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We estimate the number of templates, computational power, and storage required for a one-step matched
filtering search for gravitational waves from inspiraling compact binaries. Our estimates for the one-step search
strategy should serve as benchmarks for the evaluation of more sophisticated strategies such as hierarchical
searches. We use a discrete family of two-parameter wave form templates based on the second post-Newtonian
approximation for binaries composed of nonspinning compact bodies in circular orbits. We present estimates
for all of the large- and mid-scale interferometers now under construction: L{B@e configurations
VIRGO, GEO600, and TAMA. To search for binaries with components more massiventhas0.2M
while losing no more than 10% of events due to coarseness of template spacing, the initial LIGO interferom-
eters will require about 1010 flops (floating point operations per secorfdr data analysis to keep up with
data acquisition. This is several times higher than estimated in previous work by Owen, in part because of the
improved family of templates and in part because we use more redliégioen sampling rates. Enhanced
LIGO, GEO600, and TAMA will require computational power similar to initial LIGO. Advanced LIGO will
require 7.8 10 flops, and VIRGO will require 4.8 10'? flops to take full advantage of its broad target noise
spectrum. If the templates are stored rather than generated as needed, storage requirements range from 1.5
X 10 real numbers for TAMA to 6.% 10 for VIRGO. The computational power required scales roughly as
m;ﬁ{g and the storage as,;ﬁf’?’. Since these scalings are perturbed by the curvature of the parameter space at
second post-Newtonian order, we also provide estimates for a searchnyith 1M, . Finally, we sketch and
discuss an algorithm for placing the templates in the parameter q(80%56-282(99)05214-5

PACS numbes): 04.80.Nn, 07.05.Kf, 97.86.d

[. INTRODUCTION optimal linear signal-processing technique and is well dis-
cussed in the literaturée.g. [12]); therefore we will only
Close binary systems composed of compact objettsh ~ briefly summarize it here. In the frequency domain, a
as black holes and neutron staesse expected to be an im- matched filter is a best-guess template of the expected signal
portant source of gravitational waves for broadband laser inwaveform divided by the interferometer’s spectral noise den-
terferometers such as the Laser Interferometric Gravitationadity. The interferometer output is cross-correlated with the
Wave ObservatoryLIGO), VIRGO, GEO600, and TAMA matched filter at different time delays to produce a filtered
[1-4]. The orbit of a compact binary decays under the influ-output. The signal-to-noise ratio, defined as the ratio of the
ence of gravitational radiation reaction, emitting a gravita-actual value of the filtered output to its rms value in the
tional wave signal that increases in amplitude and “chirps”presence of pure noise, is compared to a predetermined
upward in frequency as the objects spiral in toward eachhreshold to decide if a signal is present in the noise. If the
other just before their final coalescence. According to currensignal from which the matched filter was constructed is
astronomical lord5-7], the rate of coalescences should bepresent, it contributes coherently to the cross-correlation,
about three per year within 200 to 300 M[&g] of the Earth  while the noise contributes incoherently and thus is reduced
for neutron-star—neutron-star binaries, and within 400 Mpaelative to the signal. Also, the weighting of the cross-
to 1 Gpc for black-hole—black-hole binaries. Signals fromcorrelation by the inverse of the spectral noise density em-
inspiraling compact binaries at these distances are stronghasizes those frequencies to which the interferometer is
enough to be detected by “enhanced” LIG8] and VIRGO  most sensitive. Consequently, signals thousands of cycles
interferometers, but only if aided by a nearly optimal signal-long whose unfiltered amplitude is only a few percent of the
processing technique. Fortunately, the distinctive frequencyms noise can be detected.
chirp has been calculated to a remarkable degree of precision A matched filtering search for inspiraling compact bina-
using a variety of approximations to the general relativisticries can be computationally intensive due to the variety of
two-body problem(e.g.[9,10]). Because the functional form possible waveforms. Although the inspiral signals are all ex-
of the chirp is quite well known, a search for inspiral signalspected to have the same functional form, this form depends
in noisy data is ideally suited to matched filtering. on several parameters—the masses of the two objects, their
Matched filtering[11] has long been known to be the spins, the eccentricity of their orbit, etc.—some of them
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quite strongly. A filter constructed from a waveform tem-[15,16, and as is being done in the forthcoming 3PN tem-
plate with any given parameter vector may do a very pooplates.
job of detecting a signal with another parameter vector. That Apostolatod 14,19 showed that, for binaries whose com-
is, the difference in parameter vectors can lead to a greatlgonents spin rapidly about their own axes which are orthogo-
reduced cross-correlation between the two wave forms; andal to the orbital plane so that there is no precession, neglect-
in general, the greater the difference, the more the crossng the spin paramete(se., using two-mass-parameter wave
correlation is reduced. Because the parameter vector of farms based on the theory of spinless binariesgraded the
signal is not known in advance, it is necessary to filter thefitting factors by less than 2%. With precession the situation
data with a family of templates located at various points inis much more complicated, and data analysis algorithms are
parameter space—e.g., placed on a lattice—such that ar@s yet poorly developed: It is clear that there are interesting
signal will lie close enough to at least one of the templates tgorners of parameter spagaost especially a neutron star in
have a good cross-correlation with that templat8]. a substantially nonequatorial, precessing orbit around a much
There are several questions that must be answered in ofore massive, rapidly spinning black hpie which the two-
der to determine the feasibility of a matched filtering searcHnass-parameter spinless wave forms ghE<90%; to
strategy and, if feasible, to implement it. Which parameter§ear0h for such binaries will require wave forms with three
significantly affect the wave form? How should the spacing®” more parametergl9]. However, the 2PNor 3PN two-

of the template parametefigttice point3 be chosen? Is there mass-parameter wave forms do appear to cover adequately a

a parametrization that is in some sense “preferred” by theS|gn|f|cant portion of the parameter space for precessing bi-

template wave forms? How many templates are needed l%arles[l4].

. . . . Sathyaprakasf20] showed that in computations with the
cover a given region of interest in the parameter space, antgvo-mass-parameter wave forms, the best coordinates to use
how much computing power and memory will it cost to pro- .

S N n1r’1spiral times from some fiducial frequency to final merger,
pact binaries, the full general-relativistic wave forms are not,g computed at Newtonian and first post-Newtonian order.
exactly known, but are instead approximated., using the  \yorking with therestrictedfirst post-Newtonian wave forms
post-Newtonian schemeand we must also ask, what ap- (see below he found that the effective dimension of the pa-
proxima’[ion to the true wave fOI’mS iS gOOd enough? rameter Space is near'y one.

All of these questions have been addressed in recent Sathyaprakash and Dhurandhad—23 developed a cri-
years, at least at some level. The current state of affairs igerion for putting templates at discrete points on a grid in
summarized by the following brief review of the literature: parameter space and numerically implemented their criterion

The standard measure for deciding what class of wavéor a one-parametéNewtonian family of templates and for
forms is good enough is tHfiting factor (FF) introduced by  simple noise models. They introduced the concept of what
Apostolatog 14]. The fitting factor is effectively the fraction Owen[24] later called theminimal match(analogous to the
of optimal signal-to-noise-ratio obtained when filtering thefitting facton) as a measure of how well a discrete set of
data with an approximate family of templates. Because binatemplates covers the parameter space and estimated the com-
ries are(on large scalgsuniformly distributed in space and putational costs for an on-line search.
because the signal strength scales inversely with distance, the Owen [24], building on the work of Sathyaprakash and
fraction of event rate retained is approximatélif3. There- Dhurandhar, defined a metric on the parameter space from
fore it has become conventional to regdf&f=97%—i.e., which one can semi-analytically calculate the template
10% loss of event rate—as a reasonable goal. Using the stagpacing needed to achieve a desired minimal matohthe
dard post-Newtonian expansion in the test-mass ¢gsg  total number of templates needed, diiig the computational
when one body is much less massive than the other so tha¢équirements to keep up with the data—for any family of
the wave forms can be computed with arbitrarily high preci-wave forms and any interferometer noise spectrum. Owen
sion using the Teukolsky formaligmDroz and Poissofil5]  combined this metric-based formalism with computational
found that second post-Newtoni@®PN) signals had fitting counting procedures from Schui25] to estimate the com-
factors of 90% or higher. Damour, lyer, and Sathyaprakasiputational requirements for LIGO searches based on two-
[16] have devised a new way of rearranging the usual postparameter 1PN templates. These estimates were confirmed
Newtonian expansiofsimilar to the way Padapproximants by Apostolatod19] using a numerical method in the vein of
rearrange the coefficients of a Taylor expangitintake ad- (but more sophisticated thanthe previous work of
vantage of physical intuition in constructing templates. TheySathyaprakash and Durandhg21-23. Apostolatos also
find fitting factors of 95% or higher for the 2PN templates. showed that a search for precessing binaries that fully covers
Research underway by the authors[®f will lead to 3PN  all the nooks and crannies of the precessional parameter
templates that should easily achiev& >97%. space, using currently available templates and techniques, is

Several peopl¢17,14,18 have shown that it is insuffi- prohibitively costly.
cient to use templates that depend on just one shape param-Mohanty and Dhurandhd®6,27] have studied hierarchi-
eter(the “chirp mass,” which governs the rate of frequency cal search strategies. Such strategies reduce computational
sweep at Newtonian-quadrupole ordeffo achieve FF costs by making a first pass of the data through a coarsely-
>90% one must include the masses of both objects as tenspaced template grid and a low signal-to-noise threshold to
plate parameters, as was done in the above 2PN analys&entify candidate signals. Each candidate flagged by the first
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pass is examined more closely with a second, finely-spaced The Fourier transform of a functioh(t) is denoted by
grid of templates and a higher threshold to weed out falsgfy where
alarms. Such strategies can reduce the total computational
requirements by roughly a factor 25. - o ,

The purpose of this paper is to refine and update the h(f)Ef_wdte'h“h(t)- 21
analyses by OwefR4] for the two-parameter, spinless tem-

plates that are likely to be used for binary-inspiral searches i'We write the interferometer outpti(t) as the sum of noise
ground-based interferometers. This refinement is needed bﬁ(t) and a signalds(t), where we have separated the signal
cause the kilometer-scale interferometers will begin takingmO a dimensionless ’time-independent amplituleend a
data in about 2 yeartpreliminary, engineering rynpeople  “shape” function s(t) which is defined to have unit norm
are even now designing software to implement the simplegisee Eq/(2.4) below].

matched filtering search algorithm; and in the context of The strain power spectral noise density of an interferom-

these implementations, the factor of 3 accuracy attempted igter is denoted b$,(f). We use the one-sided spectral den-
Ref. [24] is no longer adequate. The numbers that are desjty, defined by

rived in this paper should establish a reliable baseline cost to
which more sophisticated search stratedees., hierarchical L 1
searchescan be compared. En(f)n*(f,)]= 55(f1—f2)5h(|f1|), (2.2
The substantial differences between this paper and Ref.
[24] are that we nowi) approximate the phase evolution of where E ] denotes the expectation value over an ensemble

the inspiral wave forr_n to 2PN rather than 1PN _ord(elr} of realizations of the noise and an asterisk denotes complex
give results for the noise spectra of several more interferom-

eters; and(iii) use a better estimate of the sampling fre'Cor\]lj\;]egfﬁlsoen.geometrized units, i.e., Newton’s gravitational
%ﬁ?};y r;%i%isl fosrezar‘gﬂ: 'nfrf?;?:;rﬁ:r' \rﬁ/gt?hs su(;?e g;% A)foéonstantG and the speed of light have values of unity.
(corresponding to 10% loss of event rate due to coarse pa- o
rameter space coveragesecond post-Newtonian wave A. Matched filtering
forms, and templates made for objects of minimum mass First we flesh out the Introduction’s brief description of
Mmin=0.2M ¢ and up. matched filtering. In the simplest idealization of matched fil-

Our results for the computational requirements are givenering, the filtered signal-to-noise ratio is defined[ff]
in Tables lI-IV. These tables show that the initial LIGO
interferometers need about twice as many templates and S <(hu)
triple the computational power estimated in R&4]. These N rms{n,u)’ 23
increases result mainly from using 2PN wave forms rather
than the(clearly inadequaelPN, and from using a higher Here u is the template wave form used to filter the data
sampling ratgas, it turns out, is required to keep time-step streamh, and the inner product
discretization error from compromising the 97% minimal
match. GEO600 requires slightly more templates and power
than LIGO because of its flatter noise spectrum, while (a,b)y=4 R{
TAMA requires slightly less because its sensitivity is limited
to higher frequencies where there are fewer cycles. Initial i i i
VIRGO, with its extremely broad and flat spectrum, requires’S the noise-weighted cross-correlation betwaeandb (cf.
about the same as advanced LIGO. [28]). The denominator of Eq2.3) is equal toy{u,u), the

The rest of this paper is organized as follows. In Sec. IINorm of u (see Sec. Il B of Ref|28] for a proof. Because
we analyze the application of matched filtering to a searcfh® norm ofu cancels out of Eq(2.3), we can simplify our
for inspiraling binaries and summarize the method of Refcalculations without loss of generality by considering all
[24] which uses differential geometry to answer importantt€mplates to have unit norm. _ _ _
questions about such a search. We use this method in Sec. 1] When searching for a parametrized family of signals the
to estimate the computational costs and other requiremengituation is somewhat more complicated. The parameter val-
of a matched-filtering binary search for LIGO, VIRGO, Ues of_the signals are not known in advance; therefore one
GEO600, and TAMA. In Sec. IV we illustrate a detailed Must filter the data through many templates constructed at

example of a template placement algorithm, and in Sec. \different p_oints in the parameter space. To develop a strategy
we discuss our results. for searching the parameter space, one must know how much

the S/N is reduced by using a template whose parameter

values differ from those of the signal. Neglecting fluctuations

due to the noise, the fraction of the optin&lN obtained by

using the wrong parameter values is given by dnabiguity
This section summarizes material previously presented ifunction

[24] with several incremental improvements. We begin by

introducing some notation. AN A)=(u(N),u(A)) (2.5

df ———

= a*(f)b(f)
) (D @4

II. FORMALISM

022002-3



BENJAMIN J. OWEN AND B. S. SATHYAPRAKASH PHYSICAL REVIEW D60 022002

(see, e.g., Chaps. XlIl and X of R¢fL2]). HereX andA are ' ' '
the parameter vectors of the signal and templétdoes not ¢
matter which is which The ambiguity function, as its name 0.0750 1
implies, is a measure of how distinguishable two wave forms
are with respect to the matched filtering process. It can be
regarded as an inner product on the wave form paramete —~
space and is fundamental to the theory of parameter estimag %97 T
tion [12,29.
For the purposes of a search for inspiraling compact bi-
naries, the ambiguity function isn’t quite what is needed. ©

SCCO!

This is because the test statistior a given set of parameter 0.0710 i
values#) is not given by Eq(2.3), but rather by
<h,u( 0)ei(277ftcf¢c)> (2 6) 0.0690 ' , |
X . . "0.4835 0.4845 0.4855 0.4865 0.4875
dete rms(n,u(0)) (a) T, (seconds)

Here ¢, andt. are respectively the coalescence time and 0.0740 ; . . ;
coalescence phase. We separate these parameters out frc
the rest:A=(¢.,t;,0), where @ is the vector ofintrinsic .
parametersthat determine the shape of the wave form and
¢. andt. areextrinsic parameter$24]| (also referred to as
kinematical and dynamical parameterq20], respectively.

The practical difference is that maximization over the extrin-
sic parameters is performed automatically by Fourier trans-
forming, taking the absolute value, and looking for peaks. £
The use of Eq(2.6) as a detection statistic suggests the defi- ¥ 0720 ]
nition of a modified ambiguity function known as theatch
[24]

0.0730 >

econds)

M(6;,60,)=maxu(6y),u(8,)e' =%y (2.7
deite 0'071094845 0.4850 0.4855 0.4860 0.4865 0.4870

(b) T, (seconds)

where the templates are assumed to have unit norm. The . . .
use of this match function rather than the ambiguity function FIG. 1. Comparison of the full match to the quadratic approxi-

takes into account the fact that a search can benefit frorfation in the case ofe) first post-Newtonian an¢h) second post-
systematic errors in the extrinsic parameters. Newtonian wave forms. In both cases the noise spectrum is LIGO |

(see Table)l The elliptical solid line is the 97% contour of the
match with a reference wave foriiin the center of the ellipge
where the match is given analytically by the metric in the quadratic
The match(2.7) can be regarded as an inner product onapproximation Eqg. (2.9)]. The dots are locations of the same con-
the space of template shapes and intrinsic template pararfur given by constructing stationary phase wave forms and numeri-
eterS, and Correspondlngly one can deflne a metrlc on thlga”y Computlng the full match from them. The reference wave form

B. Applications of differential geometry

space[24]: is from two 1.M objects[the mass parameters, and 7, are
defined in Eq.(3.2)]. The quadratic approximation is safe, in the
19°M (6,0) sense that its 97% contour always lies inside the numerical contour.
gij(a)z - — (2.8 The quadratic approximation also works well for high mass bina-
2 90'90! k= gk ries, provided the numerical and analytical contours use the same

coalescence frequency.
The metric(2.8) is derived from the matctR.7) in the same
way the information matriX';; is derived from the ambiguity which is simply another way of writing the Taylor expansion
function[29], and plays a role in signal detection similar to of M (9, 9+ A ) aboutA =0. (The first derivative term van-
that played by the information matrix in parameter estima-shes becaus#! takes its maximum value of unity at@
tion [30]. The g;; can be derived by expandingl(6,0)  =0.) We find that the quadratic approximati¢&.9) is good
about®= 6, or equivalently by projectind’;; on the sub- typically for M=0.95 or greater, though this depends on the

space orthogonal tep. andt.. wave form and noise spectrum used. Experience suggests
The g;; can be used to approximate the match in the rethat the quadratic approximation generally underestimates
gime 1-M<1 by the true match; and thus the spacings and numbers of tem-
o plates we calculate using E.9) err on the safe side. See
M(6,0+A0)=1—g;;A0'A¢, (2.9 Fig. 1 for an example.
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TABLE I. Analytical fits to noise power spectral densiti8g(f) of the interferometers treated in this
paper. Heres, is the minimum value o8, (f), andf, is the frequency at which the minimum value occurs.
For our purpose$§;,(f) can be treated as infinite below the seismic frequehcyThe high-frequency cutoff
f, is chosen so that the loss of signal-to-noise ratio due to finite sampling fatis R.75% (see text

Detector Fit to noise power spectral density Sy (Hz'Y)  fy(Hz f4(Hz f,(Ho
LIGO | So/3[(fol/f)4+2(f/f0)?] 4.4x10746 175 40 1300
LIGO I Sol11{2(fo/F)¥2+ 9/ 1+ (f/f0)?]} 7.9x10°48 110 25 900
LIGO 1l So/5{(fo/f)4+2[1+ (f/f0)?]} 2.3x10°*® 75 12 625
VIRGO So/A[290(F /)54 2(fo/f)+ 1+ (f/f)?] 1.1x10°% 475 16 2750
GEO0600 S/5[4(fo/f)%%—2+3(f/f0)?] 6.6xX10 % 210 40 1450
TAMA So/32{(fo/)°+13(fo/T)+ [ 1+ (f/f)?]} 2.4x10° % 400 75 3400

In the limit of close template spacing, EQ.9) leads to a 1
simple, analytical way of placing templates on a lattice. We Yap=5 (T Watbp]l = Tl TLYp), (213
discuss this in some detail in Sec. 1V, but for now turn our

attention to the use of the quadratic approximation in CaICUWhere y. is the gradient of the wave form phase in the
lating the number of templates needed for a lattice.

parameter space of intrinsic parameters gluand the mo-

) ment functionals
C. Computational costs

If the number\ of templates needed to cover a region of _(f77Ba(f))
interest is large, it is well approximated by the ratio of the Jla]= (£7731)
proper volume of the region of interest to the proper volume
per templateAV,

(2.19

can be expandetfor binary chirp wave formsin terms of
the noise momenti31]

N=(AV)71J d®6\deflg; |, (2.10

o) ((110) PR 1)

p =—

whereD is the dimension of the parameter spfi24]. Equa- ((f1£)~753,2)
tion (2.10 underestimatesd/ when not in the limitAV—0

(N—x). The reason is templaspill over,i.e., the fact that where f, is the frequency of the minimum o&,(f) [32].
in any real algorithm for laying out templates, those on theThen one projects out the coalescence tij# obtain
boundaries of the region of interest will to some extent cover

(2.19

regions just outside. This effect is small in the limit of many 9ij = Yij — Yoi Yoj ! Yoo- (2.19
templates because it goes as the surface-to-volume ratio of
the region of interest. OnceN has been found it is a relatively straightforward

The proper volume per templatdV, depends on the matter to calculate the CPU power and storage required to
packing algorithm used, which in turn depends on the numprocess all the templates in an on-line search. The interfer-
ber D of dimensions(see Sec. Y. For D=2, the optimal ometer data stream is broken up for processing into segments

packing is a hexagonal lattice, and thus of D samplegreal numberg such thaD>F whereF is the
length (in real numberks of the longest filter.(See Schutz
3/3 [25] for a discussion of the optimization &/F, taking into

Av= T(l_ MM), (21D account the fact that successive data segments must overlap

by at leastF to avoid circular correlations in the Fourier
whereMM is the minimal matchparameter defined in Ref. transform) Using the operations count for a real Fourier
[24] as the match between signal and template in the cadéansform[25], filtering the data segment througkl tem-
when the signal lies equidistant between all the nearest tenflates of length requires
plates (i.e., the worst-case scenariolThere is no packing
scheme which is optimal for al, but it is always possible ND(16+ 3log,F) (217
(though inefficienkt to use a hypercubic lattice, for which
floating point operations. If we take the sampling frequency
AV=(2\(1-MM)/D)P. (2.12 to be 2, (see Sec. lll and Table,lthe computational power
required to keep pace with data acquisition is
For inspiraling compact binaries, Rg24]| has spelled out

a detailed prescription for obtaining tigg needed to evalu- P=NTy(32+6log,F) (2.18
ate the proper volume integral in ER.10. In summary,
first one obtains a metric including thg parameter, flops (floating point operations per second
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lIl. COMPUTATIONAL COST USING RESTRICTED 2PN 3 s | 20(743 11
In this section, using the geometric formalism summa- 3058673
rized in Sec. Il, we calculate the numbaf of templates X (M )R- 16m(7MF)+ 10 e
required to cover a region of interest as a function of the 1016064
minimal match. We then use this number to calculate the 5429 617
computational cost of filtering a single interferometer’s out- + ot — 7]2) (wMf)¥3 (3.2
put through all these templates in an on-line search. 10087 144
[cf. Eq. (3.6) of Poisson and Wil[31]]. However,M and
A. Functional form of the templates are inconvenient parameters for our purposes because, when

We construct our wave form templates using two intrinsicthey are used as the parameter-space coordinates, the values
parameters based on the masses of the binary’s componen@. the metric components vary strongly over parameter
|nspira| wave forms in princip]e can be Strong]y affected bySpaCG, making calculations unnecessarily difficult and prone
several other parameters: spins of the two components, of® numerical error. Equatio(8.1) uses the stationary phase
bital eccentricity, and several angles describing the orienta@pproximation to the Fourier transform f(t), which is
tion of the binary with respect to the interferometer. How- known to simplify the wave form considerably while causing
ever, it is believed that two-parameter templates will benegligible loss of signal-to-noise ratj@4].
adequate to search for most binaries for the following rea- In earlier analyse$20,29,24 it was found more conve-
sons. nient to use as parameters the Newtonian and tRixp

(i) Based on models of the evolution of currently known times
binary pulsars, it is expectd®] that typical NS-NS binaries
will have spins of negligible magnituc_ie (spin/m%_lgﬁ). TO:iM*5/3(7TfO)78/37771, (3.29
Apostolatos[19] has shown that, even if the magnitudes of 256
the spins are large, their effect &N is small(reduces-F
by less than 2% if the orbit and the spin vectors do not
precess He has also shown that precession will not reduce
FF below 90% except in the relatively small region of pa- . ] o
rameter space containing binaries with a neutron star orbitin/hich are respectively the Newtonian and 1PN contributions
a more massive, rapidly rotating (spin/mfsd) black hole the time it takes the instantaneous gra}V{tatlonal-que fre-
with orbital angular momentum inclined by more than aboutduency to(formally) evolve fromf, to infinity. The chirp
30 degrees to the black hole’s spin. times are more convenient than the usual mass parameters

(i) It has long been knowfB3] that gravitational radia- because, when they are chqsen as parameter-space coordi-
tion reaction circularizes all but the most eccentric orbits ornates, at 1PN order the metric components are constant. As-
a time scale much smaller than the lifetime of the binary ifSUmMing the post-Newtonian expansion has reasonable con-
the progenitor system was the same binary. This may not b¥ergence properties, one would expect the metric
true, however, in the case of close binaries formed by capturéomponents in these coordinates to remain nearly constant at
in densely populated environments, e.g., galactic nucleibigher post-Newtonian ordefand indeed we find this is 50
globular clusters. However, at higher than 1PN order one cannot write the

(i) The angles make no difference in our analysis beWave form phase analytically in terms ef and ;. To rem-
cause we use theestricted post-Newtoniampproximation ~€dy this, following Mohanty{27], we base our second pa-
[28], in which the phase evolution of the inspiral wave form rameter on the 1.5PN chirp tims 5 (see[29)] for a defini-
is followed to a high post-Newtonian order but the amplitudetion). More specifically, we introduce new dimensionless
is only followed to lowest order. In this approximation, the coordinates in parameter space. We define
combined effect of the angles is to multiply the wave form 5
by a constant amplitude and phase factor, which does not 0t =2mforo=—==(mMfy) 3y~ 1, (3.33
affect the choice of search templatgxl]. Presently it is 128
believed[28] that the restricted post-Newtonian approxima-
tion will be good enough for data analysis of ground-based
interferometers.

The standard post-Newtonian expansion of the wave form
phase is given as a function of mass parameters based on the | ) ]
standard astronomical choicks(total massandu (reduced ~ Which can be inverted to obtain
mass. In order to clearly isolate test-mass tertns., those

(3.2b

743 11
T1 y

> MY 7fo) 2| oot —
o7 13367 4

T 192

ar
6?=2mtorys=7 (mMfo) 2%y Y, (3.3b

2
that remain when one body is much less massive than the = LZ 9_1 (3.49
othep, the symmetric mass ratig= /M is typically used 32wty 6
instead of u. In terms of M and », the second post- 5 121173
Newtonian wave form phase can be calculated from the en- z[ﬂ ﬂ} (3.4b
ergy loss formula of Blanchadt al.[9] as =725 (97)8 :
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This choice of @1,6%) lets us write the wave form phase rising sharply. Because integration below this frequency con-
analytically while keeping the metric components from vary-tributes little to the detectability of signals and costs much in

ing too strongly; therefore it is convenient for calculating terms of total number of templates and computational re-

numbers of templatesee below However, for other pur- sources, we assume the templates to begin with gravitational-
poses {g,7;) are just as convenient, and to be consistentvave frequencys.

with the literature we will use them. The high-frequency cutoff,, as pointed out by'Eqna
Flanagan(private communication needs to be high enough
B. Noise spectra that the S/N degradation due to discrete time steps

In this paper we consider the noise spectra of the fourzl/.(Zf“) in the data analysis_ s _Ies_s than that due to discr_ete
; . . . choices of the templates’ intrinsic parameters. Quantita-

large- and intermediate-scale interferometer projects, LlGOtiver this requires that

VIRGO, GEO600, and TAMA. For LIGO we use three noise '

spectra corresponding to three interferometer configurations, Yool (4 )?<1—MM, (3.5

the “first interferometers’{ 1] (which are planned to perform

a gravitational-wave search in 2002-2p0the “enhanced Where yq is thet.-t, component of the metric befortg is

interferometers”[8] (which are likely to be carrying out projected out[see Ref.[24], Eq. (2.23]. At any post-

searches in the mid 2000;sand the “advanced interferom- Newtonian order we haveyg,=(27fo)?[I(1)—J(4)?]/2

eters” [1] (which are thought representative of the type of[see Ref[24], Eq. (2.27)] and thus

detector that might operate a few years after the enhanced 5

ones. For convenience we abbreviate these, respectively, as J(1)—J(4)

LIGO |, LIGO I, and LIGO lIl. We use the VIRGO and 8(1-MM) "~

GEO600 noise spectra given in Refg,3]. For TAMA we . ) ) . .
use the noise spectrum given by Fujimoto in H&). [Strictly speaking, the noise moment&l) andJ(4) in this

It is desirable to have simple analytical fits to the noise€XPression should be integrated upforather than infinity
power spectral densities used. Kip Thorne and Scott Hughe¥d fu should be chosen by iteration, but this is a small
(private communicationshave provided us with fits to LIGO  correction] We have choserfi, to be twice the right-hand
l'and LIGO III, respectively, and a fit to LIGO Il was derived Side of this expression so that the loss due to sampling is 1/4
in Ref.[36]. We have constructed our own fits to the remain-the Ios_s due to discrete values of the intrinsic parameters.
ing noise spectra listed in the previous paragraph. All ofl Nere is probably a more clever way of optimizifig, but
these analytical fits to the noise spectra are tabulated in Tabfis is a first cut.

l.

The shape of each noise spectrum determines natural low-
and high-frequency cutoffs for the matched filtering inte- We now proceed with the calculation of the number of
grals. The low-frequency cutoff is defined as the fre- templates needed to perform a single-pass, on-line search for
quency above which 99% &°/N? is obtained; we call this gravitational-wave signals of the form in E¢B.1), for the
the seismic frequencwand denote it with a subscrigtbe-  noise spectra in Table I.
cause it is typically near the frequency at which seismic The first task is to obtain the intrinsic-parameter metric.
noise causes the noise power spectral dergity) to begin ~ We rewrite the wave form phase at 2PN order as

fu>wfo (3.6

C. Number of templates and computational cost

3 [ f\7%® [11m ¢t 743 253 f\7t 3 ()28
v="pl | & _77_2+_ 22 (hy62)23|| — __02<_
5711, 12 @ 2016\ 27 o) 2717,

5 (3.7

61772 6* 5429(2577 3 01)1/3 15293365 5 \Y3(9%)¥3|/ £\~
384 (697 5376\ 2 | |¢?] T1083801647° (g18|\Ty

From EQs.(3.7) and Egs(2.13—(2.16) it is straightforward to derive the metric componegfswith symbolic manipulation
software. However, the general expressions forghdand even they;;) are too lengthy and complicated to display here.

Next, we obtain the proper volume in binaries. It turns out that only,,,, has a strong influence
onV[21,23,24. For 1PN wave forms the intrinsic parameter
I R S e rpe space is flat(i.e., defg;l| is constant and thusV can be
v j d*o detlg,JH (3.8 obtained analytically using the coordinates, (r;). Beyond

1PN order in the wave form, the intrinsic parameter space is
of the region of interest. The boundaries of this region are satot flat, and thus it is convenient to calculate the proper
by the range of massém,,;;,,Myay] Of the individual objects  volume numerically, e.g., by a Monte Carlo method. In order

022002-7



BENJAMIN J. OWEN AND B. S. SATHYAPRAKASH PHYSICAL REVIEW D60 022002

TABLE Il. Numbers of templates required to cover parameter TABLE IV. Computational costs as in Table Ill, except here we
space at a minimal match of 97% with a rectangular lattice. Theassumem,,;,=1Mg.
region of interest is that inhabited by binaries with component

masses greater than,,;,. We use restricted post-Newtoni@RN) Detector logF CPU powerP (flops)  StorageS (realg
templates whose phase evolution is accurate to the indicated order:
LIGO | 17 1.9x10° 1.4x10°
0
Mmin=0.2M ¢, Myin=1Mo LIGO I 19 5.2X 1090 2.1X 1011
Detector 1PN 1.5PN 2PN 2PN ucom 21 1.7x10" 3.6x10"
VIRGO 22 9.8<10% 9.1x 10
LIGO | 23x10°  56x10° 4.8x10°  1.1x10 GEO600 17 3% 10° 2 5% 10°
LIGO II 1.0x10°  1.9x10° 1.7x10°  4.0x10° TAMA 16 1.3 10° 2.0x 10°
LIGO 1l 57x10° 7.9x10°F  6.9x1C° 1.7x10°
VIRGO 58<10°  1.1x10" 9.3x10° 2.2x10°
GEO600 4.X10° 9.7x10° 8.3x10° 1.9x10 and the computational powé? is given by Eq.(2.18. (We
TAMA 51x10" 1.7x10°  1.4x10° 3.1x10° use the word “storage” although sometimes it may be de-

sirable to instead generate templates as needed; whether
stored or generated represents a number of bytes which

to make the integrand as nearly constant as possible we usaust be obtained at a cost of CPU cycles if not storage, and
the metric tensor transformation law to switch fromt (62) can be an obstacle if the number is too hjgh.

coordinates to 1y, 1) [because in these coordinates the met-

ric components vary more slowly over the region of interest D. Scaling laws

than in (8%,6%)]. Finally, to obtain the number of templates

we divide the proper volum& by the proper volume per e :
templateAV. For a rectangular lattice in two dimensions, 1PN order the intrinsic parameter space Is flat, an_d thus the
proper volume of the region of interest scales as(theen-

AV=2(1-MM) [cf. Eq.(2.12)]. In Table Il we give values . . .

of A/ calculated for the noise spectra given in Table | assum_smnless; coordinate volume, i.e.,

ing a rectangular lattice. For a hexagonal lattit¥, is given Ve~ foroX foTl~mr}ﬁ/3f88/3- (3.12)

by Eq.(2.11), resulting in a reduction of about 20% I, P,

andS. However, in practice much of this reduction may be At higher post-Newtonian orders the metric components with

offset by the details of actually constructing a latti@®e  respect to the 4,,7;) coordinates are nearly constant, and

Sec. IV) and therefore we make our estimates for the morehus this scaling still roughly holds.

conservative rectangular case. From the scaling of the proper volume we can obtain the
These numbers are easily translated into the computascalings of the other quantities of interest. Inserting the de-

tional costs shown in Tables Il and IV: To a good approxi- pendence2.12) of the proper volume per template on the

mation, the length of the longest filtefwith m;=m,  minimal match, we obtain

=My, I-€., equal mass binaries so that 1/4) is given by

Approximate scaling laws can be obtained as follows. At

N~(1—MM)~tm, 83 83, (3.12
5
FzzfuTo(fO/fS)%:—zfu(Wfs)‘8’3(2mmm)‘5/3. (3.9  Taking Eg.(2.18, neglecting the weak logarithmic depen-
3 dence, and noting thdt, is proportional tof, we find that
The storage required for all of the templates is then roughly P~(1—MM)~tm_ 83 53, (3.13
given by
Multiplying the number of template&” by the length of each
S~AF, (3.10 templateF, the storage requirement scales as
S~(1—MM)~tm, 133 53¢ 83, (3.19

TABLE IIl. Computational costs obtained from the numbers of
templates given in Table Il using 2PN templates an;,
=0.2M . The symboF denotes the lengtfin real numbersof the
longest template.

This last scaling withm,,;;, presents a significant obstacle to
efficiently searching for binaries composed of low-mass ob-
jects, such as massive compact halo objéstACHOs) if

Detector logF CPU powerP (flops  Storages (reals they are Iow-.massA(..Sl\_/I o) black holeg[37]. Searches for
low-mass objects will likely need to generate templates as

LIGO | 21 9.9x 10% 1.0x 10'2 needed rather than store them, incurring additional CPU
LIGO Il 22 2.5x 101 7.1x10% costs not addressed in this paper.

LIGO 1l 25 7.8x 10" 2.3x10% Note that the above scaling laws implicitly assume that
VIRGO 26 4.8 10 6.2x 10 or fs is varied while holding the overall shape of the noise
GEO600 21 1101 1.8x 1012 spectrum fixed. The noise spectrum of a real interferometer,
TAMA 20 7.3x 10% 1.5x 101 being composed of many independent noise sources, is un-

likely to change in such a manner except for fairly small
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TABLE V. Dimensions of elliptical 97% match contours in the
quadratic approximatiofEq. (2.9)] using the ¢4, 7,) coordinates.
Herea andb are the semimajor and semiminor axes, ant the
angle between the, axis and the major axis of the ellipse. Here we

02 - 4 use the LIGO | noise spectrum and second post-Newtonian tem-
r 1 plates designated in the table by the masses of the binary compo-

nents.

015 - ] my(Mo)
1.4 1.4 1.19 0.177 0.802
1.4 10 1.25 0.167 0.834
\ | 10 10 1.11 0.089 0.629

m,(Mg) a (ms b (ms) a (rad

T
{
)
1
1
1
J
1
L}
\
i
[}
[}
]
]
i
1
\
1
\
\

005 - the system is 1001 and the lower limitm,,;, on the mass

of each component star is 0.2, 0.5 orl.§. The bottom
line in Fig. 2b corresponds to binaries of equal mags (
=1/4) with the rightmost point corresponding to lowest mass
binaries and the leftmost to greatest mass binaries of our
search. There are no binaries in the region below this line as
the parameter; exceeds 1/4 there, which is unphysical. The
top and the left lines are determined by, and M ., re-
spectively. Given the minimum mass of the component stars
and the maximum total mass, the parameter space of binaries
is completely fixed. The volume of the parameter sparel

the corresponding number of templates requirieda sharp

| function of the lower cutoff in the masses of the component
stars and increases, as we have seemgs’.

The shape of the parameter space is rather complicated
and attention needs to be paid in the placement of templates
so that the inevitablspill over (see belowis minimal. Our
implementation of the filter placement is motivated by the
i following astrophysical consideration: The observed neutron
stars are all of roughly equal mai38]. It is therefore to be
expected that many inspiral signals will come from equal
mass binaries. Consequently, we optimize the filter place-
ment for equal mass binaries. This is achieved by beginning
our template placement along the=1/4 line. The span of
each template is taken to be the largest rectafigla coor-
dinate system in which the metric is locally diagon#iat
can be inscribed inside the minimal match elligsee take
MM =97%; see Table V for sample dimensipnSote that
in Fig. 3 the spans do not appear rectangular because they are
sheared by transforming from coordinates in which the met-
ric is locally diagonalsee belowto the (ry,7;) coordinates.

We begin with the leftmost point on the bottom edge of the
parameter space of Fig. 2b, corresponding to the most mas-
changes irf, or f5. However, these scaling laws give one asive binary of our search with the shortest chirp time. Such a
rough feel for(i) how changes in a single interferometer cansystem will, of course, consist of equal mass bodies and
affect data analysis requirements, aiidl why different in-  therefore our starting point is on thg=1/4 curve. The next
terferometers have drastically different requirements. template is placed on the= 1/4 curve at that location where

the left edge of its rectangle touches the right edge of the
previous template’s rectangle. In a sense this is a straightfor-

ward generalization of placement of filters discussed in Ref.
In this Section we deal with the actual placement of the[24] along grid lines that are not necessarily straight.

templates in the parameter space. The parameter space isThis optimal translation of templates is most easily done
shown in Fig. 2a in terms of the total magsand symmetric  in a coordinate system in which the metric is locally diago-
mass ration and in Fig. 2b in terms of chirp timeg, and  nal. Let (Xy,X;) denote such a coordinate systéimund by
71, for searches in which the maximum total madg,., of  diagonalizing the two-dimensional matrig;;) and let

)
(0.2M,,0.2M,)

T,/sec

0

(50M,,50M,) ]

L L L L | \ . L L 1
0 5 10
T,/ sec

FIG. 2. The parameter space of search in term&pstandard
binary mass parameters afig) chirp times, for different values of
the lower mass limits.

IV. A TEMPLATE PLACEMENT ALGORITHM
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FIG. 3. Illustration of optimal translation of a template along an  FIG- 4. Choice of(1PN templates in the space of chirp times
arbitrary curve. for the LIGO I noise spectrum and for a search of binaries with

masses of component stars larger thavfigl and total mass no

. . . reater than 10d .
f(Xp,X1)=0 denote a curve in the two-dimensiong—x; g ©

plane along which templates are to be placed. For instanc
n=1/4 in Fig. 2 is one such curve. A convenient point to . . .
begin is the point(gl),x(ll)) at one end of the curve. In Fig. i)Stly greater than naively estimated by &2.10 (see Fig.
3 we have sketched an arbitrary curve together with the first™
template and its span. The span of a template, for minimal

matches close to 1, is an ellipse. However, its effedfnan- V. DISCUSSION

overlapping span, when setting up a lattice of templates, is ) . _

only an inscribed polygon such as a rectangle or an irregular !N this paper we have discussed the problem of optimally
hexagon. In the following discussion for simplicity we con- Placing templates in a binary inspiral signal search. For our
sider the span to be a rectangle and hence we will be Settir;&mplates we have used the rest'rlcted second post-NeWt.onlan
up a rectangular lattice. By choosing a hexagonal lattice th&/ave form. We have made estimates of the computational
number of templates can be reduced by about 20%, but thePsts of an on-line search of the inspiral wave form for all

reduction is less when the curve along which templates needf€ large- and mid-scale interferometeric detectors now un-
to be placed is parallel to neithag nor x, axis. der construction. We have addressed several important is-

sues:(i) the density of templates in the parameter spéce,

the set of parameters most suitable for easy placement of
templates, andiii) the number of templates and computa-
tional resources needed to analyze the data on-line.

These estimates should serve as a baseline for explora-
tions of other data analysis strategies, and some of the tech-
niques here could be incorporated into other strategies. For
for n=0 andn=1 respectively. In order to cover the param- example, it is now recognized that a substantial reduction in
eter space without leaving any “holes” it is obvious that the computational cost can be achieved by carrying out a hierar-
next template should be placed at the point that is nearer tohical search[26,27. For a two-step hierarchical search
the first template. This is how one obtains the nearest neighstrategy, in the first step a sparsely filled family of templates
bor of a template. is used, with a threshold lower than what is acceptable based

Returning to our problem of placing templates in the pa-on the expected number of false alarms. Those events which
rameter space of chirp times, we move along#hel/4 line  cross this trigger threshold are further examined with a finer
till the binary of longest chirp time is reached. The set ofgrid of templates chosen around the template that triggered
templates chosen on thg=1/4 curve form the base, on top the event. In such a hierarchical search, templates chosen in
of which we construct layers to fill the parameter space. Thehe first step will essentially be the same for each data seg-
next row of templates is set on top of the first so that thement. However, templates in the second step need to be
region of interest is completely covered by the spans—whickthanged from one data segment to the next, depending on
means that the first few templates will be located outside thaivhich templates from the coarse grid family produces an

?egion, and that the total number of templates must be mod-

Given the “local” distance ¢x{",dx{") between tem-
plates, we can get two points on the curfgxy,x;)=0
which are simultaneous solutions of

{f(X0,X1)=0, X,=x+dx{V} 4.2
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“event.” It is in the case of a coarse grid that our analytical benefit from further analysis using the techniques of this pa-
algorithm for template placement and analytical estimates oper. Also, we have used a crude relation between the mini-
computational requirements fail and must be replaced by numal match and fraction of event rate lost. This could be
merical methods that are computationally expensive. Butmproved by a statistical analysis such as begun by Mohanty
generating filters corresponding to the first step of the hierf27]. Now that the “P-approximants’[16] have proven a
archical search is more or less a one-time job. A finer grid i%)romising way of building templates, it is important to ex-

to be chosen quite frequentlgssentially each time a pos- amine the computational costs of using them to conduct a
sible event is selected in the first stegnd in this case, for- gearch.

tunately, the analytical techniques discussed in this paper are
quite accurate and one does not have to follow the time con-
suming numerical placement of templates either for estimat-
ing computational costs or for actually performing the
search. Both authors were partially supported by NSF Grant

There are several important problems we have not adPHY-9424337. B.J.O. was also supported by the NSF gradu-
dressed in this paper which could be the topics of futureate program. One of u8.S.S) would like to thank Bernard
work. We have not treated the problem of searching the corSchutz for hospitality at the Albert Einstein Institute where
ners of parameter space where the precessing binaries liveome of this work was carried out. We are indebted to Bruce
Although requiring some effort to seek out, these systemg#llen, Kent Blackburn, Tom Prince, and Kip Thorne for
could prove quite informative and astrophysically interest-fruitful conversations, and we thank many members of the
ing. The problem of searching for precessing binaries ha&lGO, VIRGO, GEO600, and TAMA projects for helping us
been addressed only in a very exploratory WB9] but could  with their respective noise curves.
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