
On Higher Order cd Corrections 
to Black Brane Geometries  

Jacek Paweclzyk 1,2 and Stefan Theisen 1 

1 Institut ffir Theoretische Physik, Universit~it Miinchen, Germany 
2 Institute of Theoretical Physics, Warsaw University, Poland 

A b s t r a c t .  We remark on the computation of O(c/a) corrections to the (non-extremal) 
Dp-brane solutions. We present the explicit solutions to this order for p -- 3 in the near 
horizon limit. 

Corrections to the AdS5 × S 5 solution to the type IIB low-energy effective 

field theory of the type  IIB string are required in order to compute  corrections 

in the gauge theory on the boundary  O(AdSs) [1, 2, 3]. While the ext remal  

solution is not corrected by a~ corrections, this is no longer t rue for the non- 

extremal  solution, where the non-extremali ty  corresponds to finite t empera tu re  

in the field theory, which is thus no longer conformally invariant. I t  is therefore 

of interest to know the corrections to the AdS black hole geometry.  To O(a~3), 

to which these corrections are known for the string theory, this has been done; 

some corrections have been computed in [4], the remaining ones in [5]. In bo th  

references the computa t ion  was done in the near  horizon limit of the D3 brane,  to 

which the above discussion applies. Once we depart  from the near-horizon limit, 

1 the D3 brane brane solution gets corrections at O(cd3), even in the ext remal  

case. These are much harder to compute  and have in fact, to the best  of our 

knowledge, not been completely determined yet. 

One computes the corrections to the well known Dp brane background con- 

figuration in per turba t ion  theory. This leads, in general, to a system of coupled 

linear inhomogeneous differential equations in the deviation from the zeroth or- 

der solutions for the dilaton, the metric and the (p + 2) form field strength.  By 

a judicious parameter izat ion of the metric one can successively decouple the dif- 

ferential equations. We will not solve the resulting differential equations here in 

the general case. Wha t  we will do is to restrict to p = 3, go to the near  horizon 

limit and reproduce our result in [5] (obtained by different but  less universal 

method).  Here, essentially we follow parameter iza t ion  of the metric  applied in 

1 Note that as soon as one departs from the near horizon limit, even in the zero 
temperature case, conformal invariance, which is related to the S0(4, 2) isometry of 
Ad,.9~, is broken. Thus it does not seem to be reasonable to compute 1/N corrections 
to the leading order results by expanding the D3 brane metric. These corrections 
rather come from quantum effects. 
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[6]. Since much of our discussion will be valid for Dp branes for general p ~ 3, 

we will keep the discussion general as far as possible, only specializing to p = 3 

at the end. The obstacle to extend the near-horizon limit results to p ~ 3 and, 

even for p -- 3 and in the extremal case away from the near horizon limit is tha t  

one does not know the complete O(a  ~3) type II supergravity action [7, 8]. Even 

though in principle these terms can be constructed via the Noether method,  this 

has not been done yet. 

Consider the Einstein frame action: 

1/ [ 
- ~(d¢) - 2 (8_p ) iF (8_p ) ]  + 'ySx -- So +^/$1 (1) S 2n2o dl°xvfL-g R - 1  2 e(P--3)/2¢ 2 ] 

where "y is a constant O(a~3). Their  precise form is irrelevant for the t ime being. 2 

We make the most general ansatz compatible with the required symmetries for 

a brane solution 

ds 2 -= A-~-~ (r) H 2 (r) [K 2 (r)dt 2 ÷ p2 (r)dr 2 + d~22_p] + A 2 dx 2 (2) 

Fs-p = Qes-p value of F along the unit (8-p)-sphere (3) 

where 

- ÷ 

¢(r)= 

Inserting this Ansatz into the action, one finds, up to a total  derivative, 

i j {  i S = 2n~0 dr (8 - p) 2HT-POHOKP -1 + (7 - p ) H S - p K P  

÷ ( 9 - p ) U 6 - p ( c ~ S ) 2 K p  -1] - X H8-pKp-I(osr)2 - X H8-pKp-I(cQp)2 

2Q2 Hp-6Kpe -~/2(9-p,/(8.p,O } -]-$1 (5) 

We now fix r reparameterization invariance by introducing the function A(r) via 

K(r )  = A ( r ) / S ( r ) ,  P(r)  = r 6 - p A ( r ) - l H ( r )  p-7 (6) 

2 Strictly speaking above action only applies for p ¢ 3 due to the self-duality con- 
straint on F5 which forbids a globally defined covaxiant action. We deal with this as 
suggested in [4]. In any case, we will be dealing with the equations of motion which 
axe unproblematic. 
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Defining C(S0, K)  -- ~ ,  etc., one finds 

1 ~-~P--3 [K E(So,K)-(7-p)P E(So,P ) U E(So,H)] (7) 

: o ( °  - -  : o  \ ] 
where we have defined Y(r)  - H(r)(7-P))~(r). This differential equation for Y is 

easy to solve. The equation of motion for ~ is 

E(s0, o)  = o ( , . ~ - ~ Y ~ O o )  = o .  (8) 

Next we consider the combination 

2(PE(So, P) + g$(So, K) + ~2(8.-~) E(So, p)) 

= 0  - 4 ( 8 - p ) r  7-p = 0  (9) 

for the function Z(r) -- H(r)4(S-v)e-V ~s(s-p)/(9-p)p(r). Given the solution Y(r) ,  
this equation can be solved for Z(r). As the last equation we may take 

RE(So,  P) = 0 (10) 

which is the most difficult one to solve. However, the p-brane solution for the 

complete system is well known [6]: 

Ho(r) = r(1 + (L/r)7-P) 1/(18-2p) 

)~0(r) -- (1 - (ro/r)7-p)l/2(1 + (nllr)7-P) -(7-p)/(16-2p) 

po(r) = ((9 - p) /(16 - 2p))W21n(1 ÷ (n/r)  7-p) 

~0(r) = 0 

Q = (7 - p)L (7-p)/2 ~/LT-P + rro -p (11) 

r0 is an integration constant (r > r0) and L is related to Q (see below). In the 

extremal case ro = 0. In the near horizon limit ~),1. 

To compute the corrections from $1, we make the ansatz H = H0(1 ÷ ~'H1) 

and likewise for Y and Z and a = a0 ÷ ~al .  This we insert in the left hand 

side of (7), (8), (9) and (10), and use the zeroth order equations. This leads 

to linear differential equations for the functions Hi,  etc. These equations are 

in fact inhomogeneous, since the right hand sides have to be replaced by the 

appropriate linear combinations of E(S1, ~)]~o- Except  for p -- 3 and in the near 

horizon limit, the part  of $1 which contributes to the inhomogeneities of the 
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equations, is not known explicitly. In this case, the part  of S 1 which gives a 

non-vanishing contribution is 

1 / 
$1- 2~12 0 dl°xv/-~e-3/2¢W (12) 

and 9' = ~((3)a  '3 and W is a particular contraction of four powers of the Weyl 

tensor. The inhomogeneities for the equations are in this case 

9" r 16 9' roi2(45r04 - -32r  4) 
1800 L6 rl  3 for (7) 900 ~-g r l  5 for (9) 

9" r°~6 r26 r°16 
1620 L6 r l  3 for (10) - 270__ r i  3 for (8) 

The resulting equations are easy to solve. In fact, the worst non-triviality one 
encounters are first order differential equations. 3 We find 

( L )  2/5 [ 9' ( 27  r 4 3ro s 147 r 1 2 ) ]  
H(r) = r  1 + ~ - ~  16r  4 8 r  s 16 r i2 

r 4 [ 9' ( 27ro 4 63ro s 219ro12~] 
Air) = (r~L/S/5 1 + + (13) 

-~-~ ~-6 4 r 4 8 r 8 8 r - ~ f l J  [4 
p(r) = - V / ~  In + ~ - 6  ~, r 4 2 r  s 2 ri2jJ 

15 9' f6  r4 + 3 r ~  +2r-- ~ 
¢ ( r ) -  16L  6 \ r 4 r s 

(14) 

The constants of integration have been chosen such as not to shift the position 

of the horizon r0. 
In order to compare with the result given in [5] one was to be aware that  

there the r reparameterization invariance had been fixed differently. The relation 

is 
[ ( 45r°S 515 9" 45 r 4 + + (1.5) 

r -+r  l + ~ - g  -1--~r-- ~ ~-~-~ 32 rl2]J 

To make contact with much of the A d S / C F T  literature, choose units where 
L = (47rgsNa'2) i/4 = 1; g8 is the string coupling constants. So is then propor- 

tional to N 2 and Si is suppressed, relative to So, by a factor ~ (gsN) -3/2. In 

fact, all terms in Si should be of this order, in particular the term ~ (0Fs) 4, 
which is present but,  as argued in [4], does not modify the solutions. Requiring 
it to be of order N 2 - (g~N) -3/2 leads to the conclusion that ,  in the Einstein 

frame, this term is also multipled by e -3¢/2. This agrees with the results of [13] 

and [14]. 

3 This is still true for p ¢ 3 and away from the near horizon limit. 
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There are several applications of these result. First of all, there are correc- 

tions to thermodynamic quantities [4, 5, 9]. Also, the scalar glueball spectrum 

is modified [11]. Likewise, the coefficients of the O('/) corrections to the Wilson 

loop at finite tempera ture  are changed [12]. 

As we have mentioned before, the extension of our analysis to p ~ 3 is hin- 

dered by the fact that  the O(a '3) terms in the low energy effective action have 

not been fully worked out yet. However, to test the feasibility of the computa-  

tions, we have computed the corrections to the metric, in the near horizon limit, 

for p = 4 [15] under the assumption that  the only O(a '3) terms are the ones 

c( R 4. All equations could be solved explicitly in terms on elementary functions. 

In fact, with the complete O(a  '3) contribution, merely some of the constant 

coefficients in the inhomogeneities of the differential equations do change. 

A similar computat ion as the one presented here has recently been performed 

for the AdS Schwarzschild metric which is asymptotically S 1 x S 3 [10] rather  

than S 1 × R 3 as here. 
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