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We propose a new holonomy formulation for spin foams, which naturally extends the theory space of

lattice gauge theories. This allows current spin foam models to be defined on arbitrary 2-complexes as

well as to generalize current spin foam models to arbitrary, in particular, finite groups. The similarity with

standard lattice gauge theories allows us to apply standard coarse graining methods, which for finite

groups can now be easily considered numerically. We will summarize other holonomy and spin network

formulations of spin foams and group field theories and explain how the different representations arise

through variable transformations in the partition function. A companion paper will provide a description

of boundary Hilbert spaces as well as a canonical dynamic encoded in transfer operators.
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I. INTRODUCTION

Spin foam models are nonperturbative candidate theo-
ries for quantum gravity [1,2], which succeed in combining
discreteness of spectra of geometric operators [3,4] with
the correct semiclassical behavior of its elementary build-
ing blocks [5–7]. One of the key challenges is to obtain a
better grasp on the continuum limit of spin foams obtained
by considering the limit of (infinitely) many building
blocks. This will not only answer questions on the large
scale behavior (which here we will understand as the one
involving many building blocks) but also address the status
of diffeomorphism symmetry in these models [8–12].

To investigate this kind of limit involving many building
blocks renormalization and coarse graining methods seem
to be most appropriate [13–16]. To this end an understand-
ing of the space of models, on which the renormalization
flow takes place, is crucial. This allows us to also distin-
guish between relevant and irrelevant choices in the con-
struction of spin foam models and helps us reveal the basic
dynamical mechanisms of these models.

In this work we therefore propose a unified description
of spin foam models based on group or holonomy varia-
bles. In this form spin foam models appear to be similar to
lattice gauge theories; however, they have a richer structure
of dynamical ingredients. In the description with the fewest
parameters our models are defined by an edge function E
and a face weight !, whereas lattice gauge theories just
feature the face weights !. All the current spin foam mod-
els, namely those of Barrett and Crane (BC), Engle, Pereira,
Rovelli, and Livine (EPRL), and that of Freidel and Krasnov
(FK) models [17–19] can be described by this choice.

For this description to be useful for coarse graining one
needs to show that these structures are stable under coarse
graining (within some approximation scheme). Indeed we
will investigate different coarse graining schemes for two-
and three-dimensional models analytically and numerically

and show that this space of models presented here supports a
rich structure for the renormalization flow. To be able to
apply numerical techniques we consider spin foam models
with finite groups, a concept introduced in Refs. [15,20].
A further advantage of the holonomy description here is that
models analogous to the Barrett-Crane or EPRL model can
be easily introduced also for finite groups. This will ease the
investigation of (for instance symmetry) properties of these
models as well as the numerical investigation of the large
scale limit.
There are different holonomy representations proposed

already in the literature [21–24], the relation to these will
be explained in Sec. IV. The advantage of the formulation
presented in this work is that compared to the other
formulations it features a minimal set of model parameters
and makes maximal use of the common properties of
the spin foam models proposed so far in the literature.
Most prominently that the imposition of the simplicity
constraints factorizes in a specific sense, see also Ref. [2].
We will also explain the relation to the so-called opera-

tor spin foam models (OSFM) [25], which share with the
models proposed here, that they are defined on arbitrary
2-complexes. Indeed the structure of the holonomy repre-
sentation worked out here makes the definition on a
2-complex completely natural.
Other advantages of the holonomy representations in-

troduced here are the natural definition of boundary Hilbert
spaces and a straightforward relation to projected spin
networks [26,27] as well as allowing the investigation of
the semiclassical limit for arbitrary complexes by explor-
ing the distributional character of the integration kernels
of the partition functions. These features will be explained
in companion papers [28,29].
In Sec. III we give the first main result of this paper, a

definition of spin foam models as generalized lattice gauge
theories written entirely in terms of holonomies. Section IV
discusses the relation to operator spin foams and other
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holonomy formulations for spin foams, including group
field theories. The next section gives a description of the
Barrett-Crane and EPRL spin foam models in the holonomy
formulation. These insights are used to generalize the
Barrett-Crane and EPRL models to finite and other Lie
groups.

In Sec. VI we discuss coarse graining of these models, in
particular in two and three dimensions. We close with an
outlook and summary in Secs. VID and VII.

II. A SHORT MOTIVATION OF THE MODELS

Here we shortly motivate some ideas behind the holon-
omy representation for spin foams, which will be explained
in more detail later on.

Let us start with reviewing standard lattice gauge theory.
Such a theory requires the choice of a gauge group G and
face weights !, which are class functions on the group.
These face weights encode all the dynamics of the given
model, as the partition function is given by

Z ¼
Z �Y

e

dge

��Y
f

!ðgege0 . . .Þ
�
: (1)

On the other hand the face weights for the lattice
Yang-Mills theory are defined using the background metric
of the lattice. This should however be avoided if one wants
to quantize gravity, where the metric itself is a variable.
Indeed, the starting point for spin foam model construction
is the so called background field (BF) theory where the
face weights are given by ! ¼ �G the delta function on the
group. This makes the partition function in general divergent
(even for compact groups but not for finite ones). This
divergence indicates another gauge invariance known as
translation symmetry. BF theory is a topological field theory,
which coincides with the zero coupling or zero temperature
limit of lattice Yang-Mills theory.

To construct a nontopological theory and nevertheless
keep the trivial face weights, we have to introduce more
structure. First let us just double the variables from one
group element ge per edge to one group element gve per
edge-vertex pair (or half edge). We define gev ¼ ðgveÞ�1.
Then the partition function (1) reads

Z ¼
Z �Y

ðveÞ
dgve

��Y
f

!ðgvegev0gv0e0 . . .Þ
�
; (2)

and we can regain the form (1) by variable redefinitions
ge ¼ gvegev0 and performing jEj trivial integrations. Here
and in the following we assume a normalized and left and
right invariant group integration measure.

To actually change the model we introduce another set
of variables, namely a group element gef per face-edge

pair. These are inserted into the face holonomies so that
!f is now evaluated on gf ¼ gvegefgev0gv0e0 . . . . In this

way the alternative face holonomy ~Gf ¼ gvegev0gv0e0 . . .

can nevertheless take nontrivial values even if we choose

!f ¼ �G. Allowing all possible gef would however again

trivialize the model. (This time it corresponds to the high
temperature fixed point of lattice Yang-Mills, where!f � 1

is the constant function.) A nontrivial model can be obtained
by weighing the inserted group elements gef via a function

E. The final model will be given by

Z0 ¼
Z �Y

ðveÞ
dgve

��Y
ðfeÞ

dgfe

��Y
ðfeÞ

EðgefÞ
�

�
�Y

f

!fðgvegefgev0gv0e0ge0f . . .Þ
�
: (3)

As will be explained in the following the partition
functions of all current spin foam models can be expressed
in this way. The choice of the function E determines the
model, the face weights are usually fixed to be �G.
The models can be rewritten in several ways, we will

present different formulations in Sec. IV. Here we will just
note that one could integrate out the gef variables in the

formulation (3) to obtain effective face weights

!0
fðgevgve0 ; ge0v0gv0e00 ; . . .Þ
¼
Z �Y

ðfeÞ
dgfe

��Y
ðfeÞ

EðgefÞ
�

�
�Y

f

!fðgevgve0ge0fge0v0gv0e00ge00f . . .Þ
�
: (4)

Such a formulation (for the Barrett-Crane model) appeared
for instance in Refs. [21,22] and is nearest to standard
lattice gauge theory. See also Refs. F for a geometric
interpretation of the holonomy variables and simplicity
constraints involved there.
Note that the face weights are not just class functions of a

face holonomy, as is the case in standard lattice gauge theory,
but will be functions of a certain number of group elements.

III. HOLONOMY FORMULATION OF
SPIN FOAM MODELS

Let us describe the models in more detail. These will be
defined on an oriented 2-complex C with vertices v, edges
e and faces f. The gauge group will be denoted G, which
we will assume to be finite or compact and equipped with a
normalized left and right invariant group (Haar) integration
measure.
The variables in which the partition function will be

expressed are group elements gef assigned to pairs e � f

and gve for v � e with the understanding that gev ¼ g�1
ve .

One can identify them as holonomies of a G connection
along certain paths within faces f (see Fig. 1).
From these data we can define the holonomy Gf:

Gf ¼ gvegefgev0gv0e0 . . . geðnÞv: (5)

With the help of Fig. 1, one can readily see that Gf

describes the holonomy associated to a geometrically
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trivial path, i.e., the choice ! ¼ �G as a weight to this
holonomy appears most natural and is also used in the
EPRL-FK or BC models. For regularization purposes,
this �G is often replaced by a heat kernel, see e.g.,
Ref. [32]. We will therefore leave the face weight ! as a
parameter of the theory. As in standard lattice gauge theory
! is required to be a class function of the group, further-
more we ask that!ðgÞ ¼ !ðg�1Þ is satisfied for all g 2 G.

The class of models we are considering are specified
further by a subgroup G0 � G. We will choose the edge
function E to be invariant under conjugation with elements
in G0. From (4) one can see that E functions which are
invariant under conjugation of the full group, i.e., class
functions, will lead to effective face weights which can be
considered to just depend on the (reduced) face holonomy
gevgve0ge0v0 . . . . This case will therefore lead to a model
equivalent to a lattice gauge theory (with face weights !f

that might explicitly depend on the face, more precisely on
the number of edges in the face). In this sense the choice of
G0 defines an invariance property of the effective face
weights (4). As for the face weights we will furthermore
require from E the property EðgÞ ¼ Eðg�1Þ for g 2 G.

Finally the state sum is defined as

Z ¼
Z

dgevdgef
Y
f

!ðGfÞ
Y
ef

EðgefÞ: (6)

For the choice ! ¼ �G the partition function may be
divergent, even for compact groups. The definition is
extendable to noncompact groups, but in this case there
is an ambiguity in the normalization of the Haar measure
and additional divergences due to gauge orbits. However,
for finite groups the delta distribution is just a regular
function, thus the above is well defined.

A. Parametrization of models

The space of such holonomy spin foam models is
described by a choice of the edge functions E and the
face weights !f. In the following we will give the spin

representation of these entities as such a representation
also offers a convenient parametrization of the space of
models.

The face weight !f is a class function and as usual can

be expanded as

!fðgÞ ¼
X
�

dim ð�Þ!���ðgÞ; (7)

where �� ¼ tr�ðD�ðgÞÞ is the character of the unitary

irreducible representation (irrep) � with D�ðgÞ the

representation matrix of g.
The edge functions can be expanded in terms of the

irreducible unitary representations of G and G0, which
we denote � and k respectively. To this end we utilize
injection maps Ið�; kÞd:

Ið�; kÞd 2 HomG0 ð ��; kÞ; (8)

where the d index labels a basis of HomG0 ð ��; kÞ the space
ofG0 covariant function from the representation space of ��,
the dual of �, to the G0 irrep k.
The map Ið�; kÞd identifies the representation k, which

in case there is more than one representation is furthermore
labeled by d, in the reduction of the irrep � over the group
G0. The index d is hence only nontrivial in cases where
there are more than one k representations included in �.
We assume that the basis is normalized (up to a phase,

not relevant in the following)

Ið�; kÞydIð�; kÞd0 ¼ �dd01k: (9)

This allows us to expand E as

EðhÞ ¼ X
�;k

dim ð�Þe�
k;dd0 tr�ðD�ðhÞIð�; kÞdIyð�; kÞd0 Þ: (10)

Hence for given groups G, G0 the choice of E function can
be encoded into the parameters e

�
k;dd0 . The index d is a

degeneracy index for the case where the G0 reducible
representation � contains more than one copy of the irrep
k. For G ¼ SUð2Þ � SUð2Þ and G0 ¼ SUð2Þdiag this case

does not occur, and we have only to deal with the set e
�
k .

E encodes the analogue of the simplicity constraints
arising in the Plebanski formulation of gravity for the
spin foam model at hand, see for instance Ref. [2]. As in
the classical Plebanski formulation, where the simplicity
constraints are enforced with Lagrange multipliers, we
had to introduce here additional variables, the wedge
holonomies gef.

If the face weight is given by the delta function, the
product of group elements around the face Gf is flat. This

is however not the usual holonomy around the face ~Gf ¼
gvegev0gv0e0 . . . , but ~Gf interwoven with the gef. If we

force gef ¼ 1 by choosing E ¼ �G we have Gf ¼ ~Gf,

and obtain a theory of flat connections that is BF theory.
Choosing a different E function relaxes the constraints on
flatness, just as we expect from the simplicity constraints.

FIG. 1. Holonomy variables associated to half edges (gve) and
wedges (gef) of a face.
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B. Boundaries and Hilbert spaces

We can also include boundaries into our models, which
are represented as graphs � in the 2-complex C. The set of
edges of � will be denoted by �e � Ce and the set of
vertices �v � Cv. We write �ev for the set of pairs v 2 e
in �v � �e.

By dropping integration over the group elements asso-
ciated to the pairs of �ev we arrive at the partition function

Z�ðCÞ½gev� ¼
Z �Y

e�f

dgef

�� Y
v�e

ef=2�ev

dgev

��Y
e�f

EðgefÞ
�

�
�Y

f

!fðgfÞ
�
; (11)

which can now be interpreted as an element of the Hilbert

space L2ðGj�evjÞ. (Integrability in this general form is only
guaranteed for finite groups).

As the integrand of the partition function is invariant
under gev ! h0�1

e gevgv, hef ! h0�1
e hefh

0
e for h0e 2 G0 �

G and gv 2 G, the partition function can be considered to

live in a smaller subspace of L2ðGj�evjÞ, that is
Z 2 H � ¼ L2ðGj�evj=ðGj�vj �G0j�ejÞÞ: (12)

This Hilbert space also describes the effective face weights
!0 defined in (4).

We call this space the universal boundary space for the
holonomy spin foams, which is fixed by a choice of graph
and the two groups G, G0. This Hilbert space and its
relation to projected spin networks [26,27] will be further
explored in the companion paper [28].

IV. RELATION TO OTHER FORMALISMS

The form of the state sum (6) was chosen such that it
mimics the main features of the EPRL (and other known)
spin foammodels, but has a minimal set of free parameters.
This appears to be a very convenient choice, but it is by far
not the only one. There have been other forms used in the
literature, see for instance Refs. [21–24], which include
weights for different geometric objects, which might
appear under coarse graining. The aim of this section is
to give a precise relation between the E-function formalism
used in this paper, and the other formulations.

A. Operator spin foam models

The operator spin foam models introduced in Ref. [25]
were originally formulated with the aim of allowing for
arbitrary operators Pe associated to edges e of C. The state
sum Z is evaluated by contracting the Pe at the vertices v of
C according to the combinatorics of the 2-complex.

Starting with a 2-complex with irreps �f ofG associated

to faces f, an OSFM is specified by operators mapping the
intertwiner space onto itself

Pe: InvGð�f1 � . . .�fnÞ ! InvGð�f1 � . . .�fnÞ; (13)

as well as face weights !�f . There is a dual formulation of
this model [24] using holonomies hef 2 G for all pairs

(e � f). This holonomy can be thought of as starting at one
vertex v going to the middle of the face f, and going to
another vertex v0 so that e goes from v to v0 in the
orientation induced by f, see Fig. 2. The Fourier transform
of the Pe operators is given by functions Ce,

Ceðh1; . . . ; hnÞ ¼
X
�k

�Y
k

dim�kD ��k
ðhkÞmk

nk

�

� ðPeÞm1...mn
n1...nn ; (14)

where we assume for simplicity that the edge orientation
agrees with all orientations from all faces meeting at it.
Then, the state sum in terms of holonomies is given by

ZOSFM ¼
Z

dhef

�Y
f

!ðGfÞ
�Y

e

Ceðhef1 ; . . . ; hefnÞ: (15)

The Gf is the ordered product of holonomies hef around a

face f. This forms the same path as (5).
The E-function formalism is a special case of the

OSFM, in which the edge operator Pe factorizes over
the edges, and the invariance property Ceðh1; . . . ; hnÞ ¼
CeðgLh1gR; . . . ; gLhngRÞ, which follows from (13) and
(14), is explicitly enforced by projectors onto the inter-
twiner space. One can write the E-function state sum (6) in
the form (15) by performing the variable transformation

hef ¼ gvegefgev0 : (16)

This removes the gev dependence of the face functions !,
and one can carry out the integration over the gev, defining

Ceðhef1 ; . . . ; hefnÞ :¼
Z
G2

dgevdgev0
Y
fk�e

Eðgevhefkgv0eÞ

(17)

for each edge. This results in (15), as one can readily
check.
Hence one can see that the E-function state sum (6) is a

special case of the OSFM state sum (15), in which the
operator Pe, which is a map from the invariant subspace of
�f1 � � � ��fn to itself, can be written as a part which

factorizes over every face, and where the right and left
invariance are enforced by sandwiching the product be-
tween two Haar intertwiners. This Haar projector is just

FIG. 2. Holonomy variables in the dual description of operator
spin foam models.
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the group averaging in (17) translated into the spin
representation. The factorizing property means that Pe

can be written in the following way

Pe ¼ PHaar � P0
e � PHaar

¼ PHaar � ð ~E�1
� ~E�2

� � � � ~E�n
Þ � PHaar; (18)

which again is (17) group-Fourier transformed (see Fig. 3).
Here ~E�i

are (usually not covariant under the group action)

maps acting on �i and with matrix components given by
the group Fourier transform of the functions E, i.e.,

ð ~E�Þmn ¼ X
d;d0;i

e
�
kdd0Ið�; kÞmiðIyð�; kÞÞin (19)

using the notation from (10).

B. Group field theory formulation

The group field theory (GFT) formulation [33–36] of the
spin foam state sum is based on a quantum theory of fields
defined on the group G, such that the Feynman graphs are
spin foam amplitudes associated to 2-complexes.1 For
one of these 2-complexes the group holonomies are pairs

of holonomies gevf, g
e0
vf, where v � e, e0 � f. Both are

interpreted as going from the vertex v to the center of the
face f, and each is associated with one of the two edges e,
e0 that border f and meet at v (see Fig. 4).

As usual, we denote the inverse by ðgevfÞ�1 ¼: gefv.

A natural class of models arises if one indeed imposes

gevf ¼! ge
0
vf, as Fig. 4 suggests, but the GFT models allow

for relaxation of this condition.
The ingredients for the GFT amplitude associated to C

are edge propagator functions �e, each depending on all
gefv for a given e, and vertex functionsV v, each depending

on all gevf for a given v. The functions have to satisfy the

following symmetries:

V vð. . . ; gevf; ge0vf; . . .Þ ¼ V vð. . . ; ggevf; gge0vf; . . .Þ;
�eð. . . ; gevf; gev0f; . . .Þ ¼ �eð. . . ; gevfg; gev0fg; . . .Þ: (20)

The symmetries (20) make sure that V effectively only

depends on the combinations gefvg
e0
vf, and the propagator

functions � depend only on gevfg
e
fv0 . Also, both functions

V v and �e have to be gauge invariant with respect to
gauging at an edge, i.e., gevf ! ggevf for fixed v, e, and all

f which appear as variables in the respective function. As
a result, the �e will be invariant under left or right shift of
its arguments. The V v can be decomposed into spin net-
work functions of the boundary graph of the vertex v,
which gives the usual spin representation of the vertex
amplitudes.
The state sum for the GFT models is given by

ZGFT ¼
Z
dgevf

Y
e

�eðgevf1 ; . . . ;gev0fn
ÞY

v

V vðge1vf1 ; . . . ;g
em
vfn

Þ:

(21)

The E-function form (6) for the state sum Z can be
written as a GFT state sum (21) for ! ¼ �. If the product
of the hef around the faces is constrained to be the unit

element, one can write (uniquely up to global right shift of
all gevf for some fixed f by the same g 2 G)

hef ¼ gevfg
e
fv0 ; (22)

imposing gevf ¼! ge
0
vf in the state sum. This leads to

Z ¼
Z

dgevf
Y
e

Cðgevfgefv0 ; . . .Þ
Y
vf

�ðgevfge0fvÞ

¼
Z

dgevf
Y
e

�eðgevf1 ; . . . ; gev0fn
ÞY

v

V vðge1vf1 ; . . . ; g
em
vfn

Þ

(23)

with vertex function

V vðge1vf1 ; . . . ; g
em
vfn

Þ :¼ Y
f�v

�ðgevfge0fvÞ (24)

and propagator

�eðgevf1 ; . . . ; gev0fn
Þ :¼ Cðgevfgefv0 ; . . .Þ: (25)

C. Vertex amplitude formulation

A formulation closely related to the GFT formalism can
be given in terms of holonomies labeled by wedges, i.e., by a
face f, and pairs e, e0 that meet at a common vertex (see
Fig. 5). The holonomy can be thought of as going from the
center of e0 to the vertex v, and from there to the center of e.

FIG. 3. Graphical notation of the relation between the OSFM
version of the edge propagator Pe and the one used in (6), which
is also used in the BC and EPRL models.

FIG. 4. Variables in the group field theory formulation.

1Where the specific form of the action is designed to control
the class of appearing 2-complexes, see e.g., Ref. [37].
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One can arrive at a formalism using the gfv by imposing

ge0vgve ¼! gfv (as suggested by Figs. 1 and 5) in the state
sum (6) and integrating out the gauge holonomies gev,
arriving at

ZVertex¼
Z
dgefdg

f
v

Y
f

!ðGfÞ
Y
ef

EðgefÞ
Y
v

Wvðgf1v ; . . . ;gfnv Þ;

(26)

where Gf ¼ gfvgefg
f
v0 . . . ge0f is the ordered product of

group elements around a face f according to its orientation.
The vertex function Wv for a vertex v is given by

Wvðgf1v ; . . . ; gfnv Þ ¼
Z

dgev
Y
f�v

�ðge0vgveðgfvÞ�1Þ: (27)

The vertex functionsWv have a symmetry that corresponds
to gauge transformation associated to edges, i.e., for an
edge e beginning at vertex v, Vv is invariant under the
transformation of its arguments

gfv !
8<
: gfvhe if f � e

gfv if f 6� e:
(28)

This invariance allows us to interpret Wv as a G-spin
network function for the boundary graph of the neighbor-
ing 2-complex of the vertex v. A very similar formulation
that uses G0-spin networks instead was given in Ref. [23].

Writing the state sum model in the form (26) allows for
generalizations of the model by relaxing the condition (27),
allowing for more complicated interactions at the vertex.
These nontrivial vertex functions actually do appear in a
renormalization group flow via the n� 1 Pachner moves of
state sum models, which is why using the space of all
models of the form (26) allows for computing an exact
renormalization group flow in this case. The cost of this is
that this space is much larger than the space of E-function
models using state sums of the form (6). Still, the example
in Sec. VI C 1 shows that truncating the flow to this sub-
space can still capture essential features of the phase space,
as well as its fixed point structure.

The form (26) can be simplified by absorbing the E
functions into the vertex functions Wv. To this end, we
write the E functions as convolution of two functions, i.e.,

EðgÞ ¼
Z

dkFðkÞFðgkÞ: (29)

The function F has the same symmetries as E, i.e., FðgÞ ¼
Fðg0gðg0Þ�1Þ ¼ FðghÞ for g, g0 2 g, h 2 G0.2 Thus we get
one more integration over G for each pair ef, resulting in

ZVertex ¼
Z

dgfvdgefdkef
Y
f

!ðGfÞ

�Y
ef

FðgefkefÞFðkefÞ
Y
v

Wvðgfv; . . .Þ: (30)

Performing the variable transformation gef ! gefkef and

gfv ! hfv � kefg
f
vg�1

e0f and carrying out the integration over

the gef and kef, one arrives at the form

ZVertex ¼
Z

dhfv
Y
f

!ðGfÞ
Y
v

Vvðhfv; . . .Þ; (31)

where Gf is the ordered product of the kfv for all v � f,

according to the orientation of f. These hfv can be thought
of geometrically as the wedge holonomies illustrated in
Fig. 6. The new vertex functions Vv are given by

Vvðhfv; . . .Þ ¼
Z

dgef

 Y
v�e�f

FðgefÞ
!
Wvðgefhfvg�1

e0f; . . .Þ:

(32)

The vertex functions Vv inherit properties from both Wv

and F. Firstly, it can be readily seen that Vv can—just as
Wv—be interpreted as a G-spin network function on the
boundary graph around the vertex v. Furthermore, the right
invariance of F under the subgroup G0 implies that Vv is
invariant under the symmetry

hfv ! h1h
f
vh2; h1; h2 2 G0: (33)

Hence Vv is not only a function on elements of G, but

rather on ~G ¼ G0nG=G0. If G0 happens to be a normal

subgroup of G, ~G in itself is again a group that carries a
right and leftG action. In this case Vv can be interpreted as

function on a graph, depending on ~G elements on the
edges, invariant under gauge transformations at the vertices
with elements from G.
It should be noted that one can arrive at the same version

of the state sum (31) by starting from a version of Ce

FIG. 5. Holonomy variables in the vertex amplitude formulation. FIG. 6. Wedge holonomies in the alternative vertex amplitude
description.

2It should be noted that F is not unique but depends on
choosing a collection of phase functions. If, however, E is
positive, then F can be chosen positive as well.
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functions and vertex functions Wv. Since the Ce functions
are more general than the E functions, in this case the
resulting vertex functions Vv are just G-spin network
functions, without any specific properties regarding the
subgroup G0. It is this form, i.e., Eq. (31) with general
G-spin network functions Vv and class functions !, which
is the most general of all the presented formalisms. The
various different formulations are summarized briefly in
Table I.

V. THE BF, BC AND EPRL MODELS

Here we will shortly describe the structure of the current
spin foam models [5,18,19] in the holonomy language. To
do so we specify now to G ¼ Spinð4Þ and G0 ¼ SUð2Þ ¼
Spinð4Þdiag the diagonal SUð2Þ subgroup, with irreps

labeled by � and k respectively. Also, the face weights
are usually set to be the delta function on the group.

The operators ~E described in Sec. IVA for the various
models are given by the following, see for instance Ref. [2]:

(i) For BF theory we have

~EBF ¼ 1; (34)

which reduces the edge projector Pe to be the Haar
projector.

(ii) In the Barrett-Crane model the maps ~E� which act

on representation space � restrict to representations
� ¼ ðk; kÞ. Furthermore ~E� just involves the injec-

tion maps (described in Sec. III A) Ið�; 0Þ from �� to
the representation k ¼ 0:

~E BC
� ¼ deð�Þ

X
k

�ð�; ðk; kÞÞIð�; 0ÞIð�; 0Þy; (35)

where deð�Þ is an unspecified edge measure factor.
(iii) For the EPRL model the maps ~E� also restrict to a

k-parameter family of representations, which is

now of the form ��ðkÞ ¼ ð1þ�
2 k; j1��j

2 kÞ with �

being the Barbero-Immirzi parameter:

~E EPRL
� ¼deð�Þ

X
k

�ð�;��ðkÞÞIð�;kÞIð�;kÞy: (36)

The injection map picks out a representation
k� which is determined by � via the relation

� ¼ ��ðk�Þ.

(iv) The FK model is constructed using coherent states
[38], a description of the corresponding edge op-
erators and functions can be found in Refs. [2,28].

The edge functions EðhÞ can be obtained from the edge
operators ~E by Fourier transform and using the parametri-
zation in Sec. III A:
(i) For the BF model we just have EBFðhÞ ¼ �GðhÞ, i.e.,

the E function is given by the delta function on the
group.

(ii) For the Barrett-Crane model we obtain

EBCðhÞ ¼X
�;k

deð�Þ dim ð�Þ�ð�; ðk; kÞÞtr�

� ðD�ðhÞIð�; 0ÞIð�; 0ÞyÞ: (37)

For the choice deð�Þ ¼ 1 this results in

EBCðhÞ ¼ �SUð2Þðhþh��1Þ ¼ �Spinð4ÞdiagðhÞ; (38)

where, for a general subgroup G0 � G we write

�G0 ðhÞ ¼
Z
G0
dh0�ðhh0�1Þ (39)

for the delta function that forces a group element to
lie in the subgroup. Note that the E function has an
enhanced symmetry with respect to the subgroup
G0 ¼ Spinð4Þdiag, it is not only invariant under con-

jugation with elements inG0 but also invariant under
left and right multiplications. This explains some of
the special properties of the BC model as compared
to more general models.

(iii) For the EPRL model the function EEPRLðhÞ is given
by

EEPRLðhÞ ¼ X
�;k

deð�Þ dim ð�Þ�ð�; ��ðkÞÞtr�

� ðD�ðhÞIð�; kÞIð�; kÞyÞ: (40)

As for the BC model this will be a distribution with
singular support described below.

The E functions are distributional for all the cases
described here and have support on the following critical
manifolds:
(i) BF: 1,
(ii) BC: SUð2Þdiag,
(iii) EPRL: M� ¼ fg 2 Spinð4Þj9L 2 suð2Þ: g ¼

ðexp ðLÞ exp ð�LÞÞg.
For the EPRL model this is shown in Ref. [29]. For our

purposes it will be convenient to characterize the EPRL
support in terms of the group. This can be done for example
by choosing a Uð1Þ subgroup of Uð1Þ� 2 Spinð4Þ gener-
ated by ðL; �LÞ. The critical manifold is then simply
SUð2ÞdiagxadUð1Þ�, where xad is the adjoint action.

A. General (finite) groups

We can now mimic the three types of spin foam models
defined above for finite groups. To do sowe assume that the

TABLE I. Different formulations of the spin foam state sum
using different variables and parametrizing functions.

State sum Symbol Variables

Parametrizing

functions

E function Z gev, gef !, E
OSFM ZOSFM hef !, Ce

GFT ZGFT gevf �e, V v

Vertex function ZVertex gfv, gef !, E, Wv

Vertex function (alternative) ZVertex hfv !, Vv
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most important part of the amplitude is the divergent,
distributional part. To define models for finite groups we
choose functions with support on the appropriate subsets of
M � G, that is by replacing the delta functions by normal-
ized �MðgÞ functions that are defined to be 1

jMj 8 g 2 M

and 0 otherwise. The E functions are then:
(i) BF: EðhÞ ¼ �eðhÞ with e being the trivial subgroup

consisting of the identity element,
(ii) BC: EðhÞ ¼ �G0 ðhÞ,
(iii) EPRL: ECðhÞ ¼ �MC

ðhÞ, where C is a cyclic

subgroup of G and MC ¼ G0xadC.

This generalizes the BC and the EPRL model to arbitrary
groups G0 � G.

1. Example: S3

Let us consider as an example the finite group G ¼ S3,
the group of permutations of three elements, as gauge
group. It can be written as

S3 ¼ ha; bja2 ¼ b3 ¼ ðabÞ2 ¼ 1i: (41)

The group has six elements fe; a; bab�1; b2ab�2; b; b2g,
where e is the unit element, fa; bab�1; b2ab�2g are odd
permutations (two cycles) and fb; b2g are three cycles.

The group has subgroups isomorphic to Z2 generated by
either a, ab or ab2. Furthermore there is a Z3 subgroup e,
b, b2 which is normal in S3. To specify the models further
we have to choose one of the subgroups and consider E
functions which are invariant under the adjoint action of
the subgroup G0 on G. The orbits under the different
subgroups, including the group G ¼ S3 are

G0 � S3: feg; fa; bab�1; b2ab�2g; fb; b2g;
G0 ¼ fe; ag � Z2: feg; fag; fbab�1; b2ab�2g; fb; b2g;

G0 ¼ fe; b; b2g � Z3: feg; fa; bab�1; b2ab�2g; fbg; fb2g:
(42)

Choosing G0 ¼ Z2 as subgroup, we have a priori a four
parameter space of E functions

EðgÞ ¼ �1�ðg; eÞ þ �2�ðg; aÞ þ �3ð�ðg; bab�1Þ
þ �ðg; b2ab�2ÞÞ þ �4ð�ðg; bÞ þ �ðg; b2ÞÞ: (43)

Taking some normalization condition into account,
we obtain three parameters. As will be explained in
Sec. VIA, models in which the E function is invariant
under conjugation of the full group can be rewritten as
standard lattice gauge theory models, i.e., the E functions
can be absorbed into the face weights !. This will be the
case for �2 ¼ �3.

The BC model for the choice of this subgroup Z2

corresponds to �1 ¼ �2 ¼ 1 and �3 ¼ �4 ¼ 0. Hence it
will in general define a nontrivial model, which cannot be
rewritten into a lattice gauge theory.

We can define an EPRL-like model with Z3 as a cyclic
subgroup, which leads to �1 ¼ �4 ¼ 1 and �2 ¼ �3 ¼ 0.
This model is also a Z3 subgroup model (the BC model
with subgroup Z3) and actually rewritable as a standard
lattice gauge theory. For this choice of parameters we have

EðgÞ ¼ �Z3
ðgÞ; (44)

and as Z3 is a normal subgroup the function E will be
invariant under conjugation. Indeed the BC model with a
normal subgroup will define a topological theory which is
of BF type on the quotient group (here Z2) and of high
temperature type (i.e., E is a constant function) on the
subgroup itself. We can define two different one-parameter
families which connect this topological theory to either
the high temperature/strong coupling fixed point of the full
group (�1 ¼ �2 ¼ �3 ¼ �4),

EðgÞ ¼ �Z3
ðgÞ þ ��oddðgÞ; (45)

(here �odd ¼ 1 on odd permutations and vanishes on even
permutations) or to the BF theory on the full group,

EðgÞ ¼ �ðg; eÞ þ �4ð�ðg; bÞ þ �ðg; b2ÞÞ: (46)

Another example to define a BC model more
closely connected to the SUð2Þ � SUð2Þ model is to take
G ¼ S3 � S3 as gauge group and the diagonal group as a
subgroup. We will discuss this model shortly in Sec. VI C.

VI. COARSE GRAINING

In this section we will consider coarse graining of the
holonomy spin foam models in dimensions two and three.
To this end we will utilize in the first part techniques from
standard lattice gauge theory, that is use the similarity of
holonomy spin foams to standard gauge theories. Indeed,
as for gauge theories, coarse graining in two dimensions
can be done exactly. The holonomy spin foam models
feature in addition to the face weights, which are the
central dynamical entitles for standard lattice gauge theory,
the edge weights or edge functions E, which will lead to
additional factors in the coarse graining formulas.
In three dimensions certain models including BC-type

models can be rewritten into models of standard lattice
gauge theory type. We will identify this class of models
and coarse grain these models by applying the Migdal-
Kadanoff scheme.
These results can be compared to another type of coarse

graining scheme, which involves a hierarchical lattice on
which coarse graining can be performed by applying
repeated 4� 1 Pachner moves. This allows us to do an
exact coarse graining. In particular we will test whether the
parametrization of the holonomy models with E function
captures the relevant dynamical data. That is, although the
general coarse graining flow leaves the model space
described by the E functions, we can project back to this
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space and test whether we still find the fixed point structure
of the exact flow.

Attempting concrete (numerical) calculations we face
the difficulty that the models are not necessarily finite for
(compact) Lie groups. To avoid these difficulties numerical
investigations will be (mostly) performed with finite
groups, in particular S3, for which we defined a class of
models in the last section.

A. Coarse graining of edges

Let us consider the formulation of the models (14),
where to every edge we associate a C function and to every
face, face weights !. One important difference of these
models compared to standard lattice gauge theories is that
in general, these are not invariant under edge subdivision,
or the inverse operation, coarse graining of edges by
removing two-valent vertices.

Therefore we will briefly discuss the coarse graining of
edges. This is most conveniently done in the spin basis
where the C function is expressed as follows:

Cðh1; h2; . . . hnÞ
¼ X

�1;...;�n;dd
0

Y
i¼1;...;n

dim�i
~C�1;...;�n;dd

0 h�d0 jD�1
ðh1Þ

� � � � � �D�n
ðhnÞ�di: (47)

Here f�dg is an orthonormal basis of the intertwiners and
h�j�i is the inner product on L2ðGnÞ.

The coefficients ~C can be computed from the
coefficients ek�dd0 defined in (10) if theC function is derived

from an E function as in

Cðhef1 ; . . . ; hefnÞ
¼
Z

dgLdgR
Y
i

d~hefi
Y
i

Eð~hefiÞ
Y
i

�ðgLhefigR ~h�1
efi
Þ:

(48)

Expanding the � function �ðgÞ ¼ P
� dim���ðgÞ and

using the identity

Z
dgLdgR

Y
i

��i
ðgLhefigR ~h�1

efi
Þ

¼ X
dd0

trj�d0 ih�d0 j �D�i
ðhefiÞj�dih�dj �D�i

ð~h�1
efi
Þ; (49)

we obtain

~C�1...;�ndd
0 ¼ Y

i

d~hefi
Y
i

Eð~hefiÞh�dj �D�i
ð~h�1

efi
Þ�d0 i: (50)

Using the explicit form for the E function (10) yields

~C�1...;�ndd
0 ¼ X

ki;did
0
i

Y
i

e�i

kidid
0
i
h�dj �i Ið�i; kiÞdiIy

� ð�i; kiÞd0i j�d0 i: (51)

With the form (47) of our edge functionC at hand we can
now consider the coarse graining, where a subdivided edge,
that is two edges e, e0 joined by a two-valent vertex, is
coarse grained into one edge n. All edges bound the same
faces f1; . . . ; fm, see Fig. 7. AsC functions are composed by
delta functions, theC function for the newedgen is given by

CðnÞðhnf1 ; . . . ; hnfmÞ
¼
Z Y

i

dhefi
Y
i

dhe0fiC
ðeÞðhef1 ; . . . ; hefmÞCðe0Þ

� ðhe0f1 ; . . . ; he0fmÞ
Y
i

�ðh�1
nfi

hefihe0fiÞ: (52)

Expanding all functions involved as in (47) and using the
orthogonality of the basis �d we arrive at

~CðnÞ
�1;...;�n;dd

0 ¼
X
d00

~CðeÞ
�1;...;�n;dd

00 ~C
ðe0Þ
�1;...;�n;d

00d0 : (53)

This gives the renormalization flow equation for the coarse
graining of edges by removing two-valent vertices. Note
that the flow equations for this operation are local.
In 2D and many 3D models the C function simplifies

drastically, so that the models can be reduced to standard
gauge theory. To explain how this happens, we define an
n-valentC function to be factorizable, if it can bewritten as

Cðhef1 ; hef2 ; . . . ; hefnÞ
¼
Z

dgL�ðgLhef1Þ�ðgLhef2Þ . . . �ðgLhefnÞ; (54)

where � is a class function. Let us notice that every
function of the form (54) can be rewritten into a left and
right group averaging of E functions since due to the
symmetries of � we have

Cðhef1 ; hef2 ; . . . ; hefnÞ
¼
Z

dgLdgR�ðgLhef1gRÞ�ðgLhef2gRÞ . . . �ðgLhefngRÞ;
(55)

hence E ¼ �. The form introduced above allows us to
integrate out hef and to absorb the � factors into the face

weights !. If we define the effective face weights

FIG. 7. Removing a trivial subdivision of an edge.
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!0
f ¼

Z Y
e�f

dhef�ðhefÞ!Fð. . . gvehefgev0 . . .Þ; (56)

these are again class functions of the group element
. . . gvegev0 . . . . (Note that the face weights !0

f might de-

pend on the face f, in particular if faces differ in the
number of adjacent edges.) Explicitly, using the Fourier
transform

!0ðgÞ ¼X
�

dim�!0���ðgÞ; (57)

�ðgÞ ¼ X
�

dim�����ðgÞ; (58)

we obtain

~!0� ¼ ð��Þ]ðe�fÞ ~!�: (59)

In this way every spin foam with factorizable C functions
can be rewritten as a standard lattice gauge theory. This
factorization property holds for every two-valent edge and
in the case of BC/EPRL/FK also for every three-valent
edge.

If we do not integrate out the hef and keep the C

functions, the Fourier transform of these will be given by

~C�1;...;�n;dd
0 ¼

�Y
i

��i

�
�dd0 : (60)

This will simplify the renormalization flow (53).

B. Coarse graining in two dimensions

Here we will consider a 2-complex for which all edges
are two valent, that is, each edge bounds exactly two faces.
In this case the coarse graining flow can be computed
exactly. The procedure and result are quite similar to real
space renormalization of 2D lattice gauge theories [39]. As
pointed out in Sec. VIA, compared to standard lattice
gauge theory one obtains however an additional renormal-
ization flow from the edge weights. Starting with the form
of the partition function

Z ¼
Z �Y

ðfeÞ
dhfe

��Y
ðeÞ

Cðhef; hef0 Þ
��Y

f

!fðhefhe0f . . .Þ
�
;

(61)

we have to discuss the renormalization flow of the C
functions and the face weights !f.

The C function is by construction invariant under left
and right multiplication (in both entries). Hence it can be
expanded into a basis of gauge-invariant functions, that is

Cðh1; h2Þ ¼
X
�

~C� dim ð�Þ��ðh1h�1
2 Þ: (62)

Such a C function is factorable in the sense of (54): the
Fourier expansion of the factorization property gives

Cðh1; h2Þ ¼
Z

dg�ðgh1Þ�ðgh2Þ
¼ X

�

��� �� dim ð�Þ��ðh1h�1
2 Þ: (63)

Hence we just need to choose the Fourier coefficients ��

such that ��� �� ¼ ~C� is satisfied.

The coefficients ~C� can be expressed using the parame-

trizations through e
�
k;dd0 as

~C� ¼ X
k

dim k

dim�

X
dd0

e�
kdd0e

�
kd0d; (64)

where we used that e
��
�kdd0 ¼ e

�
kd0d, which can be shown to

hold in general [28]. That is from the choices e
�
kdd0 for the

basis coefficients of E only the contraction (64) matters in
a two-dimensional theory.
The renormalization flow equations for the coarse

graining of edges (53) are in this case given by

~CðnÞ
� ¼ ~CðeÞ

�
~Cðe0Þ
� : (65)

The other coarse graining step that will appear in two
dimensions is integrating out the variables over one edge e
that divides two faces f, f0, see Fig. 8. The face holonomies
starting at the source of e will be denoted by gf ¼ hefHf

and gf0 ¼ hef0Hf0 . The new face weight is given by

!ðnÞ
f[fðHfH

�1
f0 Þ ¼

Z
dhefdhef0!fðhefHfÞ!f0

� ðhef0Hf0 ÞCðhef; hef0 Þ; (66)

which for the Fourier coefficients gives

~!ðnÞ
f[f ¼ ~!fð�Þ ~!f0 ð�Þ ~CðeÞ

� : (67)

In two dimensions all coarse graining steps can be
decomposed into the two operations we discussed, that
is the inverse of subdividing a face with one edge and
the inverse of subdividing an edge with one vertex. This
allows us to write the complete partition function of a two-
dimensional complex as

Z ¼X
�

ð ~!ð�ÞÞFð ~C�ÞE (68)

(assuming that the face weights and edge functions are
initially the same for all faces and edges).

FIG. 8. Removing a subdivision of a face.
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The recursion relations (65) and (67) enable us to discuss
completely the renormalization flow in two dimensions.
Starting with a ‘‘heat kernel’’ (C� is the Casimir of �)

~C� ¼ exp ð���1C�Þ (69)

for the edgeweights, we flow from zero temperature� ¼ 1
to infinite temperature � ¼ 0. Note that zero temperature

� ¼ 1, ~C� ¼ 1 corresponds to a C function Cðh1; h2Þ ¼
�ðh1h�1

2 Þ. This converts the partition function (61) into one
for standard lattice gauge theory. Choosing nonzero tem-
perature corresponds to a regularization (introducing a non-
trivial propagator for the edges) for instance in group field
theory [35]. One should however be aware that this choice
leads to a flow into the high temperature fixed point, both for
the edge factors and the face weights. In this fixed point
only the values for the trivial representation contribute
(assuming C�¼0 ¼ 0).

The renormalization flow for the face weights behaves
similarly, with the addition that it can be set off from the
zero temperature fixed point !ðgÞ ¼ �ðgÞ by a nontrivial
choice for the edge factors alone. Note that the zero and
high temperature fixed points are not the only fixed points,
as will be obvious from the discussion below.

In higher dimensions the subdivision of an edge by
adding a two-valent vertex, as well as the subdivision of a
face by inserting a two-valent edge can be argued to be
operations under which the partition function should remain
invariant [40]. Indeed this notion has been connected to the
anomaly freeness of the path integral measure in spin foams
with respect to diffeomorphisms [10,41,42] and has the
advantage of fixing uniquely the edge and face measure

factors [40]. Such an invariance would require ~C� and

~!ð�Þ to take values either equal to 1 or to 0. Any choice
would lead to a fixed point in the two-dimensional theory.
Also note that for the two-dimensional theory it is equivalent

to either choose !ð�Þ ¼ 0 or ~C� ¼ 0 for a given �. That is

all ~C� can be chosen to be equal to 1. Hence we just need to

consider the lattice gauge theory parameter space reduced to
the choice ~!ð�Þ ¼ �ð�Þ where � takes only values 0 and 1.

C. Dual simplicial lattices in three dimensions

We have discussed that the renormalization flow for the
two-dimensional theory agrees with the one in lattice
gauge theory in case that one adopts the condition of
invariance under edge subdivisions. This condition is also
a reasonable requirement to hold for higher dimensions
and higher-valent edges. Indeed the Barrett-Crane model
can be easily made to satisfy this condition. For the EPRL
model, [25,43] give a construction which satisfies this
requirement. However, this is more complicated than the
one considered here, and leads to a model that no longer
falls into the description of E functions (it would however
still be in the more general class of models parametrized by
C functions).

Let us assume that we can construct a spin foam model
where such an invariance holds. How much freedom is left
for the parameters in this spin foam model? In a dual
simplicial lattice in three dimensions the edges (dual to
triangles) would be three valent, i.e., adjacent to always
three faces (as a triangle has three edges). The C function
associated to such three-valent edges is a function of
three arguments, invariant under left and right group multi-
plication. Hence it can be expanded into a basis of gauge-
invariant spin networks, which are based on three edges
with common source and target vertex, see Fig. 9.
These spin networks are labeled with representations

at the edges and with intertwiners between the three
representations, that is we have

Cðh1; h2; h3Þ ¼
X

�1;�2;�3;dd
0

Y
i

dim�i
~C�1;�2;�3;dd

0 h�d0 ;D�1
ðh1Þ

�D�1
ðh2Þ �D�n

ðh3Þ�di; (70)

where �d labels orthonormal basis of invariants. We will
consider groups, such as SUð2Þ, SOð4Þ and the finite group
S3 for which the intertwiner between three representations
is canonical, or in other words for which the tensor product
of two representations is multiplicity free. In this case the
intertwiner labels d, d0 in (70) can be omitted. Also the sum
in (70) is only over triples of representations admitting an
intertwiner.
Gluing two edges with a two-valent vertex leads to new

~C coefficients

~CðnÞ
�1;�2;�3

¼ ~CðeÞ
�1;�2;�3

~Cðe0Þ
�1;�2;�3

: (71)

Demanding invariance under edge subdivision fixes
the coefficients to be equal to 1 or 0 depending on the
three representation labels. In the BC and EPRL models
(with G isomorphic to G0 �G0 group) this condition even
factorizes as in Eq. (60), that is we have

~C�1;�2;�3
¼ ��1��2��3 ; (72)

where �� takes only the values 0 or 1. One might expect

such a factorization property to hold from the construction
of the edge propagatorC as group average of a product of E
functions. Note however, that even in this class of theories
the factorization property does not hold in general. For a
counter example see the Appendix. Also the BC model for
S3 with Z2 as a subgroup provides a counterexample. As
one can check explicitly, the corresponding three-valent

FIG. 9. The structure of the C function for an edge shared by
three faces.
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edge function Cðh1; h2; h3Þ does not lie in the subspace
generated by the conjugation invariant E functions, which
define factorable models.

The following considerations restrict therefore to
the class of theories where the coefficients factorize
as in (72). In this case we can absorb the choice function

�� into the face weights ~!f, whereas the ~C can be chosen

to be the same as for standard lattice gauge theory
(where invariance under edge subdivision trivially holds).
In other words we are reduced again to consider the class of
theories described by standard lattice gauge theories. This
motivates us to test approximation methods developed for
lattice gauge theory, notably the Migdal-Kadanoff
approximation [39,44]. There is one drawback which is
that the Migdal-Kadanoff approximation was developed
for regular (cubical) 2-complexes and for hierarchical lat-
tices [45] (where it can be made to be exact). That is we
have to assume that the difference of a simplicial versus a
cubical lattice does not influence the large scale dynamics.

The Migdal-Kadanoff approximation is a truncation to
local couplings for the real space renormalization flow of
lattice gauge theories. As for the flow in two dimensions it
results in a recursion relation for the face weights !f. In

the version of Migdal [39] we have for the coarse graining
of a three-dimensional cubical lattice under the doubling of
the lattice constant

~!ðnÞ
� ¼ X

�1;�2

ð ~!�1
Þ4ð ~!�2

Þ4 dim ð�1Þ dim ð�2Þ
dim ð�Þ n��1;�2

: (73)

Here n
�
�1;�2

is the number of copies of representations � in
the tensor product of �1 with �2. For the case we are
considering here, this number is either one or zero.

Note the essential difference of (73) to the two-
dimensional recursion relation (66) which is that the coef-
ficients of different representation labels are coupled with
each other. In the BC and EPRL spin foam models for a
group G ¼ G0 �G0 only a (one-parameter) subset of all
possible representations is allowed initially, however the
recursion relation (73) will spread the range of allowed
values.

The implementation of (73) for a finite group is straight-
forward. Herewe consider the group S3 � S3 with a BC-like
amplitude. There are three representations for S3 which we
denote by j ¼ 0, 1, 2. The representation j ¼ 2 is two
dimensional whereas the others are one dimensional given
by the trivial and the (permutation) sign representation. For
S3 � S3 we have representations ðjþ; j�Þ with jþ, j� ¼ 0,
1, 2. The initial face weights are given by

~!jþ;j� ¼ �jþ;j� ; (74)

which we put into the recursion relation (73). The coupling
coefficients are given by

nðj
þ;j�Þ

ðjþ
1
;j�
1
Þ;ðjþ

2
;j�
2
Þ ¼ nj

þ
jþ
1
;jþ
2

nj
�
j�
1
;j�
2
; (75)

where nj3j1;j2 is invariant under permutations of the three

labels and equal to 1 for the following combinations of
representation labels

ð0; 0; 0Þ; ð0; 1; 1Þ; ð0; 2; 2Þ; ð1; 2; 2Þ; ð2; 2; 2Þ: (76)

For all other combinations the coefficients are vanishing.
After each renormalization step we normalize the amplitude
so that ~!0;0 ¼ 1. The result is that after ca. ten iterations the
theory is at a fixed point

~!jþ;j� ¼ ð�jþ;0 þ �jþ;1Þð�j�;0 þ �j�;1Þ: (77)

These weights correspond (modulo normalization) to a face
weight

!ðg1; g2Þ ¼ �evenðg1Þ�evenðg2Þ; (78)

which defines a BFðZ2Þ theory, where this Z2 can be under-
stood to be the the quotient group of the diagonal subgroup
with respect to the Z3 subgroup of even diagonal elements.
Let us also discuss the SUð2Þ � SUð2Þ BC model.

Representations are given by ðjþ; j�Þ where the spins can
take integer or half integer non-negative values and the
dimension of the representation ðjþ; j�Þ is given by

ð2jþ þ 1Þð2j� þ 1Þ. The coefficients n
j3
j1;j2

are equal to 1

if the triangle inequalities ji þ jj 	 jk are satisfied and if

the sum j1 þ j2 þ j3 is an entire number, otherwise it is 0.
The initial face weights are again given by (74).
However the sum (73) diverges. Therefore we introduce

a cutoff and sum values only up to j 
 	. Again we
normalize after each iteration step, such that ~!0;0 ¼ 1.
An impression of the behavior of the flow can be obtained
from Fig. 10.
As one can see the face weights flow very fast into the

high temperature fixed point and the result does almost not
vary with the cutoff. Note also that whereas initially only a
one-parameter subset of face weights is nonzero, this range
is spread during the recursion process. Therefore one can
also expect a similar flow for the EPRL model, where the
initial face weights are also only supported on a one-
parameter set of labels.
Of course the introduction of the cutoff can be ques-

tioned. On the other hand this result is supported by a
general theorem stating that in 3D gauge theories with
groups Uð1Þ, SUðNÞ flow under the Migdal-Kadanoff rela-
tions to the strong coupling/high temperature fixed point
[45,46].
Now, we made several approximations which could be

questioned. The first is to replace a simplicial lattice with a
regular one, the other is the Migdal-Kadanoff approxima-
tion itself. To support the findings here, we considered an
exact renormalization flow for a special simplicial lattice,
which will be discussed more extensively in the next
section. This lattice is obtained by iteratively applying
1–4 Pachner moves to a tetrahedron, see Fig. 11.
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Such a 1–4 Pachner move subdivides one tetrahedron into
four. To these four, one can again apply the Pachner moves
obtaining 16, and so on. Going backwards, we can coarse
grain blocks of four tetrahedra into one. The advantage of
such a hierarchical lattice is that the renormalization flow
stays in the set of local couplings. Truncations, which are
usually unavoidable in real space renormalization due to
the generations of nonlocal couplings, are not necessary.
This renormalization flow on the simplicial lattice is most
convenient to consider in the spin representation with vertex
weights. Here one is actually working with the space of
vertex weights for an S3 model. In the spin representation
the BC model with S3 � S3 is included in this space.
The flow of this model terminates in a fixed point describing
a BFðZ2Þ theory, which confirms our findings with the
Migdal-Kadanoff truncation.

Another example, which we can consider withinG ¼ S3
is with weights ~!0 ¼ 1 and ~!2 ¼ 1.3 With the Migdal-
Kadanoff recursion relation (73) it flows to BF theory for
the group S3. With the hierarchical lattice flow explained in
the next section, we obtain a different result: there the
model flows to the strong coupling/high temperature fixed
point, which is given by having only the coefficient ~!0 ¼ 1
nonvanishing.

This difference can be expected already due to the
different structure of the Migdal-Kadanoff flow and the
hierarchical flow. A typical feature of the Migdal-Kadanoff
flow is that the ~! are convoluted with each other, which
leads to a spreading effect of ~! as a function of the
representation labels. For the S3 example it is therefore
possible to flow from a configuration with ~!1 ¼ 0, i.e.,

where the sign representation does not appear, to the BF
fixed point, in which ~!1 ¼ 1. In the flow defined by n� 1
Pachner moves this does not happen. The flow is described
by vertex functions which depend on (six) representation
labels. If initially the vertex functions are zero for any of
the labels giving the sign (or any other) representation,
this will be preserved by the flow. This is however a
special feature of the n� 1 Pachner moves. To get a
more complete picture of the flow for more general lattice
one has also to consider other Pachner moves, which will
require some implementation of a truncation. The Migdal-
Kadanoff method is one particular truncation available for
lattice gauge theories. Other methods such as tensor
network renormalization [15,47] are more general and in
principle also applicable to spin foam models [15]. Tensor
network renormalization can be motivated by using
Pachner moves [47], and indeed the Pachner moves differ-
ent from the n� 1 move are the ones where the truncation
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FIG. 10 (color online). This figure shows the face weights ~!jþ;j� for the SUð2Þ � SUð2Þ Barrett-Crane model as a function of 2jþ,
2j�, which label the x and y axes respectively. The initial configuration ~!jþ ;j� ¼ �jþ;j� of face weights is the diagonal line of dots at

the top (blue). The dots starting at around 0.2 (red) and spreading out flatly give the configuration after one iteration, where we show
only a dot for values of ~!jþ;j� > 10�4 from the picture the initial diagonal configuration is spread to nondiagonal arguments, but the

values for the face weights are decreasing fast. After two iterations we arive at the dots on the floor of the graph (yellow-green). A large
portion of the ~!jþ;j� is already smaller than 10�4 and the configuration is almost at the high temperature fixed point.

FIG. 11. The 1–4 Pachner move can be iterated to generate an
actual flow in the space of models.

3This model corresponds to the choice of parameters �1 ¼ 5,
�2 ¼ �3 ¼ 1, �4 ¼ �1 in (43) and e1 ¼ 0, e20 ¼ e21 ¼ 1 in
the next section.
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is implemented in tensor network renormalization. This
choice of a truncation can be also encoded into embedding
maps which are closely related to the concept of cylindrical
consistency in loop quantum gravity [48].

1. Renormalization group flow of an S3 model
via a 1–4 move

In the following we will consider the flow of 3D models
with group S3 generated under the 1–4 move.We described
this group in Sec. VA1. We also choose G0 ¼ f1; ag ’ Z2

as a subgroup.
We will define the model on the 2-complex 
1 dual to a

tetrahedron. Its topology allows us to glue four of them
together to form the 2-complex 
2 dual to four tetrahedra
which are the result of a 1–4 move. The boundary of that
2-complex will be the same as the one dual to one tetrahe-
dron, apart from trivial subdivisions of edges. The effective
model on this arising from integrating over internal degrees
of freedom can then be compared to the original model by
evaluating Z
1

and Z
2
on the same S3-boundary spin

network functions. Iterating this process generates a flow
in the space of models.

If we define the model in terms of vertex functions, the
flow can be carried out exactly. This is a special feature of
all 1-(n� 1) moves, since they do not generate any non-
localities. These moves have another interesting property,
which is present for all models and dimensions: the vertex
function can be interpreted as a function depending on
spins and intertwiners. If one starts the flow with a function
that is constrained to vanish whenever a specific spin or
specific intertwiner is present, then this constraint is con-
served under the 1-(n� 1) move. Therefore, if certain
degrees of freedom are switched off, they stay switched
off during the flow. This observation allows for a very
convenient investigation of the RG flow, since it is auto-
matically constrained to lie in certain submanifolds of the
model space, all of which intersect in the high temperature
fixed point. Note that this is a direct result of working on a
hierarchic lattice because the flow does not generate any
nonlocalities. It is quite different from the hypercubic
lattice flow described in the last section, where nonlocal-
ities are truncated by the Migdal-Kadanoff approximation.

Let us turn to S3 once again. As previously described
there are two one-dimensional representations (denoted 0S3
and 1S3), and one two-dimensional representation (denoted

by 2S3). Since 0S3 is the trivial representation, the only

nontrivial tensor products are given by

1S3 � 1S3 ¼ 0S3 ; 1S3 � 2S3 ¼ 2S3 ;

2S3 � 2S3 ¼ 0S3 � 1S3 � 2S3 :

The group Z2 has two one-dimensional representations
denoted by 0Z2

and 1Z2
satisfying 1Z2

� 1Z2
¼ 0Z2

.

Decomposing the representation spaces of S3 with respect
to Z2 yields

0S3 ¼ 0Z2
; 1S3 ¼ 1Z2

; 2S3 ¼ 0Z2
� 1Z2

: (79)

After gauge invariance and discrete symmetries of the
tetrahedron, there are 11 gauge-invariant combinations of
S3 irreps along the edges of a tetrahedron. In other words, a
vertex function is given by specifying the 11 different
values of the f6jg symbol for S3.

4

If we specify a model in terms of E functions, then there
are fewer parameters: Due to the decomposition (79) the
most general E function is—after normalization—of the
form

EðhÞ¼ 1þe1sgnðhÞþ2e20�2S3
ðhÞ00þ2e21�2S3

ðhÞ11; (80)

where sgnðhÞ ¼ tr�1S3
ðhÞ is the signum of the permutation

h 2 S3, and (00) and (11) specify the upper left and the
lower right entry of the 2� 2 matrix �2S3

ðhÞ. A model is

then given by the three parameters e1, e20 and e21.
5

Note that every model in terms of E functions can be
rewritten in terms of vertex functions, but since these are
more general, the converse is not necessarily true.
Moreover, it turns out that the RG flow does not preserve
the class of models of the form (80), but takes place in the
11-dimensional space of all vertex functions instead. This
puts us in the favorable position of comparing the exact
flow to the truncated flow, which is given by projecting
onto the space of models of the form (80) after each step.6 In
the following we present the results.
First of all, there are three obvious fixed points, which

exist both under the exact and the truncated flow. All three
are models which can be expressed in terms of E functions
as in (80). In these parameters, they are given by
(I) S3 BF theory: e1 ¼ e20 ¼ e21 ¼ 1,
(II) Z2-BF theory: e1 ¼ 1, e20 ¼ e21 ¼ 0,
(III) High-temperature fixed point: e1 ¼ e20 ¼ e21 ¼ 0.
Point I has only unstable directions—a slight derivation

will either lead to the model flowing to diverging couplings
or into one of the other two fixed points. In point I all
couplings associated to terms containing 2S3 are turned off.

Because of (79), the two remaining irreps of S3 can be
interpreted as irreps of Z2, so the point corresponds to
Z2-BF theory. This point has both stable and unstable
directions. In point III, which is completely attractive,
also 1S3 is switched off. The resulting theory can be either

interpreted as BF theory for the trivial group, or in the
language of measure theory as the Ashtekar-Lewandowski
measure for S3 functions on the boundary. On it the
kinematical and physical Hilbert space coincide, and in

4Face and edge amplitudes can in principle be absorbed into
the vertex functions in this case, so we will fix them to equal
those of the S3 BF theory for convenience.

5These parameters are connected to the parameters in (43)
by �1¼1þe1þ2ðe20þe21Þ, �2 ¼ 1� e1 þ 2ðe20 � e21Þ, �3 ¼
1� e1 þ 4ðe20 � e21Þ, �4 ¼ 1þ e1 � ðe20 � e21Þ.

6There is no unique way of projecting, but different choices do
not seem to yield qualitatively different results.
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statistical field theory, it corresponds to the high tempera-
ture fixed point. The flow diagram for these fixed points is
sketched in Fig. 12.

Looking at the exact flow equations for the 11
parameters of the vertex functions, one can find, however,
several more fixed points. These do not correspond to any
topological theory, but can be interpreted as nontrivial. One
of the points, which is rather close to the other three fixed
points, is given in terms of the vertex function couplings
(i.e., the values of the f6jg symbols) all being zero, apart
from

�1 ¼
(
0S3 0S3 0S3
1S3 1S3 1S3

)
; �2 ¼

(
0S3 1S3 1S3
0S3 1S3 1S3

)
:

The exact recursion equations for this system are given by

�1 ! �3
1 þ �1�

3
2

1þ �4
1

; �2 ! 2�2
1�

2
2

1þ �4
1

: (81)

The obvious fixed point solution is given by �1 ¼ �2 ¼ 1,
which corresponds to point II. Another nontrivial solution
is e.g., given by

(IV) �1 ¼ 2:54605, �2 ¼ 3:31832.

The values for �1 and �2 can be expressed as roots of
polynomials of order five, and we are not aware of a closed
expression. The point IV seems to have several attractive
directions, and the correct perturbation from point I can let
the flow run into point IV. The point is not topological, in
particular it defines a model which is not invariant under
trivial subdivisions of bulk edges by a two-valent vertex,
unlike all the BF theories. Also, the resulting model is not
invariant under the 2–3 move, as one can readily check.

Since the models given by (80) always lead to coeffi-
cients of the vertex functions satisfying �1 ¼ e31 and �2 ¼
e41, one can readily check that point IV is not of the form
(80). It lies, however, quite close to the three-dimensional
submanifold of models given by an E function.

Under the truncated flow, in which one projects onto the
space of E-function models as in (80) after each step, one
obtains a flow in the three-dimensional space of parameters
ðe1; e20; e21Þ. One does not only recover the three obvious
fixed points I, II and III, but remarkably there is another
fixed point which lies at roughly
(IV*) e1 ¼ 1:4021, e20 ¼ e21 ¼ 0.
It can be readily checked that the vertex function derived

from fixed point IV*, which has the only nonzero cou-
plings �1 ¼ e31 and �2 ¼ e41 is rather close to the fixed

point under the exact flow IV. This demonstrates that
truncating the theory to models of the form (80) can reveal
characteristic nontrivial features of the phase space.

D. Outlook

In particular the example in the last section gives us hope
that the parametrization with E function presented in this
work captures the relevant parameter for the renormaliza-
tion flow. More generally we have seen that there is a
number of features similar to the behavior of lattice gauge
theories [39], in particular the appearance of the strong
coupling/high temperature fixed point and the BF (low
temperature) fixed points. (If there is a normal subgroup,
a BF theory on the quotient group will also define a fixed
point.) The BF fixed points are unstable in 2D and 3D,
whereas the high temperature fixed points have attractive
directions. It is conjectured that non-Abelian lattice gauge
theories do not show phase transitions in 4D, hence that as
in 3D all models flow to the high temperature fixed point.
The spin foam models provide a larger phase space, and

a crucial question for future research will be if this larger
phase space allows for additional phases/fixed points.
This question can be investigated with spin nets models
[15,20], which are ‘‘dimensionally reduced spin foams.’’
Interestingly spin nets can be formulated with the same
algebraic ingredients as spin foams, i.e., any spin foam
model formulated with E functions leads to a correspond-
ing spin net model. The advantage is that these models are
already nontrivial in two dimensions which simplifies
enormously coarse graining considerations. Additionally,
it is known that 4D lattice gauge theories show a similar
flow behavior as the corresponding 2D (spin net/edge)
models [44]. If this similarity extends to spin foam models,
these investigations in 2D could already give information
on the 4D spin foam models.
In this work we discussed n� 1 Pachner moves whose

corresponding renormalization flow can be obtained exactly
if vertex amplitudes are used. Classical Regge calculus is
invariant under n� 1 Pachner moves, but 4D Regge calcu-
lus is not invariant under the 3� 3 move [49]. Finding
theories (fixed points) invariant under the n� 1 Pachner
moves could therefore lead to a quantum theory better
mimicking the symmetry properties of the classical one.
On the other hand the flow generated by the n� 1

Pachner moves is quite special. It leads not only to a

FIG. 12. Truncated RG flow of the S3 model under a 1–4
move. The diagram includes four fixed points of the flow.

HOLONOMY SPIN FOAM MODELS: DEFINITION AND . . . PHYSICAL REVIEW D 87, 044048 (2013)

044048-15



closed, exact flow for the vertex amplitudes but also
features invariant submanifolds resulting from the set of
vertex amplitudes that are zero if a given representation
appears as argument. Correspondingly one can find a
number of fixed points for this flow, which do not appear
e.g., in the Migdal-Kadanoff scheme for lattice gauge
theories. The question arises whether these fixed points
have any significance, i.e., flow to other fixed points, if we
consider more general coarse grainings.

Therefore also the other Pachner moves have to be
considered, or alternatively the blocking of a regular
lattice, which incorporates the other Pachner moves.
To this end truncations have to be used, otherwise the
number of coupling parameters will grow without bound.
A truncation which is suggested by this work is given
by vertex amplitudes that can be formulated through E
functions. Again the main question will be whether this
truncation captures the relevant (local) couplings.

In this work we considered either coarse grain-
ing procedures which only lead to local couplings
(two-dimensional theories, n� 1 Pachner moves) or a
truncation of the flow to local couplings (Migdal-Kadanoff
procedure). For some questions, like the restoration of
diffeomorphism symmetry via coarse graining [12,50],
or in order to obtain a more reliable phase diagram,
the consideration of nonlocal couplings is necessary. The
difficulty in dealing with nonlocal couplings is that these
will proliferate and are hard to interpret and to control.

One way to give an interpretation of truncations to
parameter spaces including nonlocal couplings is to intro-
duce nonelementary building blocks which carry more
boundary data than the building blocks one starts with
[48]. The growing number of coupling parameters is now
reflected in the growing number of boundary data, between
which the couplings can occur. These couplings can be
encoded into a functional which acts on the boundary
Hilbert space of the (nonelementary) building block in
question. The universal boundary Hilbert space defined
in Sec. III B provides in this sense a more general parame-
ter space describing also models with nonlocal couplings.
(Here nonlocal is to be understood to include more than
just the nearest neighbor couplings.) Again to obtain a
closed coarse graining flow and not a flow which rather
maps to larger and larger Hilbert spaces (leading to the
continuum limit, i.e., a path integral over a region with
continuum boundary data), one has to implement trunca-
tions. Such truncations can be described by maps [48]
which embed the boundary Hilbert spaces into each other.

The examples we considered for coarse graining in-
cluded finite groups, in particular the permutation group
S3. Indeed, one advantage of the holonomy formulation
presented in this work is that the models can be extended to
finite groups but preserve the key dynamical ingredient of
spin foams, the simplicity constraints. For example one can
study the coarse graining of these constraints also in the

finite group case. As we have also seen, finite groups allow
us to apply numerical algorithms which still need to be
developed and tested for spin foams. In this work we
considered n� 1 Pachner moves for the finite group S3
and found (unexpectedly) a number of fixed points. We
conjecture that SUð2Þ models will show even more fixed
points, however the dynamical relevance of these fixed
points is not clear yet. As explained above, to uncover
the relevance of these fixed points, one needs to incorpo-
rate also other Pachner moves or consider coarse graining
on a regular lattice.
Testing numerical algorithms is however not the only

purpose of finite groups. Experience in lattice gauge theory
has shown that models with finite groups allowed one to
uncover many dynamical mechanisms of lattice gauge
theories and to formulate conjectures on e.g., the phase
diagrams of these theories. Thus finite groups were in
particular important in the early developments of lattice
gauge theories. Given the current knowledge on the statis-
tical behavior of spin foams we envisage a similar role for
finite group spin foam models. Additionally finite groups
avoid technical difficulties, for instance divergencies,
which are otherwise hard to deal with.
In the best case the finite group models allow us through

their numerical investigation to extract the relevant
parameters for coarse graining. The next step would be
to identify the analogue parameters in the full models and
to devise a coarse graining algorithm which keeps these
relevant parameters and truncates away the dynamically
unimportant ones. Such a strategy might overcome the
challenge of an infinite dimensional parameter space
present for the full models.

VII. SUMMARY

In this work we proposed a new holonomy formulation
for spin foam models, which is able to describe all7 the
current models. Compared to other formulations, this
class of models features a minimal set of parameters, and
is naturally extendable to finite groups and arbitrary
2-complexes. We related this formulation to other holon-
omy formulations and the operator formulation of spin
foams. Further applications of this holonomy formulation
will appear in Refs. [28,29]
The choice between different formulation8 of a class of

models becomes most relevant for coarse graining and the

7With the exception of the Kaminski, Kieselowski, and
Lewandowski model [43].

8Holonomy and spin representations underly in lattice gauge
theory the weak and strong coupling expansion respectively.
Hence these different representations help to identify the appro-
priate degrees of freedom in the different regimes. For pure
gravitational spin foam models such a distinction of regimes is
much less clear, but could corresponds to a phase where geome-
try is mostly degenerate (strong coupling) and a (near) topologi-
cal phase (weak coupling).
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construction of renormalization group flows, as it defines
the space of models in which the renormalization flow
takes place (or to which it is projected/truncated). Here
the question is still open which spin foam formulation is
the most appropriate, at least for the four-dimensional case.

The holonomy formulation suggested the implementa-
tion of coarse graining techniques from lattice gauge
theories, and we followed this strategy for the 2D and
3D theories that are in a certain sense equivalent to
gauge theories. On the other hand spin foams have a richer
structure than standard lattice gauge theories: in the E
function formulation introduced here this can be made
precise, as in spin foams we permit E functions that are
not class functions. The main question for future research
will be how relevant the parameters that describe the
deviations of the E functions from a class function are
under coarse graining. This will reveal whether the
algebraic structures specific to spin foams could lead to
macroscopic phases different from those of standard lattice
gauge theory.
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APPENDIX: NONFACTORIZABLE MODEL FOR
A 3D DUAL SIMPLICIAL LATTICE

We will prove in this Appendix that not all three-valent
edge C functions coming from E have the factorization
property (54).

For a three-valent edge in the case of SUð2Þ � Spinð4Þ
we know that every C function can be written in the form

Cðg1; g2; g3Þ ¼
X
j�i

~Cjþ1 ;j
�
1 ;j

þ
2 ;j

�
2 ;j

þ
3 ;j

�
3
c j�i ðg1; g2; g3Þ; (A1)

where gi 2 Spinð4Þ and

c j�i ¼ �m1m2m3

j�i
Dj1ðg1Þ

m0
1

m1
Dj2ðg2Þ

m0
2

m2
Dj3ðg3Þ

m0
3

m3
�j�i m0

1m
0
2m

0
3

(A2)

and Clebsches � are normalized.
Suppose that we are starting from the E function with

eðjþj�Þk equal to

eðj;jÞ0 ¼ 1 for j � 1; eð1;1Þ1 ¼ 1; (A3)

and otherwise 0.

Then we can compute ~Cj�i
from E functions using (51)

as follows:

~Cj�i ¼
�Y

i

eðjþi j�i Þki

��
�j�i

��������Y
i

Pðjþi ;j�i Þki

���������j�i
�
; (A4)

where ki are the only k when e is nonzero and Pjþj�k is the

projection onto SUð2Þ subrepresentation with spin k. This
in fact is the product of

Q
ieðjþi j�i Þki and a square of suitable

contraction of Clebsches since�
�j�i

��������Y
i

Pðjþi ;j�i Þki

���������j�i
�
¼
���������j�i

�Y
i

�jþi ;j�i ki

�
�k1k2k3

��������2

:

(A5)

One can check the following properties:
(1) If ji � 1 and ðj1; j2; j3Þ satisfied triangle inequal-

ities,
P

ji is an integer then

~Cj1;j1;j2;j2;j3;j3 � 0: (A6)

(2) We have

~Cj1;j1;j2;j2;1;1 ¼ 0; (A7)

for ji � 1 because ki do not satisfy triangle
inequality.

(3) We have

~C2;2;1;1;1;1 � 0 (A8)

proved by use of diagrams.

Suppose that ~Cj�i has the factorization property, then it

can be written in the form

~Cj1;j1;j2;j2;j3;j3 ¼ �j1;j1�j2;j2�j3;j3 ; (A9)

but from (A6) we know that

�j;j � 0 for j � 1: (A10)

By the property (A7) we thus obtain

�1;1 ¼ 0; (A11)

but then (A8) cannot be satisfied.
We thus proved that for this E the function C cannot be

written in the factorized form.
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