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Abstract. The dynamics of a class of cosmological models with collisionless matter and four
Killing vectors is studied in detail and compared with that of corresponding perfect fluid models.
In many cases it is possible to identify asymptotic states of the spacetimes near the singularity or in
a phase of unlimited expansion. Bianchi type Il models show oscillatory behaviour near the initial
singularity which is, however, simpler than that of the mixmaster model.

PACS numbers: 0420D, 9880

1. Introduction

In studies of the dynamics of spatially homogeneous cosmological models it is usual to choose
a perfect fluid with a linear equation of state to describe the matter. The book [19] provides
an excellent guide to the subject. In view of the fact that this restriction is made so frequently
in the literature, it is natural to pose the question: to what extent the conclusions obtained
would change if the matter model were chosen differently? In [14] it was shown that in
the case of collisionless matter described by the Vlasov equation significant changes can
occur in comparison with the case of a perfect fluid. More specifically, it was shown that
a solution of Bianchi type | exists whose qualitative behaviour near the initial singularity is
different from that of any spacetime of that Bianchi type whose matter content is a fluid with
a physically reasonable equation of state, linear or nonlinear. In the following this analysis
will be generalized to show just how different models with collisionless matter can be from
models with a perfect fluid having the same symmetry. Differences are found in models of
Bianchi type Il (theorem 4.2), Bianchi type Il (theorem 5.2) and Kantowski—Sachs models
(theorem 5.1). These concern both the initial singularity and phases of unlimited expansion.
Perhaps the most striking case is that of the initial singularity in the Bianchi type Il models,
where we find persistent oscillatory behaviour near the singularity. This is quite different from
the known behaviour of type Il perfect fluid models.

The significance of the choice of matter model in cosmology can be illustrated by
considering the radiation-dominated era of the early universe. Here the universe is filled
with particles, which either are massless (e.g. photons) or have such high energies that they
can plausibly be treated as massless. This situation can be described by kinetic theory with
massless particles. If the matter distribution is isotropic then this is equivalent to a radiation
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fluid. However, once isotropy is abandoned this is no longer the case. Since the results of this
paper show that the dynamics can change drastically when the kinetic description is replaced by
an effective fluid description, it is necessary to think carefully about the choice of matter model
as soon as anisotropy is allowed. Note that this discussion does not depend on the particular
choice of a Vlasov model, but applies equally to a (presumably more realistic) description by
means of the Boltzmann equation with a non-vanishing collision term.

Our results will also illuminate another matter. In [11] Lukash and Starobinski gave
a heuristic analysis of a locally rotationally symmetric (LRS) model of Bianchi type | with
collisionless matter consisting of massless particles. Their conclusionwas thatin the expanding
direction the model would isotropize so that at large times it would look like a Friedman—
Robertson—-Walker model. On the one hand, we are able to prove rigorously that the heuristic
analysis of [11] gives the correct result; on the other hand, we show that this result depends
essentially on the assumption of a symmetry of Bianchi type I. If this symmetry type is replaced
by Bianchi type Il (keeping the LRS assumption and massless collisionless particles) then the
anisotropy tends to a constant non-zero value at large times.

The cosmological models studied in this paper are LRS spatially homogeneous spacetimes
with matter described by the Vlasov equation for massless particles. The reason for imposing
the LRS condition is that it allows the Vlasov equation to be solved explicitly so that the
Einstein—Vlasov equations reduce to a system of ordinary differential equations, albeit with
coefficients, which are not explicitly known and depend on the chosen initial data. The reason
for choosing the particles to be massless is that this allows a reduction of the system of ordinary
differential equations (ODESs) similar to that carried out for perfect fluids with a linear equation
of state by Wainwright and Hsu [20]. It has not proved possible to analyse the global behaviour
of solutions to our system of ODEs completely. However, a number of partial results have
been obtained, which show that there is considerable variety in the asymptotic behaviour of
solutions near an initial singularity or during a phase of unlimited expansion. In particular,
the reflection-symmetric LRS Bianchi type | solutions with massless particles are analysed
completely with respect to their asymptotic behaviour, thus improving markedly on the results
obtained on that class of spacetimes in [14].

The matter model used in the following will now be described. The matter consists of
particles of zero rest mass, which propagate through spacetime freely without collisions. Each
particle is affected by the others only by the gravitational field, which they generate collectively.
The wordline of each particle is a null geodesic. Each geodesic has a natural lift to the tangent
bundle of spacetime. Thus the geodesic equation defines a flow on the tangent bundle. By
means of the metric this may if desired be transported to the cotangent bundle and here it will
be convenient to do so. The subset of the cotangent bundle consisting of all covectors obtained
by lowering the index of future-pointing null vectors, which will be denotedPhys invariant
under the flow and thus the flow may be restricted to it. The basic matter field used to describe
the collisionless particles is a non-negative real-valued fungtion P which represents the
density of particles with given position and momentum at a given time. Choosing appropriate
coordinatest” on spacetime and lettingc*, p,) be the corresponding coordinates on the
cotangent bundle, the manifold can be coordinatized bx*, p,). Here the convention is
used that Greek and Roman indices run from 0 to 3 and 1 to 3, respectively. We ¥arite
x% and it is assumed thatincreases towards the future. The field equationffothe Vlasov
equation, says geometrically thais constant along the geodesic flow. In the coordinates just
introduced its explicit form is

af /ot + (p*/p°)af/ax“ + Ty, pup” / pO)df/dps = O 1)

wherep? is to be determined from® by the relationg,s p® pf = 0 and indices are raised and
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lowered using the spacetime metgig; and its inverse. In order to couple the Vlasov equation
to the Einstein equation, it is necessary to define the energy—momentum tensor. It is given by

Top = — / fPapplgl™?/podp1dp, dps. )

In fact, for Bianchi models it is more useful to replace the coordinate components of the
momentum used in these equations by components in a suitable frame. The only change in the
equations is that the Christoffel symbols in the Vlasov equation are replaced by the connection
coefficients in the given frame. For more information about the Vlasov equation in general
relativity the reader is referred to [6, 15].

Spatially homogeneous spacetimes fall into three broad classes, known as Bianchi class A,
Bianchi class B and Kantowski—Sachs (see [19]). Each of the two Bianchi classes can be further
divided into Bianchi types. A spatially homogeneous spacetime in one of the Bianchi classes
is called locally rotationally symmetric if it has, in addition to the three Killing vector fields
needed for spatial homogeneity, a fourth one. This can only happen for certain symmetry
types. In class A the Bianchi types, which allow an LRS special case are |, §, VIl
and IX. In class B it is types Ill, V and V}lwhich allow this [12]. The Kantowski—Sachs
spacetimes automatically have a fourth Killing vector. There exist solutions of the Einstein—
Vlasov equations witlk = —1 Robertson—Walker symmetry and these have, in particular,
Bianchi type V and Bianchi type Vjlsymmetry with any non-zerb. We did not attempt
to ascertain whether there are other examples of solutions of these Bianchi types with LRS
symmetry, and these types are not considered further in this paper. A spatially homogeneous
solution of the Einstein—Vlasov equations has by definition the property that both the geometry
and the phase space density of particles are invariant under the group action defining the
symmetry type. A similar remark applies to an additional LRS symmetry. It would be nice if
the invariance off under the group in a Bianchi model could be expressed by the condition
that f depends only on time and momentum when expressed with respect to a left-invariant
frame on the group defining the symmetry. Unfortunately, as discussed in [13], this does not
work in general. It does work for all LRS Bianchi models of class A and type IIl and for
Kantowski—Sachs models [12]. This is the reason why LRS models are relatively tractable.
In the following we consider LRS models, which are of Kantowski—Sachs type, or of Bianchi
type I, I, 11, VIl o, VIl or IX.

In the next section it is shown how in the class of spacetimes of interest the Einstein—
Vlasov equations with given initial data can be reduced to a system of ordinary differential
equations. In fact, two systems are needed. The first includes the solutions of types I, I,
Vll o, VIII and IX, while the second includes those of types | and Il and the Kantowski—Sachs
models. Note that the solutions of type | are represented in both systems and understanding
the Bianchi | case is central to analysing the general case. The analysis of the Bianchi | system
is carried out in section 3. This is then used in sections 4 and 5 to obtain results on the first and
second systems of ODEs, respectively. In the last section the results are summarized and their
wider significance is examined. An appendix collects together some results from the theory
of dynamical systems used in the body of the paper.

2. Reduction to an ODE problem

In a spacetime with Bianchi symmetry the metric can be written in the form
ds? = —dr? + g, (1)0° @ 6° 3)

where{6“} is a left-invariant coframe on the Lie group which defines the symmetry. The
particular Bianchi type is determined by the structure constants of the Lie algeGraTdie
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extra symmetry, which is present in the LRS case implies that the mgtiio is diagonal,
with two of the diagonal elements being equal [12]. Thus (3) simplifies to

ds? = —dr? +a?(1) (012 + A1) ((6%)% + (6%)D) (4)

for two functionsa(t) and b(¢) of one variable. 1fk* is any Killing vector field then the
function p,k® on the cotangent bundle is constant along geodesics and hence satisfies the
Vlasov equation. Any function of quantities of this type for different Killing vectors also
satisfies the Vlasov equation. The Killing vectors on a spacetime with Bianchi symmetry
include those defined by right-invariant vector fields on the Lie gréygut the result of
evaluating a left-invariant 1-form on one of these is not in general constant. Thus we cannot
simply solve the Vlasov equation by choosing an arbitrary function of the compopgnts
with respect to a left-invariant basis. However, for the LRS spacetimes of Bianchi class A or
type Ill considered here a function of the forfitz, p1, p2, p3) = fo(p1. p5+ p3) does satisfy

the Vlasov equation and, in fact, is the most general solution with the full LRS symmetry [12].
Herep1, p, andps are the components of the momentum in the cofrédfie Sincef does not
depend explicitly on time in this representation, the funcifigoan be identified with the initial
datum for the solution of the Vlasov equation at a fixed time. A similar statement holds for
Kantowski—Sachs spacetimes. The metric can be written in the form (4) whes@variant
under the symmetry group addands? make up any (locally defined) orthonormal coframe on
the 2-sphere. The expressipfi+ p3 is not changed by a change in orthonormal coframe and so
it makes sense to consider the above fornf @f terms of fp in Kantowski—Sachs spacetimes

as well. If f is of this form it satisfies the Vlasov equation. Thus the Vlasov equation has been
solved explicitly in the class of spacetimes to be studied. It remains to determine the form
of the Einstein equations. In fact, one further restriction will be imposed. The distribution
function given above is automatically an even functioppgfind p3. However, it need not be
even inp;. Ifitis eveninp; we say, as in [14], that the solution is reflection symmetric. Only
reflection-symmetric solutions will be considered in the following. For convenience we say
that a function ofp1, p, and ps which depends only op; and p3 + p2 and which is even in

p1 has special form.

If the Einstein equations are split as usual into constraints and evolution equations then it
turns out that in this class of spacetimes the momentum constraint is automatically satisfied.
Only the Hamiltonian constraint and the evolution equations are left. The formeris an algebraic
relation between, b and their time derivativesaddr, db/dt. The latter provide ordinary
differential equations for the evolution afandb which are second order in time. It will be
convenient to write these equations in terms of some alternative variables. Consider first the
mean curvature of the homogeneous hypersurfaces:

trk = —[a~da/dt + 2b=2db/dr]. (5)

Note that trk is minus the expansion of the normal vector field to the homogeneous
hypersurfaces. Thus &r < O corresponds to an expanding cosmological model. A new

time coordinater can be defined by(¢z) = — f; tr k(¢) dt for some arbitrary fixed timg. In
the following a dot over a quantity denotes its derivative with respect tdow define
r=>b/a,
N1 = —er(a/b?)(trk) ™,
Ny = —eza™Y(trk) =2, (6)

¥y = =30 rdb/dr)(trk)~t — 1,
B=—b"ttrk)™!
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wheree; ande, will be —1, 0 or 1, depending on the symmetry type considered. The variables
N1, N> andZ, are closely related to the variables of the same names used by Wainwright and
Hsu [20]. (Note that we adopt the conventions of [20] rather than those of [19], which differ
by a factor of three in some places.)

Two systems of ODEs will now be considered, which between them are equivalent to the
evolution part of the Einstein—Vlasov equations for all the relevant symmetry types.

The first system is

r= Yr
N1 = [~1N1(N1 — 4Np) + 51— 4%, + 2|V,
Na = [ N1(N1 — 4N2) + 3(1 + 254 + T2)|N; @)

3 = 3{INZ+ INL(Ny — ANp) (1 - 2%,)
+H[—FN1(N1 — 4Np) + 3(1— =9 ][31 - 2%4) — 0]}
Here Q is defined to be

[ fo(p) p3(r?p? + p3 + p3)~Y2dp1dp, dps} @®)

[ fo(pi)(r?p% + p3 + p3)Y/2dp, dpo dps

where f; is a fixed smooth function of special form and compactly supporte@bnThe
Hamiltonian constraint is

167p/(trk)? = =3 N1(N1 — 4Np) + 4(1 - £2) ©)

o(r) =r* [

where p is the energy density and to take account of the positivity ,0bnly the region
satisfying the inequality

—3Ni(N1 = 4Np) + 51 - 5D > 0 (10)
is considered. The quantity on the left-hand side of (9) correspon%@ltwheresz is the

density parameter often used in cosmology. Define submanifolds of this region by the following
conditions:

S1: Ni=N,=0

Sp: N1 #0, N,=0

S3: N1 =0, N #0

Ss: Ny #0, Ny # 0, No = —r2N;
Ss: N1 #0, No #0, No = r?Nj.

The submanifoldssy, S», S3, S4 andSs correspond to Bianchi types |, II, \gJ VIII and 1X,
respectively. To make the correspondence with spacetime quantities in these different cases
(e1, €2) should be chosen to k6, 0), (1, 0), (0, 1), (-1, 1) and(1, 1), respectively. Note that
if r is replaced by = r~ in (7) an almost identical system is obtained, with the sign in the
first equation being reversed.
The second system is

}.’ = E+V

B=[eB?+1i+11-2%,)?]B (11)

3, = 3{—2eB2(1-2%,) +[eB2+ i1 - 2?)|[32 - 2%, - 0]}
wheree belongs to the sd€t-1, 0, 1}. Only the region satisfying the inequality

2¢B?+2(1-%) >0 (12)
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is considered. The cases= —1, 0 and 1 correspond to Bianchi type Ill, Bianchi type | and
Kantowski—Sachs, respectively. Note that the restriction of the system §7)J4adentical to
the system consisting of the first and third equations of (11) fer0. This restricted system
will be referred to in the following as the Bianchi | system. It was introduced in section 6 of
[14] with slightly different variables.

If a solution of (7) and a fixed are given, it is possible to construct a spacetime as
follows. Suppose that = 0 is contained in the domain of definition of the solution. Since the
system is autonomous this is no essential restriction. Choose a negative mfignbexfine

p = (1/16m) HF[—3N1(0)(N1(0) — 4N2(0)) + (1 — X2(0))]. (13)
Let

I= / So(p)[(r(0)?pf + p5 + p3]*/?dp1dp2 dps (14)
and define

— o YArY4 . 0)) /4

N g 1/441 4(r( ))1 4 (15)

bo = p~YHMA(r (0 V4.
In terms of these quantities we can define an initial metric by

ag(Oh)? +b5((6%)7 + (6°)2). (16)
Similarly, we can define an initial second fundamental form by

—%(1 — 2%,(0)) Hoad (61)% + %(1 +3.(0)) Hob3((6%)% + (63)2). (17)

These data satisfy the constraints by construction. Consider now the spacetime which evolves
from these initial data. It is of the form (3). For the Einstein—Vlasov system in a spacetime of
the form (3) with a fixed time-independent distribution function is a system of second-order
ODEs which has solutions corresponding to data &b, da/dr, db/dt). These data can be
chosen so as to reproduce the data of interest for the Einstein—Vlasov system by choosing
da/dr = (1 — 2%4(0))Hoa and cb/dt = —2(1 + ,(0))Hob for t = #o. This spacetime
defines a solution of (7) via (6). (Note that= t, corresponds ta = 0.) Thus the two
solutions are identical. In this way a spacetime has been constructed, which gives rise to the
solution of (7) we started with. This spacetime may be obtained more explicitly if desired. In
order to do this, first solve the equation

9 (trk) = —[—3N1(N1 — 4Np) + 22+ )| trk (18)

with initial dataHy. Thenp can be obtained from the Hamiltonian constraint (9). The definition
of p in terms of fy can then be combined withto givea andb as in (15). Finallys can be
obtained from tk. All the considerations here in the case of (7) are equally applicable in the
case of (11). The analogue of equation (18) is

d (trk) = —[eB*+ 12+ 2)|trk. (19)

Solutions of the Einstein equations with matter described by a perfect fluid with a linear
equation of state = (y — 1)p which belong to one of the symmetry types studied in the case
of collisionless matter in the following can be described by equations very similar to (7) and
(11). The similarity is particularly great in the case where= % (radiation fluid). In that
case the only difference is that the functi@rir) should be replaced by the constant va%ue
This leads to a decoupling of the first equation in each system, so that it is possible to restrict
attention to the remaining equations when investigating the dynamics. (This last remark also
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applies to the system obtained for other valuey 9f The equation for can be integrated
afterwards if desired.

In [14] it was proved thap (r) as defined in (8) tends to zero mgends to zero and that
if Q(0) is defined to be zero the resulting extensiorQois C* with Q’(0) = 0. This means,
in particular, that the dynamical system (7) has a well defiiédxtension tor = 0. In
a similar way it can be shown that if a functigh is defined byQ (7) = Q(r) thenQ can
be extended in @ manner toF = 0 in such a way thaQ(0) = 1 andQ’(0) = 0. For
1- 0 = (p—T}/p = 2TZ/p and this last expression is(8/%) as# — 0 by lemma 4.2
of [14]. By using a coordinaté = r/(r + 1) it is possible to map the system (7) with
ranging from zero to infinity onto a region withranging from zero to one. Moreover, the
system extends in @' manner to the boundary componefts- 0 and 1. The coordinate
has been introduced purely to demonstrate that the system (7) can be smoothly compactified
in ther-direction. For computations it is more practical to use the local coordinaasy.

In particular, these considerations allow us to regard the Bianchi | system as being defined on
a compact set.

The compactification of the system (7) is defined on a region with a boundary. Different
parts of the boundary are given by= 0, 1 and the case of equality in (10). The complement
of the boundary will be called the interior region in the following. A solution which lies in the
interior region corresponds to a smooth non-vacuum solution of the Einstein—Vlasov equations.
A solution which lies in the part of the boundary where (10) becomes an equality corresponds
to a solution of the vacuum Einstein equations. A solution which lies in the part of the boundary
given by7 = 0 or 1 corresponds to a distributional solution of the Einstein—Vlasov equations,
as will be explained in more detail below. The system (11) can be compactified in a way very
similar to that taken in the case of (7). The comments on the interpretation of different types
of solutions of the compactification of (7) just made also apply to the compactification of (11),
with (10) being replaced by (12).

Consider now the stationary points of the system (7), or rather of its compactification.
(This distinction will not always be made explicitly in what follows.) In section 4 it will be
shown that all stationary points wheréhas a finite non-zero value belong to the sulget
corresponding to solutions of type I. In particular, they correspond to stationary points of the
Bianchi | system, which will be studied in detail in the next section.

3. The Bianchi | system

It turns out that the Bianchi | system plays a central role in the dynamics of solutions of the
systems (7) and (11). In this section the asymptotic behaviour of solutions of this system
is determined, both for — —oo (approach to the singularity) and for— oo (unlimited
expansion).

The first step in analysing the Bianchi | system is to determine the stationary points. This
can be done using the fact, proved in [14], tigatis strictly monotonic forr > 0 so that
there is a uniqueg with Q(rg) = % With this information it is straightforward to show
that the coordinates of the stationary points in thex.)-plane are(rg, 0), (0, —1), (O, %),

(0, 1), (00, —1) and (oo, 1). Herer = oo is to be interpreted a6 = 0 or7 = 1. Call
these pointsPy, ..., Ps, respectively (see figure 1). The next step is to linearize the system
about the stationary points. Recall that a stationary point is called hyperbolic if none of its
eigenvalues are purely imaginary. In the following we call a stationary point degenerate if it is
not hyperbolic. The poinP; is a hyperbolic sink, while, is a hyperbolic source. The points

P>, P3 and Pg are hyperbolic saddles, whil®; is degenerate, with one zero eigenvalue.
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Figure 1. The (7, =+)-plane and the fixed points for Bianchi type I. (Here, and in figures 2 and 3,
coordinate axes, which are not trajectories of the system are shown as broken lines.)

Before proceeding further, we state the main result of this section.

Theorem 3.1.If a smooth non-vacuum reflection-symmetric LRS solution of Bianchi type | of
the Einstein—Vlasov equations for massless particles is represented as a solution of (7) with
N; = N, = 0then fort — oo it converges to the poin®;. For t — —oo either

(a) it converges taP; and in that case it stays for all time at the poiPt or
(b) it converges to the poinfe; and it belongs to the unstable manifold R or
(c) it converges taP,.

All of these cases occur, and (c) is the generic case in the sense that it occurs for an open dense
set of initial data.

This will be proved in a series of lemmas. Terminology from the theory of dynamical
systems which may be unfamiliar to the reader is explained in the appendix.

Lemma 3.1. If a solution of the Bianchi | system in the interior enters the region> % then
for r — —oo it belongs to case (c) of theorem 3.1. A solution of the Bianchi | system in the
interior has now-limit points withx,. > %

Proof. A solution of the Bianchi | system satisfi&s< —3(1 — £2)Q whenX, > 1 and so
for any solution which enters the given regidn, is non-decreasing towards the past and it
is in the region for all earlier times. K. did not tend to 1 as — —oo then we would have
¥+ < —C < 0 at early times, a contradiction. Once we know tRat— 1 ast — —oo

it follows immediately thatr — 0. Thus the solution converges R3. Consider now the
forward time direction. Sinc&. is positive,r is increasing. This means th@tis increasing.
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The inequalitys < —CQ for a constant > 0 then shows that the solution must leave the
region of interest in finite time, so that there can bewlimit point with ., > % O

For convenience an interior solution, which does not ten@t@st — —oo will be
called exceptional. Thus lemma 3.1 says that an exceptional solution cannot intersect the
region=, > 2.

Lemma 3.2. Thea-limit set of an exceptional solution cannot intersect the boundary at any
point exceptPs. If it does intersect the boundary &% it belongs to case (b) of theorem 3.1 as
T — —o00. Thew-limit set of any interior solution cannot intersect the boundary at all.

Proof. Let (r, £+) be a point of thex-limit set of an exceptional solution which lies on the
boundary. Ifr = oo then the whole orbit passing through that point belongs taxtimit
set. This implies that the solution must intersect the region- % a contradiction. Thus,
in fact,r < oco. If ¥, = —1 then all points withz, = —1 must be in thex-limit set, in
particularPs. By lemma A.2 of the appendix, it follows that a point of the centre manifold of

Ps lies in thea-limit set. However, this centre manifold is given by= oo and so we again
obtain a contradiction. Hence, > —1. If r = 0 andZ, < % then all points satisfying
these conditions must be in thelimit set, in particularP,. However, then an application of
lemma A.1 of the appendix leads to a contradiction. Thus no point on the boundary other than
P3 is possible. A further application of lemma A.1 shows that in this case the solution must
lie on the unstable manifold a@f;. In a similar way it is possible to show that if any point of

the boundary belonged to thelimit set of an interior solution then some point with. > %

would do so. However, we know from lemma 3.1 that this is impossible. O

Proof of theorem 3.1.First the Poinca&—Bendixson theorem will be applied to the restriction
of the Bianchi | system to the interior with the poiPt removed. In general the- andw-limit
sets of an orbit of a dynamical system can be very complicated, but in two dimensions (and
the Bianchi | system is two dimensional) things are a lot simpler. Complicated situations are
still possible and these play an important role in Hilbert's 16th problem (see e.g. [2], p 104).
However, many pathologies are ruled out by the PoimeBendixson theorem, which is stated
in the appendix (theorem A.2).

Given aninterior solution, suppose ttRtdoes not belong to the-limit set. By lemma 3.2
no point of the boundary belongs to thelimit set either. SinceP; is a hyperbolic sink it
follows that there must be a neighbourhoodgfvhich does not intersect thaglimit set. Thus
the solution remains in a compact set of the interior with the pBintemoved ag — oo.
Then theorem A.2 implies the existence of a non-stationary periodic orbit of the Bianchi |
system. In fact, the existence of periodic solutions of the Bianchi | system can be ruled out by
the presence of a Dulac function. (For a discussion of this concept see [19].) Define a function
F(r) by

F(r) = f Solpi) (2 p2 + 2+ p2) Y2 dpy dpy dps. (20)
ThenQ = (r/F)F’. Forr > 0and|X:| < 1 let

G(r,y) = r YFY2(1 - x2)7%2 (21)

and denote the vector field defining the Bianchi | systenXbyrhen di G X) is negative. In

fact, it is a constant multiple of 1FY/2(1 — £2)~%/2(2 — %,). This means that is a Dulac
function. It follows that the Bianchi | system has no periodic solutions. It can be concluded
that P; does lie in theo-limit set. However, sinceé; is a hyperbolic sink, this implies, via the
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Hartman—Grobman theorem (cf theorem A.1), thataHemit set consists ofP; alone, which
proves the first part of the theorem.

To prove the remainder of the theorem we can assume without loss of generality that the
solution is exceptional and that it does not lie on the unstable manifaRd.of P; were not
in the a-limit set then we would obtain a contradiction by the Poiked¥endixson theorem
and the absence of periodic orbits. Herganust belong to the-limit set, and sinceP; is a
hyperbolic sink, the only possibility left is case (a) of the theorem. a

The conclusion of this theorem can be summarized in words as follows. All solutions
isotropize in the expanding direction. The initial singularity is generically a cigar singularity
but there are exceptional cases where it is a barrel or point singularity. (For this terminology
see [19], p 30.) Note for comparison that if the Vlasov equation is replaced by the Euler
equation for a fluid satisfying a physically reasonable equation of state then there are no barrel
singularities and all solutions which are not isotropic have cigar or pancake singularities (see
[14]). The pancake singularities are as common as the cigar singularities. In particular, this
means that for fluid solutions of Bianchi type | cigar singularitiesetgeneric. All solutions
isotropize in the expanding direction. Note that the ‘reasonable’ equations of state include
those of the fornp = kp with 0 < k < 1. The solutions of the Einstein—Vlasov equations
approach an isotropic fluid solution with equation of state %,0 in the sense that the trace-
free part of the spatial projectidfj; of the energy—momentum tensor divided by the energy
densityp approaches zero, whileTi/p = 1. The latter relation is always true for kinetic
theory with massless particles and for a radiation fluid (equation ofﬁtaﬂ%p).

4. Other class A models

This section is concerned with the models of class A, as described by the system (7). Only
limited statements will be made about types VIl and IX. Even inahmiori simpler case of
a perfect fluid with a linear equation of state it is difficult to analyse LRS models of type VIII
and IX. (For information on what is known about that case, see [17, 18] and section 8.5 of
[19].) A major difficulty is that in these cases the domain of definition of the dynamical system
is non-compact. This allows the possibility that there may be anomalous solutions similar to
those encountered in [16]. Type | was analysed in the previous section and we will see that
the analysis of type Vil can be reduced to that case in a relatively straightforward way. The
most interesting results are obtained for Bianchi type II.

We start with a theorem on Bianchi type Ylwhich is a close analogue of theorem 3.1.

Theorem 4.1.If a smooth non-vacuum reflection-symmetric LRS solution of Bianchi type VII

of the Einstein—Vlasov equations for massless particles is represented as a solution of (7) with
N1 = Othen fort — oo the pair(r, £.) converges tadrg, 0) while N, increases without limit.

N, tends to zero as — —oo while the pair(r, X.) either

(a) converges ta’; and in that case it stays for all time at the poiPt or
(b) converges to the poi; and belongs to the unstable manifoldR®for
(c) converges t@,.

All of these cases occur, and (c) is the generic case in the sense that it occurs for an open dense
set of initial data.

Proof. WhenN; = 0 the third equation in (7) becomes
N> = 3(1+%,)%N; (22)
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while the equations foE. andr do not involveN,. The latter equations form a subsystem,
which is identical to the equations for Bianchi type I, so that the situation is again as in figure 1.
The qualitative behaviour of their solutions has been analysed in theorem 3.1. All that remains
to be done is then to put that information into equation (22) and read off the behavidyr of
The expressionil + X.)? is strictly positive for a non-vacuum solution of type ¥,due to

(10). Moreover, it is bounded by 4. Thus the solution has the property that the sigs of
remains constant and the solution exists globally.ift is also clear thaV, — oo ast — oo

and thatV, — 0 ast — —oo. O

There is a simple explanation for the close relation between the Bianchi | and Bianghi VII
solutions. They are, in fact, the same spacetimes parametrized in two different ways. The full
four-dimensional isometry group has a subgroup of Bianchi type | and a one-parameter family
of subgroups of Bianchi type \{!

Next we turn to the solutions of type Il. It will be shown that the stationary points of (the
compactification of) (7) which lie in the closure 6§ are the pointsPy, ..., Ps which we
know already together with one additional poiyt which has coordinate®o, 2+/2, 1) (see
figure 2). The corresponding distributional solution of the Einstein—Vlasov equations will be
discussed in detail below.

Theorem 4.2.1f a smooth non-vacuum reflection-symmetric LRS solution of Bianchi type I
of the Einstein—Vlasov equations for massless particles is represented as a solution of (7) with
N, = Othen fort — oo the solution converges tB;. For t — —oo either:

(a) the solution converges t®, or

(b) the a-limit set of the solution consists of the poirs, P4, Ps and Pg together with
the orbits connectingP, to Ps, Ps to Ps and P; to P, in the setN; = 0 and
the stable manifold o, which connectsP, with P, via the vacuum boundary. In
particular, liminf,_,_ £, = -1, limsup,_,_ £+ = +1, liminf._,_r(r) = —o0
andlimsup,_, _ r(7) = oo.

Both of these cases occur and (b) is the generic case.

This theorem shows that while models of Bianchi type Il have simple behaviour in the
expanding phase, all tending to a single attractor, the behaviour near the initial singularity
is in general oscillatory, and quite different from the Bianchi type | case. Note also that the
models of type Il do not isotropize as— oo, which is another important difference from the
type | models.

A first important step in proving theorem 4.2 is to use the identity

3/3T(r*Ny) = r*3Ni[—3N1(N1 — 4Np) + 3(1 — X2) + £52] (23)
which holds for any solution of (7). This is done in the following lemma.

Lemma 4.1. For any solution in the interior of, the following statements hold. As— oo r
tends toco. Either thea-limit set is contained in the set= 0 or it contains one of the points
Py, ..., Pe.

Proof. For a non-vacuum solution a strict inequality holds in (10) and he#é@/; is strictly
increasing where it is non-zero. This means that as longigfinite and the Bianchi type is
Il this quantity is always increasing. Sinég is compact, solutions exist globally in As t
tends to plus or minus infinity the solution must go to the boundasg .oEquation (23) shows
that if »#/3N; tends to a finite non-zero limit in either time direction thEg is integrable
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Pg

Ps

Figure 2. The (7, X+, N1)-space and the fixed points for Bianchi type II; the lower two figures
show the phase portraits on the end-fatesO0, 1.

on a half-infinite time interval. The derivative of this quantity is bounded and these two
facts together imply that it must tend to zero in the limit. The same argument applies to the
quantity appearing in (10) and so it must also tend to zero in the limit. Under these conditions
N1 — 2/4/3andx. — %, acontradiction. It can be concluded that{im,, (r3N1)(t) = oo

and lim,_, o (r*3N1)(7) = 0. From the first of these statements and the boundednegstof
follows thatr tends taco ast tends taco. The fact that#/3N; tends to zero in the contracting
direction implies that the-limit set is contained in the union of the sets= 0 andN; = 0.
Suppose the-limit set contains some point for whieh# 0. This must belong to the Bianchi |

set. Thus the-limit set contains a solution of Bianchi type I. Using theorem 3.1, we conclude
that thex-limit set contains one of the poinf, ..., Ps. O

The next lemma gives information about the nature of the stationary poinfs. owe
already know from lemma 4.1 that these stationary points can only occof;fer 0, = 0
or co. The stationary point®y, . .., Ps will be investigated first. The equations foe= 0 and
oo will be studied in detail later.
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Lemma 4.2. The stationary pointd, ..., P4 and Ps of the restriction of the system (7) to
S, are hyperbolic saddles, whil®s is degenerate. The stable manifold Bf is given by
N1 = 0. The stable and unstable manifolds®fare given byx, = —1, Ny = 0andr = 0,
respectively. The stable manifold Bf is given byr = 0. The stable and unstable manifolds
of P are given by = 0, N? = 3(1— £2) and N; = 0, respectively. The stable and unstable
manifolds ofPg are given byNZ = %(1— ¥2)andr = oo, N1 = 0, respectively. The unstable
manifold ofPs is given byN? = 3(1 — £2). The set = oo, N; = Oiis a centre manifold for
Ps.

Proof. All that needs to be done is to compute the linearizations of the system about the given
points and to note that the manifolds named in the statement of the theorem are all invariant.
Linearizing the restriction of (7) t&/, = 0, and settingV; = 0 in the result, gives the system

(a bar denotes a linearized quantity):

di/dt = .7 +r X,
dNy/dr = 3(1— 4%, + X2V, (24)
dZ,/dr = [-3(1+ 2 — 352 + 2. 0(N]E+ — 30/ (N1 — ZHF.

The linearization abouP; has eigenvalue§ and—% + 1 /2 — 2/,0'(r0). The invariant
subspace of the linearization corresponding to the eigenvalues with negative real parts is the
tangent space t&y; = 0. The linearizations about,, P; and P, are diagonal with diagonal
entries(—1, 2, 1), (3, —3, —H and(1, —%, 1), respectively. Sinc®s andPs lie atr = oo, we

must change to the coordinateo study the linearizations at these points. They are diagonal
with diagonal elementél, 2, 0) and(—1, —5, 3). O

Next the limiting systems far = 0 andoo will be examined.

Lemma 4.3. Consider the restriction of the system (7) to the set given by the equations
N2 = r = 0. For any solution which does not belong to the vacuum boundary and which does
not satisfyN; = 0, thea-limit set is the pointP, and thew-limit set is the pointPs.

Proof. Firstit will be shown that the solution cannot be stationary. The equatian.fshows
thatX, > 0if X4 < % Thus at a stationary poirt. > % On the other hand, the equation
for N1 shows that at a stationary point

(Z+—22=3+N2>3. (25)

Using the factthak, < 1itfollows that, < 2—+/3 < % Next, it follows from theorem 3.1

on p 150 of [7] that the solution cannot be periodic. It can be concluded using the Bsincar
Bendixson theorem (theorem A.2 of the appendix) thatthendw-limit sets are contained in

the boundary of the region. The behaviour of solutions on the boundary is easily determined.
The nature of the stationary points on the boundary can be read off from lemm&.42a
hyperbolic sourcePs is a hyperbolic sink and, is a hyperbolic saddle. The last fact means,
using lemma A.1 of the appendix, thBt cannot be in the:- or w-limit set unlessP, or P3 is

also. Thus it can be concluded that theandw-limit sets must contain eithe?, or P; and

then the conclusion follows easily. O

The system given by, = 0 andr = oo is more complicated.

Lemma 4.4. Consider the restriction of the system (7) to the set given by the equator

andr = oo. For any solution which does not belong to the vacuum boundary and which does
not satisfyN; = 0, the «-limit set consists of all points, which are either on the vacuum
boundary or satisfyv; = 0. Thew-limit set is the pointP;.
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Proof. Define a functiorZ by

3/4

z =N [-iIN2+2a -2 a -tz 2 (26)

This function is well defined and continuous ¢p and smooth away froov; = 0 and
—INZ+2(1- %?) = 0. Its derivative is given by

9,2 =27(1—1%,) [A6B2. — 12+ (-3NZ+ 32— 155, + H(1 - Q)]. 27)

The restriction ofZ to the setr = oo is hon-decreasing along solutions as a consequence of
(27). Moreover, it is strictly increasing unle3s = % Whenx, = % it follows from (7)

that =, # 0 unlessN; = é«/ﬁ Thus apart from the stationary solution at the pdtaivith

coordinategoo, 2+/2, 1), the functionZ is strictly increasing along any solution with= oc.

It follows that P; is the w-limit point of all solutions. The functiorZ attains its minimum
precisely on the boundary of the region where the system is defined and hencéirttie

set of any solution is contained in this boundary. The only stationary points on the boundary
are Ps and P;. From lemma 4.2 it follows that both are saddle points of this systdfais(
degenerate whil@s is non-degenerate.) This suffices to show, using lemmas A.1 and A.2 of
the appendix, that the-limit set consists of the entire boundary. |

Proof of theorem 4.2. By lemma 4.1 theo-limit set of any solution consists of points with
r = oo. Then lemma 4.4 shows that eithf belongs to thev-limit set or that thew-limit
set consists entirely of points with = co andN; = 0 or —3N? + 2(1 - £2) = 0. A
calculation of the linearization of (7) aroun® shows that this point is a hyperbolic sink.
Hence if P; belongs to thev-limit set this set consists dP; alone. It remains to rule out the
other possibility where the solution has adimit point on the boundary of the intersection
of > with » = oo. In that case lemma A.1 applied to the poifgand lemma A.2 applied
to the pointPs show that theo-limit set contains the whole of this boundary. It will now be
shown using (27) that this leads to a contradiction. There éxist 0 andM > 0 such that
if |24 — %| > §; andr > M the right-hand side of (27) is positive. This is because the first
term dominates the second. By reduciiand increasing/ if necessary it can be ensured
that there exist positive constantg n, andé, such thatz=19, Z can be bounded below by
niaslongass, — i > sy andr > M andX, > o for [Z, — §| < 81, [Ny — 24/2| > &,
andr > M. Finally, givenns > 0 there existd; > 0 so thaty < nz for |Z| > 1 — 63 and
r > M. At sufficiently late times the solution lies in the region- M. Moreover, under the
present assumption on thelimit set it cannot enter the neighbourhood &f defined bys;
andsé,. Each time it crosses the strip defined |34 — %| < &, at a sufficiently late time it
must enter the regiol, > 1 — 83 before it can return to the strip. It must spend a long time
in the regionX, > 1 — §3 (due to the smallness @§). This time can be bounded below by
Cngl for a constanC > 0. During that time logZ must increase by at lea&t(n1/53). On
the other hand, log can only decrease while it is in the strip. It stays there for a time at most
81/n2 and can decrease by at mast; /n,. Thus the net change &f for each time it enters
the strip is at least (n1/n3 — 81/n2). If n3is chosen small enough this will be bounded below
by a positive quantity. Since the solution must, under the given assumptions, enter the strip
infinitely often, this gives a contradiction. The proof of the statement abousirait set is
now complete.

Suppose that the-limit set contains a point with = 0 andN; # 0. Then by lemma 4.3
it containsP, and P; or P,. Lemma 4.1 then shows that at least onéqf. . ., Psis contained
in the o-limit set. If thea-limit set containsP; then either the solution lies in the unstable
manifold of P;, which gives case (a) of the theorem, or thdimit set contains points on
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that unstable manifold other tha® itself. However, since these satisfy neithiér = 0 or

r = 0 this is a contradiction. If the-limit set contained points withV; = 0 with r finite and

|24| < 1itwould containPy, leading once again to a contradiction. If it contaifst follows

from lemma A.1 and what has just been said that it must contain ather Ps. It must also
contain P,. However, if it containedPs it would, by another application of the same lemma
contain Py, a contradiction. On the other hand, if it contaiPsit must containP; and Ps. If

it containsPs it must containPg and vice versa, by lemmas A.1 and A.2. On the other hand,
lemma A.1 shows that if the-limit set containsPs or Pg it must containP, or P4. It also
follows from these applications of the lemmas of the appendix that the relevant connecting
orbits are contained in the-limit sets. O

Now a spacetime corresponding to the polstwill be determined (in figure 2, this
spacetime follows a straight line at constént., N1) into P;). From equation (19) it follows
that trk = Hoe™/>". Putting this in the equation relatingandr shows that tk = —32~.
Putting this in the third equation of (6) gives= bot%/3. Equation (5) implies that = aot*/3.
Finally, the second equation of (6) leads to the relatign= %ﬁbg. Choosing an explicit
representation of a Bianchi type Il frame leads to the metric

ds? = —dr? + ngtz/s(dx +zdy)? + Br*3(dy? + dz?) (28)

where B is a constant. This metric is invariant under the homothety Az, x — A%3x,

y > AY3y, z > AY3;z. Itfollows thatrd/dt + 5xd/0x + 1(yd/dy +23/3z) is a homothetic

vector field and that this metric is self-similar. It satisfies the Einstein equations with an
energy—momentum tensor whose only non-vanishing componentsaré7;;. These two

are equal and are proportional#®®. This can be interpreted as a distributional solution of

the Einstein—Vlasov equations with massless particles where the distribution function is of the
form f(p1, p2, p3) = f1(p1) 8(p2) §(p3). (Note that a distributionaf of this kind defines a
dynamical system just as a smogttdoes so that the solution can be represented in figure 2.)
The exact form of the functiorf; is unimportant. Only the integralf f1(p1) p1dp1 and

f fl(pl)pf dp1 influence the energy—momentum tensor. Related to this fact is that the same
spacetime can be interpreted as a solution of the Einstein equations coupled to two streams
of null dust moving in opposite senses in thedirection. This corresponds to choosing

fi = (8(p1) + 8(—p1)) instead of a smooth function. The sum of two Dirac measures is
necessary to preserve the reflection symmetry. This spacetime has previously been considered
by Dunn and Tupper [5] in the context of cosmological models with electromagnetic fields,
although it had to be rejected for their purposes since no consistent electromagnetic field
existed.

The monotonic functiotr which plays a crucial role in the proof of theorem 4.2 is rather
complicated and so is unlikely to be found by trial and error. We found it by means of a
Hamiltonian formulation of the equations for= oco. Once the function was found fer= co
it was extended so as to be independent.ah developing the Hamiltonian formulation we
followed the treatment of Uggla in chapter 10 of [19]. A key point is that the energy density
of a distributional solution of the Einstein—Vlasov system where the pressure is concentrated
in one direction can be related in a simple way-toThe functionZ is the Hamiltonian for
the (time-dependent) Hamiltonian system. It was also the constructi@nadfich led us to
discover the self-similar solution corresponding to the p@&int

The picture obtained in theorem 4.2 is quite different from that seen in LRS Bianchi
type Il solutions with a perfect fluid with a linear equation of state as the matter model (see [19],
chapter 6). There generic solutions are approximated near the singularity by a vacuum solution
(the type I NUT solution) and there is no oscillatory behaviour. In the expanding direction the
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fluid solutions are also all asymptotic to a self-similar solution (the Collins—Stewart solution),
but this solution has a different ratio of shear to expansion from the solution corresponding to
the pointP;. Moreover, the pressure is highly anisotropic in the latter solution.

5. Kantowski—Sachs and Bianchi type Ill models

In this section information will be obtained on Kantowski—Sachs models and models of Bianchi
type Il which is as complete as that obtained on models of Bianchi type | in section 3.

Theorem 5.1. If a smooth non-vacuum reflection-symmetric Kantowski—Sachs-type solution
of the Einstein—Vlasov equations for massless particles is represented as a solution of (11)
with ¢ = 1then fort — —oc either

(a) it converges ta?;

(b) it converges to the poir; and it belongs to the unstable manifold®f or

(c) it converges taP,.

(d) All of these cases occur, and (c) is the generic case in the sense that it occurs for an open
dense set of initial data.

Proof. The inequalityd, B > %B shows thatB decreases towards the past. It follows that
ast decreases the solution remains in a compact set and hence that the solution exists for
all sufficiently negativer. Using the inequality again shows that— 0 exponentially as

7 — —oo and theo-limit set lies in the seB = 0. The latter can be identified with the
Bianchi | system. The-limit set contains the image of a solution of the Bianchi | system
and hence, by theorem 3.1 contains eitReor some point of the boundary of the Bianchi |
system. Each of the stationary poits ..., Pg, considered as stationary points of (11), has

a linearization, which differs from its linearization within the Bianchi | system by the addition
of an extra eigenvector with a positive eigenvalue. It can be concluded from thiB et
hyperbolic source. Moreover, by lemmas A.1 and A.2, if any point of the boundary other than
Ps lies in thea-limit set, thenP, must also lie in the-limit set. Hence in this case thelimit

set consists oP4 alone. Moreover, ifP; lies in thex-limit set then the solution must lie on its
unstable manifold. The only remaining possibility is that éhkmit set consists ofP; alone,

and that the solution lies on the unstable manifoldPof O

No statement is made here about the behaviour-as co. In fact, any solution of (11)
with € = 1 tends to infinity in finite time. However, this is not a problem from the point of
view of understanding the spacetime. Itis known that the Kantowski—Sachs models recollapse
[4]. Thus there is no infinitely expanding phase and a final singularity looks like the time
reverse of an initial singularity. One interesting question which we do not attempt to tackle
here is whether there is an interesting correlation between the behaviour near the initial and
final singularities. For each individual singularity the picture is essentially identical to that
seen in the singularity of Bianchi | models. The system for a radiation fluid can be analysed in
the same way, reducing the dynamics near the singularity to that of the corresponding Bianchi |
system. The differences between radiation fluid and kinetic models are similar in both cases.

Theorem 5.2.1f a smooth non-vacuum reflection-symmetric LRS solution of Bianchi type Il
of the Einstein—Vlasov equations for massless particles is represented as a solution of (11)
with e = —1 then forr — oo it converges to the poinks with coordinategoo, 3, 3) and for

7 — —oo either

(a) it converges taP; or
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(b) it converges to the poir; and it belongs to the unstable manifold®f or
(c) it converges taP;,.
(d) All of these cases occur, and (c) is the generic case in the sense that it occurs for an open

dense set of initial data.

Proof. The inequality (12) wite = —1 implies that a solution of (11) of Bianchi type llI
remains in a compact set and hence exists globally. irThe quantityB is positive in the
region whereB? < 1 + 5 (1—2%,)2. Call this regionG. In the complement of the closure of
G the inequalityB < 0 holds. Thus any stationary point with> 0 must lie on the boundary
of G. A stationary point with a finite non-zero valuesofust satisfyx. = 0 and this implies
thats = % a contradiction. Thus the only stationary points occurBoe 0 (these are the
well known Bianchi type | stationary points),= 0 oroco. In fact, the only stationary points
which are not of type | are those with coordinat8s3, 3) and(co, 3, 2). Call thesePs and
Py, respectively (see figure 3).

/P5

1)

Figure 3. The (7, =+, B)-space and the fixed points for Bianchi type III.

The boundary ofG is connected and sB has a constant sign there. Checking at one
point shows that this sign is positive. As a consequence, a solution can neveGlese
increases or ent&r ast decreases. A solution which lies on the boundarg @t some time
(with r non-zero and finite) must immediately entgrto the future and enter the interior of
its complement to the past. Consider now the behaviour of a given solutioml@sreases.

If it stayed inG forever thenB would have to increase asdecreases. On the other hand,
any «-limit point would have to be in the boundary 6f due to the monotonicity properties
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of B. This is not consistent. Thus asdecreases the solution must reach the bounda6y of
and, as a consequence the interior of the compleme@t dh the latter regiorB is strictly
monotone and so the-limit set must be contained iB = 0. Then the same analysis as in

the proof of theorem 5.1 shows that the solution belongs to one of the cases (a)—(c) of the
theorem. Next consider the behaviourrasicreases. As tends to infinity the solution must

tend to the boundary af. If it stays in the interior of the complement 6fthen it must tend

to the boundary o& ast tends to infinity and, more precisely, to one of the poiP§or P.
SinceX. is positive at these points,— oo and so onlyPy is possible. Now suppose that the
solution does meet the boundary@fand hence enteiG itself. Then it remains itG and B

is once again strictly monotonic. As before, it can be concluded that the solution converges to
Py ast — oo. O

The pointPy corresponds to a self-similar solution of the vacuum Einstein equations much
as doesP; (this time the trajectory is the horizontal straight line in figure 3 frégto Py).
This is the Bianchi 1l form of flat space (see p 193 of [19]). Once again the nature of the initial
singularity is similar to that in solutions of type I. On the other hand, the final singularity is
qualitatively different from any we have seen so far. In this case the solution is approximated
at large times by a vacuum solution in the sense that the dimensionless guaitify)? tends
to zero ag — oco. A very similar analysis applies to the system for a radiation fluid. LRS
Bianchi type Ill fluid solutions with equation of stape—= %,0 behave like solutions of Bianchi
type | near the initial singularity. They are approximated at large times by the same vacuum
solution as in the case of kinetic theory. The approach of [8] should allow similar statements
to be proved for other fluids with a linear equation of state, but this does not seem to have been
worked out explicitly in the literature.

6. Conclusions

The above theorems show that solutions of the Einstein—Vlasov equations with high symmetry
exhibit a wide variety of asymptotic behaviour near a singularity and in a phase of unlimited
expansion. They can have a point singularity, barrel singularity or cigar singularity or they can
show oscillatory behaviour near a singularity. In an expanding phase they can resemble a fluid
solution (Bianchi type | and V§), a vacuum solution (Bianchi type IIl) or a solution of the
Einstein equations with null dust (Bianchi type Il). There are notable differences in comparison
with a fluid model, and this includes the radiation fluid, which is often used as an effective
model of massless particles in cosmology. The most striking qualitative difference is the
appearance of oscillatory behaviour in type Il solutions. It is interesting to compare this with
the analysis of spacetime singularities by Belingkial [3]. They do not say precisely what

they assume about matter but it seems that they do assume, at least implicitly, that pressures
cannot approach the energy density. This assumption is not necessarily satisfied in a kinetic
description. The mean pressure cannot exceed one third of the energy density, but if it all
concentrates in one direction the pressure in that direction can approach the energy density.
This leads to a source of oscillations beyond those taken into account in [3].

While the oscillatory behaviour of cosmological models near a singularity has often
been observed numerically and explained heuristically, it has rarely been captured in rigorous
theorems. To our knowledge the only example where this had been done previous totheorem 4.2
of this paper is in a class of solutions of the Einstein—Maxwell equations of Bianchi type VI
analysed in [10].

The results of this paper concern only massless particles. One may ask what would change
in the results if the case of massive particles is considered. In one case the answer is known,
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namely in Bianchi type |. There the solution approaches a dust solution in the expanding
phase. Itis reasonable to expect that this happens more generally. As the model expands in all
directions the pressures should become negligible with respect to the energy density, leading
to a dust-like situation. However, the techniques necessary to prove this are not yet known.
Near the initial singularity, the equations for massive particles look like those for massless
particles and it may be conjectured that the behaviour near the singularity is similar in both
cases. Unfortunately that has also not yet been proved.

It is interesting to note that matter seems to have the effect of making the evolution of
the geometry under the Einstein equations less extreme in a phase of unlimited expansion. In
Bianchi type | the vacuum solutions (Kasner solutions) are such that some spatial direction
is contracting or unchanging in the expanding time direction (the time direction in which the
volume is increasing). This is no longer the case when perfect fluid or kinetic matter is added,
since then the model isotropizes. In type Il there is no complete isotropization but it is still the
case that with fluid or kinetic matter all directions are eventually expanding, in contrast to the
vacuum case. The type Il case is borderline, since there solutions with collisionless matter are
asymptotic, inthe sense of the variables used in this paper, to a vacuum solution in the expanding
time direction. The vacuum solution is such that the scale féctotime independent. In the
other LRS Bianchi type Ill vacuum spacetimes this scale factor is asymptotically constant as
t — oo and for a radiation fluid this is also the case (cf [19], p 203). On the other hand, for
dust models, which also converge to the same vacuum model in terms of the Wainwright—Hsu
variables, this scale factor grows without bound, although much more slowly than the other
scale factors ([19], p 202). It is difficult to decide what happens in the case of collisionless
matter with massless particles, since the p@iis a degenerate stationary point of the system
(11). In the corresponding system for a radiation fluid the point with these coordinates is also
a stationary point but is non-degenerate.

For the Einstein—Vlasov equations with massless particles the LRS reflection-symmetric
solutions of Bianchi types I, Il, 11, VI} and Kantowski—Sachs type have now been analysed
as far as to give a full description of their general behaviour near the singularity and in a phase
of unlimited expansion. There are still plenty of open questions related to this. What happens
with LRS solutions of types VIII and IX? What happens if reflection symmetry is dropped?
Does this lead to a new kind of oscillatory behaviour? What happens if the LRS condition is
dropped? (Thisis stillopen evenin the Bianchil case.) Can the Hamiltonian formulation of the
equations, which played an important role at one point in our arguments, usefully be applied
in some of these more general cases? Answers to these questions could help to deepen our
understanding of the dynamics of solutions of the Einstein equations with matter in general.

Acknowledgments

We wish to thank Malcolm MacCallum for his comments on the exact solution in section 4.
PT gratefully acknowledges the hospitality and financial support of the Max-Planck-Institut
fur Gravitationsphysik while this work was being done.

Appendix. Some background on dynamical systems

First some terminology will be introduced. We use the phrase ‘dynamical system’ as a synonym
for ‘system of ordinary differential equations’. The difference between the two is then only
one of point of view. Astationary poinbf a dynamical system is a time-independent solution.
An orbit of a dynamical system is the image of a solution. A painis ana-limit point of a
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solutionx(z) if there is a sequence of timeswith 1, — —oo such thatc(z,) — x,. The set
of all a-limit points of a solution is called itg-limit set. The analogous notions of anlimit
point and anw-limit set are obtained by replacimdpy —¢ in these definitions. Basic properties
are that thex-limit set is closed and that, if the solution remains in a compact setas-oco,
it is connected. Ifc, is a point of thex-limit set of an orbit then the orbit through lies in
thea-limit set of the original orbit. Analogous statements hold fordhkmit set. For details
and proofs see, e.g., [7], chapter 7.

If xo is a stationary point of a dynamical system we can linearize the system apout
The linearized system is of the fornx flr = Ax for a matrixA. Associated tA is a direct
sum decompositiork; & E, & E3 where the vector spacds, E, and E3 are spanned by
generalized eigenvectors df corresponding to eigenvalues with positive, zero and negative
real parts, respectively. These spaces are called the unstable, centre and stable subspaces,
respectively. For each of these three subspaces there is a manifold, which is tangent to the
corresponding subspacexgtand is left invariant by the dynamical system. These manifolds
are called the unstable, centre and stable manifolds, respectively. The unstable and stable
manifolds are unique while the centre manifold need not be. For details see the appendix of
[1].

The behaviour of solutions of a dynamical system near a stationary point is described by
the reduction theorem.

Theorem A.1 (Reduction theorem).Let xo be a stationary point of @ dynamical system.
Then the system is topologically equivalent negto the Cartesian product of a standard
saddle with the restriction of the flow to any centre manifold.

This theorem is proved in [9]. Topological equivalence means that there is a homeomorphism,
which takes one system to the other. A standard saddle is the dynamical sysiti"an
given by dy/dt = y, dz/dt = —z, wherey € R" andz € R"2. The special case (hyperbolic
case) where the centre manifold is trivial is the Hartman—Grobman theorem [7].

The next result is intuitively rather obvious, but since we do not know a published proof
we will provide one here.

Lemma A.1. Let p be a hyperbolic stationary point of a dynamical system which belongs to
thea-limit set of a given orbit. Then either each neighbourhoog @bntains a segment of
the orbit, which is contained in the unstable manifolpobr thea-limit set contains a point

of the stable manifold g other thanp itself. The analogous statement with the roles of the
stable and unstable manifolds interchanged also holds.

Proof. By the reduction theorem we can assume that in a neighbourhqothefsystem takes
the form

dx/dr = x, dy/dt = —y (A1)
with solution
x = A€, y=Be . (A2)

The unstable and stable manifolds are givenyby 0 andx = 0, respectively. Suppose
that there is a neighbourhood pfwhere there is no segment of the orbit contained in the
unstable manifold. Then there exists a sequence of ppjnt& the orbit with non-vanishing
y coordinate, which converges jo If we denote the coordinates of corresponding segments
of the solution by(x,, y,), theny, = B,e~! for someB, # 0. Consider now a coordinate
closed ball contained in a neighbourhoodpoivhere the reduction can be carried out. As
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decreases each of the solutidns, y,) must leave this ball and so must, in particular contain

a point of the boundary sphere. Call the resulting sequence of points of the gpheBg
compactnesg, has a subsequence converging to a pgirithe pointg belongs to thex-limit

set. Nowx, = A, € for a sequence witld, — 0. Hence ther coordinate of; is zero and

q belongs to the stable manifold pf The proof in the case that the roles of the stable and
unstable manifolds are interchanged is very similar, using the points where the solution exits
the ball in the positive time direction. a

The following variant of lemma A.1 allows a centre manifold of a certain type.

Lemma A.2. Let p be a stationary point of a dynamical system, which belongs ta #imit

set of a given orbit. Suppose that the centre manifold is one dimensional and that there is a
punctured neighbourhood gfin the centre manifold, which contains no stationary points and
such that the solutions on the centre manifold approa@s: — oo on one side op and as

t — —oo on the other side. Suppose further that the stable manifold is trivial. The boundary
between points on orbits which convergeptavhile staying in a small neighbourhood pf

ast — —oo and points on orbits which do not is the unstable manifold. The analogue of
lemma A.1 holds, where the stable manifold is replaced by the half of the centre manifold on
one side of the unstable manifold. This half of the centre manifold is unique.

Proof. By the reduction theorem we can assume that in a neighbourhgothefsystem takes
the form

dx/dt = F(x), dy/dt =y (A3)

for some functionF which vanishes together with its derivative at the origin, and is positive
otherwise. The boundary hypersurface is givencby: 0. The half of the centre manifold
referred to in the statement of the theorem correspongds<® andy = 0. In the half-plane

x < 0 the system is topologically equivalent to a hyperbolic saddle and so it is possible to
obtain the conclusion as in the proof of lemma A.1. O

Next we state the PoinaatBendixson theorem. The form of this theorem which we will
use is the following (cf [7], p 151):

Theorem A.2 (Poincaie—Bendixson).Let U be an open subset dk? and consider a
dynamical system obi without stationary points. Let(z) be a solution which exists globally
and remains in a compact subsetldéfast — —oo. Then thex-limit set of the given solution
is a periodic orbit.

The analogous statement holds for thémit set. A periodic orbit is, of course, just the image
of a periodic solution.
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