
solutions, and dividing this by the Jacobian determinant

0g;
det (_q)
d¢; ij

where A(p1, p2, p3) is the area of the triangle (see equation (B.5)). We find in total

= paps3|sin(gs — @3)| = 2A(p1, p2, P3), (C.8)

(@ (20, 2) DT (22, 22) O™ (23, 73))

p1,my p2,ma p3,m3

[P1P2D3 2(h3—hi—h 2(hi—hy—h 2(hy—hi—h
— T'Zlﬂ(} 1 2)|Z23|(1 2 3)|113|(2 1—h3)

5 cos(mpot; — myan + 7 (my + my)) (C.9)
my+my+m3 A(pl, Do, P3) : :

29



J. Phys. A: Math. Theor. 46 (2013) 045402 S Fredenhagen and C Restuccia

References

[1]
(2]
(3]
(4]
(3]
[6]
(7]
[8]
[9]
(10]
[11]
[12]
(13]

[14]
[15]

[16]
(17]
(18]
(19]
[20]
(21]
[22]

(23]
[24]

[25]
[26]
(27]
(28]

(29]
[30]

[31]

(32]
[33]

30

Runkel I and Watts G 2001 A nonrational CFT with ¢ = 1 as a limit of minimal models J. High Energy
Phys. JHEP09(2001)006 (arXiv:hep-th/0107118)

Graham K, Runkel I and Watts G 2001 Minimal model boundary flows and ¢ = 1 CFT Nucl. Phys. B 608 527
(arXiv:hep-th/0101187)

Roggenkamp D and Wendland K 2004 Limits and degenerations of unitary conformal field theories Commun.
Math. Phys. 251 589 (arXiv:hep-th/0308143)

Fredenhagen S and Schomerus V 2005 Boundary Liouville theory at ¢ = 1 J. High Energy Phys.
JHEP05(2005)025 (arXiv:hep-th/0409256)

Fredenhagen S and Wellig D 2007 A common limit of super Liouville theory and minimal models J. High
Energy Phys. JHEP09(2007)098 (arXiv:0706.1650)

Roggenkamp D and Wendland K 2008 Decoding the geometry of conformal field theories Bulg. J. Phys. 35 139
(arXiv:0803.0657)

Fredenhagen S 2011 Boundary conditions in Toda theories and minimal models J. High Energy
Phys. JHEP02(2011)052 (arXiv:1012.0485)

Fredenhagen S, Restuccia C and Sun R 2012 The limit of N = (2, 2) superconformal minimal models J. High
Energy Phys. JHEP10(2012)141 (arXiv:1204.0446)

Zamolodchikov A 1986 Irreversibility of the flux of the renormalization group in a 2D field theory JETP Lett.
43 730

Kutasov D 1989 Geometry on the space of conformal field theories and contact terms Phys. Lett. B 220 153

Douglas M R 2010 Spaces of quantum field theories arXiv:1005.2779

Maldacena J M, Moore G W and Seiberg N 2001 Geometrical interpretation of D-branes in gauged WZW
models J. High Energy Phys. JHEP07(2001)046 (arXiv:hep-th/0105038)

Andrews G E, Askey R and Roy R 1999 Special Functions (Encyclopedia of Mathematics and Its Applications
vol 71) (Cambridge: Cambridge University Press)

Blumenhagen R, Liist D and Theisen S 2013 Basic Concepts of String Theory (Heidelberg: Springer)

Mussardo G, Sotkov G and Stanishkov M 1989 N = 2 superconformal minimal models Int. J. Mod. Phys.
A 41135

Zamolodchikov A B and Fateev V A 1986 Operator algebra and correlation functions in the two-dimensional
Wess—Zumino SU(2)x SU(2) chiral model Sov. J. Nucl. Phys. 43 657

Dotsenko V 1991 Solving the SU(2) conformal field theory with the Wakimoto free field representation Nucl.
Phys. B 358 547

Ooguri H, Oz Y and Yin Z 1996 D-branes on Calabi—Yau spaces and their mirrors Nucl. Phys. B 477 407
(arXiv:hep-th/9606112)

Hori K, Igbal A and Vafa C 2000 D-branes and mirror symmetry arXiv:hep-th/0005247

Cardy J L 1989 Boundary conditions, fusion rules and the Verlinde formula Nucl. Phys. B 324 581

Fredenhagen S 2003 Organizing boundary RG flows Nucl. Phys. B 660 436 (arXiv:hep-th/0301229)

Abouelsaood A, Callan J, Curtis G, Nappi C R and Yost S A 1987 Open strings in background gauge fields
Nucl. Phys. B 280 599

Di Vecchia P and Liccardo A 1999 D-branes in string theory: II arXiv:hep-th/9912275

Gaberdiel M R and Klemm H 2004 N = 2 superconformal boundary states for free bosons and fermions Nucl.
Phys. B 693 281 (arXiv:hep-th/0404062)

Gaberdiel M R and Suchanek P 2012 Limits of minimal models and continuous orbifolds J. High Energy
Phys. JHEP03(2012)104 (arXiv:1112.1708)

Billo M, Craps B and Roose F 2001 Orbifold boundary states from Cardy’s condition J. High Energy
Phys. JHEP01(2001)038 (arXiv:hep-th/0011060)

Kazama Y and Suzuki H 1989 New N = 2 superconformal field theories and superstring compactification Nucl.
Phys. B 321 232

Gaberdiel M R and Gopakumar R 2011 An AdS; dual for minimal model CFTs Phys. Rev. D 83 066007
(arXiv:1011.2986)

Gaberdiel M R and Gopakumar R 2012 Minimal model holography arXiv:1207.6697

Creutzig T, Hikida Y and Rgnne P B 2012 Higher spin AdS3; supergravity and its dual CFT J. High Energy
Phys. JHEP02(2012)109 (arXiv:1111.2139)

Candu C and Gaberdiel M R 2012 Supersymmetric holography on AdSs3 arXiv:1203.1939

Hanaki K and Peng C 2012 Symmetries of holographic super-minimal models arXiv:1203.5768

Ahn C 2012 The large N ’t Hooft limit of Kazama—Suzuki model J. High Energy Phys. JHEP08(2012)47
(arXiv:1206.0054)


http://dx.doi.org/10.1088/1126-6708/2001/09/006
http://arxiv.org/abs/hep-th/0107118
http://dx.doi.org/10.1016/S0550-3213(01)00242-5
http://arxiv.org/abs/hep-th/0101187
http://dx.doi.org/10.1007/s00220-004-1131-6
http://arxiv.org/abs/hep-th/0308143
http://dx.doi.org/10.1088/1126-6708/2005/05/025
http://arxiv.org/abs/hep-th/0409256
http://dx.doi.org/10.1088/1126-6708/2007/09/098
http://arxiv.org/abs/0706.1650
http://arxiv.org/abs/0803.0657
http://dx.doi.org/10.1007/JHEP02(2011)052
http://arxiv.org/abs/1012.0485
http://dx.doi.org/10.1007/JHEP10(2012)141
http://arxiv.org/abs/1204.0446
http://dx.doi.org/10.1016/0370-2693(89)90028-2
http://arxiv.org/abs/1005.2779
http://dx.doi.org/10.1088/1126-6708/2001/07/046
http://arxiv.org/abs/hep-th/0105038
http://dx.doi.org/10.1007/978-3-642-29497-6
http://dx.doi.org/10.1142/S0217751X89000522
http://dx.doi.org/10.1016/0550-3213(91)90424-V
http://dx.doi.org/10.1016/0550-3213(96)00379-3
http://arxiv.org/abs/hep-th/9606112
http://arxiv.org/abs/hep-th/0005247
http://dx.doi.org/10.1016/0550-3213(89)90521-X
http://dx.doi.org/10.1016/S0550-3213(03)00226-8
http://arxiv.org/abs/hep-th/0301229
http://dx.doi.org/10.1016/0550-3213(87)90164-7
http://arxiv.org/abs/hep-th/9912275
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.016
http://arxiv.org/abs/hep-th/0404062
http://dx.doi.org/10.1007/JHEP03(2012)104
http://arxiv.org/abs/1112.1708
http://dx.doi.org/10.1088/1126-6708/2001/01/038
http://arxiv.org/abs/hep-th/0011060
http://dx.doi.org/10.1016/0550-3213(89)90250-2
http://dx.doi.org/10.1103/PhysRevD.83.066007
http://arxiv.org/abs/1011.2986
http://arxiv.org/abs/1207.6697
http://dx.doi.org/10.1007/JHEP02(2012)109
http://arxiv.org/abs/1111.2139
http://arxiv.org/abs/1203.1939
http://arxiv.org/abs/1203.5768
http://dx.doi.org/10.1007/JHEP08(2012)047
http://arxiv.org/abs/1206.0054

J. Phys. A: Math. Theor. 46 (2013) 045402 S Fredenhagen and C Restuccia

[34]
(35]

(36]
(37]
(38]
[39]
[40]

[41]

Candu C and Gaberdiel M R 2012 Duality in N = 2 minimal model holography arXiv:1207.6646

Klemm H 2004 Embedding diagrams of the N = 2 superconformal algebra under spectral flow Int. J. Mod.
Phys. A19 5263 (arXiv:hep-th/0306073)

Kiritsis E 1988 Character formulae and the structure of the representations of the N = 1, N = 2 superconformal
algebras Int. J. Mod. Phys. A 3 1871

Eholzer W and Gaberdiel M 1997 Unitarity of rational N = 2 superconformal theories Commun. Math.
Phys. 186 61 (arXiv:hep-th/9601163)

Lerche W, Vafa C and Warner N P 1989 Chiral rings in N = 2 superconformal theories Nucl. Phys. B 324 427

Ravanini F and Yang S-K 1987 Modular invariance in N = 2 superconformal field theories Phys. Lett. B 195 202

Reinsch MW and Morehead J J 1999 Asymptotics of Clebsch—Gordan coefficients J. Math. Phys. 40 4782
(arXiv:math-ph/9906007)

Ponzano G and Regge T 1968 Semiclassical limit of Racah coefficients Spectroscopic and Group Theoretical
Methods in Physics ed F Bloch (Amsterdam: North-Holland) pp 1-58

31


http://arxiv.org/abs/1207.6646
http://dx.doi.org/10.1142/S0217751X04021020
http://arxiv.org/abs/hep-th/0306073
http://dx.doi.org/10.1142/S0217751X88000795
http://dx.doi.org/10.1007/BF02885672
http://arxiv.org/abs/hep-th/9601163
http://dx.doi.org/10.1016/0550-3213(89)90474-4
http://dx.doi.org/10.1016/0370-2693(87)91194-4
http://dx.doi.org/10.1063/1.533000
http://arxiv.org/abs/math-ph/9906007

	1. Introduction
	2. The geometry of minimal models and the limit
	3. Free field limit
	3.1. Partition function
	3.2. Fields and correlators
	3.3. Three-point function
	3.4. A-type boundary conditions
	3.5. B-type boundary conditions

	4. Continuous orbifold limit
	4.1. The orbifold
	4.2. Partition function
	4.3. Boundary conditions

	5. Discussion
	Acknowledgments
	Appendix A. Characters
	A.1. c=3 characters
	A.2. Minimal model characters and partition function
	A.3. Limit of minimal model characters

	Appendix B. Asymptotics of Wigner 3j-symbols
	Appendix C. Free field three-point function
	References

