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Abstract 

Boundary conformal field theory is the suitable framework for a microscopic treatment of D- 
branes in arbitrary CFT backgrounds. In this work, we develop boundary deformation theory in 
order to study the changes of boundary conditions generated by marginal boundary fields. The 
deformation parameters may be regarded as continuous moduli of D-branes. We identify a large 
class of boundary fields which are shown to be truly marginal, and we derive closed formulas 
describing the associated deformations to all orders in perturbation theory. This allows us to study 
the global topology properties of the moduli space rather than local aspects only. As an example, 
we analyse in detail the moduli space of c = 1 theories, which displays various stringy phenomena. 
@ 1999 Elsevier Science B.V. 

1. Introduction 

Since Polchinski's discovery that D-branes [28] provide a string realization of  super- 

gravity solitonic p-branes in [71-73] ,  non-perturbative effects have become accessible 

within string theory. This has changed the perspective of  both string theory and gauge 

theories drastically. In particular, a net of  dualities has emerged relating different field 

or string theories in the unified picture of  M-theory [93];  see e.g. Refs. [57,48,4,82] 
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for reviews and further references. More recently, this has led to conjectures of rather 
direct equivalences between string and supergravity theories on the one side and gauge 
theories on the other [65,51,95]. 

D-branes are the most important new objects in this development. They have mainly 
been investigated from a target geometry and classical field theory point of view, where 
they appear as "defects" of various dimensions to which closed strings can couple and 
which support gauge theories. In the flat background case, there exists a well-known 
alternative world-sheet approach using the boundary state formalism [ 19,74]; it provides 
an effective handle on explicit string calculations but also allows us to reproduce the clas- 
sical behaviour of D-branes in the low-energy limit, see e.g. Refs. [3,62,16,50,8,13,32]. 
This formulation was extended somewhat beyond the fiat case e.g. in [55], see also 
Ref. [66,89], but to give a fully general formulation of D-branes in arbitrary CFT 
backgrounds [79,42] with no a priori classical counterpart requires more refined tech- 
niques. Those are provided by conformal field theory on surfaces with boundaries as 
developed mainly by Cardy [20-22,24] and first introduced into string theory by Sag- 
notti [80,11,81]. 

Techniques from conformal field theory are particularly well developed for rational 
models in which the state space decomposes into a finite number of sectors of some 
chiral symmetry algebra. This general remark applies to boundary theories in particular 
and means that boundary conditions with a large symmetry are the easiest to construct. 
In fact, for a certain class of rational models, Cardy managed to write down univer- 
sal solutions [22]. A variant of Cardy's ideas was used in [79] to obtain boundary 
conditions that describe D-branes in Gepner models. The set of such rational boundary 

theories is typically discrete. 
Continuous moduli, therefore, are an important feature of strings and branes that is 

rather difficult to handle with the algebraic techniques of CFT. Here, geometry and 
gauge theory undoubtedly are more efficient in producing quick results. Still, there are 
reasons to try and investigate moduli spaces within the CFT approach: First of all, it is 
one of the fundamental ideas of string theory to treat space-time as a derived concept, 

not as part of the input data. Moreover, when starting a discussion of string or brane 
moduli spaces from geometrical notions, one runs the risk of missing some of the non- 
classical features of the moduli space and of the dynamics of massless fields. Finally, the 
efficiency of geometric approaches to moduli very much depends on the background and 
on space-time supersymmetry; CFT methods, on the other hand, not only are background 
independent but also more robust when the amount of supersymmetry is reduced. 

Within the CFT setting, moduli are the parameters of deformations generated by 
marginal operators - more specifically, of marginal boundary perturbations if one is 
interested in D-brane moduli. Up to now, there does not seem to exist a systematic 
treatment of marginal deformations of boundary CFTs in the literature. There are, how- 
ever, interesting case studies partly motivated by open string theory [ 12,10,49], partly 
by dissipative quantum mechanics [ 14,15,17,18,75,76]. 

The present paper aims at closing this gap and at presenting a general treatment 
of marginal perturbations of conformal boundary conditions. A careful analysis of the 
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properties of marginal operators reveals that there is a large class of deformations which 

can be treated to all orders in perturbation theory. For deformations of CFTs on the 
plane, this is possible only for very few cases so that, usually, only local properties of 
the closed string moduli space are accessible from CFT. In contrast, the closed formulas 
we obtain for marginal boundary deformations allow us to recover global topological 
aspects of the D-brane moduli space from CFT. 

From the o--model interpretation one expects that continuous brane moduli should 
reveal some information about the underlying target space itself, the simplest geometric 
moduli being the position coordinates of D-branes in the target. And indeed, we shall 
see target geometry - "blurred" and enriched by stringy effects - emerging from our 
CFT analysis even though our starting point is purely algebraic with no initial reference 
to a classical o--model description. 

The simplest class of deformations we consider are the so-called chiral deformations. 

Roughly speaking, branes obtained from each other by chiral deformations are related 
through continuous symmetries of the target space. Non-chiral deformations, however, 
are capable of moving branes between inequivalent positions not related by any con- 
tinuous symmetry. In particular, they can push the brane into some singularity of the 
underlying target space (e.g. a fixed point of some orbifold group). The geometric sin- 
gularity becomes manifest within the CFT description through a breakdown of certain 
sewing relations and the cluster property to be discussed below. In addition, we shall 
encounter some non-chiral deformations without an immediate target interpretation. 

The paper is organized as follows: Section 2 introduces some tools from boundary 
conformal field theory needed throughout the text. It is also designed so as to make the 
presentation self-contained. In the end, we will explain the cluster property mentioned 
above and introduce the notion of a "self-local" boundary field that will become a crucial 
ingredient in our discussion of D-brane moduli spaces. 

In Section 3 we will give a detailed general discussion of marginal boundary defor- 
mations. We will show that whenever a marginal boundary operator is self-local it is 
truly marginal to all orders in the perturbation parameter (Subsection 3.2). Moreover, 
we present formulas which allow us to compute structure constants of the deformed the- 
ory to all orders in perturbation theory. For reasons to become clear later, deformations 
generated by self-local boundary fields will also be called "analytic". 

Currents from the chiral symmetry algebra are special cases of self-local marginal 
fields; they generate group manifold pieces within the moduli space, and the correspond- 
ing deformed models can be described through simple closed formulas (Subsections 3.3 

and 3.4). Subsection 3.5 contains further observations on the effect of (non-chiral) ana- 
lytic deformations on Ward identities and spectrum of boundary excitations. In particular, 
we shall see which symmetries remain unbroken and which part of the brane partition 
function is independent of the strength of the perturbation. This explains and generalizes 
observations made for deformations of free bosonic boundary theories in [ 17]. 

Section 4 contains a more or less complete analysis of truly marginal boundary 
deformations of c = 1 theories, which provide explicit examples for all elements of our 
general construction. During the discussion, which subsumes the material of [ 17,76] 
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and leads to new results on orbifold models, we shall see that quantum field theoretical 
"subtleties" like the cluster property are crucial in determining the topology of the 
moduli space of boundary conditions. 

A summarizing description of this c = 1 brane moduli space is given in Section 5, 
with emphasis put on its non-classical features. Some of these are familiar effects from 
stringy geometry, while the interpretation of others remains to be found. We conclude the 
paper with a brief outlook on possible extensions and on applications of our framework 
to the investigation of D-brane moduli spaces in arbitrary backgrounds. 

We hope that our methods will also be useful for condensed matter problems, which 
represent the second important field of application of boundary CFT. We have already 
mentioned investigations of boundary perturbations in connection with dissipative quan- 
tum mechanics. The influence of dissipation on a particle in an infinite periodic potential 
is described by the boundary sine-Gordon model which at the same time appears to be 
closely related to the Kondo problem [ 37 ]. The latter deals with the marginally relevant 
perturbation induced by an impurity spin in a magnetic alloy, see e.g. Refs. [2,1,63] 
and references therein. 

2. Boundary  conditions in conformal field theory 

In this section we present a brief survey of boundary conformal field theory and fix 
the notations used throughout the paper. It is explained in some detail how boundary 
theories are parameterized by the choice of gluing maps f2 and the structure constants 
A~ appearing in the 1-point functions for bulk fields of the theory. The last subsection 
is devoted to boundary fields. In particular, we introduce a notion of locality that will 
become crucial for the deformation theory to be developed below. 

2.1. The bulk conformal field theory 

All constructions of boundary conformai field theories start from a usual conformal 
field theory on the complex plane, which we shall refer to as bulk theory. It consists 
of a space ~(e )  of states equipped with the action of a Hamiltonian H (p) and of field 
operators ~o(z, Z), which can be assigned uniquely to elements in the state space 7-/(v) 
via the state-field correspondence, i.e. 

~ (z ,~ )  =~0(P)([~p);z,~) for all 1¢'} C 7-/(e). (2.1) 

The reverse relation is given by ~o(0, 0)10} = I~p), where 10} denotes the vacuum state 
in 7-/(e) . 

The CFT is completely determined once we know all possible 3-point functions, or, 
equivalently, the coefficients of the operator product expansions (OPEs) for all fields 
in the theory. This task is often tractable since fields and states can be organized into 
irreducible representations of the observable algebra generated by the energy-momentum 
tensor and other chiral fields [7]. 
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Chiral fields depend on only one of the coordinates z or ~ so that they are either 

holomorphic, W = W ( z ) ,  or anti-holomorphic, W = W(~).  The (anti-)holomorphic 
fields of a given bulk theory, or their Laurent modes I4/, and Wn defined through 

W ( z ) = ~-'~ W.z  - " -h ,  W ( ~ ) x--" -~ - - . - h  = 2.., wnz , (2.2) 

generate two commuting chiral algebras, W and W. The Virasoro fields T and T with 

modes L, and L, are among the chiral fields of a CFT and, above, h and h are the 
(half-) integer conformal weights of W and W with respect to Lo and L0. From now 
on we shall assume the two chiral algebras W and W to be isomorphic. 

The state space of a CET on the plane admits a decomposition ~(P) = (~i,j ~2i (~),)j 
into irreducible representations of the two commuting chiral algebras. V ° refers to the 

vacuum representation - which is mapped to W via the state-field correspondence ¢(P). 

The irreducible representations V i of W acquire a (half-)integer grading under the 
action of L0 so that they may be decomposed as V i = (~n>~o Vi. We assume that the V / 

are finite-dimensional. Let V~ C V i be the eigenspace of L0 with lowest eigenvalue. It 

carries an irreducible action of all the zero-modes W0. We will denote the corresponding 

linear maps by X~v, 

X~v := Wolvg : V~ ~ V~ for all chiral fields W. (2.3) 

The whole irreducible representation "V i may be recovered from the elements of the 

finite-dimensional subspace V~ by acting with W,, n < 0. 

Using the state-field correspondence O (P), we can assign fields to all states in V~® V0 ]. 

We shall assemble them into a single object which one can regard as a matrix of fields 
after choosing some basis in the subspaces V~ and VJ, 

¢ i j ( z ,~ )  : = o ( P ) ( v ~ ® V d ; z , ~ ) :  V ~ ® H  (P) > I/~ ® 7-/(P). (2.4) 

In case the "~i a r e  W-algebra highest weight representations, tPij(z, ~) are simply all 
the (Virasoro primary) fields which arise from a W-primary through the action of 
W-algebra zero-modes. 

2.2. Boundary theories and the gluing map 

With some basic notations for the ("parent") bulk theory set up, we can begin our 

analysis of associated boundary theories ("descendants"). These are conformal field 
theories on the upper half-plane Im z /> 0 which, in the interior Im z > 0, are locally 

equivalent to the given bulk theory. The state space 7-((n) of the boundary CFT is 
equipped with the action of a Hamiltonian H tH) and of bulk fields ~p(z, Z) - still well- 
defined for Im z > 0 - assigned to the same elements ~p that were used to label fields in 
the bulk theory. Accordingly, we demand that all the OPEs of bulk fields coincide with 
the OPEs of the bulk theory. 

Note that, in general, the boundary theory contains a lot more bulk fields than it has 
states. We will see shortly which fields are in one-to-one correspondence to the states 
in H (n). 
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Considering all possible conformal boundary theories associated to a bulk theory 

whose chiral algebra is a true extension of the Virasoro algebra is, at present, too difficult 

a problem to be addressed seriously. For the moment, we restrict our considerations to 

that class of boundary conditions which leave the whole symmetry algebra W unbroken. 
More precisely, we assume that all chiral fields W(z ), W(~) can be extended analytically 

to the real line and that there exists a local automorphism/2 - called the gluing map - 
of the chiral algebra 142 such that [79] 

T ( z ) = T ( g )  and W ( z ) = / 2 ( W ) ( g )  for z = ~ .  (2.5) 

The first condition simply forbids an energy flow across the boundary; it is included in 
the second equation if we require/2 to act trivially on the Virasoro field. Note also that 

/2 induces an automorphism to of the fusion rule algebra. 

Our assumption on the existence of the gluing map /2  has the powerful consequence 
that it gives rise to an action of one chiral algebra )4; on the state space 7-( - 7-/~tt) of 

the boundary theory. To see this, we combine the chiral fields W ( z )  and /2W(g)  into 
a single object W ( z )  defined on the whole complex plane such that 

W(z)  for Imz  /> 0 

W ( z )  := /2W(~) for Imz  < 0 

Because of the gluing condition along the boundary, this field is analytic and we can 
expand it in a Laurent series W ( z )  )-'~, t~/) -n-h = W~ t z , thereby introducing the modes 

W, - W, ~t/~. These operators on the state space 7-/ are easily seen to obey the defining 

relations of the chiral algebra 14;. Note that there is just one such action of W constructed 

out of the two chiral fields W ( z )  and/2W(Z) .  
In the usual way, the representation of W on H leads to Ward identities for correlation 

functions of the boundary theory. They follow directly from the singular parts of the 
operator product expansions of the field W with the bulk fields ~o(z, ~) which are 

fixed by our requirement of local equivalence between the bulk theory and the bulk of 

the boundary theory. To make this more precise, we introduce the notation W> (z)  = 
Y~,>-h WnZ-n-h for the singular part of the field W. The singular part of the OPE is 

then given by 

W(w)~o(z,~) ~ [W>(w),q,(~o;z ,~)]  

( ,  
n > - h  

1 
(w-  z)"+h ~(OW~t')~°'z'z)) " (2.6) 

Here, the symbol ,-~ means that the right-hand side gives only the singular part of the 
operator product expansion, and we have placed a superscript (P )  on the modes Wn, W, 
to display clearly that they act on the elements ~o E ~ e )  labelling the bulk fields in the 
theory (superscripts (H) ,  on the other hand, will be dropped). The sum on the right- 
hand side of Eq. (2.6) is always finite because ~o is annihilated by all modes W(P),, , W(P)--m 
with sufficiently large m. For Im w > 0 only the first terms involving W~ P) can become 
singular and the singularities agree with the singular part of the OPE between W(w) and 
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~(z, ~) in the bulk theory. Similarly, the singular part of the OPE between 12W(w) and 
~o(z, 5) in the bulk theory is reproduced by the terms which contain Wff '), if Im w < 0. 

As it stands, the previous formula is rather abstract. So, let us spell out at least one 
more concrete example in which the chiral field W has dimension h = 1 (we shall 
denote such chiral currents by the letter J from now on) and in which the field ~p is 
replaced by the matrix ~ij of fields that were assigned to states ~ E V~ ® VJ through 
Eq. (2.4). Since the latter are annihilated by all the modes Jn,Tn with n > 0, Eq. (2.6) 

reduces to 

• X j - 
J(W) q:~ij(Z, Z)  ~ --XtJ ~Dij(Z, Z)  - ~ i j ( z ,  5) aJ . (2.7) 

w - z  w - ~  

The linear maps X~v and X j -  were introduced in Eq. (2.3) above; they act on ~Pij : .(2J 
V j ® 7-/--~ Vg ® 7-/by contraction in the first tensor component Vg and Vd, respectively. 

Ward identities for arbitrary n-point functions of fields ~oij follow directly from 
Eq. (2.6). They have the same form as those for chiral conformal blocks in a bulk CFT 

with 2n insertions of chiral vertex operators with charges il . . . . .  in, ~o ( j l )  .... ~o (j~), see 
e.g. Refs. [20,21,79,42]. In many concrete examples, one has rather explicit expressions 
for such chiral blocks. So we see that objects familiar from the construction of bulk 
CFT can be used as building blocks of correlators in the boundary theory ("doubling 

trick"). Note, however, that the Ward identities depend on the gluing map/2. 

2.3. One-point functions 

Using the Ward identities described in the previous subsection together with the OPE 
in the bulk, we can reduce the computation of correlators involving n bulk fields to the 
evaluation of 1-point functions (¢ij}~. They need not vanish in a boundary CFT because 
translation invariance along the imaginary axis is broken, and they may depend on the 
possible boundary conditions a along the real line. 

To control the remaining freedom, we notice that the transformation properties of eli 
with respect to Ln, n = 0, + 1, and the zero-modes W0, 

[Wo, ~ i j (  Z, 5) ]  = Xiw~oij( z, z )  - @ij( z, z ) X J ~ ,  

[ Ln, ~Pij(z, z)]  = z n (zO + hi(n + 1))~i.i(z, z )  

+gn ( g~ + h~(n + 1))~Pij(z, 5) 

determine the 1-point functions up to scalar factors. Indeed, an elementary computation 
reveals that (~ij}~ must be of the form 

A~j (2.8) 
( ~ j ( z ,  Z ) ) ~  - (z  - ~ ) h , + h j '  

where 

t~ " i a = A~jX j _ .  A~/ : VJ ~ V~ obeys XwAi) aw 
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Fig. 1. With the help of operator product expansions in the bulk, the computation of n-point functions in a 
boundary theory can be reduced to computing l-point functions on the half-plane. Consequently, the latter 
must contain all information about the boundary condition. 

The intertwining relation in the second line implies j = to- 1 (i +) as a necessary condition 

for a non-vanishing 1-point function (i + denotes the representation conjugate to i), and 

thus we can put hi + hj = 2hi in the exponent in Eq. (2.8) because the gluing map 
acts trivially on the Virasoro field. Irreducibility of the zero-mode representations on the 

subspaces Vt~ and Schur's lemma imply that each matrix A~ is determined up to one 
scalar factor. Hence, if there exist several boundary conditions associated with the same 
bulk theory and the same gluing map ~,  they can differ only by these scalar parameters 

in the 1-point functions. Once we know their values, we have specified the boundary 

theory. In particular, one can express the partition function Z(a,~)(q) of the theory in 
terms of the coefficients A~ (see Eqs. (3.13), (3.15) below for precise formulas). 

The parameters in the l-point functions are not completely free. In fact, there 
exist strong sewing constraints on them that have been worked out by several au- 
thors [24,59,77,78,6]. The basic relation can be derived from the following cluster 

property of correlation functions: 

lim (q~j (zj,  zt) . . .  ~'P-i ( z e - l ,  ~P-J )q~pCzp + a, ~p + a) . . .  ~ON(ZN + a, ZN + a)} 
d----~ O O  

= (~Pl (zl ,  :~1 ) . . .  ~PP-1 ( zp - l ,  Zp-I)){~p(ZP, ~p) . . .  ~PN(ZN, ~N)}. (2.9) 

Here, a is a real parameter, and the fields ~p~ = ~oi~,7,, on the right-hand side can be 

placed at (z~, g~) since the whole theory is invariant under translations parallel to the 

boundary. If  the cluster property is combined with the Ward identities to evaluate 2-point 

functions of bulk fields, one obtains a constraint of the form 

~ ~ " ~  . . . . .  (2.10) Ai AJ = _ _  ,.~i.jttOl-lk with A T = At~( f  ). 
k 

It holds whenever the vacuum representation "0" occurs in the fusion product of i with 
"-'k to(i) and of j with to(j) .  The coefficient ~ij  can be expressed as a combination of the 

coefficients in the bulk OPE and of the fusing matrix. In some cases, this combination has 
been shown to agree with the fusion multiplicities or some generalizations thereof (see 
e.g. Refs. [78,41,43,6] ). The importance of Eq. (2.10) for a classification of boundary 
conformal field theories has been stressed in a number of publications recently [41,6,44] 
and is further supported by their close relationship with algebraic structures that entered 
the classification of bulk conformal field theories already some time ago (see e.g. 

Refs. [68-70] ). 
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Let us remark that, from the string theory point of view, the 1-point functions give the 
couplings of closed string modes to a D-brane, i.e. generalized tensions and RR charges. 

Eq. (2.10) provides an example of non-linear constraints imposed on these couplings. 
In our discussion of boundary perturbations, we shall always depart from a set of 

correlation functions satisfying relation (2.9). Anticipating a more detailed discussion 

below, we stress that boundary perturbations do not preserve this property in general. 

One can often interpret the breakdown of Eq. (2.9) as a signal for the theory to develop 

a mixture of different "pure" (i.e. clustering) boundary conditions. Such phenomena 
are certainly expected to occur upon boundary perturbation and we will present some 

concrete examples later on. 

2.4. Boundary flelds 

The action of "I/V on the state space of the boundary theory induces a decomposition 

7-/= ~)i );i (possibly with multiplicities) into irreducibles of W. It also implies that the 

partition function may be expressed as a sum of characters xi(q) of the chiral algebra, 

Z(~,a) (q) := tr 7-t (qL°-c/24) = Z n/aa x i ( q ) ,  where n/a" C N. 
i 

There exists a one-to-one state-field correspondence ,/~ = ,/,(t4) between states 0 E 7-( 
and so-called boundary fields 0 ( x )  which are defined (at least) for x on the real 

line [79]. The conformal dimension of a boundary field 0 ( x )  can be read off from 

the L0-eigenvalue of the corresponding state 0 c 7-/. The boundary fields assigned 

to elements in the vacuum sector V ° coincide with the chiral fields in the theory, 
i.e. W(x)  = q~(w;x) for some w 6 V ° and Imx  -- 0. These fields can always be 
extended beyond the real line and coincide with either W or DW in the bulk. If other 

boundary fields admit such an extension, this suggests an enlargement of the chiral 
algebra in the bulk theory. 

Following the standard reasoning in CFT, it is easy to conclude that the bulk fields 

~oi.j (z, g) give singular contributions to the correlation functions whenever z approaches 
the real line. This can be seen from the fact that the Ward identities describe a mirror 

pair of chiral charges i and w( j )  placed on both sides of the boundary. Therefore, 
the singularities in an expansion of q~(z, Z) - ~oU(z, ~) around x = Re z are given by 

primary fields which are localized at t x on the real line, i.e. the boundary fields 0 ( x ) .  

In other words, the observed singular behaviour of bulk fields ~p(z, g) near the boundary 
may be expressed in terms of a bulk-boundary OPE [24] 

~o(z,Z) = Z (2y)ht-h-h C f t  0k(x) .  (2.11) 
k 

Here, 0 t ( x )  are primary fields of conformal weight hk, and z --- x + iy. Which Ok 
can possibly appear on the r.h.s, of (2.11) is determined by the chiral fusion of i and 

o/ w ( j ) ,  but some of the coefficients CCk may vanish for some a. One can show that 
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× × 
Xv+l 

Fig. 2. The curve Y~+l along which correlation functions are analytically continued to exchange the position 
of two neighbouring boundary fields. In most cases the result depends on the orientation of the curve. 

C~o = A~/A~; moreover, the C~k are related to the 1-point functions by generalizations 
of the constraints (2.10), see e.g. Refs. [59,78]. 

In boundary conformal field theory one also considers boundary fields which induce 
transitions ("jumps") between different boundary conditions oL,/3, see e.g. Ref. [22]. 

These "boundary condition changing operators" are associated with vectors in a state 

space 7-/,~ depending on both boundary conditions, and they cannot be obtained from 

bulk fields through a bulk-boundary OPE. Even though we shall only consider homoge- 
neous perturbations of boundary conditions which are constant all along the boundary, 

we will meet some boundary condition changing operators eventually: At certain val- 
ues of the deformation parameter A, it may happen that a perturbed theory describes a 

mixture (or superposition) of different clustering boundary conditions. In such cases, 
no jump is visible along the real axis, but there exist boundary fields which induce 
transitions between the various "pure" boundary conditions. 

Having introduced the boundary fields 0 ( x ) ,  it is natural to extend the set of cor- 

relation functions and to consider correlators in which a number of boundary fields 

~/,~ (x~) = c/, (0~, x~ ) are inserted along with bulk fields: 

(~I(Xl)...~M(XM)~1(ZI,ZI)...~oN(ZN,~N))~ f o r x ,  <X~+l. (2.12) 

These functions are analytic in the variables z~ throughout the whole upper half-plane 
Im z~ > 0. For the variables x~, the domain of analyticity is restricted to the interval 

x~ E ]x~- l ,x~+t[  on the boundary. In most cases, there exists no unique analytic 
continuation of tp~(x~) to other points on the real axis which lie beyond the insertion 
points of the neighbouring boundary fields. In fact, if we continue analytically along 

curves like the one shown in Fig. 2, the result will typically depend on whether we move 

the field ~ around ~b~+l in clockwise or anti-clockwise direction. There are certainly 
exceptions: Chiral fields W(x) ,  for example, do possess a unique analytic continuation 

to x E ~ \ {x~}. 
Based on this discussion on analyticity, we want to introduce a notion of locality 

that will become important later on: Two boundary fields ~0t(xt) = q~(~01;xl) and 
~02(xl ) = q~(~02; x2) are said to be mutually local if 

@(g,1;xl)q~(~2;x2) = q)(~z;x2)~/ '(~l;xl)  with xl < x2. (2.13) 

The equation is supposed to hold after insertion into arbitrary correlation functions, and 
for the right-hand side to make sense it is required that there exists a unique analytic 

continuation from x~ < x2 to x~ > x2. 
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A boundary field ~b(x) = q~(~;x) will be called self-local or analytic in the following 

if it is mutually local with respect to itself. (The second expression is chosen in view 
of the properties its correlation functions and of perturbations with self-local marginal 
operators.) 

Let us note that the OPE of two mutually local fields contains only pole singularities. 
In particular, the OPE of a self-local boundary field ~/, with conformal dimension h~0 = 1 
is determined up to a constant K to be 

K 
4 t ( x l ) ~ ( x 2 ) -  ( X l - X 2 )  2 + reg  i f h ~ = l .  (2.14) 

Boundary fields W(x)  from the chiral algebra are the simplest examples of analytic 
fields. They are not only local with respect to themselves but to all other boundary 
fields in the theory. 

It is crucial for our analysis of D-brane moduli to observe that further (non-chiral) 
analytic boundary fields ~b can exist depending on the boundary condition under consid- 
eration. Unless they belong to some extended chiral symmetry (which means that the 
original chiral algebra W was not chosen to be the maximal chiral symmetry), these 
self-local boundary fields ¢ will not possess a unique analytic continuation into the 
full upper half-plane. In fact, "moving" the boundary field ¢ around the insertion point 
of a bulk field q~ (by analytic continuation) can lead to a non-trivial monodromy in 

general. Whenever this happens, ~p has no chance to be local with respect to all the 
boundary fields that appear in the bulk-boundary OPE of the bulk field ~p. Consequently, 
a non-chiral analytic boundary field ~b is only expected to be local with respect to a 
subset of boundary fields. The latter includes at least the chiral boundary fields W in 
addition to the field ~b itself. 

The existence of non-chiral self-local fields is signaled by a partition function Za~(q) 
that contains the vacuum character of a W-algebra Wa~ extending the chirai algebra 
W c Wa~ of the model. We shall see several examples in Section 4. 

3. Marginal perturbations of boundary conditions 

Our aim is to study perturbations (or deformations) of a boundary condition which 
are generated by marginal boundary fields. After some general remarks, we describe a 
class of perturbations - which we call analytic deformations - that are truly marginal to 
all orders in the perturbation expansion. They are induced by self-local boundary fields 
of dimension one. Therefore, deformations generated by chiral currents are among them 
and may serve us to illustrate the more general construction we propose. In the last 
subsection we investigate arbitrary non-chiral analytic deformations and derive some of 
their properties which hold to all orders in perturbation theory. 
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3.1. The general prescription 

_ q.q(H) Let us start from some boundary conformal field theory with state space 7-[ - ' ~(n,~), 

where (O, a )  denotes the boundary condition along the real line. Boundary operators 
0 (x) E qb(~)  may be used to define a new perturbed theory whose correlation functions 

are constructed from the unperturbed ones by the formal prescription 

(~1 ( Z l ,  Zl ) ' ' '  ~ N  ( ZN,  ZN)  )a ;  A~ = Z - 1  . (Ia¢ ~l ( Z l ,  Zl ) . . .  ~t~N ( ZN, ZN)  )or 

::.'Z-/ i .x,__ 
"'" 2"n" "" " 

(rE S,, X(r(i) ~Xer(i~ l I 

d x n  
277" (O(Xl) ' ' 'O(Xn)*I ' '"  ~ON)" 

dxl 
• . . . . . .  dXn(~ l l (Xo ' (1 ) )  • , / / /(Xcr(n) ) @1 • @N)oL, 

2,r 27r 

where X is a real parameter. The second sum in the lowest line runs over all elements 

in the permutation group Sn. Since all the n! summands are identical, the last equality 

is obvious. It shows, however, that the symbol la¢, in the first line should be understood 

as a path ordered exponential of the perturbing operator, 

oo (/ .x} 
lao =Pexp{AS~} : = P e x p  A O(x)~--~ • 

-- CX3 

(3.1) 

The normalization Z is defined as the expectation value Z = (A~) - I  (la~,),~. These 
expressions deal with deformations of bulk correlators only. If there are extra boundary 

fields present in the correlation function, the formulas need to be modified in an obvious 
fashion so that these boundary fields are included in the "path ordering". A particularly 
simple example of this type will be discussed shortly, but we refrain from spelling out 

the general formula here. 
To make sense of the above expressions (beyond the formal level), it is certainly 

necessary to regularize the integrals (introducing UV and IR cutoffs) and to renormalize 

couplings and fields (see e.g. Ref. [23] for a discussion of bulk perturbations in 2D 

conformal field theory). IR divergences are usually cured by putting the system into a 
"finite box", i.e. in our case, by studying perturbations of finite temperature correlators; 
but this will not play any role below. On the other hand, we have to deal with UV 
divergences. So, let us introduce a UV cutoff e such that the integrations are restricted 
to the region I X i  - -  Xj[ ~> 13. Thereby, all integrals become UV-finite before we perform 

the limit e ~ 0. 
In the following, we consider marginal boundary deformations where the conformal 

dimension h of the perturbing operator ~b(x) is h = 1 so that there is a chance to stay 
at the conformal point for arbitrary values of the real coupling A (we choose ¢ ( x )  to 
be anti-self-adjoint). If  h :# 1, the perturbation will automatically introduce a length 
scale and one has to follow the renormalization group (RG) flow to come back to a 
boundary conformal field theory. For h > 1, the perturbations are irrelevant so that one 
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ends up with the original boundary theory. For h < 1, the perturbation is relevant and it 
is usually quite difficult to say precisely which conformal fixed point one reaches with a 
given relevant perturbation. Nevertheless, several non-trivial examples have been studied 
in the literature, see Refs. [38,92,25,33,60,61 ] and references therein, partially with the 

help of the thermodynamic Bethe ansatz. 
All these cases, however, share the common feature that (at the RG fixed point) the 

new conformal boundary theory is associated to the same bulk CFT - since the local 
properties in the bulk are not affected by the "condensate" along the boundary. Thus, 
boundary perturbations can only induce changes of the boundary conditions. 

To begin our discussion of marginal perturbations with a boundary field ~b(x), let 
us investigate the change of the two-point function (~b(x~)~p(x2))~ of the perturbing 
field ~O itself under the deformation. Obviously, the first-order contribution involves the 

following sum of integrals: 

X I - - ~  X 2 - - t ~  

/ dxI~l(X)~l(Xl)~l(X2))et+ f dx(~ll(Xl)~ll(x)~ll(x2))a 
--0o Xl+e 

oo 

+ / dx(O(xl)~b(xz)~b(x)},~. 
X 2 --t~ 

From the general form of the three-point function (with Xl < x2 < x3) 

{~(x~)~O(x2)O(x3)}~ = c~%~ 
( X l  - -  X 2 ) ( X l  - -  X3)(X2 - -  X 3 ) '  

it is easy to see that the first-order contribution to the perturbation expansion is log- 
arithmically divergent unless the structure constant C~e,e , from the OPE of boundary 
fields vanishes. The divergence would force the conformal weight of the field ~ away 
from the initial value he = 1 as we turn on the perturbation, i.e. the marginal field ~p is 
not truly marginal unless C~¢,~, = 0. If there are several marginal boundary fields in the 
theory, degenerate perturbation theory gives a somewhat stronger condition: A marginal 
field ¢, is truly marginal only if C~¢,, = 0 for all marginal boundary fields ~pt in the 
theory - cf., e.g.. Ref. [30] for the bulk case. Eq. (2.14) shows that self-local marginal 
boundary operators do satisfy this first-order condition. One should stress, however, that 
this is merely a necessary condition. Since it was derived within first-order perturbation 
theory, it is by no means sufficient to guarantee true marginality in higher orders of the 

perturbation series. 

3.2. Truly marginal operators 

The first-order condition is how far general investigations of marginal bulk pertur- 
bations go. Our main aim here is to prove that every self-local marginal boundary 
operator is indeed truly marginal to all orders and therefore generates a deformation 
of a boundary CFT. To this end, let us assume that the perturbing marginal field ~b(x) 
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is self-local in the sense discussed at the end of  the previous section. Then the above 

expression for the deformed bulk correlation functions can be rewritten as 

(~I(Zl, Zl)'' '~PN(ZN, ZN))e; A@ 

: z - '  ~ . , ~  . . .  2¢r ' (¢ , (x , )  . . . ~ ( x ° ) ~ ,  (3.2) 
n 

- - o o  --(3o 

where all integrals are taken over the real line with the regions ]xi - x./I < e removed 

as before. Based on the OPE (2.14) of  ~, it is not difficult to see that the divergences 

in e from the numerator cancel those from the denominator so that the limit e ~ 0 of  

the deformed hulk field correlator can be taken. Moreover, as we are dealing with a 

self-local marginal operator, this limit can be written as 

(~DI (Zl, Z l ) . . .  ~DN(ZN, ZN))a; A~k = lim (~1 (Zl, Zl)- . .  ~N(ZN, ZN))~; A~p 
c--~'0 

= ~ (~/(X1)... ~/(Xn)~l...¢~N)a, (3.3) 
D 

Yl Yo 

where "yp is the straight line parallel to the real axis with Im yp = ie/p, and it can 

be computed through contour integration. The expression on the right-hand side is 

manifestly finite, and it is independent of  e as long as e < min(Imzi)  where z/denote  

the insertion points of  bulk fields. Thus, the above formula allows us to construct the 

perturbed bulk correlators to all orders in perturbation theory. In particular, it determines 

the deformation of  bulk 1-point functions and hence the deformation of  the structure 

constants A~ which parameterize the possible boundary theories along with the gluing 

map. 

The extension of  these ideas to the deformation of  boundary correlators meets some 

obstacles. In fact, formula (3.2) admits for the obvious generalization 

(~//I(Ul)...~/M(UM) ¢PI(Zl,Zl) .--~N(ZN, ZN))et; A~p 

J7 .~" dxl dx,  
= z - J  Z_., ~ v - "  . . .  2 ~ - " ' "  2~  (~[l(Xl).. .~J(Xn) ~[11 ...~IM ~1 . . . ~ N ) a  

I1 
- - 0 0  - - 0 0  

(3.4) 

if and only if  the boundary fields ~q . . . . .  @M are local with respect to the perturbing 
field ~b. As we have argued in the previous section, this is usually a strong constraint 

on boundary fields. The integrals on the r.h.s, of  Eq. (3.4) diverge as e ~ 0 whenever 

the iterated OPE of the perturbing field ~/, with one of the boundary fields g'i contains 
poles of  even order. The (renormalized) correlation functions are again obtained through 

contour integration, 

(¢,~ (u~) . . .  ¢ ,M(uM) ~1 (Zt,  ~ )  . . .  ~N(ZN, ~N)),,; a~ 
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' °  f ... f " ... . . .  , , ,  . . . , , , > o ,  
, J  , , #  

n 
Yt Y~r 

where the fields ~i in the correlator on the right-hand side are given by 

= 

11=0 C1 C, 

and C, are small circles around the insertion point of ~Pi. Since the contour integrals on 
the r.h.s, pick out simple poles, the fields ~'i and q~i have the same conformal dimension 
- ~i can be regarded as the image of ~i under a "rotation" generated by the perturbing 

field ~p. 
With the help of Eq. (3.5) we are able to study the deformation of n-point functions 

of the (self-local) perturbing field ~0 itself. Notice that the OPE (2.14) contains no 

first-order poles so that the fields ~ and ~ coincide; in fact, all the contour integrals 
in Eq. (3.5) are zero if there is no bulk field inserted in the upper half-plane. Hence, 
any perturbative correction to the n-point function of ~p vanishes - which implies that 
self-local marginal field are truly marginal. 

3.3. Chiral marginal boundary perturbations 

For the time being, let us restrict ourselves to perturbations with local boundary fields 
.I taken from the chiral algebra, i.e. we shall analyze perturbations generated by fields 
assigned to elements in the subspace V ° C 7-(. Such fields are local with respect to 
all bulk and boundary fields, so that Eq. (3.5) may be applied to correlators involving 
arbitrary bulk and boundary fields. Consequently, a complete non-perturbative picture 
of the deformation can be given, including a proof of the invariance of the partition 
function. 

3.3.1. Deformation o f  the gluing map 

Our first goal is to describe the effect a marginal perturbation with the boundary 
current .I has on the gluing map 12. To this end, we phrase the content of the gluing 
condition (2.5) as follows: Suppose we insert the field W(z + 2i~) - 12W(Z - 2i6) with 
z = ~ into an arbitrary correlation function of the unperturbed theory. Then, by taking 
the limit 6 ---. 0 +, we move W and 12W to the boundary until the correlator vanishes 
at 6 = 0. Now we want to understand how the presence of the perturbation P exp(ASj) 
influences this situation. In more formal terms, we need to evaluate the expression 

O= lim Pe as.' (W(z~)  - 12W(~6)) 
6--*0 

=lim~o Z m - !  " "  2---~-"" ~ -~J (x , ) . .  
n=O 

. J ( x , , )  ( w ( z 6 )  - nW(~)), 
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where we have used z8 = z + 2i6, z6 = z - 2i8 and inserted the definition of the operator 
P e x p ( A S s )  underlying formula (3.3). Our next step involves closing the integration 

contours Yi either in the upper or in the lower half-plane. Let us choose the upper half- 

plane Im z > 0 for all contours (the final result is certainly independent of this choice). 
If there are other bulk fields in the correlator, we split the closed contour into a small 

circle C around z8 and a part surrounding the location of all other fields. The latter 

correlation function vanishes separately for 6 ~ 0 due to the "old" gluing conditions, 
whereas the former part yields the equation 

o o  

0= limS-" a" f a~0,--, 7 fdx, 27r dxn , . , ,  ......-4--~J(xl) ...J(x,) 
n=0 C C 

x (~(w ® 10>; z+, e+) - ~(IO> ® aw; z~, ~ ) ) .  

Here, we have described the fields W and J2W in terms of the corresponding states 

w, S2w E 1;0. Now we insert the formula (2.6) for the operator product expansion 
between .I and the chiral fields. Only the residues survive the contour integration so that 
we get 

/ ~JCx)(~(w®lO};z+,~+)+cl~(IO}®Ow;za,~8))=i~(Jow®lO);zs, z~). 
c 

The second term associated with OW cannot contribute since it is holomorphic in the 
upper half-plane. Iteration leads to 

o o  

0 = lim ~ (i3.)" (q~(J~w ® 10); z,~, ~ )  - ~(10) ® aw;  ~ ) )  
8--+0 ~ 

n=O 

= ~ ( ~ ( e x p ( M J o ) w ;  z )) - ,/~(aw; z ) 
I1 

= e iaJ° W ( Z  )e -iaJ° - o W ( ~ ) .  

Our last step follows from J0j0} = 0 and the state-field correspondence for boundary 

fields. Conjugation with exp(iAJo) induces an inner automorphism y j  of the chiral 
algebra VV, defined by 

y j ( W )  := e x p ( - M J 0 )  W e x p ( M J o )  for all W E VV. 

Replacing W by Y s ( W )  in the last line of our short computation, the final result for the 
change of the gluing conditions under chiral marginal deformations becomes 

W ( z )  = S 2 o y T ( W ) ( Z )  for z = Z. (3.6) 

Observe that "yj acts trivially on the Virasoro field because a current zero-mode J0 
commutes with all the modes Ln. Hence, the gluing condition T = T and those of all 
other generators W E W that commute with Jo remain unchanged under the deformation 
with J. These fields then generate the same Ward identities as before the perturbation. 
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3.3.2. Deformation of the 1-point functions 
We will now analyze the change of 1-point functions under the deformation induced 

by J. Our aim is to derive an exact formula for the perturbed 1-point function. To this 
end, we evaluate the terms in Eq. (3.3) order by order in h using the operator product 
expansion (2.7) between the field ~oij and our current J (x) .  Thereby, the calculation of 
the perturbed 1-point function is essentially reduced to the following simple computation: 

dx x'j <~ij(z,~)>_<~ij(z,~)>~x_~ (~oii(z,g)sj).= ~ x - z  
- - 0 0  

f d x (  X__~ij a~j _ a~ X j -  
= f~  x z ( z -~ )2h '  ( z - z )  2 h ' x - z  

- -  0 0  

O 0  i a /  ( )__ i XijA~j XjAij dx 1 1 
- ( z - T )  2,,, x - z x -  z--U 

- - O f )  

It involves the same kind of arguments as in the previous subsection and, in addition, 
the intertwining relation after Eq. (2.8). The higher order terms can be computed in the 
same way and give 

iaXiJ ACt e --ij 
(~ij(z, Z))~:~j - (z - Z) 2h'' (3.7) 

Consequently, the effect of the perturbation is to "rotate" the matrix A~ with exp(iAXis). 
This behaviour is consistent with the change of the gluing automorphism and the inter- 
twining relation of the linear map A~. 

3.3.3. Partition function and cluster property 
We have argued in the first subsection that correlation functions involving boundary 

fields can be deformed by the simple prescription (3.5) if all boundary fields in the 
correlator are local with respect to the perturbing field. In the case of a chiral marginal 
perturbation, all boundary fields have this property so that formula (3.5) can be used 
without any restriction on the fields ~bi. For correlation functions without insertions of 
bulk fields, there are no singularities in the upper half-plane. Consequently, the effect 
of the deformation on pure boundary correlators is trivial. In particular, the conformal 
weight of all boundary fields is unaffected by the perturbation. Hence, the partition 
function Za,~) ( q) is invariant under chiral deformations. 

Let us also briefly discuss the fate of the cluster property (2.9) under chiral deforma- 
tions. Without loss of generality, we can restrict ourselves to the investigation of 2-point 
functions. The basic idea is simple: After expanding the perturbing operator P exp(Saj),  
we deform the integration contours (which originally are parallel to the real axis) so 
that they surround the two insertion points zl and z2 in the upper half-plane (see Fig. 3). 
Thereby we rewrite the deformed correlation function in each order of the perturbation 



250 A. Recknagel, V Schomerus/Nuclear Physics B 545 (1999) 233-282 

++ , 

Fig. 3. For chiral deformations the original curves yp in the contour integrals (3.3) can be deformed into 
small circles surrounding the insertion points of two bulk fields. The result is expressible through descendants 
of the original bulk fields. 

expansion as a sum of  unperturbed 2-point functions involving descendants of  the origi- 

nal bulk fields. These functions can be split into products of  perturbed 1-point functions 

by the cluster property of  the undeformed theory. This last step involves a standard 

re-summation,  and the details are left to the reader. 

We will see in the next subsection that our assertions on chiral deformations can be 

derived rather easily in the boundary state formalism. Here we have chosen an alter- 

native (and certainly more cumbersome)  route because it allows for a first illustration 

of  the prescriptions that underlie analytic marginal perturbations. We shall return to 

more general cases in the last subsection after a brief interlude on the boundary state 

formalism, which is very effective for chiral marginal deformations but difficult to adapt 

to other cases. 

3.4. The boundary state formalism 

Most aspects of  CFTs on the upper half-plane can be studied equally well by intro- 

ducing boundary states into the "parent" CFT on the full plane - more precisely, on the 

annulus or on the complement  of  the unit disk. Boundary states can be viewed as spe- 

cial linear combinations of  generalized coherent states (the so-called Ishibashi states),  

which are placed at the boundary of  the annulus and disk complement,  respectively, and 

which provide sources for the bulk fields. This leads to a generalized notion of  D-branes 

coupling to closed string modes [79] .  

An abstract characterization of  a boundary state can be given in terms of  bulk field 

correlation functions: Let us use z, Z as coordinates on the upper half-plane as before 

and s ¢, ~ with 

2~i In Z 2~i In 
~: = eTo and ~ = e -7o  (3.8) 

tO denote coordinates on the annulus within the full complex plane; /30 is an inverse 

"temperature",  i.e. we have identified the semi-circles I zl -- to and I zl = to exp/30 with 

some positive imaginary time to. 3 

3 The transformation is easier visualized when split up into the two consecutive maps z ~ w := In z from 
the upper half-plane to the strip - hereby the boundary is broken up into two components - and w ~ ~: 
from the strip to the annulus. 
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The boundary state ]a) which implements a boundary condition a of the boundary 
CFT (with Hamiltonian H (n)) into the plane theory (with Hamiltonian H (e)) is defined 
by demanding the relation [79] 

Try .  (e-/3°H(m~IH) ( Zl, g, ) . . .  q~(N t4) ( ZN, ZN) ) 

-- J ( z ,  e;~: ,~).  (Oale-~oH'P'~ole)(( l ,~) . . .~(P)((N,~N)[ 0"} (3.9) 

for arbitrary bulk fields q~'q)(zi, h) = ~oi(zi, ~) of the half-plane theory. The Jacobians 
that appear due to the conformal transformation from (zi, gi) to (sci, ~i) are collectively 
denoted by i f (z ,  ~; ~, ~7); O is the CPT operator. The above definition may be extended 
so as to allow for two different boundary states lee), 1/3) at the boundaries of the annulus, 
corresponding to a strip with two different boundary conditions a,/3, or to a jump in 
the boundary condition along the real line. 

There exists an alternative way to introduce boundary states, namely by equating 
zero-temperature correlators on the half-plane and on the complement of the unit disk 
in the plane. Since this is useful to compute the variation of 1-point functions under 
chiral marginal deformations, we present the formulas. With z, g as before, we introduce 
coordinates (, ( on the complement of the unit disk by 

1 - i z  and ( -  l + i Z  (3.10) 
( -  1 + i z  1 - i g '  

if 10) denotes the vacuum of the bulk CFT, then the requirement 

( ,p l  ( z , )  . . . ( Z u ,  

= J ( Z ,  Z; •, ~) " (0[~O(1 P) (~"1, ~1)..-~(N P) (~'N, ~N)[O/) (3.11) 

defines the same boundary states as before; see e.g. Refs. [24,79]. 
The concrete construction of boundary states proceeds in two steps: Given a gluing 

automorphism s2 of the chiral algebra W, one first associates Ishibashi states li))a to 
each pair (i, w - t  ( i+))  of irreducibles that occur in the bulk Hilbert space [56]; [i))a 
is unique up to a scalar factor (fixed by relation (3.14) below) and implements the 
gluing map in the sense that 

[W, - ( - l ) h w o W _ , ]  ]i))a = 0. (3.12) 

Full boundary states ]a)a =- [(/Lee)) are given as certain linear combinations of 
Ishibashi states, 

la)a : Z Bi[i))a" 
i 

The complex coefficients B / are subject to various consistency conditions, most notably 
to "Cardy's conditions" arising from world-sheet duality - see Ref. [22] for details. The 
partition function of the boundary theory on a strip can be calculated on the annulus as 
a transition amplitude between two boundary states, 

( f l )  c ( P )  c Z~fl(q) =-- try,,,, (qLo - ~ )  = (0/3[ I/Co - ~  la). (3.13) 
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This is the two-boundary-state generalization of (3.9) without bulk insertions, and q = 

exp(27ri~') = exp(- /3o) ,  ~ = exp(-2~' i /7-) .  The r.h.s, of Eq. (3.13) can be calculated 
with the help of 

al (J[ Cl L ~°'~- ~ li) ) a = 8i,.i xiVV ( cl) (3.14) 

and, on general grounds, the l.h.s, in the expression (3.13) must be a sum of )4; 

characters with (positive) integer coefficients. After a modular transformation, this 

implies Cardy's non-linear constraints [22] on the coefficients B/. In particular, the 

boundary "states" should be regarded as labels for sectors, not as elements in some 
vector space. 

With the help of (3.11), one can show [24,79] that there is a simple relation to the 
1-point functions and structure constants of the bulk-boundary OPE - which are subject 
to further non-linear sewing constraints like (2.10) - namely 

~ B ? 
ai,~o_,~r ) =B~ and C ¢ ° =  B--~f" (3.15) 

The decomposition of a boundary state into Ishibashi states contains the same informa- 
tion as the set of 1-point functions and therefore specifies the "descendant" boundary 

CFT of a given bulk CFT completely. 

Now let us exploit the boundary state formalism for the discussion of marginal 

boundary perturbations by W-algebra currents J (x ) .  To this end, we use Eqs. (3.9) 
or (3.11 ) to transport the perturbation from the boundary of the upper half-plane to the 

boundary of the annulus and the unit disk, respectively. This is possible since J is a 

local field of the bulk theory so that its image under the conformal transformation acts 
on the state space of the bulk theory. With (3.10) and hj = 1, we obtain 

dx j ( m ( x )  = J ( e ) ( ( )  = ta 0 . (3,16) 

I(1=1 

An analogous formula results from the map (3.8) to the annulus, this time the r.h.s. 

consists of one integral for each boundary component at [•l = 1 and I¢1 = 27r2//30, 
respectively. Since chiral currents are analytic, we need not worry about possible diver- 
gences, as they can be avoided by deforming the integration contour. 

It is the last equality in (3.16) that makes it easy to treat perturbations by chiral 
currents in the boundary state formalism: We could not conclude that f ~dx  j ~ l ) ( x )  = 
J0 ~m on the half-plane because of the different integration contour in the definition 
of half-plane modes, see [20,21,79]. Using boundary states, however, the effect of 
marginal boundary perturbations on a half-plane theory reduces to the action of current 

zero-modes - as long as the perturbing fields are taken from the chiral algebra. 
The boundary states which describe the boundary conditions before and after the chiral 

perturbation are related by a simple "rotation". Correlators of the deformed boundary 
CFT can be obtained upon replacing ]a) in the correspondences (3.9) or (3.11) by 

](Y2, ce))ag ~ 1(~O, ot);A J) = e lag° 1(~, a ) ) ,  (3.17) 
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where Jo =- J~o e~ is the zero-mode of the left-moving current on the plane. 

We have made the unperturbed gluing map /2 explicit in (3.17). Indeed, from this 
formula, we can immediately re-derive the change (3.6) of the gluing conditions under 
the marginal deformation by J (x ) :  Using that left- and right-movers commute, as well 
as the simple relation Jn ](/2, or)) = - / 2 J - n  I(s2, tr)), Eq. (3.12) gets replaced by 

[w,,- (-l)hW ao rT(W_.)] I(o,-))~j =0 (3.18) 

with yT(W) := exp(-i ,~J0) Wexp(iAJ0); see also Ref. [49] for special cases of (3.18). 
Likewise, Eq. (3.7) for the change of the 1-point functions follows from (3.1 1 ), (3.15) 
and (3.17). 

Finally, let us use the boundary state formalism to verify - without resorting to 
perturbative arguments - that the partition function Z,, (q) = Z,,~ (q) of a boundary CFT 
with boundary condition oe along the real line stays invariant under marginal perturbations 
by a chiral boundary field J (x ) :  We have to compute the transition amplitude between 
la; a J) and (O (or; a J)I .  But this equals the unperturbed amplitude Z , , ( q )  because 
(Oexp(iaJo) a I = (Oot] exp(-i,~Jo) and because exp(iAJ0) commutes with L~o P). The 
spectrum of the boundary theory does not change. 

Up to now, we have always started from a boundary CFT with a constant boundary 
condition ce along the real line and considered boundary perturbations involving marginal 
fields that were integrated over the whole boundary - which corresponds to simultaneous 
deformation of one and the same boundary state la) on both ends of the annulus. 
Generalizations of this would involve jumps in the boundary conditions along the real 
line and different boundary operators integrated over the segments of constant boundary 
condition. 

The boundary state formalism allows us to discuss the basic case with one such 
jump, using different perturbations for (possibly different) in- and out-boundary states 
in Eqs. (3.9), (3.17). Generically, the partition functions Z~,~;a~j~,l~;.~2j2)(q) for such 
systems will show a different spectrum than in the unperturbed situation, and they will 
involve "twisted characters" of the symmetry algebra - more precisely, characters of 
representations twisted by inner automorphisms Adtj with U = exp{i(a~J0 l - a2J~)}. 
We shall take advantage of this fact in Section 4. 

3.5. Non-chiral analytic perturbations 

Let us now turn towards deformations generated by marginal boundary fields ~p(x) 
that are self-local (in the sense of Section 2.4) but not taken from the chiral algebra. We 
have seen already that these fields are truly marginal to all orders in A, so we can ask 
how gluing conditions and 1-point functions behave under finite perturbations. We will 
settle the former issue completely in Subsection 3.5.1 and make some general statements 
on !-point functions and on the spectrum in Subsection 3.5.2. 
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3.5.1. Change of the gluing map 
As in the case of chiral boundary perturbations, we would like to study the effect of 

non-chiral marginal deformations on the gluing conditions W = J2(W) for the generators 

of the observable algebra W. We start the discussion by showing that T = T is not 
changed under analytic deformations to all orders of ,L 

This follows essentially from the OPE between T ( z )  and ¢s(x): For a field 4' of 
conformal dimension h = 1, the singular part of the OPE is a total derivative, 

1 1 ( , ) 
T ( z ) O ( x ) =  ( z - x )  2 0 ( x ) + z - x O x ~ ( x ) + r e g = O x  z - x O ( X )  +reg.  

We can test the gluing condition for the Virasoro field by inserting T(z )  into the 

correlation function (3.3) such that Im z > e, and then moving T(z)  down towards the 

real axis, where it can be compared to T ( f ) .  While passing through one of the contours 
"fi, we pick up a term 

~-~T(z)O(x)  = ~ ox O(x) ~ =0, 
Z- -X  

C C 

where C is a small circle surrounding the insertion point of the Virasoro field. The 
contour integral along C vanishes, which means that the Virasoro field T cannot feel the 

presence of the perturbation and hence the gluing condition stays intact. 

The previous argument can be generalized to the following simple criterion: 

Under analytic deformation with a self-local perturbing field ¢s(x), a prescribed 
gluing condition for a chiral field W( z ) stays invariant to all orders in A if the singular 
part of the OPE W ( z ) qJ ( x ) is a total derivative with respect to x. 

We will encounter several examples later in the text. Let us remark that the same 

criterion is at least necessary for other (non-analytic) marginal perturbations to preserve 
a given gluing condition. 

Perturbations with currents J from the chiral algebra often lead to a non-trivial defor- 

mation (3.18), (3.6) of the gluing condition of a symmetry generator W(z) ,  without 

destroying the associated Ward identity. We will see that this is impossible for non-chiral 

analytic deformations: In Subsection 3.3.1, the change in the W(z )-gluing condition was 

obtained by moving the chiral field W(z ) through the stack of integration contours. After 
a bit of combinatorics, the same procedure for non-chiral analytic deformations results 
in 

W(z)  ear ~¢'(~) = ear ~"~(~) [e ~¢" W] (z)  

(to be understood in the limit z ~ ~) with 

~ - ~ A n / d x i  f d x n  
[ea¢W] (z)  := ~ - f - ~ . . . ~ b - ~ W ( z ) ~ ( x , ) . . . O ( x n ) .  (3.19) 

n=O Ci C,, 

The curves Ci encircle the point z in the upper half-plane as in Fig. 3. To each order 
n, the integrals will pick some term ~p(n) from the OPE of W(z)  with the product of 
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perturbing fields. At least part of the ~b (n) are true boundary fields which are not defined 

away from the boundary, thus they do not belong to the chiral algebra and the above 
gluing does not produce Ward identities for W(z)  in the deformed boundary CFT. 

This shows that a non-chiral analytic perturbation either breaks or leaves invariant 

the Ward identity associated to a given generator of W. In general, this leads to a new 
conformally invariant boundary theory with Ward identities governed by a subalgebra H 

of the original chiral algebra W. 
Let us add a few comments on deformations of boundary conditions for N = 2 

superconformal CFTs because they constitute an important motivation for the present 

work and because they nicely illustrate the criterion given above. In such theories, one 
considers two types (A,B) of gluing conditions for the chiral fields G +, J, T, 

A-type: J ( z )  = - J ( Z ) ,  G+(z)  = r /GT(Z)  (3.20) 

B-type: J ( z ) = f f ( ~ ) ,  G + ( z ) = r / G ± ( 2 ) ,  (3.21) 

supplemented by T = T in both cases. The parameter 7/is restricted in order to have a su- 

persymmetric "space-time" theory. More precisely, one requires that an N = 1 subalgebra 

with generating supercurrent G( Z ) := G+ ( z ) + G - ( z )  or G~ ( z ) := i( G+ ( z ) - G - ( z ) )  
is preserved by any boundary condition. This leaves us with the choice r /=  + 1. The glu- 

ing conditions (3.20), (3.21) were first introduced in [66], where the connection with 

supersymmetric cycles in Calabi-Yau manifolds was investigated. A quite non-trivial 

realization in CFTs associated with homogeneous spaces was constructed in [89]. 
It is natural to try and deform an N = 2 superconformal boundary CFT with the chiral 

U( 1 ) current. According to our general formulas, such deformations lead to 

A type: G±(z)  =e-iar/Gq:(z), 
B type: Gi ( z ) =e ia r /G±( g ) .  

This however, spoils the condition r /=  4-1 and hence the "space-time" supersymmetry 

unless ,~ is a multiple of 7r. Thus there is no family of supersymmetric boundary CFTs 
generated by perturbing an N = 2 model by the U( 1 ) boundary current J. 

On the other hand, marginal deformations associated with chiral or anti-chiral pri- 
maries can exist and preserve N = 2 supersymmetry. A state ]0¢,a) (or the corresponding 
conformal field) in an N = 2 superconformal field theory is called chiral and anti-chiral 
primary if it satisfies 

G+I ]0c) = 0 ,  and G-~ [~'a) = 0, 
2 2 

respectively. It follows that [Oc,a) are N = 2 highest weight states with charge and 
dimension related as q = 2h and q = -2h ,  respectively, see Ref. [58]. 

Suppose there is a chiral primary boundary field Oc(X) of conformal dimension 
1/2 in an N = 2 boundary CFT, and set ~p(x) := G-1/2Oc(X ) - G+l/2Oa(X), where 
g,,,(x) = (Oc(X))* is the anti-chiral conjugate of Oc(X). Then O(x)  is anti-self-adjoint, 
uncharged and marginal, and we can study the deformations it induces. 
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Typically, there will be other boundary and bulk operators that are non-local with 
respect to ~ ( x ) ,  so we have to rely on the methods developed for non-chiral perturba- 

tions. The gluing condition for the Virasoro field is preserved because of h~0 = 1 (see 
above). Since ~, (x) carries no charge, the singular contribution to the operator product 

of the current J (w) with ~, (x) vanishes so that the gluing condition for the current J is 
untouched. As for the supercurrents G+(z ) ,  we use the state-field correspondence and 

the N = 2 relations to find 

G-(z)(G-,/2~Pc)(x) ~O, G+(z)(G-,/2~Pc)(X) ~Ox(2g'C(x) ) 
Z - - X  

together with the analogous relations for the anti-chiral contribution G + - i/2~p,, (x) to the 

perturbing field ~b. The first equation already holds when ~Pc(x) is any N = 2 primary, 

whereas in the second it is crucial that ~ . (x )  is chiral, Our general criterion shows that 
deformations with ~p(x) do not affect the prescribed N = 2 gluing conditions - whether 
they are of A-type or of B-type - to first order in the perturbation parameter; hence they 
are invariant to all orders if ~ ( x )  is a self-local marginal field. 

Deformations induced by chiral primaries as above could serve as a starting point 

to define topological N = 2 boundary CFTs. In the bulk case [31,91], topological 

field theories yield families of commutative associative rings, parameterized by the 

perturbation parameter, which often can be interpreted as quantum cohomology rings 
of complex manifolds. It would be interesting to see which new structures arise from 

topological boundary correlators. Since the topology of the "supporting space", i.e. of 
the world-sheet boundary, does not allow us to continuously interchange arguments in 

correlation functions, one may expect that non-commutative rings appear quite naturally. 

3.5.2. One-point functions, spectrum, and the cluster property 
A boundary conformal field theory is determined by the gluing conditions and the 

l-point functions. We have discussed the change of gluing conditions under non-chiral 

analytic deformations, but it is difficult to obtain general statements on the deformed 
l-point functions, in particular because they are to be computed for all primary fields 

of the smaller ("unbroken") subalgebra L /C W associated to the reduced set of Ward 
identities that may survive after turning on the perturbation. Nevertheless, as we will see 
later on, there are examples of non-trivial analytic deformations for which the deformed 
I-point functions can be constructed to all orders. 

At the moment, we limit ourselves to a simple first-order criterion for the invariance 
of a 1-point function. Let ~o(z, ~) be an arbitrary quasi-primary bulk field, e.g. a primary 
field for the reduced chiral algebra U c W. Conformal transformation properties fix the 
2-point function of ~(z,  ~) with the perturbing field O(x)  up to a constant, 

(÷(z, ~)~0(x))~ = c~, 
( Z  - -  ~ ) 2 h - - l ( z  - -  X ) ( Z  - -  X ) '  

Here, h = h is the conformal weight of the field ~o, and the bulk-boundary OPE coefficient 
C~% depends on the original boundary condition a. By the residue theorem, we get the 
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following first-order correction for the perturbed l-point function 

G% 
(~o(z, ~)),~;a¢, = (~o(z, ~)),~ + i a  (z ---z) 2h + O(a2) '  (3.22) 

To leading order, a 1-point function (~p(z, Z))4 is invariant under a perturbation with ~p 
if and only if C~¢ = 0. Again this is a necessary condition for the invariance of a given 
1-point function under any truly marginal perturbation, but it is certainly not sufficient. 

A full computation of the partition function requires complete knowledge of all l- 
point functions and hence it is at best accessible through a case by case study. On 
the other hand, there are some general statements we can make about the behaviour 
of Z~(q) under analytic deformations. We have argued above that the formula (3.5) 
can be used to construct perturbed correlators of boundary fields ~bi which are local 
with respect to the perturbing field ft. By the same arguments as in chiral deformation 
theory, we conclude that the conformal weights of such fields ~bi are invariant under 
the deformation. While this criterion does not protect the full spectrum of boundary 
conformal weights (as in the case of chiral deformations where all boundary fields are 
local with respect to ~p), it shows that part of the partition function stays intact. In 
particular, all chiral fields W are local with respect to ~/, so that the partition function 
will always contain the vacuum character of the original chiral algebra W even if gluing 

conditions and Ward identities are broken down to a subalgebra H C W. Furthermore, 
while the "gluing" (3.19) of a chiral field W(z )  to boundary operators destroys the 
Ward-identity for W ( z ) ,  it still leads to a (possibly twisted) action of the full chiral 
algebra W on the state space 7-/. This effect can be read off from the partition function of 
the deformed theory which still decomposes into characters of (twisted) representations 

of W, see the examples below. 
The cluster property is somewhat more difficult to attack. Note that the argument at 

the end of Subsection 3.3.3 cannot be used in this simple form because the deformed 
correlators are not expressible through correlators of descendants of the original bulk 
fields. There exists a variant of the previous reasoning which takes into account the spe- 
cific analyticity properties of correlators with insertions of self-local non-chiral boundary 

fields and bulk fields. Its convergence behaviour in the limit n ~ cx~, however, is not 
easy to control. It is likely that the cluster property is preserved for an open neighbour- 
hood of h = 0 but is bound to break down at certain finite values of the perturbation 
parameter h whenever we deform with some non-chiral boundary fields. This agrees 
with the examples we analyse below. Often, the breakdown of the cluster property has 
an interesting physical or geometric interpretation. 

4. Example: Boundary deformations for c = 1 theories 

The results of the previous section hold for arbitrary boundary CFTs. We will now 
illustrate them in a simple example, namely the free bosonic field. To begin with, we 
present the uncompactified theory with Neumann and Dirichlet boundary conditions and 
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study their deformations. Then the same analysis is made for the compactified boson. 

In the third subsection, we investigate boundary perturbations of c = 1 orbifold theories. 
Although the models under consideration are simple enough, we will encounter rich 

patterns in the brane moduli space, including some unexpected phenomena. 

4.1. The uncompactified theory 

The dynamical degrees of freedom of the bulk theory are obtained from a single 
field X ( z ,  2) which obeys the usual equation of motion OOX(z ,g )  = 0. The modes 
of the left- and right-moving chiral currents J ( z )  = 2 i O X ( z , g )  = ~-~a,,z - n - I  and 

J ( Z )  = 2 i J X ( z , ~ )  = ~ f i n g  -n - l  generate a U(1) x U(1) algebra with canonical 
commutation relations 

[an, an,] = n f n - m ,  [am, an,] = nt~,-m. 

1 The Virasoro fields are obtained from J , J  by normal-ordering, T ( z )  = ~ " JJ  : (z )  and 
1 T ( Z )  = ~ : 3 7 :  (~ ) .  

The abelian current algebra has irreducible representations V g labelled by real numbers 
g, the U( 1 ) charge. ))g is generated from a ground state [g) with the properties 

anlg) = 0 for all n > 0 and ao[g) = gig). 

The lowest-energy subspace V~ of );g is one-dimensional and spanned by Ig), the element 

ao acts on V0 g by X g = g. 
Putting things together, one can realize the bosonic field X on the state space ~(P) = 

(~g V g ® ))g which is a diagonal sum with equal U( 1 ) charges for both chiralities. In 

the explicit formula 

X ( z , Z )  : x -  ~ p l n ( z g )  + ~ ~--~ z + - -  ' 

one new element x appears which acts as differentiation x = iOg on the state space. 
We have also introduced the operator p = a0 + n0 which has the usual Heisenberg 
commutation relation with x. Bulk fields ~g~u2(z,z) exist only for gl = g2 so that we 

will omit one index in the following. ~og = q~gg is obtained from the bosonic field by 

~og(z, g) =: exp(2 igX(z ,  ~) ) :, 

and with proper normal-ordering these fields can be shown to obey the operator product 

expansions 

~Og| ( Z l ,  Zl )q:~g2 (Z2,  Z2) exa IZ l - -  Z212glg2@glWg2 (Z2, Z2) ~ - . - "  

1 2 The conformal weights hg = hg of ~pg(z, ~) are given by hg = gg . 
We will look for boundary conditions that preserve the chiral symmetry algebra 

generated by the U(1)  current J. There are two possibilities for the gluing map that we 

can use: 
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Neumann boundary condition: J(z) =/2NJ(Z)  --= J ( Z ) ,  (4.1) 

Dirichlet boundary condition: J(z) =/ '2oJ(Z)  - - 7 ( Z ) .  (4.2) 

The Neumann type boundary conditions are realized by a bosonic field 

i a ,  (z_ ,  + Z_,) X ( z , Z ) = x - ~ p l n ( z Z ) + ~ Z  n 
n~O 

acting on a state space 7-/= ~)g V g. Here, x = i0g as before, and an, p = 2ao are the 
modes of the generator .J of the U(1) symmetry in the boundary Hilbert space. The 

computation of the 1-point function of ~o~ (z, 2) =: exp(2igX(z, ~) : is a straightforward 
exercise, leading to 

(~g(  Z, Z ) )N : (~g,O" 

Note that there appears no free parameter in these 1-point functions, i.e. there is only 

one boundary theory with Neumann boundary conditions for an uncompactified free 

boson. 
For Dirichlet boundary conditions, we build the bosonic field according to 

i a,, (z_n_ 2_n) X(z,e) : x 0 +  
n~0 

Here, Xo is a free real parameter describing the value of the bosonic field along the 

boundary, i.e. X(z, 2) - X(z ) + X(2) = x0 for z = 2. The field X acts on a state space 
7-/= )20 consisting only of the vacuum representation. This time, calculation of 1-point 

functions for ~Ou(Z, 2) results in the formula 

e2igxo 
(~g(z ,  z ) )~xo  - ( z  - 2)  2h+' 

which depends on xo, parameterizing different possible boundary theories with Dirichlet 
boundary conditions. 

Note that, for the free boson theory, the structure constants ~ in the sewing con- 
straint (2.10) are given by -- ~g'g,,g2 = ~g',gl+g2" The numbers A~ ° = exp(2igxo) solve 
Eq. (2.10) and hence the theory has the cluster property (2.9); at the same time, this 
means that superpositions ("mixtures" of "pure" Dirichlet boundary conditions do not 
cluster. 

4.1.1. Chiral deformations 
Let us now study marginal deformations and start with the chiral current J which is 

the only field of weight h = 1 in the chiral algebra. Since the zero-mode a0 commutes 
with all other elements in W, it generates the trivial inner automorphism y] = id on the 

chiral algebra. It follows then from Eq. (3.6) that the gluing conditions are invariant 
under the deformation, i.e. they are given by the formulas (4.1), (4.2) for all values of 

the perturbation parameter A. Consequently, the only possible effect of the perturbation 
on the boundary theories is due to changes of the 1-point functions. 
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For Neumann boundary conditions we have Ag u = 6g,o so that, according to our 
formula (3.7), this coefficient - and therefore the Neumann boundary theory - stays 
invariant under deformations with .l(x). For Dirichlet boundary conditions, things are 
a bit more interesting. The coefficients A~ o = e 2igx° of the Dirichlet boundary condition 

behave as 

X0 Ag ) ei'lge2igx° = e 2ig(xO+ ~ ) 

when we turn on the perturbation. As a result of the deformation, the parameter x0 gets 

shifted by a/2, i.e. the D-brane is displaced. 

4.1.2. Non-chiral deformations 
In the case of Neumann boundary conditions, there are two other boundary fields of 

conformal dimension h = 1. We will consider perturbations by the combinations 

~p'(x) := v~cos{2x/2X(x)} ,  ~b2(x) := v ~ s i n { 2 v ~ X ( x ) } ,  

which will be seen to break the chiral symmetry down to the Virasoro algebra by 
inducing a periodic "potential" along the boundary. This has been studied in some detail 

in Refs. [ 15,17,76]. 

The boundary fields ~U'(x), a = 1,2, are local with respect to themselves. By our 

general considerations of Section 3.2 on analytic perturbations, ffa(x) are truly marginal 

(to all orders in the "coupling" A). At the same time, we expect the spectrum of bound- 
ary fields to change when the boundary potential is turned on, because the boundary 

Hilbert space 7-/-- ~)u V u of the Neumann theory contains fields which are non-local 
with respect to ~b"(x) - in fact, only the scaling dimensions of operators with charges 

in x/2Z are protected. 
Let us first see how the U(1) gluing conditions behave under perturbations with 

e.g. ~p~(x). The criterion for invariance of /2 given in Section 3.5 required that the 
singular part of the OPE between a chiral symmetry generator W(z) and ,~/1 (X) is a 
total 0x-derivative. This is true for the Virasoro field W(z) = T(z) ,  but not for the 

current W(z)  = J(z) .  So we have to determine the effect of pushing J(z )  through 
the xi-integration contour when moving the field towards the real line, in order to 

evaluate (3.19) describing the change of J(z)  = J ( z ) .  The OPE of J(z)  with ~pl(x) 

is given by 

J(z )  ~,l(x) = i----~--~ ~O2(z) + r e g  (4.3) 
Z - - X  

so that we pick up a term i v ' ~ 2 ( z )  whenever J(z)  passes one of the contours. The 
effect of moving the field ¢,2(z ) towards the real axis is determined by the OPE 

- i v / ~  
~b2(z) ~bi (x) - J(z )  ÷reg .  (4.4) 

Z - - X  

We can now apply our general formula (3.19) to derive the following closed expression 
for the ~,l-deformed gluing conditions: 
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J ( Z )  = s in(x /2a)  O2(x)  + cos (v~3 . )  J ( g )  (4.5) 

for z = g = x. By the same reasoning, one can determine the effect of  perturbations 
with ~p2 on the Neumann gluing condition: 

J (  z ) = - sin(v/2A) ~ l  (x)  + cos(x/2A) J ( g ) .  (4.6) 

These equations, which were also found in [ 17], mean that the boundary reflects left- 

moving into right-moving currents only at the expense of marginal boundary fields. 
As a consequence, the correlation functions of  the perturbed boundary CFT no longer 

obey Ward identities for the U( 1 ) current J. Exceptions occur whenever .~ = n ~22 for 
some integer n: Then ~ " ( x )  disappear from (4.5),  (4.6) and, if n is odd, the original 

Neumann conditions for J ( z  ) are turned into Dirichlet conditions. We will refer to the 

latter values of  the perturbation parameter as Dirichle t - l ike  points. 

Broken U ( I )  symmetry complicates computations considerably. Since it is only the 

Virasoro algebra that remains at our disposal, we have to characterize the deformed 
theory through the 1-point functions of  all Virasoro primary fields. The decomposition 
of  irreducible U(1)  modules into c = I Virasoro modules is well known. Both coincide 

as long as the conformal dimension of the primary field is not given by h = m 2 for 
1 any m C 2Z, but for those cases, the U(1)  modules decompose into a sequence of 

irreducible Virasoro representations, 

oo 
])U( 1 ) ~ .i )Vir 
--V%, = ~ "(1"1+/) z (4.7) 

/=0 

- the subscript on U(1)  modules is the charge, the one on Virasoro modules the 
conformal dimension. There is a corresponding identity for the characters, 

Vir U(I)(~x . U(I) . . 

X,,,2 ( q )  = X v ~ , ,  q )  - Xv,-~(iml+~) t q ) .  (4.8) 

It means that, for the values h = m 2, m C ½Z, the c = l Virasoro Verma modules contain 

a singular vector at level 21m I + 1. 

Coming back to our problem of describing the deformed boundary theories, we first 
remark that the theory has a rather useful "hidden" SU(2)  symmetry which also governs 
the deformed theories. In fact, this symmetry is obvious from the OPEs of j ,~1 ,¢ ,2  
which, while not forming an algebra of  true local currents for the full boundary CFT, 

still lead to the same algebraic structure for various quantities of interest, in particular 
for l-point functions of  bulk fields. This SU(2)  symmetry is also visible in the structure 
of  the decomposition (4.7).  Indeed, the Virasoro highest weight vectors at energy h = j2 
in the state space 7-/ of  the Neumann theory span an SU(2)  multiplet of  length 2j  ÷ 1 
so that 

OQ 
~t.~= f "I)U(1) ~ ~ )  "I)U(I) / "l~Vir (],)Vir ~ ~2j+l 

-v '~m = gV2 G 0 \ .I / 
g , vS,,, , ,c  ½ z g ~ ~ m  .j ~ ½ Z, 

A similar structure is observed for the state space ~ ( e )  of  the bulk theory, 
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,~)Vtr v~r ( v V i r  @ - Vir \ @ 2.j+l 
= Vg2/2@ g2/2~ ~ \ 3 Vj2 ) ~ . . .  

g ~ v~m jE ½Z~ 

(4.9) 

where the dots denote terms with h 4: h, which are of no concern to us since they 
cannot couple to a conformal boundary state. From these formulas we conclude that 
spin-less (i.e. h = h) Virasoro primary bulk fields come in two families: 

(1) ~og,g(z,Z) w i t h g ( ~ 2 Z  

(2) ~,, , , (z ,Z) with j c ½Z+ 

and m = - j , - j  + 1 . . . . .  j - 1, j. The fields of the second family have U(1) charges 

g = ~ = v~m E ~2 Z with respect to Jo. 

Since the perturbing fields span the charge lattice v~Z,  U( 1 ) charge conservation 
implies that the 1-point functions of fields q~g,g in the first family are not perturbed, i.e. 

(~g,g(Z,Z))N;a¢,~, = 0 for g ~ ~22 Z. (4.10) 

For the fields ~,,,m, results get more interesting. In the evaluation of the deformed 
correlators we continue the perturbing field analytically into the upper half-plane and 
compute the usual contour integrals. This leads to an action of the SU(2) generators 

j0,J,g  := f  X,h " ~. (x) on the left index of the fields, i.e. 

J 
, = Om,m,(Fa) (~Om,,m(Z,g))N, (4.11) 

1111=--,$ 

where F~ = exp(iAg,~ ~) is regarded as an SU(2)-element, and D j (F~) are the entries 
/ / I  , h i  / 

of its spin j representation matrix expressed in a spinz eigenbasis. Finally, the correlator 
on the r.h.s, of (4.11) stands for the function 

1 J (~m,m(Z,e))N=an,',-m (Z --  Z )  m2, 

even if ~PJm,m(Z, Z) does not occur in the uncompactified free boson theory. We can also 
encode the outcome of this computation in the following formula for the ¢~-perturbed 
flat Neumann boundary state: 

J 
IN; A~ba)= Z Z D"/'. -m(F~) Ij'm'm)) (4.12) 

jE ½ z+ m=-j 

where l J, m, rn)) are Virasoro Ishibashi states associated to the primaries ~oJ,.m(z, Z). 
While (4.12) in principle gives complete information on the perturbed boundary 

theory, it looks essentially hopeless to compute the perturbed partition function Z~(q) 
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directly via a modular transformation of  ~j,m IOJm,-m(r )[2x;ir(l ) - simply because 

the matrix elements Din (F) are given by the rather cumbersome formula 

r~n(j-m,j+n) [ ( j+m)[ ( j -m) ![ ( j+n) ! ( j -n ) ! ]½ 
D'J, "(F)= Z ( j - m - t z ) ! ( j + n - l z ) ! I z ! ( m - n + t x ) !  

/z=max ( 0 , n -  m) 

×a i+n-u ( a*) j-m-u b ~z (-b*) m-n+u (4.13) 

in which the group element F E SU(2)  was parameterized by F = t" a h ~. t -b* ,* ) '  see e.g. 
Ref. [53] .  At the Dirichlet-like points A = 2k+lcr k E Z, however, the formula simplifies v'7 ' 
considerably, and modular transformation yields 

q,2 
Z,,,,(q) ~ ~ (4.14) 

neZ r / (q)  

for aD = Dirichlet-like boundary conditions: The initially continuous Neumann spectrum 

is reduced to a discrete one (which furthermore is the same as the one of a boundary 

CFT of a free boson compactified at the self-dual radius). The boundary condition 

can be viewed as a superposition of flat D-branes located at the sites of  an infinite 
lattice. The boundary fields with non-zero U( 1 ) charge should be attributed to "solitons" 

interpolating between different minima of the boundary potential. 
In Ref. [76] ,  the partition function for an arbitrary perturbation was computed along 

a different route, namely by passing to a free fermion representation and by explicitly 

diagonalizing the Hamiltonian consisting of a free part and the boundary interaction. 

Since the technical details are not very illuminating, we merely state their result: The 

spectrum of  the perturbed Neumann boundary states [a)a := IN; A~b 1) is given by 

2 

= ~l(q)-t Z [ d( q (2m+fa(())2 (4.15) z.~ (q) 
d 

mEZ 0 

with 

1 [ A . s inz r ( ]  ' (4.16) f a ( ( )  = -- arcsin cos 

the arcsin branch is to be chosen such that lima---,0 f a ( ( )  = ( ;  the integral is over the 
half-open interval, which becomes important in the discrete variants to be discussed 

below. Eq. (4.15) displays a band structure of  the spectrum which is typical for a 
theory of electrons moving in a crystal. As soon as an infinitesimal periodic potential is 

n 2 
turned on, the continuous spectrum rips apart at the values h = -4-, and the gaps open 
up as the strength A of  the potential grows. The bands are reduced to points at the 

3,r Dirichlet-like value ,~ = ~ ,  where only primaries with dimension h = n 2 for n E Z 
remain (tight-binding limit). Naively one would expect this to occur at ,~ = o~ but, 
loosely speaking, the period of  the potential introduces a "scale" rs.d. = @2 into the 
problem so that special effects are bound to appear whenever k is in resonance with 

rs.d. • 
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The structure of the spectrum is in line with our general expectation. In fact, it does 
decompose into U(1) characters and all states of U(1) charge in the lattice x/2Z - 

which correspond to fields that are local with respect to the perturbing fields - do 
remain in the boundary theory. 

The physical interpretation of the periodic boundary potential with Dirichlet-like cou- 

pling strength as generating a mixture of elementary Dirichlet conditions is rather com- 

pelling, but suggests that the perturbed boundary theory violates the cluster property. 
2 k +  1 _ Indeed, at A = --~--, ,  the cluster relation together with the Dirichlet Ward identities for 

the U(1) current would imply the sewing constraint 

9 

A ~'g, a~,~, - Ag°+g2. (4.17) 

Choosing g~,g2 such that gi ~ ~2 Z but gj +g2 = 72'  the structure constants A ~'g, vanish 
Ot D as in the original Neumann boundary theory, cf. (4.10), while Ag~+g2 ~ O. 

In order to test clustering for arbitrary values of ,~, we would need a lot of information 
on fusion and chiral blocks of c = 1 Virasoro modules, about which virtually nothing is 

known. We expect, however, that the boundary states (4.12) obey the cluster condition 

as long as lal < ~ ,  for the following reasons: Our study of orbifold models will show 

that this is true for the rcirc = V/~ circle model - which possesses analogous deformations 

with exactly the same algebraic properties as the r = cxz theory. Furthermore, the general 
argument in favour of clustering which was sketched in Subsections 3.3.3 and 3.5.3 

indicates that finite domains of convergence could spoil clustering at finite perturbation 

strength. 

4.2. The compactified theory 

If we take a circle of radius r as the target space for the free boson, we can again 

impose Dirichlet and Neumann boundary conditions, but now there are continuous 
parameters in both cases. Compared to the uncompactified case, the mode expansion 

of the bulk field X(z ,Z)  = XL(z)  + XR(Z) additionally involves a winding number 

operator w as well as two independent zero-mode operators XL,R: 

i i an 
- ~ r w l n z  - -  z -n, X L ( Z ) = X L - -  p l n z  ÷ ~  Z 

H 
n4:0 

i i i ~ an ~-n. 
XR(~) =xR -- ~ p l n ~  ÷ ~ r w l n ~  ÷ ~ Z.~ -y 

n ~ 0  

The normalizations are chosen so as to preserve the canonical commutation relations 
from the uncompactified case: The winding operator w commutes with x := xL + xe, 
p and all oscillators, all other relations follow from the exchanges p ~-~ 2rw, x +-* 

:= xL - xR. For later convenience, we introduce the zero-modes ao := p /2  + rw and 
F~o := p /2  - rw. Chiral currents J ( z )  and 7(~)  are obtained from the modes an, an as 
before. 
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Because of the new degree of freedom, primary fields ~os,~(z, ~) = e2igX'Xz~e 2ip,x"(e) 

can carry different left- and right-moving charges with respect to ao and ~o, namely 

g = k / 2 r  + r w  and ~ = k / 2 r  - rw,  where k := rp  and w take integer values. Again 
one can easily solve the Dirichlet and Neumann boundary conditions (4.2) and (4.1) 

in terms of the bosonic field with values on the circle to arrive at 

1 e ikx°/r 
Z) )Dxo  (~g 'gv /~  ( Z -- Z )  k2/4r2 

for the Dirichlet case - the real parameter x0 E ]R mod 27rr can again be interpreted 
as the location of the brane, i.e. X ( z )  = xo - X ( Z )  for z = ~. The Neumann case is 
obtained via T-duality; here the 1-point functions are 

e2irw~'o 

~ ) r2 w 2 " 
t Z 

Now we have X ( z )  = 20 + X(g)  for z = ~, where 20 E R mod 7r /r  parametrizes 
representations of the fundamental group ~'1 (S I) ('Wilson lines'). The r-dependent 

normalization arises from the non-trivial one-point function (1),~. 

Passing to boundary states and applying a modular transformation as in (3.13), we 
obtain the following formulas for the partition functions of the theories with boundary 

conditions D xo respectively N2o along the real line: 

1 Z q W 2 / 2 r 2  ; (4.18) 1 Z q 2 ~ : k ~  ' Z u x o ( q )  - 
Z D x o ( q )  - r l ( q  ) k e z  rl( q)  

W ~  

they depend on the compactification radius (i.e. on the bulk modulus), but not on x0 or 

20. 

4.2.1.  Ch i ra l  d e f o r m a t i o n s  

Marginal deformations with the chiral current J (x)  can be treated in close analogy 

to the uncompactified case: First observe that the gluing conditions are invariant under 
y j  and that only the coefficients A~ can be affected by the perturbation. As before, the 

matrix X~ acts on q~g.~(z, ~) through multiplication by g, therefore Eq. (3.7) leads to 

1 e ik(x°+~)/r 

k 2 

e2irw( J'o+ ~ ) 
(@g,~(Z, Z))N.~'0; AJ----t~g,-~ V ~ , _,r2w 2. (4.19) 

t z  - z )  

The marginal perturbations with the current J (x) induce translations in the Dirichlet and 
Neumann parameters x0 and 20 - periodic in 3. with period 47rr and 2~r/r ,  respectively. 

For the "rational radii" r = v/ -M' /N with positive coprime integers M, N, additional 
chiral (local) fields 

± e-t-i2glocXt.(z) - -4-  - e~i2g~ocXR(~) Wg,,~ (z )  =: : and Wg~o~(z)=: : 
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(along with products) appear in the bulk theory; the charge gloc is 2v/-M--N if N is 
odd and ~ if N is even. These extended chiral algebras in the bulk theories are 
a well-known feature of the rational Gaussian models, see Ref. [29] and references 
therein. 

We may ask whether this additional symmetry is preserved by the boundary conditions 
and how the gluing conditions, if they exist, behave under marginal perturbations with 
the chiral current J (x).  It is easily seen from the bosonization formula for W~o ~ (z)  and 
W ~  (Z) that all Dirichlet boundary theories respect the enhanced symmetry with gluing 
conditions 

W ~ ( Z )  = f2D [W~oc] (g)  := e 4-2igl°cx° W~o c ( z )  (4.20) 

for z = g. If the free boson satisfies Neumann boundary conditions, Xc(x)  = XR(x) +YCo 
leads to 

W ~ ( Z )  = f2N[W~](~)  :=e+2ie'"~c°W~(~) (4.21) 

along the boundary. Consequently, under marginal boundary perturbations with J (x) ,  
these enhanced gluing conditions are no longer invariant, instead they behave according 
to Eq. (3.6) simply because W~, are charged with respect to J. 

Something special occurs at the "self-dual point" r = l / v ~ .  Here, the local chiral 
fields J+ (z )  := W~2 (z )  and if+ (~) := W ~  2 (~) have conformal dimension h+ = 1. This 
means that there are new marginal operators within the enlarged chiral algebra - which 
is simply the non-abelian current algebra SU(2)I.  We have seen that J + ( z ) , ] + ( : ? )  
automatically obey the gluing conditions/2 from Eq. (4.20) or (4.21) for all Dirichlet 
or Neumann boundary theories. Therefore, SU(2) t is preserved at the boundary. 

The general results of Subsections 3.3 and 3.4 show that an arbitrary real linear 
1 (j+ _ j - )  and j3 = j can be used to deform combination o f J  1 = ( j + + j - ) , j 2  = 

the free bosonic boundary theories at r~.d.. The new models satisfy all sewing constraints 

and can be described by the boundary states 

= rlN(0)) ,d with F = e i~-].a"J~. (4.22) 

This family contains the boundary states IN(.~0)), but also other cases where .J3(z) 
does not obey simple Neumann gluing conditions. 

Naively, one might expect to obtain a second component of the moduli space of 
boundary theories by SU(2)-deformations of the Dirichlet boundary state IO(0))s.0.. 
However, the Dirichlet boundary states are already included in the set (4.22). By means 
of the SU(2)-deformations at the self-dual radius, we can rotate Neumann conditions for 
j = j3 into Dirichlet conditions; a perturbation with A jl changes the gluing condition 
J3(z)  = -l-J3(z) to 

J3(z ) = ±(cos  v'~A) 33 (2) + (sin v/-2,~) ff2(2), 

cf. the general formula (3.6) and also (4.5) for the non-chirai deformation ~pl. When 
approaching a = ~/x/2,  Neumann conditions for j3 turn into Dirichlet conditions - by 
a continuous deformation. More precisely, we can write 
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ID(0))s.d. = e i724]N(O)  )s.d., (4.23) 

showing that there is one connected SU(2) family of boundary conditions for rs.d.. 
Let us compare the structure of boundary theories at the self-dual radius to the known 

boundary states of the SU(2)1 WZW model [56,22]. The possibility of non-standard 
gluing conditions for the currents was not realized in these works, but with the help 
of the general formalism explained in Section 2 it is straightforward to extend Cardy's 

classification of boundary states to arbitrary gluing maps/2 in the SU(2) current algebra. 
Per fixed gluing condition/2, one finds two boundary states 

Ii)x~ = 21/410))a + ( -  1)i21/411))Y/, 

where i = 0, 1 labels the two irreducible highest weight representations of SU(2)1. 

To re-discover those in the family (4.22), observe that formula (4.21) with gloc = 
x/2 is invariant under the shift x0 , > x0 + ¢r/x/~, while the marginal perturbation 
e x p ( - i v ~ r J o  3) implementing this shift acts non-trivially on the full boundary state 

[N(~0)), producing precisely the sign in front of the spin-l /2 Ishibashi state I I))N. 
Thus, IN(0))  and ]N(Trx/2)) - sitting at opposite points of the ~o-circle - coincide 

with Cardy's rational SU(2)t  boundary states. Analogous results hold for other gluing 

conditions, which are parameterized by SO(3) since central elements of SU(2) yield 

trivial y j  in Eq. (3.6). But there are two different boundary theories sitting over each 
point of this SO(3) which resolve the full SU(2) moduli space we found before. Cardy's 

boundary states for the SU(2)1 WZW model are simply assigned to elements in the 

centre of SU(2).  
All the time, we have implicitly assumed that the boundary conditions in (4.22) 

are pairwise inequivalent - which is not clear a priori. In the self-dual bulk theory, 

e.g., all operators J ' ( z ) 7 ' ( g )  with J '  = ~ AaJ a are marginal and we can move away 
from r = l /x /~  along an S 3 of different directions. But all these deformations result in 

equivalent bulk CFTs because of SU(2) × SU(2) symmetry, leaving only the ordinary 

change-of-radius deformation. 

For boundary CFTs, we arrive at a similar scenario if we declare boundary conditions 

(/2i,tri), i = 1,2, equivalent as soon as there is an automorphism (a "gauge transfor- 

mation") of the bulk CFT which intertwines the gluing conditions/21 and/22 and maps 
the set of l-point functions A '~1 to A ~2. This criterion, however, would even identify all 
possible Dirichlet conditions (D, x0) for a free boson, simply because of translational 

invariance. 
We can formulate a sharper criterion by composing new systems from two different 

boundary conditions, e.g. by putting the CFT on the strip with boundary conditions ce 
on one end and fl on the other. Then, additional data like the partition function Z,,t~(q) 
discussed in Section 3.4 are available, and we can certainly conclude that a ~ fl if 
Z,~,(q) 4~ Z~(q) .  

In this way, not only can we resolve all the free boson boundary conditions at generic 
radii, but also the family (4.22) at the self-dual point. Since every SU(2)I  boundary 
state can obtained from one out of Cardy's list by the action of an SU(2) element 
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g = exp(iJ~),  we have to compute Z~t3(q) for some ]a) (which obeys, say, standard 

gluing conditions) and arbitrary [/3) := g[a). First note that Zh~,h#(q) = Z,~,l~(q) and 

Z,,hgh-'/3(q) = Z~,gl3(q) for all g, h c S U ( 2 )  - this follows from h ]a) = h -1 [a) and 

Oh = hO. Therefore, Z~,u,~(q) depends only on the conjugacy class of g, and we can in 

particular choose an h such that hgh - I  = t = exp ( i~J  3) is in a given torus of  SU(2) .  

Partition functions Z~13(q) where one of  the boundary states has been twisted by a 

current in a maximal abelian subgroup can be computed with standard modular trans- 

formation rules. If  a is one of  Cardy's boundary conditions, we find the expression 

, = " . = t r ~ q L ° + ~ J o + ~ - ~  Z ~ , , ( q )  <O' lOL°- e E N i , , ~  , ~ 3 a z 
i 

which involves twisted SU(2)  characters that depend on A. 
Finally, if g 4= g'  are conjugate to the same torus element, one can show that there 

is a boundary condition a '  such that Z~,,u~(q) 4= Z~, ,g , (q)  - yielding a complete 

resolution of  the SU(2)  family (4.22) as desired. 

4.2.2. Non-chiral deformations 
At special values of  the compactification radius, there are extra non-chiral marginal 

deformations similar to the ones present for the uncompactified free boson with Neumann 

boundary condition. The partition functions (4.18) show that these radii are r = N / v ~  
for integer N in the Neumann and r = 1 / ( v ~ N )  in the Dirichlet case - in accordance 

with an interpretation of  the perturbation as a periodic boundary potential with period 

l / v ~ .  
The two self-local and mutually local primaries ¢,a(x),  a = 1,2, appearing there lead 

to similar effects as the non-chiral marginal operators in the uncompactified theory with 

Neumann boundary conditions. For r = N/v~2, the decomposition of  the bulk Hilbert 

space into Virasoro modules results in a formula analogous to (4.9); we write it in the 

form 

@ ,,u,,> vu ,> @ @ rxv,r 
= v ~ _ , , w  @ .,N ( D . . -  = ~N - ,~ ,~N ,~ "i 2," )d w , " U "  ® . . . .  

k,wEZ .jC½Z~ k ' ,wCZ 

where again the dots indicate terms that do not couple to the boundary, either because 
h 4= h or because the charge condition g + ~ C v '~Z is not met. We have indicated 

the SU(2)  quantum numbers explicitly, adopting the convention that a module l)j,.,,n is 
empty unless m and n are in the range - j  . . . . .  j .  Precisely the same Virasoro primaries 

contribute if we consider the perturbation of  a boundary CRY with Dirichlet conditions 
J at radius r = v~v" 

We can apply the methods used in the uncompactified case to determine the deformed 

boundary states, and we find 

IN(~o); a~ a) ~ ~ J ,,?,w ,'%,,..)) = De+u,. -,,)N, (r~0.a) l J, , • (4.24) 
.iE½Z~ w,k 'EZ 2 • 2 
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Now, the SU(2) element Fa0, a = eiAqJ~e2iyc°J° contains the perturbation parameter ,~ along 

with ~0 specifying the original Neumann condition. The latter is recovered for ,~ = 0, 
where only the terms with k' = 0 contribute (the N-dependence encodes the information 
on the radius). 

Again, the modular transformation to obtain the spectrum from the boundary states is 
2k+l _ ( t h e y  are "Neumann-like" not manageable except for the Dirichlet-like points a = --~--,, 

points if we start from Dirichlet conditions at the dual radius). There, the prefactors of 

the Virasoro Ishibashi states are given by the phases 

D j - e  ms,. ( E l  l )Je  -~/~iyq~k' , k' ~ N , , ,  ~'0,aDi, ) = ~w,0 ( - 

2 2 

which lead to the same perturbed partition function (4.14) as in the uncompactified 

case. In particular, the parameter ~0 does not appear in Z ~ ( q ) ,  and in the boundary 
state itself it shows up with a different periodicity: The information about the original 

radius r = ~ has been lost during the perturbation. 

The alternative method of [76] applies again, and it leads to a formula for the partition 

function similar to Eq. (4.15), only that the (-integral is to be replaced by a sum since 

the spectrum is discrete from the start. For later purposes, let us give the explicit formula 
for the case r = x/2: With Ja)a := JN(~0); A~a), restriction of the (-integral in (4.15) 

1 3 yields to the sum over 0, 7, 1, 

Z, ra(q) = r / ( q ) - I  Z (qnF+ q(m+½+'~-~2 )2). (4.25) 

mEZ 

Generally, the charges g 4: n v ~  follow the flow prescribed by the function (4.16), the 
corresponding fields being those which are non-local with respect to the perturbing field. 

Finally, only charges g = n v ~  are left at h = -~ .  It is once more easy to show that the 

cluster property is broken at the Dirichlet-like point, but we have no direct handle on 

clustering for intermediate a. Employing the higher symmetry algebras present at rational 

radii does not seem to yield additional insight into the clustering properties, either. 
Surprisingly, however, the study of orbifold models will provide further information. 

4.3. The c = 1 orbi fold theories 

The moduli space of c = 1 theories on the plane has another branch which parame- 
terizes orbifolds of the circle theories. This family is constructed by "dividing out" the 
left-right symmetric Z2-action X, , - X  on the compactified free boson theories - see 
e.g. Refs. [29,46] and references therein. The chiral fields are the invariant elements of 
the U(1)  ×U(1)  current algebra, the bulk Hilbert space consists of an untwisted sector 
containing all Z2-invariant states of the free boson Hilbert space and of two twisted 
sectors 7-/~ w and 7-/tw built up over twist fields of left and right conformal dimension 
h tw = 1/16. The subscripts refer to the endpoints of the interval [ 0, rrr] which can be 0,'n'r 
regarded as the target space of the orbifold model at radius r. For r = rs.d., there are 
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three further orbifold models that arise from dividing out finite subgroups of SO(3),  
see Refs. [47,29], but we will not discuss these cases here. 

We give the description of the associated boundary orbifold models in terms of 
boundary states, which can e.g. be found in [67]. Consider the untwisted sector first. 
The free boson Ishibashi states are given as Z2-invariant exponentials of ~ a_,~_,, 
acting on U(1) ground states; therefore one merely has to symmetrize in the latter 
to obtain "untwisted" orbifold boundary states from ordinary free boson Dirichlet or 
Neumann boundary states, 

1 IO(-x0) )~irc), (4.26) IO(x0))°rb := ~ OD(xo)}circ 4- 

ig(.~0)}orb. - 1 0g(.~0)}circ + tN(_i.0)}circ) " (4.27) 
"- v/-~ 

The parameters range over the intervals 0 < x0 < 7"rr and 0 < .% < ~.  In terms of 
l-point functions, (4.26) e.g. means that 

(cos(kS( - o rb=  1 COS k-~'0"rX 
Z'Z))}Dx° %/~ (Z -- Z) k2/4r2 

and that no twist fields couple to the identity on the boundary. A similar formula holds 
for Neumann boundary conditions of the orbifold theory. 

To each fixed point of the Z2-action on S', one assigns two twisted Dirichlet and 
two twisted Neumann boundary states made up from the corresponding circle boundary 
states and the (appropriately symmetrized) Dirichlet or Neumann Ishibashi states of 

tw ~" 7-/0 .... see Ref. [67] for more details. With ( = 0, 7rr and ( = 0, Yr' we write 

ID( ( ) ,  +)orb := 2-½ iD(()}circ ± 2-¼ ID(())  tw, (4.28) 

iN(~), ±)orb := 2-½ iN(~)}¢irc 4- 2-¼ IN(~)) tw. (4.29) 

The prefactors ensure proper normalization of all partition functions Z,,~(q) for ol, fl 
taken from the two sets (4.26)-(4.29).  For our purposes, the cases with ol = fl are 
most important since they provide the number of marginal boundary operators induced 
by the boundary condition a. In the case of Dirichlet gluing conditions, one obtains 

q2r2k2 4- E q2(rk+~)2 
Z . ( q )  = E  r/(q) r/(q) tbr la} = ID(xo)} °rb, (4.30) 

kEZ kEZ 

~__~ q2r2 k 2 c~ 
Z/~(q) = 4 - E  Vir (4.31) k=l r/(q) ,--o ")t"4n2 (q) for Ifl} = ID(() ,  +)orb; 

the Neumann partition functions follow when r is replaced with l /2r .  The Virasoro 
characters vir Xh (q) were introduced in Subsection 4.1.2. They coincide with r / - Iq  h if 
h 4: m 2 for any m e ½Z, and are given by the difference (4.8) of U( 1 ) characters 
otherwise. 
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Since the U( 1 ) current algebra is reduced by the orbifold procedure, the occurrence 
of Virasoro characters for twisted boundary states is not surprising. Indeed, (4.31) is 
precisely the Z2-projection of the circle Dirichlet partition function, the second sum 
being the vacuum character of the Z2-invariant subalgebra of U( 1 ). 

On the other hand, the partition functions for untwisted Dirichlet boundary condi- 
tions (4.26) are sums of U(1) characters; the state space of the corresponding boundary 
theories is not Z2-invariant, and (4.30) should be interpreted as the total excitation spec- 
trum of a superposition of two branes in the circle theory. (Nevertheless, the boundary 
states above obey the cluster property with respect to the reduced set of bulk fields 
present in the orbifold theory.) The first sum in (4.30) describes strings starting and 
ending on the same brane, whereas the x0-dependent characters are associated with 
excitations of open strings stretching between the Dirichlet brane at xo to the one at 
-x0,  up to identification of strings running in opposite directions. The corresponding 
boundary fields are induced by the bulk-boundary OPE of the twist fields o'0,~,r ( z, 2) in 
the bulk [ 67]. 

The marginal boundary operator content of the orbifold models, too, depends on r and 
x0. Let us look at untwisted Dirichlet boundary conditions first (always, the Neumann 
cases follow upon T-dualizing the radius): For arbitrary radius r, one marginal operator 
J ( x )  occurs in the parameter-independent part of the partition function for arbitrary 
radius r, in the vacuum U(1) character. This field is the boundary value of the original 
bulk current of the circle theory which was removed by the orbifolding procedure, and 
it appears through the bulk-boundary OPE of the bulk fields cos(~X) with k ~ 0, 

cos(~X(z, ~)) c°s kx° i ~  sin L~i 
_ r k2 1 k2 J ( x )  + . . .  (4.32) 

(Z -- ~)4-7 (Z -- Z) 4-'~-1 

J ( x )  is local with respect to all other boundary fields from the x0-independent part of 
the spectrum, but non-local with respect to those fields which have an x0-dependent 
conformal dimension, since the latter arise through the bulk-boundary OPE of twist 
fields. Consequently, the second part of the boundary spectrum (4.30) is not protected 
against changes under a perturbation with J. This is perfectly consistent with our findings 
below that J simply moves the position x0 of the brane. 

l For the special radii r = ~--~, two additional states g,a(x), a = 1,2, of dimension 1 
show up in the x0-independent part of the partition function (4.30). They are self-local 
and give rise to the familiar periodic boundary potentials. 

The parameter-dependent part of Z~,(q) can contain further marginal operators if the 
distance of the two branes - the length of the stretched open string - is appropriately 
adjusted: If r = 1/ (v '~N) with N C Z, this fine-tuning cannot be achieved, but for 
all other radii there is one marginal field ~/,'(x) whenever xo = 1 / v ~ -  kor or x0 = 
- 1/v/2+ (ko+ 1 ) r, where k0 is the positive integer satisfying v~rko  < 1 < v ~ r ( k o +  1 ). 

Since these massless excitations originate from the bulk-boundary OPE of a twist field 
in the bulk, they will have non-trivial monodromy with respect to the twist field and 
with respect to themselves, hence they are non-local and do not give rise to analytic 
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deformations. 
The picture is simpler for twisted boundary conditions: There is no field of dimension 

h = 1 in the Z2-invariant subalgebra of the U(1) current algebra, and the first sum 
in (4.31) contributes one marginal operator iff r = 1/(v/'2N); this is just the boundary 
field x/2 cos(2x/2X(x)) ,  leading to similar effects as ~a(x).  

When constructing the deformed boundary theories, one encounters the same general 
phenomenon as for the unorbifolded models: Some of the boundary conditions listed 
above are connected by boundary perturbations and, at special values of the bulk param- 
eters, new boundary states are generated that would have been hard to discover directly 
without using marginal deformations. 

Let us first focus on the perturbation of the untwisted boundary states generated by 
the self-local marginal field J(x) .  This deformation does not change the Dirichlet or 
Neumann gluing conditions of the orbifold theory. Furthermore, since J(x)  was defined 
through the bulk-boundary OPE (4.32) of a bulk field from the untwisted sector, we 
conclude that the l-point functions of bulk twist fields continue to vanish in the J- 
deformed theory. To calculate the effect on the 1-point functions of untwisted fields, 
we use (4.26) to pass to the underlying circle theory, where the deformation by a 
current is easy to handle. However, observe that the coefficient of J(x)  in the bulk- 
boundary OPE (4.32) is antisymmetric upon replacing x0 by -x0,  so the definition 
of the current J picks up an extra minus sign when acting on the second term in the 

boundary state (4.26). The result is that, as long as 0 < x0 + ~- < 7rr, 

ID ( x o ) ) ~  = --~ e iAJ° ID(x0))circ 

= IO(xo  -I- ,h./2)) °rb. 

1 -}- ~ e -iaJ° I D ( - X o )  )circ 

(4.33) 

The marginal operator J(x)  moves the untwisted orbifold brane along the interval 
]0, ~-r[. Continuation into the end-points ( leads to the boundary states [D(sC), +)orb + 
{D((),--)°rb, which are inconsistent in the sense that they violate the sewing rela- 
tion (2.10) for the twist fields. In the interior of the interval, however, the deformed 
theory has the cluster property in spite of being generated by a non-chiral deformation, 

and the spectrum behaves as expected. 
The perturbations with Oa(x) from untwisted or with the marginal operator from 

twisted boundary conditions have to be treated in analogy to the unorbifolded case, and 
the technical details were provided in Subsections 4.1.2 and 4.2.2. Let us, however, have 
a closer look at the radius r = 1/x/2, which is again exceptional. Among the bulk fields, 
there is one chiral current, Jolrb(Z) := ~ cos2v~X(z ) ,  and it is easy to see that some 
of the boundary conditions (4.26)-(4.29) preserve this extended symmetry: Jolrb(Z) 
satisfies Dirichlet gluing conditions for ID(x0)) °rb or Ig(.~0)) °rb if x0 = 20 = ~--~2" The 
eight twisted boundary states (4.28), (4.29) induce Neumann boundary conditions on 

4'rb(Z)- 
In those cases, Jolrb is a chiral local field of the full boundary CFT, and it follows from 

the general theory developed in Subsections 3.3, 3.4 that the boundary value Jolrb(X) 
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generates deformations which neither change the spectrum nor violate clustering condi- 
tions. We obtain two continuous U( 1 ) families of deformed boundary states, containing 
the two untwisted and the eight twisted boundary states from above, respectively, which 
exist at generic radii. The first family is further enlarged by Josh, see also below. 

In the bulk, the r = 1/x/~ orbifold model is equivalent to the r = ~ circle theory, 
see e.g. [46]: The identification of the two models starts from the r = l /x /2  circle 

27rr theory, where the two different orbifoldings X ,~ - X  (i.e. j3 ~ _ j3 )  and X ,-~ X + -T- 
(i.e. JJ ,-~ _ j 1 )  are equivalent by SU(2) symmetry; the second procedure leads to a 

circle model at r = l /v/8,  which in turn is T-dual to the r = v/2 theory. 
It is quite instructive to investigate how this equivalence relates boundary conditions 

for the bulk theories, so we give an outline. The chain of isomorphisms sketched above 
implies that Dirichlet and Neumann gluing conditions fo r  J3ir c in the rcir c = ~ model 
correspond to Neumann and Dirichlet conditions for Jolrb in the rorb = 1/x/~ theory, 
respectively. We have already singled out the latter orbifold boundary states, and the 
following partition functions indeed coincide: 

Z~V~(q) =z~/V~(q) for ta) = IN(~o))Ci% I/3)= IG(5-~2)) °rb, ( 4 . 3 4 )  

Z,X/7(q) = z~/Vq(q) for ice) = ] O ( x 0 ) )  circ, lj~) = ]G(~), _{_)orb; (4.35) 

the gluing conditions "G" in the orbifold theory can be both N or D, and the circle 
parameters take values x0 E [0 ,2x/~-]  and -~0 E [0, Tr/x/~] as usual. It is possible 
to pin down the one-to-one equivalence of boundary states by comparing the 1-point 
functions of corresponding bulk fields from circle and orbifold model; e.g., the twist 
fields o-o and O'Trr are to be identified with sin(-~2X ) and cos(-~2X) in the rcirc = v ~  
theory on dimensional grounds. We restrict ourselves to some general observations: 

As -to in (4.34) is varied by the deformation aJc3irc, the corresponding operator ,AJolrb 

generates the U( 1 ) family of orbifold boundary states mentioned above, with Dirichlet 
and Neumann gluing conditions for J3rb showing up at the opposite points ~ = 0 and 
a -- 7 r /v~  (compare the discussion of the self-dual circle model). 

The twisted boundary states in (4.35), too, are members of a family generated by Jolrb . 
The identification of twist fields with vertex operators of the circle theory shows that 
under this deformation - respectively under the J3irc-perturbation - the 1-point functions 
of o-0 and O'~.r can be turned on and off smoothly. We may say that Jo~rb induces a 
tunneling of the twisted D-brane states between the two Z2-fixed points. 

Let us try to match the "missing" orbifold boundary states, namely (4.26), (4.27) 

with x0, ~0 :~ 2--~2' to boundary conditions of the circle model. The isomorphism 

from the rorb = 1/V'~ to the rcirc = V'~ theory not only maps Jolrb(Z) to Jc3irc(Z), 
but also allows us to identify the non-chiral boundary field J3or6(X) := Jorb(X) with 

2 2 clrc I//circ(X ) and Josh(x) := x/~sin(2x/~X(x)) with ~pl. (x).  The orbifold boundary states 
in question are generated by Jorb(X) and do not preserve the Jolrb symmetry. Likewise, 
the 02rc(x)-deformed boundary states IN(~0); A02) cir~ of the circle model break the 
Jc3i~c gluing conditions. Furthermore, Eqs. (4.30) and (4.25) show that the following 
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partition functions coincide: 

Z S 2 ( q )  = z y V ~ ( q )  for la) = IN(~o); affa) cite, tfl) = [G(x~)) °rb (4.36) 

if x~ = ~22 + ~ All this tells us that the family of orbifold boundary states generated 

from IN( ~ 2  ))°rb by J~a~b, a = 1,2, 3, corresponds to the family of circle boundary states 

generated from IN(0)) circ by Jc3rc and ¢~. 
ClrC" 

Because of the degeneracy in the partition functions, (4.36) does not quite allow 
us to match individual members of the families, and a direct comparison of 1-point 
functions is virtually impossible because of the complicated matrix elements DJn (F )  in 

Eq. (4.24). Still, we can now draw general conclusions on the ~bcairc-deformed boundary 
conditions of the rcirc = X/~ circle model that were inaccessible before. 

7)" Perturbations by AOc']rc do preserve the cluster property for lal < ~ since the corre- 
sponding orbifold boundary conditions do. It follows that the subfamilies of boundary 
conditions generated by ~/,l or ~2 form open intervals. Altogether, J~3rc and ~ r c  gen- 
erate a patch of moduli space with the topology of the interior of a solid 2-torus (of  

a "bagel"), which can be seen as follows: As long as we ignore clustering issues, 
these marginal operators lead to an SU(2) ~_ S 3 of boundary conditions when applied 
to IN(0)) circ. We have to remove all points where clustering is violated - which are 

characterized by Dirichlet gluing conditions for J3ir c. The latter are broken by any in- 
finitesimal perturbation with a but 3 I//circ' Jcirc itself maps the Dirichlet-like points into each 
other. Therefore, the remaining space of clustering boundary conditions is the bagel 
S 3 \ S l . 

A direct isomorphism between orbifold and circle model can be exploited only for 

rcirc -- V/2. Nevertheless, we expect the same topology to arise from the non-chiral 
perturbations at other radii rcirc = N/v/~,  and a similar one in the uncompactified 
case (see below). As we have argued before, the breakdown of cluster properties at 
finite perturbation strength A = 7r/x/2 in A~Oa(x) should be due to a finite domain of 
convergence in the proof of clustering mentioned in Subsection 3.5.3. 

5. The c = 1 brane moduli space, string geometry, and open problems 

Putting together the pieces found in the last section, we can give a global description 
of the moduli space of c = 1 conformal boundary conditions. This is possible because 
we could analyse marginal deformations to all orders in the perturbation parameter; 
first-order results would have allowed for a local picture only. 

The (brane) moduli space .A//8 can be viewed as a fibration over the (closed string) 
moduli space M s  of bulk CFTs, .A4B = U,,~A4s(.L48)m. We focus on the connected 
part .A4s = ] ~ i r c  i j . /~rb and ignore the three exceptional orbifold points. Both branches 
of .A4s are parameterized as half-lines R>l/v~, since radii below the self-dual one lead 
to equivalent theories upon T-duality r +-* 1/2r and exchange of Dirichlet and Neumann 

boundary conditions. 
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circ The topological type of the fiber (.Ad~)m depends on m: For m = rcirc E .Ad S , we 

found 

S; U Sl/2r rcirc 4 : N / v / 2  
N 

~,)/MB'~rc~c = S¢ U Bl/zr rcirc = Vzm' N ~> 2 
(5.1) 

S 3 rcirc = 1/V~ 

R U B rcirc = OO. 

Points xo in S~ label positions of Dirichlet branes, while the Neumann parameter ~0 E 

Sl/2r distinguishes Wilson lines. 
0 2 

1 The spaces Bi/2r ~-- D~/v~ x $1/2~ have the topology of the soft interior of a bagel 

before baking, cf. the end of Subsection 4.3. The boundary of the 2-disk D 2 ~ / ~  corre- 

sponds to Dirichlet-like mixtures of pure boundary conditions, which violate the cluster 

property. 
The uncompactified case emerges in the N --~ oo limit of the second line in (5.1). 

The component ~ indicates that the brane can be placed anywhere in the fiat target. 

The second component B -~ Bl/2r/(O X Sl/2r ) has the topology of an open solid torus 
with the central circle shrunk to a point. This can be seen from the matrix elements 

J a D,,,,_,, (F:~o,a) which, for A = 0, become independent of the parameter-~0 - in agreement 
with the fact that R is simply connected. Switching on a periodic boundary potential, 

however, lifts the ,~0-degeneracy. 
Note that the radii indicated as subscripts in (5.1) reflect our normalization conven- 

tions for the perturbing fields. Those for J(x)  - dictating the radii of Dirichlet and 

Neumann circles - are fixed by the choices in the bulk, i.e. by rcirc, and we have put 
the constant K in (2.14) to 1 for the non-chiral deformations. 

The fibers over the bulk moduli space of orbifold models have the following form: 

{ Ir U II/2r rorb ~ N/v/2 
= L V C1/2r rorb = NIv/2, N >~ 2 (5.2) 

( J~B) r° rb  Slv,~U n,/ .~ rorb = l / V ' 2  

denotes the disjoint union of the open interval ~ =] 0, ~'r[ with four extra points for the 

twisted boundary states. The spaces Cr arise from the non-chiral orbifold deformations 

we did not discuss in detail above. Cr consists of five disjoint parts; one has the topology 
o 2 a 

of an open ball D 3 _~ D ~,/v~ × ~ (from the action of ~orb and ,/orb on the untwisted 

Neumann boundary states), the four remaining components are open intervals (from the 
action of x/2 cos(2v'~X) on the twisted Neumann boundary states). These four intervals 
would form a single circle (and in fact do at rorb = 1/V~) were it not for the four 
Dirichlet-like points at which clustering is violated. 

Some of the identifications above are as yet conjectural. Only for rcirc = v ~  was it 
possible to give precise arguments for the "bagel topology" in (.MB)m, but it is highly 
plausible that the same picture emerges at the other exceptional radii rcirc. The same 
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proviso applies to the pieces C in (5.2). Also, we cannot exclude the possibility that 

there are further conformal boundary conditions at c = 1 which are not continuously 
connected to Dirichlet or Neumann conditions for the current. 

Except for the jumps in the fiber types occurring at multiples of r = 1 /v~ ,  the whole 
space .A.4B is continuous. We have indicated in Subsection 4.3 how to identify the fibers 
S I × B over rcirc = V/2 and ror b = 1/v"2, w h e r e  j~ i rc  a n d  M ]  rb intersect. Over the circle 

branch, the cones describing Dirichlet and Neumann conditions for rcirc > 1/V~ are 
glued smoothly into the S 3 at the self-dual point. There, we can continuously "change 
the sheet" from Dirichlet to Neumann conditions for the free boson. 

This has consequences for generic radii, too. Suppose that Dirichlet conditions are 
given for a boson compactified on an arbitrary radius rcirc. Combining bulk and boundary 

perturbations, we can continuously deform this situation to Neumann conditions: We first 

apply a marginal bulk deformation by J(z)7(g) until we reach the self-dual radius. 
There, additional marginal boundary fields are at our disposal to rotate the Dirichlet 

to Neumann gluing conditions on the U ( I )  current J(z). Afterwards, J(z)7(g) may 
shift us back to the original radius, where now Neumann conditions hold. The whole 

process never leads out the space of conformal field theories, unlike the D-N transition 
by relevant perturbations suggested e.g. in [38]. It shows that the dimension of a D- 
brane may not only change under discrete transformations like T-duality, but is not even 
a "homotopy invariant" for a family of boundary CFTs. 

Obviously, the moduli space of boundary conditions or of D-branes is much richer 
than that of bulk theories. In view of the findings of [36] and others that D-branes probe 

smaller distance scales in the target than strings with their soft scattering behaviour can 

do, we could say that "space-time" looks richer at shorter scales. 
Let us try to explore the relation between "space-time" or target geometry and the 

D-brane moduli space (5.1), (5.2) in more detail; after all, the study of marginal 

deformations should allow us to derive geometrical features from CFT, even when 
starting from a purely algebraic formulation of the latter. 

The c = 1 models can be written as o--models with S I or SI/Z2 as the classical 

targets. The bulk moduli space M s  only discloses that there are radii r parameterizing 
the targets, but not their actual shape. It does tell us, on the other hand, that string 

effects induce equivalences between geometrically different targets: By T-duality, the 

CFT-description of the o--models on S~ and Sl/2r are isomorphic, and the same holds 
1 for S~2 and S1/x/~/Z2. 

The fibers of the brane moduli space show much more of the target geometry - but 
still they do not simply coincide with it. Instead, each fiber (.A4B)m has more connected 
components or even a higher dimension than the target corresponding to m. This hints 

at "non-geometric" moduli. 
Certainly, space-time supersymmetry can eliminate the corresponding deformations, by 

restricting to marginal operators which leave the (e.g., Dirichlet) gluing automorphism 
for the current intact. This would reinstate the standard folklore that "the moduli space of 
BPS D0-branes is just the target of the underlying tr-model", but at the cost of sweeping 
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string-theoretic phenomena under the carpet, as we will see shortly. From a pure string 

world-sheet point of view, there is no reason anyway to discard marginal deformations 
that change 12D. As a consequence, the very notion of world-volume dimension of a 
brane becomes "blurred" through (open) string effects. 

Even without invoking supersymmetry as a selection principle, our investigation of 
the c = 1 examples suggests an interpretation of marginal boundary deformations that 
should hold in general: Only the operators present for generic values of the bulk moduli 
correspond to classical geometric moduli. At generic radius, the Dirichlet-Neumann 
doubling of the target circle or interval remains, but this is due to the discrete string 
equivalence between T-dual radii (note that the same W-automorphism governs T- 
duality and the flip of gluing conditions). One is inclined then to interpret any non- 
generic marginal perturbation as a signal for additional "external" structures like periodic 
tachyon backgrounds, which disappear as soon as an infinitesimal change in the bulk 
moduli is introduced. Sometimes, however, various such deformations are available, and 
it depends on the direction of the bulk perturbation which marginal boundary operators 
survive as "geometric" moduli. This happens at points with an ambiguous classical target 
interpretation of the bulk theory, like the meeting point of .A4~ ire and .A.4~rb: While the 

interval swept out by the ~bc2irc-deformation looks non-geometric from the circle point of 
view, it is perfectly "classical" within the orbifold interpretation. 

Had we restricted ourselves to deformations which preserve the gluing conditions for 
the currents, we would have d i s c a r d e d  ~c2rc from the start and would have seen no trace 
of the string-geometric identification of S~.~2 and SIlva~Z2 in (5.1), (5.2). Likewise, the 

"minimal resolution point" rcirc = 1/v/~ would have lost all its significance. If we want 
the D-brane moduli space to display string rather than classical geometry, we have to 
allow for seemingly non-geometric, gluing condition changing marginal perturbations. 

There is a finer hierarchy among the "generic" marginal operators, which reflects the 
global symmetries of the classical target. Over the orbifold branch, the D-brane motion 
is generated by the "generic" non-chiral marginal field Jorb. These deformations explore 
the underlying target even though there is no continuous target symmetry left after the 
orbifold projection from S 1 to S I/Z2 - but this lack of symmetry becomes manifest 
in the partition function: The branes related by Jorb possess open string spectra which 
depend on the brane's distance to the orbifold fixed points. On the other hand, the 

periodic brane motion generated by Jcirc ( o r  by Jolrb at ror b : q/v~2)  corresponds to a 
continuous target symmetry, and the open string spectrum is indeed invariant under the 
deformation. 

Note that this is just the simplest example of the (abelian or non-abelian) Lie group 
structure generally associated with chiral marginal perturbations. For free bosons in a 
torus of dimension d 7> 1 e.g., we would find subvarieties of the bulk moduli space over 
which the brane moduli space is enlarged from U(1)a to (products of) ADE groups of 
(total) rank d, see also Ref. [49]. 

The status and the interpretation of the higher-dimensional fibers over exceptional 
points of the bulk moduli space should certainly be studied in more detail: Their topology 
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is classical, but not group-like; they are obtained via an SU(2) operation, but the matrix 
elements in (4.12), (4.24) are truncated like in "fuzzy" spaces of non-commutative 
geometry [26], see also Refs. [39,40] for relations of NCG to QFT and string theory. 

Non-commutativity in brane moduli spaces was first uncovered in [94]; see also 
Refs. [ 27,35 ]. It should be a general phenomenon occurring for higher central charge, 
connected with the interplay between marginal deformations and continuous parameters 
in the gluing conditions. To resolve such additional structures of the moduli space, and 
also in order to determine properties of the moduli space like 2-body brahe potentials 
and its metric, finer tools as in the exemplary treatment of [3] will be necessary. In this 
way, it should also be possible to make contact to geometry and gauge theory inspired 
investigations of brane moduli spaces like e.g. in [34]. 

It should not be difficult to incorporate perturbations by boundary condition changing 
operators into our analysis. The most prominent example where such operators occur is 
the condensate of D1-D5 strings in the D-brane derivation of the Bekenstein-Hawking 
entropy, see Ref. [90] and also Refs. [54,64] for further details and references. 

Relevant boundary perturbations are important in string theory since they trigger the 
formation of D-brane bound states, see e.g. Refs. [45,85]. The CFT approach allows us 
to study non-BPS bound states, too, and it was used in Refs. [83,84,9] to identify an 
S-dual pair of such states. It remains to be seen whether such results can be recovered 
directly from relevant perturbation theory, by studying properties of RG-fixed points. 
On the other hand, very interesting recent work by Sen [86-88] shows that marginal 
boundary perturbations can often be employed as an efficient tool even for the study of 
D-brane bound states. Therefore, our general investigations should have applications to 
the K-theory classification of branes proposed in Ref. [96]. 

As a more immediate task, the general constructions discussed in this paper should 
be applied to the supersymmetric case. One of the original motivations behind this work 

was to prepare the ground for a geometric interpretation of the Gepner model boundary 
states constructed in Ref. [79] by purely algebraic methods. Some promising results 
in this direction have been obtained in Ref. [52], where it was also shown how the 
"algebraic" boundary states of Ref. [79] can be used to explicitly determine geometric 

quantities connected with non-perturbative D-instanton corrections to the moduli space 
geometry [5,66]. We hope that the present methods are also useful in establishing 
further links to supersymmetric cycles in Calabi-Yau manifolds. 
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