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Abstract: We introduce a systematic approach for treating the largeN limit of matrix
field theories.

1. Introduction

It has been known for thirty years that quantum field theory simplifies enormously
if the numberN of internal field components tends to infinity. In the case where the
N components form avector this leads to exact solutions in any dimension of space-
time. For physical applications, ranging from solid state physics to gauge theories and
quantum gravity, a different situation is much more pertinent: The case ofN2 internal
components that form amatrix. Here exact solutions have only been produced for very
low dimensionalities. It is one of the outstanding problems of theoretical physics to
extend largeN technology to physically interesting dimensions.

In the present article we will be concerned with matrix “spin systems”, that isD-
dimensional Euclidean lattice field theories whose internal degrees of freedom are her-
mitian, complex or unitaryN × N matrices. The idea is to treat the problem by a three
step procedure:

(1) Eguchi–Kawai reduction: Replace theN = ∞ field theory by a one-matrix model
coupled to appropriate constant external field matrices.

(2) Character expansion: Express the partition function of the one-matrix model of (1)
as a sum over polynomial representations – labelled byYoung diagrams – ofU(N).

(3) Saddle point analysis: Find an effective Young diagram that dominates the partition
sum of (2) in the largeN limit.
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The insight that step (1) is possible is due to Eguchi and Kawai [1]. Intuitively it says
that, if a saddle point configuration exists atN = ∞, it should be given by a single
translationally invariant matrix (the so-called master field). In practice the reduction
is rather subtle, and we will be using the twisted EK reduction [2] which results in a
one-matrix model in external constant fields encoding the original (discrete) space-time.

Step (2) is novel in this context and is the main focus of the present work. The one-
matrix model of (1) still hasN2 degrees of freedom, and it is well known that a saddle
point for matrix models can only be found once the degrees of freedom are reduced as
N2 → N . The external fields encoding space-time prevent any naive reduction to the
N eigenvalues of the matrix, which is the route of choice for simpler models without
external fields. But is it possible to replace the matrix integral by a sum overpartitions
corresponding to a sum over all polynomial representations ofU(N). The crucial point
is then that one ends up with a kind of one-dimensional spin model in Young diagram
space with onlyN variables: the possible lengths of theN rows of the diagram.

Step (3) might appear to be an exotic idea: we claim that theN = ∞ “master field” can
be described by a “master partition”. However, it has already been recently demonstrated
in a series of papers [3,4] that certain infinite sums over partitions are dominated by a
saddle point configuration. This led to the solution of matrix models in external fields
not treatable by any other method. The present models are more complicated, but not
fundamentally different.

The character expansions we find lead to a very interesting and apparently novel com-
binatorial problem in Young pattern space (see Sect. 4). More insight into this problem
will be needed in order to proceed with the final step (3) of our program, the saddle point
analysis. We introduce what we call “lattice polynomials”4h,ϒh which are polynomials
in 1

N
. They depend on the Young diagramh and the precise nature of the space-time

lattice.
It might be objected that the present approach is futile unless one can demonstrate

that the lattice polynomials4h,ϒh can be explicitly computed or at least bootstraped
at N = ∞. But there is one important argument against this pessimistic assessment:
The lattice polynomials4h,ϒh only depend on the nature of the lattice butnot on the
local measure of the minimally coupled (matrix) spins of the model1. Therefore, solving
interacting field theory in our language is of the same degree of complexity as solving
the free field case.

Finally we should mention that our program is very general since it applies in principle
toanylargeN matrix spin system. It would be interesting to extend the method to matrix
field theories with agauge symmetrysuch asYang-Mills theory. Indeed the EK reduction
was initially designed for lattice gauge theory [1]. Recently it was demonstrated by Monte
Carlo methods that even the path integral of continuum gauge theory may be EK reduced
to a convergentordinary multiple matrix integral [5]. A rigorous mathematical proof,
as well as an investigation on whether the reduced model reinduces the field theory as
N → ∞, are still lacking. At any rate, reducing aD-dimensional gauge theory, one
so far ends up with a nonlinearly coupledD-matrix model, which is not yet tractable
by the present machinery unless it is understood how to perform a further reduction
DN2 → N2.

1 Except for the global symmetry of the matrix spins. In this paper we develop the theory in parallel for
the case of U(N) global symmetry (hermitian matrices) and U(N) × U(N) symmetry (complex matrices).
The other classical groups could presumably be treated as well, but it is well known that they do not lead to
different largeN limits.
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2. Reduced Matrix Spin Systems

Consider a spin model on a periodic lattice. In order to be specific we will sketch the
method for a two-dimensional lattice, but higher (or lower) dimensions can be treated as
well. We will not dwell on details since they are well explained elsewhere. The variables
areN × N hermitian matricesM(x) defined on the lattice sitesx

ZH =
∫ ∏

x

DM(x) e−SH ,

SH = N Tr
∑
x

[
1

2
M(x)2 + V

(
M(x)

)

− β

2

∑
µ=1,2

[M(x)M(x + µ̂) + M(x)M(x − µ̂)]
]
,

(1)

whereµ̂ denotes the unit vector in theµ-direction. It is equally natural to consider
general complex matrices8(x) ∈ GL(N, C), in which case

ZGL =
∫ ∏

x

D8(x) e−SGL ,

SGL = N Tr
∑
x

[
8(x)8†(x) + V

(
8(x)8†(x)

)

− β
∑

µ=1,2

[8(x)8†(x + µ̂) + 8(x)8†(x − µ̂)]
]
.

(2)

If V = 0 in Eqs. (1),(2) the model is free. The integration measures in Eqs. (1),(2) are
the flat measures for hermitian and complex matrices:

DM =
N∏

i=1

dMii√
2πN−1

N∏
i<j

dReMijdImMij

πN−1 , D8 =
N∏

i,j=1

dRe8ijdIm8ij

πN−1 . (3)

A third, very important type of spin model is the so-calledchiral field, which looks like
the free complex model Eq. (2)

ZU =
∫ ∏

x

DU(x) e−SU ,

SU = −βN Tr

[ ∑
x

∑
µ=1,2

[U(x)U†(x + µ̂) + U(x)U†(x − µ̂)]
]
, (4)

but the matricesU(x) ∈ U(N) are unitary. In this case the measureDU(x) is the Haar
measure on the group. The model is therefore not free.
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The Eguchi–Kawai reduction [1,2] states that the above lattice models can be replaced
atN = ∞ by, respectively, the following one-matrix models coupled to constant external
field matricesP andQ:

ZH =
∫

DM expN Tr

[
− 1

2
M2 − V

(
M

) + β
(
MPMP † + MQMQ†

)]
, (5)

ZGL =
∫

D8 expN Tr
[

− 88† − V
(
88†)]×

× expβN Tr
(
8P8†P † + 8P †8†P + 8Q8†Q† + 8Q†8†Q

)
, (6)

ZU =
∫

DU exp βN Tr
(
UPU†P † + UP †U†P + UQU†Q† + UQ†U†Q

)
. (7)

HereP = PN andQ = QN are the famousN × N unitary “shift and clock” matrices

PN =




0 1
0 1

. . .
. . .

0 1
1 0


 , QN =




1
ωN

. . .

ωN−2
N

ωN−1
N




, (8)

whereωN = exp2πi
N

andPNQN = ωNQNPN . To be more precise, the free energies
as well as appropriate correlation functions (see [2]) are identical to leading order in1

N
in the lattice field theory and the corresponding one-matrix model. The thermodynamic
limit, that is a lattice of infinite extent, is approached whenN → ∞. We see that the
structure of the lattice has been “hidden” in index space! It is natural to generalize the
situation to a toroidalK × L lattice:

P = PK ⊗ 1N
K

, Q = QL ⊗ 1N
L
, (9)

whereN is chosen to be divisible byK andL. This allows to take the thermodynamic
limit and the largeN limit independently. If we putL = 1 (we can then equivalently
omit Q altogether) the target space becomes a closed one-dimensional chain.

We suspect that matrix models on arbitrary discrete target spaces can be EK reduced
by appropriate external matrices, but this has not been worked out yet.

3. Character Expansions

Now we turn to step (2) and rewrite the reduced hermitian, complex and unitary matrix
integrals Eqs. (5), (6), (7) as sums over representations of U(N). To this end introduce
the following source integrals:

ZH[J ] =
∫

DM exp N Tr
[

− 1

2
M2 − V (M) + JM

]
, (10)

ZGL[J J̄ ] =
∫

D8 exp N Tr
[

− 88† − V (88†) + J8 + 8†J̄
]
, (11)
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ZU[J J̄ ] =
∫

DU exp N Tr
[
JU + U†J̄

]
. (12)

The two different ways of introducing a source are due to the U(N) symmetry of hermi-
tian matrices on the one hand and the U(N)×U(N) symmetry of complex (and complex
unitary) matrices on the other. The reduced models are easily obtained from the source
integrals by applying an operator:

ZH = exp
β

N
Tr

(
∂P∂P † + ∂Q∂Q†

)
· ZH[J ]

∣∣∣
J=0

, (13)

ZGL,U = exp
β

N
Tr

(
∂P ∂̄P † + ∂P †∂̄P + ∂Q∂̄Q† + ∂Q†∂̄Q

)
· ZGL,U[J J̄ ]

∣∣∣
J=J̄=0

.

(14)

Here∂,∂̄ denoteN × N matrix differential operators whose matrix elements are∂ji =
∂

∂Jij
and∂̄j i = ∂

∂J̄ij
. It is clear that the source integrals areclassfunctions of, respectively,

J andJ J̄ . Therefore they can be expressed as character expansions, with known (see [3,
4,6]) expansion coefficients. IfV = 0, they read for the hermitian and complex source
integrals, respectively,

ZH[J ] = exp
1

2
N Tr J 2 =

∑
h

χh(A2)χh(J ), (15)

ZGL[J J̄ ] = exp N Tr J J̄ =
∑
h

χh(A1)χh(J J̄ ), (16)

while for the unitary source integral one has [6]

ZU[J J̄ ] =
∑
h

χh(A1)χh(A1)

χh(1)
χh(J J̄ ). (17)

Here the sum runs over all partitionsh labeled by the shifted weightshi = N − i + mi ,
wheremi ≥ 0, i = 1, . . . , N , is the number of boxes in theith row of theYoung pattern
associated toh. χh(J ) is the Schur function, dependent onJ , on the diagramh. It is
identical to theWeyl character of the matrixJ corresponding to the representation labeled
byh. A1 andA2 are defined through TrAk

1 = N(δk,0+δk,1) and TrAk
2 = N(δk,0+δk,2),

andχh(1) is the dimension of the representation. For more details on the notation, and
for explicit formulas for the charactersχh(A1), χh(A2) andχh(1) see [3,4]. For a non-
zero potentialV , the hermitian and complex character expansions become a bit more
complicated, but are still available:

ZH[J ] =
∑
h

2hχh(J ), (18)

ZGL[J J̄ ] =
∑
h

�hχh(J J̄ ), (19)
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where2h is given by

2h = χh(A1)

χh(1)

∫
DM exp N Tr

[
− 1

2
M2 − V (M)

]
χh(M), (20)

and�h by

�h =
(

χh(A1)

χh(1)

)2 ∫
D8 exp N Tr

[
− 88† − V (88†)

]
χh(88†). (21)

The integrals appearing in Eqs. (20), (21) are ordinary one-matrix integrals which may
be computed rather explicitly asN × N determinants. Their analysis in theN → ∞
limit proceeds by employing standard techniques, supplemented by the methods of [3].

Now we apply the operators in Eqs. (13), (14) in order to generate the space-time
lattice; this results in character expansions for the reduced matrix field theories. In the
hermitian case one has (here|h| = ∑

i mi =number of boxes in the Young diagram)

ZH =
∑
h

χh(A2) 4h β
|h|
2 for V = 0, (22)

ZH =
∑
h

2h 4h β
|h|
2 for V 6= 0, (23)

with

4h = exp
1

N
Tr

(
∂P∂P † + ∂Q∂Q†

)
· χh(J )

∣∣∣
J=0

. (24)

The free complex, interacting complex, and the unitary case become

ZGL =
∑
h

χh(A1) ϒh β |h| for V = 0, (25)

ZGL =
∑
h

�h ϒh β |h| for V 6= 0, (26)

ZU =
∑
h

χh(A1)χh(A1)

χh(1)
ϒh β |h|, (27)

with

ϒh = exp
1

N
Tr

(
∂P ∂̄P † + ∂P †∂̄P + ∂Q∂̄Q† + ∂Q†∂̄Q

)
· χh(J J̄ )

∣∣∣
J=J̄=0

. (28)

The character expansions Eqs. (22), (23), (25), (26), (27) are at the heart of our proposal. It
is seen that they neatlyseparatethe nature of the local spin weight (χh(A2),2h,χh(A1),�h,
(χh(A1))

2(χh(1))−1) and the nature of the embedding space (4h,ϒh). As a striking ex-
ample, note that from the point of view of our character expansion method the difference
between the free Gaussian model on a toroidal lattice Eq. (25) and the non-trivial chiral
model Eq. (27) is a simple, explicitly known factor

χh(A1)

χh(1)
= N |h|

N∏
i=1

(N − i)!
hi ! .

The character expansions involve sums overN variables only and we can write down a
saddle point equation for the effective density of the master partition. In order to complete
the program, we need a second bootstrap equation for the novel quantities4h andϒh,
which contain the connectivity information of the lattice.
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4. Lattice Polynomials

Inspection of the quantities4h andϒh in eqs.(24),(28) shows that they are polynomials
in the variable1

N
of degree not higher than, respectively,1

2|h| − 1 and|h| − 2. They are
zero if the number|h| of boxes in the Young pattern is odd. Conjugating the diagram
gives the same polynomial except for the replacement1

N
→ − 1

N
. The first few can be

computed by brute force calculation directly from the definitions Eqs. (24), (28), see
Table 1.

Table 1.The first fewD = 2 lattice polynomials

h 4h ϒh

2 2 2

12 2 2

4 3+ 12 1
N

3 + 24 1
N

+ 54 1
N2

31 5+ 4 1
N

5 + 8 1
N

+ 18 1
N2

22 6 6
212 5 − 4 1

N
5 − 8 1

N
+ 18 1

N2

14 3 − 12 1
N

3 − 24 1
N

+ 54 1
N2

Here we used Tr(P kQl) = Nδk,0δl,0, which is true as long as|k| < N , |l| < N . We
also replacedωN → 1,ω∗

N → 1 (rememberωN = exp2πi
N

): in other words, we assumed
P andQ to commute at largeN . Both assumptions are innocent at least in the strong
coupling (smallβ) phase. If the model possesses a weak coupling phase (like e.g. the
chiral field Eq. (7)), these assumptions may have to be reconsidered, if we want the
character expansion to describe this second phase as well. This is because in the present
approach we expect largeN phase transitions to correspond to the situation where the
number of rows of the master partition is ofO(N) (“touching transition”). Note that we
cannotdrop the other terms ofO( 1

N
) in 4h,ϒh since the character expansions are for

the partition function and not for the free energy.
The direct calculation of the lattice polynomials quickly gets very tedious. The com-

binatorics involved seems to be of a novel type. While we have not yet found an efficient
calculational scheme or recursive method, let us give some interesting representations
for 4h andϒh that may prove useful later. Introduce the following Gaussian measure
on the space ofM × N (M ≤ N ) complex matrices3:

[D3] =
M∏
i=1

N∏
j=1

(
dRe3ijdIm3ij

πN−1

)
expN Tr

[
− 33†

]
. (29)

This measure is invariant under U(M) × U(N). It is then fairly easy to prove (cf. [4])
the following representation for the character of the source:

χh(J ) =
∫

DUχh(U
†)

∫
[D3] expN Tr U3J3†, (30)
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whereU ∈ U(M) is unitary andDU is the Haar measure on U(M). This formula is
valid for diagramsh with at mostM rows. Therefore4h becomes, cf. Eq. (24)

4h =
∫

DUχh(U
†)

∫
[D3] expN Tr

(
3†U3P3†U3P † + 3†U3Q3†U3Q†

)
.

(31)

After a Hubbard-Stratanovich transformation decoupling the quartic terms by Gaussian
M × M complex matricesS andT (with measure as in Eq. (29) withN → M), and
integration over3, we obtain the representation

4h =
∫

DUχh(U
†)

∫
[DS][DT ]

× exp

[
TrM⊗N

∞∑
k=1

1

k

(
SU ⊗ P + S†U ⊗ P † + T U ⊗ Q + T †U ⊗ Q†

)k
]
.

(32)

The combinatorial interpretation of the exponential in Eq. (32) is the following: we have
a generating function for a non-commutative random walk on a two-dimensional lattice
with variableU . The representation is useful for getting some exact results on the4h,
but we have not yet been able to compute the integral Eq. (32) exactly except forM = 1
(characters with just one row). E.g. we can find a generating function (withzi being the
eigenvalues ofU ) for the largeN limit of 4h

M∏
i,j

1

(1 − zizj )2 =
∑
h

4N=∞
h χh(z) (33)

giving the constant terms of the lattice polynomials. This is however not sufficient for
the largeN limit of the field theory, as already mentioned. A curious feature of Eq. (32)
is that we can takeN → ∞ while keepingM in the range 1� M � N . That is, it
should be possible to find a saddle point for the situation where the row lengths are large
compared to the number of rows, corresponding to the extreme strong coupling limit.
Furthermore, it should be investigated whether theM × M matrices can be taken to
commute asN → ∞.

Similar, if slightly more complicated representations are possible forϒh; here the
starting point is the expression

χh(J J̄ ) =
∫

DUχh(U
†)

∫
[D31][D32] expN Tr

(
U

1
2 31J3

†
2 + 32J̄3

†
1U

1
2

)
,

(34)

which means the lattice polynomials become

ϒh =
∫

DUχh(U
†)

∫
[D31][D32]×

× expN Tr
(
3

†
2U

1
2 31P3

†
1U

1
2 32P

† + 3
†
2U

1
2 31P

†3
†
1U

1
2 32P

)
×

× expN Tr
(
3

†
2U

1
2 31Q3

†
1U

1
2 32Q

† + 3
†
2U

1
2 31Q

†3
†
1U

1
2 32Q

)
, (35)



Master Partitions for LargeN Matrix Field Theories 31

and the non-commutative random walk representation is

ϒh =
∫

DUχh(U
†)

∫
[DS][DS̄][DT ][DT̄ ]

× exp

[
TrM⊗N

∞∑
k=1

1

k

(
SU

1
2 ⊗ P + S̄U

1
2 ⊗ P † + T U

1
2 ⊗ Q + T̄ U

1
2 ⊗ Q†

)k
]

× exp

[
TrM⊗N

∞∑
k=1

1

k

(
S̄†U

1
2 ⊗ P + S†U

1
2 ⊗ P † + T̄ †U

1
2 ⊗ Q + T †U

1
2 ⊗ Q†

)k
]
,

(36)

from which we find thatϒN=∞
h = 4N=∞

h , cf. Eq. (33), but1
N

corrections are different
(see Table 1). Again, for arbitrary one-row representations (M = 1) it is possible to
obtainϒh rather explicitly.

Another potentially useful representation2 of the lattice polynomials is given by the
following dualequations: Eq. (24) becomes

4h = χh(∂) · exp
1

N
Tr

(
JPJP † + JQJQ†

) ∣∣∣
J=0

, (37)

and Eq. (28) is dual to

ϒh = χh(∂∂̄) · exp
1

N
Tr

(
JP J̄P † + JP †J̄ P + JQJ̄Q† + JQ†J̄Q

) ∣∣∣
J=J̄=0

. (38)

We could go on and discuss correlation functions which are naturally included into
the present formalism. In particular, it is straightforward to give expressions for their
character expansions in terms of modified lattice polynomials, and it remains true that the
combinatorics is independent on whether the reduced field theory is free or interacting.
This is however beyond the scope of the present article.

While it is unclear whether theD ≥ 2 lattice polynomials can be computed exactly
for a general partition, it should be stressed once more that this is unnecessary; all we
need is an indirect method in order to extract the largeN behavior.

5. Conclusions

This solution to the problem of the largeN limit of (non-gauge) matrix field theories
is not yet complete since the structure of the lattice polynomials we introduced still
needs to be further analyzed in order to be able to write the full set of saddle point
equations. However we feel that we are definitely closing in on the largeN problem,
and that we have brought it into the simplest form to date. The proposed approach is
concrete, systematic and rather general: we demonstrated that the reduction fromN2

to N variables is possible once one changes variables from matrices to partitions. In
this language themaster fieldbecomes amaster partition. Presumably one should first
(re)derive in the current framework the exact solutions for some lower dimensional target
spaces before dealing with the two (and higher) dimensional field theories.
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