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Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost
and template placement
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We estimate the number of templates, computational power, and storage required for a one-step matched
filtering search for gravitational waves from inspiraling compact binaries. Our estimates for the one-step search
strategy should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical
searches. We use a discrete family of two-parameter wave form templates based on the second post-Newtonian
approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates
for all of the large- and mid-scale interferometers now under construction: LIGO~three configurations!,
VIRGO, GEO600, and TAMA. To search for binaries with components more massive thanmmin50.2M (

while losing no more than 10% of events due to coarseness of template spacing, the initial LIGO interferom-
eters will require about 1.031011 flops ~floating point operations per second! for data analysis to keep up with
data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the
improved family of templates and in part because we use more realistic~higher! sampling rates. Enhanced
LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will
require 7.831011 flops, and VIRGO will require 4.831012 flops to take full advantage of its broad target noise
spectrum. If the templates are stored rather than generated as needed, storage requirements range from 1.5
31011 real numbers for TAMA to 6.231014 for VIRGO. The computational power required scales roughly as
mmin

28/3 and the storage asmmin
213/3. Since these scalings are perturbed by the curvature of the parameter space at

second post-Newtonian order, we also provide estimates for a search withmmin51M( . Finally, we sketch and
discuss an algorithm for placing the templates in the parameter space.@S0556-2821~99!05214-5#

PACS number~s!: 04.80.Nn, 07.05.Kf, 97.80.2d
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I. INTRODUCTION

Close binary systems composed of compact objects~such
as black holes and neutron stars! are expected to be an im
portant source of gravitational waves for broadband laser
terferometers such as the Laser Interferometric Gravitatio
Wave Observatory~LIGO!, VIRGO, GEO600, and TAMA
@1–4#. The orbit of a compact binary decays under the infl
ence of gravitational radiation reaction, emitting a gravi
tional wave signal that increases in amplitude and ‘‘chirp
upward in frequency as the objects spiral in toward e
other just before their final coalescence. According to curr
astronomical lore@5–7#, the rate of coalescences should
about three per year within 200 to 300 Mpc@5# of the Earth
for neutron-star–neutron-star binaries, and within 400 M
to 1 Gpc for black-hole–black-hole binaries. Signals fro
inspiraling compact binaries at these distances are st
enough to be detected by ‘‘enhanced’’ LIGO@8# and VIRGO
interferometers, but only if aided by a nearly optimal sign
processing technique. Fortunately, the distinctive freque
chirp has been calculated to a remarkable degree of prec
using a variety of approximations to the general relativis
two-body problem~e.g.@9,10#!. Because the functional form
of the chirp is quite well known, a search for inspiral signa
in noisy data is ideally suited to matched filtering.

Matched filtering@11# has long been known to be th
0556-2821/99/60~2!/022002~12!/$15.00 60 0220
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optimal linear signal-processing technique and is well d
cussed in the literature~e.g. @12#!; therefore we will only
briefly summarize it here. In the frequency domain,
matched filter is a best-guess template of the expected si
waveform divided by the interferometer’s spectral noise d
sity. The interferometer output is cross-correlated with
matched filter at different time delays to produce a filter
output. The signal-to-noise ratio, defined as the ratio of
actual value of the filtered output to its rms value in t
presence of pure noise, is compared to a predeterm
threshold to decide if a signal is present in the noise. If
signal from which the matched filter was constructed
present, it contributes coherently to the cross-correlat
while the noise contributes incoherently and thus is redu
relative to the signal. Also, the weighting of the cros
correlation by the inverse of the spectral noise density e
phasizes those frequencies to which the interferomete
most sensitive. Consequently, signals thousands of cy
long whose unfiltered amplitude is only a few percent of t
rms noise can be detected.

A matched filtering search for inspiraling compact bin
ries can be computationally intensive due to the variety
possible waveforms. Although the inspiral signals are all
pected to have the same functional form, this form depe
on several parameters—the masses of the two objects,
spins, the eccentricity of their orbit, etc.—some of the
©1999 The American Physical Society02-1
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quite strongly. A filter constructed from a waveform tem
plate with any given parameter vector may do a very p
job of detecting a signal with another parameter vector. T
is, the difference in parameter vectors can lead to a gre
reduced cross-correlation between the two wave forms;
in general, the greater the difference, the more the cr
correlation is reduced. Because the parameter vector
signal is not known in advance, it is necessary to filter
data with a family of templates located at various points
parameter space—e.g., placed on a lattice—such that
signal will lie close enough to at least one of the template
have a good cross-correlation with that template@13#.

There are several questions that must be answered in
der to determine the feasibility of a matched filtering sea
strategy and, if feasible, to implement it. Which paramet
significantly affect the wave form? How should the spac
of the template parameters~lattice points! be chosen? Is ther
a parametrization that is in some sense ‘‘preferred’’ by
template wave forms? How many templates are neede
cover a given region of interest in the parameter space,
how much computing power and memory will it cost to pr
cess the data through them? In the case of inspiraling c
pact binaries, the full general-relativistic wave forms are
exactly known, but are instead approximated~e.g., using the
post-Newtonian scheme!; and we must also ask, what ap
proximation to the true wave forms is good enough?

All of these questions have been addressed in re
years, at least at some level. The current state of affair
summarized by the following brief review of the literature

The standard measure for deciding what class of w
forms is good enough is thefitting factor(FF) introduced by
Apostolatos@14#. The fitting factor is effectively the fraction
of optimal signal-to-noise-ratio obtained when filtering t
data with an approximate family of templates. Because b
ries are~on large scales! uniformly distributed in space an
because the signal strength scales inversely with distance
fraction of event rate retained is approximatelyFF3. There-
fore it has become conventional to regardFF597%—i.e.,
10% loss of event rate—as a reasonable goal. Using the s
dard post-Newtonian expansion in the test-mass case~i.e.,
when one body is much less massive than the other so
the wave forms can be computed with arbitrarily high pre
sion using the Teukolsky formalism!, Droz and Poisson@15#
found that second post-Newtonian~2PN! signals had fitting
factors of 90% or higher. Damour, Iyer, and Sathyaprak
@16# have devised a new way of rearranging the usual p
Newtonian expansion~similar to the way Pade´ approximants
rearrange the coefficients of a Taylor expansion! to take ad-
vantage of physical intuition in constructing templates. Th
find fitting factors of 95% or higher for the 2PN template
Research underway by the authors of@9# will lead to 3PN
templates that should easily achieveFF.97%.

Several people@17,14,18# have shown that it is insuffi-
cient to use templates that depend on just one shape pa
eter~the ‘‘chirp mass,’’ which governs the rate of frequen
sweep at Newtonian-quadrupole order!. To achieve FF
.90% one must include the masses of both objects as
plate parameters, as was done in the above 2PN ana
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@15,16#, and as is being done in the forthcoming 3PN te
plates.

Apostolatos@14,19# showed that, for binaries whose com
ponents spin rapidly about their own axes which are ortho
nal to the orbital plane so that there is no precession, neg
ing the spin parameters~i.e., using two-mass-parameter wav
forms based on the theory of spinless binaries! degraded the
fitting factors by less than 2%. With precession the situat
is much more complicated, and data analysis algorithms
as yet poorly developed: It is clear that there are interes
corners of parameter space~most especially a neutron star i
a substantially nonequatorial, precessing orbit around a m
more massive, rapidly spinning black hole! in which the two-
mass-parameter spinless wave forms giveFF!90%; to
search for such binaries will require wave forms with thr
or more parameters@19#. However, the 2PN~or 3PN! two-
mass-parameter wave forms do appear to cover adequat
significant portion of the parameter space for precessing
naries@14#.

Sathyaprakash@20# showed that in computations with th
two-mass-parameter wave forms, the best coordinates to
on the parameter space are not the two masses, but rathe
inspiral times from some fiducial frequency to final merg
as computed at Newtonian and first post-Newtonian ord
Working with therestrictedfirst post-Newtonian wave forms
~see below! he found that the effective dimension of the p
rameter space is nearly one.

Sathyaprakash and Dhurandhar@21–23# developed a cri-
terion for putting templates at discrete points on a grid
parameter space and numerically implemented their crite
for a one-parameter~Newtonian! family of templates and for
simple noise models. They introduced the concept of w
Owen @24# later called theminimal match~analogous to the
fitting factor! as a measure of how well a discrete set
templates covers the parameter space and estimated the
putational costs for an on-line search.

Owen @24#, building on the work of Sathyaprakash an
Dhurandhar, defined a metric on the parameter space f
which one can semi-analytically calculate~i! the template
spacing needed to achieve a desired minimal match,~ii ! the
total number of templates needed, and~iii ! the computational
requirements to keep up with the data—for any family
wave forms and any interferometer noise spectrum. Ow
combined this metric-based formalism with computation
counting procedures from Schutz@25# to estimate the com-
putational requirements for LIGO searches based on t
parameter 1PN templates. These estimates were confir
by Apostolatos@19# using a numerical method in the vein o
~but more sophisticated than! the previous work of
Sathyaprakash and Durandhar@21–23#. Apostolatos also
showed that a search for precessing binaries that fully co
all the nooks and crannies of the precessional param
space, using currently available templates and technique
prohibitively costly.

Mohanty and Dhurandhar@26,27# have studied hierarchi
cal search strategies. Such strategies reduce computat
costs by making a first pass of the data through a coars
spaced template grid and a low signal-to-noise threshold
identify candidate signals. Each candidate flagged by the
2-2
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MATCHED FILTERING OF GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D60 022002
pass is examined more closely with a second, finely-spa
grid of templates and a higher threshold to weed out fa
alarms. Such strategies can reduce the total computati
requirements by roughly a factor 25.

The purpose of this paper is to refine and update
analyses by Owen@24# for the two-parameter, spinless tem
plates that are likely to be used for binary-inspiral searche
ground-based interferometers. This refinement is needed
cause the kilometer-scale interferometers will begin tak
data in about 2 years~preliminary, engineering run!; people
are even now designing software to implement the simp
matched filtering search algorithm; and in the context
these implementations, the factor of 3 accuracy attempte
Ref. @24# is no longer adequate. The numbers that are
rived in this paper should establish a reliable baseline cos
which more sophisticated search strategies~e.g., hierarchical
searches! can be compared.

The substantial differences between this paper and
@24# are that we now~i! approximate the phase evolution
the inspiral wave form to 2PN rather than 1PN order;~ii !
give results for the noise spectra of several more interfer
eters; and~iii ! use a better estimate of the sampling fr
quency needed for each interferometer. We assume the
lowing fiducial search: a minimal match of 97%
~corresponding to 10% loss of event rate due to coarse
rameter space coverage!, second post-Newtonian wav
forms, and templates made for objects of minimum m
mmin50.2M ( and up.

Our results for the computational requirements are gi
in Tables II–IV. These tables show that the initial LIG
interferometers need about twice as many templates
triple the computational power estimated in Ref.@24#. These
increases result mainly from using 2PN wave forms rat
than the~clearly inadequate! 1PN, and from using a highe
sampling rate~as, it turns out, is required to keep time-st
discretization error from compromising the 97% minim
match!. GEO600 requires slightly more templates and pow
than LIGO because of its flatter noise spectrum, wh
TAMA requires slightly less because its sensitivity is limite
to higher frequencies where there are fewer cycles. In
VIRGO, with its extremely broad and flat spectrum, requi
about the same as advanced LIGO.

The rest of this paper is organized as follows. In Sec
we analyze the application of matched filtering to a sea
for inspiraling binaries and summarize the method of R
@24# which uses differential geometry to answer importa
questions about such a search. We use this method in Se
to estimate the computational costs and other requirem
of a matched-filtering binary search for LIGO, VIRGO
GEO600, and TAMA. In Sec. IV we illustrate a detaile
example of a template placement algorithm, and in Sec
we discuss our results.

II. FORMALISM

This section summarizes material previously presente
@24# with several incremental improvements. We begin
introducing some notation.
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The Fourier transform of a functionh(t) is denoted by

h̃( f ), where

h̃~ f ![E
2`

`

dt ei2p f th~ t !. ~2.1!

We write the interferometer outputh(t) as the sum of noise
n(t) and a signalAs(t), where we have separated the sign
into a dimensionless, time-independent amplitudeA and a
‘‘shape’’ function s(t) which is defined to have unit norm
@see Eq.~2.4! below#.

The strain power spectral noise density of an interfero
eter is denoted bySh( f ). We use the one-sided spectral de
sity, defined by

E@ ñ~ f 1!ñ* ~ f 2!#5
1

2
d~ f 12 f 2!Sh~ u f 1u!, ~2.2!

where E@ # denotes the expectation value over an ensem
of realizations of the noise and an asterisk denotes com
conjugation.

We use geometrized units, i.e., Newton’s gravitation
constantG and the speed of lightc have values of unity.

A. Matched filtering

First we flesh out the Introduction’s brief description
matched filtering. In the simplest idealization of matched
tering, the filtered signal-to-noise ratio is defined by@12#

S

N
[

^h,u&
rms^n,u&

. ~2.3!

Here u is the template wave form used to filter the da
streamh, and the inner product

^a,b&[4 ReF E
0

`

d f
ã* ~ f !b̃~ f !

Sh~ f ! G ~2.4!

is the noise-weighted cross-correlation betweena andb ~cf.
@28#!. The denominator of Eq.~2.3! is equal toA^u,u&, the
norm of u ~see Sec. II B of Ref.@28# for a proof!. Because
the norm ofu cancels out of Eq.~2.3!, we can simplify our
calculations without loss of generality by considering
templates to have unit norm.

When searching for a parametrized family of signals
situation is somewhat more complicated. The parameter
ues of the signals are not known in advance; therefore
must filter the data through many templates constructed
different points in the parameter space. To develop a stra
for searching the parameter space, one must know how m
the S/N is reduced by using a template whose parame
values differ from those of the signal. Neglecting fluctuatio
due to the noise, the fraction of the optimalS/N obtained by
using the wrong parameter values is given by theambiguity
function

A~l,L![^u~l!,u~L!& ~2.5!
2-3
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BENJAMIN J. OWEN AND B. S. SATHYAPRAKASH PHYSICAL REVIEW D60 022002
~see, e.g., Chaps. XIII and X of Ref.@12#!. Herel andL are
the parameter vectors of the signal and template~it does not
matter which is which!. The ambiguity function, as its nam
implies, is a measure of how distinguishable two wave for
are with respect to the matched filtering process. It can
regarded as an inner product on the wave form param
space and is fundamental to the theory of parameter est
tion @12,29#.

For the purposes of a search for inspiraling compact
naries, the ambiguity function isn’t quite what is neede
This is because the test statistic~for a given set of paramete
valuesu) is not given by Eq.~2.3!, but rather by

max
fc ,tc

^h,u~u!ei (2p f tc2fc)&
rms^n,u~u!&

. ~2.6!

Here fc and tc are respectively the coalescence time a
coalescence phase. We separate these parameters ou
the rest:l5(fc ,tc ,u), where u is the vector ofintrinsic
parametersthat determine the shape of the wave form a
fc and tc are extrinsic parameters@24# ~also referred to as
kinematical and dynamical parameters@20#, respectively!.
The practical difference is that maximization over the extr
sic parameters is performed automatically by Fourier tra
forming, taking the absolute value, and looking for pea
The use of Eq.~2.6! as a detection statistic suggests the d
nition of a modified ambiguity function known as thematch
@24#

M ~u1 ,u2![max
fc ,tc

^u~u1!,u~u2!ei (2p f tc2fc)&, ~2.7!

where the templatesu are assumed to have unit norm. Th
use of this match function rather than the ambiguity funct
takes into account the fact that a search can benefit f
systematic errors in the extrinsic parameters.

B. Applications of differential geometry

The match~2.7! can be regarded as an inner product
the space of template shapes and intrinsic template pa
eters, and correspondingly one can define a metric on
space@24#:

gi j ~u![2
1

2

]2M ~u,Q!

]Q i]Q j U
Qk5uk

. ~2.8!

The metric~2.8! is derived from the match~2.7! in the same
way the information matrixG i j is derived from the ambiguity
function @29#, and plays a role in signal detection similar
that played by the information matrix in parameter estim
tion @30#. The gi j can be derived by expandingM (u,Q)
about Q5u, or equivalently by projectingG i j on the sub-
space orthogonal tofc and tc .

The gi j can be used to approximate the match in the
gime 12M!1 by

M ~u,u1Du!.12gi j Du iDu j , ~2.9!
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which is simply another way of writing the Taylor expansio
of M (u,u1Du) aboutDu50. ~The first derivative term van-
ishes becauseM takes its maximum value of unity atDu
50.! We find that the quadratic approximation~2.9! is good
typically for M.0.95 or greater, though this depends on t
wave form and noise spectrum used. Experience sugg
that the quadratic approximation generally underestima
the true match; and thus the spacings and numbers of
plates we calculate using Eq.~2.9! err on the safe side. Se
Fig. 1 for an example.

FIG. 1. Comparison of the full match to the quadratic appro
mation in the case of~a! first post-Newtonian and~b! second post-
Newtonian wave forms. In both cases the noise spectrum is LIG
~see Table I!. The elliptical solid line is the 97% contour of th
match with a reference wave form~in the center of the ellipse!
where the match is given analytically by the metric in the quadra
approximation@Eq. ~2.9!#. The dots are locations of the same co
tour given by constructing stationary phase wave forms and num
cally computing the full match from them. The reference wave fo
is from two 1.4M ( objects @the mass parameterst0 and t1 are
defined in Eq.~3.2!#. The quadratic approximation is safe, in th
sense that its 97% contour always lies inside the numerical cont
The quadratic approximation also works well for high mass bi
ries, provided the numerical and analytical contours use the s
coalescence frequency.
2-4
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TABLE I. Analytical fits to noise power spectral densitiesSh( f ) of the interferometers treated in thi
paper. HereS0 is the minimum value ofSh( f ), and f 0 is the frequency at which the minimum value occu
For our purposesSh( f ) can be treated as infinite below the seismic frequencyf s . The high-frequency cutoff
f u is chosen so that the loss of signal-to-noise ratio due to finite sampling rate 2f u is 0.75% ~see text!.

Detector Fit to noise power spectral density S0 (Hz21) f 0 ~Hz! f s ~Hz! f u ~Hz!

LIGO I S0/3 @( f 0 / f )412( f / f 0)2# 4.4310246 175 40 1300
LIGO II S0/11$2( f 0 / f )9/219/2@11( f / f 0)2#% 7.9310248 110 25 900
LIGO III S0/5 $( f 0 / f )412@11( f / f 0)2#% 2.3310248 75 12 625
VIRGO S0/4 @290(f s / f )512( f 0 / f )111( f / f 0)2# 1.1310245 475 16 2750
GEO600 S0/5 @4( f 0 / f )3/22213( f / f 0)2# 6.6310245 210 40 1450
TAMA S0/32$( f 0 / f )5113(f 0 / f )19@11( f / f 0)2#% 2.4310244 400 75 3400
u
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In the limit of close template spacing, Eq.~2.9! leads to a
simple, analytical way of placing templates on a lattice. W
discuss this in some detail in Sec. IV, but for now turn o
attention to the use of the quadratic approximation in cal
lating the number of templates needed for a lattice.

C. Computational costs

If the numberN of templates needed to cover a region
interest is large, it is well approximated by the ratio of t
proper volume of the region of interest to the proper volu
per templateDV,

N5~DV!21E dDuAdetigi j i , ~2.10!

whereD is the dimension of the parameter space@24#. Equa-
tion ~2.10! underestimatesN when not in the limitDV→0
(N→`). The reason is templatespill over, i.e., the fact that
in any real algorithm for laying out templates, those on
boundaries of the region of interest will to some extent co
regions just outside. This effect is small in the limit of ma
templates because it goes as the surface-to-volume rat
the region of interest.

The proper volume per template,DV, depends on the
packing algorithm used, which in turn depends on the nu
ber D of dimensions~see Sec. IV!. For D52, the optimal
packing is a hexagonal lattice, and thus

DV5
3A3

2
~12MM !, ~2.11!

whereMM is theminimal matchparameter defined in Ref
@24# as the match between signal and template in the c
when the signal lies equidistant between all the nearest t
plates ~i.e., the worst-case scenario!. There is no packing
scheme which is optimal for allD, but it is always possible
~though inefficient! to use a hypercubic lattice, for which

DV5„2A~12MM !/D…

D. ~2.12!

For inspiraling compact binaries, Ref.@24# has spelled out
a detailed prescription for obtaining thegi j needed to evalu-
ate the proper volume integral in Eq.~2.10!. In summary,
first one obtains a metric including thetc parameter,
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~J @cacb#2J @ca#J @cb#!, ~2.13!

whereca is the gradient of the wave form phaseC in the
parameter space of intrinsic parameters plustc and the mo-
ment functionals

J @a#[
^ f 27/3,a~ f !&

^ f 27/3,1&
~2.14!

can be expanded~for binary chirp wave forms! in terms of
the noise moments@31#

J~p![
^~ f / f 0!2p/3,1&

^~ f / f 0!27/3,1&
~2.15!

where f 0 is the frequency of the minimum ofSh( f ) @32#.
Then one projects out the coalescence timetc to obtain

gi j 5g i j 2g0ig0 j /g00. ~2.16!

OnceN has been found it is a relatively straightforwa
matter to calculate the CPU power and storage require
process all the templates in an on-line search. The inter
ometer data stream is broken up for processing into segm
of D samples~real numbers!, such thatD@F whereF is the
length ~in real numbers! of the longest filter.~See Schutz
@25# for a discussion of the optimization ofD/F, taking into
account the fact that successive data segments must ov
by at leastF to avoid circular correlations in the Fourie
transform.! Using the operations count for a real Fouri
transform @25#, filtering the data segment throughN tem-
plates of lengthF requires

ND~1613log2F ! ~2.17!

floating point operations. If we take the sampling frequen
to be 2f u ~see Sec. III and Table I!, the computational powe
required to keep pace with data acquisition is

P.Nf u~3216log2F ! ~2.18!

flops ~floating point operations per second!.
2-5
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III. COMPUTATIONAL COST USING RESTRICTED 2PN
TEMPLATES

In this section, using the geometric formalism summ
rized in Sec. II, we calculate the numberN of templates
required to cover a region of interest as a function of
minimal match. We then use this number to calculate
computational cost of filtering a single interferometer’s o
put through all these templates in an on-line search.

A. Functional form of the templates

We construct our wave form templates using two intrin
parameters based on the masses of the binary’s compon
Inspiral wave forms in principle can be strongly affected
several other parameters: spins of the two components
bital eccentricity, and several angles describing the orie
tion of the binary with respect to the interferometer. Ho
ever, it is believed that two-parameter templates will
adequate to search for most binaries for the following r
sons.

~i! Based on models of the evolution of currently know
binary pulsars, it is expected@9# that typical NS-NS binaries
will have spins of negligible magnitude (spin/mass2!1).
Apostolatos@19# has shown that, even if the magnitudes
the spins are large, their effect onS/N is small~reducesFF
by less than 2% if the orbit and the spin vectors do
precess!. He has also shown that precession will not redu
FF below 90% except in the relatively small region of p
rameter space containing binaries with a neutron star orbi
a more massive, rapidly rotating (spin/mass2;1) black hole
with orbital angular momentum inclined by more than abo
30 degrees to the black hole’s spin.

~ii ! It has long been known@33# that gravitational radia-
tion reaction circularizes all but the most eccentric orbits
a time scale much smaller than the lifetime of the binary
the progenitor system was the same binary. This may no
true, however, in the case of close binaries formed by cap
in densely populated environments, e.g., galactic nuc
globular clusters.

~iii ! The angles make no difference in our analysis
cause we use therestricted post-Newtonianapproximation
@28#, in which the phase evolution of the inspiral wave for
is followed to a high post-Newtonian order but the amplitu
is only followed to lowest order. In this approximation, th
combined effect of the angles is to multiply the wave fo
by a constant amplitude and phase factor, which does
affect the choice of search templates@21#. Presently it is
believed@28# that the restricted post-Newtonian approxim
tion will be good enough for data analysis of ground-bas
interferometers.

The standard post-Newtonian expansion of the wave fo
phase is given as a function of mass parameters based o
standard astronomical choicesM ~total mass! andm ~reduced
mass!. In order to clearly isolate test-mass terms~i.e., those
that remain when one body is much less massive than
other!, the symmetric mass ratioh5m/M is typically used
instead of m. In terms of M and h, the second post
Newtonian wave form phase can be calculated from the
ergy loss formula of Blanchetet al. @9# as
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C~ f ;M ,h!5
3

128
~pM f !25/3h21F11

20

9 S 743

336
1

11

4
h D

3~pM f !2/3216p~pM f !110S 3 058 673

1 016 064

1
5 429

1 008
h1

617

144
h2D ~pM f !4/3G ~3.1!

@cf. Eq. ~3.6! of Poisson and Will@31# #. However,M andh
are inconvenient parameters for our purposes because, w
they are used as the parameter-space coordinates, the v
of the metric components vary strongly over parame
space, making calculations unnecessarily difficult and pr
to numerical error. Equation~3.1! uses the stationary phas
approximation to the Fourier transform ofh(t), which is
known to simplify the wave form considerably while causin
negligible loss of signal-to-noise ratio@34#.

In earlier analyses@20,29,24# it was found more conve-
nient to use as parameters the Newtonian and 1PNchirp
times

t05
5

256
M 25/3~p f 0!28/3h21, ~3.2a!

t15
5

192
M 21~p f 0!22S 743

336h
1

11

4 D , ~3.2b!

which are respectively the Newtonian and 1PN contributio
to the time it takes the instantaneous gravitational-wave
quency to~formally! evolve from f 0 to infinity. The chirp
times are more convenient than the usual mass param
because, when they are chosen as parameter-space co
nates, at 1PN order the metric components are constant.
suming the post-Newtonian expansion has reasonable
vergence properties, one would expect the me
components in these coordinates to remain nearly consta
higher post-Newtonian orders~and indeed we find this is so!.
However, at higher than 1PN order one cannot write
wave form phase analytically in terms oft0 andt1. To rem-
edy this, following Mohanty@27#, we base our second pa
rameter on the 1.5PN chirp timet1.5 ~see@29# for a defini-
tion!. More specifically, we introduce new dimensionle
coordinates in parameter space. We define

u152p f 0t05
5

128
~pM f 0!25/3h21, ~3.3a!

u252p f 0t1.55
p

4
~pM f 0!22/3h21, ~3.3b!

which can be inverted to obtain

M5
5

32p2f 0

u2

u1 , ~3.4a!

h5F16p5

25

~u1!2

~u2!5G1/3

. ~3.4b!
2-6
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This choice of (u1,u2) lets us write the wave form phas
analytically while keeping the metric components from va
ing too strongly; therefore it is convenient for calculatin
numbers of templates~see below!. However, for other pur-
poses (t0 ,t1) are just as convenient, and to be consist
with the literature we will use them.

B. Noise spectra

In this paper we consider the noise spectra of the f
large- and intermediate-scale interferometer projects, LIG
VIRGO, GEO600, and TAMA. For LIGO we use three noi
spectra corresponding to three interferometer configurati
the ‘‘first interferometers’’@1# ~which are planned to perform
a gravitational-wave search in 2002–2003!, the ‘‘enhanced
interferometers’’ @8# ~which are likely to be carrying ou
searches in the mid 2000’s!, and the ‘‘advanced interferom
eters’’ @1# ~which are thought representative of the type
detector that might operate a few years after the enhan
ones!. For convenience we abbreviate these, respectively
LIGO I, LIGO II, and LIGO III. We use the VIRGO and
GEO600 noise spectra given in Refs.@2,3#. For TAMA we
use the noise spectrum given by Fujimoto in Ref.@35#.

It is desirable to have simple analytical fits to the no
power spectral densities used. Kip Thorne and Scott Hug
~private communications! have provided us with fits to LIGO
I and LIGO III, respectively, and a fit to LIGO II was derive
in Ref. @36#. We have constructed our own fits to the rema
ing noise spectra listed in the previous paragraph. All
these analytical fits to the noise spectra are tabulated in T
I.

The shape of each noise spectrum determines natural
and high-frequency cutoffs for the matched filtering in
grals. The low-frequency cutofff s is defined as the fre
quency above which 99% ofS2/N2 is obtained; we call this
the seismic frequencyand denote it with a subscripts be-
cause it is typically near the frequency at which seism
noise causes the noise power spectral densitySh( f ) to begin
s
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rising sharply. Because integration below this frequency c
tributes little to the detectability of signals and costs much
terms of total number of templates and computational
sources, we assume the templates to begin with gravitatio
wave frequencyf s .

The high-frequency cutofff u , as pointed out by E´ anna
Flanagan~private communication!, needs to be high enoug
that the S/N degradation due to discrete time stepsDt
51/(2f u) in the data analysis is less than that due to discr
choices of the templates’ intrinsic parameters. Quant
tively, this requires that

g00/~4 f u!2,12MM , ~3.5!

whereg00 is the tc-tc component of the metric beforetc is
projected out @see Ref. @24#, Eq. ~2.23!#. At any post-
Newtonian order we haveg005(2p f 0)2@J(1)2J(4)2#/2
@see Ref.@24#, Eq. ~2.27!# and thus

f u.p f 0AJ~1!2J~4!2

8~12MM !
. ~3.6!

@Strictly speaking, the noise momentsJ(1) andJ(4) in this
expression should be integrated up tof u rather than infinity
and f u should be chosen by iteration, but this is a sm
correction.# We have chosenf u to be twice the right-hand
side of this expression so that the loss due to sampling is
the loss due to discrete values of the intrinsic paramet
There is probably a more clever way of optimizingf u , but
this is a first cut.

C. Number of templates and computational cost

We now proceed with the calculation of the number
templates needed to perform a single-pass, on-line searc
gravitational-wave signals of the form in Eq.~3.1!, for the
noise spectra in Table I.

The first task is to obtain the intrinsic-parameter metr
We rewrite the wave form phase at 2PN order as
.

C5
3

5
u1S f

f 0
D 25/3

1F11p

12

u1

u21
743

2016S 25

2p2D 1/3

~u1!1/3~u2!2/3G S f

f 0
D 21

2
3

2
u2S f

f 0
D 22/3

1F617p2

384

u1

~u2!21
5429

5376S 25p

2 D 1/3S u1

u2D 1/3

1
15 293 365

10 838 016S 5

4p4D 1/3~u2!4/3

~u1!1/3G S f

f 0
D 21/3

. ~3.7!

From Eqs.~3.7! and Eqs.~2.13!–~2.16! it is straightforward to derive the metric componentsgi j with symbolic manipulation
software. However, the general expressions for thegi j ~and even theg i j ) are too lengthy and complicated to display here
er

e is
er
er
Next, we obtain the proper volume

V5E d2uAdetigi j i ~3.8!

of the region of interest. The boundaries of this region are
by the range of masses@mmin ,mmax# of the individual objects
et

in binaries. It turns out that onlymmin has a strong influence
on V @21,23,24#. For 1PN wave forms the intrinsic paramet
space is flat~i.e., detigi j i is constant! and thusV can be
obtained analytically using the coordinates (t0 ,t1). Beyond
1PN order in the wave form, the intrinsic parameter spac
not flat, and thus it is convenient to calculate the prop
volume numerically, e.g., by a Monte Carlo method. In ord
2-7
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BENJAMIN J. OWEN AND B. S. SATHYAPRAKASH PHYSICAL REVIEW D60 022002
to make the integrand as nearly constant as possible we
the metric tensor transformation law to switch from (u1,u2)
coordinates to (t0 ,t1) @because in these coordinates the m
ric components vary more slowly over the region of inter
than in (u1,u2)#. Finally, to obtain the number of template
we divide the proper volumeV by the proper volume pe
templateDV. For a rectangular lattice in two dimension
DV52(12MM ) @cf. Eq. ~2.12!#. In Table II we give values
of N calculated for the noise spectra given in Table I assu
ing a rectangular lattice. For a hexagonal lattice,DV is given
by Eq.~2.11!, resulting in a reduction of about 20% inN, P,
andS. However, in practice much of this reduction may
offset by the details of actually constructing a lattice~see
Sec. IV! and therefore we make our estimates for the m
conservative rectangular case.

These numbers are easily translated into the comp
tional costs shown in Tables III and IV: To a good appro
mation, the length of the longest filter~with m15m2
5mmin , i.e., equal mass binaries so thath51/4) is given by

F.2 f ut0~ f 0 / f s!
8/35

5

32
f u~p f s!

28/3~2mmin!
25/3. ~3.9!

The storage required for all of the templates is then roug
given by

S.NF, ~3.10!

TABLE II. Numbers of templates required to cover parame
space at a minimal match of 97% with a rectangular lattice. T
region of interest is that inhabited by binaries with compon
masses greater thanmmin . We use restricted post-Newtonian~PN!
templates whose phase evolution is accurate to the indicated o

mmin50.2M ( mmin51M(

Detector 1PN 1.5PN 2PN 2PN

LIGO I 2.33105 5.63105 4.83105 1.13104

LIGO II 1.03106 1.93106 1.73106 4.03104

LIGO III 5.73106 7.93106 6.93106 1.73105

VIRGO 5.83106 1.13107 9.33106 2.23105

GEO600 4.23105 9.73105 8.33105 1.93104

TAMA 5.13104 1.73105 1.43105 3.13103

TABLE III. Computational costs obtained from the numbers
templates given in Table II using 2PN templates andmmin

50.2M ( . The symbolF denotes the length~in real numbers! of the
longest template.

Detector log2F CPU powerP ~flops! StorageS ~reals!

LIGO I 21 9.931010 1.031012

LIGO II 22 2.531011 7.131012

LIGO III 25 7.831011 2.331014

VIRGO 26 4.831012 6.231014

GEO600 21 1.931011 1.831012

TAMA 20 7.331010 1.531011
02200
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and the computational powerP is given by Eq.~2.18!. ~We
use the word ‘‘storage’’ although sometimes it may be d
sirable to instead generate templates as needed; wh
stored or generatedS represents a number of bytes whic
must be obtained at a cost of CPU cycles if not storage,
can be an obstacle if the number is too high.!

D. Scaling laws

Approximate scaling laws can be obtained as follows.
1PN order the intrinsic parameter space is flat, and thus
proper volume of the region of interest scales as the~dimen-
sionless! coordinate volume, i.e.,

V; f 0t03 f 0t1;mmin
28/3f 0

28/3. ~3.11!

At higher post-Newtonian orders the metric components w
respect to the (t0 ,t1) coordinates are nearly constant, a
thus this scaling still roughly holds.

From the scaling of the proper volume we can obtain
scalings of the other quantities of interest. Inserting the
pendence~2.12! of the proper volume per template on th
minimal match, we obtain

N;~12MM !21mmin
28/3f 0

28/3. ~3.12!

Taking Eq. ~2.18!, neglecting the weak logarithmic depen
dence, and noting thatf u is proportional tof 0, we find that

P;~12MM !21mmin
28/3f 0

25/3. ~3.13!

Multiplying the number of templatesN by the length of each
templateF, the storage requirement scales as

S;~12MM !21mmin
213/3f 0

25/3f s
28/3. ~3.14!

This last scaling withmmin presents a significant obstacle
efficiently searching for binaries composed of low-mass
jects, such as massive compact halo objects~MACHOs! if
they are low-mass (;.5M () black holes@37#. Searches for
low-mass objects will likely need to generate templates
needed rather than store them, incurring additional C
costs not addressed in this paper.

Note that the above scaling laws implicitly assume thatf 0
or f s is varied while holding the overall shape of the noi
spectrum fixed. The noise spectrum of a real interferome
being composed of many independent noise sources, is
likely to change in such a manner except for fairly sm

r
e
t

er.

TABLE IV. Computational costs as in Table III, except here w
assumemmin51M( .

Detector log2F CPU powerP ~flops! StorageS ~reals!

LIGO I 17 1.93109 1.43109

LIGO II 19 5.23109 2.131010

LIGO III 21 1.731010 3.631011

VIRGO 22 9.831010 9.131011

GEO600 17 3.73109 2.53109

TAMA 16 1.33109 2.03108
2-8
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MATCHED FILTERING OF GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D60 022002
changes inf 0 or f s . However, these scaling laws give one
rough feel for~i! how changes in a single interferometer c
affect data analysis requirements, and~ii ! why different in-
terferometers have drastically different requirements.

IV. A TEMPLATE PLACEMENT ALGORITHM

In this Section we deal with the actual placement of
templates in the parameter space. The parameter spa
shown in Fig. 2a in terms of the total massM and symmetric
mass ratioh and in Fig. 2b in terms of chirp timest0 and
t1 , for searches in which the maximum total massMmax of

FIG. 2. The parameter space of search in terms of~a! standard
binary mass parameters and~b! chirp times, for different values o
the lower mass limits.
02200
e
is

the system is 100M ( and the lower limitmmin on the mass
of each component star is 0.2, 0.5 or 1.0M ( . The bottom
line in Fig. 2b corresponds to binaries of equal massh
51/4) with the rightmost point corresponding to lowest ma
binaries and the leftmost to greatest mass binaries of
search. There are no binaries in the region below this line
the parameterh exceeds 1/4 there, which is unphysical. T
top and the left lines are determined bymmin and Mmax re-
spectively. Given the minimum mass of the component s
and the maximum total mass, the parameter space of bina
is completely fixed. The volume of the parameter space~and
the corresponding number of templates required! is a sharp
function of the lower cutoff in the masses of the compon
stars and increases, as we have seen, asmmin

28/3.
The shape of the parameter space is rather complic

and attention needs to be paid in the placement of templ
so that the inevitablespill over ~see below! is minimal. Our
implementation of the filter placement is motivated by t
following astrophysical consideration: The observed neut
stars are all of roughly equal mass@38#. It is therefore to be
expected that many inspiral signals will come from equ
mass binaries. Consequently, we optimize the filter pla
ment for equal mass binaries. This is achieved by beginn
our template placement along theh51/4 line. The span of
each template is taken to be the largest rectangle~in a coor-
dinate system in which the metric is locally diagonal! that
can be inscribed inside the minimal match ellipse~we take
MM597%; see Table V for sample dimensions!. Note that
in Fig. 3 the spans do not appear rectangular because the
sheared by transforming from coordinates in which the m
ric is locally diagonal~see below! to the (t0 ,t1) coordinates.
We begin with the leftmost point on the bottom edge of t
parameter space of Fig. 2b, corresponding to the most m
sive binary of our search with the shortest chirp time. Suc
system will, of course, consist of equal mass bodies
therefore our starting point is on theh51/4 curve. The next
template is placed on theh51/4 curve at that location wher
the left edge of its rectangle touches the right edge of
previous template’s rectangle. In a sense this is a straigh
ward generalization of placement of filters discussed in R
@24# along grid lines that are not necessarily straight.

This optimal translation of templates is most easily do
in a coordinate system in which the metric is locally diag
nal. Let (x0 ,x1) denote such a coordinate system~found by
diagonalizing the two-dimensional matrixgi j ) and let

TABLE V. Dimensions of elliptical 97% match contours in th
quadratic approximation@Eq. ~2.9!# using the (t0 ,t1) coordinates.
Herea andb are the semimajor and semiminor axes, anda is the
angle between thet0 axis and the major axis of the ellipse. Here w
use the LIGO I noise spectrum and second post-Newtonian t
plates designated in the table by the masses of the binary com
nents.

m1(M () m2(M () a ~ms! b ~ms! a ~rad!

1.4 1.4 1.19 0.177 0.802
1.4 10 1.25 0.167 0.834

10 10 1.11 0.089 0.629
2-9
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BENJAMIN J. OWEN AND B. S. SATHYAPRAKASH PHYSICAL REVIEW D60 022002
f (x0 ,x1)50 denote a curve in the two-dimensionalx0–x1

plane along which templates are to be placed. For insta
h51/4 in Fig. 2 is one such curve. A convenient point
begin is the point (x0

(1) ,x1
(1)) at one end of the curve. In Fig

3 we have sketched an arbitrary curve together with the
template and its span. The span of a template, for mini
matches close to 1, is an ellipse. However, its effective~non-
overlapping! span, when setting up a lattice of templates
only an inscribed polygon such as a rectangle or an irreg
hexagon. In the following discussion for simplicity we co
sider the span to be a rectangle and hence we will be se
up a rectangular lattice. By choosing a hexagonal lattice
number of templates can be reduced by about 20%, but
reduction is less when the curve along which templates n
to be placed is parallel to neitherx0 nor x1 axis.

Given the ‘‘local’’ distance (dx0
(1) ,dx1

(1)) between tem-
plates, we can get two points on the curvef (x0 ,x1)50
which are simultaneous solutions of

$ f ~x0 ,x1!50, xn5xn
(1)1dxn

(1)% ~4.1!

for n50 andn51 respectively. In order to cover the param
eter space without leaving any ‘‘holes’’ it is obvious that t
next template should be placed at the point that is neare
the first template. This is how one obtains the nearest ne
bor of a template.

Returning to our problem of placing templates in the p
rameter space of chirp times, we move along theh51/4 line
till the binary of longest chirp time is reached. The set
templates chosen on theh51/4 curve form the base, on to
of which we construct layers to fill the parameter space. T
next row of templates is set on top of the first so that
region of interest is completely covered by the spans—wh
means that the first few templates will be located outside

FIG. 3. Illustration of optimal translation of a template along
arbitrary curve.
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region, and that the total number of templates must be m
estly greater than naively estimated by Eq.~2.10! ~see Fig.
4!.

V. DISCUSSION

In this paper we have discussed the problem of optima
placing templates in a binary inspiral signal search. For
templates we have used the restricted second post-Newto
wave form. We have made estimates of the computatio
costs of an on-line search of the inspiral wave form for
the large- and mid-scale interferometeric detectors now
der construction. We have addressed several importan
sues:~i! the density of templates in the parameter space,~ii !
the set of parameters most suitable for easy placemen
templates, and~iii ! the number of templates and comput
tional resources needed to analyze the data on-line.

These estimates should serve as a baseline for exp
tions of other data analysis strategies, and some of the t
niques here could be incorporated into other strategies.
example, it is now recognized that a substantial reduction
computational cost can be achieved by carrying out a hie
chical search@26,27#. For a two-step hierarchical searc
strategy, in the first step a sparsely filled family of templa
is used, with a threshold lower than what is acceptable ba
on the expected number of false alarms. Those events w
cross this trigger threshold are further examined with a fi
grid of templates chosen around the template that trigge
the event. In such a hierarchical search, templates chose
the first step will essentially be the same for each data s
ment. However, templates in the second step need to
changed from one data segment to the next, depending
which templates from the coarse grid family produces

FIG. 4. Choice of~1PN! templates in the space of chirp time
for the LIGO I noise spectrum and for a search of binaries w
masses of component stars larger than 1M ( and total mass no
greater than 100M ( .
2-10
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MATCHED FILTERING OF GRAVITATIONAL WAVES . . . PHYSICAL REVIEW D60 022002
‘‘event.’’ It is in the case of a coarse grid that our analytic
algorithm for template placement and analytical estimate
computational requirements fail and must be replaced by
merical methods that are computationally expensive.
generating filters corresponding to the first step of the h
archical search is more or less a one-time job. A finer grid
to be chosen quite frequently~essentially each time a pos
sible event is selected in the first step! and in this case, for-
tunately, the analytical techniques discussed in this pape
quite accurate and one does not have to follow the time c
suming numerical placement of templates either for estim
ing computational costs or for actually performing t
search.

There are several important problems we have not
dressed in this paper which could be the topics of fut
work. We have not treated the problem of searching the c
ners of parameter space where the precessing binaries
Although requiring some effort to seek out, these syste
could prove quite informative and astrophysically intere
ing. The problem of searching for precessing binaries
been addressed only in a very exploratory way@19# but could
w
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benefit from further analysis using the techniques of this
per. Also, we have used a crude relation between the m
mal match and fraction of event rate lost. This could
improved by a statistical analysis such as begun by Moha
@27#. Now that the ‘‘P-approximants’’@16# have proven a
promising way of building templates, it is important to e
amine the computational costs of using them to conduc
search.
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