
P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
2

How to construct diffeomorphism symmetry on the
lattice

Bianca Dittrich∗

AEI, Potsdam and PI, Waterloo
E-mail: dittrich@aei.mpg.de

Diffeomorphism symmetry, the fundamental invariance of general relativity, is generically broken

under discretization. After discussing the meaning and implications of diffeomorphism symmetry

in the discrete, in particular for the continuum limit, we introduce a perturbative framework to

construct discretizations with an exact notion of diffeomorphism symmetry. We will see that

for such a perturbative framework consistency conditions need to be satisfied which enforce the

preservation of the gauge symmetry to the perturbative order under discussion. These consistency

conditions will allow structural investigations of diffeomorphism invariant discretizations.

3rd Quantum Gravity and Quantum Geometry School
February 28 - March 13, 2011
Zakopane, Poland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
2

Diffeomorphism symmetry on the lattice Bianca Dittrich

1. Introduction and overview

Lattice discretizations of field theories are a popular method to access non-perturbative quan-
tum physics, for instance very successfully in lattice quantum chromodynamics. Similarly, many
approaches to quantum gravity are based on discretizations[1], such as (quantum) Regge calculus
[2] or spin foams [3]. There is however, an important difference between the status of discretiza-
tions available for Yang Mills theories and for (4D) generalrelativity. Whereas for the former,
discretizations are available that do preserve the Yang Mills gauge symmetry also on the lattice
[4] this is not the case for gravity [5, 6], where the gauge symmetry in question is given by dif-
feomorphism symmetry. The reason is that diffeomorphism symmetry acts on space time itself. If
this space time is discretized, we can expect that a diffeomorphism would deform in some way this
discretization.

Indeed, there are several examples where diffeomorphism symmetry is realized also for the
discretization (this includes 3D gravity [7, 8], reparametrization invariant 1D systems [9, 10] and
linearized 4D gravity [11]), both at the classical and quantum level. For all these examples, dif-
feomorphism symmetry acts by displacing the vertices of thelattice in the space time in which
the lattice is embedded. (This kind of diffeomorphism symmetry in the discrete was termed ditt–
invariance in [12].) That is this symmetry can change the geometrical distance between the vertices.
Here one can already see that such a discrete notion of diffeomorphism symmetry is enormously
powerful: a discrete system in which such a symmetry is realized needs to reproduce physics on
all length scales, also on the large ones. The exploration ofthe consequences of such a symmetry
has been only recently started, see for instance [13, 10, 12,14]. In this work we will see that on the
one hand it is very complicated (or might not be possible) to construct discretizations with such a
symmetry of a given system. We will therefore propose a perturbative approach. On the other hand
such a symmetry has a number of important advantages and moreover would solve long standing
problems for discretizations, in particular of gravity:

• Consistent perturbative formalism:The main body of this paper will discuss how to obtain a
consistent perturbative formalism for discretizations, in which a gauge symmetry is broken
at a certain order (as is the case for 4D gravity). For instance Regge gravity will not allow
a consistent perturbative framework around flat space, if one does not improve the action
appropriately. The problem is, that linearized Regge gravity displays the linearized form
of diffeomorphism symmetry, i.e. one can identify longitudinal lattice modes, that do not
propagate as these are null modes of the Hessian of the action[11, 15]. The higher order
interactions will however involve these longitudinal modes. That is at higher order the gauge
freedom associated to these modes does get fixed. This happens however in a non-linear
fashion. Basically, the perturbation assumption, namely that the solution is analytical in a
small parameterε is not valid [6]. This means that for instance the computation of graviton
scattering is not possible without changing the given discrete action to have a perturbative
consistent form to the required order. As this problem is rooted in having broken symmetries,
it will not appear if a discrete notion of diffeomorphism symmetry is exactly realized. On
the other hand we will see that the requirement of perturbative consistency might help us to
construct discretizations with such a symmetry.

2



P
o
S
(
Q
G
Q
G
S
 
2
0
1
1
)
0
1
2

Diffeomorphism symmetry on the lattice Bianca Dittrich

• Canonical formalism with first class constraints:A long standing problem in discrete gravity
is the construction of a consistent canonical formalism. Inthe continuum the dynamics in the
canonical formalism is generated by arbitrary combinations of the Hamiltonian and (spatial)
diffeomorphism constraints. The arbitrariness of the coefficients – lapse and shift – reflects
the diffeomorphism symmetry of the covariant formalism andindeed the constraints do fol-
low from the diffeomorphism symmetry of the theory. Discretizations (in 4D) break this
symmetry. Hence in the discrete, we cannot expect constraints and also not the related gauge
freedom of freely choosing lapse and shift. Indeed these getrather fixed to some discrete
values in the cases where the symmetries are broken. This also means that time evolution
will proceed in discrete steps [16, 14].
This situation is not so much a problem in the classical realm. One can define a canoni-
cal formalism that exactly reproduces the solutions of the covariant one [16, 13, 5, 6, 17],
together with the exactly preserved and broken symmetries.Recently a canonical formal-
ism has been defined which can handle arbitrary triangulations and the associated issue of
changing phase space dimensions during time evolution [17]. It therefore can reproduce for
instance all Regge solutions.
One has however to realize that having constraints in the continuum which are not repro-
duced in the discrete does lead to repercussions. Indeed constraints are just equations of
motions, which involve the data of one time slice only. If theassociated symmetry is broken
by the discretization, this equation of motion will be a proper one, i.e. describing a coupling
between time slices, however this coupling will be very weak. These equations are termed
pseudo constraints, and can be imagined as describing thickened out constraint hypersurfaces
[5]. The problem now is that selecting canonical data ‘far away’ from this hypersurface will
lead to unphysical solutions (not approximating a continuum solution), resulting for instance
in complex lapse and shift parameters. Classically one could deal with this problem by stay-
ing near this pseudo constraint hypersurface. In quantum theory however it is unclear how
to deal with such pseudo constraints. Proper (first class) constraints have to be imposed onto
the quantum states, this is however not possible for the pseudo constraints which are not first
class, i.e. do not form an algebra. This problem is addressedin the uniform discretization
program [18, 14] in which all the (pseudo) constraints are squared and summed to one mas-
ter constraint [19] thus avoiding inconsistencies due to the constraint algebra. It is however
unclear whether in the continuum limit diffeomorphism symmetry can be regained or not
(this is related to the question whether the continuum limitcan be performed or whether one
remains with some ’fundamental discreteness’ associated to the failure to fully satisfy the
(pseudo) constraints) [20].
Having a canonical formalism with proper constraints whichsatisfy a first class algebra
would completely circumvent this problem. Also one would use the diffeomorphism sym-
metry represented by the first class algebra to restrict hugely quantization (and discretization)
ambiguities, see below. Such a formalism can be constructedfrom a discrete action which
does display exact diffeomorphism invariance. Such actions (for non–topological theories,
e.g. 4D gravity) will however be non–local1 [15]. This needs to be taken into account in the

1I.e. the couplings are not restricted to nearest neighbors.One can however expect an exponential decay with the
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formulation of the canonical framework [21].

• Discretization ambiguities:Many different discretizations may lead to the same continuum
limit. In other words, discretizations come usually with anoverwhelming amount of ambi-
guities. This is not so much a problem if one sees the discretization just as a regularization
of a continuum system. However, if one postulates discrete systems as fundamental, as some
quantum gravity approaches do, one has to address the question of ambiguities. I.e. exclu-
sion criteria should be formulated so that in the best case a unique theory can be found.
Requiring an exact realization of diffeomorphism invariance might provide a unique dis-
cretization, even on the quantum level. This has been provenfor 1D reparametrization in-
variant (quantum) systems in [10]. The intuitive reason is the following: If there is a gauge
symmetry that allows vertex displacements we can imagine tochange the vertices such that
there is a region where the effective lattice scale is macroscopic. That is the discretization
has actually to reproduce the macroscopic (continuum) physics (without any coarse graining
taking place) – all terms in the discrete action are therefore relevant.
Such a requirement can also be used to specify the path integral measure, as is shown in [22]
for (linearized) Regge calculus. There one does actually require triangulation independence,
which is however deeply related to diffeomorphism symmetry, as we will discuss in the next
point.

• Triangulation independence:A discretization for which diffeomorphism symmetry is real-
ized should also lead to triangulation independent results. I.e. expectation values or transition
amplitudes should not depend on the choice of (bulk) triangulation or lattice. Note that this
means that one can go to the most coarse grained triangulation possible. Again, there is a
proof for 1D (quantum) systems [10] which also gives an intuition why this should also hold
in higher dimensions: If vertices of a triangulation can be displaced without interfering with
predictions, we can also move vertices onto each other such that the triangulation is effec-
tively coarse grained.
Examples for triangulation invariant quantum systems are well known from topological field
theories, in particular 3D gravity with the Ponzano-Regge [23] and the Tuarev-Viro model
[24]. Note however that it is the topological character (i.e. not having propagating degrees
of freedom) of these theories that allows to have a triangulation invariant system with a par-
tition function with only local couplings. For interactingtheories we have rather to expect
non-local terms [25, 15].

• Continuum or large scale limit:A discretization is usually adopted to describe the system
on very small scales. To re-obtain physics on large scales, or on a continuum manifold as we
know it, we have to take the continuum /large scale limit of the system. This can be done,
for instance by coarse graining/renormalization, which will give effective actions describing
physics on larger and larger scales. However from what has been said in the previous points,
such a process is not really necessary for discretizations displaying diffeomorphism invari-
ance. In particular we mentioned in the last point that such atheory should be triangulation

lattice distance [25].
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independent, which would also include invariance under coarse graining. In other words,
we are dealing with a system at a renormalization fixed point,see also the discussion in
[12]. As we will see constructing a diffeomorphism invariant discretization already includes
the process of taking the continuum limit. In this sense the dichotomy of discretization and
continuum symmetry is resolved.

In summary all advantages can be understood from the requirement for the discrete system
to reproduce physics on all length scales, which entails that the discrete system already needs to
encode continuum physics. Hence all the disadvantages coming with a discretization (in particular
ambiguities, discretization dependence and consistency)can be addressed.

On the other hand one needs to construct the discretization such that it can reproduce contin-
uum physics. This requires a certain control over the solution space of the system. Indeed, one way
to construct such a perfect discretization, is – turning thelast point of our list on its head –by coarse
graining and essentially finding the fixed point action [26, 27]. The process can be understood as
‘blocking from the continuum’ [25], i.e. defining a lattice system which completely mirrors the
physics of the continuum. There are a number of works where this approach has been successfully
applied [8, 9, 10, 15]. Concerning the question whether diffeomorphism symmetry can be regained
in this way, the examples however include only systems wherethe perfect discretization is still
local (i.e. topological systems or 1D). This is understandable due to the problem at hand: coarse
graining basically means to solve the dynamics of the system. Therefore a perturbative approach
is advisable. In [15] the zeroth order of (free) field theories has been discussed including systems
with gauge symmetries such asU(1) gauge theory and gravity. Here one needs to carefully choose
the coarse graining such that the linearized gauge freedom of these systems is preserved.

In this work, using parametrized field theories as an example, we will discuss the challenges
of going to higher order. The main point will be that, even before coarse graining, one has to
make sure that the discrete action satisfies certain consistency requirements that hugely restrict
the possible choices. These consistency requirements enforce the gauge symmetry to hold to the
given order. This can of course be understood as an obstacle.On the other hand these conditions
might allow the construction of a perfect action without actually going through the coarse graining
process completely. Furthermore an investigation of theseconsistency conditions might give us im-
portant information on the possible form of the perfect action, for instance regarding the structure
of its non-local couplings. In particular the consistency conditions can be used to restrict possi-
ble discretization choices, with the option that there is only one unique solution possible. Thus
the consistency conditions allow the explorations of the perfect action without having it explicitly
constructed yet. From what has been said before the consistency conditions can be understood
as infinitesimal versions for the requirement of triangulation independence of a given discretiza-
tion or model. Thus these conditions could serve as the starting point for a systematic search for
triangulation independent models.

We will discuss the issue of diffeomorphism symmetry in the discrete using as an example
discretizations of parametrized (free) field theories, as in this case the split into physical and gauge
variables is straightforward. In the next secion 2 we will discuss the general features of such
discrete theories and the basics of a perturbative expansion and coarse graining. We will discuss
the coarse graining procedure order by order and see that at the first non-linear order consistency
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conditions arise. These have to be satisfied before coarse graining can be performed. Also the
second order will be explicitly discussed as there new typesof terms for the coarse grained action
arise which do not appear in first order. We will give general formulas for the coarse graining of the
different perturbative objects appearing in the expanded action. These results will be applied to the
parametrized harmonic oscillator, which can be understoodas(0+ 1) dimensional parametrized
field theory. Here we will see that the consistency conditions may be either violated already at first
order or at second order. However a perturbative consistentdiscretization can be found and the
perfect action can be constructed via coarse graining. We will close with a discussion and outlook
in section 4.

2. Discretized parametrized fields

Here we will discuss discretized parametrized (field) theories. That is we assume a (here
regular) lattice with vertices labelled byx,y, . . .. Each of these verticesx is described by embedding
variablesta

x into Rd, which is equipped with some (Euclidean or Minkowskian) metric. Furthermore
we assume a (here scalar) fieldfx associated to the vertices. The discrete theory is defined bythe
action

S =
1
2

Sxy(t) fx fy (2.1)

where we sum over repeated indices. We assume a quadratic action in the fields as we are dealing
with a free field theory. This quadratic form depends on the induced lattice metric, which is re-
flected in the dependence ofSxy on the embedding variablesta

z of the verticesz. It is important to
note that both kind of variables, the fieldsfx and the embedding variablesta

x are treated as dynam-
ical variables, i.e. we have to vary the action with respect to both fields. Changing the embedding
variables will change the matrixSxy(t) defining the quadratic interaction. This matrix includes
metric information, i.e. the geometrical distance betweenthe vertices (as the inverse defines the
two point function of the theory). That is varying the embedding variables is actually a variation
of the geometrical properties of the underlying lattice. Ifthe position of the vertices is fixed by the
equation of motions, it happens such that the action (2.1) evaluated on the corresponding solutions
for fx is extremal. i.e. such that the dependence of Hamilton’s principal function on the embedding
variablest (now treated as parameters) is vanishing [6]. In a sense the lattice itself (i.e. the vertex
positions and therefore the geometric distances between vertices) is determined by the equations of
motion for the embedding variables.

The discrete notion of diffeomorphism symmetry we are looking for would result in a gauge
freedom for the variablesta

x , i.e. independence of Hamilton’s principal function from the vertex
positionsta

w. This entails an independence of physical predictions fromthe vertex positions and
therefore the details of the lattice. Indeed such a feature can already be understood as discretization
independence.

Diffeomorphism invariance is realized if given a solutionf sol
y for the variablesfy

Sxy f sol
y = 0 (2.2)

the equation of motion associated to theta
w are automatically satisfied (for arbitrary values ofta

w)

∂Sxy

∂ ta
w

f sol
x f sol

y = 0 . (2.3)

6
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Here we basically have the derivative of the Lagrangian withrespect to the metric, which defines
the energy momentum. Indeed (2.3) can be understood as a discrete conservation equation for the
energy momentum [28]. In case diffeomorphism symmetry is exact this conservation will hold for
arbitrary vertex position. As one can easily see this is the case if the derivative ofSxy is of the form

∂Sxy

∂ ta
w

= γwx
z,a(t)S

zy(t)+ γwy
z,a(t)S

zx(t) (2.4)

for some tensor fieldγwy
z,a(t). In case the symmetry is broken, the requirement of energy conser-

vation, i.e. equation (2.3) will fix the vertex positions. Note however that we can linearize this
theory around arbitrary vertex positionsta

w and the field configurationsfx = 0. In this case the
quadratic order of the action will be just given by the linearized field variables, the perturbations
of the embedding variables will not appear. That is for the linearized theory we do have the gauge
symmetry, as the linearized embedding variables will remain undetermined. This is analogous to
the situation in Regge calculus [11, 29], where linearized diffeomorphism symmetry is realized
around the flat solutions (based on arbitrary lattices). In the following we will see that continuing
this gauge symmetry to higher order will require consistency conditions which are basically derived
from (2.4).

The framework we are discussing here should also be applicable to non-linear theories in
particular Regge gravity. There all the variables are of thesame form, namely given by the lengths
of the lattice edges. That is a division into fieldsf and embedding variablest is not obvious. As it is
not possible to solve the full theory at once, we will attempta perturbative approach. Since in Regge
calculus all variables are treated on an equal footing, we will attempt the same for parametrized
field theory here, and expand both the fieldsf and the embedding variablest around a solution. We
choose this solution to be the zero energy solutionf ≡ 0 andt determined by some regular lattice.
That is we expand

f = 0+ εφ
tb = nb + εξ b

. (2.5)

Here nb is a vector inZd, denoting the regular lattice coordinates. Using this expansion in the
action (2.1) we obtain

ε−2S =
1
2

(

Mxyφxφy + ε Γwxy
a ξ a

w φxφy + ε2Γwzxy
ab ξ a

wξ b
z φxφy + . . .

)

. (2.6)

The unusual point in this perturbative expansion is that thevariablesξ do not appear in the quadratic
term, but only start to appear in the cubic and higher order terms. This signifies that at lowest,
zeroth, order, we will have gauge freedom as the lowest orderterm of the action does not depend
on the variablesξ . These variables do appear however at higher order and might(and indeed
generically) lead to a breaking of gauge invariance. This will lead to severe conditions on the
consistency of the perturbative expansion.

The aim here is to improve the discretization, i.e. the discrete action, towards better displaying
the dynamics of the continuum theory. As in the continuum theory the (reparametrization) gauge
symmetry is not broken, we might hope that in this way we obtain a discrete theory, in which this
will be also the case.

7
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How can we obtain such an improvement? Here we will follow a renormalization/ coarse
graining approach, i.e. we construct a family of (effective) actions on a given ‘coarse’ lattice, that
can be obtained by integrating out fine degrees of freedom from theories living on very fine lattices.
These effective actions therefore display the dynamics defined on the finer lattice, and in an infinite
refinement lattice, continuum dynamics.

To this end we have to integrate out the fine grained degrees offreedom, i.e. solve the equations
of motion on the fine lattice. This has to be done under the condition that the ‘microscopic’ fields
give under coarse graining the ‘macroscopic fields’, which live on the coarse lattice. The solutions,
that now depend on the coarse lattice, have to be re–insertedinto the fine lattice action, which will
result in an effective action depending on the macroscopic fields.

This assumes a definition of coarse graining. Here (and also because of geometric consider-
ations) we follow the simplest choice, equivalent to a decimation procedure. That is the coarse
grained fields on the coarse lattice siteX have (modulo a common factor) to coincide with the fine
field at the lattice sitex = LX whereL denotes the lengths of a coarse graining block, that is2

0 = ΦX − φLX (2.7)

0 = ΞX − ξLX . (2.8)

We will take care of these conditions by adding a Lagrange multiplier term

λ X (ΦX − δ x
LXφx) + αX

a (Ξa
X −δ x

LX ξ a
x ) (2.9)

thus introducing as further fields the Lagrange multipliersλ X andαX
a .

This finally defines the complete dynamical problem we have toconsider. The equations of
motion are obtained by varying the action (including Lagrange multiplier terms) with respect to the
fieldsφ ,ξ ,λ ,α and are given by

0 = Mxyφy + ε Γwxy
a ξ w

a φy + ε2Γwzxy
ab ξ w

a ξ z
b φy − λ Xδ x

LX + . . . (2.10)

0 =
1
2

ε Γwxy
a φxφy + ε2Γwzxy

ab ξ b
z φxφy−αW

a δ w
LW + . . . (2.11)

0 = ΦX −φLX (2.12)

0 = ΞX −ξLX . (2.13)

where the dots signify higher order terms inε . As the equations of motions come naturally in
orders ofε we will make a perturbative ansatz for the solutions

φx = 0φx + ε 1φx + . . .

ξx = 0ξx + ε 1ξx + . . .

λX = 0λX + ε 1λX + . . .

αa
X = 0αa

X + ε 1αa
X + . . . . (2.14)

(Here we will not expand the coarse grained fieldsΦ and Ξ, which are just parameters in the
equations of motion. An expansion would just lead to more terms in the improved action which are

2We could include a global scaling of the coarse grained variables, this global scaling can however easily inserted
into the improved action terms at the end of the calculation.
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however determined by the lower order terms, i.e. by expanding Φ andΞ in the improved action).
Note that behind this perturbative ansatz there is an assumption, namely that the solutions can be
actually expanded into a power series inε . We will see that this is generically not the case for an
action of the form (2.6).

2.1 Zeroth order improvement

Let us start with the zeroth order equation of motion whose solution will lead to the lowest
order correction for the improved action.

The zeroth order terms of the equations of motions (2.10)–(2.13) are given by

0 = Mxy0φy−
0λ Xδ x

LX (2.15)

0 = −0αW
a δ w

LW (2.16)

0 = ΦX − 0φLX (2.17)

0 = ΞX − 0ξLX . (2.18)

Hence the0ξx with x 6= LX remain undetermined. Furthermore we have0αW
a = 0 which leaves as

with the coupled equations (2.15,2.17). Assuming invertibility of Mxy we can solve (2.15) for the
fields 0φx and use this solution in (2.17) to determine the Lagrange multipliers 0λ X as functions of
the coarse fieldsΦ. That is

0φx = (M−1)xyδ y
LY

0λY (2.19)
0λ X = M

XYΦY (2.20)

whereM XY is the inverse matrix to(M−1)XY := (M−1)LX LY, which we also assume to be invert-
ible. In this way we can write the solution as

0φx = (M−1)x(LX) M
XY ΦY =: PY

x ΦY . (2.21)

The mapPY
x := (M−1)x(LX) M

XY provides us with the fine grained (zeroth order) solution fora
given coarse grained configurationΦY. As we will see it will also appear for the coarse graining of
the higher order terms.

These solutions (2.21) have to be inserted into the lowest order term of the action to obtain the
effective action0S′, i.e. (we rescale byε−2)

0S′ :=
1
2

Mxy0φx
0φy

=
(2.17,2.19)

1
2

ΦX
0λ X

=
(2.20)

1
2

M
XY ΦXΦY =:

1
2
(M′)XYΦX ΦY (2.22)

This is the improved action to zeroth order. Note that the improved quadratic form can be written
as(M′)XY = M XY = PX

x MxyPY
y .

We will assume that the refinement limit of (2.22) exist and will call the result the zeroth order
perfect action.

9
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2.2 First order improvement

We can now move on to the discussion of the next order. Two remarks are in order. Firstly
we might use in the expanded action (2.6) the zeroth order perfect action, i.e. replaceMxy by M′

xy

there. In the following we will just denote both cases byMxy. Secondly we will see that the first
order improvement of the action does not strictly need the solutions of the first order equations of
motion: to determine the first order term of the improved action insert the ansatz (2.14) into the
action (2.6) and keep only terms up to first order inε . Note that there are two types of terms in the
first order improved action: The first type is of the form

δS
δv

∣

∣v=0v
· 1v (2.23)

for the variablesv = φ ,ξ ,λ ,α . All these terms vanish, as0v satisfy the equations of motion for
the zeroth order action and hence the first factor in (2.23) iszero. The second type of terms comes
from theε1 term in the action (2.6) which gives for the first order correction of the improved action

1S′ =
1
2

Γwxy
a

0ξ a
w

0φx
0φy . (2.24)

Here the zeroth order variables0ξ a
w appear, which remained however undetermined forw 6= LW.

We should therefore check the first order equations of motions

0 = Mxy1φy + Γwxy
a

0ξ a
w

0φy−
1λ Xδ x

LX (2.25)

0 =
1
2

Γwxy
a

0φx
0φy−

1αW
a δ w

LW (2.26)

0 = 1φLX (2.27)

0 = 1ξLX . (2.28)

Equations (2.25) and (2.27) can be solved similarly to the zeroth order equation and with the same
assumptions, i.e. thatMxy and furthermore(M−1)XY := (M−1)LX LY can be inverted:

1φz = −
[

(M−1)zv− (M−1)z(LX)M
XY(M−1)(LY)v

]

Γwvy
a

0ξ a
w

0φy . (2.29)

Equation (2.26) forw 6= W is rather a consistency condition3 as only the fields0φx appear,
which are already determined by the zeroth order equation. Hence we have to see this equation as
a condition on the discretization, namely onΓwxy

a andMxy. Here we mentionMxy as it determines
the zero order solutions that appear in the conditions (2.26).

Also the condition (2.26) ensures that the improved first order action does not depend on the
choice of the undetermined variables0ξ a

w for w 6= LW, as it can now be written as

1S′ = Ξa
W

1αW
a . (2.30)

Furthermore as (2.26) has to hold we can assume thatΓ has the following form

Γwxy
a = γwx

a,zM
zy+ γwy

a,zM
zx

. (2.31)

3This condition can be interpreted as energy momentum conservation.
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If we consider the case of not having any coarse graining conditions at all, i.e.L = ∞, the first order
correction would be given as4

1φz = −γwy
a,z

0ξ a
w

0φy . (2.32)

Requiring locality of the gauge action, that is a displacement of a vertexw should only affect the
field at the vertexw we can conclude thatγ has to be of the form

γwx
a,z = δ w

z β wx
a so that Γwxy

a = β wx
a Mwy+Mwxβ wy

a . (2.33)

Note that we now may have indices appearing twice in upper positions, which we do not sum over.
This form ofΓ ensures that the consistency conditions (2.41) are satisfied for w 6= LW.

Using the zeroth order solutions

0φx = (M−1)xyδ y
LX M

XY ΦY = PY
x ΦY (2.34)

in (2.24) we can write the coarse grained action as

1S′ =
1
2

Ξa
W

(

β (LW)x
a PX

x M
WY + M

WXβ (LW)y
a PY

y

)

ΦX ΦY

=:
1
2

Ξa
W

(

(β ′)WX
a (M′)WY + (M′)WX(β ′)WY

a

)

ΦX ΦY . (2.35)

This form of the improvedΓ′ automatically ensures its consistency with respect toM′. In summary,
to find the coarse grained first order part of the action we haveto construct

(β ′)WX
a = β (LW)x

a PX
x = β (LW)x

a (M−1)x(LY) M
YX

. (2.36)

Note that compared to the second order tensorΓwxy
a we started originally with the improved

tensor might undergo two kinds of modifications. The first onemight arise if we have to change
Γ such that the consistency conditions are satisfied (and the continuum limit still agrees with the
continuum theory). The second modification is due to the actual coarse graining.

Furthermore if we require that theΓ is of a consistent form and actually comes from the
derivative of the actionSxy(t) we will obtain rather strong conditions onSxy(t). Later–on we will
discuss this issue for the 1D example.

2.3 Second order improvement

For the same reason for which we did not need the first order solutions to obtain the first order
improvement of the action we will not need the second order solutions to obtain the second order
improvement.

We will however need to consider the first order solutions andalso have to check whether in
the second order equations of motion consistency conditions arise. Again we might assume that
the lower order tensorsMxy andΓwxy

a are the ones coming from a perfect discretization.

4The higher order solutions can be given only modulo solutions 0φx satisfyingMwx0φx = 0. We assume that these
terms can be put to zero by requiring appropriate boundary conditions.
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The second order terms of the improved action are given by

2S′ =
1
2

(

Mxy1φx
1φy + Γwxy0ξ a

w (0φx
1φy + 1φx

0φy)+

Γwxy
a

1ξ a
w

0φz
0φy + Γwzxy

ab
0ξ a

w
0ξ b

z
0φx

0φy

)

=
1
2

(

Mxy1φx
1φy + Γwxy0ξ a

w (0φx
1φy + 1φx

0φy)+ Γwzxy
ab

0ξ a
w

0ξ b
z

0φx
0φy

)

. (2.37)

The first summand in the second line, which appears to depend on 1ξ a
w, does actually vanish due

to the consistency conditions (2.26) and the equations (2.28) which require1ξ a
LW = 0. There is still

the potential dependence on the variables0ξ a
w, which appear in (2.37), but which have not been

determined so far by the zeroth and second order equations ofmotion. Note that also the solutions
1φx depend on the variables0ξ a

w, see the equations (2.29).
Let us therefore investigate the second order part of the equations of motion (2.10)–(2.13)

0 = Mxy 2φy + Γwxy
a

(1ξ a
w

0φy + 0ξ a
w

1φy
)

+ Γwzxy
ab

0ξ a
w

0ξ b
z

0φy−
2λ Xδ x

LX (2.38)

0 =
1
2

Γwxy
a

(0φx
1φy + 1φx

0φy
)

+ 0ξ b
z Γwzxy

ab
0φx

0φy−
2αW

a δ w
LW (2.39)

0 = 2φLX (2.40)

0 = 2ξLX . (2.41)

Again equations (2.39) forw 6= LW contain only variables of zeroth and first order. The em-
bedding variables0ξ a

w only appear in zeroth order. If we want to have gauge freedom with respect
to these variables, we have to make sure that these consistency conditions are satisfied for arbitrary
choices of0ξ a

w. Alternatively one can try to find solutions, which fix0ξ a
w and coarse grain in this

way. The hope however is that the resulting perfect action allows for full gauge freedom. To first
find a discretization allowing for this gauge freedom to the order in question seems to be less cum-
bersome. This will also give the conditions that a discrete action has to satisfy, in order to display
gauge freedom to second order.

We have to make some ansatz for the form of the tensorΓwzxy
ab . Here we use that it should arise

as the second derivative ofSxy(ta
w) with respect to the embedding variablest. We know that the first

order derivative (evaluated on some background) has the form (2.33). Another derivative acting on
Mxy = Sxy will produce a term of the same form. We therefore require

Γwzxy
ab =

1
2

(

β wy
a Mzwβ zx

b + β wx
a Mzwβ zy

b

)

+

1
2

(

β wy
a Mzxβ zw

b + β wx
a Mzyβ zw

b

)

+
1
2

(

β zy
a Mwxβ wz

b + β zx
a Mwyβ wz

b

)

+

1
2

(

Mwxγwzy
ab + γwzx

ab Mwy) +
1
2

(

Mzxγzwy
ab + γzwx

ab Mzy) +

1
2

(

MwxMzyηwz
ab + MzxMwyηzw

ab

)

. (2.42)

Here the terms in the first two lines arise through the derivative acting on the factorM in Γ =

βM + Mβ . The other terms should be given by derivatives ofβ , with the terms in the third line

12
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suggested by the symmetry of second derivatives. In the lastline we just isolated5 terms, which
might have two factors ofM, from the terms in the fourth and fifth line. Note that this form of Γwzxy

ab

does not constitute a further requirement once we assume that the first order condition (2.33) holds
for arbitrary background variablesta

w that is

∂Sxy(t)
ta
w

= Swx(t)β wy
a (t) + β wx

a (t)Swy(t) . (2.43)

Consider the second order solutions2φx to (2.38) without coarse graining conditions, i.e. for
L 6= ∞,

2φx = −δ w
x β wy

a
1ξ a

w
0φy − δ w

x γwzy
ab

0ξ a
w

0ξ b
z

0φy . (2.44)

Requiring again locality of the gauge action, namely that displacing a vertex atz 6= w should not
affect the field atw, we can conclude that

γwzy
ab = δ wzκwy

ab . (2.45)

It will turn out that the form (2.42) ensures that the consistency conditions (2.39) are satisfied
for w 6= LW and arbitrary values for0ξ b

z . Furthermore the solutions2αW
a will not depend on0ξ b

z

with z 6= LZ. Indeed a straightforward calculation gives

1
2

Γwxy
a

(0φx
1φy + 1φx

0φy
)

+ 0ξ b
z Γwzxy

ab
0φx

0φy =

δ w
LW

(

1
2

(

(β ′)WY
a M

ZW(β ′)ZX
b + (X ↔Y)

)

+

1
2

(

(β ′)WY
a M

ZX(β ′)ZW
b + (X ↔Y)

)

+
1
2

(

(β ′)ZY
a M

WX(β ′)WZ
b + (X ↔Y)

)

+

1
2

(

M
WXγ(LW)(LZ)y

ab (M−1)y(LV)M
VY + (X ↔Y)

)

+
1
2

(

W ↔ Z
)

+

1
2

(

M
WX

M
ZYη (LW)(LZ)

ab + (W ↔ Z)
)

−

1
2

(

M
WX

M
ZYβ (LW)u

a (M−1)uvβ (LZ)v + (W ↔ Z)
)

+

1
2

(

M
WX

M
ZYβ (LW)u

a (M−1)u(LU)M
UV(M−1)(LV)vβ (LZ)v + (W ↔ Z)

)

)

Ξa
ZΦXΦY.

(2.46)

Now we use for the first term in the improved action (2.37) the solutions (2.25) for1φx and
find

Mxy1φx
1φy = −1φv Γwvy

a
0ξ w

a
0φy . (2.47)

Invoking the equations (2.39) the improved action can be rewritten as

2S′ =
1
2

Ξa
W

2αW
a (2.48)

5This splitting is not unique as theη terms might be just reabsorbed into theγ terms. However we will derive the
conditionγwzy0φy = δ wzγwzy0φy for the part ofγ that does not vanish on solutions. This does not need to hold for ηwx.
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where due to the consistency equations (2.39) the solutionsfor 2αW
a are given by (2.46).

Hence

2S′ =
1
2
(Γ′)WZXY

ab Ξa
WΞa

Z ΦXΦY (2.49)

whereΓ′ is of the same form asΓ in (2.42) with the replacementsM,β ,γ ,η → M′,β ′,γ ′,η ′ and
the latter two tensors are given by

(γ ′)WZY
ab = γ(LW)(LZ)y

ab (M−1)y(LV)M
VY = γ(LW)(LZ)y

ab PY
y

(η ′)WZ
ab = η (LW)(LZ)

ab +

1
2

(

β (LW)u
a

[

(M−1)u(LU)M
UV(M−1)(LV)v − (M−1)uv

]

β (LZ)v +(W ↔ Z)
)

. (2.50)

Note that the ambiguity betweenγwzy terms that include aMwy or Mzy factor and theηwz term
does not matter, as both expressions will be coarse grained in the same way. Also note, that the
expression

Gxy := (M−1)xy− (M−1)x(LX)M
XY(M−1)(LY)y (2.51)

is the Green’s function associated to the matrixMxy together with the coarse graining conditions.
That is, given the equations

jx = Mxyφy−δ x
LXλ X

, φLX = ΦX (2.52)

the solution is given by

φx = PY
x ΦY + Gxy jy . (2.53)

In summary, the coarse graining of the different objects appearing in the action will be determined
by the two mapsPY

x andGxy. This will be also the case at higher order.
The consistency requirements at higher order can be addressed in a similar fashion. The form

of the higher orderΓ tensors can be obtained by taking the derivatives of the lower order ones and
using the relations between the derivatives ofM, β , etc..

3. Discrete parametrized harmonic oscillator

Let us consider a simple but popular example [9, 10, 12], the discrete parametrized harmonic
oscillator. We will start from a general family of actions, describing a parametrized(0+1) dimen-
sional free fieldqx

S=
1
2 ∑

x∈Z

[

D(tx+1− tx)
(

q2
x +q2

x+1

)

+2E(tx+1− tx)qxqx+1
]

. (3.1)

A possible choice for the functionsD(t) andE(t) is

D(t) =
1
t
−m2αt , E(t) = −

1
t
−

1
2

m2(1−2α)t (3.2)
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for instance withα = 1
2 or α = 1

4. Only the second choice will be perturbatively consistent to first
order.

For this example the perfect action is well known as it can be obtained from the continuum
Hamiltons principal function [28, 9, 10]. It is given by

D = m
cos(mt)
sin(mt)

, E = −m
1

sin(mt)
. (3.3)

Note that all these discrete actions lead to the same continuum limit for the solutions. The
reason is that the coefficientsC+ andC− in (3.1) in front of Q+

x = (qx + qx+1)
2 and of Q−

x =

(qx−qx+1)
2 respectively, coincide in their lowest order expansion int, asC+ ∼−1

4m2t andC− ∼ 1
t .

For solutions we will haveQ−
x ∼ t2, whereasQ2

x ∼ t0, which explains the different scaling of the
coefficients.

To apply our formalism of improving the action order by order, we expand the variables as

qx = 0+ εφx

tx = ax+ εξx (3.4)

(herex∈ Z) which results in an action of the form

ε−2S =
1
2

(

Mxyφxφy + ε Γwxyξwφxφy + ε2Γwzxyξwξzφxφy + . . .
)

. (3.5)

We will now discuss the improvement of the different orders in (3.5).

3.1 Zeroth order

We start with the zeroth order improvement for which we need the square term described by

Mxy = 2Dδ xy+E(δ x(y+1) + δ x(y−1)) (3.6)

whereD = D(a) andE = E(a).
The improved or perfect action to zeroth order can be calculated in many ways, one is as

fixed points of the coarse graining flow [10], the other is to explicitly obtain the inverse matrices
(M−1)xy and thenM XY using Fourier transform as in [15]. Here we will follow another route, by
constructing explicitly the zeroth order solutions as functions of the coarse grained variables. Via
the general form of the solution in (2.21) we will obtain the expression(M−1)x(LX)M

XY that will
also appear at higher order.

The homogeneous zeroth order equations of motion

0 = 2D0φx +E0φx−1 +E 0φx+1 (3.7)

can be easily solved with an ansatz0φx = exp(iνx) from which we obtain the condition

cosν = −
D
E

, (3.8)

so thatν = mafor the perfect action (3.3). Choosing one of the roots for this equation we can write
the general solution as

0φLX+r = AXei(LX+r)ν +BXe−i(LX+r)ν (3.9)
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wherer = 0, . . . ,L−1. Here, with making the coefficientsAX,BX dependent on the coarse grained
intervals we indicate that the homogeneous equations of motions do not need to hold at the interval
boundaries. Using the conditions0φLX = ΦX and 0φL(X+1) = ΦX+1 we can determineAX,BX and
obtain the solutions

0φLX+r =
1

sin(νL)
[sin(ν(L− r))ΦX +sin(νr)ΦX+1]

=
(2.21)

(M−1)(LX+r)(LZ)M
ZYΦY . (3.10)

We therefore have

(M−1)(LX+r)(LZ)M
ZY =

1
sin(νL)

[

sin(ν(L− r))δY
X +sin(νr)δY

(X+1)

]

. (3.11)

With this at hand we can actually find easily the zeroth order improved action, as we just need to
multiply (3.11) with the matrixM(LW)(LX+r) to find the matrixMWY which defines the zeroth order
improved action:

M
XY =

Esin(ν)

sin(Lν)

[

−2cos(Lν)δ XY + δ X(Y−1) + δ X(Y+1)
]

. (3.12)

Here we also used the relation (3.8) between the frequencyν and the parametersD,E. In the
continuum limita→ 0,L → ∞ such thatLa=: a′ = const. we obtain for any of the choices (3.2,3.3)
the perfect action

M
XY = 2

mcos(ma′)
sin(ma′)

δ XY−
m

sin(ma′)

(

δ X(Y−1) + δ X(Y+1)
)

(3.13)

on the coarse grained lattice.

3.2 First order

To find the tensorΓwxy appearing in the expanded action (3.5) we take the derivative of

Sxy = D(tx+1− tx)δ xy+D(tx− tx−1)δ xy+E(tx+1− tx)δ x(y−1) +E(tx− tx−1)δ x(y+1) (3.14)

with respect totw (here a prime will denote the derivative of a function)

∂
∂ tw

Sxy = D′(tx+1− tx)δ xy
[

δ w(x+1) −δ wx
]

+ D′(tx− tx−1)δ xy
[

δ wx−δ w(x−1)
]

+

E′(tx+1− tx)δ x(y−1)
[

δ w(x+1) −δ wx
]

+E′(tx− tx−1)δ x(y+1)
[

δ wx−δ w(x−1)
]

. (3.15)

Puttingtx+1− tx = a for all x we can writeΓwxy as

Γwxy = E′δ wx
[

δ w(y+1) −δ w(y−1)
]

+E′δ wy
[

δ w(x+1) −δ w(x−1)
]

+

1
2D′δ w(x+1)

[

δ w(y+1) −δ w(y−1)
]

+ 1
2D′δ w(y+1)

[

δ w(x+1) −δ w(x−1)
]

+

1
2D′δ w(x−1)

[

δ w(y+1) −δ w(y−1)
]

+ 1
2D′δ w(y−1)

[

δ w(x+1) −δ w(x−1)
]

= M̃wx
[

δ w(y+1) −δ w(y−1)
]

+ M̃wy
[

δ w(x+1) −δ w(x−1)
]

. (3.16)
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Note that in the second line we just subtracted two terms which are added again in the third line.
HereM̃xy is given by

M̃xy = E′δ xy+ 1
2D′δ x(y+1) + 1

2D′δ x(y−1)
. (3.17)

Hence we can satisfy the consistency requirement (2.33) ifM̃xy = βMxy. That is we obtain the
conditions

D′(a) = 2β (a)E(a) , E′(a) = 2β (a)D(a) ⇒ DD′ = EE′ = 2βED . (3.18)

From the family of actions (3.2) only the choice withα = 1
4 satisfies (3.18) withβ (a) = 1

2a. For
the perfect action (3.3) the condition is also satisfied withβ = −E

2 .
In general we can make a ansatz forE,D in (odd) powers ofa

D(a) =
1
a

+d1a+d2a2 + . . .

E(a) = −
1
a

+e1a+e2a2 + . . . . (3.19)

Here the coefficients ofa−1 are determined by the continuum limit. With this form we can conclude
thatβ (a) = 1

2a +O(a).
A consistent form ofΓwxy is therefore given by

Γwxy = β wxMwy+Mwxβ wy (3.20)

where

β wx = β (a)
[

δ w(x+1) −δ w(x−1)
]

. (3.21)

with β (a) = 1
2a +O(a).

Following (2.36) it is straightforward to determined the improved(β ′)WX to

(β ′)WX = β (LW)y(M−1)y(LZ)M
ZX

=
β (a)sin(ν)

sin(Lν)

[

δW(X+1)−δW(X−1)
]

−→
a→0,L→∞

m
2sin(a′m)

[

δW(X+1)−δW(X−1)
]

. (3.22)

Notice that for taking the continuum limit in the last line itis sufficient to know thatβ (a) =
1
2a +O(a). For all such choices we re-obtain the first order of the perfect action.

3.3 Second order

In (2.42) we determined a consistent form of the second ordertensorΓwzxy

Γwzxy
cons =

1
2

(β wyMzwβ zx + β wxMzwβ zy) +

1
2

(β wyMzxβ zw + β wxMzyβ zw) +
1
2

(β zyMwxβ wz + β zxMwyβ wz) +

1
2

(Mwxγwzy + γwzxMwy) +
1
2

(Mzxγzwy + γzwxMzy) +

1
2

(MwxMzyηwz + MzxMwyηzw) . (3.23)
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Note that we will assumeγwzy∼ δ wz as this ensures locality of the gauge action. On the other hand
the second order derivative of the second rank tensor (3.14)gives

Γwzxy=
1
2

∂ 2

∂ tz∂ tw
Sxy =

1
2

D′′(tx+1− tx)δ xy
[

δ w(x+1) −δ wx
][

δ z(x+1) −δ zx
]

+

1
2

D′′(tx− tx−1)δ xy
[

δ wx−δ w(x−1)
][

δ zx−δ z(x−1)
]

+

1
2

E′′(tx+1− tx)δ x(y−1)
[

δ w(x+1) −δ wx
][

δ z(x+1) −δ zx
]

+

1
2

E′′(tx− tx−1)δ x(y+1)
[

δ wx−δ w(x−1)
][

δ zx−δ z(x−1)
]

. (3.24)

We can compare these two expressions for different values ofthe indices(wzxy). This will
give a number of equations involvingE,D, its second derivatives, and the components ofβ ,γ ,η .
In addition we have the conditions (3.18) from our discussion of the first order.

For instance combining the equations for(wzxy) = (0011) and(1120) on the one hand and for
(0101) and(1230) on the other, we find the conditions

8Dβ 2 = D′′
, and 4β 2E2+4β 2D2 = −EE′′

. (3.25)

Here,β can be also expressed as a quotient betweenD′ andE or betweenE′ andD from (3.18), so
that

2
(E′)2

D
= D′′ = 2

D(D′)2

E2 , and (D′)2 +(E′)2 = −EE′′
. (3.26)

None of the actions (3.2) satisfies these requirements, thatis none of these is perturbatively consis-
tent to second order. Of course the perfect action (3.3) doessatisfy (3.25). Hence we can regain the
perfect action by solving the system (3.26) via an ansatz forD,E as a power series ina (starting
with a−1).

From the equations for(wzxy) = (1230),(1120),(1121),(1101),(1111) we can obtain condi-
tions for the components ofγ andη

η12 = −
β 2

E
= η21

γ111 =
D′′

4D
−Dη11

γ110 = β 2D
E
−

1
2

Eη11 = γ112
. (3.27)

This fixes the off–diagonal elements ofη but leaves an ambiguity between the diagonal elements
of η and the components ofγ . However this ambiguity is inherent in our definition (3.23)as
the diagonal elements ofη can be reabsorbed into an additional term of theγ tensor, which is
proportional toM. (This only applies to the diagonal elements ofη as we requireγwzy∼ δ wz.) This
possibility of redefiningγ allows to set the componentsγ110,γ112 to zero. With this convention we
obtain

γwzy = 2β 2
(

1−
D2

E2

)

=
m2

2
δ wzδ wy+O(a2)

ηwz = 2β 2 D
E2δ wz−

β 2

E

(

δ w(z+1) + δ w(z−1)
)

=
1
a

(

1
2

δ wz+
1
4

δ w(z+1) +
1
4

δ w(z−1)

)

+O(a) .(3.28)
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In the second and fourth line we have given the lowest orders in a of the γ andη tensor respec-
tively. These can be easily obtained from the information about the lowest orders ofD,E andβ we
collected so far and will be sufficient for the purpose of coarse graining from the continuum.

Following (2.50) let us now perform the coarse graining

(γ ′)WZY = γ(LW)(LZ)y(M−1)y(LV)M
VY = γ(LW)(LZ)yPY

y

(η ′)WZ = η (LW)(LZ) +

1
2

(

β (LW)u[

(M−1)u(LU)M
UV(M−1)(LV)v − (M−1)uv

]

β (LZ)v +(W ↔ Z)
)

= η (LW)(LZ)−
1
2

β (LW)uGuvβ (LZ)v− (W ↔ Z) . (3.29)

of these tensors. To this end we will need the Green’s function Guv. It can be obtained for instance
by Fourier transform or by solving the system of equations (2.52) directly and by comparing the
solution to (2.53). Such a solution can be constructed by mimicking the variation of constants
method from the continuum. One will obtain

G(LX+r)(LY+s) = δXY

(

sin(νr)sin(νs)
Esin(ν)

cos(Lν)

sin(Lν)
−

sin(νr)sin(νs)
Esin(ν)

δrs

−
sin(νr)cos(νs)

Esin(ν)
θ(s− r) −

sin(νs)cos(νr)
Esin(ν)

θ(r −s)

)

(3.30)

where

θ(r) =

{

0 if r ≤ 0,

1 if r > 0.
(3.31)

We can now compute the coarse grained entitiesγ ′,η ′ and obtain in the limita → 0,L → ∞ with
L ·a = a′

(γ ′)WZY =
1
2

m2δWZδWY

(η ′)WZ =
m

4sin(a′m)

(

δW(Z+1) + δW(Z−1)
)

+
m
2

cos(a′m)

sin(a′m)
δWZ

. (3.32)

As expected this result coincides with the tensorsγper f,ηper f coming from the perfect action.

3.4 Summary

We have seen that from the family (3.2) of discrete actions only the choiceα = 1
4 is pertur-

batively consistent to first order. None of these choices is however perturbatively consistent to
second order. Nevertheless we succeeded to find a perturbatively consistent second order term.
Note that here different strategies are possible: we only determined the altered second order term
to the lowest order in the lattice constanta as the perfect action could afterwards be constructed
through coarse graining. Alternatively one might demand that the second order term arises from
the second derivate of the action, that is that the differential equations (3.25,3.26) are satisfied. This
would also fix the higher order terms in the lattice constanta so that even without coarse graining,
the perfect action can be calculated from the solutions of these differential equations.
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4. Discussion

The notion of diffeomorphism symmetry in the discrete advocated here is a very powerful
one: it leads to discretization independence and to a reconciliation between continuum space time
and discrete underlying lattice. Basically such a symmetryrequires that the discretization encodes
already continuum physics. It should therefore not be very surprising that there are no examples yet
where such a symmetry is realized for proper field theories with propagating degrees of freedom.
Generically discretizations will rather feature broken diffeomorphism symmetry, in the sense that
there exist special background solutions for which the symmetry is realized, but is violated if
considering other solutions. These special solutions are often the most simple ones around which
a perturbative expansion would be natural.

A theory with broken gauge symmetries is however not perturbatively consistent if expanded
around a background solution where the gauge symmetry is realized. For Regge calculus this ap-
plies to the expansion around flat space (or for Regge calculus with cosmological constant and
curved tetrahedra [30] around homogeneous background solutions). That is one should be aware
that, i.e. the scattering of gravitons on a lattice is a priori not well defined. However the com-
putation of such scattering amplitudes provides an important test for the low energy behavior of
quantum gravity theories such as spin foams [31].

One possibility to allow for a perturbative treatment of lattice action with broken gauge sym-
metries is to change the discretization to the appropriate order. This change should ensure that
the gauge symmetry is realized to this order, allowing a consistent perturbative treatment. That is
gauge modes will decouple to the given order and only physical modes need to be considered.

The change of discretization is already an important step towards constructing a perfect action,
i.e. a discretization where the gauge symmetry in question –diffeomorphism symmetry – is fully
realized. It might therefore be quite non–trivial to find perturbatively consistent discretizations for
field theories with propagating degrees of freedom. Future investigations will show, whether such
perturbatively consistent discretizations require non-local couplings. Such couplings have to be
expected for the perfect action as they do appear under coarse graining. In this case the consistency
requirements can give important informations on the structure of the perfect action, without having
explicitly constructed it yet.

In 4D Regge calculus difffeomorphism symmetry is broken – ingeneral to quadratic order [5].
This does not exclude the possibility that Regge calculus isperturbatively consistent to first non–
linear order on a regular lattice, which would make the regular lattice a preferred choice. This can
be checked explicitely, as the conditions for consistency are analogous to those for parametrized
field theory.

Here we discussed the classical theory, i.e. tree level amplitudes. A much farther reaching
question is to generalize the considerations to quantum theory (see [10] for a discussion of the
quantum theory for the discrete anharmonic oscillator). There are a number of crucial questions
to consider. In particular the minimal distance on a latticeserves usually as a regulator. However
if vertex translation symmetry is realized such a minimal distance looses its meaning as vertices
can be moved on top of each other. That is, in such a lattice quantum theory with diffeomorphism
symmetry the lattice looses is function as a regulator and finiteness needs to be provided for by
other means. One possibility is through the discreteness ofspectra of geometric operators, which
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is realized in loop quantum gravity [32]. Insight into this issue can be gained by finding the fixed
points under coarse graining of quantum gravity models, such as spin foams [33, 34]
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