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Abstract

GRASP (GravitationalRadiationAnalysis &SimulationPackage) is a public-domain software tool-kit
designed for analysis and simulation of data from gravitational wave detectors. This users manual de-
scribes the use and features of this package. Note: an up-to-date version of this manual may be ob-
tained at: http://www.lsc-group.phys.uwm.edu/ �ballen/grasp-distribution/ .
The software package is also available from this site.
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2 Introduction

2.1 The Purpose of GRASP

The analysis and modeling of data from gravitational wave detectors requires specialized numerical tech-
niques. GRASP was developed in collaboration with the Laser Interferometer Gravitational Wave Observa-
tory (LIGO) project in the United States, and contains a collection of software tools for this purpose. The
first release of GRASP was in early 1997; since that time many individuals have made extensive contribu-
tions.

In order that it be of the most use to the physics community, this package (including all source code)
is being released in the public domain. It may be freely used for any purpose, although we do ask that
GRASP and its author be acknowledged or referenced in any work or publications to which GRASP made
a contribution. If possible this reference should include a link to the GRASP distribution web site:
http://www.lsc-group.phys.uwm.edu/ �ballen/grasp-distribution/ . The citation
should specify theversion number(for example, 1.9.1) of GRASP. In addition, if the code has been modi-
fied please state this. We suggest that if GRASP is installed at a site, one person at the institution should be
designated as the “responsible party” in charge of the GRASP package.

GRASP is intended for a broad audience, including those users whose main interest is in running simu-
lations and analyzing data, and those users whose main interest is in testing new data analysis techniques or
incorporating searches for new types of gravitational wave sources. The GRASP package includes a “cook-
book” of documented and tested low-level routines which may be incorporated in user code, and simple
example programs illustrating the use of these routines. GRASP also includes a number of high level user
applications built from these routines.

We are always interested in extending the capabilities of GRASP. Suggestions for changes or additions,
including reports of bugs or corrections, improvements, or extensions to the source code, should be commu-
nicated directly to the author.

2.2 Printing/Reading the Manual

The manual is distributed with GRASP in three forms. In the GRASP directorydoc you can find a Portable
Document Format (PDF) filemanual.pdf , a Postscript filemanual.ps and a Device Independent file
manual.dvi . We suggest using the PDF file. Not only is it compact, but all the sections, references, and
equations are represented as clickable links. Even the WWW links (URLs) can be clicked on and will fire
up your favorite Web browser. You can also easily “zoom-in” on interesting graphs.

If you want a printed copy of the manual, there are two options. We find that the most readable form is
“2-up”. You can make a postscript file of this form using thepsnup utility, available as part of the public-
domain packagepsutils . Use the commands:
psnup -2 /usr/local/GRASP/doc/manual.ps man2.ps
and then print the file that you have just created (man2.ps ) on a two-sided postscript printer. You’ll end up
with four pages of this manual on a single sheet of paper.

If you want a copy of the manual with the color graphs in color rather than gray-scale, we’ve included
postscript files containing the color and black-and-white pages separately. Printdoc/manual color.ps
on a color printer, anddoc/manual bw.ps on a black and white printer, and start collating!

2.3 Quick Start

If you hate to read manuals, and you just want to try something, here’s a suggestion. This assumes that the
GRASP package has been installed by your local system administrator in a directory accessible to you, such
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as/usr/local/GRASP and that some 40-meter data (old-format) has also been installed, for example in
/usr/local/GRASP/data .

If you want to try running a GRASP program, type
setenv GRASP DATAPATH /usr/local/GRASP/data/19nov94.3
to set up a path to the data, then go to the GRASP directory:
cd /usr/local/GRASP/src/examples/examples 40meter
and try running one of the executables:
./locklist
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animate | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you will need
to have thexmgr graphing program in your path. (Please see the comment aboutxmgr in Section 3.8).

If you only have data that has been distributed in the FRAME format, type
setenv GRASP FRAMEPATH /usr/local/GRASP/data/19nov94.3.frame
to set up a path to the data, then go to the GRASP directory:
cd /usr/local/GRASP/src/examples/examples frame
and try running one of the executables:
./locklistF
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animateF | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you will need
to have thexmgr graphing program in your path. (Please see the comment aboutxmgr in Section 3.8).

If you want to try writing some GRASP code, a simple way to start is to copy one of the example
programs, and the Makefile, into your personal directory, and edit that:
mkdir �/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/gwoutput.c �/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/Makefile �/GRASP
cd �/GRASP
Now make editing changes to the filegwoutput.c , and when you are done, edit theMakefile that you
have copied into your home directory. Find the line that reads:
all: ... gwoutput ...
and delete everything to the right of the colon exceptgwoutput from that line (but leave a space after the
colon). Then type:
make gwoutput
to recompile this program. To run it, simply type:
gwoutput .
In general, if you want to modify GRASP programs, this is the simplest way to start.

2.4 A few words about data formats

The GRASP package was originally written for analysis of data in the “old” format, which was used in the
Caltech 40-meter IFO laboratory prior to 1996. Starting in 1997, the LIGO project, and a number of other
gravity-wave detector groups, have adopted the VIRGO FRAME data format. Almost every example in the
GRASP package has equivalent programs to read and analyze data in either format. For exampleanimate
andanimateF are two versions of the same program. The first reads data in the old format, the second
reads data in the FRAME format. We have also included with GRASP a translation program that translates
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data from the old format to the new format (seetranslate in Section 16.18).
After careful thought, the LIGO management has decided to only distribute the November 1994 data in

the FRAME format, except to a small number of groups (belonging to theData Translation Group) who are
responsible for ensuring that the translated data set contains the same information as the original! The initial
distributions of GRASP will include both old-format and new-format code. However after a reasonable
period of time, the old-format data and code will be removed from the package. So please be aware that
the old-format material will be reaching the end of its useful lifetime fairly soon; we do not recommend
investing much effort in these.

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data, and because the LIGO project wants to
maintain control of its use and distribution,this data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory,
Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125. The data set is available intar
format on two Exabyte 8500c format tapes.

In order to use the data in the FRAME format, you will need to have access to the FRAME libraries.
These are available from the VIRGO project; they may be downloaded from the site
http://wwwlapp.in2p3.fr/virgo/FrameL/ . The current release of GRASP is compatible with
versions of the FRAME library� 3:72. Contact Benoit Moursmours@lapp.in2p3.fr for further
information.

2.5 GRASP Hardware & Software Requirements

GRASP was developed under the Unix (tm) operating system, on a Sun workstation network. The package
is written in POSIX/ANSI C, so that GRASP can be compiled and used on any machine with an ANSI C
compiler. All operating system calls are POSIX-compliant, which is intended to keep GRASP as portable
to different platforms as possible. The main routines could also be linked to user code written in other
languages such as Fortran or Pascal; the details of this linking, and the conventions by which Fortran and C
(or Pascal and C) routines communicate are implementation dependent, and not discussed here.

Several of the high-level applications in GRASP can be run on parallel computer systems. These can
be either dedicated parallel computers (such as the Intel Paragon or IBM SP2 machines) or a network
of scientific workstations. The parallel programming in GRASP is implemented with version 1.1 of the
Message Passing Interface (MPI) library specification [2]. All major computer system vendors currently
support this standard, so GRASP can be easily compiled and used on virtually any parallel machine. In
addition, there is a public-domain implementation of MPI called “mpich” [3] which will run MPI-based
programs on networks of scientific workstations. This makes it easy to do “super-computing at night” by
running GRASP on a network of workstations. Further information on MPI is available from the web site
http://www.mcs.anl.gov/mpi/ . The mpich implementation is available from
http://www.mcs.anl.gov/mpi/mpich/ . By the way, if you don’t have access to parallel machines
(or have no interest in parallel computing) don’t worry! The only parallel code in GRASP is found in “top-
level” applications; all of the functions in the GRASP library, and most of the examples, can be used without
any modifications on a single processor, stand-alone computer.

GRASP makes use of a number of standard numerical techniques. In general, we use version 2.06 of
the routines from “Numerical Recipes in C: the art of scientific computing” [1]. [Later versions should work
OK – please let me know if they don’t.] These routines are widely used in the scientific community. The
full source code, examples, and complete documentation are provided in the book, and are also available
(for about $50) in computer readable form. Ordering information and further details are available from
http://www.nr.com/ . These routines are extremely useful and beautifully-documented; if you don’t
already have them available for your use, you should!
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Certain routines in that use inter-channel correlations to ‘clean’ a signal channel also use CLAPACK
numerical linear algebra libraries. These are extremely robust and well tested libraries and are an extremely
valuable complement toNumerical Recipes. Note that all GRASP programs can be compiled without CLA-
PACK but that some inter-channel correlation functions will not be available without it. The full source code
for these may be downloaded fromhttp://www.netlib.org/clapack/ .

The time-frequency routines in the GRASP package also come with a function (plottf() ) to display
time frequency-maps on the screen using calls to the MESA graphics library. This library is a GL lookalike
and available freely fromhttp://www.mesa3d.org/ .

In general, output from GRASP is in the form of ASCII text files. We assume that the user has graphing
packages available to visualize and interpret this output. Our personal favorite isxmgr , available in the pub-
lic domain from the sitehttp://plasma-gate.weizmann.ac.il/Xmgr/ which also lists mirror
sites in Europe and USA. (Please see the comment aboutxmgr in Section 3.8). In some cases we do output
“complete graphs” forxmgr . We do also output some data in the form of PostScript (tm) files. Previewers
for postscript files are widely available in the public domain (we like GhostView).

2.6 GRASP Installation

As we have just explained, GRASP requires access toNumerical Recipes in Clibraries and to MPI and
MPE libraries and optionally to the CLAPACK libraries. These packages must be installed, and then within
GRASP a path to these libraries must be defined. This can be done by editing a single file, and then running
a shell script. This section explains each of these steps in detail.

All of the site-specific information is contained in a single fileSiteSpecific in the top-level direc-
tory of GRASP. This file contains a number of variables whose purpose is explained in this section. These
variables must be correctly set before GRASP can be used; the definitions contained inSiteSpecific
(as distributed) are probablynot appropriate for your system, and will therefore require modification. A
number of exampleSiteSpecific files are included in the GRASP distribution, in the directoryExam-
ples SiteSpecific/ .

2.6.1 GRASP File Structure

The code for GRASP can be installed in a publicly-available directory, for example/usr/local/GRASP .
(It can also be installed “privately” in a single user’s home directory, if desired.) The name of this top-level
directory must be set in the fileSiteSpecific which is contained in the top-level GRASP directory.
To do this, edit the fileSiteSpecific and set the variableGRASPHOMEto the appropriate value, for
exampleGRASPHOME=/usr/local/GRASP . Please note that the installation scripts are not designed to
“build” in one location and “install” in a separate location. You should go through the installation procedure
in the same directory where you eventually want the GRASP package to reside.

Within this top level directory resides the entire GRASP package. The directories within this top level
are:

Examples SiteSpecific Contains examples of SiteSpecific files for different sites, machine-types,
and installations. You may find this helpful in the installation process if you want to look at an
example, or you are stuck.

bin/ Contains links to all the example programs and scripts in the GRASP package.

data/ Contains (both real and simulated) interferometer data, or symbolic links to this data. See the
comments in Section 3 to find out how to obtain this data.

doc/ Documentation (in TeX, PostScript, DVI, and PDF formats) including this users guide.
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include/ Header files used to define structures and other common types in the code. This also include
the ANSI C prototypes for all the GRASP functions.

lib/ Contains the GRASP library archive:libgrasp.a . To use any of the GRASP functions within
your own code, simply link this library with you own code.

man/ This may be used in the future for UNIX on-line manual pages.

parameters/ Contains parameters such as site location information, and estimated power spectra and
whitening functions of future detectors.

src/ Source code for analyzing various aspects of the data stream, distributed among the following direc-
tories:

40-meter/ Reading data tapes produced on the Caltech 40 meter prototype prior to 1997.

GRtoolbox/ Source code for the Gravitational Radiation Toolbox, a Matlab (command line and
GUI) interface to GRASP.

mexfiles/ Mex-files for use with the Gravitational Radiation Toolbox.

examples/ The source code for all of the examples given in this manual (organized by section).
These include:

examples 40meter/ Examples of reading/using old-format 40-meter data.

examples GRtoolbox/ M-file examples for the Gravitational Radiation Toolbox.

examples binary-search/ The source code and documentation for a binary-inspiral
search carried out on the Caltech 40-meter data from November 1994.

examples correlation/ Examples of determining correlations between different chan-
nels and using the knowledge of these correlations to ‘clean up’ a particular channel.

examples frame/ Examples of reading/using new-format FRAME data.

examples galaxy/ Examples of using galactic models to predict source distribution pa-
rameters.

examples inspiral/ Examples of generating inspiral waveforms and searching for them
in the data stream using matched filtering.

examples ringdown/ Examples of generating black-hole-horizon formation ringdown wave-
forms and searching for them in the data stream using matched filtering.

examples stochastic/ Examples of simulated production of a stochastic background
correlated signal between two detector sites and a pipeline to search the data stream for
such signals.

examples template bank/ Example code for setting up a bank of binary-inspiral tem-
plates and graphing their locations in parameter space.

examples testmass/ Example code for evaluating binary inspiral waveforms in the test-
mass limitm1 ! 0 and comparing the resulting waveforms with those calculated by other
methods.

examples timefreq/ Example code illustrating the use of time-frequency techinques for
signal detection.

examples transient/ Example code to generate and search for transient waveforms such
as those arising from supernovae.

examples utility/ Examples of various utility functions, including a translator to pro-
duce new-format FRAME data from old format 40-meter data.
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correlation/ Code for calculating correlations between different channels and ‘cleaning’ a par-
ticular channel.

galaxy/ Modelling the distribution of sources in our galaxy (needed in order to set physical upper-
limits using the 40-meter prototype data).

inspiral/ Binary inspiral analysis (including optimal filtering and vetoing).

optimization/ Additional library routines for optimizing GRASP operation of specific plat-
forms (i.e., supercomputers).

ringdown/ Black hole horizon ringdown (including optimal filtering). This can be used to filter
for anyexponentially-decaying sinusoid.

stochastic/ Stochastic background detection (including optimal filtering and simulated signal
production)

transient/ Supernovae and other transient sources.

periodic/ Searches for pulsars and other periodic and quasi-periodic sources.

template bank/ Code for “placing” optimal filters in parameter space.

testmass/ Code for calculating binary inspiral waveforms in the test mass limitm1 ! 0.

timefreq/ Code for time-frequency transforms, and searching for line-like features in the time-
frequency maps.

utility/ General purpose utility routines, including the interface to the FRAME library, error
handler routines, etc.

testing/ This will eventually contain a suite of programs that test the GRASP installation.

2.6.2 AccessingNumerical Recipes in Clibraries

GRASP makes use of many of the functions and subroutines fromNumerical Recipes in C[1]. The web
site http://www.nr.com/ is a good source of further information. These functions and subroutines
are available in Fortran, Pascal, Basic, Kernighan and Ritchie (K&R) C, and ANSI-C versions; you will
need the ANSI-C routines. The source code for these functions (both*.c and*.h files) must be installed
in a directory (for example,/usr/local/recipes/src ) and the compiled object modules (*.o files)
must be archived into a single library file (*.a file). The instructions for this are included in the distribu-
tion of the source code forNumerical Recipes. In the end, a file calledlibrecipes c.a must be put
into a directory where it is available to the linker for compilation. A good place to put this library is in
/usr/local/recipes/lib/librecipes c.a . When you run the command that installs GRASP,
the linker needs to be able to find these libraries. The fileSiteSpecific must then contain the line
RECIPES LIB = /usr/local/recipes/lib near the top of the file.

It is frequently useful, for debugging purposes, to be able to link with both “debug” and “profile” ver-
sions of the libraries. For this reason, we recommend that users actually createthree separate librariesof
Numerical Recipesfunctions:

/usr/local/recipes/lib/librecipes c.a: a library compiled for fast execution, with opti-
mization options (for example, -O3 or -xO4) turned on during compilation.

/usr/local/recipes/lib/librecipes cg.a: a library compiled for debugging, with the de-
bug option (typically, -g) turned on during compilation. Note that in order to use a debugger with
this library, and to be able to step “within” theNumerical Recipesfunctions, the debugger must be
able to locate the source code forNumerical Recipes. Thus, afterNumerical Recipesis compiled and
installed, its *.c and *.h source files must be left in their original locations and not deleted or moved.
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/usr/local/recipes/lib/librecipes cp.a: a library compiled for profiling, with the profil-
ing option (typically, -pg or -xpg for “gprof” or -p for “prof”) turned on during compilation.

One can then easily compile GRASP code with the appropriate library by settingLRECIPES in Site-
Specific . For example to run code as rapidly as possible one would setLRECIPES = recipes c .
However to compile code for debugging it would be preferable to setLRECIPES = recipes cg . (Note
that rather than recompiling the entire GRASP package in this way, one can simplify modify the value of
LRECIPESwithin the desiredMakefile s and then recompile only the code of interest.)

We have encountered one minor problem with theNumerical Recipes in Croutines. Unfortunately
the authors of these routines choose to name one of their routinesselect() . This name conflicts with
a POSIX name for one of the standard operating system calls. In linking with certain libraries (for ex-
ample the MPI/MPE libraries) this can generate conflicts where the linker attaches theselect() call
to the entry point from the wrong library. Starting with release 1.6.3 of GRASP, theselect() routine
from Numerical Recipes is used in GRASP. For this reason, you must fix this as follows. Before building
theNumerical Recipeslibraries, edit the source filesrecipes/rofunc.c , recipes/select.c , and
recipes/select.c.orig changing each occurence ofselect( to NRselect( . You will have to do
this in (respectively) four places, one place and one place in these files. Then edit the fileinclude/nr.h
making the same change ofselect( to NRselect( in one place. This will elminate theselect()
routine from theNumerical Recipeslibrary, replacing it with a routine calledNRselect() , and eliminat-
ing any possible naming conflict from the library. So, to summarize, the routine calledselect() in the
Numerical Recipeslibrary is used in GRASP, but is calledNRselect() there.

2.6.3 Accessing MPI and MPE libraries

To enable use of the parallel processing code included with GRASP, one needs to link the code with an MPI
function call library. (If you do not intend to use any of the multiprocessing code, we’ll tell you what to
do.) For performance monitoring purposes, we also make calls to the Message Passing Environment (MPE)
library, which is included withmpich [3]. If these function libraries are not currently available on your
system, you should obtain the public domain implementationmpich from the URL
http://www.mcs.anl.gov/mpi/mpich/ and follow the instructions required to build the MPI/MPE
libraries for your system. After the installation process is complete, the necessary libraries will be contained
in a library archive, for example/usr/local/mpi/lib/libmpi.a and/usr/local/mpe/lib/libmpe.a .
The path to these libraries is set in the fileSiteSpecific by means of the variableMPI LIBS . A typical
line in SiteSpecific might then read:
MPI LIBS=-L/usr/local/mpi/lib -lmpi -lmpe .
You must also setBUILD MPI= true in SiteSpecific . Finally, in order to include appropriate
header files in any MPI programs, you will need to include a path to these header files in the fileSiteSpe-
cific . You can do this by settingMPI INCLUDESin the file SiteSpecific . A typical installation
might have
MPI INCLUDES = -I/usr/local/mpi/include .
NOTE: If you don’t want to useanyof the MPI code, just set:
BUILD MPI= false
in SiteSpecific . All the other MPI-specific defines are then ignored.

2.6.4 AccessingMESAlibraries

Currently one of the routines available in GRASP,plottf() , requires the Mesa library to display the
time-frequency maps on the screen. Mesa is a 3-D graphics library with an API which is very similar to
that of OpenGL. Mesa is distributed under the terms of the GNU Library General Public License. The
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Mesa library may be downloaded fromhttp://www.mesa3d.org/ If you are not interested in using
the plottf() routine, you may setHAVEGL= false in SiteSpecific and ignore the rest of this
section.

The Installation is extremely simple. Download the fileMesaLib-3.0.tar.gz . The ungzipped
untarred file produces a directory tree underMesa-3.0 . Enter the directoryMesa-3.0 , and key inmake.
This lists a variety of systems on which the Mesa library has been compiled. Select the one which most
accurately describes your system and key in,make my system , wheremy system is what you have
selected from the list. This will compile the programs and create the Mesa libraries in the directory,Mesa-
3.0/lib . Copy the libraries to a common location such as/usr/local/lib and copy the include files
in Mesa-3.0/include- to a common location such as/usr/local/include . (The filesREADME
andREADME.*files have detailed instructions to install the software, if required.)

2.6.5 Accessing CLAPACK libraries

As mentioned above GRASP uses routines form CLAPACK to perform the numerical linear algebra required
in some of the environmental correlation routines. The routines that require these libraries are those which
‘clean up’ one channel based on an analysis of the correlations between a number of channels. In the case
of the data stream from an interferometric gravitational radiation detector, the primary interest would be in
the cleaning the signal determining the differential displacement of suspended test masses using information
from environmental channels. If you are not interested in such routines you may set
WITH CLAPACK= false
in SiteSpecific and ignore the rest of this section.

The CLAPACK routines may be downloaded from
http://www.netlib.org/clapack/ . It is simplest to download the complete package
clapack/clapack.tgz although it is possible to download individual elements if disk space is at a
premium (the complete package includes testing and timing routines which may be discarded after suc-
cessful installation). The ungzipped untarred file produces a directory tree under CLAPACK. The directory
CLAPACK contains LAPACK make include filemake.inc where compiler flags etc are set. You may
wish to change the lines

BLASLIB = ../../blas$(PLAT).a
LAPACKLIB = lapack$(PLAT).a

to

BLASLIB = ../../libblas$(PLAT).a
LAPACKLIB = liblapack$(PLAT).a

CLAPACK uses the f2c libraries so the first step is to create these by typingcd F2CLIBS/libF77;
make andcd F2CLIBS/libI77; make each time starting from the CLAPACK directory. Next one
builds the BLAS (Basic Linear Algebra Subprograms) libraries withcd BLAS/SRC; make . Finally
one builds the CLAPACK library withcd SRC; make . The f2c librarieslibF77.a and libI77.a
and include filef2c.h are now in the subdirectory F2CLIBS of CLAPACK while the librarieslib-
blas$(PLAT).a andliblapack$(PLAT).a are in the directory CLAPACK. From here they may be
installed into appropriate directories. Fuller details, including the building and running of the test and tim-
ing programs may be found in theREADMEfile in the CLAPACK directory. As for the Numerical Recipes
libraries it can be convenient to have both optimised and debugging versions of the libraries available for
development work.
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2.6.6 Accessing FRAME libraries

The LIGO and VIRGO detector projects have recently decided to standardize the format which their data will
be recorded in (see Section 2.4). The standard is called the FRAME format, and is still under development.
It appears quite possible that a number of other gravitational-wave detector groups will also adopt this same
format. The GRASP package contains, for every example program, both FRAME format and old format
versions. It also contains an translation program which converts data from the “old 1994” format into the
new FRAME format.

Unless you are in one of the small number of groups with access to the old-format data, you will need to
obtain the FRAME libraries. These are available from the VIRGO project; they may be downloaded from the
site http://wwwlapp.in2p3.fr/virgo/FrameL/ . Contact Benoit Mours
mours@lapp.in2p3.fr for further information. In theSiteSpecific file, if you need the FRAME
libraries, set a pointer to the directory containing them. NOTE: If you don’t need the FRAME libraries, just
set:
BUILD FRAME = false
in SiteSpecific . All the other FRAME-specific defines are then ignored.

The GRASP interface to the FRAME library should work properly with every version of the FRAME
library from 2.30 onwards. The GRASP interface to the FRAME library looks to see which version of the
FRAME library you are using, and then generates the appropriate code. The FRAME library is designed
to be backwards-compatible. For example, version 3.42 of the FRAME library can read files written with
version 2.37 of the FRAME library. GRASP has been tested with versions of the FRAME� 3:72.

2.6.7 Real-time 40-meter analysis

The analysis tools in the GRASP package can be used to analyze data in real-time, as it is recorded by the
DAQ system. This facility is primarily for the use of experimenters working in the Caltech 40-meter lab.
and will probably not be of use to anyone outside of that group.

In order to use the GRASP tools in real time, one needs to link to a set of EPICS (Experimental Physics
and Industrial Control System) libraries, that are not otherwise needed. These permit the GRASP code to
interrogate the EPICS system to find out the names and locations of the most-recently written FRAMES of
data.

2.6.8 The Matlab Interface

The Gravitational Radiation Toolbox provides a Matlab interface to both GRASP and the Frame Library. The
Gravitational Radiation Toolbox links these two packages with Matlab—simultaneously exposing data to a
familiar, commercially developed, problem solving environment and efficient algorithms designed specifi-
cally for analyzing gravitational radiation data.

2.6.9 Making the GRASP binaries and libraries

To make the GRASP libraries and executables described in this manual, please follow these directions. It
should only take a few minutes to do this.

1. Within the main GRASP directory is a file calledSiteSpecific . Make a copy ofSiteSpe-
cific calledSiteSpecific.save . This way, if you mess up the installation, you can start over
easily. (Alternatively, copySiteSpecific to a file calledSiteSpecific.mysite and, every-
where below, when we refer to editing theSiteSpecific file, edit SiteSpecific.mysite
instead.) Note: you can find a number of exampleSiteSpecific files in the directoryExam-
ples SiteSpecific/ . These are for different installation sites and machine types (Sun, DEC,
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Intel Paragon, IBM SP2, Linux) – you may find them helpful if you are stuck or the instructions be-
low are ambiguous or unclear. Once you have customized theSiteSpecific file for your own
installation, if you wish you can email it to us and we will include it in future releases of GRASP.

2. Now editSiteSpecific so thatGRASPHOMEhas the correct path, for example
GRASPHOME=/usr/local/GRASP .
This must be the name of the directory on your system in which GRASP resides. If you are not the
superuser and are installing GRASP only for your own use, you can set this path to point somewhere
in your own home directory, and install GRASP there.

3. Find out whereNumerical Recipes in Cis installed on your system. WithinSiteSpecific set
RECIPES LIB to point to the directory containing these libraries. For example
RECIPES LIB=/usr/local/numerical recipes/lib .
If Numerical Recipes in Cis not installed on your system, you will have to obtain a copy, and in-
stall it, following the directions to create the library filelibrecipes c.a . Note that as described
above, you might also want to create debugging librarieslibrecipes cg.a and profiling libraries
librecipes cp.a .

4. Within SiteSpecific setLRECIPESto the name of theNumerical Recipes in Clibrary you wish
to use, for example
LRECIPES=recipes c .

5. If you intend to use the MPI code, setBUILD MPI= true , otherwise set it tofalse . In this latter
case, any MPI-specific defines are ignored, and no code that makes use of MPI/MPE function calls is
compiled. (This is a shame – these are some of the nicest programs in the GRASP package. We urge
you to reconsider building thempich package on your system!)

6. Within SiteSpecific setMPI LIBS to point to the directory containing the MPI/MPE libraries,
and to specify the names of the link archives, for example
MPI LIB=-L/usr/local/mpi/lib -lmpi -lmpe .
Note that if you use the version ofmpicc which is distributed withmpich you may not need to have
any of the MPI libraries referenced here; the compiler may find them automatically.

7. Within SiteSpecific setMPI INCLUDESto point to the directory which contains the MPI and
MPE header (*.h ) files, for example
MPI INCLUDES = -I/usr/local/mpi/include .

8. Within SiteSpecific setMPICCto the name of your local MPI C compiler, for example:
MPICC = /usr/local/bin/mpicc .
You can include any compilation flags (say,-g ) on this line also.

9. If you have the MESA or GL library installed setHAVEGL= true , otherwise set it tofalse . In
this latter case, the routines making GL/MESA calls will not be compiled.

10. Within SiteSpecific setGL LIBS to point to the directory containing the GL/MESA libraries,
and to specify the names of the link archives, for example
GL LIBS= -L/usr/local/lib -lMesaGLU -lMesaGL $(XLIBS) .
Note that the functions in the MESA/GL library make calls to the X library and you will have to
specify the location of the X libraries for example
XLIBS = -L/usr/X11/lib -L/usr/X11R6/lib -lX11 -lXext -lXmu -lXt -lXi -lSM -lICE .
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11. Within SiteSpecific set GL I to point to the directory which contains the GL/MESA header
(*.h ) files, for example
GL I = -I/usr/local/include/GL .

12. If you intend to use CLAPACK, setWITH CLAPACK = true , otherwise set it to false. Within
SiteSpecific setCLAPACKLIB to point to the directory containing the CLAPACK libraries and
LCLAPACKandLBLAS to the (platform-specific) names of the clapack and blas libraries respectively
excluding the leading ‘lib’. Further setF2C LIB to point to the directory containing the f2c libraries
andF2C INC to point to the directory containing the f2c.h include file.

13. If you intend to use the FRAME code, setBUILD FRAME = true , otherwise set it to false. In this
latter case, any FRAME-specific defines are ignored, and no code that makes use of FRAME function
calls is compiled.

14. WithinSiteSpecific setFRAMEDIR to point to the directory which contains the LIGO/VIRGO
format FRAME software, for example
FRAMEDIR=/usr/local/frame .
This directory should containlib/libFrame.a and include/FrameL.h . If you don’t need
the FRAME libraries, just leave this entry blank.

15. Within SiteSpecific , if you want to use GRASP for real-time analysis in the Caltech 40-meter
lab, setEPICS INCLUDESto point to the directory containing the EPICS*.h include files, and set
EPICS LIBS to point to the directory containig the EPICS libraries. Finally, you need to uncomment
the BUILD REALTIMEdefine statement. If you do not intend to use your GRASP installation for
real-time analysis in the 40-meter lab, simply leave these three definitions commented out with a hash
sign (#).

16. At the bottom ofSiteSpecific are several define statements, which are currently commented out.
These are primarily intended for production code; by undefining these lines you replace a cube root
function and some trig functions in the code with faster (but less accurate) in-line approximations. We
suggest that you leave these commented out. (You might want to consider uncommenting them if you
are burning thousands of node hours on a large parallel machine - but you do so at your own risk!)

17. There are also lines that are currently commented out, which allow you to overload functions defined
in the libraries and reference libraries of optimized functions. Once again, leave these commented out
unless you want to replace standardNumerical Recipesfunctions with optimized versions. Currently,
we support several sets of optimized libraries:

� The CLASSPACK optimized FFT’s for the Intel Paragon.

� The Sun Performance Library’s optimized FFT for the Sun SPARC architecture. Note: believe it
or not, this isslowerthan the public domain equivalent. We recommend that you use the FFTW
package instead!

� The Cray/SGI optimized FFT for the RS10000 and other MIPS architectures. Note: believe it
or not, this isslowerthan the public domain equivalent. We recommend that you use the FFTW
package instead!

� The DEC extended math library (DXML) optimized FFT for the DEC AXP architecture. [This
is slightly faster, or slightly slower, than FFTW, depending upon the array size.]

� The FFTW (Fastest Fourier Transform in the West), which will run on any computer. This is a
public domain optimized FFT package, available from the web site:
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http://www.fftw.org/ . If you don’t have an optimized FFT routine for your computer,
we highly recommend this – it is a factor of three (or more) faster thanNumerical Recipes. We
include glue routines for both FFTW version 1 and version 2. The latter is simpler to install and
fractionally more efficient.

� The IBM Extended Scientific Subroutine Library (ESSL) optimized FFT routine. Note: this has
only been tested on the IBM SP2 machine.

Further details may be found in thesrc/optimization subdirectory of GRASP. If you want to
use these optimized library routines, first go into the appropriate subdirectory ofsrc/optimization
and build the optimized library routine using themakefiles ’s that you find there, then uncomment
the appropriate lines inSiteSpecific and follow the instructions given here.

18. To install the Gravitational Radiation Toolbox which provides an interface between GRASP and Mat-
lab, comment out the lineBUILD GRTOOLBOX = false and uncommentBUILD GRTOOLBOX
= true . Then edit the variablesMEX, MEXFLAGS, andEXTappropriately. You will then have add
the directoriessrc/GRtoolbox andsrc/examples/examples GRtoolbox to your Matlab
path.

19. Now, in the top level GRASP directory, execute the shell scriptInstallGRASP , by typing the com-
mands:
chmod +x InstallGRASP
./InstallGRASP SiteSpecific (or SiteSpecific.mysite if appropriate)
From here on, the remainder of the installation should proceed automatically. TheInstallGRASP
script takes information contained in theSiteSpecific file (or in the file named in the first argu-
ment ofInstallGRASP such asSiteSpecific.mysite ) and uses it to createMakefile ’s in
eachsrc subdirectory, and runsmake in each of those directories.

20. If you want to “uninstall” GRASP so that you can begin the installation procedure again, cleanly, a
script has been provided for this purpose. To execute it, type:
./RemoveGRASP
and wait until the script reports that it has finished. Note: when you have sucessfully completed this
process, please email us a copy of yourSiteSpecific file and we will put it into theExam-
ples SiteSpecific/ directory of future GRASP releases.

The Makefile in each directory is constructed by concatenating the file named in the first argument of
InstallGRASP (typically SiteSpecific ) with a file calledMakefile.tail in each individual di-
rectory. If you want to try changing the compilation procedure, you can modify theMakefile in a given
directory. However this will be created each time that you runInstallGRASP ; for changes to become
permanent they should either be made inSiteSpecific or in theMakefile.tail ’s.

Note that this installation procedure and code has been tested on the following types of machines: Sun
4 (Solaris), DEC AXP (OSF), IBM SP2 (AIX), HP 700 (HPUX), Intel (Linux), Intel Paragon. There is a
problem on some SGI (IRIX) machines. If you get error messages reading:

...
if: Expression Syntax.
*** Error code 1 (bu21)
GRASP did NOT complete installation successfully

this can be fixed by setting the shell tobash before running InstallGRASP:
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SGI> setenv SHELL /usr/local/bin/bash
SGI> ./InstallGRASP SiteSpecific

If you run into problems with our installation scripts, please let us know so that we can fix them.
If you want to experiment with GRASP or to write code of your own, a good way to start is to copy the

Makefile and the example (*.c ) programs from thesrc/examples directory into a directory of your
own. You can then edit one of the example programs, and type “make” within your directory to compile a
modified version of the program.

If you wish to modify the code and libraries distributed with GRASP (in other words, modify the func-
tions described in this manual!) the best idea is to usecp -r to recursively copy the entire GRASP directory
structure (and all associated files) into a private directory which you own. You can then install your personal
copy of GRASP, by following the directions above. This will permit you to modify source code within
any of thesrc subdirectories; typingmake within that directory will automatically re-build the GRASP
libraries that you are using. By the way, if you are modifying these functions to fix bugs or repair problems,
or if you have a “better way” of doing something, please let us know so that we can consider incorporating
those changes in the general GRASP distribution.

2.6.10 Stupid Pet Tricks

There are a number of simple things that one can do during or after the installation process that may make
GRASP easier to maintain and/or use at your site. For example, if is often extremely convenient for debug-
ging purposes to have a GRASP library (libgrasp.a ) constructed with all the symbol table information
turned on, and another library constructed with all the optimization switches turned on. Users who want their
code to run as fast as possible can link to the optimized library. Users who want to track down problems
within GRASP, or to step through internal GRASP functions can link to the debug library. You can accom-
plish this easily by building two separate GRASP libraries, as follows. (Note: since the normal C-compiler
debugging option is-g the debug library has ag appended to its name.)

� Edit your SiteSpecific.mysite file so that the debugging switches are turned on (CFLAGS
= -g , typically). You may also want to build the GRASP example programs with the “debug” ver-
sions of the Numerical Recipes libraries, in which case you should setLRECIPES=recipes cg in
SiteSpecific.mysite . In simiilar fashion you might also choose to link to FRAME libraries
compiled with debugging turned on.

� Build GRASP as described above, by running
InstallGRASP SiteSpecific.mysite .

� Make a copy of the GRASP library:
cp /usr/local/GRASP/lib/libgrasp.a /usr/local/GRASP/lib/libgrasp g.a

� Make a copy of the “debug” GRASP example programs:
cp -r /usr/local/GRASP/bin /usr/local/GRASP/bin g
Note: the/usr/local/GRASP/bin directory containslinks to the actual executables, but for most
unix systems this copy command will copy the actual files. Your mileage may vary – choose the copy
option which copies the filesnot the links!

� Removeyour GRASP installation (i.e. everything but the library and the executables, and original
GRASP package) by typing:
RemoveGRASP
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� Modify SiteSpecific.mysite so that the optimization options are turned on (typically,CFLAGS
= -O ). You should also set the Numerical Recipes library to the optimized versions, typically via
LRECIPES=recipes c in SiteSpecific.mysite . In simiilar fashion you might also choose
to link to FRAME libraries compiled with optimization turned on.

� Install GRASP again:
InstallGRASP SiteSpecific.mysite

Your GRASP installation will now containtwoGRASP libraries:/usr/local/GRASP/lib/libgrasp.a
and /usr/local/GRASP/lib/libgrasp g.a and two sets of executables, in
/usr/local/GRASP/bin and/usr/local/GRASP/bin g.

Another useful trick is if you are building versions of GRASP for several different architectures, on a
shared/usr/local/ disk. Here the procedure is the following:

� Create aSiteSpecific.arch1 file for the first machine type.

� Install GRASP in the usual way:
InstallGRASP SiteSpecific.arch1

� Copy the libraries:
cp /usr/local/GRASP/lib/libgrasp.a /usr/local/GRASP/lib/libgrasp arch1.a

� Make a copy of the GRASP example programs:
cp -r /usr/local/GRASP/bin /usr/local/GRASP/bin arch1
Note: the/usr/local/GRASP/bin directory containslinks to the actual executables, but for most
unix systems this copy command will copy the actual files. Your mileage may vary – choose the copy
option which copies the filesnot the links!

� Removeyour GRASP installation (i.e. everything but the library and the executables, and original
GRASP package) by typing:
RemoveGRASP

� Return to the first step above, and begin this process again, but this time for the second machine
architecture (i.e. changearch1 to arch2 above).

This method will avoid duplication of source files, documentation, etc, while still providing a set of libraries
and executables for different machine types.

2.7 Conventions used in this manual

The conventions used in this manual are not strict ones. However we do observe a few general rules:

1. Words or lines that you might type on a computer (commands, filenames, names of C-language func-
tions, and so are) are generally indicated inteletype font .

2. When a function is described, the arguments which areinputsand those which areoutputs(or those
which are both) are indicated. Thus, for example the (fictional!) addition function
add(int a, int b,int* c) which sets*c = a+b is described by:

a: Input. One of the two integers that are added together.

b: Input. The second of these integers.

c: Output. Set to the sum ofa andb.
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Note that technically this is incorrect, because of course in C even the “output arguments” are really
just inputs; they are pointers to an address in memory that the routine is supposed to modify. And
technically, the statement that “c is set to...” is not correct, since in fact it is the integer pointed to
by c (denoted *c) that is set. However we find that this convention makes it much easier to read the
function descriptions!

3. Most of the time, the example programs using GRASP functions are given explicitly in the manual,
so you can see the GRASP functions “in use”. Because these examples are illustrative, they are
generally “pared down” as much as possible (for example, default values of adjustable parameters are
hard-wired in, rather than prompted for).

4. Routines and example programs in GRASP generally begin with the line:
#include "grasp.h"
which includes the prototypes for all GRASP functions as well as the library header filesstdio.h ,
stdlib.h , math.h , values.h , and time.h . The GRASP include file"grasp.h" can be
found in theinclude subdirectory of GRASP.

2.8 How to add your contributions to future GRASP releases.

As we have explained, the general idea of GRASP is to have a collection of documented and tested code
available for use by the gravitational-wave detection community. Many people have made significant con-
tributions to this package, and we would welcome any additional contributions.

In order to minimize the effort involved in making additions to GRASP, and in order to ensure that they
are properly included and available to all, here are some guidelines about how to contribute:

� The contributions must be structured in such a way that they can be installed using the standard
GRASP installation scripts, and they respect the GRASP file hierarchy.

� The contributions must be documented inTeX, following the same general style as this manual (we
try not to betoo nit-picky!).

� In general, be sure that you are using (and modifying!) the current release of GRASP. This makes
it much easier for me to merge your additions in with the existing code. The danger is that if you
modify files from an old release of GRASP, where other corrections/changes have subsequently been
made, then I need to try and merge these changes into what you have done. It’s easier for everyone
if you are modifying the most current files. If you contact me in advance, I can also give you some
idea about how many changes have already been made to the current release, and what the schedule
is for the next release. One way to find the absolute “most current” version of a file is to get it from
the GRASP development source tree, which is at
http://www.lsc-group.phys.uwm.edu/ �ballen/grasp-distribution/GRASP/ .
Before sending me a revised file to incorporate in GRASP, pleasediff it with the corresponding file
in this directory, to make sure that the only differences are ones that you have deliberately made!

If you want to make ”small” changes to GRASP, for example to modify a function to add extra func-
tionality, to repair something that is broken, or to add some additional functions in one section, then please
do the following:

1. Provide documentation in the form of a modified file:doc/man *.tex . I will merge your changes
into the general GRASP distribution. For clarity, let’s assume that you have added a utility func-
tion, and have modifieddoc/man utility.tex by adding a description of your function(s) to it.
Remember,software can never be better than its documentation.
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2. In any modifications of the documentation*.tex files, please be sure tospell-checkthe files before
you send them to me. Use either thespell or ispell utilities, or some other alternative.

3. You should provide additional lines to add todoc/make tex from C. This is a script that automat-
ically converts any*.c example files that you would like to include in the manual into.tex files. In
general, you should have an example program which shows a very simple use of your function.

4. You should provide any figures which have been included in your ”modified”doc/man *.tex file
in postscript:doc/Figures/MYPACKAGE1.ps ,doc/Figures/MYPACKAGE2.ps , and so on.
Note that the postscript files produced by many plotting packages are excessively large, often several
MB. For figures produced from programs like this, it is more efficient to use a bitmap to describe the
entire image. Full details of how to produce such bitmaps may be found at
http://xxx.lanl.gov/help/bitmap . The following extract describes ‘the easiest way to do
bitmapping’ using XV:

“First display the original figure on the screen somehow (e.g. with ghostview). Then use the ‘Grab’
button in XV to snatch a copy of the displayed image into XV’s buffer (after selecting ‘Grab’ you
can do this either by clicking the left mouse button on the desired window (which grabs the whole
window), or by holding down the middle mouse button and dragging (which selects a region)).

Once the image is in XV’s buffer, you can manipulate it. You should use ‘Autocrop’ or ‘Crop’ to
remove any excess margins around the figure. Then save it (as gif, jpeg, color postscript or greyscale
postscript). If resaving as postscript you must click the XV ‘compress’ box for extra compression.”

5. You should provide a modified version of (for example)src/utility/utility.c (this modified
source contains your additions, merged into the standard GRASP release) and additional example
programs demonstrating your functions in
src/examples/examples utility/example1.c ,
src/examples/examples utility/example2.c , and so on.

6. You should provide a modified version ofinclude/grasp.h (or the additional lines to merge into
this header file). This header should contain proto-types for any functions which you have added to
GRASP, which you would like to make publicly-available. In general, please try to avoid putting
“documentation” in this header file: it should go into the manual and into the source files.

If you are doing this (modifying or extending existing GRASP functions) please do a search of the exist-
ing GRASP source code to verify that your changes do not break existing code. Or, if necessary, make
modifications to the existing code, and send me those modified files as well as the materials above.

On the other hand, you might have grander plans! You might not want to make “small” changes - you
might want to include a major new section in GRASP, for modelling another type of source, or for a type of
analysis which is different than anything currently in the package. Let’s assume that you want to provide a
major new GRASP package or facility called MYPACKAGE. In this case:

1. You should provide documentation in the form of a file:doc/man MYPACKAGE.tex, which has
the same format as (for example)doc/man inspiral.tex . I will modify doc/manual.tex
by putting a line:
include fman MYPACKAGEg
into doc/manual.tex , to include your contribution to the manual. Reference should be in the
same format as the existing ones, and will be added to thereferencessection ofmanual.tex . Make
sure that you modifydoc/man intro.tex to describe any additional directories that you have
added to thesrc tree. Remember,software can never be better than its documentation.
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2. In any modifications of or additions to the documentation*.tex files, please be sure tospell-check
the files before you send them to me. Use either thespell or ispell utilities, or some other
alternative.

3. You should provide additional lines to add todoc/make tex from C. This is a script that auto-
matically converts any*.c example files that you would like to include in the manual into.tex
files.

4. You should provide figures in postscript form with names derived from your package name if that is
possible. For example:doc/Figures/MYPACKAGE1.ps , doc/Figures/MYPACKAGE2.ps .
These figures should be included in yourdoc/man MYPACKAGE.texfile.

5. You should provide source code insrc/MYPACKAGE/MYPACKAGE.cand example programs in
src/examples/examples MYPACKAGE/example1.c ,
src/examples/examples MYPACKAGE/example2.c , and so on. The code in
src/MYPACKAGE/MYPACKAGE.ccontains the actual functions that you have provided. Any exe-
cutable example programs that use these functions should be in thesrc/examples path.

6. You should provide a modified header fileinclude/grasp.h or additional lines to merge into
this, declaring prototypes for any publicly-available functions.

7. You should provide “tail” parts of the Makefiles:
src/examples/examples MYPACKAGE/Makefile.tail , and
src/MYPACKAGE/Makefile.tail . You can see
src/examples/examples inspiral/Makefile.tail for an example. Please follow the
syntax of this fairly closely: the structure is there for good reasons. If you provide a file that works on
your own system it may not work on other people’s systems – but if you follow our style it probably
will.

8. Be sure to modify theInstallGRASP utility to include a “build” in any directories that you have
added to thesrc tree.

In general, the “rule of thumb” here is that you should try not to add functions which substantially overlap
existing GRASP functions. Either modify the existing GRASP functions (as described below) to add the
extra functionality or use them “as is”.

I would be grateful for a bit of advanced warning about any additions to GRASP (but a uuencoded
gzipped tarfile or shar file dropped in my mailboxwill get my rapid attention, if it contains these different
items, because that makes iteasyfor me to incorporate it!) The best format for this file is to make it contain
only the files that you are adding to GRASP, or those files from the most current GRASP distribution that
are being modified,with exactly the correct directory tree structure. This makes it easy for me to unpack
your contributions and merge them into the general GRASP distribution. One way to find the absolute “most
current” version of a file is to get it from the GRASP development source tree, which can be reached from
http://www.lsc-group.phys.uwm.edu/ �ballen/grasp-distribution/GRASP/ . Be-
fore sending me a revised file to incorporate in GRASP, pleasediff it with the file in this directory, to
make sure that the only differences are ones that you have deliberately made!

Note: it is a good idea to check your code in the following ways:

� Error messages in your code should not be done withfprintf(stderr, � � �) , but should be dealt
with by calling the GRASP error handler. Look at any of the current GRASP code to see how this is
done, or read Section 16.1 on the error handler.
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� Make sure that it passes bylint cleanly.

� Stick to POSIX operating systems calls, only. Remember that your code needs to run onotherplat-
forms. The fact that the code works correctly on your platform does not guarantee similar behavior on
other types of machines. This item, and the previous one, will go a long way towards ensuring that.

� If you are using thegcc compiler, make sure that the-Wall option (which enables all warnings)
does not issue any warnings.

� If you have access to more than one type of machine, please test your code on both a 32-bit and 64-bit
machine if possible.

� If you have access to both big-endian and little-endian machines, please test you code on both of those
also.

Please remember that many people will be runningyour code on platforms which are different than yours.
The fact that your code runs properly on your platform does not mean that it will run properly on other ones
as well. The best way to ensure this is to eliminate the types of problematic constructions thatlint and
-Wall warn about, and to test your code on a couple of different machines.

One final (important ) note. When your code has been sucessfully integrated into the GRASP package,
we will issue a new release of GRASP as quickly as possible. As soon as this release is available, westrongly
recommend that youthrow awayyour “personal” working copies of the files that you have been creating or
modifying, install this latest release of GRASP, and makenewcopies of the various files to work from. The
reason is this: in the process of including your material into GRASP we have probably made a number of
changes to it. If youdon’t follow our suggestion, make additional changes to your own files and send them
to us, we will not be very receptive (as you are forcing us to perform the unpleasant task of merging your
changes with our earlier ones).

2.9 How to use the GRASP library from ROOT.

ROOT is an interactive public-domain environment for data analysis developed at CERN. Details about
it can be found athttp://root.cern.ch/ . Within the root environment, you can make use of the
GRASP library. To do this, however, you need to produce a shared-object version of the GRASP library,
and then load it into ROOT. The following instructions on how to do this were contributed by Damir Buskulic
(buskulic@lapp.in2p3.fr ), and have been tested under Linux.

1. In buildinglibgrasp.a andlibrecipes c.a be sure that you have aposition independent code
option. For thegcc compiler this is-fPIC . This is needed to build a proper shared library.

2. The ROOT environment variables should have been set during install, especially$ROOTSYS.

3. Issue the following three commands:

� To build the interface functions for the ROOT C interpreter:
cint -w1 -zlibgrasp -nG cpp grasp.cc -D MAKECINT -DG MAKECINT
-c-1 -DG REGEXP -DGSHAREDLIB -DG OSFDLL -D cplusplus
-I$ROOTSYS/include -I<path to GRASP>/include/grasp.h

This will create filesG cpp grasp.cc andG cpp grasp.h which need to be compiled.
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� Compile these files with:
gcc -O -fPIC -DG REGEXP -DGSHAREDLIB -DG OSFDLL
-I$ROOTSYS/include -c G cpp grasp.cc

� Build the shared library with the command:
gcc -shared -o libgrasp.so ./G c grasp.o <path-to-libgrasp.a>/libgrasp.a
<path-to-numrecipes>/librecipes c.a
creating alibgrasp.so file. You can put this file anywhere that you wish.

Note: it is important to put the files and libraries in the order given above.

4. Launch ROOT and use the commandgSystem->Load("libgrasp"); to have the routines from
the GRASP library available within ROOT.

Note thatcint has some trouble with prototypes for variable-length-argument (varargs) functions. These
types of functions are used to implement the GRASP error handler 16.1. For this reason the GRASP include
file include/grasp.h has some lines which are automaticallynot included if the file is being read by
cint . Thus the GRASP error-handling functions can’t be called from within ROOT (but you wouldn’t want
to do this anyway).

Note that one can compile the Frame library for use with ROOT in exactly the same way. You replace
grasp.h by FrameL.h andlibgrasp.a by libFrame.a (always compiled with-fPIC ). There is
no need forlibrecipes in the Framelib case, because it does not make use ofNumerical Recipes.
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3 GRASP Routines: Reading/using Caltech 40-meter prototype data

This Section of the GRASP manual is now OBSOLETE (except for historical interest) - it describes
the OLD 1994 40-meter data format. The 40-meter data from 1994 has been translated into FRAME
format, and is distributed in FRAME format only. Please go to Section 4 of the GRASP manual, which
contains details about the FRAME format 1994 data.

There is a good archive of data from the Caltech 40-meter prototype interferometer. (Note that this
name is slightly misleading: the average length of the optical arm cavities is 38.25 meters.) Although the
interferometer is only sensitive enough to detect events like binary inspiral within� 10kpc (the distance to
the galactic center) its output is nevertheless very useful in studying data analysis algorithms on real-world
interferometer noise. This data was taken during the period from 1993 to 1996; for our purposes here we
will concentrate on data taken during a one-week long observation run from November 14-21, 1994. The
original data is contained on 11 exabyte tapes with about 46 total hours of data; the instrument was in lock
about 88% of the time. The details of this run, the status of the instrument, and the properties of this data
are well-described in theses by Gillespe [31] and Lyons [32].

The GRASP package includes routines for reading this data. The data is not read directly from the
tapes themselves; the data instead must be read off the tapes and put onto disk (or into pipes) using a
program calledextract . The GRASP routines can then be used to read the resulting files. While the
GRASP routines can be used without any further understanding of the data format, it is very helpful to
understand this in more detail. Note that these data formats and the associated structures were defined
years before GRASP was written; we did not choose this data format and should not be held accountable
for its shortcomings. We have included a preliminary translator that translates the data from this old 1994
format into the new LIGO/VIRGO frame format. The programtranslate may be found in the GRASP
src/examples/examples utility directory, and is documented in the Section on GRASP general
purpose utilities.

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data, and because the LIGO project wants to
maintain control of its use and distribution,this data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory,
Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125. The data set is available intar
format on two Exabyte 8500c format tapes. Each directory (for a different run on a different day) occupies
the following amount of space (in mbytes):

14nov94.1 647
14nov94.2 913
18nov94.1 1041
18nov94.2 1121
19nov94.1 1554
19nov94.2 1074
19nov94.3 1250
19nov94.4 1206
20nov94.1 1146
20nov94.2 1173
20nov94.3 1543

Each of these directories contains thechannel.* files and theswept-sine.ascii swept-sine calibra-
tion files. In this manual, we assume that these directories (or links to them) have been placed where you can
access them. The GRASP programs that use this data determine its location by means of the environment
variableGRASPDATAPATH. You can set this by typing (for example)
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setenv GRASP DATAPATH /usr/local/data/19nov94.3
to access the data from run 3 on November 19th. System administrators: after installing these directories in
a convenient place on your machine, we recommend that you install a set of links to them in the directory
data within the GRASP home directory. This way your users can find them without asking you for the
location!

WARNING: this data was written on a “big-endian” machine (the sun-4 workstation is an example of
such a machine). The floats are in IEEE 754 floating-point format. Attempts to read the data in its distributed
form on a “little-endian” machine (such as Intel 80*86 computers) will yield garbage unless the bytes are
properly swapped. The routines used to read data (in particular, the functionread block() ) test the byte
order of the machine being used, and swaps the byte order if the machine is “little-endian”. This introduces
some inefficiency if you are running on a “little-endian” machine, but is preferrable to having two copies of
the data, one for each architecture. If you are doing all of your work on a “little-endian” machine and you
want to avoid this inefficiency, write a program which properly swaps the byte orders of the header blocks
(which are in 4-byte units) and then also properly swaps the byte order of the data blocks (which are 2-byte
units) and reformat the raw data files. Then modify theread block() data so that it no longer swaps the
bytes on your machine.

3.1 The data format

Data is written onto the exabyte tapes in blocks about 1/2 megabyte in size. The format of the data on the
tapes is as shown in Table 1. The tape begins with a main header (denoted “mh” in the table). This is

mh 0’s 0’s mh 0’s 0’s mh gh 0’s data mh gh 0’s data � � �
1024 1024 1024 1024 1024 1024 � n 1024 1024 � n � � �

Table 1: Format of Exabyte data tapes (first row: content, second row: length in bytes).

followed by a set of zeros, padding the length of the header block to 1024 bytes. There is then an empty
block of 1024 bytes containing zeros. This pattern is repeated until the first block containing actual data.
This is signaled by the appearance of a main header, followed by a gravity header (denoted “gh” in the figure
above). These two headers are padded with zeros to a length of 1024 bytes. This is then followed by a set
of data (the length of this set is a multiple of 1024 bytes). Information about the length of the data sets
is contained in the headers. The data sets themselves consist of data from a total of 16 channels, each of
which comes from a 12-bit A to D converter. Four of the 16 channels are fast (sample rates a bit slower than
10kHz) and the remaining 12 channels are slow (sample rates a bit slower than 1kHz). The ratio of sample
rates is exactly10 : 1. Within the blocks labeled “data”, these samples are interleaved. The information
content of the different channels is detailed on page 136 of Lyon’s thesis [32], and is summarized in Table 3.

The programextract reads data off the tapes and writes them into files. One file is produced for each
channel; typically these files are namedchannel.0 ! channel.15 . The complete set of these files for
the November 1994 run fits onto two Exabyte tapes (in the 8500c compressed format). The information in
these files begins only at the moment when the useful data (starting with the gravity header blocks) begins
to arrive. The format of the data in thesechannel.* files is shown in Table 2. Here the main headers are

block 0 block 1 block 2 block 3 � � �
mh bh 0’s data mh bh 0’s data mh bh 0’s data mh bh 0’s data � � �

1024 cs 1024 cs 1024 cs 1024 cs � � �
Table 2: Format of achannel.0 !15 file (first row: block number, second row: content, third row: length
in bytes).
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the same as before, however the headers that follow them are called binary headers (denoted by “bh” in the
table). The length of the data stream (in bytes) is called the “chunksize” and is denoted by “cs” in Table 2.
We frequently reference the data in these files by “block number” and “offset”. The block number is an
integer� 0 and is shown in Table 2. The offset is an integer which, within a given block, defines the offset
of a data element from the first data element in the block. In a block containing 5000 samples, these offsets
would be numbered from 0 to 4999.

The structure of the binary headers is
struct ld binheader f
float elapsed time: This is the total elapsed time in seconds, typically starting from the first valid

block of data, from the beginning of the run.

float datarate: This is the sample rate of the channel, in Hz.

g;
The structure of the main headers is

struct ld mainheader f
int chunksize: The size of the data segment that follows, in bytes.

int filetype: Undocumented; often 1 or 2.

int epoch time sec: The number of seconds after January 1, 1970, Coordinated Universal Time
(UTC) for the first sample. This is the quantity returned by the functiontime() in the standard C
library.

int epoch time msec: The number of millseconds which should be added to the previous quantity.

int tod second: Seconds after minute, 0-61 for leap second, local California time.

int tod minute: Minutes after hour 0-59, local California time.

int tod hour: Hour since midnight 0-23, local California time.

int date day: Day of the month, 1-31, local California time.

int date month: Month of the year, 0-11 is January-December, local California time.

int date year: Years since 1900, local California time.

int date dow: Days since Sunday, 0-6, local California time.

int sub hdr flag: Undocumented.

g; Note: in the original headers, theseint were declared aslong . They are in fact 4-byte objects, and on
some modern machines, if they are declared as long they will be incorrectly interpreted as 8-byte objects.
For this reason, we have changed the header definitions to what is show above. Also please note that the
time valuestod minute � � � date year are the local California time, not UTC.

For several years, theextract program contained several bugs. One of these caused thechannel.*
to have no valid header information apart from theelapsed time anddatarate entries in the binary
header, and thechunksize entry in the main header. All the remaining entries in the main header were
either incorrect or nonsensical. This bug was corrected by Allen on 14 November 1996; data files produced
from the tapes after that time should have valid header information.
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There was also a more serious bug in the original versions ofextract . The typical chunksize of most
slow channels is 10,000 bytes (5,000 samples) and the chunksize of most fast channels is 100,000 bytes
(50,000 samples) but until it was corrected by Allen on 14 November 1996, theextract program would
in apparently unpredictable (though actually quite deterministic) fashion “skip” the last data point from the
slow channels or the last ten data points from the fast channels, giving rise to sequences of 4,999 samples
from the slow channels, and correspondingly 49,990 samples from the fast channels. Not surprisingly, these
missing data points gave rise to strange “gremlins” in the early data analysis work; these are described in
Lyon’s thesis [32] on pages 150-151. These missing points were simply cut out of the data stream as shown
in Figure 1; rather like cutting out 1 millisecond of a symphony orchestra every 5.1 seconds; this gives rise
to “clicks” which excited the optimal filters. This problem is shown below; data taken off the tapes after 14
November 1996 should be free of these problems.

There are a couple of caveats regarding use of these “raw data” files. First, in thechannel.* files,
there can be, with no warning, large segments of missing data. In other words, a block of data with time
stamp 13,000 sec, lasting 5 sec, can be followed by another data block with a time stamp of 14,000 sec
(i.e., 995 sec of missing data). Also, the time stamps are stored in single precision floats, so that after about
10,000 sec they no longer have a resolution better than a single sample interval. When we read the data,
we typically use the time-stamp on the first data segment to establish the time at which the first sample was
taken. Starting from that time, we then determine the time of a data segment by usingelapsed time ,
since the millisecond time resolution ofepoch time msec is not good enough. (See the comments in
Section 4.1).

For our purposes, the most useful channels arechannel.0 andchannel.10 . Channel 0 contains
the actual voltage output of the IFO. This is typically in the range of�100. Later, we will discuss how to
calibrate this signal. Channel 10 contains a TTL locked level signal, indicating if the interferometer was
in lock. This is typically in the range from 1 to 10 when locked, and exceeds several hundred when the
interferometer is out of lock. Note: after coming into lock you will notice that the IFO output is often zero
(with a bit of DC offset) for periods ranging from a few seconds to a minute. This is because the instrument
output amplifiers are typically overloaded (saturated) when the instrument is out-of-lock. Because they are
AC coupled, this leads to zero output. After the instrument comes into lock, the charge on these amplifiers
gradually bleeds off (or one of the operators remembers to hit the reset button) and then the output “comes
alive”. So don’t be puzzled if the instrument drops into lock and the output is zero for 40 seconds afterwards!

The contents of thechannel.* files was not the same for all of the runs. Lyon’s thesis [32] gives a
chart on page 136 with some “typical” channel assignments. The channel assignments during these Novem-
ber 1994 data runs are listed in a log book; they were initially chosen on November 14, then changed on
November 15th and again on November 18th; these assignments are shown in Table 3. (Note that the chart
on page 136 of Lyon’s thesis describes the channel assignments on 15 November 94, a day when no data
was taken.)
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Channel Number Description� 14 November 94 Description� 18 November 94
0 IFO output IFO output
1 unused magnetometer
2 unused microphone
3 microphone unused
4 dc strain dc strain
5 mode cleaner pzt mode cleaner pzt
6 seismometer seismometer
7 unused slow pzt
8 unused power stabilizer
9 unused unused
10 TTL locked TTL locked
11 arm 1 visibility arm 1 visibility
12 arm 2 visibility arm 2 visibility
13 mode cleaner visibility mode cleaner visibility
14 slow pzt unused
15 arm 1 coil driver arm 1 coil driver

Table 3: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels,
sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at about 1KHz.

50.660 50.665 50.670 50.675
elapsed time (sec)

−100.0

−50.0

0.0

50.0

100.0

IF
O

 o
ut

pu
t (

ch
an

ne
l 0

)

Data Dropouts
19 November 94 tape 3

Missing data

Effect of

interpolating

Figure 1: This shows the appearance ofchannel.0 before and after theextract program was repaired
(on 14 November 1996) to correctly extract data from the Exabyte data tapes. The old version ofextract
dropped the ten data points directly above the words “missing data”; in effect these were interpolated by the
diagonal line (but with ten times the slope shown since everything in between was missing).
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3.2 Function: read block()

int read block(FILE *fp,short **here,int *n,float *tstart,float *srate,int
allocate,int *nalloc,int seek, struct ld binheader* bh,struct ld mainheader*
mh)
This function efficiently reads one block of data from one of thechannel.* data files, operating in sequen-
tial (not random) access. On first entry, it detects the byte-ordering of the machine that it is running on, and
swaps the byte order if the machine is “little-endian” (the data was originally written in “big-endian” format,
and is distributed that way). It will also print a comment (on first entry) if the machine is not big-endian.

The arguments are:

fp: Input. A pointer to thechannel.* file being read.

here: Input/Output. A pointer to an array of shorts, which is where the data will be found when
read block() returns. Ifallocate =0, then this pointer is input. Ifallocate is non-zero,
then this pointer is output.

n: Output. A pointer to an integer, which is the number of data items read from the block, and written to
*here . These data items are typically short integers, so the number of bytes output is twice *n.

tstart : Output. The time stamp (elapsed time since beginning of the run) at the start of the data block.
Taken from the binary header.

srate : Output. The sample rate, in Hz, taken from the binary header.

allocate : Input. Theread block() function will place the data that it has read in a user defined array
if allocate is zero. Ifallocate is set, it will usemalloc() to allocate a block of memory, and
set*here to point to that block of memory. Further calls toread block() will then use calls to
realloc() if necessary to re-allocate the size of the block of memory, to accommodate additional
data points. Note that in either case,read block() puts into the array only the data from the next
block; it over-writes any existing data in memory.

nalloc : Input/Output. Ifallocate is zero, then this is used to tellread block() the size (in shorts)
of the array*here . An error message will be generated byread block() if this array is too small
to accommodate the data. Ifallocate is nonzero, then this integer is set (and reset, if needed) to the
number of array entries allocated bymalloc()/realloc() . In this case, be sure that*nalloc
is zero before the first call toread block() , or the function will think that it has already allocated
memory!

seek: Input. If seek is set to zero, then the function reads data. Ifseek is set nonzero, then
read block() does not copy any data into*here . Instead it simply skips over the actual data.

bh: Output. A pointer to the binary header structure defined above.

mh: Output. A pointer to the main header structure defined above.

This is a low-level function, which reads a block of data. It is designed to either write the data into a
user-defined array or block of memory, ifallocate is off, or to allocate the memory itself. In the latter
mode, the function usesnalloc to track the amount of memory allocated, and reallocates if necessary. It is
often useful to be able to quickly skip over sections of data (for example, just after the interferometer locks,
a few minutes is needed for the violin modes to damp down). Or if the IFO is out of lock, one needs to
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quickly read ahead to the next locked section. Ifseek is set, then this routine behaves exactly as it would
in normal (read) mode but does not copy any data.

The functionread block() returns the number of data items that will be returned on thenextcall
to read block() . It returns -1 if it has just read the final block of data (implying that the next call will
return 0). It returns 0 if it can not read any further data, because none remains.

Note that if the user has setallocate , then theread block() will allocate memory usingmal-
loc()/realloc() . It is the users responsibility to free this block of memory when it is no longer needed,
usingfree() .

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fixed-length block sizes.
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3.3 Example: reader program

This example uses the functionread block() described in the previous section to read the first 20 blocks
out of the filechannel.0 . It prints the header information for each block of data, and the 100th data item
from each block, along with the time associated with that data item.

The data is located with the utility functiongrasp open() , which is documented in Section 16.2. In
order for this example program to work, youmustset the environment variableGRASPDATAPATHto point
to a directory containing 40-meter data. You can do this with a command such as

setenv GRASP DATAPATH /usr/local/data/19nov94.3
to access the data from run 3 on November 19th.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
FILE �fp;
short �data;
float tblock,time,srate;
int code,num,size=0,count=0,which=100;
struct ld binheader bheader;
struct ld mainheader mheader;

=� open the IFO channel for reading�=
fp=grasp open("GRASP_DATAPATH","channel.0","r");

=� read the first 20 blocks of lock data�=
while (count <20) f

=� read a block of data�=
code= read block(fp, &data, &num, &tblock, &srate,1, &size,0, &bheader, &mheader);

=� if there is no data left, then break�=
if (code==0) break;

=� print some information about the data.�=
printf("Data block %d from file channel.0 starts at t = %f sec.\n",count,tblock);
printf("This block sampled at %f Hz and contains %d shorts.\n",srate,num);

=� print out some information about a single data point from block�=
time=tblock+(which �1.0) =srate;
printf("Data item %d at time %f is %d.\n",which,time,data[which �1]);
printf("The next block of data contains %d shorts.\n\n",code);

=� increment count of# of blocks read.�=
count++;

g

=� print information about the largest memory block allocated�=
printf("The largest memory block allocated by read block() was %d shorts long\n",size);

=� free the array allocated by readblock() �=
free(data);
return 0;

g
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3.4 Function: find locked()

int find locked(FILE *fp,int *s offset,int *s block,int *e offset, int *e block,floa t
*tstart,float *tend,float *srate)
This mid-level function looks in a TTL-locked signal channel (typically,channel.10 ) and finds the re-
gions of time when the interferometer is locked. The first time it is called, it returns information identifying
the start and end times of the first locked region. The second time it is called it returns the start and end
times of the second locked region, and so on.

The arguments are:

fp : Input. A pointer to the file containing the TTL lock signal. A typical file name might be “chan-
nel.10 ”.

s offset : Output. The offset (number of shorts) into the block where the IFO locks. This ranges from
0 to n-1 where the number of data items in blocks block is n. This offset points to the first locked
point.

s block : Output. The number of the data block where the IFO locks. This ranges from 0 to n-1 where
the total number of data blocks in the file is n.

e offset : Output. The offset (number of shorts) into the block where the IFO loses locks. This ranges
from 0 to n-1 where the number of data items in the blocke block . This offset points to the last
locked point (not to the first unlocked point).

e block : Output. The number of the data block where the IFO loses lock. This ranges froms block to
n-1 where the total number of data blocks in the file is n.

tstart : Output. The elapsed time in seconds, since the beginning of the run, of the data block in which
the first locked point was found. Note: This is not the time of lock acquisition!

tend : Output. The elapsed time in seconds, since the beginning of the run, of the data block in which the
last locked point was found. Note: this is not the time at which lock was lost!

srate : Output. The sample rate of the TTL-locked channel, in Hz.

This routine usesread block() to examine successive sections of thechannel.10 data file. It
looks for continuous sequences of data points where the value lies between limits (inclusive)LOCKL=1and
LOCKH=10. It returns the start and end points of each successive such sequence. The upper and lower limits
can be changed in the code, if desired, however these values appear to be reliable ones.

The integer returned byfind locked() is the actual number of data points in thefast channels,
during the locked period. It returns 0 if there are no remaining locked segments.

If there is a gap in the data stream, arising not because the instrument went out of lock, but rather
because the tape-writing program was interrupted and then later restarted,find locked() will print out
a warning message, but will otherwise treat this simply as a loss of lock during the period of the missing
data.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fixed-length block sizes.
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3.5 Example: locklist program

This example uses the functionfind locked described in the previous section to print out location infor-
mation and times for all the locked sections in the filechannel.10 . Note that this example only prints
out information for locked sections longer than 30 sec.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
float tstart,tend,srate,totaltime,begin,end;
int start offset,start block,end offset,end block,points,zero=0;
struct ld mainheader mh;
struct ld binheader bh;
double doubleutc;
FILE �fplock;
time t unixtime;

=� Open the file for reading�=
fplock=grasp open("GRASP_DATAPATH","channel.10","r");

=� print the absolute start time (in UTC) of the run�=
read block(fplock,NULL, &zero, &tstart, &srate,0, &zero,1, &bh, &mh);
doubleutc=mh.epoch time sec+0.001 �mh.epoch time msec;
printf("Starting time of first frame: %13f Unix-C time\n",doubleutc);
printf("Starting time of first frame: %13f GPS time\n",doubleutc �UTCTOGPS);
unixtime=mh.epoch time sec;
printf(" ˜ UTC time %s",asctime(utctime( &unixtime)));
printf(" ˜ Unix gmtime %s\n",asctime(gmtime( &unixtime)));

=� rewind the file pointer�=
rewind(fplock);

while (1) f

=� find the next locked section of the data�=
points=find locked(fplock, &start offset,

&start block, &end offset, &end block, &tstart, &tend, &srate);

=� if no data remains, then exit�=
if (points==0)

break;

=� calculate start and end of lock times�=
begin=tstart+start offset =srate;
end=tend+end offset =srate;
totaltime=end �begin;

=� print out info for lock intervals> 30 seconds�=
if (totaltime >30.0) f

printf("Locked from t = %f to %f for %f sec\n",begin,end,totaltime);
printf("Number of data points is %d\n",points);
printf("Start block: %d End block: %d\n",start block,end block);
printf("Start offset: %d End offset %d\n\n",start offset,end offset);

g
g
return 0;

g
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3.6 Function: get data()

int get data(FILE *fp,FILE *fplock,float *tstart,int npoint,short *loca-
tion,int *rem,float *srate,int seek)
This high-level function is an easy way to get the IFO output (gravity wave signal) during periods when the
IFO is locked. When called, it returns the next locked data section of a user-specified length. It also specifies
if the section of data is part of a continuous locked stream, or the beginning of a new locked section.

The arguments are:

fp: Input. Pointer to a file (typicallychannel.0 ) containing the channel 0 data.

fplock: Input. Pointer to a file (typically"channel.10" ) containing the TTL lock signal.

tstart: Output. The time of the zeroth point in the returned data.

npoint: Input. The number of data points requested by the user.

location: Input. Pointer to the location where the data should be put.

rem: Output. The number of points of data remaining in this locked segment of data.

srate: Output. The sample rate of the fast data channel, in Hz.

seek: Input. If this is zero, then the data is returned in the arraylocation[ ] . However if this input is
non-zero, thenget data performs exactly as described, except that it does not actually read any data
from the file or write tolocation[ ] . This is useful to quickly skip over un-interesting regions of
the data, for example the first several minutes after the interferometer acquires lock.

This function returns 0 if there is no remaining locked data stream of the requested length. It returns 1 if
it is just starting on a new locked section of the data stream, and it returns 2 if the data is part of an on-going
locked sequence.

WARNING: Theget data() function contains internal (static) variables which mean that you can
not use it as follows:

1. Open a file pointerfp

2. Callget data(fp, � � �) some number of times

3. Close the file pointerfp and then (say) open it again

4. Callget data(fp, � � �) some number of times.

This sequence will leave you and the code very confused: it does not correspond to “rewinding” the file. If
this is desired then you will have to modify theget data() function by adding a helper “reset()” function.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It is possible to simplify it for fixed-
length block sizes. It should also be modified to return a complete set of different channels, by adding
additional arguments to specify which channels are desired and where the data should be placed. This
could also be used to eliminate theseek argument.
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3.7 Example:gwoutput program

This example uses the functionget data() described in the previous section to print out a two-column
file containing the IFO output for the first locked section containing 100 sample points. In the output, the
left column is time values, and the right column is the actual IFO output (note that because this comes
from a 12 bit A-D converter, the output is an integer value from -2047 to 2048). The program works by
acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points, and so on.
Whenever a new locked section begins, the program prints a banner message to alert the user. Note that
typical locked sections contain� 107 points of data, so this program should not be used for real work – it’s
just a demonstration!

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
float tstart,time,srate;
int remain,i,npoint,code;
FILE �fp, �fplock;
short �data;

=� open the IFO output file and lock file�=
fp=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");

=� specify the number of points of output& allocate array�=
npoint=100;
data=(short �)malloc(sizeof(short) �npoint);

while (1) f
=� fill the array with npoint points of data�=
code=get data(fp,fplock, &tstart,npoint,data, &remain, &srate,0);
=� if no data remains, exit loop�=
if (code==0) break;
=� if starting a new locked segment, print banner�=
if (code==1) f

printf("____________ NEW LOCKED SEGMENT ____________\n\n");
printf(" Time (sec)\t IFO output\n");

g
=� now output the data�=
for (i=0;i <npoint;i++) f

time=tstart+i =srate;
printf("%f\t%d\n",time,data[i]);

g
g
=� close the data files, and return�=
fclose(fp);
fclose(fplock);
return 0;

g
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3.8 Example:animate program

This example uses the functionget data() described in the previous section to produce an animated
display showing the time series output of the IFO in a lower window, and a simultaneously calculated FFT
power spectrum in the upper window. This output from this program must be piped into a public domain
graphing program calledxmgr . This may be obtained fromhttp://plasma-gate.weizmann.ac.il/Xmgr/ .
(This lists mirror sites in the USA and Europe also). Some sample output ofanimate is shown in Figure 2.

22.00 22.10 22.20 22.30 22.40
t (sec)

−200.0

−100.0

0.0

100.0

200.0
IFO output 4

0.0 1000.0 2000.0 3000.0 4000.0 5000.0
f (Hz)

0

0

0

1

10

100
Spectrum

Figure 2: Snapshot of output fromanimate . This shows the (whitened) CIT 40-meter IFO a few seconds
after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:
animate j xmgr -pipe &

to get an animated display showing the data flowing by and the power spectrum changing, starting from the
first locked data. You can also use this program with command-line arguments, for example

animate 100 4 500 7 900 1.5 j xmgr -pipe &
will show the data from timet = 100 to time t = 104 seconds, then fromt = 500 to t = 507, then from
t = 900 to t = 901:5. Notice that the sequence of start times must be increasing.

Note: Thexmgr program as commonly distributed has a simple bug that needs to be repaired, in order
for the frequency scale of the Fourier transform to be correct. The corrected version ofxmgr is shown in
Figure 3.
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case 0:
==> delt=(x[ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]-x[0]);

setlength(cg,specset,ilen/2);
xx=getx(cg,specset);

...

case 1:
==> delt=(x[ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]-x[0]);

Figure 3: The corrections to a bug in thexmgr program are indicated by the arrows above. This bug is in
the routinedo fourier() in the filecomputils.c . This bug has been repaired inxmgr version 4.1
and greater.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc,char ��argv) f
void graphout(float,float,int);
float tstart=1.e35,srate=1.e �30,tmin,tmax,dt;
double time=0.0;
int remain,i,seq=0,code,npoint=4096,seek;
FILE �fp, �fplock;
short �data;

=� open the IFO output file and lock file in correct path�=
fp=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");

=� allocate storage space for data�=
data=(short �)malloc(sizeof(short) �npoint);
=� handle case where user has supplied t or dt arguments�=
if (argc==1) f

tmin= �1.e30;
dt=2.e30;
argc= �1;

g
=� now loop . . .�=
seq=argc;
while (argc!=1) f

=� get the next start time and dt�=
if (argc!= �1) f

sscanf(argv[seq �argc+1],"%f", &tmin);
sscanf(argv[seq �argc+2],"%f", &dt);
argc �=2;

g
=� calculate the end of the observation interval, and get data�=
tmax=tmin+dt;
while (1) f

if (tstart <tmin �(npoint+20.) =srate) seek=1; else seek=0;
code=get data(fp,fplock, &tstart,npoint,data, &remain, &srate,seek);
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=� if no data left, return�=
if (code==0) return 0;
=� we need to be outputting now. . .�=
if (tmin <=tstart) f

for (i=0;i <npoint;i++) f
time=tstart+i =srate;
printf("%f\t%d\n",time,data[i]);

g
=� put out information for the graphing program�=
graphout(tstart,tstart+npoint =srate,(argc==1 && time >=tmax));

g
=� if we are done with this interval, try next one�=
if (time >=tmax) break;

g
g
=� close files and return�=
fclose(fp);
return 0;

g
=� This routine is pipes output into the xmgr graphing program�=
void graphout(float x1,float x2,int last) f

static int count=0;
printf(" &\n"); =� end of set marker�=
=� first time we draw the plot�=
if (count==0) f

printf("@doublebuffer true\n"); =� keeps display from flashing�=
printf("@s0 color 3\n"); =� IFO graph is green�=
printf("@view 0.1, 0.1, 0.9, 0.45\n"); =� set the viewport for IFO�=
printf("@with g1\n"); =� reset the current graph to FFT�=
printf("@view 0.1, 0.6, 0.9, 0.95\n"); =� set the viewport FFT�=
printf("@with g0\n"); =� reset the current graph to IFO�=
printf("@world xmin %f\n",x1); =� set min x�=
printf("@world xmax %f\n",x2); =� set max x�=
printf("@autoscale\n"); =� autoscale first time through�=
printf("@focus off\n"); =� turn off the focus markers�=
printf("@xaxis label \"t (sec)\"\n"); =� IFO axis label�=
printf("@fft(s0, 1)\n"); =� compute the spectrum�=
printf("@s1 color 2\n"); =� FFT is red�=
printf("@move g0.s1 to g1.s0\n"); =� move FFT to graph 1�=
printf("@with g1\n"); =� set the focus on FFT�=
printf("@g1 type logy\n"); =� set FFT to log freq axis�=
printf("@autoscale\n"); =� autoscale FFT�=
printf("@subtitle \"Spectrum\"\n"); =� set the subtitle�=
printf("@xaxis label \"f (Hz)\"\n"); =� FFT axis label�=
printf("@with g0\n"); =� reset the current graph IFO�=
printf("@subtitle \"IFO output %d\"\n",count++); =� set IFO subtitle�=
if (!last) printf("@kill s0\n"); =� kill IFO; ready to read again�=

g
else f

=� other times we redraw the plot�=
printf("@s0 color 3\n"); =� set IFO green�=
printf("@fft(s0, 1)\n"); =� FFT it �=
printf("@s1 color 2\n"); =� set FFT red�=
printf("@move g0.s1 to g1.s0\n"); =� move FFT to graph 1�=
printf("@subtitle \"IFO output %d\"\n",count++); =� set IFO subtitle�=
printf("@world xmin %f\n",x1); =� set min x�=
printf("@world xmax %f\n",x2); =� set max x�=
printf("@autoscale yaxes\n"); =� autoscale IFO�=
printf("@clear stack\n"); =� clear the stack�=
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if (!last) printf("@kill s0\n"); =� kill IFO data�=
printf("@with g1\n"); =� switch to FFT�=
printf("@g1 type logy\n"); =� set FFT to log freq axis�=
printf("@clear stack\n"); =� clear stack�=
if (!last) printf("@kill s0\n"); =� kill FFT �=
printf("@with g0\n"); =� ready to read IFO again�=

g
return;

g
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3.9 Function: read sweptsine()

void read sweptsine(FILE *fpss,int *n,float **freq,float **real,float **imag)
This is a low-level routine which reads in a 3-column ASCII file of swept sine calibration data used to cali-
brate the IFO.

The arguments are:

fpss: Input. Pointer to a file in which the swept sine data can be found. The format of this data is
described below.

n: Output. One greater than the number of entries (lines) in the swept sine calibration file. This is because
the readsweptsine returns, in addition to this data, one additional entry at frequencyf = 0.

freq: Output. The array*freq[1..*n-1] contains the frequency values from the swept sine cali-
bration file. The routine adds an additional entry at DC,*freq[0]=0 . Note: the routine allocates
memory for the array.

real: Output. The array*real[1..*n-1] contains the real part of the response function of the IFO.
The routine adds*real[0]=0 . Note: the routine allocates memory for the array.

imag: Output. The array*imag[1..*n-1] contains the imaginary part of the response function of the
IFO. The routine adds*imag[0]=0 . Note: the routine allocates memory for the array.

The swept sine calibration files are 3-column ASCII files, of the form:

f1 r1 i1
f2 r2 i2

� � �
fm rm im

where thefj are frequencies, in Hz, andrj andij are dimensionless ratios of voltages. There are typically
m = 801 lines in these files. Each line gives the ratio of the IFO output voltage to a calibration coil driving
voltage, at a different frequency. Therj are the “real part” of the response, i.e. the ratio of the IFO output
in phase with the coil driving voltage, to the coil driving voltage. Theij are the “imaginary part” of the
response,90 degrees out of phase with the coil driving voltage. The sign of the phase (or equivalently, the
sign of the imaginary part of the response) is determined by the following convention. Suppose that the
driving voltage (in volts) is

Vcoil = 10 cos(!t) = 10<ei!t (3.9.1)

where! = 2� � 60 radians=sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

VIFO = 6:93 cos(!t) + 4 sin(!t)
= 6:93 cos(!t)� 4 cos(!t+ �=2)
= 8 <ei(!t��=6) (3.9.2)

This is shown in Figure 4. An electrical engineer would describe this situation by saying that the phase of
the responseVIFO is lagging the phase of the driving signalVcoil by 30Æ. The corresponding line in the swept
sine calibration file would read:

� � �
60:000 0:6930 �0:40000

� � �

GRASP RELEASE 1.9.8 Page 46 May 19, 2000



O
BS

O
LE

TE

Section
3.9

GRASP Routines: Reading/using Caltech 40-meter prototype data
Function: read sweptsine()

Page
47

0.005 0.01 0.015 0.02

-10

-5

5

10

Figure 4: This shows a driving voltageVcoil (solid curve) and the response voltageVIFO (dotted curve) as
functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components ofVIFO are contained in the swept-sine calibration files.

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file byS(60) = 0:8 e�i�=6 = 0:693 � 0:400i. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value:S(�60) = S�(60) = 0:8 ei�=6 = 0:693 + 0:400i.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequencyf = 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both of these arrays are arranged in order of increasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in thechan-
nel.0 files to reconstruct the differential motion�l(t) (in meters) of the interferometer arms? Here we
address the closely related question: givenVIFO, how do we reconstructVcoil? We choose the sign conven-
tion for the Fourier transform which agrees with that ofNumerical Recipes: equation (12.1.6) of [1]. The
Fourier transform of a function of timeV (t) is

~V (f) =

Z
e2�iftV (t)dt: (3.9.3)

The inverse Fourier transform is
V (t) =

Z
e�2�ift ~V (f)df: (3.9.4)

With these conventions, the signals (3.9.1) and (3.9.2) shown in in Figure 4 have Fourier components:

~Vcoil(60) = 5 and ~Vcoil(�60) = 5; (3.9.5)
~VIFO(60) = 4ei�=6 and ~VIFO(�60) = 4e�i�=6: (3.9.6)

At frequencyf0 = 60 Hz the swept sine file contains

S(60) = 0:8 e�i�=6 ) S(�60) = S�(60) = 0:8 ei�=6: (3.9.7)

sinceS(�f) = S�(f).
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With these choices for our conventions, one can see immediately from our example (and generalize to
all frequencies) that

~Vcoil(f) =
~VIFO
S�(f)

: (3.9.8)

In other words, with theNumerical Recipes[1] conventions for forward and reverse Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain a
“glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.
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3.10 Function: calibrate()

void calibrate(FILE *fpss,int num,float *complex,float srate,int method,int
order)
This is a intermediate-level routine which reads in a 3-column ASCII file of swept sine calibration data
used to calibrate the IFO, and outputs an array of interpolated points suitable for calibration of FFT’s of the
interferometer output.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine data can be found. The format of this data is
described below.

srate: Input. The sample rateFsample (in Hz) of the data that we are going to be calibrating.

num: Input. The number of pointsN in the FFT that we will be calibrating. This is typicallyN = 2k

wherek is an integer. In this case, the number of distinct frequency values at which a calibration
is needed is2k�1 + 1 = N=2 + 1, corresponding to the number of distinct frequency values from
0 (DC) to the Nyquist frequencyfNyquist. See for example equation (12.1.5) of reference [1]. The
frequencies arefi = i

NFsample for i = 0; � � � ; N=2.

complex: Input. Pointer to an arraycomplex[0..s] wheres = 2k+1. The routinecalibrate()
fills in this array with interpolated values of the swept sine calibration data, described in the pre-
vious section. The real part of the DC response is incomplex[0] , and the imaginary part is in
complex[1] . The real/imaginary parts of the response at frequencyf1 are incomplex[2] and
complex[3] and so on. The last two elements ofcomplex[ ] contain the real/imaginary parts
of the response at the Nyquist frequencyFsample=2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of
the response, at frequencies that lie in between those given in the swept sine calibration files. Rational
function interpolation is used ifmethod =0. Polynomial interpolation is used ifmethod =1. Spline
interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist
frequency) is used ifmethod =2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, thenorder is
the order of the interpolating polynomial. If rational function interpolation is used, then the numerator
and denominator are both polynomials of orderorder /2 if order is even; otherwise the degree of
the denominator is (order +1)/2 and that of the numerator is (order -1)/2.

The basic problem solved by this routine is that the swept sine calibration files typically contain data at a
few hundred distinct frequency values. However to properly calibrate the IFO output, one usually needs this
calibration information at a large number of frequencies corresponding to the distinct frequencies associated
with the FFT of a data set. This routine allows you to choose different possible interpolation methods. If
in doubt, we recommend spline interpolation as the first choice. The interpolation methods are described in
detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values off2 times the swept-sine response function, as this is
the quantity needed to compute the IFO response function.
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3.11 Example:print ss program

This example uses the functioncalibrate() to read in a swept sine calibration file, and then prints out
a list of frequencies, real, and imaginary parts interpolated from this data. The frequencies are appropriate
for the FFT of a 4096 point data set with sample ratesrate . The technique used is spline interpolation.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 4096

int main() f
float cplx[NPOINT+2],srate,freq;
int npoint,i;
FILE �fp;

=� open the swept-sine calibration file�=
fp=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");

=� number of points of (imagined) FFT�=
npoint=NPOINT;

=� a sample rate often used for fast channels�=
srate=9868.4208984375;

=� swept sine calibration filename is first argument�=
calibrate(fp,npoint,cplx,srate,2,0);

=� print out frequency, real, imaginary interpolated values�=
printf("# Freq (Hz)\tReal\t\tImag\n");
for (i=0;i <=NPOINT=2;i++) f

freq=i �srate =NPOINT;
printf("%e\t%e\t%e\n",freq,cplx[2 �i],cplx[2 �i+1]);

g
return 0;

g
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3.12 Function: normalize gw()

void normalize gw(FILE *fpss,int npoint,float srate,float *response)
This routine generates an array of complex numbersR(f) from the information in the swept sine file

and an overall calibration constant. Multiplying this array of complex numbers by (the FFT of)chan-
nel.0 yields the (FFT of the) differential displacement of the interferometer arms�l, in meters:f�l(f) =
R(f)fC0(f). The units ofR(f) are meters/ADC-count.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine normalization data can be found.

npoint: Input. The number of pointsN of channel.0 which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz ofchannel.0 .

response: Output. Pointer to an arrayresponse[0..s] with s = N + 1 in which R(f) will
be returned. By convention,R(0) = 0 so thatresponse[0]=response[1]=0 . Array ele-
mentsresponse[ 2i] and response[ 2i + 1] contain the real and imaginary parts ofR(f) at
frequencyf = israte=N . The response at the Nyquist frequencyresponse[N]=0 and re-
sponse[N+1]=0 by convention.

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote byQ. It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of massm is driven by a magnetic coil. The
equation of motion of the driven end mass is

m
d2

dt2
�l = F (t) (3.12.1)

whereF (t) is the driving force and�l is the differential length of the two interferometer arms, in meters.
Since the driving forceF (t) is proportional to the coil current and thus to the coil voltage, in frequency
space this equation becomes

(�2�if)2f�l = constant� eVcoil = constant �
~VIFO
S�(f)

: (3.12.2)

We have substituted in equation (3.9.8) which relates~VIFO and~Vcoil. The IFO voltage is directly proportional
to the quantity recorded inchannel.0 : VIFO = ADC�C0, with the constantADC being the ratio of the
analog-to-digital converter’s input voltage to output count.

Putting together these factors, the properly normalized value of�l, in meters, may be obtained from the
information inchannel.0 , the swept sine file, and the quantities given in Table 4 by

f�l = R(f)� fC0 with R(f) =
Q�ADC

�4�2f2S�(f) ; (3.12.3)

where the~denotes Fourier transform, andf denotes frequency in Hz. (Note that, apart from the complex
conjugate onS, the conventions used in the Fourier transform drop out of this equation, provided that
identical conventions (3.9.3,3.9.4) are applied to both�l and toC0). The constant quantityQ indicated in
the above equations has been calculated and documented in a series of calibration experiments carried out
by Robert Spero. In these calibration experiments, the interferometer’s servo was left open-loop, and the
end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and shift
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Table 4: Quantities entering into normalization of the IFO output.

Description Name Value Units
Gravity-wave signal (channel.0 ) C0 varies ADC counts

A!D converter sensitivity ADC 10/2048 VIFO (ADC counts)�1

Swept sine calibration S(f) from file VIFO (Vcoil)
�1

Calibration constant Q 1:428 � 10�4 meter Hz2 (Vcoil)
�1

the interference fringe’s pattern over by one fringe. In this way, the coil voltage required to bring about a
given length motion at a particular frequency was established, and from this information, the value ofQ
may be inferred. During the November 1994 runs the value ofQ was given by

Q =

p
9:35 Hz

k
= 1:428 � 10�4

meter Hz2

Vcoil
where k = 21399

Vcoil

meter Hz3=2
: (3.12.4)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment forcalibrate() .
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3.13 Example:power spectrum program

This example uses the functionnormalize gw() to produce a normalized, properly calibrated power
spectrum of the interferometer noise, using the gravity-wave signal fromchannel.0 , the TTL-lock signal
from channel.10 and a swept-sine calibration curve.

The output of this program is a 2-column file; the first column is frequency and the second column is
the noise in units ofmeters=

p
Hz.

A couple of comments are in order here:

1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the real and
imaginary parts off�l(f) = R(f)fC0(f).

2. The fast Fourier transform of�l, which we denoteFFT[�l], has the same units (meters!) as�l. As can
be immediately seen fromNumerical Recipesequation (12.1.6) the Fourier transformf�l has units of
meters-sec and is given byf�l = �t FFT[�l], where�t is the sample interval. The (one-sided)

power spectrum of�l in meters=
p
Hz is P =

q
2
T jf�lj whereT = N�t is the total length of the

observation interval, in seconds. Hence one has

P =

r
2

N�t
�t jFFT[�l]j =

s
2�t

N
jFFT[�l]j: (3.13.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example programcalibrate and the functionavg spec() to see how this works).

A sample of the output from this program is shown in Figure 5.
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Figure 5: An example of a power spectrum curve produced withpower spectrum . The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP spectrum
analyzer in the lab.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
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#include "grasp.h"
#define NPOINT 65536

int main() f
void realft(float �,unsigned long,int);
float response[NPOINT+2],data[NPOINT],tstart,freq;
float res real,res imag,dl real,dl imag,c0 real,c0 imag,spectrum,srate,factor;
FILE �fpifo, �fplock, �fpss;
int i,npoint,remain;
short datas[NPOINT];

=� open the IFO output file, lock file, and swept-sine file�=
fpifo=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");
fpss=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");

=� number of points to sample and fft (power of 2)�=
npoint=NPOINT;
=� skip 200 seconds into locked region (seek=1)�=
while (tstart <200.0)

get data(fpifo,fplock, &tstart,npoint,datas, &remain, &srate,1);
=� and get next stretch of data from TTL locked file (seek=0)�=
get data(fpifo,fplock, &tstart,npoint,datas, &remain, &srate,0);
=� convert gw signal (ADC counts) from shorts to floats�=
for (i=0;i <NPOINT;i++) data[i]=datas[i];
=� FFT the data�=
realft(data �1,npoint,1);
=� get normalization R(f) using swept sine file�=
normalize gw(fpss,npoint,srate,response);
=� one-sided power-spectrum normalization, to get meters=rHz �=
factor=sqrt(2.0 =(srate �npoint));
=� compute dl. Leave off DC (i=0) or Nyquist (i=npoint=2) freq�=
for (i=1;i <npoint =2;i++) f

=� frequency�=
freq=i �srate =npoint;
=� real and imaginary parts of tilde c0�=
c0 real=data[2 �i];
c0 imag=data[2 �i+1];
=� real and imaginary parts of R�=
res real=response[2 �i];
res imag=response[2 �i+1];
=� real and imaginary parts of tilde dl�=
dl real=c0 real �res real �c0 imag �res imag;
dl imag=c0 real �res imag+c0 imag �res real;
=� jtilde dlj �=
spectrum=factor �sqrt(dl real �dl real+dl imag �dl imag);
=� output freq in Hz, noise power in meters=rHz �=
printf("%e\t%e\n",freq,spectrum);

g
return 0;

g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
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ways of finding the noise power spectrum (for example, see the multi-taper methods of David J.
Thompson [39], or the textbook by Percival and Walden [40]). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 16.19.
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3.14 Example:calibrate program

This example uses the functionnormalize gw() and avg spec() to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second characteristic
time moving average. After compilation, to run the program type:

calibrate j xmgr -pipe &
to get an animated display showing the calibrated power spectrum changing. An example of the output from
calibrate is shown in Figure 6. Note that most of the execution time here is spent passing data down the
pipe toxmgr and displaying it. The display can be speeded up by a factor of ten by binning the output values
to reduce their number to a few hundred lines (the example programcalibrate binned.c implements
this technique; it can be run by typingcalibrate binned | xmgr -pipe ).
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Figure 6: This shows a snapshot of the output from the programcalibrate which displays an animated
average power spectrum (Welch windowed, 30-second decay time).

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 4096

int main(int argc,char ��argv) f
void graphout(int,float,float);
void realft(float �,unsigned long,int);
float data[NPOINT],average[NPOINT =2],response[NPOINT+4];
float spec,decaytime;
float srate,tstart=0,freq,tlock=0.0;
FILE �fpifo, �fpss, �fplock;
int i,j,code,npoint,remain,ir,ii,reset=0,pass=0;
short datas[NPOINT];
double mod;

=� open the IFO output file, lock file, and swept-sine file�=
fpifo=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");
fpss=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");
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=� number of points to sample and fft (power of 2)�=
npoint=NPOINT;

=� set the decay time (sec)�=
decaytime=30.0;
=� get data�=
while ((code=get data(fpifo,fplock, &tstart,npoint,datas, &remain, &srate,0))) f

=� put data into floats�=
for (i=0;i <npoint;i++) data[i]=datas[i];
=� get the normalization�=
if (!pass++)

normalize gw(fpss,npoint,srate,response);
=� Reset if just locked�=
if (code==1) f

reset=0;
tlock=tstart;
avg spec(data,average,npoint, &reset,srate,decaytime,2,1);

g else f
=� track average power spectrum, with Welch windowing.�=
avg spec(data,average,npoint, &reset,srate,decaytime,2,1);
=� loop over all frequencies except DC (j=0)& Nyquist (j=npoint=2) �=
for (j=1;j <npoint =2;j++) f

=� subscripts of real, imaginary parts�=
ii=(ir=j+j)+1;
=� frequency of the point�=
freq=srate �j =npoint;
=� determine power spectrum in (meters=rHz) & print it �=
mod=response[ir] �response[ir]+response[ii] �response[ii];
spec=sqrt(average[j] �mod);
printf("%e\t%e\n",freq,spec);

g
=� print out useful things for xmgr program . . .�=
graphout(0,tstart,tlock);

g
g
return 0;

g

void graphout(int last,float time,float tlock) f
static int count=0;
printf(" &\n"); =� end of set marker�=
=� first time we draw the plot�=
if (count++==0) f

printf("@doublebuffer true\n"); =� keeps display from flashing�=
printf("@focus off\n"); =� turn off the focus markers�=
printf("@s0 color 2\n"); =� FFT is red�=
printf("@g0 type logxy\n"); =� set graph type to log-log�=
printf("@autoscale \n"); =� autoscale FFT�=
printf("@world xmin %e\n",10.0); =� set min x�=
printf("@world xmax %e\n",5000.0); =� set max x�=
printf("@world ymin %e\n",1.e �19); =� set min y�=
printf("@world ymax %e\n",1.e �9); =� set max y�=
printf("@yaxis tick minor on\n"); =� turn on tick marks�=
printf("@yaxis tick major on\n"); =� turn on tick marks�=
printf("@yaxis tick minor 2\n"); =� turn on tick marks�=
printf("@yaxis tick major 1\n"); =� turn on tick marks�=
printf("@redraw \n"); =� redraw graph�=
printf("@xaxis label \"f (Hz)\"\n"); =� FFT horizontal axis label�=
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printf("@yaxis label \"meters/rHz\"\n"); =� FFT vertical axis label�=
printf("@title \"Calibrated IFO Spectrum\"\n"); =� set title�=
=� set subtitle�=
printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time �tlock,time);
if (!last) printf("@kill s0\n"); =� kill graph; ready to read agai�=

g
else f

=� other times we redraw the plot�=
=� set subtitle�=
printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time �tlock,time);
printf("@s0 color 2\n"); =� FFT is red�=
printf("@g0 type logxy\n"); =� set graph type to log-log�=
printf("@world xmin %e\n",10.0); =� set min x�=
printf("@world xmax %e\n",5000.0); =� set max x�=
printf("@world ymin %e\n",1.e �19); =� set min y�=
printf("@world ymax %e\n",1.e �9); =� set max y�=
printf("@yaxis tick minor on\n"); =� turn on tick marks�=
printf("@yaxis tick major on\n"); =� turn on tick marks�=
printf("@yaxis tick minor 2\n"); =� turn on tick marks�=
printf("@yaxis tick major 1\n"); =� turn on tick marks�=
printf("@redraw\n"); =� redraw the graph�=
if (!last) printf("@kill s0\n"); =� kill graph, ready to read again�=

g
return;

g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments forpower spectrum example program.
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3.15 Example:transfer program

This example uses the functionnormalize gw() to calculate the response of the interferometer to a
specified gravitational-wave strainh(t). [Note: for clarity, in this example, we have NOT worried about
getting the overall normalization correct.] The code includes two possibleh(t)’s. The first of these is a
binary-inspiral chirp (see Section 6). Or, if you un-comment one line of code, you can see the response of
the detector to a unit-impulse gravitational wave strain, in other words, the impulse response of the detector.

Note that to run this program, you must specify a path to the 40-meter data, for example by typing:
setenv GRASP DATAPATH /usr/local/data/19nov94.3

so that the code can find a swept-sine calibration file to use.
The response of the detector to a pair of inspiraling stars is shown in Figure 7. You will notice that

although the chirp starts at a (gravitational-wave) frequency of 140 Hz on the left-hand side of the figure,
the low-frequency response of the detector is so poor that the chirp does not really become visible until about
half-a-second later, at somewhat higher frequency. In the language of the audiophile, the IFO has crummy
bass response! Of course this is entirely deliberate; the whitening filters of the instrument are designed
to attenuate the low-frequency seismic contamination, and consequently also attenuate any possible low-
frequency gravitational waves.
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Detector Response Function
to 2 x 1.4 solar mass chirps
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detector response

(arbitrary units)
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Figure 7: Output produced by thetransfer example program. The top graph shows the gravitational-
wave strain produced by an inspiraling binary pair. The lower graph shows the calculated interferometer
output [channel.0 or IFODMRO] produced by this signal. Notice that because of the poor low-frequency
response of the instrument, the IFO output does not show significant response before the input frequency
has increased. The sample rate is slightly under 10 kHz.

The response of the detector to a unit gravitational strain impulse is shown as a function of time-offset
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in Figure 8. Here the predominant effect is the ringing of the anti-aliasing filter. The impulse response of the
detector lasts about 30 samples, or 3 msec. For negative offset times the impulse response is quite close to
zero; its failure to vanish is partly a wrap-around effect, and partly due to errors in the actual measurement
of the transfer function.
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Figure 8: Output produced by thetransfer example program. This shows the calculated interferometer
output [channel.0 or IFODMRO] produced by an impulse in the gravitational-wave strain at sample number
zero. This (almost) causal impulse response lasts about 3 msec.

This is a good place to insert a cautionary note. Now that we have determined the transfer function
R(f) of the instrument, you might be tempted to ask: “Why should I do any of my analysis in terms of the
instrument output? After all, my real interest is in gravitational waves. So the first thing that I will do in my
analysis is convert the instrument output into a gravitational wave strainh(t) at the detector, by convolving
the instrument’s output with (the time-domain version of)R(f).” Please do not make this mistake!A few
moment’s reflection will show why this is a remarkably bad idea. The problem is that the response function
R(f) is extremely large at low frequencies. This is just a reflection of the poor low frequency response of
the instrument: any low-frequency energy in the IFO output corresponds to an extremely large amplitude
low frequency gravitational wave. So, if you calculateh(t) in the way described: take a stretch of (perhaps
zero-padded) data, FFT it into the frequency domain, multiply it byR(f) and invert the FFT to take it back
into the frequency domain, you will discover the following:

� Your h(t) is dominated by a single low-frequency noisy sinusoid (whose frequency is determined by
the low frequency cutoff imposed by the length of your data segment or the low-frequency cutoff of
the response function).

� Your h(t) has lost all the interesting information present at frequencies where the detector is quiet
(say, around 600 Hz). Because the noise power spectrum (see Figure 5) covers such a large dynamic
range, you can not even representh(t) in a floating point variable (though it will fit, though barely,
into a double). This is why the instrument uses a whitening filter in the first place.
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� It is possible to construct “h(t)” if you filter out the low-frequency garbage by settingR(f) to zero
below (say) 100 Hz.

If you are unconvinced by this, do the following exercise: calculate the power spectrum in the frequency
domain as was done with Figure 5, then constructh(t) in time time domain, then takeh(t) back into the
frequency domain, and graph the power spectrum again. You will discover that it has completely changed
above 100 Hz and is entirely domainted by numerical quantization noise (round-off errors).

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include <stdio.h >
#include <memory.h >
#include "grasp.h"
#define HSCALE 1.e20
#define NBINS 16384

int main() f
float fstart,srate,tcoal, �c0, �c90, �response;
int filled,i;
void realft(float �,unsigned long, int);
FILE �fp;

=� allocate memory�=
c0=(float �)malloc(sizeof(float) �NBINS);
c90=(float �)malloc(sizeof(float) �NBINS);
response=(float �)malloc(sizeof(float) �(NBINS+1));

=� set start frequency, sample rate, make chirp�=
make filters(1.4,1.4,c0,c90,fstart=140.0,NBINS,srate=9868.0, &filled, &tcoal,4000,4);
printf("Chirp length is %d.\n",filled);

=� Uncomment this line to see the impulse response of the instrument�=
=� for (i=0;i<NBINS;i++) c0[i]=0.0; c0[100]=1.0;�=

=� put chirps into frequency domain�=
realft(c0 �1,NBINS,1);

=� open file containing calibration data, get response, and scale�=
fp=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");
normalize gw(fp,NBINS,srate,response);
for (i=0;i <NBINS;i++) response[i] �=HSCALE;

=� avoid floating point errors in inversion�=
response[0]=response[1]=1.e10;

=� determine IFO channel0 input which would have produced waveform�=
ratio(c0,c0,response,NBINS =2);

=� invert FFT�=
realft(c0 �1,NBINS, �1);

=� make a graph showing channel.0�=
printf("File temp.graph contains channel.0 produced by 2 x 1.4 solar masses.\n");
graph(c0,NBINS,1);

return 0;
g
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Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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3.16 Example:diag program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-frequency
diagnostic method. The actual code is not printed here, but may be found in the GRASP directorysrc/examples/examp l
in the filediag.c .

The method used bydiag is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a valueS(f).

3. Using the same auto-regressive averaging technique described inavg spec() the mean value of
S(f) is maintained in a time-averaged spectrumhS(f)i. The exponential-decay time constant for this
average isAVGTIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average�S(f) � jS(f) � hS(f)ij is
determined. Note that the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance(�S(f))2.

5. Using the same auto-regressive averaging technique described inavg spec() the value of�S(f)
is maintained in a time-averaged absolute differenceh�S(f)i. The exponential-decay time constant
for this average is also set byAVGTIME.

6. In each frequency bin,�S(f) is compared toh�S(f)i. If �S(f) > THRESHOLD� h�S(f)i then
a point is plotted for that frequency bin; otherwise no point is plotted for that frequency bin. In this
example,THRESHOLDis set to 6.

7. In each frequency bin,�S(f) is compared toh�S(f)i. If �S(f) < INCLUDE � h�S(f)i then
the values ofS(f) and�S(f) are used to “refine” or “revise” the auto-regressive means described
previously. In this example,INCLUDEis set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

The diag program can be used to analyze any of the different channels of fast-sampled data, by setting
CHANNELappropriately. It creates one output file for each locked segment of data. For example ifCHAN-
NEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
ch0diag.000 , ch0diag.001 , ch0diag.002 , andch0diag.003 .
In similar fashion, ifCHANNELis set to 1 (the magnetometer) one obtains files:
ch1diag.000 , ch1diag.001 , ch1diag.002 , andch1diag.003 .
These files may be used as input to thexmgr graphing program, by typing:
xmgr ch0diag.000 ch1diag.000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown in
Figures 9 and 10. By specifying several different channels on the command line for startingxmgr , you can
overlay the different channels output with one another. This provides a visual tool for identifying correla-
tions between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might
be possible to improve its high-frequency time resolution by being clever about using intermediate
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Figure 9: A time-frequency diagnostic graph produced bydiag . The vertical line pointed to by the arrow
is a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a “drip”
and might be due to off-axis modes in the interferometer optical cavities.

information during the recursive calculation of the FFT. One should probably also experiment with
using other statistical measures to assess the behavior of the different frequency bins. It would be nice
to modify this program to also examine the slow sampled channels (see comment forget data() ).
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Figure 10: A time-frequency diagnostic graph produced bydiag . This shows the identical period as the
previous graph, but for the magnetometer output. Notice that the spurious event was not caused by magnetic
field fluctuations.
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4 GRASP Routines: Reading/using FRAME format data

The LIGO and VIRGO projects have recently adopted a data format standard called the FRAME format for
time-domain data. The 40-meter laboratory at Caltech implemented this data format in Spring 1997; data
taken after that time is in the FRAME format. The FRAME libraries are publicly available from the VIRGO
project; they may be downloaded from the sitehttp://wwwlapp.in2p3.fr/virgo/FrameL . The
GRASP package has been tested up to release 3.72 of the frame library. Contact Benoit Mours
mours@lapp.in2p3.fr for further information.

The GRASP package includes routines for reading and using data in the FRAME format. Also included
in the GRASP package is a translator (see Section 16.18) which translates data from the old data format
used in 1994 to the new FRAME format. Data distributed for use with GRASP will primarily be distributed
in this new FRAME format, and over a period of time we will remove from the GRASP package all of the
code and routines which make use of the old format. In order to help make the transition from old format to
FRAME format as smooth as possible, the GRASP package currently contains both old format and FRAME
format versions of all of the example programs. For exampleanimate andanimateF are two versions
of the same program. The first reads data in the old format, the second reads data in the FRAME format. If
you are new to GRASP, we don’t recomend that you waste your time with the old data format; start using
the FRAME format immediately.

Data distributed in the FRAME format may not be compatible with future releases of the FRAME
library, so if the FRAME libraries are updated you may need to obtain a new copy of the standard 40-meter
test data set from November 1994. The data that has been distributed and is currently being distributed
makes use of either version 2.20, 2.30 or 2.37 of the FRAME library. We will shortly begin distributing
data in version 3.50 of the FRAME format. Only two files in the GRASP package (src/utility/-
frameinterface.c andsrc/examples/examples utility/translate.c ) depend upon the
version of the FRAME library. We distribute GRASP with versions of these files appropriate for different
releases. The files determine the version of the frame library at compilation time, and then include the
appropriate code. This code works correctly with any version of the frame library2:37 � version � 3:70.
Note that version� 3:50 of the frame library can read data written by any version back to and including
2.37.

One of the nice properties of the FRAME formats� 3:30 is that they support a “compressed” format.
This is transparent to the user (except that reading the “compressed” frames takes a bit longer because the
frame library then needs to uncompress the data). Data distributed in version 3.50 of the FRAME format
is being distributed in this compressed form and occupies somewhat less space than the old-format original
data. As shown in Section 3 the old-format data for the November 1994 runs occupied about 13.6 Gbytes.
For comparison, the FRAME-format data occupies less than half of that space:

14nov94.1.frame 314
14nov94.2.frame 397
18nov94.1.frame 503
18nov94.2.frame 543
19nov94.1.frame 551 The space occupied
19nov94.2.frame 535 is shown in Mbytes
19nov94.3.frame 641
19nov94.4.frame 605
20nov94.1.frame 553
20nov94.2.frame 422
20nov94.3.frame 755

The total storage space required for FRAME 3.50 data totals only 5.8 Gbytes.
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In order to give the 1994 40-meter data a form as similar as possible to the data being taken in 1997 and
beyond, the channel names used have been given equivalent “FRAME” forms. These are shown in Table 5.

Note that new data created in the frame format attempts to address at least a couple of the problems in
the “old format” data. In particular, new frame format data (i.e., post 1996) has sample rate in Hz always
being powers of 2, for example, 4,096 Hz or 16 Hz or 16,384 Hz. In addition, each frame always contains
a power-of-two number of seconds of data. These conventions will make it easy to “match up” sample of
channels taken at different rates, and to do FFT’s of the channels. However the 1994 data does not conform
to either of these conventions: each frame of 1994 data contains 5000 samples of the slow channels, and
50,000 samples of the fast channels, during a5:06666 � � � second interval.

Channel # � 14 Nov 94 FRAME name � 18 Nov 94 FRAME name
0 IFO output IFO DMRO IFO output IFO DMRO
1 unused magnetometer IFO Mag x
2 unused microphone IFO Mike
3 microphone IFO Mike unused
4 dc strain IFO DCDM dc strain IFO DCDM
5 mode cleaner pzt PSL MC V mode cleaner pzt PSL MC V
6 seismometer IFO Seis1 seismometer IFO Seis1
7 unused slow pzt IFO SPZT
8 unused power stabilizer PSL PSS
9 unused unused
10 TTL locked IFO Lock TTL locked IFO Lock
11 arm 1 visibility IFO EAT arm 1 visibility IFO EAT
12 arm 2 visibility IFO SAT arm 2 visibility IFO SAT
13 mode cleaner visibility IFO MCR mode cleaner visibility IFO MCR
14 slow pzt IFO SPZT unused
15 arm 1 coil driver SUSEE Coil V arm 1 coil driver SUSEE Coil V

Note: On 18 November 1994 run 1 the power stabilizer was accidentally disconnected until approximately 20:00
local time.

Table 5: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels,
sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at about 1KHz. The
equivalent “FRAME” format names are also given.

GRASP RELEASE 1.9.8 Page 67 May 19, 2000



Section
4.1

GRASP Routines: Reading/using FRAME format data
Time-stamps in the November 1994 data-set

Page
68

4.1 Time-stamps in the November 1994 data-set

There is a serious problem in the original data format used in November 1994. To understand the nature of
this problem, remember that the individual data samples (fast channels) are taken at about 10kHz, so that
the time between samples is about 100�sec. Ideally, the time-stamps of the individual blocks should be
recorded with a precision which is substantially greater than this, i.e. a few�sec at the most. However the
November 1994 time stamps are recorded in two ways: as an integer number of seconds and msec (with
1000�sec resolution) and as a floating point elapsed time. This latter quantity has a resolution of less than
one�sec at early times, but a resolution of about 2000�sec at late times (say 15,000 sec into a run).

Thus, in translating the November 1994 data into frames (which have 1 nanosec resolution time-stamps),
a reasonable effort was made to “correct” these time-stamps as much as possible, and to specify the time at
which each data block begins as precisely as possible. After some research, we believe that the each block
of old-format data is precisely76=15 = 5:0666666 � � � seconds long. So we have corrected the time stamps
accordingly. One can show that in general, our time stamps agree with those in the original data, when they
are expressed as floats, i.e. with the precison recorded in the original data set. There are some blocks where
there is an error in the least-significant bit of the cast-into-float quantity; we do not understand this as well
as we would like.

Please,be warned that the absolute time indicated by these stamps is not correct!These time stamps
were not taken with a modern GPS clock system, or even with an old-fashioned WWV system. Our under-
standing is that the real-time computer system on which these data were originally taken had its clock set by
wristwatch, with an accuracy of perhaps�5 minutes.. Indeed the computer system crashed on November
15, 1994 and the clock was subsequently reset again, so even the time difference can not be trusted between
November14 and November18 data. It appears that the computer clock was not reset after November15th,
so the relative times in the remaining data may be trustworthy with somewhat better than�1 msec accuracy.

In any data anaysis work (such as pulsar searching) where it is important to have precise time-stamps,
these shortcomings must be taken into account. If you really want to determine the times more precisely
than a millisecond, our only suggestion is to examine the seismometer data channel and correlate it with
similar data taken by a system with good time-stamps. We don’t know where to find such data, but it might
exist, somewhere, in the public domain. If you do go to this trouble, please write to us and tell us the
conclusions of your study. We would be delighted to correct the absolute offset error in these November
1994 time-stamps, if someone could show us how to do it!
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4.2 Function: fget ch()

int fget ch(struct fgetoutput *fgetoutput,struct fgetinput *fgetinput)
This is a general function for sequentially reading one or more channels of FRAME format data. It can be
used to obtain either locked sections only, or both locked and unlocked sections, and to retrieve calibration
information from the FRAME data. It concatenates multiple frames and multiple files containing frames as
necessary, to return continuous-in-time sequences.

The inputs to the routinefget ch() are contained in a structure:

struct fgetinput {
int nchan;
char **chnames;
int npoint;
short **locations;
char *(*files)();
int (*filedes)();
int inlock;
int seek;
int calibrate;
char *datatype;

};

The different elements of the structure are:

nchan : Input. The number of channels that you want to retrieve (� 1).

chnames : Input. The list of channel names. Each element ofchnames[0..nchan-1] is a pointer to
a null-terminated string. Note that the number of channels requested, and their names, must not be
changed after the first call tofget ch . It is assumed that the first channel in the list has the fastest
sample rate of any of the requested channels. As long as this assumption is satisfied, the channels may
be accessed in any order.

npoint : Input. The number of points requested from the first channel. (May change with each call.)

locations : Input. The locations in memory where the arrays corresponding to each channel should be
placed arelocations[0..nchan-1] . (May change with each call.)

files() : Input. A pointer to a function, which takes no arguments, and returns a pointer to a null-
terminated character string. This string is the name of the file to look in for FRAME format data. If
no further frames remain in the file, then the functionfiles() is called again. When this function
returns a null pointer, it is assumed that no further data remains. A useful utility function called
framefiles() has been provided with GRASP, and may be used as this argument. (May change
with each call.)

filedes() : Input. This argument is used if and only if the previous argument,fgetinput.files
is NULL. If fgetinput.files is not NULL then this argument is not used. This argument is a
pointer to a function, which takes no arguments, and returns an integerfile descriptor. The integer
returned is a file descriptor for a file containing FRAME format data. If no further frames remain
in the file, then the functionfiledes() is called again. When this function returns a negative file
descriptor, it is assumed that no further data remains. (May change with each call.)
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inlock : Input. Set to zero, return all data; set to non-zero, return only the locked sections of data. If set
nonzero, then on outputfgetoutput.locklow andfgetoutput.lockhi will be set.

seek : Input. Set to zero, return data. Set to non-zero, seek past the data, performing all normal operations,
but do not actually write any data into the arrays pointed to bylocations[0..nchan-1] . (May
change with each call.) This is useful for skipping rapidly past uninteresting regions of data, for
example, the first few minutes after coming into lock.

calibrate : Input. If set non-zero, return calibration information. If set to zero, do not return calibration
information. (May change with each call.)

datatype : Output. A character string indicating the data type in each channel. The coding is: C =char ,
S = short , D = double , F = float , I = int , L = long , f = complex float , d = complex
double , s =string , u = unsigned short , i = unsigned int , l = unsigned long , c =
unsigned char .

Except as noted above, it is assumed that none of these input arguments are changed after the first call to
fget ch() . It is also assumed that within any given frame, the numbers of points contained in different
channels are exact integer multiples or fractions of the numbers of points contained in the other channels.

The outputs from the routinefget ch() are contained in a structure:

struct fgetoutput {
double tstart;
double tstart_gps;
double srate;
int *npoint;
int *ratios;
int discarded;
double tfirst;
double tfirst_gps;
double dt;
double lostlock;
double lostlock_gps;
double lastlock;
double lastlock_gps;
int returnval;
int frinum;
float *fri;
int tcalibrate;
int tcalibrate_gps;
int locklow;
int lockhi;
char *filename;
char *slow_names;

};

The different elements of the structure are:

tstart : Output. Time stamp of the first point output in channelchnames[0] . Note: please see the
comments in Section 4.1. Units are Unix-C time in seconds defined in Section 17.
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tstart gps : Output. Same as previous quantity, but with GPS time in seconds.

srate : Output. Sample rate (in Hz) of channelchnames[0] .

npoint : Output. The number of points returned in channelchnames[i] is npoint[i] . Note that
npoint[0] is precisely the number of points requested in the input structurefgetinput.npoint .

ratios : Output. The sample rate of channelchnames[0] divided by the sample rate of channel
chnames[i] is given inratios[i] . Thusratios[0]=1 .

discarded : The number of points discarded from channelchnames[0] . These points are discarded
because there is a missing period of time between two consecutive frames, or because the instrument
was not in lock for long enough to return the requested number of points (or for both reasons).

tfirst : Output. The time stamp of the first point returned in the first call tofget ch() . Units are
Unix-C time in seconds defined in Section 17.

tfirst gps : Output. Same as previous quantity, but with GPS time in seconds.

dt : Output. By definition,tstart-tfirst , which is the elapsed time since the first time stamp.

lostlock : Output. The time at which we last lost lock (if searching only for locked segments). Units
are Unix-C time in seconds defined in Section 17.

lostlock gps : Output. Same as previous quantity, but with GPS time in seconds.

lastlock : Output. The time at which we last regained lock (if searching only for locked segments).
Units are Unix-C time in seconds defined in Section 17.

lastlock gps : Output. Same as previous quantity, but with GPS time in seconds.

returnval : Output. The return value offget ch() : 0 if it is unable to satisfy the request, 1 if the
request has been satisfied by beginning a new locked or continuous-in-time section, and 2 if the data
returned is part of an ongoing locked or continuous-in-time sequence.

frinum : Output. Three times the number of frequency values for which we are returning static calibration
information. If this number is not divisible by three, something is wrong!

fri : Output. A pointer to the array of calibration data. This data is arranged with a frequency, then
the real part, then the imaginary part of the response, followed by another frequency, then real part,
then imaginary part, etc. Sofri[0]= f0, fri[1]= r0, fri[2]= i0, fri[3]= f1, fri[4]= r1,
fri[5]= i1,... and the total length of the array isfri[0..frinum-1] .

tcalibrate : Output. The time at which the current calibration information became valid. Units are
Unix-C time in seconds defined in Section 17.

tcalibrate gps : Output. Same as previous quantity, but with GPS time in seconds.

locklow . Output. The minimum value (inclusive) for ”in-lock” in the lock channel. Set if and only if
fgetinput.inlock is nonzero.

lockhi . Output. The maximum value (inclusive) for ”in-lock” in the lock channel. Set if and only if
fgetinput.inlock is nonzero.
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filename . Output. Points to a static character string containing the name of the frame file currently in
use, orNULL is there is no frame file open.

slow names. Output. Names of the slow channels packed into one fast channel “SLOW”.

Note that the time-stamps available in two different formats: Unix-C time in seconds and GPS time in
seconds. The relationship between these is described in detail in Section 17. In general, in new code the GPS
time stamps should be used, and taken as the more fundamental quantity. The Unix-C time is the number of
seconds after 00:00:00 Jan 1, 1970 UTC. This is also known as “Calendar Time” on Unix systems. It is the
quantity returned by the Standard C-library functiontime() . Note that starting with versions of the Frame
library greater than 3.23, the time stored in the frames is GPS time, which is (roughly - up to leap seconds)
defined as the Unix-C time minus315964811 (this value may be found in the defined constantUTCTOGMT
in thegrasp.h header file. The origin of GPS time is 00:00:00 January 6, 1980 UTC, which was

315964811 sec = 3600 sec=hour� 24 hours=day�
(365 days=year � 8 years + 366 days=year � 2 years + 5 days)

+11 leap sec

after 00:00:00 Jan 1, 1970 UTC.
This routine is a useful interface to the FRAME library. It reads frames from files. To get the name of the

first file to open, this routine calls the functionfiles() specified in the input structure. Then, whenever
there are no remaining frames in this file, it callsfiles() again. This function must return the name of
the desired file, orNULL if no files remain. For example:

static char *filelist[]={
"C1-94_11_19_23_50_46", "C1-94_11_19_23_53_28",
"C1-94_11_19_23_56_10", "C1-94_11_19_23_58_52",
"C1-94_11_20_00_01_34", "C1-94_11_20_00_04_16" };

char *files() {
static int entry=0;
if (entry>=6)

return NULL;
else

return filelist[entry++];
}

or the exact same fragment of code, but with:

static char *filelist[]={
"C1-468915467.F","C1-468915629.F","C1-468915791.F",
"C1-468915953.F","C1-468916115.F","C1-468916278.F" };

The difference between the labeling of the frame files here is that in the first instance (early versions of the
frame library) the files are assumed to be labeled by the UTC time in “human-readable” form, and in the
latter case they are assumed to be labeled by the GPS time in seconds. Further details may be found in
Section 16.18 and Section 17.

The functionfget ch() returns 0 if it is unable to satisfy the request forfgetinput.npoint
points. It returns 1 if the request has been satisfied, and it is beginning a new locked section (or if the frames
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were not contiguous in time, and it is beginning with a new frame). It returns 2 if the data returned is part of
an ongoing locked or continuous sequence.

When several channels are requested, and they have different sample rates, the first channel requested
must always have the fastest sample rate. Other requested channels may have this same sample rate, but
none may have a faster sample rate. Points are returned from the slower channels if and only if they satisfy
the following condition. Suppose thatr is the ratio of the channel 0 sample rate to the channel K sample
rate, and label the points in channel 0 byi = 0; � � � ; nr�1, and the points in channel K byj = 0; � � � ; n�1.
Then pointj in channel K is returned if and only if pointi = rj is returned from channel 0.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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4.3 Function: framefiles()

char *framefiles()
This is a “utility function” for frame access. It takes no arguments, and returns a pointer to a static character
string. It is intended primarily as an argument to be passed to the functionfget ch() via the structure
memberfgetinput.files .

The operation of theframefiles() is determined by two environment variables:GRASPFRAMEPATH,
andGRASPREALTIME. If GRASPREALTIME is set, then theframefiles() interogates the EPICS
control system and returns a pointer to a character string containing the name of the frame file most recently
written to disk. This option is only intended for use in the 40-meter lab control room, for real-time analysis
of data. For most users of GRASP, this option will never be used. Note: to set/unset the environment vari-
able, use the commands:

setenv GRASP REALTIME
unsetenv GRASP REALTIME

respectively.
If the GRASPREALTIMEenvironment variable is NOT set, then the behavior offramefiles() is

determined by the value of theGRASPFRAMEPATHenvironment variable. This variable should point to a
directory, and may be set with a command like:

setenv GRASP DATAPATH /usr/local/GRASP/data/18nov94.1frame
The first time thatframefiles() is called, it looks for all files with names of the type:
C1-*[0-9]
C1-*.F
H-*.F
H-*.T
L-*.F
L-*.T
in the directory pointed to byGRASPFRAMEPATH. These correspond, respectively, to Caltech 40-m frame
files labeled by date, Caltech 40-m frame files labeled by GPS time, Hanford frame files, Hanford trend
frames, Livingston frame files, and Livingston trend frames. Note that the directory should contain files
with only one type of label: if several label types exist in the directory, only the files whose type matches
the first entry found on the list above will be used. The labeling conventions are explained in Section 16.18.
The file names are stored internally,framefiles() returns a pointer to a character string containing the
name of the first of these files. The second call toframefiles() returns the name of the second file
found in the directory, and so on. When no more files remain,framefiles() returns a NULL pointer.

A simple way to analyze a subset of data is to create a directory containing symbolic links to the FRAME
files containing data that you want to analyze, and to set the environment variableGRASPFRAMEPATHto
point to that directory.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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4.4 Example: locklistF program

This example uses the functionfget ch described in the previous section to print out location information
and times for all the locked sections in the directory pointed to by the environment variableGRASPFRAMEPATH.
To run this program, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
locklistF

and a list of locked time intervals will be printed out. Here is some typical output:

locklistF
FrameL Version:April 10, 1997; v2.23(Apr 10 1997 18:32:52 ../src/FrameL.c)
GRASP: framefiles(): using 83 files from directory /ballen2/18nov94.1frame
Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp
Name: RELEASE_1_3
In lock from t = 0.000000 into run to 526.450008 into run for 526.450008 sec
Out of lock from t = 526.450008 into run to 555.384692 into run for 28.934683 sec
In lock from t = 555.384692 into run to 667.775527 into run for 112.390835 sec
Out of lock from t = 667.775527 into run to 708.000798 into run for 40.225272 sec
In lock from t = 708.000798 into run to 2268.670924 into run for 1560.670125 sec
Out of lock from t = 2268.670924 into run to 2283.429062 into run for 14.758138 sec
In lock from t = 2283.429062 into run to 3954.517061 into run for 1671.088000 sec
Out of lock from t = 3954.517061 into run to 3966.367962 into run for 11.850901 sec
GRASP: fget_ch(): FRAMES NOT SEQUENTIAL
run 3 frame 842 ended at time: 785221840.948503 sec
run 3 frame 843 started at time: 785223012.765137 sec
Time gap is 1171.816634 sec
Gap starts 4266.133503 seconds into run; ends 5437.950137 seconds into run.
Discarding 294210 points remaining in the previous frame(s).
Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp
Name: RELEASE_1_3
In lock from t = 3966.367962 into run to 4266.133503 into run for 299.765540 sec
Out of lock from t = 4266.133503 into run to 5437.950137 into run for 1171.816634 sec
GRASP: fget_ch(): FRAMES NOT SEQUENTIAL
run 3 frame 1040 ended at time: 785224015.965104 sec
run 3 frame 1041 started at time: 785224175.714844 sec
Time gap is 159.749740 sec
Gap starts 6441.150104 seconds into run; ends 6600.899844 seconds into run.
Discarding 132000 points remaining in the previous frame(s).
Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp
Name: RELEASE_1_3
In lock from t = 5437.950137 into run to 6441.150104 into run for 1003.199968 sec
Out of lock from t = 6441.150104 into run to 6600.899844 into run for 159.749740 sec
In lock from t = 6600.899844 into run to 7375.472558 into run for 774.572714 sec
Out of lock from t = 7375.472558 into run to 7391.474039 into run for 16.001482 sec
In lock from t = 7391.474039 into run to 7685.337699 into run for 293.863659 sec
Out of lock from t = 7685.337699 into run to 7719.763049 into run for 34.425351 sec
In lock from t = 7719.763049 into run to 7973.647310 into run for 253.884261 sec
Out of lock from t = 7973.647310 into run to 8083.507974 into run for 109.860664 sec
In lock from t = 8083.507974 into run to 9160.715956 into run for 1077.207982 sec
Out of lock from t = 9160.715956 into run to 9220.780081 into run for 60.064125 sec
In lock from t = 9220.780081 into run to 10552.863624 into run for 1332.083544 sec
Out of lock from t = 10552.863624 into run to 10585.141461 into run for 32.277837 sec
In lock from t = 10585.141461 into run to 11466.650847 into run for 881.509386 sec
Out of lock from t = 11466.650847 into run to 11483.939559 into run for 17.288712 sec
In lock from t = 11483.939559 into run to 13268.796352 into run for 1784.856793 sec
Out of lock from t = 13268.796352 into run to 13297.379120 into run for 28.582768 sec
GRASP: fget_ch(): could not open NULL file name
had 0 points; still need 296000 points...
Discarding 0 points remaining in the previous frame(s).
Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp
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Name: RELEASE_1_3

Note that this example only prints out information for locked sections longer than 30 sec. Also notice
that because there are time gaps in between some of the sucessive frames, error messages are printed out.
Notice the form of the GRASP error and warning messages. These typically begin with a line like:

GRASP: fget ch(): this is the warning or error message
which specifies which GRASP function the error messages come from. They end with a pair of lines like

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp
Name: Name: RELEASE1 3

which are information about the file from which the warning or error message came, including its ver-
sion/release numbers. Here is the code for thelocklistF example program:

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
double begin,end,saveend=0.0;
struct fgetoutput fgetoutput;
struct fgetinput fgetinput;
int firstpass=1;
time t unixtime;

=� this number of samples is about 30 seconds of data�=
fgetinput.npoint=296000;

=� number of channels needed is one�=
fgetinput.nchan=1;

=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� since we operate in SEEK mode, no space needed for data storage�=
fgetinput.locations[0]=NULL;

=� use utility function framefiles() to retrieve file names�=
fgetinput.files=framefiles;

=� get only the locked sections�=
fgetinput.inlock=1;

=� seek over data (we don’t care what the values are!)�=
fgetinput.seek=1;

=� don’t need calibration information�=
fgetinput.calibrate=0;

=� set channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� start the main loop�=
while (1) f

=� find the next locked section of the data�=
fget ch( &fgetoutput, &fgetinput);
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=� print out absolute start time of run�=
if (firstpass) f

printf("Starting time of first frame: %13f Unix-C time\n",fgetoutput.tfirst);
printf("Starting time of first frame: %13f GPS time\n",fgetoutput.tfirst gps);
unixtime=fgetoutput.tfirst;
printf(" ˜ UTC time %s",asctime(utctime( &unixtime)));
printf(" ˜ Unix gmtime %s\n",asctime(gmtime( &unixtime)));
firstpass=0;

g

=� see if we fell out of lock, and print if we did�=
if (fgetoutput.returnval==1) f

=� time at whick lock lost (relative to start of run)�=
begin=fgetoutput.lostlock �fgetoutput.tfirst;

=� time at whick lock aquired (relative to start of run)�=
end=fgetoutput.lastlock �fgetoutput.tfirst;
if (begin >0.0) f

printf("In lock from t = %f into run to %f into run for %f sec\n",
saveend,begin,begin �saveend);

printf("Out of lock from t = %f into run to %f into run for %f sec\n",
begin,end,end �begin);

g
saveend=end;

g

=� if no data remains, then exit�=
if (fgetoutput.returnval==0) f

printf("End of data at time %f\n",fgetoutput.tstart �fgetoutput.tfirst);
break;

g
g
return 0;

g
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4.5 Example:gwoutputF program

This example uses the functionfget ch() described in the previous section to print out a two-column file
containing the IFO output for the first locked section containing 100 sample points. To run this program,
type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
gwoutputF

In the output, the left column is time values, and the right column is the actual IFO output (note that because
this comes from a 12 bit A-D converter, the output is an integer value from -2047 to 2048). The program
works by acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points,
and so on. Whenever a new locked section begins, the program prints a banner message to alert the user.
Note that typical locked sections contain� 107 points of data, so this program should not be used for real
work – it’s just a demonstration!

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
float tstart,time,srate;
int i,npoint,code;
short �data;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

=� specify the number of points of output& allocate array�=
npoint=100;
data=(short �)malloc(sizeof(short) �npoint);
fgetinput.npoint=npoint;

=� we only want one channel of data�=
fgetinput.nchan=1;

=� use the framefiles() function to find it�=
fgetinput.files=framefiles;

=� allocate space to store channel names�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));

=� allocate space for data storage location addresses�=
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));

=� allocate space for numbers of points returned in each channel�=
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));

=� allocate space for ratios of channel sample rates�=
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� set up different cases�=
if (NULL!=getenv("GRASP_REALTIME")) f

=� don’t care if locked�=
fgetinput.inlock=0;

g
else f
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=� only locked�=
fgetinput.inlock=1;

g

fgetinput.seek=0;
fgetinput.calibrate=0;
fgetinput.locations[0]=data;

while (1) f
=� get npoint points of data�=
code=fget ch( &fgetoutput, &fgetinput);
tstart=fgetoutput.dt;
srate=fgetoutput.srate;

=� if no data remains, exit loop�=
if (code==0) break;
=� if starting a new locked segment, print banner�=
if (code==1) f

printf("____________ NEW LOCKED SEGMENT ____________\n\n");
printf(" Time (sec)\t IFO output\n");

g
=� now output the data�=
for (i=0;i <npoint;i++) f

time=tstart+i =srate;
printf("%f\t%d\n",time,(int)data[i]);

g
g
=� close the data files, and return�=
return 0;

g
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4.6 Example:animateF program

This example uses the functionfget ch() described in the previous section to produce an animated dis-
play showing the time series output of the IFO in a lower window, and a simultaneously calculated FFT
power spectrum in the upper window. To run this program, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
animateF | xmgr -pipe

This output from this program must be piped into a public domain graphing program calledxmgr . This
may be obtained fromhttp://plasma-gate.weizmann.ac.il/Xmgr/ . (This lists mirror sites in
the USA and Europe also). Some sample output ofanimateF is shown in Figure 11.

22.00 22.10 22.20 22.30 22.40
t (sec)

−200.0

−100.0

0.0

100.0

200.0
IFO output 4

0.0 1000.0 2000.0 3000.0 4000.0 5000.0
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0

0

0

1

10

100
Spectrum

Figure 11: Snapshot of output fromanimateF . This shows the (whitened) CIT 40-meter IFO a few
seconds after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:
animateF j xmgr -pipe &

to get an animated display showing the data flowing by and the power spectrum changing, starting from the
first locked data. You can also use this program with command-line arguments, for example

animateF 100 4 500 7 900 1.5 j xmgr -pipe &
will show the data from timet = 100 to time t = 104 seconds, then fromt = 500 to t = 507, then from
t = 900 to t = 901:5. Notice that the sequence of start times must be increasing. Note: the start times are
measured relative to the first data point in the first frame of data.
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case 0:
==> delt=(x[ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]-x[0]);

setlength(cg,specset,ilen/2);
xx=getx(cg,specset);

...

case 1:
==> delt=(x[ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]-x[0]);

Figure 12: The corrections to a bug in thexmgr program are indicated by the arrows above. This bug is in
the routinedo fourier() in the filecomputils.c . This bug has been corrected inxmgr version 4.1
and greater.

Note 1: Thexmgr program as commonly distributed has a simple bug that needs to be repaired, in order
for the frequency scale of the Fourier transform to be correct. The corrected version ofxmgr is shown in
Figure 12.

Note 2: Two closely related programsanimateT andanimateF are also included.animateT is
identical toanimateF except that it doesnot assume that the data is in shorts. Hence it is appropriate,
for example, for producing an animated display of ‘trend’ files in which frames contain channels stored as
doubles. animateS is designed to produce an animated display of data from a channel name ‘SLOW’.
This channel is used as a way of packing a approximately 230 channels sampled at 1Hz into a single fake
channel (incorrectly labelled with sample rate 256Hz).

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc,char ��argv) f
void graphout(float,float,int,char �);
float tstart=1.e35,srate=1.e �30,tmin,tmax,dt;
double time=0.0;
int i,seq=0,code,npoint=4096;
short �data;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;
char �nstring;

=� number of channels�=
fgetinput.nchan=1;

=� number of samples per update�=
if (NULL!=(nstring=getenv("GRASP_NSAMPLE"))) f

npoint=atoi(nstring);
fprintf(stderr,"Display points set to environment variable: GRASP_NSAMPLE = %d\n",npoint);

g

=� source of files�=
fgetinput.files=framefiles;
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=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� set up channel names, etc. for different cases�=
fgetinput.chnames[0]="IFO_DMRO";

=� set up for different cases�=
if (NULL!=getenv("GRASP_CHANNEL")) f

=� 40 meter lab�=
fgetinput.chnames[0]=getenv("GRASP_CHANNEL");
fgetinput.inlock=0;

g
else f

=� Nov 1994 data set�=
fgetinput.inlock=1;

=� fgetinput.inlock=0;�=
g

=� number of points to get�=
fgetinput.npoint=npoint;

=� don’t seek, we need the sample values!�=
fgetinput.seek=0;

=� but we don’t need calibration information�=
fgetinput.calibrate=0;

=� allocate storage space for data�=
data=(short �)malloc(sizeof(short) �npoint);
fgetinput.locations[0]=data;

=� handle case where user has supplied t or dt arguments�=
if (argc==1) f

tmin= �1.e30;
dt=2.e30;
argc= �1;

g

=� now loop . . .�=
seq=argc;
while (argc!=1) f

=� get the next start time and dt�=
if (argc!= �1) f

sscanf(argv[seq �argc+1],"%f", &tmin);
sscanf(argv[seq �argc+2],"%f", &dt);
argc �=2;

g
=� calculate the end of the observation interval, and get data�=
tmax=tmin+dt;
while (1) f

=� decide whether to skip (seek) or get sample values�=
if (tstart <tmin �(npoint+20.) =srate)

fgetinput.seek=1;
else

fgetinput.seek=0;
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=� seek, or get the sample values�=
code=fget ch( &fgetoutput, &fgetinput);

=� elapsed time, sample rate�= tstart=fgetoutput.dt;
srate=fgetoutput.srate;

=� if no data left, return�=
if (code==0) return 0;

=� we need to be outputting now. . .�=
if (tmin <=tstart) f

for (i=0;i <npoint;i++) f
time=tstart+i =srate;
printf("%f\t%d\n",time,data[i]);

g

=� put out information for the graphing program�=
graphout(tstart,tstart+npoint =srate,(argc==1 && time >=tmax),fgetinput.chnames[0]);

g
=� if we are done with this interval, try next one�=
if (time >=tmax) break;

g
g
return 0;

g

=� This routine is pipes output into the xmgr graphing program�=
void graphout(float x1,float x2,int last,char � ch name) f

static int count=0;
printf(" &\n"); =� end of set marker�=
=� first time we draw the plot�=
if (count==0) f

printf("@doublebuffer true\n"); =� keeps display from flashing�=
printf("@s0 color 3\n"); =� IFO graph is green�=
printf("@view 0.1, 0.1, 0.9, 0.45\n"); =� set the viewport for IFO�=
printf("@with g1\n"); =� reset the current graph to FFT�=
printf("@view 0.1, 0.6, 0.9, 0.95\n"); =� set the viewport FFT�=
printf("@with g0\n"); =� reset the current graph to IFO�=
printf("@world xmin %f\n",x1); =� set min x�=
printf("@world xmax %f\n",x2); =� set max x�=
printf("@autoscale\n"); =� autoscale first time through�=
printf("@focus off\n"); =� turn off the focus markers�=
printf("@xaxis label \"t (sec)\"\n"); =� IFO axis label�=
printf("@fft(s0, 1)\n"); =� compute the spectrum�=
printf("@s1 color 2\n"); =� FFT is red�=
printf("@move g0.s1 to g1.s0\n"); =� move FFT to graph 1�=
printf("@with g1\n"); =� set the focus on FFT�=
printf("@g1 type logy\n"); =� set FFT to log freq axis�=
printf("@autoscale\n"); =� autoscale FFT�=
printf("@subtitle \"Spectrum\"\n"); =� set the subtitle�=
printf("@xaxis label \"f (Hz)\"\n"); =� FFT axis label�=
printf("@with g0\n"); =� reset the current graph IFO�=
printf("@subtitle \"IFO output %d\"\n",count++); =� set IFO subtitle�=
if (!last) printf("@kill s0\n"); =� kill IFO; ready to read again�=

g
else f

=� other times we redraw the plot�=
printf("@s0 color 3\n"); =� set IFO green�=
printf("@fft(s0, 1)\n"); =� FFT it �=
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printf("@s1 color 2\n"); =� set FFT red�=
printf("@move g0.s1 to g1.s0\n"); =� move FFT to graph 1�=
printf("@subtitle \"%s %d\"\n",ch name,count++); =� set IFO subtitle�=
printf("@world xmin %f\n",x1); =� set min x�=
printf("@world xmax %f\n",x2); =� set max x�=
printf("@autoscale yaxes\n"); =� autoscale IFO�=
printf("@clear stack\n"); =� clear the stack�=
if (!last) printf("@kill s0\n"); =� kill IFO data�=
printf("@with g1\n"); =� switch to FFT�=
printf("@g1 type logy\n"); =� set FFT to log freq axis�=
printf("@clear stack\n"); =� clear stack�=
if (!last) printf("@kill s0\n"); =� kill FFT �=
printf("@with g0\n"); =� ready to read IFO again�=

g
return;

g
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4.7 Swept-sine calibration information

The swept sine calibration files are 3-column ASCII files, of the form:

f0 r0 i0
f1 r1 i1
f2 r2 i2

� � �
fm rm im

where thefj are frequencies, in Hz, andrj andij are dimensionless ratios of voltages. There are typically
m = 801 lines in these files. The data from these files (as well as one additional line of the form
0.0 0.0 0.0
showing vanishing response at DC) have been included in the frames. Each line gives the ratio of the IFO
output voltage to a calibration coil driving voltage, at a different frequency. Therj are the “real part” of the
response, i.e. the ratio of the IFO output in phase with the coil driving voltage, to the coil driving voltage.
The ij are the “imaginary part” of the response,90 degrees out of phase with the coil driving voltage. The
sign of the phase (or equivalently, the sign of the imaginary part of the response) is determined by the
following convention. Suppose that the driving voltage (in volts) is

Vcoil = 10 cos(!t) = 10<ei!t (4.7.1)

where! = 2� � 60 radians=sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

VIFO = 6:93 cos(!t) + 4 sin(!t)
= 6:93 cos(!t)� 4 cos(!t+ �=2)
= 8 <ei(!t��=6) (4.7.2)

This is shown in Figure 13. An electrical engineer would describe this situation by saying that the phase
of the responseVIFO is lagging the phase of the driving signalVcoil by 30Æ. The corresponding line in the
swept sine calibration file would read:

� � �
60:000 0:6930 �0:40000

� � �
Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file byS(60) = 0:8 e�i�=6 = 0:693 � 0:400i. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value:S(�60) = S�(60) = 0:8 ei�=6 = 0:693 + 0:400i.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequencyf = 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both of these arrays are arranged in order of increasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in the swept-
sine calibration curve to reconstruct the differential motion�l(t) (in meters) of the interferometer arms?
Here we address the closely related question: givenVIFO, how do we reconstructVcoil? We choose the sign
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Figure 13: This shows a driving voltageVcoil (solid curve) and the response voltageVIFO (dotted curve) as
functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components ofVIFO are contained in the swept-sine calibration files.

convention for the Fourier transform which agrees with that ofNumerical Recipes: equation (12.1.6) of [1].
The Fourier transform of a function of timeV (t) is

~V (f) =

Z
e2�iftV (t)dt: (4.7.3)

The inverse Fourier transform is
V (t) =

Z
e�2�ift ~V (f)df: (4.7.4)

With these conventions, the signals (4.7.1) and (4.7.2) shown in in Figure 13 have Fourier components:

~Vcoil(60) = 5 and ~Vcoil(�60) = 5; (4.7.5)
~VIFO(60) = 4ei�=6 and ~VIFO(�60) = 4e�i�=6: (4.7.6)

At frequencyf0 = 60 Hz the swept sine file contains

S(60) = 0:8 e�i�=6 ) S(�60) = S�(60) = 0:8 ei�=6: (4.7.7)

sinceS(�f) = S�(f).
With these choices for our conventions, one can see immediately from our example (and generalize to

all frequencies) that

~Vcoil(f) =
~VIFO
S�(f)

: (4.7.8)

In other words, with theNumerical Recipes[1] conventions for forward and reverse Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain a
“glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.

GRASP RELEASE 1.9.8 Page 86 May 19, 2000



Section
4.8

GRASP Routines: Reading/using FRAME format data
Function: GRcalibrate()

Page
87

4.8 Function: GRcalibrate()

void GRcalibrate(float *fri,int frinum,int num,float *complex,float srate,int
method,int order)
This is a intermediate-level routine which takes as input a pointer to an array containing the swept sine data,
and outputs an array of interpolated points suitable for calibration of FFT’s of the interferometer output.

The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data isfri[0]= f0,
fri[1]= r0, fri[2]= i0, fri[3]= f1, fri[4]= r1, fri[5]= i1,... and the total length of the
array isfri[0..frinum-1] .

frinum: Input. The number of entries in the arrayfri[0..frinum-1] . If this number is not divisible
by three, something is wrong!

num: Input. The number of pointsN in the FFT that we will be calibrating. This is typicallyN = 2k

wherek is an integer. In this case, the number of distinct frequency values at which a calibration
is needed is2k�1 + 1 = N=2 + 1, corresponding to the number of distinct frequency values from
0 (DC) to the Nyquist frequencyfNyquist. See for example equation (12.1.5) of reference [1]. The
frequencies arefi = i

NFsample for i = 0; � � � ; N=2.

srate: Input. The sample rateFsample (in Hz) of the data that we are going to be calibrating.

complex: Input. Pointer to an arraycomplex[0..s] wheres = 2k+1. The routinecalibrate()
fills in this array with interpolated values of the swept sine calibration data, described in the pre-
vious section. The real part of the DC response is incomplex[0] , and the imaginary part is in
complex[1] . The real/imaginary parts of the response at frequencyf1 are incomplex[2] and
complex[3] and so on. The last two elements ofcomplex[ ] contain the real/imaginary parts
of the response at the Nyquist frequencyFsample=2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of
the response, at frequencies that lie in between those given in the swept sine calibration files. Rational
function interpolation is used ifmethod =0. Polynomial interpolation is used ifmethod =1. Spline
interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist
frequency) is used ifmethod =2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, thenorder is
the order of the interpolating polynomial. If rational function interpolation is used, then the numerator
and denominator are both polynomials of orderorder /2 if order is even; otherwise the degree of
the denominator is (order +1)/2 and that of the numerator is (order -1)/2.

The basic problem solved by this routine is that the swept sine calibration data in a frame typically
contain data at a few hundred distinct frequency values. However to properly calibrate the IFO output, one
usually needs this calibration information at a large number of frequencies corresponding to the distinct
frequencies associated with the FFT of a data set. This routine allows you to choose different possible
interpolation methods. If in doubt, we recommend spline interpolation as the first choice. The interpolation
methods are described in detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values off2 times the swept-sine response function, as this is
the quantity needed to compute the IFO response function.
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4.9 Example:print ssF program

This example uses the functionGRcalibrate() to read the swept sine calibration information from a
frame, and then prints out a list of frequencies, real, and imaginary parts interpolated from this data. The
frequencies are appropriate for the FFT of a 4096 point data set with sample ratesrate . The technique
used is spline interpolation. To run this program, and display a graph, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
print ssF > outputfile
xmgr -nxy outputfile

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 4096

int main() f
float cplx[NPOINT+2],srate,freq;
int npoint,i;
struct fgetoutput fgetoutput;
struct fgetinput fgetinput;

=� we need to ask for some sample values, even though all we want is calibration�=
fgetinput.npoint=256;

=� number of channels�=
fgetinput.nchan=1;

=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� use utility function framefiles() to retrieve file names�=
fgetinput.files=framefiles;

=� don’t care if IFO is in lock�=
fgetinput.inlock=0;

=� don’t need data anyway, so might as well seek�=
fgetinput.seek=1;

=� but we DO need the calibration information�=
fgetinput.calibrate=1;

=� set the channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� number of points of (imagined) FFT�=
npoint=NPOINT;

=� now get the data (none) and calibration (what we want)�=
fget ch( &fgetoutput, &fgetinput);

=� the fast-channel sample rate�=
srate=fgetoutput.srate;

=� swept sine calibration array is first argument�=
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GRcalibrate(fgetoutput.fri,fgetoutput.frinum,npoint,cplx,srate,2,0);

=� print out frequency, real, imaginary interpolated values�=
printf("# Freq (Hz)\tReal\t\tImag\n");
for (i=0;i <=NPOINT=2;i++) f

freq=i �srate =NPOINT;
printf("%e\t%e\t%e\n",freq,cplx[2 �i],cplx[2 �i+1]);

g
return 0;

g
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Figure 14: A swept sine calibration curve, showing the real and imaginary parts, produced by the example
programprint ssF .
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4.10 Function: GRnormalize()

void GRnormalize(float *fri, int frinum, int npoint, float srate,float *re-
sponse)

This routine generates an array of complex numbersR(f) from the swept sine information in a frame,
and an overall calibration constant. Multiplying this array of complex numbers by (the FFT of) the raw IFO
data yields the (FFT of the) differential displacement of the interferometer arms�l, in meters:f�l(f) =
R(f) gCIFO(f). The units ofR(f) are meters/ADC-count.

The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data isfri[0]= f0,
fri[1]= r0, fri[2]= i0, fri[3]= f1, fri[4]= r1, fri[5]= i1,... and the total length of the
array isfri[0..frinum-1] .

frinum: Input. The number of entries in the arrayfri[0..frinum-1] . If this number is not divisible
by three, something is wrong!

npoint: Input. The number of pointsN of IFO output which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of the IFO output.

response: Output. Pointer to an arrayresponse[0..s] with s = N + 1 in which R(f) will
be returned. By convention,R(0) = 0 so thatresponse[0]=response[1]=0 . Array ele-
mentsresponse[ 2i] and response[ 2i + 1] contain the real and imaginary parts ofR(f) at
frequencyf = israte=N . The response at the Nyquist frequencyresponse[N]=0 and re-
sponse[N+1]=0 by convention.

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote byQ. It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of massm is driven by a magnetic coil. The
equation of motion of the driven end mass is

m
d2

dt2
�l = F (t) (4.10.1)

whereF (t) is the driving force and�l is the differential length of the two interferometer arms, in meters.
Since the driving forced(t) is proportional to the coil current and thus to the coil voltage, in frequency space
this equation becomes

(�2�if)2f�l = constant� eVcoil = constant �
~VIFO
S�(f)

: (4.10.2)

We have substituted in equation (4.7.8) which relates~VIFO and~Vcoil. The IFO voltage is directly proportional
to the quantity recorded in the IFO output channel:VIFO = ADC�CIFO, with the constantADC being the
ratio of the analog-to-digital converters input voltage to output count.

Putting together these factors, the properly normalized value of�l, in meters, may be obtained from the
information in the IFO output channel, the swept sine calibration information, and the quantities given in
Table 6 by f�l = R(f)� gCIFO with R(f) =

Q�ADC

�4�2f2S�(f) ; (4.10.3)
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Table 6: Quantities entering into normalization of the IFO output.

Description Name Value Units
Gravity-wave signal (IFO output) CIFO varies ADC counts

A!D converter sensitivity ADC 10/2048 VIFO (ADC counts)�1

Swept sine calibration S(f) from file VIFO (Vcoil)
�1

Calibration constant Q 1:428 � 10�4 meter Hz2 (Vcoil)
�1

where the~denotes Fourier transform, andf denotes frequency in Hz. (Note that, apart from the complex
conjugate onS, the conventions used in the Fourier transform drop out of this equation, provided that
identical conventions (4.7.3,4.7.4) are applied to both�l and toCIFO). The constant quantityQ indicated
in the above equations has been calculated and documented in a series of calibration experiments carried
out by Robert Spero. In these calibration experiments, the interferometer’s servo was left open-loop, and
the end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and
shift the interferences fringes pattern over by one fringe. In this way, the coil voltage required to bring about
a given length motion at a particular frequency was established, and from this information, the value ofQ
may be inferred. During the November 1994 runs the value ofQ was given by

Q =

p
9:35 Hz

k
= 1:428 � 10�4

meter Hz2

Vcoil
where k = 21399

Vcoil

meter Hz3=2
: (4.10.4)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment forcalibrate() .
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4.11 Example:power spectrumF program

This example uses the functionGRnormalize() to produce a normalized, properly calibrated power spec-
trum of the interferometer noise, using the gravity-wave signal and the swept-sine calibration information
from the frames.

The output of this program is a 2-column file; the first column is frequency and the second column is
the noise in units ofmeters=

p
Hz. To run this program, and display a graph, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
power spectrumF > outputfile
xmgr -log xy outputfile

A couple of comments are in order here:

1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the real and
imaginary parts off�l(f) = R(f) gCIFO(f).

2. The fast Fourier transform of�l, which we denoteFFT[�l], has the same units (meters!) as�l. As can
be immediately seen fromNumerical Recipesequation (12.1.6) the Fourier transformf�l has units of
meters-sec and is given byf�l = �t FFT[�l], where�t is the sample interval. The (one-sided)

power spectrum of�l in meters=
p
Hz is P =

q
2
T jf�lj whereT = N�t is the total length of the

observation interval, in seconds. Hence one has

P =

r
2

N�t
�t jFFT[�l]j =

s
2�t

N
jFFT[�l]j: (4.11.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example programcalibrate and the functionavg spec() to see how this works).

A sample of the output from this program is shown in Figure 15.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 65536

int main() f
void realft(float �,unsigned long,int);
float response[NPOINT+2],data[NPOINT],freq;
float res real,res imag,dl real,dl imag,c0 real,c0 imag,spectrum,srate,factor;
int i,npoint;
short datas[NPOINT];
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

=� We need only the IFO output�=
fgetinput.nchan=1;

=� use utility function framefiles() to retrieve file names�=
fgetinput.files=framefiles;

=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
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fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� set channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� are we in the 40-meter lab?�=
if (NULL!=getenv("GRASP_REALTIME")) f

=� for Caltech 40-meter lab�=
fgetinput.inlock=0;

g
else f

=� for Nov 1994 data set�=
fgetinput.inlock=1;

g
=� number of points to sample and fft (power of 2)�=
fgetinput.npoint=npoint=NPOINT;
fgetinput.calibrate=1;

=� the array where we want the data to be put�=
fgetinput.locations[0]=datas;

=� skip 200 seconds into locked region (just seek, no need for data)�=
fgetinput.seek=1;
fgetoutput.tstart=fgetoutput.lastlock=0.0;
while (fgetoutput.tstart �fgetoutput.lastlock <200.0)

fget ch( &fgetoutput, &fgetinput);

=� and get next stretch of data (don’t seek, we need data)�=
fgetinput.seek=0;
fget ch( &fgetoutput, &fgetinput);

=� the sample rate�=
srate=fgetoutput.srate;

=� convert gw signal (ADC counts) from shorts to floats�=
for (i=0;i <NPOINT;i++) data[i]=datas[i];

=� FFT the data�=
realft(data �1,npoint,1);

=� get normalization R(f) using swept sine calibration information from frame�=
GRnormalize(fgetoutput.fri,fgetoutput.frinum,npoint,srate,response);

=� one-sided power-spectrum normalization, to get meters=rHz �=
factor=sqrt(2.0 =(srate �npoint));
=� compute dl. Leave off DC (i=0) or Nyquist (i=npoint=2) freq�=
for (i=1;i <npoint =2;i++) f

=� frequency�=
freq=i �srate =npoint;
=� real and imaginary parts of tilde c0�=
c0 real=data[2 �i];
c0 imag=data[2 �i+1];
=� real and imaginary parts of R�=
res real=response[2 �i];
res imag=response[2 �i+1];
=� real and imaginary parts of tilde dl�=
dl real=c0 real �res real �c0 imag �res imag;
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dl imag=c0 real �res imag+c0 imag �res real;
=� jtilde dlj �=
spectrum=factor �sqrt(dl real �dl real+dl imag �dl imag);
=� output freq in Hz, noise power in meters=rHz �=
printf("%e\t%e\n",freq,spectrum);

g
return 0;

g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
ways of finding the noise power spectrum (for example, see the multi-taper methods of David J.
Thompson [39], or the textbook by Percival and Walden [40]). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 16.19.
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Figure 15: An example of a power spectrum curve produced withpower spectrumF . The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP spectrum
analyzer in the lab.
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4.12 Example:calibrateF program

This example uses the functionGRnormalize() and avg spec() to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second characteristic
time moving average. After compilation, to run the program type:

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
calibrateF j xmgr -pipe &

to get an animated display showing the calibrated power spectrum changing. An example of the output from
calibrateF is shown in Figure 16. Note that most of the execution time here is spent passing data down
the pipe toxmgr and displaying it. The display can be speeded up by a factor of ten by binning the output
values to reduce their number to a few hundred lines (the example programcalibrate binnedF.c
implements this technique; it can be run by typingcalibrate binnedF | xmgr -pipe ).
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Figure 16: This shows a snapshot of the output from the programcalibrateF which displays an ani-
mated average power spectrum (Welch windowed, 30-second decay time).

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 4096
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int main() f
void graphout(int,float,float);
float data[NPOINT],average[NPOINT =2],response[NPOINT+4];
float spec,decaytime;
float srate,tstart=0,freq,tlock=0.0;
int i,j,code,npoint,ir,ii,reset=0,pass=0;
short datas[NPOINT];
double mod;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

=� number of channels needed is one�=
fgetinput.nchan=1;

=� use utility function framefiles() to retrieve file names�=
fgetinput.files=framefiles;

=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));

=� set up channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� set up channel names for different cases�=
if (NULL!=getenv("GRASP_REALTIME")) f

=� for Caltech 40-meter lab�=
fgetinput.inlock=0;

g
else f

=� for Nov 1994 data set�=
fgetinput.inlock=1;

g

=� number of points to sample and fft (power of 2)�=
fgetinput.npoint=npoint=NPOINT;

=� we do need the data, so don’t seek�=
fgetinput.seek=0;

=� do need calibration information�=
fgetinput.calibrate=1;

=� where to put the data points�=
fgetinput.locations[0]=datas;

=� set the decay time (sec)�=
decaytime=30.0;

=� get data�=
while ((code=fget ch( &fgetoutput, &fgetinput))) f

tstart=fgetoutput.dt;
srate=fgetoutput.srate;

=� put data into floats�=
for (i=0;i <npoint;i++) data[i]=datas[i];
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=� use the swept-sine calibration (properly interpolated) to get R(f)�=
if (!pass++) GRnormalize(fgetoutput.fri,fgetoutput.frinum,npoint,srate,response);

=� Reset if just locked�=
if (code==1) f

reset=0;
tlock=tstart;
avg spec(data,average,npoint, &reset,srate,decaytime,2,1);

g else f

=� track average power spectrum, with Welch windowing.�=
avg spec(data,average,npoint, &reset,srate,decaytime,2,1);

=� loop over all frequencies except DC (j=0)& Nyquist (j=npoint=2) �=
for (j=1;j <npoint =2;j++) f

=� subscripts of real, imaginary parts�=
ii=(ir=j+j)+1;
=� frequency of the point�=
freq=srate �j =npoint;
=� determine power spectrum in (meters=rHz) & print it �=
mod=response[ir] �response[ir]+response[ii] �response[ii];
spec=sqrt(average[j] �mod);
printf("%e\t%e\n",freq,spec);

g
=� print out useful things for xmgr program . . .�=
graphout(0,tstart,tlock);

g
g
return 0;

g

void graphout(int last,float time,float tlock) f
static int count=0;
printf(" &\n"); =� end of set marker�=
=� first time we draw the plot�=
if (count++==0) f

printf("@doublebuffer true\n"); =� keeps display from flashing�=
printf("@focus off\n"); =� turn off the focus markers�=
printf("@s0 color 2\n"); =� FFT is red�=
printf("@g0 type logxy\n"); =� set graph type to log-log�=
printf("@autoscale \n"); =� autoscale FFT�=
printf("@world xmin %e\n",10.0); =� set min x�=
printf("@world xmax %e\n",5000.0); =� set max x�=
printf("@world ymin %e\n",1.e �19); =� set min y�=
printf("@world ymax %e\n",1.e �9); =� set max y�=
printf("@yaxis tick minor on\n"); =� turn on tick marks�=
printf("@yaxis tick major on\n"); =� turn on tick marks�=
printf("@yaxis tick minor 2\n"); =� turn on tick marks�=
printf("@yaxis tick major 1\n"); =� turn on tick marks�=
printf("@redraw \n"); =� redraw graph�=
printf("@xaxis label \"f (Hz)\"\n"); =� FFT horizontal axis label�=
printf("@yaxis label \"meters/rHz\"\n"); =� FFT vertical axis label�=
printf("@title \"Calibrated IFO Spectrum\"\n"); =� set title�=
=� set subtitle�=
printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time �tlock,time);
if (!last) printf("@kill s0\n"); =� kill graph; ready to read agai�=

g
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else f
=� other times we redraw the plot�=
=� set subtitle�=
printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time �tlock,time);
printf("@s0 color 2\n"); =� FFT is red�=
printf("@g0 type logxy\n"); =� set graph type to log-log�=
printf("@world xmin %e\n",10.0); =� set min x�=
printf("@world xmax %e\n",5000.0); =� set max x�=
printf("@world ymin %e\n",1.e �19); =� set min y�=
printf("@world ymax %e\n",1.e �9); =� set max y�=
printf("@yaxis tick minor on\n"); =� turn on tick marks�=
printf("@yaxis tick major on\n"); =� turn on tick marks�=
printf("@yaxis tick minor 2\n"); =� turn on tick marks�=
printf("@yaxis tick major 1\n"); =� turn on tick marks�=
printf("@redraw\n"); =� redraw the graph�=
if (!last) printf("@kill s0\n"); =� kill graph, ready to read again�=

g
return;

g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments forpower spectrumF example program.
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4.13 Example:transferF program

This example uses the functionGRnormalize() to calculate the response of the interferometer to a spec-
ified gravitational-wave strainh(t). [Note: for clarity, in this example, we have NOT worried about getting
the overall normalization correct.] The code includes two possibleh(t)’s. The first of these is a binary-
inspiral chirp (see Section 6). Or, if you un-comment one line of code, you can see the response of the
detector to a unit-impulse gravitational wave strain, in other words, the impulse response of the detector.

Note that to run this program, you must specify a path to the 40-meter data, for example by typing:
setenv GRASP FRAMEPATH /usr/local/data/19nov94.3.frame

so that the code can find a frame containing a swept-sine calibration file to use.
The response of the detector to a pair of inspiraling stars is shown in Figure 17. You will notice that

although the chirp starts at a (gravitational-wave) frequency of 140 Hz on the left-hand side of the figure, the
low-frequency response of the detector is so poor that the chirp does not really become visible until about
half-a-second later, at somewhat higher frequency. In the language of the audiophile, the IFO has crummy
bass response! Of course this is entirely deliberate; the whitening filters of the instrument are designed
to attenuate the low-frequency seismic contamination, and consequently also attenuate any possible low-
frequency gravitational waves.
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to 2 x 1.4 solar mass chirps
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Figure 17: Output produced by thetransfer example program. The top graph shows the gravitational-
wave strain produced by an inspiraling binary pair. The lower graph shows the calculated interferometer
output [channel.0 or IFODMRO] produced by this signal. Notice that because of the poor low-frequency
response of the instrument, the IFO output does not show significant response before the input frequency
has increased. The sample rate is slightly under 10 kHz.

The response of the detector to a unit gravitational strain impulse is shown as a function of time-offset in
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Figure 18. Here the predominant effect is the ringing of the anti-aliasing filter. The impulse response of the
detector lasts about 30 samples, or 3 msec. For negative offset times the impulse response is quite close to
zero; its failure to vanish is partly a wrap-around effect, and partly due to errors in the actual measurement
of the transfer function.
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Figure 18: Output produced by thetransfer example program. This shows the calculated interferometer
output [channel.0 or IFODMRO] produced by an impulse in the gravitational-wave strain at sample number
zero. This (almost) causal impulse response lasts about 3 msec.

This is a good place to insert a cautionary note. Now that we have determined the transfer function
R(f) of the instrument, you might be tempted to ask: “Why should I do any of my analysis in terms of the
instrument output? After all, my real interest is in gravitational waves. So the first thing that I will do in my
analysis is convert the instrument output into a gravitational wave strainh(t) at the detector, by convolving
the instrument’s output with (the time-domain version of)R(f).” Please do not make this mistake!A few
moment’s reflection will show why this is a remarkably bad idea. The problem is that the response function
R(f) is extremely large at low frequencies. This is just a reflection of the poor low frequency response of
the instrument: any low-frequency energy in the IFO output corresponds to an extremely large amplitude
low frequency gravitational wave. So, if you calculateh(t) in the way described: take a stretch of (perhaps
zero-padded) data, FFT it into the frequency domain, multiply it byR(f) and invert the FFT to take it back
into the frequency domain, you will discover the following:

� Your h(t) is dominated by a single low-frequency noisy sinusoid (whose frequency is determined by
the low frequency cutoff imposed by the length of your data segment or the low-frequency cutoff of
the response function).

� Your h(t) has lost all the interesting information present at frequencies where the detector is quiet
(say, around 600 Hz). Because the noise power spectrum (see Figure 15) covers such a large dynamic
range, you can not even representh(t) in a floating point variable (though it will fit, though barely,
into a double). This is why the instrument uses a whitening filter in the first place.
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� It is possible to construct “h(t)” if you filter out the low-frequency garbage by settingR(f) to zero
below (say) 100 Hz.

If you are unconvinced by this, do the following exercise: calculate the power spectrum in the frequency
domain as was done with Figure 15, then constructh(t) in time time domain, then takeh(t) back into the
frequency domain, and graph the power spectrum again. You will discover that it has completely changed
above 100 Hz and is entirely domainted by numerical quantization noise (round-off errors).

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include <stdio.h >
#include <memory.h >
#include "grasp.h"
#define HSCALE 1.e20
#define NBINS 16384

int main() f
float fstart,srate,tcoal, �c0, �c90, �response;
int filled,i;
void realft(float �,unsigned long, int);
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;
short int data;

=� allocate memory�=
c0=(float �)malloc(sizeof(float) �NBINS);
c90=(float �)malloc(sizeof(float) �NBINS);
response=(float �)malloc(sizeof(float) �(NBINS+1));

=� set start frequency, sample rate, make chirp�=
make filters(1.4,1.4,c0,c90,fstart=140.0,NBINS,srate=9868.0, &filled, &tcoal,4000,4);
printf("Chirp length is %d.\n",filled);

=� Uncomment this line to see the impulse response of the instrument�=
=� for (i=0;i<NBINS;i++) c0[i]=0.0; c0[100]=1.0;�=

=� put chirps into frequency domain�=
realft(c0 �1,NBINS,1);

=� open frame, read one point, get calibration data, get response, and scale�=
fgetinput.nchan=1;
fgetinput.files=framefiles;
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetinput.chnames[0]="IFO_DMRO";
fgetinput.inlock=0;
fgetinput.npoint=fgetinput.seek=fgetinput.calibrate=1;
fgetinput.locations[0]= &data;
fget ch( &fgetoutput, &fgetinput);
GRnormalize(fgetoutput.fri,fgetoutput.frinum,NBINS,srate,response);
for (i=0;i <NBINS;i++) response[i] �=HSCALE;

=� avoid floating point errors in inversion�=
response[0]=response[1]=1.e10;

=� determine IFO channel0 input which would have produced waveform�=
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ratio(c0,c0,response,NBINS =2);

=� invert FFT�=
realft(c0 �1,NBINS, �1);

=� make a graph showing channel.0�=
printf("File temp.graph contains channel.0 produced by 2 x 1.4 solar masses.\n");
graph(c0,NBINS,1);

return 0;
g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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4.14 Example:diagF program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-frequency
diagnostic method. The actual code is not printed here, but may be found in the GRASP directory
src/examples/examples frame in the filediagF.c . To run the program type:

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
diagF &

which will start thediagF program in the background.
The method used bydiagF is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a valueS(f).

3. Using the same auto-regressive averaging technique described inavg spec() the mean value of
S(f) is maintained in a time-averaged spectrumhS(f)i. The exponential-decay time constant for this
average isAVGTIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average�S(f) � jS(f) � hS(f)ij is
determined. Note that the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance(�S(f))2.

5. Using the same auto-regressive averaging technique described inavg spec() the value of�S(f)
is maintained in a time-averaged absolute differenceh�S(f)i. The exponential-decay time constant
for this average is also set byAVGTIME.

6. In each frequency bin,�S(f) is compared toh�S(f)i. If �S(f) > THRESHOLD� h�S(f)i then
a point is plotted for that frequency bin; otherwise no point is plotted for that frequency bin. In this
example,THRESHOLDis set to 6.

7. In each frequency bin,�S(f) is compared toh�S(f)i. If �S(f) < INCLUDE � h�S(f)i then
the values ofS(f) and�S(f) are used to “refine” or “revise” the auto-regressive means described
previously. In this example,INCLUDEis set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

ThediagF program can be used to analyze any of the different channels of fast-sampled data, by setting
CHANNELappropriately. It creates one output file for each locked segment of data. For example ifCHAN-
NEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
ch0diag.000 , ch0diag.001 , ch0diag.002 , andch0diag.003 .
In similar fashion, ifCHANNELis set to 1 (the magnetometer) one obtains files:
ch1diag.000 , ch1diag.001 , ch1diag.002 , andch1diag.003 .
These files may be used as input to thexmgr graphing program, by typing:
xmgr ch0diag.000 ch1diag.000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown in
Figures 19 and 20. By specifying several different channels on the command line for startingxmgr , you
can overlay the different channels output with one another. This provides a visual tool for identifying corre-
lations between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
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Figure 19: A time-frequency diagnostic graph produced bydiag . The vertical line pointed to by the arrow
is a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a “drip”
and might be due to off-axis modes in the interferometer optical cavities.

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might
be possible to improve its high-frequency time resolution by being clever about using intermediate
information during the recursive calculation of the FFT. One should probably also experiment with
using other statistical measures to assess the behavior of the different frequency bins. It would be nice
to modify this program to also examine the slow sampled channels (see comment forget data() ).
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Figure 20: A time-frequency diagnostic graph produced bydiag . This shows the identical period as the
previous graph, but for the magnetometer output. Notice that the spurious event was not caused by magnetic
field fluctuations.
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4.15 Example:seismicF program

This is an example program which produces power spectra of seismometer ground motion. It is intended for
use with a Guralp CMG-40T Broadband Seismometerhttp://www.guralp.demon.co.uk/ , with
the velocity sensing output set for the0:033 ! 100Hz band and the gain set to 400 volts-sec/meter. The
normalization constants are defined with a line that reads something like this.

const float norm=((0.25/65536.0)*(1.0/400.0)*(1.0/(2.0*M_PI)));

Here the constants assume that the ADC that the seismometer is connected to records 65536 ADC counts
per 0:25 volts input and that the gain (single-ended) is set to 400 volts-sec/meter. The2� and a factor of
frequencyf arise in the code in converting velocity to position. The program outputs postscript and/or jpeg
files labeled by GPS time.
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Pacific Time Tue May 11 03:00:10 to Tue May 11 03:34:11 1999

Figure 21: A seismometer (one-sided) power spectrum produced by theseismicF example program. The x,y, and
z (vertical) motion are shown in black, red, and green. The blue curve shows the LIGO standard noise power spectrum,
for comparison. This spectrum was taken at the LIGO Hanford site, during the installation. The portable clean rooms
may be responsible for much of the excess noise. The file name isSpec.610452023.ps

GRASP RELEASE 1.9.8 Page 107 May 19, 2000

http://www.guralp.demon.co.uk/


Section
5.1

GRASP Routines: Signal-to-noise enhancement techniques Page
108

5 GRASP Routines: Signal-to-noise enhancement techniques

5.1 Signal-to-noise enhancement by environmental cross-correlation

There are many situations of interest in which data are contaminated by the environment. Often this con-
tamination is understood, and by monitoring the environment it is possible to “clean up” or “reduce” the
data, by subtracting the effects of the environment from the signal or signals of interest. In the case of the
data stream from an interferometric gravitational radiation detector, the signal of interest is the differential
displacement of suspended test masses. This displacement arises from gravitational waves but also has con-
tributions arising from other contaminating sources, such as the shaking of the optical tables (seismic noise)
and forces due to ambient environmental magnetic fields. The key point is that the gravitational waves are
not correlated with any of these environmental artifacts.

The method implemented here works by estimating the linear transfer function between the IFODMRO
channel and specified environmental channels on the basis of the correlations over a certain bandwidth in
Fourier space. The method is explained in detail in the paper ‘Automatic cross-talk removal from multi-
channel data’ (WISC-MILW-99-TH-04)1 Here we will just give a very brief overview to introduce the
quantities calculated.

We denote the channel of interest, normally the InterFerOmeter Differential Mode Read-out (IFODMRO),
byX or Y1. The other sampled channels consist of environmental and instrumental monitors which we de-
noteY2; : : : ; YN . We assume that all fast channels have been decimated so that all channels are sampled at
the same (slow) rate,986:842 � � � Hz for the November 1994 40-meter data.

We assume that the contribution of channeli to channel1 is described by an (unknown!) linear transfer
functionRi(t � t0). The basic idea of the method is to use the data to estimate the transfer functionsRi.
For the reasons discussed in the paper, we work with the data in Fourier space. The transfer function is
estimated by averaging over a frequency band, that is a given number of frequency bins. The number of bins
in any band is denoted byF in the cited paper andcorrelation width in the programs below. The
method assumes that~Ri can be well approximated by acomplex constantwithin each frequency band, in
other words that the transfer function does not vary rapidly over the frequency bandwidth�f = F=T where
T is total time of the data section under consideration. The choices 32, 64 and 128 appear most appropriate
for F for the 40-meter data.

Within a given band,b, the Fourier components of the field may be thought of as the components of an
F -dimensional vector,Y(b)

i . Correlation between two channels (or the auto-correlation of a channel with

itself) may be expressed by the standard inner product(Y
(b)
i ;Y

(b)
j ) = Y

(b)
i �Y(b)�

j (no summation overb).

Our assumption that~Ri is constant over each band means that the ‘true’ channel of interest (the IFODMRO
channel with environmental influences subtracted) can be written

�~x
(b)

= ~X(b) �
NX
j=2

r
(b)
j

~Y
(b)
j : (5.1.1)

wherer(b)j , j = 2; : : : ; N are constants. The fundamental assumption is that the best estimate of the transfer

function in the frequency bandb is given by the complex vector(r(b)2 ; : : : ; r
(b)
N ) that minimisesj�~x(b)j2. To

measure the ‘improvement’ in the signal we definej�j2 by

j�~x(b)j2 = j ~X(b)j2
�
1� j�j2

�
: (5.1.2)

denoted byrho2 in the programs below. By definition0 � j�j2 � 1. If any of the environmental channels

1available fromhttp://www.lsc-group.phys.uwm.edu/ �www/docs/pub table/gravpub.html .
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are strongly correlated with the channel of interest, a significant reduction inj�~x(b)j2 is obtained, that is,j�j2
will be close to 1.

To understand the origin of the ‘improvement’ it is also convenient to study the best estimate that can be
obtained using any given single environmental channel. Thus we define

�~x
(b)
i = ~X(b) � r0(b)i ~Y

(b)
i (5.1.3)

and choose the complex numberr0(b)i to minimisej�~x(b)i j2. Of course, in general this will not correspond to
theith component of the vector used in the multi-channel case. The corresponding improvementj�ij2 given
by

j�~x(b)i j2 = j ~X(b)j2
�
1� j�ij2

�
(5.1.4)

is denoted byrho2 pairwise in the programs below. By definition0 � j�ij2 � 1. If the ith environmen-

tal channel is strongly correlated with the channel of interest, a significant reduction inj�~x(b)i j2 is obtained,
that is,j�ij2 will be close to 1.
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5.2 Outline

Calculation of environmental correlations using the routines presented in this chapter proceeds through the
establishment of a configuration file, called here40m.config with the following structure:

# Correlations between 40m Channels over a period
# of approximately 266 seconds. The IFO sample rate is
# 9868.4\dots Hz (hence 9868.4 x 266 = 2621440 samples).
# The sample rate for the ‘slow’ channels is
# (1/10)th that of the ‘fast’ so (1/10)th the
# number of samples are requested
C1
4
IFO_DMRO S 2621440
IFO_Mike S 2621440
IFO_Seis_1 S 262144
IFO_SPZT S 262144
1

The file maybegin with any number of comment lines beginning with an initial#. The next line is
a character string describing the detector, this is just used for naming intermediate files. The following
line gives the total number of channels (signal plus environmental). There follow this number of lines
each containing three columns, the first of these lines pertains to the signal the remainder to environmental
channels. The three columns are:

1. the name of the channel,

2. the data type of the channel (here short) – seeanimateT.c or corr init.c for a description of
the possible types, and

3. the number of data points from that channel to be analysed – these should correspond to the same
period of time.

Finally, there is a line containing a single number. This should be set to 1 if the user wants to obtain ‘cleaned’
output and 0 if the user just wants to see correlation data. (Note: This line is not used bycorr init
described below, but only byenv corr . Thus it is possible to change one’s mind about whether to find the
cleaned signal without having to reruncorr init .)

The configuration file is used by the two basic programs:

1. corr init which calculates the Fourier transforms and writes binary data files in a data directory
named‘configuration name’ fft , so40m fft in the above example. Only those frequen-
cies appropriate to the slowest channel are saved.

2. env corr which calculates the correlations between each environmental channel and the signal
channel and pops up a graph of these correlations. The data for this graph is stored in the same
data directory as the FFT data.env corr also produces a filecorr view... which enables this
graph to be reproduced later without runningenv corr again. If the configuration file asks for the
signal to be cleanedenv corr will also produce an ASCII data file giving the (FFT of the) ‘cleaned’
signal and also the total fractional reduction in noise obtained by the method. Again this file is stored
in the same data directory, its first line gives the frequency spacing and the following lines the real
and imaginary parts of the FFT of the cleaned signal. (To avoid plotting difficulties withxmgr the
DC component is arbitrarily set equal to that of the first bin.)
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Thus, having created the appropriate configuration file one would typecorr init 40m.config and
thenenv corr 40m.config . (Of course, the environment variableGRASPFRAMEPATHmust first be
set to the directory containing the appropriate frames.)

Note: These programs perform linear algebra by calls toclapack routines. These may be obtained from
http://www.netlib.org/ . These routines usef2c and, in particular, use complex numbers
defined inf2c.h through the structure:

typedef struct f
float r; /* real part */
float i; /* imaginary part */
g complex;
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5.3 Function: calc rho()

int calc rho(int offset,int correlation width,float threshold, float *rp signal,
float *ip signal,int nenv chan, float **rp env,float **ip env,
float *rho2 pairwise, complex *A,complex *B,float *modx2sum)

This function takes sections of lengthlength of the Fourier transform of the ‘signal’ channel and
nenv chan environmental channels and estimates the transfer function on the basis of correlations over a
width ofcorrelation width bins at an offset frequency ofoffset bins. It returns an arrayrho2 pairwise
containing the values ofj�j2 that would arise from a cross-correlation with each single channel thereby giv-
ing information onwhich environmental channels contain the strongest evidence for correlation with the
signal.

The arguments are:

length: Input. The total length of the Fourier transform.

offset: Input. The offset to the beginning of the section of the Fourier transform over which correlations
are being searched for.

correlation width: Input. The width of the section of the Fourier transform over which correlations
are being searched for.

threshold: Input. The threshold for determining whether a correlation is statistically significant.

rp signal: Input. rp signal[0..length-1] contains the real parts of the Fourier transform of
the signal.

ip signal: Input. ip signal[0..length-1] contains the imaginary parts of the Fourier trans-
form of the signal.

nenv chan: Input. The number of environmental channels under consideration.

rp env: Input. rp env[0..nenv chan-1][0..length-1] contains the real parts of the Fourier
transform of the nenvchan environmental channels.

ip env: Input. ip env[0..nenv chan-1][0..length-1] contains the imaginary parts of the
Fourier transform of the nenvchan environmental channels.

rho2 pairwise: Output. rho2 pairwise[0..nenv chan-1] contain the level ofpairwisecor-
relation between the signal and each environmental channel in turn,i.e., the value ofj�j2 obtained if
just theith environmental channel had been used.

A: Input/Output.A[0.. nenv chan2-1] is a working array that is used by theclapackroutinechesv()
called byclean chan() . The elements of the array are structure of typecomplex (see note
above). Memory allocation should be performed in the calling routine.

B: Input/Output.B[0.. nenv chan-1] is a working array used by theclapackroutinechesv() called
by clean chan() . The elements of the array are structure of typecomplex (see note above).
Memory allocation should be performed in the calling routine.

modx2sum: Output. A float used byclean chan .

Author: Bruce Allen (ballen@dirac.phys.uwm.edu), Wensheng Hua (hua@bondi.phys.uwm.edu) and Adrian
Ottewill (ottewill@relativity.ucd.ie).

Comments:
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5.4 Functionchan clean()

int chan clean(int offset,int correlation width,float threshold,float *rho2,
float *rp signal,float *ip signal, int nenv chan,float **rp env,float **ip env,
float *rp clean,float *ip clean,complex *A,complex *B,
float modx2sum,complex *R,complex *work,integer lwork,integer *ipivot)

Note: The data typeinteger is defined inf2c.h .

offset: Input. The offset to the beginning of the section of the Fourier transform over which correlations
are being searched for.

correlation width: Input. The width of the section of the Fourier transform over which correlations
are being searched for.

threshold: Input. The threshold for determining whether a correlation is statistically significant.

rp signal: Input. rp signal[0..length-1] contains the real parts of the Fourier transform of
the signal.

ip signal: Input. rp signal[0..length-1] contains the imaginary parts of the Fourier trans-
form of the signal.

nenv chan: Input. The number of environmental channels under consideration.

rp env: Input. rp env[0.. nenv chan-1][0..length-1] contains the real parts of the Fourier
transform of the nenvchan environmental channels.

ip env: Input. ip env[0.. nenv chan-1][0..length-1] contains the imaginary parts of
the Fourier transform of the nenvchan environmental channels.

rp clean: Output.rp clean[0..length-1] contains the real parts of the Fourier transform of the
signal cleaned by removing those contributions that have been assigned by the method to environmen-
tal influences.

ip clean: Output. ip clean[0..length-1] contains the imaginary parts of the Fourier trans-
form of the signal cleaned by removing those contributions that have been assigned by the method to
environmental influences.

A: Input. A[0.. nenv chan2-1] is a working array that is calculated bycalc rho() and used by the
clapackroutinechesv() called byclean chan() . The elements of the array are structure of type
complex (see note above). Memory allocation should be performed in the calling routine.

B: Input. B[0.. nenv chan-1] is a working array that is calculated bycalc rho() used by the
clapackroutinechesv() called byclean chan() . The elements of the array are structure of type
complex (see note above). Memory allocation should be performed in the calling routine.

modx2sum: Input. A float that is calculated bycalc rho used byclean chan .

R: Input. R[0.. nenv chan-1] is a working array used by theclapackroutine chesv() called by
clean chan() . The elements of the array are structure of typecomplex (see note above). Mem-
ory allocation should be performed in the calling routine.
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work: Input. work[0.. lwork-1] is a working array used by theclapackroutinechesv() called
by clean chan() . The elements of the array are structure of typecomplex (see note above).
Memory allocation should be performed in the calling routine.

lwork: Input. The size of the arraywork .

ipivot: Input. ipivot[0.. nenv chan-1] is a working array used by theclapackroutinechesv()
called byclean chan() . The elements of the array are structure of typeinteger . Memory
allocation should be performed in the calling routine.

Author: Bruce Allen (ballen@dirac.phys.uwm.edu), Wensheng Hua (hua@bondi.phys.uwm.edu) and Adrian
Ottewill (ottewill@relativity.ucd.ie).

Comments:clean chan() currently usesclapackroutines to perform the required matrix manipula-
tions. While this it is highly desirable to have such optimised routines when considering a large num-
ber of environmental channels it would also be useful to have a replacement for theclapackroutine
chesv() constructed from Numerical Recipes routines for whenclapackis not available.
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5.5 Example: Correlations in data from the 40m interferometer

The output below was produced starting with 2621440 samples from the 19 November 1994 run 3 data set,
covering about 266 seconds.

The fast channels, including the IFODMRO channel, were decimated so that all channels are effec-
tively sampled at the slow channel rate of986:842 : : :Hz. This yields a (real) time series with 262144
samples and correspondingly a (complex) FFT of length 131072 as specified by the macro nameLENGTH.
Averaging is carried out over 128 frequency bins but this may be varied to include a range of bandwidths
MIN BANDWIDTHandMAXBANDWIDTH.

0 100 200 300 400 500
Correlations with IFO_DMRO: Frequency (Hz)

0

0.5

1

IFO_Mike

0.5

1

IFO_Seis_1

0.5

1

IFO_SPZT

Figure 22: The graphical display of the contents of the output file40m fft/rho2 IFO 128.dat pro-
duced byenv corr illustrating strong environmental cross-correlation. The three graphs show the corre-
lation between the IFODMRO channel and each individual environmental channel. This graph is produced
by the filecorr view128 which env corr produces.

The output was obtained from the commands
corr init 40m.config

followed by
env corr 40m.config

where40m.config is the configuration file printed above. This corresponding to seeking correlations
between the interferometer output (IFODMRO) channel and

IFO Mike: The microphone output.
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IFO Seis1: The seismometer output.

IFO SPZT: The slow pzt.

The data below show sections of the output file40m fft/rho2 IFO 128.dat illustrating strong
environmental cross-correlation at around40Hz with the seismometer and microphone output, at around
120Hz with all three channels, and in a broad band around 360Hz with the slow pzt.

...
39.271 0.000 0.000 0.000 0.000
39.753 0.654 0.256 0.644 0.000
40.235 0.000 0.000 0.000 0.000
40.717 0.000 0.000 0.000 0.000
41.199 0.794 0.794 0.000 0.000
41.681 0.000 0.000 0.000 0.000
...
118.778 0.000 0.000 0.000 0.000
119.259 0.000 0.000 0.000 0.000
119.741 0.940 0.528 0.876 0.519
120.223 0.973 0.371 0.911 0.830
120.705 0.000 0.000 0.000 0.000
121.187 0.000 0.000 0.000 0.000
...
352.478 0.886 0.000 0.000 0.886
352.960 0.897 0.000 0.000 0.897
353.442 0.899 0.000 0.000 0.899
353.924 0.904 0.000 0.000 0.904
354.405 0.898 0.000 0.000 0.898
354.887 0.897 0.000 0.000 0.897
355.369 0.869 0.000 0.000 0.869
355.851 0.878 0.000 0.000 0.878
356.333 0.893 0.000 0.000 0.893
356.815 0.893 0.000 0.000 0.893
357.297 0.843 0.000 0.000 0.843
357.778 0.845 0.000 0.000 0.845
...

The output file40m fft/fftclean IFO 128.dat contains the Fourier transform of the corre-
sponding signal ‘cleaned’ by estimating the transfer functions over a correlation width of 128 bins. Fig-
ure 23 shows the spectrum of the IFODMRO channel before and after ‘cleaning’ based on environmental
channels 1, 2 and 5.
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Figure 23: The spectrum of the IFODMRO channel before (black) and after ‘cleaning’ based on the three
environmental channels discussed in the text using a correlation width of 128 bins (red).
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5.6 Example:corr init

This program calculates the FFTs of the various channels specified in the configuration file and stores them
in binary files in a subdirectory of the working directory, whose name is determined by the detector name
specified in the configuration file.

Typical usage:corr init 40m.config

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc, char �argv[ ]) f
FILE �fp;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;
float �data,delta f;
int �npoints;
int i,j,check,min points;
char fname[256],detector[256],fft dir[256],cmd[256];

if ( argc != 2) f
printf("Usage: corr_init configuration-file\n");
exit(1);

g

fp = fopen(argv[1],"r");
if ( fp == NULL ) f

fprintf(stderr,"Problems opening %s\n",argv[1]);
exit(1);

g
fprintf(stderr,"Reading %s\n",argv[1]);

while (1) f
fgets(detector,sizeof(detector),fp);
if (detector[0] != '#') break;

g
detector[strlen(detector) �1]='\0';
check=fscanf(fp,"%d", &fgetinput.nchan);

=� storage for channel names, data locations, points returned, ratios�=
fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
for (i=0;i <fgetinput.nchan;i++)

fgetinput.chnames[i]=(char �)malloc(256 �sizeof(char));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios=(int �)malloc(fgetinput.nchan �sizeof(int));
fgetinput.datatype=(char �)malloc(fgetinput.nchan �sizeof(char));
npoints=(int �)malloc(fgetinput.nchan �sizeof(int));

for (i=0;i <fgetinput.nchan;i++) f
check=fscanf(fp,"%s %c %d",fgetinput.chnames[i], &fgetinput.datatype[i], &npoints[i]);
=� the next fgetinput.nchan lines of the configuration file should contain 3 columns�=
=� - if not print an error message�=
if (check != 3) f

fprintf(stderr,"Problems reading data from %s\n",argv[1]);
exit(1);

g
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g

fclose(fp);

=� number of points to get�=
fgetinput.npoint=npoints[0];

=� allocate storage space for data�=
for(i=0;i <fgetinput.nchan;i++) f

switch (fgetinput.datatype[i]) f
case 'S': =� short data�=
case 'u': =� unsigned short data�=

fgetinput.locations[i]=(short �)malloc(npoints[i] �sizeof(short));
break;

case 'I': =� integer data�=
case 'i': =� unsigned integer data�=

fgetinput.locations[i]=(short �)malloc(npoints[i] �sizeof(int));
break;

case 'L': =� long data�=
case 'l': =� unsigned long data�=

fgetinput.locations[i]=(short �)malloc(npoints[i] �sizeof(long));
break;

case 'F': =� float data�=
fgetinput.locations[i]=(short �)malloc(npoints[i] �sizeof(float));
break;

case 'D': =� double data�=
fgetinput.locations[i]=(short �)malloc(npoints[i] �sizeof(double));
break;

case 'C': =� character data�=
case 'f': =� complex float data�=
case 'd': =� complex double data�=
case 's': =� character string data�=
case 'c': =� unsigned character data�=

fprintf(stderr,"Data type %c cannot be plotted\n",fgetinput.datatype[0]);
break;

default:
fprintf(stderr,"Unknown data type %c\n",fgetinput.datatype[0]);
exit(1);

g
g

=� don’t have inlock channel if not 40m�=
if (detector != "C1") f

fgetinput.inlock=0;
g

=� but we don’t need calibration information�=
fgetinput.calibrate=0;

=� don’t seek, we need the sample values!�=
fgetinput.seek=0;

=� source of files�=
fgetinput.files=framefiles;

check=fget ch( &fgetoutput, &fgetinput);
if ( check == 0) f

fprintf(stderr,"not enough data!!!!!!!!");
exit(1);
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g
fprintf(stderr,"Signal (%s) sample rate is %f\n",fgetinput.chnames[0],fgetoutput.srate);

min points=npoints[0];
for(i=1;i <fgetinput.nchan;i++) f

if (npoints[i] <min points) min points=npoints[i];
g

delta f=fgetoutput.srate =npoints[0];

for (i=0;i <256;i++) f
if (argv[1][i] == '\0' j j argv[1][i] == '.') f

fft dir[i] = '\0';
break;

g
fft dir[i]=argv[1][i];

g

strcat(fft dir,"_fft");
sprintf(cmd,"mkdir %s 2> /dev/null",fft dir);
system(cmd);

for (i=0;i <fgetinput.nchan;i++) f
=� check frames are consistent with configuration file�=
if (npoints[i] != fgetoutput.srate =fgetoutput.ratios[i]) f

fprintf(stderr,"Sample rates in %s is %f\n",
fgetinput.chnames[i],fgetoutput.srate =fgetoutput.ratios[i]);

g

=� assign memory for storing data in floats�=
data=(float �)malloc(sizeof(float) �npoints[i]);

switch (fgetinput.datatype[i]) f
case 'S': =� short data�=
case 'u': =� unsigned short data�=

for(j=0;j <npoints[i];j++) data[j]=fgetinput.locations[i][j];
break;

case 'I': =� integer data�=
case 'i': =� unsigned integer data�=

for(j=0;j <npoints[i];j++) data[j]=((int �)(fgetinput.locations[i]))[j];
break;

case 'L': =� long data�=
case 'l': =� unsigned long data�=

for(j=0;j <npoints[i];j++) data[j]=((long �)(fgetinput.locations[i]))[j];
break;

case 'F': =� float data�=
for(j=0;j <npoints[i];j++) data[j]=((float �)(fgetinput.locations[i]))[j];
break;

case 'D': =� double data�=
for(j=0;j <npoints[i];j++) data[j]=((double �)(fgetinput.locations[i]))[j];
break;

case 'C': =� character data�=
case 'f': =� complex float data�=
case 'd': =� complex double data�=
case 's': =� character string data�=
case 'c': =� unsigned character data�=

fprintf(stderr,"Data type %c cannot be converted to float\n",fgetinput.datatype[0]);
break;

default:
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fprintf(stderr,"Unknown data type %c\n",fgetinput.datatype[0]);
exit(1);

g

=� We can now free fgetinput.locations[i]�=
free(fgetinput.locations[i]);
=� Take the Fourier transforms�=
realft(data �1,npoints[i],1);
data[1]=0;

=� Print the Fourier transform to file�=
sprintf(fname,"%s/%s-%s_fft.b",fft dir,detector,fgetinput.chnames[i]);
fp = fopen(fname,"wb");
if ( fp == NULL) f

printf("Cannot open %s\n",fname);
exit(1);

g
fprintf(stderr,"writing %s\n",fname);
fwrite( &delta f,sizeof(float),1,fp);
fwrite(data,sizeof(float),min points,fp);
fclose(fp);

free(data);
g

=� free memory�=
free(fgetinput.locations);
free(fgetinput.chnames);
free(fgetinput.locations);
free(fgetoutput.npoint);
free(fgetoutput.ratios);
free(npoints);

return 0;
g
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5.7 Example:env corr

This program callscalc rho andclean chan to determine environmental correlations. It pops up a
graph plotting these correlation as well as writing files containing data on the correlations and the ‘cleaned’
signal.

Typical usage:env corr 40m.config

#include "grasp.h"
static char �rcsid="Development code";
#if defined (CLAPACK)
#include "f2c.h"
extern int chan clean(int,int,float,float �,float �,float �,int,float ��,float ��,float �,float �,

complex �,complex �,float,complex �,complex �,integer,integer �);
#else
typedef float real; =� from f2c.h�=
typedef struct f real r, i; g complex; =� from f2c.h�=
#endif

#define MIN(x,y) ((x) < (y) ? (x) : (y) )
#define MIN BANDWIDTH 128
#define MAX BANDWIDTH 128

void fopen check(FILE �fp,char �fname);
char fft dir[256],signal name[256];

int main(int argc, char �argv[ ])
f

int calc rho(int,int,float,float �,float �,int,float ��,float ��,float �,
complex �,complex �,float �);

void read binary fft(char �fname,int length,float �rp fft,float �ip fft,float �delta f);
void write fft(char �fname,int length,float �rp fft,float �ip fft,float delta f);
void write rho2(FILE �fp,float freq,float rho2,int nenv chan,float �rho2 pairwise);
void �errmalloc(char �arrayname,size t bytes);
void xmgr files(int nenv chan,char ��chnames,int correlation width);
FILE �fp, �fp rho2;
char fname[256],rho2 fname[256],detector[256],cmd[256], ��chnames,temp;
complex �A=NULL, �B=NULL;
float ��rp env, ��ip env;
float �rp signal, �ip signal, �rho2 pairwise, �rp clean, �ip clean;
float threshold,rho2,modx2sum,delta f,freq;
int �chpts;
int i,clean,offset,correlation width,chan,n chan,nenv chan,length,check;

#if defined (CLAPACK)
complex �R=NULL,�work=NULL;
integer lwork, �ipivot=NULL;

#endif

=�������������������������������������������������������������������������������������=
=� Read the configuration file�=
=�������������������������������������������������������������������������������������=

if ( argc != 2) f
printf("Usage: %s configuration-file-name\n",argv[0]);
exit(1);

g
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fp=fopen(argv[1],"r");
fopen check(fp,argv[1]);

=� Comments start with a# - �=
=� the first line after any comments should contain the detector name�=

while (1) f
fgets(detector,sizeof(detector),fp);
if (detector[0] != '#') break;

g
detector[strlen(detector) �1]='\0';

=� the next line gives the total number of channels including the ‘signal’�=
check=fscanf(fp,"%d", &n chan);
if (check != 1) f

fprintf(stderr,"Problems reading number of channels from %s\n",argv[1]);
exit(1);

g

chnames=(char ��)errmalloc("chnames",n chan �sizeof(char �));
for (i=0;i <n chan;i++)

chnames[i]=(char �)malloc(256 �sizeof(char));
chpts=(int �)errmalloc("ip_signal",n chan �sizeof(int));

for (i=0;i <n chan;i++) f
check=fscanf(fp,"%s %c %d",chnames[i], &temp, &chpts[i]);
=� the next nchan lines of the configuration file should contain 3 columns�=
=� - if not print an error message�=
=� the 3 columns are the channel name,the data type and the number of points�=
=� the data type is important for corrinit but is irrelevant here�=
if (check != 3) f

fprintf(stderr,"Problems reading 3-columns: channel-name data-type number-of-samples from %s\n "
exit(1);

g
g

=� do we want to calculate (the fft of) the ‘cleaned’ signal�=
=� clean should be set to 1 if we want to calculate the cleaned signal�=
check=fscanf(fp,"%d", &clean);
if (check != 1) f

fprintf(stderr,"Problems reading ‘clean' bit from %s\n",argv[1]);
exit(1);

g

fclose(fp);

=�������������������������������������������������������������������������������������=
=� Determine the number of frequency bins we will use�=
=�������������������������������������������������������������������������������������=

length=chpts[0];
for(i=1;i <n chan;i++)

if (chpts[i] <length) length=chpts[i];

length ==2; =� Because length is the length of the complex FFT array�=

if ((length%MAX BANDWIDTH) !=0) f
length �=length%MAX BANDWIDTH;
fprintf(stderr,"Using %d FFT values (MAX_BANDWIDTH = %d)\n",length,MAX BANDWIDTH);
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g

strcpy(signal name,chnames[0]);
nenv chan=n chan �1; =� because the configuration file includes the signal channel�=

=�������������������������������������������������������������������������������������=
=� Allocate memory�=
=�������������������������������������������������������������������������������������=

=� Allocate memory forjx ijˆ 2,jy ijˆ 2 and x i y i� �=

rp signal=(float �)errmalloc("rp_signal",length �sizeof(float));
ip signal=(float �)errmalloc("ip_signal",length �sizeof(float));
rp env=(float ��)errmalloc("rows of rp_env",nenv chan �sizeof(float �));
rp env[0]=(float �)errmalloc("rows of rp_env[0]",nenv chan �length �sizeof(float));
for (i=1;i <nenv chan;i++)

rp env[i]=rp env[i �1]+length;

ip env=(float ��)errmalloc("rows of ip_env",nenv chan �sizeof(float �));
ip env[0]=(float �)errmalloc("rows of ip_env[0]",nenv chan �length �sizeof(float));
for (i=1;i <nenv chan;i++)

ip env[i]=ip env[i �1]+length;

if (clean) f
rp clean=(float �)errmalloc("rp_clean",length �sizeof(float));
ip clean=(float �)errmalloc("ip_clean",length �sizeof(float));

g

rho2 pairwise=(float �)errmalloc("rho2_pairwise",nenv chan �sizeof(float));

=�������������������������������������������������������������������������������������=
=� Allocate memory for lapack arrays�=
=�������������������������������������������������������������������������������������=

A=(complex �)errmalloc("A",nenv chan �nenv chan �sizeof(complex));
B=(complex �)errmalloc("B",nenv chan �sizeof(complex));
if (clean) f

#if defined (CLAPACK)
lwork=(integer) nenv chan;
R=(complex �)errmalloc("R",nenv chan �sizeof(complex));
work=(complex �)errmalloc("work",lwork �sizeof(complex));
ipivot=(integer �)errmalloc("ipivot",nenv chan �sizeof(integer));

#endif
g

=�������������������������������������������������������������������������������������=
=�������������������������������������������������������������������������������������=
=� Read data from file�=
=�������������������������������������������������������������������������������������=
=�������������������������������������������������������������������������������������=

=���������������������������������������������������������������������������������=
=� Determine name of data directory�=
=���������������������������������������������������������������������������������=
for (i=0;i <256;i++) f

if (argv[1][i] == '\0' j j argv[1][i] == '.') f
fft dir[i] = '\0';
break;

g
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fft dir[i]=argv[1][i];
g
strcat(fft dir,"_fft");

=���������������������������������������������������������������������������������=
=� Read data from signal channel�=
=���������������������������������������������������������������������������������=
sprintf(fname,"%s/%s-%s_fft.b",fft dir,detector,chnames[0]);
read binary fft(fname,length,rp signal,ip signal, &delta f);

=��������������������������������������������������������������������������������=
=� Read data from environmental channels�=
=��������������������������������������������������������������������������������=
for (chan=0;chan <nenv chan;chan++) f

sprintf(fname,"%s/%s-%s_fft.b",fft dir,detector,chnames[chan+1]);
read binary fft(fname,length,rp env[chan],ip env[chan], &delta f);

g

=�������������������������������������������������������������������������������������=
=� Cycle through range of bandwidths�=
=�������������������������������������������������������������������������������������=
for (correlation width=MIN BANDWIDTH;correlation width <=MAXBANDWIDTH;correlation width �=2) f

threshold=MIN(0.1,5.0 =correlation width); =� see discussion in Hua et al.�=

sprintf(rho2 fname,"%s/rho2_%s_%d.dat",fft dir,signal name,correlation width);
fp rho2 = fopen(rho2 fname,"w");
fopen check(fp rho2,rho2 fname);
fprintf(stderr,"Writing %s\n",rho2 fname);

=�������������������������������������������������������������������������������������=
=� Step through the range of offsets and call the�=
=� function calc rho where the major calculation is done�=
=�������������������������������������������������������������������������������������=

for (offset=0;offset <length;offset+=correlation width) f

calc rho(offset,correlation width,threshold,rp signal,ip signal,nenv chan,
rp env,ip env,rho2 pairwise,A,B, &modx2sum);

=�������������������������������������������������������������������������������������=
=� Calculate the ‘cleaned’ signal�=
=�������������������������������������������������������������������������������������=

rho2=0.0; =� set rho2=0.0 if we don’t clean�=
if (clean) f

#if defined (CLAPACK)
chan clean(offset,correlation width,threshold, &rho2,rp signal,ip signal,nenv chan,

rp env,ip env,rp clean,ip clean,A,B,modx2sum,R,work,lwork,ipivot);
#else

fprintf(stderr,"Sorry cannot calculate cleaned channel without clapack installed\n");
clean=0;

#endif
g

=�������������������������������������������������������������������������������������=
=� Print outjrhojˆ 2 and the level of�pairwise� correlation between�=
=� the signal and each environmental channel in turn�=
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=�������������������������������������������������������������������������������������=

freq=(offset+0.5 �correlation width) �delta f;
write rho2(fp rho2,freq,rho2,nenv chan,rho2 pairwise);

g =� end of offset loop�=

if (clean) f
sprintf(fname,"%s/fftclean_%s_%d.dat",fft dir,signal name,correlation width);
write fft(fname,length,rp clean,ip clean,delta f);

g

=�������������������������������������������������������������������������������������=
=� Write xmgr parameter and shell files�=
=�������������������������������������������������������������������������������������=

xmgr files(nenv chan,chnames,correlation width);
sprintf(cmd,"chmod +x corr_view%d",correlation width);
system(cmd);
sprintf(cmd,"corr_view%d &",correlation width);
system(cmd);

g =� end of correlationwidth loop�=

=�������������������������������������������������������������������������������������=
=� Free memory�=
=�������������������������������������������������������������������������������������=
free(rp signal);
free(ip signal);
free(rp env[0]);
free(rp env);
free(ip env[0]);
free(ip env);
free(rp clean);
free(ip clean);
free(rho2 pairwise);
=� free lapack arrays�=
free(A);
free(B);

#if defined (CLAPACK)
free(R);
free(work);
free(ipivot);

#endif

return(0);
g

void read binary fft(char �fname,int length,float �rp fft,float �ip fft,float �delta f)
f

=�������������������������������������������������������������������������������������=
=� Read fft data from binary file: the first line contains the frequency spacing�=
=� then follow lines containing the real and imaginary part�=
=�������������������������������������������������������������������������������������=
FILE �fp;
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int i,check1,check2;

fp = fopen(fname,"rb");
fopen check(fp,fname);
fprintf(stderr,"Reading %s\n",fname);

=� first read the frequency spacing�=
check1=fread(delta f,sizeof(float),1,fp);

if (check1 != 1) f
fprintf(stderr,"Problems reading delta_f from %s\n",fname);
exit(1);

g
for (i=0;i <length;i++) f

check1=fread((rp fft+i),sizeof(float),1,fp);
check2=fread((ip fft+i),sizeof(float),1,fp);

if ((check1 != 1) j j (check2 != 1)) f
fprintf(stderr,"Problems reading delta_f from %s\n",fname);
exit(1);

g
g

fclose(fp);
rp fft[0]=ip fft[0]=0.0; =� set dc signal to 0�=

g

void write fft(char �fname,int length,float �rp fft,float �ip fft,float delta f)
f

=�������������������������������������������������������������������������������������=
=� Write fft data to an ascii file: the first line contains the frequency spacing�=
=� then follow lines containing the real and imaginary part�=
=�������������������������������������������������������������������������������������=
FILE �fp;
int i;

fp = fopen(fname,"w");
fopen check(fp,fname);
fprintf(stderr,"Writing %s\n",fname);

fprintf(fp,"%f\n",delta f);
=� We fill the DC component with data from the first frequency bin so that

we can do lin-log plots in xmgr without complaints.
Note that the DC component is never used and is set to zero
by read fft - still there should be a better way of doing this!�=

fprintf(fp,"%f\t%f\n",rp fft[1],ip fft[1]);

for (i=1;i <length;i++) f
fprintf(fp,"%f\t%f\n",rp fft[i],ip fft[i]);

g
fclose(fp);

g

void write rho2(FILE �fp,float freq,float rho2,int nenv chan,float �rho2 pairwise)
f

=�������������������������������������������������������������������������������������=
=� Write the list of rho values to file�=
=�������������������������������������������������������������������������������������=
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int chan;

fprintf(fp,"%.3f\t\t%.3f\t\t",freq,rho2);
for (chan=0;chan <nenv chan;chan++) f

fprintf(fp,"%.3f ",rho2 pairwise[chan]);
g
fprintf(fp,"\n");

g

void fopen check(FILE �fp,char �fname)
f

=�������������������������������������������������������������������������������������=
=� Checks to see if a file has been opened properly�=
=� and if not write an appropriate error message�=
=�������������������������������������������������������������������������������������=
if ( fp == NULL ) f

fprintf(stderr,"Problems opening %s\n",fname);
exit(1);

g
g

void �errmalloc(char �arrayname,size t bytes)
f

=�������������������������������������������������������������������������������������=
=� Allocate memory and print an error message if unsucessful�=
=�������������������������������������������������������������������������������������=
void �pointer;
pointer=malloc(bytes);
if (pointer==NULL) f

fprintf(stderr,"Cannot allocate %d bytes of memory for %s\n",(int) bytes,arrayname);
exit(1);

g
return pointer;

g

void xmgr files(int nenv chan,char ��chnames,int correlation width)
f

=�������������������������������������������������������������������������������������=
=� Write the xmgr parameter files�=
=�������������������������������������������������������������������������������������=
FILE �fp;
char param fname[256],view fname[256];
int i;

for (i=0;i <nenv chan;i++) f
sprintf(param fname,"xmgr.param%d_%d",correlation width,i);

fp = fopen(param fname,"w");
fopen check(fp,param fname);
fprintf(stderr,"Writing %s\n",param fname);

fprintf(fp,"focus g%d\n",i);
fprintf(fp,"autoscale\n");
if (i == 0) f

fprintf(fp,"xaxis label \"Correlations with %s: Frequency (Hz)\"\n",
chnames[0]);

fprintf(fp,"xaxis tick out\n");
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fprintf(fp,"xaxis tick op bottom\n");
g
else f

fprintf(fp,"xaxis tick major off\n");
fprintf(fp,"xaxis tick minor off\n");
fprintf(fp,"xaxis ticklabel off\n");
fprintf(fp,"yaxis ticklabel start type spec\n");
fprintf(fp,"yaxis ticklabel start 0.5\n");

g
fprintf(fp,"yaxis label layout perp\n");
fprintf(fp,"yaxis label char size 0.9\n");
fprintf(fp,"yaxis label place spec\n");
fprintf(fp,"yaxis label place -0.84, 0\n");
fprintf(fp,"yaxis ticklabel op right\n");

fprintf(fp,"yaxis label \"%s\"\n",chnames[i+1]);
fprintf(fp,"yaxis tick major 0.5\n");
fprintf(fp,"yaxis tick minor 0.25\n");
fprintf(fp,"view ymin %f\n",0.1+0.88 �i =nenv chan);
fprintf(fp,"view ymax %f\n",0.1+0.88 �(i+1) =nenv chan);
fprintf(fp,"world ymin 0\n");
fprintf(fp,"world ymax 1\n");

fprintf(fp,"s0 color %d\n",i+2);
fprintf(fp,"\n");
fclose(fp);

g

=�������������������������������������������������������������������������������������=
=� Write the xmgr shell files�=
=�������������������������������������������������������������������������������������=

sprintf(view fname,"corr_view%d",correlation width);
fp = fopen(view fname,"w");
fopen check(fp,view fname);
fprintf(stderr,"Writing %s\n",view fname);

fprintf(fp,"xmgr -block %s/rho2_%s_%d.dat ",
fft dir,signal name,correlation width);

for (i=0;i <nenv chan;i++) f
sprintf(param fname,"xmgr.param%d_%d",correlation width,i);
fprintf(fp,"-graph %d -bxy 1:%d -param %s ",i,i+3,param fname);

g
fprintf(fp," &\n");

fclose(fp);
g

Author: Bruce Allen (ballen@dirac.phys.uwm.edu), Wensheng Hua (hua@bondi.phys.uwm.edu) and Adrian
Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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6 GRASP Routines: Gravitational Radiation from Binary Inspiral

One of the principal sources of gravitational radiation which should be detectable with the first or second
generation of interferometric detectors isbinary inspiral. This radiation is produced by a pair of massive
and compact orbiting objects, such as neutron stars or black holes.

The simplest case is when the two objects are describing a circular orbit about their common center-of-
mass, and neither object is spinning about its own axis. With these assumptions the system is then described,
at any time, by the massesm1 andm2 of the objects, and their orbital frequency
. (It is also necessary to
describe the orientation of the orbital plane and the positions of the masses at a given time; these are details
we will sort out later).

For convenience in dealing with dimensional quantities, we introduce theSolar MassM� and theSolar
TimeT� defined by

M� = 1:989 � 1033 grams (6.0.1)

T� =

�
G

c3

�
M� = 4:925491 � 10�6 sec: (6.0.2)

GRASP functions typically measure masses in units ofM� and times in units of seconds.
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6.1 Chirp generation routines

The next several subsections document a number of routines for generating “chirps” from coalescing bina-
ries. This package of routines is intended to be versatile, flexible and robust; and yet still fairly simple to
use. The implementation we have included in this package is based on the second post-Newtonian treat-
ment of binary inspiral presented in [7] and augmented by the spin-orbit and spin-spin corrections presented
in [8] and 2.5 post-Newtonian order corrections in [9]. The notation we use – even in the source code –
closely reflects the notation used in those papers. In keeping with that notation, these routines calculate the
orbital phase andorbital frequency. The gravitational-wave phase of the dominant quadrupolar radiation
can be obtained by multiplying the orbital phase by two. The routines can be used to compute a few chirp
waveforms (say to make transparencies for a seminar), or for wholesale computations of a bank of matched
filters.

All of the chirp generation routines, in particular the ubiquitousmake filters() , compute what has
come to be known as“restricted” post-Newtonian chirps . This means they include all post-Newtonian
corrections (up to the specified order) in the phase evolution, but only the dominant quadrupole amplitude.

The routines are flexible in the sense that they have a number ofrun-timeoptions available for choosing
the post-Newtonian order of the phase calculations, or choosing whether or not to include spin effects. We
have also isolated those parts of the code where the messy post-Newtonian coefficients appear; thus the
routines may be easily modified to include yet higher-order post-Newtonian terms as they become available.

The post-Newtonian equations for the orbital phase evolution are notoriously ill-behaved [10, 11] as the
binary system nears coalescence. In this regime the expansion parameters [namely the relative velocityv=c
of the bodies and/or the field strengthGMtot=(c

2rorbit)] used in the derivation are comparable to unity. In
post2-Newtonian calculations higher orders such as post3-Newtonian terms have been discarded. Because of
this truncation, quantities that are are positive definite in an exact calculation (say the energy-loss rate, or the
time derivative of the orbital frequency) often become negative in their post-Newtonian expansion when the
orbital separation becomes small. When this happens you are using a post-Newtonian expression in a regime
where its validity is questionable. This is cause for concern, and it may be cause for terminating a chirp
calculation; but, it need not crash your code. A full-scale gravitational-wave search will need to compute
chirps over a broad range of parameters, virtually assuring that any post-Newtonian chirp generator will be
pushed into a region of parameter space where it doesn’t belong. These routines are designed to traverse
these dangerous regions of parameter space as well as possible and gently warn the user of the dangers
encountered. The calling routines may wish to act on the warnings coming from the chirp generator. For
example a severe warning may prompt the calling routine to discard a given filter from a data search, because
the second post-Newtonian calculation of the chirp is so dubious that it can’t give meaningful results.

In the next several sections we detail the use of three routines used to compute the “chirp” of a coalescing
binary system. The first routine we describe isphase frequency() . This is the underlying routine for
the other chirp routines. Given a set of parameters (e.g. the two masses, and the upper and lower cut-off
frequency for the chirp) it returns the orbital phase and orbital frequency evolution as a function of time.
Next we describechirp filter() which returns two (unnormalized) chirp signals. This routine can be
used for wholesale production of a bank of templates for a coalescing binary search.
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6.2 Function: phase frequency()

int phase frequency(float m1, float m2, float spin1, float spin2, int n phaseterms,
float *phaseterms, float Initial Freq, float Max Freq Rqst, float *Max Freq Actual,
float Sample Time, float **phase, float **frequency, int *steps alloc, int
*steps filld, int err cd sprs)
This function computes theorbital phase andorbital frequency evolution of an inspiraling binary. It re-
turns an integer termination code indicating how and why the chirp calculation terminated. This routine is
the engine that powers the other chirp generation routines. The arguments are:

m1: Input. The mass of body-1 in solar masses.

m2: Input. The mass of body-2 in solar masses.

spin1 : Input. The dimensionless spin parameter of body-1. See section on spin effects.

spin2 : Input. The dimensionless spin parameter of body-2. See section on spin effects.

n phaseterms : Input. Integer describing the number of post-Newtonian (pN) approximation terms
implemented in the phase and frequency calculations. In the present implementation this should be
set to5.

phaseterms : Input. The arrayphase terms[0..n phaseterms-1] specifies which pN approxi-
mation terms will be included in the phase frequency calculations. Settingphase terms[i]=0.0
nullifys the term. Settingphase terms[i]=1.0 includes the term. This allows for easy run-time
nullification of any term in the phase and frequency evolution,e.g.settingphase terms[4]=0.0
eliminates thesecondpost-Newtonian terms from the calculation.

Initial Freq : Input. The starting orbital frequency of the chirp in Hz.

Max Freq Rqst : Input. The requested orbital frequency where the chirp will stop. However, the actual
calculation may not proceed all the way to this orbital frequency. This is discussed at length below.

Max Freq Actual : Output. The floating number*Max Freq Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample Time : Input. The time interval between successive samples, in seconds.

phase : Input/Output. The phase ephemeris
 in radians is stored in the array*phase[0..steps filld-
1] . Input in the sense that much of the internal logic ofphase frequency() depends on how
the pointers*phase (and*frequency below) are set. If either is set toNULLmemory allocation
will be performed insidephase frequency() . If both are notNULLthen it is assumed the calling
routine has allocated the memory before callingphase frequency() .

frequency : Input/Output. Similar tophase above. The frequency ephemerisf = d
=dt is stored in
the array*frequency[0..steps filld-1] .

steps alloc : Input/Output. The integer*steps alloc is the number of floating point entries al-
located for storing the phase and frequency evolution,i.e. the length of**phase and **fre-
quency . This integer should be set in the calling routine if memory is allocated there, or it will
be set insidephase frequency() if memory is to be allocated there. If both of the pointers
*phase and*frequency are notNULLthenphase frequency() understands that the calling
routine is taking responsibility for allocating the memory for the chirp, and the calling routine must set
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*steps alloc accordingly. In this casephase frequency() will fill up the arrays**phase
and**frequency until the memory is full (i.e fill them with *steps alloc of floats) or until
the chirp terminates, whichever is less.

steps filld : Output. The integer*steps filld is the integer number of time steps actually com-
puted for this evolution. It is less than or equal to*steps alloc .

clscnc time : Output. The float*clscnc time is the time to coalescence in seconds, measured from
the instant when the orbital frequency isInitial Freq given bytc in Eqs.(6.4.1) and (6.4.2).

err cd sprs : Input. Error code suppression. This integer determines at what level of disaster encoun-
tered in the computation of the chirp the user will be explicitly warned about with a printed message.
Set to0: prints all the termination messages. Set to4000 : suppresses all but a few messages which
are harbingers of complete disaster. The termination messages are numbered from 0 to 3999 loosely
in accordance with their severity (the larger numbers corresponding to more severe warnings). Any
message with a number less thanerr cd sprs will not be printed. A termination code of 0 means
the chirp calculation was executed as requested. A termination code in the 1000’s means the chirp
was terminated early because the post-Newtonian approximation was deemed no longer valid. A ter-
mination code in the 2000’s generally indicates some problem with memory allocation. A termination
code in the 3000’s generally indicates a serious logic fault. Many of these “3000” errors result in the
termination of the routine. If you get an error message number it is easy to find the portion of source
code where the fault occurred; just do a character string search on the four digit number.

This phase and frequency generator has a number of very specialized features which will be discussed
later. However, before we proceed further, we show a simple example of howphase frequency() can
be used.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function will need to be extended when results of order 2.5 and 3 post-Newtonian calcu-
lations have been reported and published.
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6.3 Example:phase evoltn program

This example usesphase frequency() to compute the phase and frequency evolution for an inspiraling
binary and prints the results on the screen (stdout ). The other output messages go tostderr .

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
int main() f

float m1,m2,spin1,spin2,phaseterms[MAX PHS TERMS],clscnc time, �ptrphase, �ptrfrequency;
float time,Initial Freq,Max Freq Rqst,Max Freq Actual,Sample Time,time in band;
int steps alloc,steps filld,i,n phaseterms,err cd sprs,chirp ok;

=� Set masses and spins of the orbital system:�=
m1=m2=1.4;
spin1=spin2=0.;

=� Set ORBITAL frequency range of the chirp and sample time:�=
Initial Freq=60.; =� in cycles=second�=
Max Freq Rqst=2000.; =� in cycles=second�=
Sample Time=1. =9868.4208984375; =� in seconds�=

=� Use this block to compare with Will& Wiseman, PRD 54, 4813 (1996) Figure 10, page 4846.
spin1=0.1; spin2=0.5;
m1=1.4; m2=12.0;
Initial Freq=75.0; MaxFreq Rqst=180.0;�=

=� post-Newtonian [O(1=cˆ n)] terms you wish to include (or supress)
in the phase and frequency evolution:�=

n phaseterms=5; =� the number of entries in phaseterms�=
phaseterms[0] =1.; =� The Newtonian piece�=
phaseterms[1] =0.; =� There is no O(1=c) correction�=
phaseterms[2] =1.; =� The post-Newtonian correction�=
phaseterms[3] =1.; =� The 3=2 PN correction�=
phaseterms[4] =1.; =� The 2 PN correction�=

=� Set memory-allocation and error-code supression logic:�=
ptrphase=ptrfrequency=NULL;
err cd sprs=0;

=� Use phasefrequency() to compute phase and frequency evolution:�=
chirp ok=phase frequency(m1,m2,spin1,spin2,n phaseterms,phaseterms,

Initial Freq,Max Freq Rqst, &Max Freq Actual,Sample Time, &ptrphase,
&ptrfrequency, &steps alloc, &steps filld, &clscnc time,err cd sprs);

=� . . . and print out the results:�=
time in band=(float)(steps filld �1) �Sample Time;
fprintf(stderr,"\nm1=%f m2=%f Initial_Freq=%f\n", m1,m2,Initial Freq);
fprintf(stderr,"steps_filld=%i steps_alloc=%i Max_Freq_Actual=%f\n",

steps filld,steps alloc,Max Freq Actual);
fprintf(stderr,"time_in_band=%f clscnc_time=%f\n",time in band,clscnc time);
fprintf(stderr,"Termnination code: %i\n\n",chirp ok);

for (i=0;i <steps filld;i++) f
time=i �Sample Time;
printf("%i\t%f\t%f\t%f\n",i,time,ptrphase[i],ptrfrequency[i]);

g
return 0;
g
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Here is the output from thephase evoltn example:

GRASP: Message from function phase_frequency() at line number 439 of file "pN_chirp.c".
Frequency evolution no longer monotonic.
Phase evolution terminated at frequency and step: 911.681702 13357
Terminating chirp. Termination code set to: 1201
Returning to calling routine.
$Id: man_inspiral.tex,v 1.42 1999/09/29 19:44:41 ballen Exp $
$Name: RELEASE_1_9_8 $

m1=1.400000 m2=1.400000 Initial_Freq=60.000000
steps_filld=13357 steps_alloc=16384 Max_Freq_Actual=911.681702
time_in_band=1.353408 clscnc_time=1.353573
Termination code: 1201

0 0.000000 0.000000 60.000000
1 0.000101 0.038204 60.001675
2 0.000203 0.076369 60.003353
3 0.000304 0.114627 60.005020
4 0.000405 0.152820 60.006695
5 0.000507 0.191071 60.008366
6 0.000608 0.229173 60.010052

... ... ... ...

13349 1.352699 797.669800 720.294189
13350 1.352800 798.134949 741.157715
13351 1.352901 798.614136 764.565796
13352 1.353003 799.109192 791.015686
13353 1.353104 799.622192 821.015320
13354 1.353205 800.155457 854.720337
13355 1.353307 800.710999 890.133667
13356 1.353408 801.286499 911.681702

The first seven lines of output come directly fromphase frequency() , and are printed tostderr .
These give a warning message telling why the chirp calculation was terminated; it no longer had monoton-
ically increasing frequency. It also tells where the chirp was terminated; after computing13357 points it
has reached a frequency of907Hz. The termination code (1201 ) is also printed. Knowing the termination
code makes it easy to find the segment of source code that produced the termination; just do a search for
the character string “1201 ” and you will find the line of code where the termination code was set. Setting
err cd sprs greater than1201 would suppress the printing of this warning message and all messages
with a termination code less than1201 . However, even without the printed message the calling routine can
determine the value of the termination code; it is returned byphase frequency() .

The rest of the output comes from thephase evoltn program. The quantitytime in band=
(steps filld �1)�Sample Time is the length (in seconds) of the computed chirp. The quantity
clscnc time is the value oftc that enters Eqs.(6.4.1) below. The four column output from left to right is
the integer index of the data points, time stamp of each point in seconds (starting arbitrarily from zero), the
orbital phase in radians (starting arbitrarily from zero), and the orbital frequency (starting from the initial
frequency of60Hz).

To summarize: It takes about1.35 seconds for two1.4 M� objects to spiral in from an orbital fre-
quency of60Hz to an orbital frequency of911Hz. The chirp calculation was terminated at911Hz –
instead of the requested2000 Hz – because the post-Newtonian expression used to compute the chirp is
clearly out of its region of validity: the frequency is no longer increasing. Examining the last few data
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points shows that the frequency was rising quickly – as expected – until the last two data points. During
this inspiral the orbital system went through811.09 =(2�) �127.53 revolutions. The two integer num-
berssteps filld andsteps alloc are the number of actual data points computed and the number of
floating point memory slots allocated, respectively. (Memory is allocated in blocks of 4096 floats at a time.
Thussteps alloc will generally exceedsteps filld .) The values of the phase and frequency at ev-
ery1=Sample Time= 1:10333� 10�4 seconds starting from when the binary had an orbital frequency of
60Hz until it neared “coalescence” at911Hz have been calculated.
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6.4 Detailed explanation ofphase frequency() routine

Thephase frequency() routine starts with inputs describing the physical properties of the system (the
masses) and an initial frequency from which to start the evolution. We then compute the orbital frequency
evolution [in cycles/second] directly from the formula given in [7]

f(t) =
M�

16�T�mtot

�
��3=8 +

�
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2688
+
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�

�
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��3=4

+

�
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�2
�
��7=8

�
; (6.4.1)

wheremtot is the total mass of the binary. The time integral of this equation gives the orbital evolution in
cycles. Multiplying by2� yields the orbital phase in radians

�(t) = �c � 1
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: (6.4.2)

Here� is a dimensionless time variable

� =
�M�

5T�mtot
(tc � t) ; (6.4.3)

� = �=mtot, andtc is the time of coalescence of the two point masses. Similarly the constant�c is the
phase at coalescence, which is arbitrarily set inphase frequency() so that� = 0 at the initial time.
[See the detailed discussion of the phase conventions below.] Also notice that the mass quantities only
appear as ratios with the solar MassM�, and the time only appears as a ratio with the quantityT� =
4:925491 � 10�6 sec in Eq.(6.0.2).

These formulations of the post-Newtonian equations for the phase and frequency are simple to imple-
ment: each pass through the loop increments the time by the sample time (Sample Time in the example)
and computes the phase and frequency using Eqs. (6.4.1) and (6.4.2). However, there is an alternative for-
mulation. In deriving these equations the “natural” equation that arises is of the form_f = F (f). [Seee.g.
[12] Eq.(3).] This in turn can be integrated to give an equation of the formtc � t = T (f). In our formula-
tion this equation has been inverted – throwing away higher-order post-Newtonian terms as you go – to give
Eq.(6.4.1). However the equation in the formtc�t = T (f) can also be implemented directly. In this type of
formulation one would again increment the time, but then use a root-finding routine to find the frequency at
each time step. Our chosen method has the advantage of avoiding a time-consuming root-finder at each time
step; however the alternative formulation has undergone fewer damaging post-Newtonian transformations,
and may therefore be more accurate.

In our formulation we only need to call a root-finding routine at the start of the chirp to find the value
of tc � t when the system is at the initial frequency. In order to insure that we find the correct root for the
starting time we begin a search at a time when the leading order prediction of the frequency is well below
the desired starting frequency. We step forward in time until we bracket the root; we then call theNumerical
Recipesroot-finderrtbis() to compute the root precisely. This is depicted in the lower right corner of
figure 24 where we show the value of the “time” coordinateX that corresponds to an initial frequency of
60Hz. This method is virtually assured of finding thecorrect root in that it will find the first solution as we
proceed from right to left in figure 24. The primary problem in finding this root is that there may actually be
no meaningful start-time for the specified chirp. For example, if you you were to specify a chirp with two
1:4M� objects with an initial frequency of 1000Hz, you can see from the figure that there is no value ofX
(i.e. tc � t) that corresponds to this frequency. In this casephase frequency() will search from right
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to left for the start time. It will notice that it is passing over the peak in the graph and out of the regime of
post-Newtonian viability. It will then terminate the search and notify the caller that there is no solution for
the requested chirp.

The behavior of the frequency equation is shown in figure 24. As time increases the frequency rises to
a maximum and then begins to decrease dramatically. Notice that the maximum occurs when the dimen-
sionless time parameter� = �(tc�t)

5T�mtot
= X8 is approximately unity; this feature is only weakly dependent

on the mass ratio. The fact that� � 1 means the post-Newtonian corrections in Eq.(6.4.1) are comparable
to the leading order term. Therefore, this peak is a natural place to terminate the post-Newtonian chirp
approximation. In the example the code terminated the chirp for precisely this reason. [See the warning
message.]

Although it is not shown in the figure the behavior off asX nears zero is very abrupt; the function
goes sharply negative and then turns around and diverges to+1 asX ! 0 (i.e. t ! tc). This abrupt
behavior will happen on a time scale of orderT� (a few microseconds). Typical sample times are likely
to be on the order of a tenth of a millisecond, and therefore the iterative loop may step right over this
maximum-minimum-divergence behavior of the frequency function altogether. Don’t worry. The routine
phase frequency() handles this case gracefully. The routine will stop the chirp calculation and warn
the caller if the time stepper goes beyond the coalescence time. It will also stop the chirp calculation if
it senses that the time has stepped over the dip in frequency and is on the strongly divergent part of the
frequency curve near theX = 0 axis.
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6.5 Function: chirp filters()

int chirp filters(float m1, float m2, float spin1, float spin2, int n phaseterms,
float *phaseterms, float Initial Freq, float Max Freq Rqst, float *Max Freq Actual,
float Sample Time, float **ptrptrCos, float **ptrptrSin, int *steps alloc,
int *steps filld, int err cd sprs)
This function is a basic stripped-down chirp generator. It computes two – nearly orthogonal – chirp wave-
forms for an inspiraling binary. The two chirps differ in phase by�=2 radians. The chirp values are given
by Eqs.(6.6.1) and (6.6.2). Just as the phase and frequency calculatorphase frequency() returns an
integer number which describes how the chirp calculation was terminated, this routine does also.

The arguments are:

m1: Input. The mass of body-1 in solar masses.

m2: Input. The mass of body-2 in solar masses.

spin1 : Input. The dimensionless spin parameter of body-1. See section on spin effects.

spin2 : Input. The dimensionless spin parameter of body-2. See section on spin effects.

n phaseterms : Input. Integer describing the number of terms implemented in the phase and frequency
calculations. In the present implementation this should be set to5.

phaseterms : Input. The arrayphase terms[0..n phaseterms-1] describes which terms will
be included in the phase frequency calculations. Settingphase terms[i]=0 nullifys the term.
Settingphase terms[i]=1 includes the term. This allows for easy run-time nullification of any
term in the phase and frequency evolution,e.g. settingphase terms[4]=0 eliminates the second
post-Newtonian terms from the calculation.

Initial Freq : Input. The starting orbital frequency of the chirp in Hz.

Max Freq Rqst : Input. The requested orbital frequency where the chirp will stop. However, the actual
calculation may not proceed all the way to this orbital frequency.

Max Freq Actual : Output. The floating number*Max Freq Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample Time : Input. The time interval between points in seconds.

ptrptrCos : Input/Output. The chirp corresponding to Eq.(6.6.1) is stored in
*ptrptrCos[0..steps filld-1] . Input in the sense that much of the internal logic ofchirp filters()
depends on how the pointers*ptrptrCos (and *ptrptrSin below) are set. If either is set to
NULLmemory allocation will be performed insidechirp filters() . If both are notNULL then
it is assumed the calling routine has allocated the memory before callingchirp filters() .

ptrptrSin : Input/Output. Similar toptrptrCos above. The chirp corresponding to Eq.(6.6.2) is
stored in*ptrptrSin[0..steps filld-1] .

steps alloc : Input/Output. The integer*steps alloc is the number of floating point entries al-
located for storing the two chirps,i.e. the number of valid subscripts in the arrays**ptrptrCos
and**ptrptrSin . This integer should be set in the calling routine if memory is allocated there,
or it will be set insidechirp filters() if memory is to be allocated there. If both of the point-
ers*ptrptrCos and*ptrptrSin are notNULL thenchirp filters() understands that the
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calling routine is taking responsibility for allocating the memory for the chirp, and the calling rou-
tine must set*steps alloc accordingly. In this casechirp filters() will fill up the arrays
**ptrptrCos and**ptrptrSin until the memory is full (i.e fill them with *steps alloc of
floats) or until the chirp terminates, whichever is less.

steps filld : Output. The integer*steps filld is the number of time steps (sample values) actually
computed for this evolution. It is less than or equal to*steps alloc .

clscnc time : Output. The float*clscnc time is the time to coalescence in seconds, measured from
the instant when the orbital frequency isInitial Freq given bytc in Eqs.(6.4.1) and (6.4.2).

err cd sprs : Input. Error code suppression. This integer specifies the level of disaster encountered in
the computation of the chirp for which the user will be explicitly warned with a printed message. Set
to 0: prints all the termination messages. Set to4000 : suppresses all but a few messages which are
harbingers of true disaster. The termination messages are numbered from 0 to 3999 loosely in accor-
dance with their severity (the larger numbers corresponding to more severe warnings). Any message
with a number less thanerr cd sprs will not be printed. A termination code of 0 means the chirp
calculation was executed as requested. A termination code in the 1000’s means the chirp was termi-
nated early because the post-Newtonian approximation was deemed no longer valid. A termination
code in the 2000’s generally indicates some problem with memory allocation. A termination code in
the 3000’s generally indicates a serious logic fault. Many of these “3000” errors result in the termina-
tion of the program. If you get an error message number it is easy to find the portion of source code
where the fault occurred; just do a character string search on the four digit number.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.6 Detailed explanation ofchirp filters() routine

The routinechirp filters() callsphase frequency() to find out the how the orbital phase and
frequency evolve in accordance with the input parameters. It then makes a single pass through that phase
and frequency ephemeris, computing the chirps as it goes, and storing the information in the space al-
ready allocated for the phase and frequency. Most of the fault checking and computations are done in the
phase frequency() routine, and all the errors messages and warnings come from there.

The routinechirp filters() computes

hc(t) = 2

�
�

M�

��
2�T�mtotf(t)

M�

�2=3
cos 2�(t) (6.6.1)

and the other orbital-phase chirp which is�=2 out of phase withhc(t)

hs(t) = 2

�
�

M�

��
2�T�mtotf(t)

M�

�2=3
sin 2�(t) ; (6.6.2)

with all the leading numerical factors we display.
If the so called “restricted” post2-Newtonian polarizations [leading order in the amplitude, but post2-

Newtonian phase corrections] are desired, they can be easily assembled fromhc andhs. The “+” (plus)
polarization is given by

h+(t) = �T�c
D

(1 + cos2 i)hc(t) ; (6.6.3)

and the “�” (cross) polarization is given by

h�(t) = �2T�c
D

(cos i) hs(t) : (6.6.4)

HereD is the (luminosity) distance to the source in centimeters, c is the speed of light in centimeters/second,
andi is the inclination angle (radians) of the of the angular momentum axis of the source relative to the line-
of-sight. See Will and Wiseman [8] figure 7 for the precise definition of the inclination angle.

The restricted post2-Newtonian strain amplitude impinging on the detector can also be calculated from
the output ofchirp filters() by

h(t) = F+h+(t) + F�h�(t) ; (6.6.5)

whereF+ andF� are the detector beam-pattern functions.
In the remainder of this section we will clarify some technical issues involving the orbital phase. First,

in computing�(t) in phase frequency() we have arbitrarily set the constant�c in Eq.(6.4.2) such that
� = 0 at the beginning of the chirp. The astrophysical convention for defining the orbital phase angle�
given in [8] measures� in the plane of the orbit from the ascending node. [The ascending node of the
orbit is where body-1 passes through the plane of the sky going away from the observer.] Choosing�c in
this way we have assumed that body-1 is passing through the ascending node of the orbit at the instant we
start our chirp. Detailed information about the overall phase is not needed for many purposes (i.e. matched
filters), therefore our choice is of little consequence. If this information needs to be included for some
application,chirp filters() can be modified to do so; thus one can leave the computational engine
phase frequency() untouched.

The second issue involving the phase is a bit more delicate. We have used the true orbital phase�(t)
to compute oscillatory part of the chirp in Eqs.(6.6.1) and (6.6.2). But should we use the logarithmically
modulated phase variable

 (t) = �� 4Gmtot�f(t)

c3
ln[f(t)=fo] (6.6.6)
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in our computation of the chirp? After all, the true phase of the gravitational-wave signal impinging on the
detector is2 . Let us examine the effect on our signal replacingsin 2� in Eq.(6.6.2) with the logarithmically
correctedsin 2 

sin 2 = sin

�
2�� 8�mtotfG

c3
ln(f(t)=fo)

�
= sin 2� cos

�
8�mtotfG

c3
ln(f(t)=fo)

�
� cos 2� sin

�
8�mtotfG

c3
ln(f(t)=fo)

�
�
�
1 +O(1=c6)

�
sin 2��

�
8�mtotfG

c3
ln(f(t)=fo)

�
cos 2� : (6.6.7)

TheO[1=c6] is a post3-Newtonian term and can be neglected in the present post2-Newtonian analysis. How-
ever the coefficient of thecos 2� is a post3=2-Newtonian order correction to the waveform, and must be
included in any full post2-Newtonian analysis. This logarithmic term is included in the waveform calcula-
tion in thestrain() routine. However, the last line of Eq.(6.6.7) also shows that the logarithmic phase
correction can be considered a post3=2-Newtonian correction to the amplitude. In our present restricted
post-Newtonian chirp calculation we neglect these higher order amplitude corrections, so we are justified in
neglecting the logarithmic correction to the phase.

The advantage of neglecting the logarithm is that it speeds up the calculation of the chirps: we don’t
have to compute a logarithm at each time step. However, this may be at expense of accurately track-
ing the signal phase of a strongly relativistic source. After all much research has gone into computing
the gravitational wave phase from these sources and we shouldn’t willy-nilly discard these phase correc-
tions. Is it difficult to modify our code to include this term? Not at all. In fact, the inclusion of the
logarithmic correction to the gravitational wave phase would not affectphase frequency() , at all.
The fact that this logarithmic propagation effect only enters thechirp filters() routine and not the
phase frequency() routine may seem like a computational quirk, but this actually has a physical origin:
The routinephase frequency() computes the local orbital phase of the binary; whereas, the physical
origin of the logarithmic term is apropagationeffect and has nothing to do with the orbital phase,

This is not say that no log terms will ever be needed inphase frequency() . Note that at post4-
Newtonian order there are log terms which do affect the local instantaneous orbital motion of the binary, so
if phase frequency() is ever modified to incorporate that order, then log terms will appear there also.

Another issue involving the log term in the phase is the presence of the “arbitrary” scale factorfo
entering the definition of (t) in Eq.(6.6.6). The net effect of adjusting this constant is to change the value
of another arbitrary constant in our phase and frequency equations; it shifts the value oftc in Eq.(6.4.3). In
order to to facilitate swift computation, we choosefo to be the minimum frequency of the requested chirp.
This insures that the ratio in the logarithm is of order unity during the chirp computation.
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6.7 Example: filters program

This example useschirp filters() to generate two chirps�=2 out of phase with each other. It also
demonstrates a different memory allocation option than thephase evoln example program.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
int main() f

float m1,m2,spin1,spin2,phaseterms[MAX PHS TERMS],clscnc time, �ptrCos, �ptrSin;
float time,Initial Freq,Max Freq Rqst,Max Freq Actual,Sample Time,time in band;
int steps alloc,steps filld,i,n phaseterms,err cd sprs,chirp ok;

=� Set physical parameters of the orbital system:�=
m1=m2=1.4;
spin1=spin2=0.;

=� Set ORBITAL frequency range of the chirp and sample time:�=
Initial Freq=60.; =� in cycles=second�=
Max Freq Rqst=2000.; =� in cycles=second�=
Sample Time=1. =9868.4208984375; =� in seconds�=

=� post-Newtonian [O(1=cˆ n)] terms you wish to include (or supress)
in the phase and frequency evolution:�=

n phaseterms=5;
phaseterms[0] =1.; =� The Newtonian piece�=
phaseterms[1] =0.; =� There is no O(1=c) correction�=
phaseterms[2] =1.; =� The post-Newtonian correction�=
phaseterms[3] =1.; =� The 3=2 PN correction�=
phaseterms[4] =1.; =� The 2 PN correction�=

=� Set memory-allocation and error-code supression logic:�=
steps alloc=10000;
ptrCos=(float �)malloc(sizeof(float) �steps alloc);
ptrSin=(float �)malloc(sizeof(float) �steps alloc);
err cd sprs=0; =� 0 means print all warnings�=

=� Use chirp filters() to compute the two filters:�=
chirp ok=chirp filters(m1,m2,spin1,spin2,n phaseterms,phaseterms,

Initial Freq,Max Freq Rqst, &Max Freq Actual,Sample Time,
&ptrCos, &ptrSin, &steps alloc, &steps filld, &clscnc time,err cd sprs);

=� . . . and print out the results:�=
time in band=(float)(steps filld �1) �Sample Time;
fprintf(stderr,"\nm1=%f m2=%f Initial_Freq=%f\n", m1,m2,Initial Freq);
fprintf(stderr,"steps_filld=%i steps_alloc=%i Max_Freq_Actual=%f\n",

steps filld,steps alloc,Max Freq Actual);
fprintf(stderr,"time_in_band=%f clscnc_time=%f\n",time in band,clscnc time);
fprintf(stderr,"Termnination code: %i\n\n",chirp ok);
for (i=0;i <steps filld;i++) f

time=i �Sample Time;
printf("%i\t%f\t%f\t%f\n",i,time,ptrCos[i],ptrSin[i]);

g
return 0;
g
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Figure 25: The zero-phase chirp waveform from a2 � 1:4M� binary system, starting at an orbital fre-
quency of 60 Hz. The top graph shows the frequency of the dominant quadrupole radiation as a function of
time, and the middle graph shows the waveform. The bottom graph shows a 40-msec stretch near the final
inspiral/plunge.

Notice that we only allocated enough memory for 10000 points, and we know from the output from the
previous example that this chirp takes13515 points. Therefore running this example results in following
error message printed tostderr :

GRASP:phase_frequency():Allocated memory is filled up before
reaching the maximum frequency requested for this chirp.
Orbital Frequency Reached(Hz): 98.867607, Number of points: 10000
Terminating chirp. Termination code set to: 2001
Returning to calling routine.

However, even though the routine ran out of memory it still computed the first10000 points of the chirp
and returned them in the arrays *ptrptrCos[0..steps alloc-1] and
*ptrptrSin[0..steps alloc-1] .
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6.8 Practical Suggestion for Setting Up a Large Bank of Filters:

We have carefully explained (how to avoid) a number of the pitfalls in computing post-Newtonian chirps.
Before using the chirp generators to spit out hundreds or thousands of chirps needed for a bank of filters and
farming out the computations out to dozens of parallel processors in a massive coalescing binary search, we
strongly suggest that you edit the examples already given and check the routine against thethree extreme
cases you will encounter in your search.

1. Try the example with both masses set to the minimum mass in your proposed search,i.e. compute
the phase and frequency evolution and the chirps for the template in the upper right hand corner in
figure 59. This is the template of longest duration. If you are going to have a memory allocation
problem you will have it with this template. Also, knowing the duration of the longest template in
your search will help you decide the length of the segments of data which you filter. In general, you
want the length of these data segments to be at least several times longer than the longest chirp. See
Section 6.19 for further details.

2. Try the chirp generator with both masses set to the maximum mass in your search,i.e. compute
the phase and frequency evolution of the template in the lower left corner of figure 59. This is the
shortest duration template and the one least likely to make it to the upper cut off frequency before
going out of the region of post-Newtonian viability. This case will be the most demanding test of
the “chirp-termination” logic inphase frequency() . It is also possible in the case of extremely
large masses that there really is no chirp at all in the frequency regime requested. For example a
binary composed of two 100M� object will coalesce long before it reaches the initial chirp frequency
of the 60Hz we are using as our a lower cutoff frequency in our example. Don’t worry. The routine
phase frequency() will warn you that the root finder was unable to find a viable solution for the
initial time. You may have to adjust the search range accordingly.

3. Try the chirp generator with one mass at the minimum allowed value and the other mass at the max-
imum allowed value,i.e. compute the phase and frequency evolution for the template in the upper
left corner of figure 59. This is the template which is most dominated by post-Newtonian terms in the
evolution.

If the routine gives satisfactory results for these three cases, it should work for all the cases shown in figure
59; you are now ready for wholesale production.
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6.9 Additional contributions to the phase and frequency of the chirp

In recent years additional relativistic corrections to the binary inspiral chirp formula have been calculated.
These have now been included in GRASP, and are available to users generating template banks. The changes
have been implemented in existing GRASP routines, and using them requires minimal modification of your
code. Furthermore,if you have written GRASP code that uses only second post Newtonian chirps – and you
want to keep it that way – you don’t need to do anything: all the modifications are compatible with previous
GRASP releases.

When the original code for the GRASP chirp generator was written, only the second post-Newtonian
relativistic corrections to the phase and frequency evolution were available. These are depicted in Eqs.
(6.4.1) and (6.4.2), and implemented in thephase frequency() routine. The routine used for gener-
ating template banks,make filters() , uses these formulae by callingphase frequency() . In the
next two subsubsections we discuss extensions of these formulae and routines to include the contributions to
the phase and frequency produced by the spins of the objects (spin-orbit coupling, and spin-spin coupling)
and also the contribution from the 2.5 post-Newtonian order corrections. In future GRASP releases we hope
to include contributions to the phase and frequency produced by the quadrupole moment of the bodies and
higher-order post-Newtonian effects.

6.9.1 Spin Effects

In the simple case where the spin vectors of the bodies are aligned (or antialigned) with the orbital angular
momentum axis, the GRASP chirp-generating functions have the built-in capability of computing the leading
order spin-orbit and spin-spin corrections to the inspiral chirp. To use this feature no modification of
the chirp-generating routines [phase frequency() or chirp filters() ] is necessary; simply pass
nonzero values of the spin parameters to the functions. This can easily be done by editing the example
programsphase evoltn.c and/or filters.c to pass nonzero values of the variablesspin1 and
spin2 . [See below for definitions and allowed ranges ofspin1 andspin2 .]

When spinning bodies are involved, the full gravitational waveform can be quite complicated; the orbital
plane and the spin vectors of the individual bodies can precess. The precession causes a modulation of the
signal. However, this GRASP routines only implements the the special case when the spins are assumed to
be aligned (or antialigned) with the orbital angular momentum axis. In this case there is no precession and,
therefore, no modulation of the amplitude of the signal. Also in this case, the spin-corrections to the orbital
frequency and phase are given by simple modifications to the nonspin phase and frequency Eqs. (6.4.1) and
(6.4.2). The necessary terms can be found in Eq.(F22) in Appendix F of [8], and are given by

f(t) =
M�

16�T�mtot

�
��3=8 + ::: +

�
113

160
[�s + (Æm=m)�a]� 19

40
��s

�
��3=4

�
�
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�
��7=8

�
; (6.9.1)

and

�(t) = �c � 1

�

�
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�
: (6.9.2)

Here� is the dimensionless time variable given by Eq. (6.4.3). The ellipses represent the nonspin (post)n-
Newtonian terms already given in Eqs. (6.4.1) and (6.4.2). The quantities�s and�a are dimensionless
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quantities related to the angular momentum of the bodies by

�s =
1

2

�
S1
m2

1

+
S2
m2

2

�
; (6.9.3)

�a =
1

2

�
S1
m2

1

� S2
m2

2

�
; (6.9.4)

whereS1(2) is the signed magnitude of the angular momentum vector of each body expressed in geometrized
units (cm2), andmi is the mass in geometrized units (cm). [Below we show how to covert from geometrized
units to cgs units.] The sign is positive (negative) for spins aligned (antialigned) with the the angular mo-
mentum axis. By comparing the nonspin phase and frequency evolution in Eqs. (6.4.1) and (6.4.2) with the
spin corrections in Eqs. (6.9.1) and (6.9.2), we see that the spin-orbit corrections (terms linear in�s and
�a) simply modify the (post)3=2-Newtonian contributions and the spin-spin corrections (term quadratic in
�s and�a) modify the (post)2-Newtonian contributions.

Specifically, the spin quantities passed to the chirp generation routines are the signed, dimensionless
(Kerr-like) parameters of each body

spin1 = �jS1j
m2

1

; (6.9.5)

spin2 = �jS2j
m2

2

; (6.9.6)

where the+(�) sign is chosen if the spin is aligned (antialigned) with the orbital angular momentum axis.
[Note: only in Eqs.(6.9.3)-(6.9.6) is mass expressed in geometrized units.]

Some calculations (e.g. those requiring a precise definition of the orbital phase) are sensitive to the
index assigned to the bodies. The GRASP convention is thatm1 is the smaller of the two masses; therefore
spin1 should be the spin assigned to the smaller of the two masses.

How are the dimensionless spin parametersspin1(2) and the geometrized angular momentumSi
related to angular momentum of the bodies in cgs units? LetLi denote the spin angular momentum of the
i-th body in cgs units (i.e. gram cm2/sec). ThenLi is related toSi by

Si [in geometrized units; i:e: cm2] =

�
G

c3

�
Li (in gram cm2=sec)

= 2:477 � 10�39(sec=gram) Li (in gram cm2=sec) :(6.9.7)

The conversion of angular momentum in cgs units to thedimensionlessvariablespin1(2) (the variable
actually sent to the routine) is

spini =

 
c

Gm2
i

!
Li =

 
c

Gm2�

!�
M�
mi

�2
Li = 1:136 � 10�49(sec=(gram cm2))

�
M�
mi

�2
Li (6.9.8)

whereLi is the magnitude of the spin angular momentum of the i-th body in standard cgs units (i.e. gram
cm2/sec), andmi is the mass in grams.

What is the allowable range for the spin parametersspin1 and spin2 ? For Kerr black holes, we
know jspin1(2)j = (jS1(2)j=m2

1(2)) � 1. For spinning neutron stars, stability studies (based on rel-
ativistic numerical hydrodynamic simulations) show that the spin parameter must satisfyjspin1(2)j =
(jS1(2)j=m2

1(2)) <� 0:6. These limits can serve as a hard upper bound for a choice of spin parameters.
However, observed pulsars in binaries have spin parameters substantially smaller than this limit,e.g. for the
Hulse-Taylor pulsar we havespin1 <� 6:5 � 10�3. (See [12] for discussion and references.)
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As a sanity check and a demonstration of how to calculate the spin parameters, we verify the numbers
quoted above for the Hulse-Taylor binary pulsar. The pulsar is a neutron star withm � 1:4M�, a radius
R � 10km, and a spin frequency of about 17Hz. [Don’t confuse the spin period (1/17 sec) with the orbital
period (8hrs).] If we model the moment of inertia,I, as that of a sphere with uniform density, we obtain

LHul�Tay � 2�Ifspin

� 4�

5
fspinMR2

� 1:2� 1047(gram cm2=sec)

Using Eq.(6.9.8) to convert this to the dimensionless quantity we have

spinHul�Tay � 6:8� 10�3 : (6.9.9)

This is reasonable agreement with the numbers given above.
We can also use the above conversions to give the angular momentum of the Hulse-Taylor pulsar in

geometrized units
SHul�Tay � 3� 108 cm2 � 7acres : (6.9.10)

Like all post-Newtonian equations, Eqs. (6.9.1) and (6.9.2) are slow-motion approximations to the fully
relativistic equations of motion; therefore they are most accurate – and behave best – for smaller values of
the spin parameters. The GRASP routines have been tested for a modest range of masses (0:1M�,10M�)
and spins (�0:2,+0:2) in the frequency band60Hz � forb � 2000Hz; they seem to give reasonable results
in this regime.

Finally, the admonitions and suggestions given in Sec. (6.8) about setting up banks of filters hold here
also: test the chirp-generating functions with the extreme values of masses and spins you intend to use in
your search. If the functions give satisfactory results at the “corners” of the parameter space, they should
work on the interior of the parameter space.
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6.9.2 2.5 Post-Newtonian corrections to the inspiral chirp

A quick start: Most GRASP users probably generate chirps by callingmake filters() (Sec. 6.10).
This is all they will need to know:

1. If you are using the routinemake filters() (Sec. 6.10) to generate templates and you wish to
include the 2.5 post-Newtonian corrections in your chirp calculations, simply setorder = 5 when
you callmake filters() . The chirps returned will be 2.5 post-Newtonian chirps.

2. If you do not want the 2.5 post-Newtonian corrections – they will slow down your chirp calculations
– setorder � 4 when you callmake filters() . This is probably what you have been doing, so
you won’t need to change anything.

3. The behavior of the post-Newtonian series does not get better as you go to higher order: if anything, it
gets worse. Therefore, if you use 2.5 post-Newtonian order templates in your search, the admonition
in Sec. 6.8 about checking the “corners ”of the filter-bank space hold in spades at higher order

Now, for a more thorough explanation: The 2.5 post-Newtonian corrections to the orbital frequency and
phase have been calculated by Blanchet [9]. These include corrections of O[(v=c)5] beyond the quadrupole
approximation in the phase and frequency evolution. The expressions are

f(t) =
M�

16�T�mtot

�
��3=8 + :::�

�
7729

21504
+

3

256
�

�
���1

�
; (6.9.1)

and

�(t) = �c � 1

�

�
�5=8 + :::�

�
38645

172032
+

15

2048
�

�
� log

�
�

�o

� �
: (6.9.2)

Here� is the dimensionless time variable given by Eq. (6.4.3). The ellipses represent the second post-
Newtonian terms already given in Eqs. (6.4.1) and (6.4.2), as well as the spin correction given in Eqs.
(6.9.1) and (6.9.2). The constant�o is arbitrary; changing its value shifts the phase by a constant. In the
code, it is set to the value of the time parameter� at the beginning of the chirp; this insures that the argument
of logarithm is close to unity throughout the chirp. The value of�c is then chosen so the phase is zero at the
start time,i.e. when the orbital frequency is equal toInitial Freq .

Computing the logarithm is slow, therefore the code is designed to logically step over the 2.5 post-
Newtonian corrections unless they are explicitly called for. Perhaps, in the future, we will write some
optimized code to speed up the log calculation.

How to (not) include the 2.5-post-Newtonian corrections to the waveform in your chirp calculations: As
we stated above, simply changing the value of the parameterorder is all that is needed inmake filters() .
However, if you are making direct calls to the underlying routinesphase frequency() orchirp filters()
(as opposed to havingmake filters() do it for you) you need to setn phaseterms=6 , andphaseterms[5]
=1.0 . This will turn on the 2.5 post-Newtonian corrections. To illustrate this, here is how the code block in
the examplesphase evoltn() andfilters() has to be modified to include the 2.5 post-Newtonian
corrections.

/* post-Newtonian [O(1/cˆn)] terms you wish to include (or suppress)
in the phase and frequency evolution: */

n_phaseterms=6;
phaseterms[0] =1.; /* The Newtonian piece */
phaseterms[1] =0.; /* There is no O(1/c) correction */
phaseterms[2] =1.; /* The post-Newtonian correction */
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phaseterms[3] =1.; /* The 3/2 PN correction */
phaseterms[4] =1.; /* The 2 PN correction */
phaseterms[5] =1.; /* The 5/2 PN correction */

Notice thatn phaseterms=6 andphaseterms[5] =1.0 . Nothing else needs to be changed in the
examples.
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6.10 Function: make filters()

void make filters(float m1, float m2, float *ch1, float *ch2, float fstart,
int n, float srate, int *filled, float *t coal, int err cd sprs, int order)
This function is an even more stripped down chirp generator, which fills a pair of arrays with waveforms
for an inspiraling binary. The two chirps differ in phase by�=2 radians and are given by Eqs.(6.6.1) and
(6.6.2). This routine assumes spinless masses, and computes a chirp with phase corrections up to a specified
post-Newtonian order.

The arguments are:

m1: Input. The mass of body-1 in solar masses.

m2: Input. The mass of body-2 in solar masses.

ch1 : Output. Upon return,ch1[0..filled-1] contains the 0-phase chirp. The remaining array
elementsch1[filled..n-1] are set to zero.

ch2 : Output. Upon return,ch2[0..filled-1] contains the�=2-phase chirp. The remaining array
elementsch2[filled..n-1] are set to zero.

fstart : Input. The starting gravity-wave frequency of the chirp in Hz. Note: this is twice the orbital
frequency!

n: Input. The length of the arraysch1[] andch2[] .

srate : Input. The sample rate, in Hz. This is1=�t where�t is the time interval between successive
entries in thech1[] andch2[] arrays.

filled : Output. The number of of time steps actually computed, before the chirp calculation was termi-
nated, or until the arrays were filled (hencefilled � n). Thus, on return, only the array elements
ch1[0..filled-1] andch2[0..filled-1] are contain the chirp; the remaining array ele-
ments are zero-padded.

t coal: Output. The time to coalescence measured from the first point output, inch*[0] .

err cd sprs : Input. Error code suppression. This integer specifies the level of disaster encountered in
the computation of the chirp for which the user will be explicitly warned with a printed message. Set
to 0: prints all the termination messages. Set to4000 : suppresses all but a few messages which are
harbingers of true disaster. (See identical argument inchirp filters() .

order : Input. The order of the post-Newtonian approximation. This ranges from 0 (quadrupole ap-
proximation) up to 5 (2.5 post-Newtonian order). Settingorder=4 gives second post-Newtonian
chirps. Technicaly,order is the power in(v=c) past the quadrupole approximation to which the
post-Newtonian expansion is taken.

This routine assumes that you have already allocated storage arrays for the chirps. Note that the coales-
cence time may be much later than the last non-zero entry written into thech1[] andch2[] arrays.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.11 Stationary phase approximation to binary inspiral chirps

Much of the literature on binary inspiral data analysis approximates chirps in the frequency domain by
the method of stationary phase. The main reason for this approximation is the need to generate analytical
expressions in the frequency domain, where almost all of the optimal filtering algorithm takes place. It is
also in some sense more natural to generate waveforms in the frequency domain rather than the time domain
because the post-Newtonian energy and flux functions used to construct even the time-domain waveforms
are expanded in powers of the orbital frequency. A side benefit is that the post-Newtonian expansion seems
better behaved in the frequency domain—that is, there is no nonmonotonic frequency evolution as depicted
in figure 24.

Therefore, GRASP includessp filters() , a stationary phase chirp generator similar tomake filters() .
The advantage of this function is a considerable savings in CPU time by avoiding FFTs of time-domain
chirps in the generation of matched filters. The disadvantages are unknown—the question of which version
of the post-Newtonian expansion (time-domain or frequency-domain) is a better approximation to the real
thing is currently wide open.

The stationary phase approximation can be found in any textbook on mathematical methods in physics.
An excellent discussion in the context of binary inspiral can be found in section II C of [21]. Another
inspiral-related discussion can be found in [22], where it is shown that the errors induced by the stationary
phase approximation itself [as opposed to differences betweent(f) and f(t)] are effectively fifth post-
Newtonian order.

The stationary phase approximations to the Fourier transforms ofhc(t) andhs(t) [Eqs. (6.6.1,6.6.2)] are
given in the restricted post-Newtonian approximation by

~hc(f) =

�
5�

96M�

�1=2 � M

�2M�

�1=3
f�7=6T�1=6� exp [i	(f)]; (6.11.1)

~hs(f) = i~hc(f); (6.11.2)

wheref is the gravitational wave frequency in Hz,M is the total mass of the binary, and� is the reduced
mass. Note that~hc;s(f) have dimensions of 1/Hz. The instrument strain per Hz,~h(f), is obtained from a
linear superposition of~hc;s(f) in exactly the same way ash(t) is obtained fromhc;s(t). See the discussion
following Eqs. (6.6.1,6.6.2).

The restricted post-Newtonian approximation assumes that the evolution of the waveform amplitude is
given by the 0’th-order post-Newtonian expression, but that the phase evolution is accurate to higher order.
This phase is given by

	(f) = 2�ftc � 2�c � �=4

+
3

128�

�
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�
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�
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�
x�1

+

�
38 645

252
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�
� lnx

�
; (6.11.3)

wherex = (�MfT�=M�)1=3, the coalescence phase�c is determined by the binary ephemeris, and the
coalescence timetc is the time at which the bodies collide. The chirps~hc and~hs are given�c = 0 and
�c = ��=4, respectively. All but the last term of (6.11.3) can be found in [23]; the last term was computed
from [9] by Ben Owen and Alan Wiseman.

The chirps are set to zero for frequencies below the requested starting frequency and above an upper
cutoff fc (see below). This square windowing in the frequency domain produces ringing at the beginning and
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end of the waveform in the time domain (see Fig. 26). For data analysis purposes it appears this ringing is not
very important: it produces a mismatch (see Sec. 9.7) between waveforms generated bysp filters()
and bymake filters() of a fraction of a percent—if the stationary phase waveform is cut off at the
same frequencyfc as the time-domain waveform.

The choice of the cutoff frequencyfc is somewhat problematic. Physically,fc should correspond to the
epoch when orbital inspiral turns to headlong plunge. The formula forfc currently is not known for a pair
of comparably massive objects, but in the limit of extreme mass ratio (and no spins) it should be equivalent
to the well-known innermost stable circular orbit (ISCO) of Schwarzschild geometry. The frequency of the
Schwarzschild ISCO can be computed exactly and is given in Hz by

fc =
M�

63=2�MT�
: (6.11.4)

Use of the Schwarzschildfc for all binaries is a kludge which seems to work surprisingly well in the sense
that it yields anfc close to that at which the time-domain waveforms cut off due todf=dt going negative
(see thecompare chirps program).
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6.12 Function: sp filters()

void sp filters(float m1, float m2, float *ch1, float *ch2, float fstart,
int n, float srate, float f c, float t c, int order)
This function generates stationary phase approximations to binary inspiral chirp waveforms. Its input and
output are similar tomake filters() . The difference is that the chirps are generated in the frequency
domain using the stationary phase approximation.

The arguments are:

m1: Input. The mass of body-1 in solar masses.

m2: Input. The mass of body-2 in solar masses.

ch1 : Output. Upon return,ch1[0..n-1] contains the stationary phase approximation to~hc(f) [Eq. (6.11.1)]
in the same format as would be returned by arealft() of a time-domain function sampled at rate
srate . That is, except for DC and Nyquist frequencies,ch1[2*i] and ch1[2*i+1] contain
respectively the real and imaginary parts of~hc(f) for f = i � srate=n. This function setsch1[0]
(DC) andch1[1] (Nyquist) to zero. The chirp is also set to zero forf < fstart and forf > f c

(see section 6.11 forfc). The outputch1[0..n-1] has dimensions of 1/Hz.

ch2 : Output. Upon return,ch2[] contains~hs(f) in the same way thatch1[] contains~hc(f).

fstart : Input. The starting gravitational-wave frequency of the chirp in Hz. Note: this is twice the
orbital frequency!

n: Input. The length of the arraysch1[0..n-1] andch2[0..n-1] .

srate : Input. The sample rate, in Hz.

f c : Input. The coalescence frequencyfc, as described in section 6.11. This is the high-frequency cutoff
of the chirps.

t c: Input. The coalescence time, in seconds. Note this is the time of theendof the chirp (see sec-
tion 6.13).

order : Input. Order of generated chirps in(�MfT�=M�)1=3 (twice the post-Newtonian order).

This function assumes that you have already allocated storage for the chirps.

Author: Benjamin Owen, owen@tapir.caltech.edu

Comments: Thesp filters() function doesn’t include spins yet. It will be simple to add higher-order
post-Newtonian phase terms as they appear in the literature.
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6.13 Example:compare chirps program

This example compares a chirp generated bysp filters() to a chirp with identical parameters generated
by make filters() ; the output is shown in Figure 26. The chirp generated bysp filters() is
transformed to the time domain, and the two chirps are superimposed on one graph.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� comparechirps.c: by Benjamin Owen, 1997�=

#include "grasp.h"

#define FSTART 40. =� GW starting frequency, in Hz�=
#define SRATE 10000. =� Sample rate, in Hz�=
#define LENGTH 32768 =� Twice no of freq bins = samples in time domain�=
#define MASS1 10.0 =� mass of first body, in solar masses�=
#define MASS2 10.0 =� mass of second body, in solar masses�=

int main() f
FILE �fp;
float t c, f c, �sp, �td, �dummy;
int i,pn order;
void realft(float �,unsigned long,int);

=� Allocate memory for chirps�=
sp = (float �)malloc(sizeof(float) �LENGTH);
td = (float �)malloc(sizeof(float) �LENGTH);
dummy = (float �)malloc(sizeof(float) �LENGTH);

=� order of (v=c) used in chirp calculation comparison�=
pn order=4;

=� Generate time-domain chirp for comparison purposes�=
make filters(MASS1, MASS2, td, dummy, FSTART, LENGTH, SRATE, &i, &t c, 2000,pn order);

=� Generate stationary phase chirp in frequency domain�=
f c = pow(6, �1.5) =M PI =(MASS1+MASS2)=TSOLAR;
sp filters(MASS1, MASS2, sp, dummy, FSTART, LENGTH, SRATE, f c, t c, pn order);

=� Transform stationary phase chirp to the time domain�=
realft(sp �1, LENGTH, �1);

=� Graph both chirps in the time domain. First output file.�=
fp = fopen("compare_chirps.output", "w");
for (i=0; i <LENGTH; i++)

fprintf(fp, "%f %f %f\n", i =SRATE, td[i], sp[i] �2�SRATE=LENGTH);
fclose(fp);

=� Now graph the contents of the file using xmgr�=
system("xmgr -nxy compare_chirps.output &");

return 0;
g

Note that to get the graph to show both chirps as simultaneous functions of time,sp filters()
needed to know the coalescence time found bymake filters() , so the latter function is called first.
If the coalescence time input tosp filters() had been zero , its chirp would have finished at the
beginning—or equivalently, the end—of the time-domain data.
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Figure 26: The output ofcompare chirps , comparing the stationary-phase approximate waveform
FFT’d into the time domain (red curve) with a 2nd-order post-Newtonian chirp calculated in the time do-
main, usingmake filters() (black curve). The lower part of the graph shows three interesting regions
of the upper (complete) graph. The bottom left detail shows the Gibbs startup-transient, the bottom middle
detail shows a typical region of good agreement, and the bottom right detail shows the Gibbs turn-off tran-
sient. The Gibbs startup transient is also visible at the far right of the upper figure, which is periodically
identified with the far left.

Also note that the inverserealft() of the stationary phase chirp had to be multiplied by a factor to be
comparable to the time-domain chirp. The2/LENGTH factor is left out of the inverserealft() , and the
SRATEfactor is needed to keep the dimensions right. (Also, the forwardrealft() of the time-domain
chirp would need to be multiplied by1/SRATE to compare to the stationary phase chirp.)
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6.14 Wiener (optimal) filtering

The technique ofoptimal filtering is a well-studied and well-understood technique which can be used to
search for characteristic signals (in our case, chirps) buried in detector noise. In order to establish notation,
we begin this section with a brief review of the optimal filtering technique.

Suppose that the detector output is a dimensionless strainh(t). (In Section 3 we show how to construct
this quantity for the CIT 40-meter prototype interferometer, using the recorded digital data stream). We
denote byC(t) the waveform of the signal (i.e., the chirp) which we hope to find, hidden in detector noise,
in the signal streamh(t). Since we would like to know about chirps which start at different possible times
t0, we’ll take C(t) = �T (t � t0) whereT (t) is the canonically normalized waveform of a chirp which
enters the sensitivity band of the interferometer at timet = 0. The constant� quantifies the strength of the
signal we wish to extract as compared to an otherwise identical signal of canonical strength (we will discuss
how this canonical normalization is defined shortly). In other words,T (t) contains all the information about
the chirp we are searching for apart from the arrival time and the strength, which are given byt0 and�
respectively. For the moment, we will ignore the fact that the chirps come in two different phase “flavors”.

We will construct a signalS, which is a number defined by

S =

Z 1

�1
dt h(t)Q(t); (6.14.1)

whereQ(t) is an optimal filter function in time domain, which we will shortly determine in a way that
maximizes the signal-to-noise ratioS=N or SNR. We will assume thatQ is a real function of time.

We use the Fourier transform conventions of (3.9.3) and (3.9.4), in terms of which we can write the
signalS as

S =

Z 1

�1
dt

Z 1

�1
df

Z 1

�1
df 0e�2�ift+2�if

0t~h(f) ~Q�(f 0)

=

Z 1

�1
df

Z 1

�1
df 0Æ(f � f 0)~h(f) ~Q�(f 0)

=

Z 1

�1
df~h(f) ~Q�(f): (6.14.2)

This final expression gives the signal valueS written in the frequency domain, rather than in the time
domain.

Now we can ask about the expected value ofS, which we denotehSi. This is the average ofS over an
ensemble of detector output streams, each one of which contains an identical chirp signalC(t) but different
realizations of the noise:

h(t) = C(t) + n(t): (6.14.3)

So for each different realization,C(t) is exactly the same function, butn(t) varies from each realization to
the next. We will assume that the noise has zero mean value, and that the phases are randomly distributed,
so thath~n(f)i = 0. We can then take the expectation value of the signal in the frequency domain, obtaining

hSi =
Z 1

�1
dfh~h(f)i ~Q�(f) =

Z 1

�1
df ~C(f) ~Q�(f): (6.14.4)

We now define thenoiseN to be the difference between the signal value and its mean for any given element
of the ensemble:

N � S � hSi =
Z 1

�1
df ~n(f) ~Q�(f): (6.14.5)
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The expectation value ofN clearly vanishes by definition, sohNi = 0. The expected value ofN2 is non-
zero, however. It may be calculated from the (one-sided) strain noise power spectrum of the detectorSh(f),
which is defined by

h~n(f)~n�(f 0)i = 1

2
Sh(jf j)Æ(f � f 0); (6.14.6)

and has the property that

hn2(t)i =
Z 1

0
Sh(f) df: (6.14.7)

We can now find the expected value ofN2, by squaring equation (6.14.5), taking the expectation value, and
using (6.14.6), obtaining

hN2i =

Z 1

�1
df

Z 1

�1
df 0 ~Q�(f)h~n(f)~n�(f 0)i ~Q(f 0)

=
1

2

Z 1

�1
df Sh(jf j)j ~Q(f)j2

=

Z 1

0
df Sh(f)j ~Q(f)j2: (6.14.8)

There is a nice way to write the formulae for the expected signal and the expected noise-squared. We
introduce an “inner product” defined for any pair of (complex) functionsA(f) andB(f). The inner product
is a complex number denoted by(A;B) and is defined by

(A;B) =

Z 1

�1
df A(f)B�(f)Sh(jf j): (6.14.9)

BecauseSh is positive, this inner product has the property that(A;A) � 0 for all functionsA(f), vanishing
if and only ifA = 0. This inner product is what a mathematician would call a “positive definite norm”; it
has all the properties of an ordinary dot product of vectors in three-dimensional Cartesian space.

In terms of this inner product, we can now write the expected signal, and the expected noise-squared, as

hSi = (
~C

Sh
; ~Q) and hN2i = 1

2
( ~Q; ~Q): (6.14.10)

(Note that wheneverSh appears inside the inner product, it refers to the functionSh(jf j) rather thanSh(f).)
Now the question is, how do we choose the optimal filter functionQ so that the expected signal is as large
as possible, and the expected noise-squared is as small as possible? The answer is easy! Recall Schwarz’s
inequality for inner products asserts that

(A;B)2 � (A;A)(B;B); (6.14.11)

the two sides being equal if (and only if)A is proportional toB. So, to maximize the signal-to-noise ratio

�
S

N

�2
=
hSi2
hN2i = 2

(
~C
Sh
; ~Q)2

( ~Q; ~Q)
(6.14.12)

we choose

~Q(f) /
~C(f)

Sh(jf j) = �
~T (f)

Sh(jf j) e
2�ift0 : (6.14.13)

The signal-to-noise ratio defined by equation (6.14.12) is normalized in a way that is generally accepted and
used. Note that the definition is independent of the normalization of the optimal filter~Q, since that quantity
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appears quadratically in both the numerator and denominator. However if we wish to speak about “Signal”
values rather than about signal-to-noise values, then the normalization of~Q is relevant. If we choose the
constant of proportionality to be2��1, (i.e. set� = 2, for reasons we will discuss shortly) then we can
express the template in terms of the canonical waveform,

~Q(f) = 2
~T (f)

Sh(jf j)e
2�ift0 (6.14.14)

Going back to the definition of our signalS, you will notice that the signalS for “arrival time offset” t0 is
given by

S =

Z 1

�1
df ~h(f) ~Q�(f)

= 2

Z 1

�1
df

~h(f) ~T �(f)
Sh(jf j) e�2�ift0 : (6.14.15)

Given a template~T and the signal~h, the signal values can be easily evaluated for any choice of arrival times
t0 by means of a Fourier transform (or FFT, in numerical work). Thus, it is not really necessary to construct
a different filter for each possible arrival time; one can filter data for all possible choices of arrival time with
a single FFT.

The signal-to-noise ratio for this optimally-chosen filter can be determined by substituting the optimal
filter (6.14.14) into equation (6.14.12), obtaining�

S

N

�2
= 2

Z 1

�1
df
j ~C(f)j2
Sh(jf j) = 4

Z 1

0
df
j ~C(f)j2
Sh(f)

= 2�2
 

~T

Sh(jf j) ;
~T

Sh(jf j)

!
: (6.14.16)

You will notice that the signal-to-noise ratioS=N in (6.14.12) is independent of the overall normalization of
the filterQ: if we makeQ bigger by a factor of ten, both the expected signal and the expected noise increase
by exactly the same amount. For this reason, we can specify the normalization of the filter as we wish.
Furthermore, it is obvious from (6.14.14) that normalizing the optimal filter is equivalent to specifying the
normalization of the canonical signal waveform. It is traditional (for example in Cutler and Flanagan [21])
to choose  

~T

Sh(jf j) ;
~T

Sh(jf j)

!
=

1

2
: (6.14.17)

With this normalization, the expected value of the squared noise is

hN2i = 1

2
( ~Q; ~Q) =

1

2

 
2

~T

Sh(jf j) ; 2
~T

Sh(jf j)

!
= 1 (6.14.18)

and the signal-to-noise ratio takes the simple form�
S

N

�2
= �2: (6.14.19)

This adjustment or change of the filter normalization can be obtained by moving the (fictitious) astrophysical
system emitting the chirp template either closer or farther away from us. Because the metric strainh falls
off as1=distance, the measured signal strengthS is then a direct measure of the inverse distance.

For example, consider a system composed of two 1.4M� masses in circular orbit. Let us normalize
the filter ~T so that equation (6.14.17) is satisfied. This normalization corresponds to placing the binary
system at some distance. For the purpose of discussion, suppose that this distance is 15 megaparsecs (i.e.,
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choosingT (t) to be the strain produced by an optimally-oriented two� 1.4M� system at a distance of
15 megaparsecs). If we then detect a signal with a signal-to-noise ratioS=N = 30, this corresponds to
detecting an optimally-oriented source at a distance of half a megaparsec. Note that the normalization we
have choosen has the r.m.s. noise

phN2i = 1 and therefore the signal and signal-to-noise values are equal.
The functionscorrelate() andproductc() are designed to perform this type of optimal filtering.

We document these routines in the following section and in Section 16, then provide a simple example of an
optimal filtering program.

There is an additional complication, arising from the fact that the gravitational radiation from a binary
inspiral event is a linear combination of two possible orbital phases, as may be seen by reference to equations
(6.6.1) and (6.6.2). Thus, the strain produced in a detector is a linear combination of two waveforms,
corresponding to each of the two possible (0Æ and90Æ) orbital phases:

h(t) = �T0(t) + �T90(t) + n(t): (6.14.20)

Here the subscripts0 and90 label the two possible orbital phases; the constants� and� depend upon the
distance to the source (and the normalization of the templates) and the orientation of the source relative
to the detector. ThusT0(t) denotes the (suitably normalized) functionhc(t) given by equation (6.6.1) and
T90(t) denotes the (suitably normalized) functionhs(t) given by equation (6.6.2).

In the optimal filtering, we are now searching for a pair of amplitudes� and� rather than just a single
amplitude. One can easily do this by choosing a filter function which corresponds to a complex-valued
signal in the time-domain:

~Q(f) = 2
~T0(f)� i ~T90(f)

Sh(jf j) e2�ift0 : (6.14.21)

We will assume that the individual filters for each polarization are normalized by the convention just de-
scribed, and that they are orthogonal: 

~T0
Sh
;
~T0
Sh

!
=

1

2
; and

 
~T90
Sh

;
~T90
Sh

!
=

1

2
; and

 
~T0
Sh
;
~T90
Sh

!
= 0: (6.14.22)

Note thatT0 andT90 are only exactly orthogonal in the adiabatic limit where they each have many cycles
in any frequency intervaldf in which the noise power spectrumSh(f) changes significantly. Also note that
the filter function ~Q(f) does not correspond to a real filterQ(t) in the time domain, since~Q(�f) 6= ~Q�(f),
so that the signal

S(t0) =

 
~h

Sh
; ~Q

!
(6.14.23)

is a complex-valued functions of the lagt0. We define the noise as before, byN = S�hSi. Its mean-squared
modulus is

hjN j2i =
1

2
( ~Q; ~Q)

= 2

 
~T0 � i ~T90
Sh

;
~T0 � i ~T90
Sh

!

= 2

" 
~T0
Sh
;
~T0
Sh

!
+

 
~T90
Sh

;
~T90
Sh

!#
= 2; (6.14.24)

where we have made use of the orthornormality relation (6.14.22). This value is twice as large as the
expected noise-squared in the case of a single phase waveform considered previously.
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The expected signal at zero lagt0 = 0 is

hSi =
 
h~hi
Sh

; ~Q

!
= 2

 
� ~T0 + � ~T90

Sh
;
~T0 � i ~T90
Sh

!
= �+ i�: (6.14.25)

Hence the signal-to-noise ratio is
hSiphjN j2i = 1p

2
(�+ i�): (6.14.26)

In the absence of a signalhSi = 0 the expected value of the square of this quantity (from the definition of
N ) is unity:

hjSj2i
hjN j2i = 1: (6.14.27)

In the presence of a signal, the squared signal-to-noise ratio is

jhSij2
hjN j2i =

1

2
(�2 + �2) (6.14.28)

In the case discussed previously, for a single-phase signal, we pointed out that there was general agreement
on the definition of signal-to-noise value. In the present case (a complex or two-phase signal) there is no
such agreement. The definition given above is the one used by most experimenters: it is a quantity whose
square has expected value of unity in the absence of a signal. However the definition often used in this
subject is�

S

N

�
Cutler and Flanagan

=

�
S

N

�
Owen

=

�
S

N

�
Thorne

= max
t0
jS(t0)j =

p
2

�
S

N

�
GRASP

: (6.14.29)

Note that becauseS(t0) is complex, we maximize the modulus. This is a quantity whose expected squared
value, in the absence of a signal, is 2. To avoid confusion in the future, we will use a different symbol for
this quantity, and define

� �
�
S

N

�
Cutler and Flanagan

=

�
S

N

�
Owen

=

�
S

N

�
Thorne

=
p
2

�
S

N

�
GRASP

: (6.14.30)

This quantity is equal to the signal value alone (rather than the signal value divided by the expected noise).
Another way to understand these two different choices of normalization, and to understand why the

conventional choice of normalization is�, is that conventionally one treats the two-phase case in the same
way as the single phase case, but regardsS

N as a function of a phase parameter,� = arctan(�=�). For any
fixed�, SN (�) has rms value one, but the statisticmax�

S
N (�) has rms value

p
2.

The attentive reader will notice, with our choice of filter and signal normalizations, that we have lost a
factor of

p
2 in the signal-to-noise ratio compared to the case where we were searching for only a single

phase of waveform. The expected signal strength in the presence of a 0-phase signal is the same as in the
single-phase case, but the expected (noise)2 has been doubled. This is because of the additional uncertainty
associated with our lack of information about the relative contributions of the two orbital phases. In other
words, if we know in advance that a waveform is composed entirely of the zero-degree orbital phase, then
the expectation value of the signal-to-noise, determined by equation (6.14.12) would be given byhSi=N =p
2�. However if we need to search for the correct linear combination of the two possible phase waveforms,

then the expectation value of the signal-to-noise is reduced tohSi=N = �. However, as we will see in the
next section, this reduction in signal-to-noise ratio does not significantly affect our ability to detect signals
with a given false alarm rate.
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6.15 Comparison of signal detectability for single-phase and two-phase searches

The previous Section 6.14 described optimal filtering searches in two cases - looking for:

� A signal of known phase, proportional toT0, and

� A signal of unknown phase, which is some linear combinations ofT0 andT90.

With the choice of filter normalizations made previously, the expected signal produced by a source�T0
would be the same for both searches, but the expected (noise)2 was higher in the two-phase case. One might
wonder if this reduced SNR means that a two-phase search reduces ones ability to identify signals. The
answer turns out to be “not significantly”.

The reason for this is that the distribution of signal values produced by detector noise alone in the
single- and two-phase cases are quite different. In order to answer the question: “what is the smallest signal
detectable” we need to fix a false alarm rate. For a given time-duration of data, this is equivalent to fixing a
false alarm probability. Let us assume that this probability has been fixed to be a small value�, and compare
the single- and two-phase searches.

In the single-phase case, in the absence of a source, the values of the signalS (6.14.15) are Gaussian
random variables with a mean-squared value of 1. Hence the thresholdS0 determined by the false alarm
rate must be set so that there is probability� of S falling outside the range[�S0; S0]. This means that

� = 2
1p
2�

Z 1

S0
exp(�x2=2) dx = erfc(S0=

p
2): (6.15.1)

The solution to this equation is the threshold as a function of the false alarm probability:

S
single-phase
0 (�) =

p
2 erfc�1(�): (6.15.2)

Thus, for example, to obtain a false alarm probability of� = 10�5 we need to set a thresholdSsingle-phase
0 =p

2 erfc�1(10�5) = 4:417. In this case, our minimum detectable signal has amplitude� = 4:417.
In the two-phase case, the probability distribution of the signal in the absence of a source is different,

because in this case the signal (6.14.23) is described by the probability distribution of a random variable
r, wherer2 = x2 + y2 andx andy are independent random Gaussian variables with unit rms. Here,x
andy are the real and imaginary parts of the signal (6.14.23 in the absence of a source. Their probability
distribution is:

P (x)dxP (y)dy =
1

2�
e�x

2=2e�y
2=2dxdy

=
1

2�
e�r

2=2rdrd� (6.15.3)

)
P (r)dr = e�r

2=2rdr: (6.15.4)

In the final line, we have integrated over the irrelevant angular variable� 2 [0; 2�). So in the two-phase
case, as before, the threshold value of the signal is set by requiring that the false alarm probability be�:

� =

Z 1

S0
exp(�r2=2)rdr = exp(�S20=2): (6.15.5)

The solution here is that the threshold isStwo-phase
0 =

p�2 ln �. For example, to obtain a false alarm

probability of � = 10�5 we need to set a thresholdStwo-phase
0 = 4:799. In this case, our minimum
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detectable (0-phase) signal has amplitude� = 4:799, which is only slightly higher than in the single-phase
case.

It is not a coincidence that for a given false alarm rate, the amplitude of the minimum detectable signals
are almost the same. Although the expected value of the single-phase signal2 in the absence of a source is
smaller than the expected value of the two-phasejsignalj2 in the absence of a source, thetails of the two
probability distributions are almost identical. For the same false alarm probability� the thresholds in the
two instances are related by

� =

r
2

�

Z 1

S
single-phase
0

exp(�x2=2) dx =
Z 1

S
two-phase
0

exp(�r2=2)rdr (6.15.6)

But for thresholds of reasonable size (small�) both integrals are dominated by the region just to the right

of S0, and in this neighborhood the integrands differ by a small factor of approximately
q

�S0
2 . Since�

varies exponentially with the threshold, there is a logarithmically small difference between the thresholds

S
single-phase
0 andStwo-phase

0 .

For a fixed false alarm probability, we can write the the two-phase thresholdS
two-phase
0 as a function of

the one-phase thresholdSsingle-phase
0 :

S
two-phase
0 =

vuuut�2 ln
0@erfc

0@Ssingle-phase
0 p

2

1A1A: (6.15.7)

The plot of this relationship in Figure 27 shows clearly that once the thresholds are reasonably large, they
are very nearly equal.

Single Phase
108642

Two Phase

10

8

6

4

2

0

Figure 27: The threshold for a two-phase searchS
two-phase
0 is shown as a function of the threshold for

the single-phase searchSsingle-phase
0 which gives the same false alarm rate. When the false alarm rates are

small, they are very nearly equal.
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6.16 Function: correlate()

void correlate(float *s,float *h,float *c,float *r,int n)
This function evaluates the correlation (as a function of lag timet) defined by the discrete equivalent of
equation (6.14.15):

s(t) =
1

2

Z 1

�1
df ~h(f)~c�(f)~r(f) e�2�ift: (6.16.1)

It is assumed that~h(f) and~c(f) are Fourier transforms of real functions, and that~r(f) is real. The factor
of 1=2 appears in (6.16.1) for efficiency reasons; in order to calculate the integral (6.14.15) one should set
~r(f) = 2=Sh(f). The routine assumes that~r vanishes at both DC and the Nyquist frequency.

The arguments are:

s : Output. Upon return, the arrays[0..n-1] contains the correlations(t) at times

t = 0;�t; 2�t; � � � ; (n� 1)�t: (6.16.2)

h: Input. The arrayh[0..n-1] contains the positive frequency (f � 0) part of the complex function
~h(f). The packing of~h into this array follows the scheme used by theNumerical Recipesroutine
realft() , which is described between equations (12.3.5) and (12.3.6) of [1]. The DC component
~h(0) is real, and located inh[0] . The Nyquist-frequency component~h(fNyquist) is also real, and
is located inh[1] . The array elementsh[2] andh[3] contain the real and imaginary parts, re-
spectively, of~h(�f) where�f = 2fNyquist=n = (n�t)�1. Array elementsh[2j] andh[2j+1]
contain the real and imaginary parts of~h(j �f) for j = 1; � � � ; n=2 � 1. It is assumed that~h(f)
is the Fourier transform of a real function, so thatcorrelate() can infer the negative frequency
components from the equation~h(�f) = ~h�(f)

c : Input. The arrayc[0..n-1] contains the complex function~c, packed in the same format as~h(f),
with the same assumption that~c(�f) = ~c�(f). Note that while you provide the function~c(f) to
the routine, it is thecomplex-conjugateof the function contained in the arrayc[ ] which is used
in calculating the correlation. Thus if~r is positive,correlate(s,c,c,r,n) will always return
s[0] � 0.

r : Input. The arrayr[0..n/2] contains the values of the real function~r used as a weight in the integral.
This is often chosen to be (twice!) the inverse of the receiver noise, as in equation (6.14.15), so that
~r(f) = 2= ~Sh(jf j). The array elements are arranged in order of increasing frequency, from the DC
value at subscript 0, to the Nyquist frequency at subscript n/2. Thus, thej’th array elementr[j]
contains the real value~r(j �f), for j = 0; 1; � � � ; n=2. Again it is assumed that~r(�f) = ~r�(f) =
~r(f).

n: Input. The total length of the complex arraysh andc , and the number of points in the output arrays .
Note that the arrayr containsn=2 + 1 points. n must be even.

The correlation function calculated by this routine is1
2FFT

�1[~h~c�~r] and has the same dimensions as the
product~h� ~c� ~r. The definition is

sk =
1

2

n�1X
j=0

hjc
�
jrje

�2�ijk=n (6.16.3)

where it is understood that~hn�j = ~h�j and that~cn�j = ~c�j , and that~rn�j = ~rj.
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Note that the input arraysh[ ] andc[ ] can be the same array. For examplecorrelate(s,c,c,r,n)
calculates the discrete equivalent of

s(t) =
1

2

Z 1

�1
df j~c(f)j2~r(f) e�2�ift: (6.16.4)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: For the sake of efficiency, this function does not include the contribution from either DC or
Nyquist frequency bins to the correlation (these are negligible in any sensible data).
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6.17 Function: avg inv spec()

void avg inv spec(float flo,float srate,int n,double decay,double *norm, float
*htilde, float* mean pow spec,float* twice inv noise)
This function maintains an auto-regressive moving average (seeavg spec() ) of the power spectrum
Sh(f), and an array containing2=Sh(f), which can be used for optimal filtering. This latter array is set
to zero below a specified cuff-off frequencyflow.

The arguments are:

flo: Input. The low frequency cut-offflow, in Hz.

srate: Input. The sample rate, in Hz.

n: Input. The number of points in the arrays.

decay: Input. The quantityexp(��) as defined inavg spec() . Sets the characteristic decay time for
the auto-regressive average.

norm: Input/Ouput. Used for internal storage. Set to0 when you want to begin a new auto-regressive
average. Must not be altered otherwise.

htilde: Input. The arrayhtilde[0..n-1] contains the positive frequency FFT of the metric pertur-
bation.

mean pow spec: Output. The arraymean pow spec[0..n/2] contains the mean power spectrum.
Should be zeroed when resetting to begin a new average. The array elementmean pow spec[0]
contains the power spectrum at DC, and the array elementmean pow spec[n/2] contains the
power spectrum at the Nyquist frequencysrate /2.

twice inv noise: Output. The arraytwice inv noise[0..n/2] contains2=Sh(f). It is set to
zero forf < flow. The array elementtwice inv noise[0] contains the DC value, and the array
elementtwice inv noise[n/2] contains the value at the Nyquist frequencysrate /2.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We assume here that the “correct” thing to do is the average the spectrum, then invert it. There
may be a better way to construct the weight function for an optimal filter, however.
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6.18 Function: orthonormalize()

void orthonormalize(float* ch0tilde, float* ch90tilde, float* twice inv noise,
int n, float* n0, float* n90)
This function takes as input the (positive frequency parts of the) FFT of a pair of chirp signals. Upon return,
the90Æ phase chirp has been made orthogonal to the0Æ phase chirp, with respect to the inner product defined
by 2=Sh. The normalizations of the chirps are also returned.

The arguments are:

ch0tilde: Input. The FFT of the zero-phase chirpT0.

ch90tilde: Input/Output. The FFT of the90Æ-phase chirpT90.

twice inv noise: Input. Array containing2=Sh. The array elementtwice inv noise[0] con-
tains the DC value, and the array elementtwice inv noise[n/2] contains the value at the
Nyquist frequency.

n: Input. Defines the length of the arrays:ch0tilde[0..n-1] ,ch90tilde[0..n-1] , andtwice inv noise[0

n0: Output. The normalization of the 0-phase chirp.

n90: Output. The normalization of the90Æ-phase chirp.

Using the notation of (6.14.9) one may define an inner product of the chirps. The normalizations are
defined as follows:

1

n20
� 1

2
(Q0; Q0); (6.18.1)

whereQ0 is the optimal filter defined for the zero-phase chirpT0. The chirps are orthogalized inter-
nally using the Gram-Schmidt procedure. We first calculate(Q0; Q0) and (Q90; Q0) then define� =
(Q90; Q0)=(Q0; Q0). We then modify the90Æ-phase chirp setting~T90 ! T90 � �T0. This ensures that
the inner product(Q90; Q0) vanishes. The normalization for this newly-defined chirp is then defined by

1

n21
� 1

2
(Q90; Q90): (6.18.2)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Notice that the filtersQ0 andQ90 are not in general orthogonal except in the adiabatic limit
asSh(f) varies very slowly with changingf . Our approach to this is to construct a slightly-modified
ninety-degree phase signal. Note however that this may introduce small errors in the determination of
the orbital phase. This should be quantified.
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6.19 Dirty details of optimal filtering: wraparound and windowing

To carry out optimal filtering, we need to break the data set (which might be hour, days, or weeks in length)
into shorter stretches ofN points (which might be seconds or minutes in length). We can understand the
effects of “chopping up” the data most easily in the case for which (1) the instrument noise iswhite, so that
Sh(f) = 1; (2) the source is so close that its signal overwhelms the noise in the IFO, and (3) we are looking
for a signal with a given phase (not a linear combination of the two orbital phases).

We want to calculate a signalS as a function of lagt0 using an FFT.

S(t0) =

Z
h(t)T (t� t0)dt � S(i0) =

X
j

hjTj�i0 ; (6.19.1)

where we have written both the continuous-time and discrete-time version of the same equation. Using the
definition of the discrete Fourier transform, and writing

hj =
N�1X
k=0

e�2�ijk=N~hk and Tj�i0 =
N�1X
k0=0

e�2�i(j�i0)k
0=N ~Tk0 (6.19.2)

one can easily compute that the signal as a function of lagi0 is

S(i0) =
N�1X
j=0

N�1X
k=0

N�1X
k0=0

e�2�ijk=N~hke�2�i(j�i0)k
0=N ~Tk0 (6.19.3)

=
N�1X
k=0

N�1X
k0=0

NÆk;�k0e2�ii0k
0=N~hk ~Tk0 (6.19.4)

=
N�1X
k=0

Ne�2�ii0k=N~hk ~T �k : (6.19.5)

Thus, if the data is treated as periodic, and the template is treated as periodic, one can compute the corre-
lation as a function of time using only an FFT. In particular, the use of rectangular windowing does create
sidelobes of the template’s frequency components. However it also creates identical sidelobes of the signal’s
frequency components - so in effect the correlation in the time domain can be calculated exactly, without
any windowing of the signal being necessary.

The only complication arises from the fact that the FFT treats the data as being periodic. Let’s consider
some simple examples to illustrate the effects of this. In all of our examples, the number of data points
is N = 65; 536 = 216 and the (schematic) chirp filter has lengthm = 13; 500 and is zero-padded after
that time. Please remember, in all the figures that follow, to identify the far right hand side of the graph
(i = 65535) with the far left hand side (i = 0). Figure 28 showsS(i0) for a schematic chirp which begins
at the first data point in the rectangular window. You will notice that the filter output peaks ati = 0. If the
incoming chirp arrives somewhat later (it starts ati = 15; 000) as shown in Figure 29 then the filter output
peaks at the start time, as shown. A chirp in the signal which starts at thei = 65; 535� 13; 500 as shown in
Figure 30 causes the filter output to peak ati = 52; 035. Thus, in order to find chirps, we need to find the
maxima of the filter output over the intervali = 0 � � � ; N �m.

Chirp filters can be “stimulated” or “triggered” by events that are not chirps. We will shortly discuss
some techniques that can be used to distinguish triggering events that are chirps from those that are simply
noise spikes or other transient (but non-chirp) varieties of non-stationary interferometer noise. Suppose that
a chirp filter is triggered by some kind of transient event in the IFO output. At what time did this transient
event ocurr? The answer to this question can be seen by examining the impulse response of the “periodic
filter” scheme, as shown in the following figures. Thus, by searching for maxima in the filter output over
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Figure 28: A chirp starting at initial timei = 0 and ending at timei = 13500 is processed through a chirp
filter, whose output peaks at timei = 0. Notice that because of wraparound, the (non-causal) filter output
begins “earlier” thani = 0.

the rangei = 0; � � � ; N � m � 1 we can detect either true chirps in the data stream, starting in the time
interval i = 0; � � � ; N �m � 1 and coalescing (roughly speaking) in the time intervali = m; � � � ; N � 1,
or we can detect transient impulse-like events in the data stream, which take place in the time interval
i = m; � � � ; N � 1. In the GRASP optimal filtering code, after examining the stretch ofN data points,
we then shift the data pointsi = N �m; � � � ; N � 1 into the rangei = 0; � � � ;m � 1 and acquire a new
additional set ofN �m data points covering remaining (new) time interval.

To indicate the time at which the filter output reached its maximum, several different conventions can
be used. First, we can indicate thepeak offset. This is the offset from the start of the filter output at which
the filter output reaches a maximum value. Alternatively, we can use theimpulse offset. This is the offset at
which the filter would have peaked if the maximum were due to a delta-function like impulse at the input.
These quantities are defined in equation (13.7.1).

Note that in practice, because the chirp signal has to be convolved with the response functionR(f) of
the detector, the impulse response of the filter is typically a few points longer than the actual chirp signal.
For this reason it is smart to assume that the impulse response of your optimal filter is slightly longer (say a
hundred points longer) than the actual time-domain length of the corresponding chirp. This safety margin is
set with the#define SAFETY statement in the optimal filtering example. You lose a tiny bit of efficiency
but reduce the likelihood that boundary effects from the data discontinuity at the start/end of the rectangular
window will significantly stimulate the optimal filter output fori = 0; � � � ; N �m � 1. (See Figs. 31 and
34 to see an illustration of how this windowing discontinuity will corrupt the filter’s output.)

We have demonstrated explicitly that with no windowing (or rather, rectangular windowing) of the data,
one can find the appropriate correlation between the signal and a filter exactly: the rectangular window has
the same effect on the signal as it does on the template (shifting energy into sidelobes in identical fashion).
The only complication was that because of the periodic nature of the FFT one has to be caseful about
wrap-around errors in relating the output of a filter to the time of occurrence of a signal or impulse.

There is one remaining ugly question. The optimal filter~Q depends upon the noise power spectrum
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Figure 29: A chirp starting at initial timei = 15; 000 and ending at timei = 28; 500 is processed through
a chirp filter, whose output peaks at timei = 15; 000.

of the detector. In real-world filtering, should this noise power spectrum be calculated with windowed,
or non-windowed data? We can determine the correlation between signal and template exactly, with only
rectangular windowing, because energy in either of these functions is shifted into sidelobes in identical
fashion. However a “quiet” part of the IFO spectrum can be corrupted by sidelobes of a nearby noisy region.
The effect of this is that the signal get rather less weight from this region of frequency space than it ought, in
theory, to receive. This would argue for using only properly-windowed data to find the noise power spectrum
to use in determining an optimal filter.

In fact, in our experience, it does not make any difference, at least not when you are searching for binary
inspiral chirps. The reason is that the SNR obtained in an optimal filter is only sensitive at second order
to errors in the optimal filter function. Thus, the errors due to noise sidelobes which appear if you fail to
window the data to calculate an optimal filter are typically not large.
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Figure 30: A chirp starting at initial timei = 52; 035.
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Figure 31: An impulse shortly afteri = 0.
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Figure 32: An impulse ati = 15; 000.
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Figure 33: An impulse ati = 28; 500.
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Figure 34: An impulse shortly beforei = 65535
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6.20 Function: find chirp()

void find chirp(float* htilde, float* ch0tilde, float* ch90tilde, float*
twice inv noise, float n0, float n90, float* output0, float* output90, int
n, int chirplen, int* offset, float* snr max, float* c0, float* c90, float
*var)
This routine filters the gravity-wave strain through a pair of optimal filters corresponding to the two phases
of a binary chirp, then finds the time at which the SNR peaks.

The arguments are:

htilde : Input. The FFT of the gravity-wave strain.

ch0tilde : Input. The FFT of the 0-degree chirp.

ch90tilde : Input. The FFT of the 90-degree chirp (assumed orthogonal to the 0-degree chirp).

twice inv noise : Input. Twice the inverse noise power spectrum, used for optimal filtering. The array
elementtwice inv noise[0] contains the DC value, and the array elementtwice inv noise[n/2]
contains the value at the Nyquist frequency.

n0: Input. Normalization of the 0-degree chirp.

n90: Input. Normalization of the 90-degree chirp.

output0: Output. A storage array. Upon return, contains the filter output of the 0-degree phase optimal
filter.

output90: Output. A storage array. Upon return, contains the filter output of the 90-degree phase
optimal filter.

n: Input. Defines the lengths of the various arrays:ch0tilde[0..n-1] , ch90tilde[0..n-1] ,
output0[0..n-1] , output90[0..n-1] , andtwice inv noise[0..n/2] .

chirplen: Input. The number of bins in the time domain occupied by the chirp that you are searching
for. This is necessary in order to untangle the wrap-around ambiguity explained earlier.

offset: Output. The offset, from 0 ton-chirplen-1 , at which the signal output (for an arbitrary
linear combination of the two filters) peaks.

snr max: Output. The maximum signal-to-noise ratio (SNR) found.

c0: Output. The coefficient of the 0-phase template which achieved the highest SNR.

c90: Output. The coefficient of the90Æ-phase template which achieved the highest SNR. Note that
c20 + c290 should be 1.

var: Output. The variance of the filter output. Would be 1 if the input to the filter were colored Gaussian
noise with a spectrum defined bySh.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.21 Function: freq inject chirp()

void freq inject chirp(float c0, float c90, int offset, float invMpc, float*
ch0tilde, float* ch90tilde, float* htilde, int n)
The bottom-line test of any optimal filtering code or searching routines is: can you inject “fake” signals into
the data stream, and properly detecting them, while properly rejecting all other signatures of instrumental
effects, etc. This routine injects artificial signals into the frequency-domain strain~h(f). The plane of the
binary system is assumed to be normal to the line to the detector.

The arguments are:

c0: Input. The coefficient of the 0-phase template to inject.

c90: Input. The coefficient of the90Æ-phase to inject. Note thatc20 + c290 should be 1.

offset: Input. The offset number of samples at which the injected chirp starts, in the time domain.

invMpc: Input. The inverse of the distance to the system (measured in Mpc).

ch0tilde: Input. The FFT of the phase-0 chirp (strain units) at a distance of 1 Mpc.

ch90tilde: Input. The FFT of the phase-90 chirp (strain units) at a distance of 1 Mpc.

htilde: Output. The FFT of the gravity-wave strain. Note that this routineadds intoand increments
this array, so that if it contains another “signal” like IFO noise, the chirp is simply super-posed onto
it.

n: Input. Defines the lengths of the various arraysch0tilde[0..n-1] ,ch90tilde[0..n-1] , and
htilde[0..n-1] .

Note that in making use of this injection routine, you must determine the level of the quantization noise
of the ADC, and be careful to inject a properly dithered version of this signal when its amplitude is small
compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See the comments fortime inject chirp , particularly with respect to the digital quanti-
zation noise.
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6.22 Function: time inject chirp()

void time inject chirp(float c0, float c90, int offset, float invMpc, float*
chirp0, float* chirp90, float* data, float *response, float *work, int n)
This is a time-domain version of the previous functionfreq inject chirp() which injects chirps in
the time-domain (after deconvolving them with the detector’s response function). This routine injects artifi-
cial signals into the time-domain strainh(t). The plane of the binary system is assumed to be normal to the
line to the detector.

The arguments are:

c0: Input. The coefficient of the 0-phase template to inject.

c90: Input. The coefficient of the90Æ-phase to inject. Note thatc20 + c290 should be 1.

offset: Input. The offset number of samples at which the injected chirp starts, in the time domain.

invMpc: Input. The inverse of the distance to the system (measured in Mpc).

chirp0: Input. The time-domain phase-0 chirp (strain units) at a distance of 1 Mpc.

chirp90: Input. The time-domain phase-90 chirp (strain units) at a distance of 1 Mpc.

data: Output. The detector response in time that would be produced by the specified binary inspiral.
Note that this routineadds intoand increments this array, so that if it contains another “signal” like
IFO noise, the chirp is simply super-posed onto it.

response: Input. The functionR(f) that specifies the response function of the IFO. This is produced
by the routinenormalize gw() .

work: Output. A working array.

n: Input. Defines the lengths of the various arrayschirp0[0..n-1] ,chirp90[0..n-1] ,data[0..n-
1] , work[0..n-1] , andresponse[0..n+1] (note that this ”+” sign isnot a typo!).

Note that in making use of this injection routine, you must determine the level of the quantization noise
of the ADC, and be careful to inject a properly dithered version of this signal when its amplitude is small
compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: A short look at the time-domain signal which is injected shows that it has a low-amplitude
spike at the very start. This may be an un-avoidable Gibbs phenomenon associated with the turn-on
of the waveform. A second interesting point is that for many interesting signals, the amplitude of
the injected signal in the time domain isbelow the level of the quantization noise. Thus, a sensible
injection scheme would be to add it into an appropriately dithered (float) version of the integer signal
stream, then cast that back into an integer. This should be tried.
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6.23 Vetoing techniques (time domain outlier test)

In an ideal world, the output of an interferometer would be a stationary signal described by Gaussian statis-
tics (with very rare superposed binary inspiral chirps and other gravitational-wave signals). This is unfortu-
nately not the case, as can be quickly determined by simply listening to the raw (whitened) interferometer
output. Typically the output is a stationary-sounding hiss, interrupted every few minutes by an obvious
irregularity in the data stream. These are typically “pops”, “bumps”, “clicks”, “howlers”, “scrapers” and
other recognizable categories of noises. In at least some cases, there are “suspects” for these events. For
example the pops and bumps might be problems in any of the hundreds of BNC cable connectors used in
the instrument.

It is an unfortunate fact that the output of an optimal filter strongly reflects these events. As you have
seen in the previous section, a delta-function-like impulse signal in the IFO output can cause a large signal
in the optimal filter. And in practice, this happens all of the time - the outputs of optimal chirp filters are
frequently triggered by identifiable events in the IFO data stream that are clearly not binary inspiral chirps.
Distinguishing these events from real inspiral chirps is calledvetoing. We have found that two vetoing
techniques work particularly well.

The first technique operates in the time domain, and is documented in the routineis gaussian() .
The idea is straightforward: if a chirp detector (optimal filter) is triggered, then we look in the data stream for
an impulse event that might be responsible. Such events can be found by looking at the statistical distribution
of the points in the time domain. If this distribution is significantly non-Gaussian then it indicates that some
large transient event caused the filter to trigger, and the event is rejected. In Figures 35 and 36 we show
a typical stretch of time-domain raw interferometer output, that does not contain any outlier points. This
stretch of raw data “passes” the time-domain outlier test. Figures 37 and 38 show a typical stretch of time-
domain raw interferometer output, that does contain outlier points, and “fails” the time-domain outlier test.

GRASP RELEASE 1.9.8 Page 177 May 19, 2000



Section
6.23

GRASP Routines: Gravitational Radiation from Binary Inspiral
Vetoing techniques (time domain outlier test)

Page
178

0 20000 40000 60000
sample number (10k samples/sec)

−100

−50

0

50

100

A
D

C
 v

al
ue

Raw IFO data

Figure 35: A short stretch of raw IFO data in the time domain, which passes the outlier test.

−100 0 100
ADC sample value

0

500

1000

N
um

be
r 

of
 ti

m
es

 v
al

ue
 o

cc
ur

ed

Raw Data Histogram

68 %

This segment of data
passes the outlier test
because it has no
samples outside of the
+− 5 σ range

2 σ

Figure 36: A histogram of this data shows that it has no outlier points.

GRASP RELEASE 1.9.8 Page 178 May 19, 2000



Section
6.23

GRASP Routines: Gravitational Radiation from Binary Inspiral
Vetoing techniques (time domain outlier test)

Page
179

0 20000 40000 60000
sample number (10k samples/sec)

−400.0

−200.0

0.0

200.0

400.0

600.0

A
D

C
 v

al
ue

Raw IFO data

Figure 37: A short stretch of raw IFO data in the time domain, which fails the outlier test.
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Figure 38: A histogram of this data shows that it has a number of outlier points – which is why it fails to
outlier test.
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6.24 Vetoing techniques (r2 time/frequency test)

The second technique vetoing or discrimination test operates in the frequency domain, and is described here.
It is a very stringent test, which determines if the hypothetical chirp which has been found in the data stream
is consistent with a true binary inspiral chirp summed with Gaussian interferometer noise. If this is true,
it should be possible to subtract the (best fit) chirp from the signal, and be left with a signal stream that is
consistent with Gaussian IFO noise. One of the nice features of this technique is that it can be statistically
characterized in a rigorous way. We follow the same general course as in Section 6.14 on Wiener filtering,
first considering the case of a “single phase” phase signal, then considering the case of an “unknown phase”
signal.

In the single-phase case, suppose that one of our optimal chirp filters~Q is triggered with a large SNR at
time t0. We suppose that the signal which was responsible for this trigger may be written in either the time
or the frequency domain as

h(t) = C(t) + n(t) = �T (t� t0) + n(t)

()
~h(f) = � ~T (f)e2�ift0 + ~n: (6.24.1)

We assume that we have identified what is believed to be the “correct” templateT , by the procedure already
described of maximizing the SNR over arrival time and template, and have used this to estimate�. We
assume thatt0 has been determined exactly (a good approximation since it can be estimated to high accu-
racy). Our goal is to construct a statistic which will indicate if our estimate of� and identification ofT are
credible.

We will denote the signal value at time offsett0 by the real numberS:

S = 2

Z fNy

�fNy
df

~h(f) ~T �(f)
Sh(jf j) e�2�ift0 : (6.24.2)

(Here,fNy denotes the Nyqist frequency, one-half of the sampling rate.) The expected value ofS is hSi = �,
although of course since we are discussing a single instance, it’s actual value will in general be different.
The chirp templateT is normalized so that the expected valuehN2i = 1:

4

Z fNy

0
df
j ~T (f)j2
Sh(jf j) = 1: (6.24.3)

We are going to investigate if this signal is “really” due to a chirp by investigating the way in whichS gets its
contribution from different ranges of frequencies. To do this, break up the integration region in this integral
into a set ofp disjoint subintervals�f1; � � � ;�fp whose union is the entire range of frequencies from DC
to Nyquist. Herep is a small integer (for example,p = 8). This splitup can be performed using the GRASP
functionsplitup() . The frequency intervals:

�f1 = ff j 0 < f < f1g
�f2 = ff j f1 < f < f2g
� � �
�fp = ff j fp�1 < f < fNyg; (6.24.4)

are defined by the condition that theexpected signal contributions in each frequency band from a chirp are
equal:

4

Z
�fi

df
j ~T (f)j2
Sh(jf j) =

1

p
(6.24.5)

A typical set of frequency intervals in shown in Figure 39.
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f = 0 f = fNy

Figure 39: A typical set of frequency intervals�fi for the casep = 4.

Because the filter is optimal, this also means that the expected noise contributions in each band from the
chirp is the same. The frequency subintervals�fi are narrow in regions of frequency space where the
interferometer is quiet, and are broad in regions where the IFO is noisy.

Now, define a set ofp signal values, one for each frequency interval:

Si = 2

Z
��fi[�fi

df
~h(f) ~T �(f)
Sh(jf j) e�2�ift0 for i = 1; � � � ; p: (6.24.6)

We have included both the positive and negative frequency subintervals to ensure that theSi are real. If the
detector output is Gaussian noise plus a true chirp, theSi arep normal random variables, with a mean value
of hSii = hSi=p and a variance determined by the expected value of the noise-squared:

� = hS2i i � hSii2 =
1

p
: (6.24.7)

¿From these signal values we can construct a useful time/frequency statistic.
To characterize the statistic, we will need the probability distribution of theSi. Because each of these

values is a sum over different (non-overlapping) frequency bins, they are independent random Gaussian
variables with unknown mean values. Their a-priori probability distribution is

P (S1; � � � ; Sp) =
pY
i=1

(2��)�1=2e�(Si��=p)
2=2� (6.24.8)

The statistic that we will construct addresses the question, “are the measured values ofSi consistent with
the assumption that the measured signal is Gaussian detector noise plus�T?” One small difficulty is that the
value of� that appears in (6.24.8) is not known to us: we only have anestimateof its value. To overcome
this, we first construct a set of values denoted

�Si � Si � S=p: (6.24.9)

These arenot independent normal random variables: they are correlated since
Pp
i=1�Si vanishes. To pro-

ceed, we need to calculate the probability distribution of the�Si, which we denote by�P (�S1; � � � ;�Sp).
This quantity is defined by the relation that the integral of any function ofp variablesF (y1; � � � ; yp) with
respect to the measure defined by this probability distribution satisfiesZ

dy1 � � � dyp �P (y1; � � � ; yp) F (y1; � � � ; yp)
=Z

dx1 � � � dxp P (x1; � � � ; xp) F (x1 � 1

p

pX
i=1

xi; � � � ; xp � 1

p

pX
i=1

xi): (6.24.10)

[Note that in this expression and the following ones, all integrals are from�1 to1.] This may be used to
find a closed form for�P : let F (y1; � � � ; yp) = Æ(y1 ��S1) � � � Æ(yp ��Sp). This gives

�P (�S1; � � � ;�Sp) =
Z pY

i=1

dxi(2��)
�1=2e�(xi��=p)

2=2�Æ(xi ��Si � 1

p

pX
j=1

xj): (6.24.11)
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To evaluate the integral, change variables from(x1; � � � ; xp) to (z1; � � � ; zp�1;W ) defined by

W = x1 + � � �+ xp

z1 = x1 �W=p

� � �
zp�1 = xp�1 �W=p (6.24.12)

which can be inverted to yield

x1 = z1 +W=p

� � �
xp�1 = zp�1 +W=p (6.24.13)

xp = W=p� z1 � � � � � zp�1

The Jacobian of this coordinate transformation is:

J = det

"
@(x1; � � � ; xp)

@(z1; � � � ; zp�1;W )

#
= det

2666664
1 0 � � � 0 1=p
0 1 � � � 0 1=p

� � �
0 0 � � � 1 1=p
�1 �1 � � � �1 1=p

3777775 (6.24.14)

Using the linearity in rows of the determinant, it is straightforward to show thatJ = 1.
The integral may now be written as

�P (�S1; � � � ;�Sp) =

Z
dz1 � � � dzp�1dW (2��)�p=2e�[(x1��=p)

2+���+(xp��=p)2]=2�

�Æ(z1 ��S1) � � � Æ(zp�1 ��Sp�1)Æ(z1 + � � �+ zp�1 +�Sp): (6.24.15)

A few moments of algebra shows that the exponent may be expressed in terms of the new integration
variables as

(x1 � �=p)2 + � � �+ (xp � �=p)2 = z21 + � � � + z2p�1 + (W � �)2=p+ (z1 + � � � + zp�1)2 (6.24.16)

and thus the integral yields

�P (�S1; � � � ;�Sp) =

Z
dW (2��)�p=2e�[�S

2
1+���+�S2p+(W��)2=p]=2�Æ(�S1 + � � �+�Sp)

= (2��)�p=2(2��p)1=2e�[�S
2
1+���+�S2p]=2�Æ(�S1 + � � � +�Sp) (6.24.17)

This probability distribution arises because we do not know the true mean value ofS which is� = hSi
but can only estimate it using the actual measured value ofS. Similar problems arise whenever the mean
of a distribution is not know but must be estimated (problem 14-7 of [24]). This probability distribution
is “as close as you can get to Gaussian” subject to the constraint that the sum of the�Si must vanish. It
is significant that this probability density function is completely independent of�, which means that the
properties of the�Si do not depend upon whether a signal is present or not.

The individual�Si have identical mean and variance, which may be easily calculated from the proba-
bility distribution function (6.24.10). For example the mean is zero:h�Sii = 0. To calculate the variance,
let F (y1; � � � ; yp) = y21 in (6.24.10). One finds

h�S2i i =
1

p

�
1� 1

p

�
(6.24.18)
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Now that we have calculated the probability distribution of the�Si it is straightforward to construct and
characterize a�2-like statistic which we will callr2.

Define the statistic

r2 =
pX
i=1

(�Si)
2: (6.24.19)

¿From (6.24.18) it is obvious that for Gaussian noise plus a chirp the statistical properties ofr2 are inde-
pendent of�: it has the same statistical properties if a chirp signal is present or not. For this reason, the
value ofr2 provides a powerful method of testing the hypothesis that the detector’s output is Gaussian noise
plus a chirp. If the detector’s output is of this form, then the value ofr2 is unlikely to be much larger than
its expected value (this statement is quantified below). On the other hand, if the filter was triggered by a
spurious noise event that doesnot have the correct time/frequency distribution, thenr2 will typically have a
value that isverydifferent than the value that it has for Gaussian noise alone (or equivalently, for Gaussian
noise plus a chirp).

The expected value ofr2 is trivial to calculate

hr2i = ph�S2i i = 1� 1

p
(6.24.20)

One can also easily compute the probability distribution ofr using (6.24.17). The probability thatr > R in
the presence of a true chirp signal is the integral of (6.24.17) over the regionr > R. In thep-dimensional
space, the integrand vanishes except on ap � 1-plane, where it is spherically-symmetric. To evaluate
the integral, introduce a new set of orthonormal coordinates(u1; � � � ; up) obtained from any orthogonal
transformation on(�S1; � � � ;�Sp) for which the newp’th coordinate is orthogonal to the hyperplane�S1+
� � � + �Sp = 0. Henceup = p�1=2 [�S1 + � � � +�Sp]. Our statisticr2 is also the squared radiusr2 =
u21 + � � �+ u2p in these coordinates. Hence

P (r > R) =

Z
r2>R2

�P

= (2��)�p=2(2��p)1=2
Z
r2>R2

e�r
2=2�Æ(

p
pup)du1 � � � dup: (6.24.21)

It’s now easy to do the integral over the coordinateup, and having done this, we are left with a spherically-
symmetric integral overRp�1:

P (r > R) = (2��)(1�p)=2
Z
r2>R2

e�r
2=2�du1 � � � dup�1

= 
p�2
Z 1

R
rp�2e�r

2=2�dr

=
1

�(p�12 )

Z 1

R2=2�
x(p�3)=2e�xdx

= Q(
p� 1

2
;
R2

2�
); (6.24.22)

where
n = 2�(n+1)=2

�(n+1
2

)
is then�volume of a unit-radiusn�sphereSn. The incomplete gamma functionQ

is the same function that describes the likelihood function in the traditional�2 test [theNumerical Recipes
functiongammq(a,x) ]. Figure 40 show a graph ofP (r > R) for some different values of the parameter
p. The appearance ofp � 1 in these expressions reflects the fact that althoughr2 is a sum of the squares
of p Gaussian variables, these variables are subject to a single constraint (their sum vanishes) and thus the
number of degrees of freedom isp� 1.
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In practice (based on CIT 40-meter data) breaking up the frequency range intop = 8 intervals provides
a very reliable veto for rejecting events that trigger an optimal filter, but which are not themselves chirps.
The value ofQ(3:5; 10:0) = 0:0056 � � � so if r2 > 2:5 then one can conclude that the likelihood that a given
trigger is actually due to a chirp is less than0:6%; rejecting or vetoing such events will only reduce the “true
event” rate by0:6%. However in practice it eliminates almost all other events that trigger an optimal filter;
a noisy event that stimulates a binary chirp filter typically hasr2 � 100 or larger!

The previous analysis for the “single-phase” case assumes that we have found the correct templateT
describing the signal. In searching for a binary inspiral chirp however, the signal is a linear combination of
the two different possible phases:

h(t) = C(t) + n(t) = �T0(t� t0) + �T90(t� t0) + n(t)

()
~h(f) =

h
� ~T0(f) + � ~T90(f)

i
e2�ift0 + ~n: (6.24.23)

and the amplitudes� and� are unknown. The reader might well wonder why we can’t simply construct a
single properly normalized template as

T =

 
�p

�2 + �2

!
T0 +

 
�p

�2 + �2

!
T90 (6.24.24)

and then use the previously-described “single phase” method. In principle, this would work properly. The
problem is thatwe do not know the correct values of� and� . Since� = Re hS(t0)i and� = Im hS(t0)i,
we canestimatethe values of� and� from the real and imaginary parts of the measured signal, however
these estimates will not give the true values. For this reason, anr2 statistic and test can be constructed for
the “two-phase” case, but it has twice the number of degrees of freedom as the “single-phase” case.

The description and characterization of ther2 test for the two phase case is similar to the single-phase
case. For the two phase case, the signal is a complex number

S = 2

Z fNy

�fNy
df

~h(f)
h
~T �0 (f) + i ~T �90(f)

i
Sh(jf j) e�2�ift0 : (6.24.25)

The templates for the individual phases are normalized as before:

4

Z fNy

0
df
j ~T0(f)j2
Sh(jf j) = 4

Z fNy

0
df
j ~T90(f)j2
Sh(jf j) = 1 and

Z fNy

0
df

~T0(f) ~T
�
90(f)

Sh(jf j) = 0: (6.24.26)

This assume the same adiabatic limit discussed earlier:_f=f << f . In this limit, the frequency intervals
�fi are identical for either template. We define signal values in each frequency band in the same way as
before, except now these are complex:

Si = 2

Z
��fi[�fi

df
~h(f)

h
~T �0 (f) + i ~T �90(f)

i
Sh(jf j) e�2�ift0 for i = 1; � � � ; p: (6.24.27)

The mean value of the signal in each frequency band is

hSii = hSi=p = (�+ i�)=p; (6.24.28)

and the variance of either the real or imaginary part is� = 1=p as before, so that the total variance is twice
as large as in the single phase case:

hjSij2i � jhSiij2 = 2

p
: (6.24.29)
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The signal values are now characterized by the probability distribution

P (S1; � � � ; Sp) =
pY
i=1

(2��)�1e�jSi��=p�i�=pj
2=2�: (6.24.30)

Note that the arguments of this function arecomplex; for this reason the overall normalization factors have
changed from the single-phase case. We now construct complex quantities which are the difference between
the actual signal measured in a frequency band and the expected value for our templates and phases:

�Si � Si � S=p: (6.24.31)

The probability distribution of these differences is still defined by (6.24.10) but in that expression, the
variables of integrationxi andyi are integrated over the complex plane (real and imaginary parts from�1
to1), andF is any function ofp complex variables. As before, we can calculate�P by choosingF correctly,
in this case asF (y1; � � � ; yp) = Æ2(y1��S1) � � � Æ2(yp��Sp), whereÆ2(z) � Æ(Re z)Æ(Im z). The same
procedure as before then yields the probability distribution function

�P (�S1; � � � ;�Sp) = (2��)�p(2��p)e�[j�S1j
2+���+j�Spj2]=2�Æ2(�S1 + � � �+�Sp) (6.24.32)

It is now easy to see that the expectation of the signal differences is still zeroh�Sii = 0 but the variances
are twice as large as in the single-phase case:

hj�Sij2i = 2

p

�
1� 1

p

�
: (6.24.33)

Ther2 statistic is now defined by

r2 =
pX
i=1

j�Sij2 : (6.24.34)

and has an expectation value which as twice as large as in the single-phase case:

hr2i = phj�Sij2i = 2� 2

p
: (6.24.35)

The calculation of the distribution function ofr2 is similar to the single phase case (but with twice the
number of degrees of freedom) and gives the incomplete�-function

P (r > R) = (2��)�p(2��p)
Z
r2>R2

e�r
2=2�Æ2(

p
pup)du1 � � � dup

= (2��)(1�p)
Z
r2>R2

e�r
2=2�du1 � � � dup�1

= P (r > R) = Q(p� 1;
R2

2�
) = Q(p� 1;

pR2

2
) (6.24.36)

This is precisely the distribution of a�2 statistic with2p�2 degrees of freedom: each of thep variables�Si
has 2 degrees of freedom, and there are two constraints since the sum of both the real and imaginary parts
vanishes. In fact since the expectation value of the�2 statistic is just the number of degrees of freedom:

h�2i = 2p� 2 (6.24.37)

the relationship between ther2 and�2 statistic may be obtained by comparing equations (6.24.37) and
(6.24.35), giving

�2 = pr2: (6.24.38)
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Figure 40: The probability that ther2 statistic exceeds a given thresholdR2 is shown for both the single-
phase and two-phase test, forp = 8 andp = 16 frequency ranges. For example, for the single-phasep = 8
test, the probability thatr2 > 2:31 is 1% for a chirp plus Gaussian noise. For the single-phase test with
p = 16 the probability of exceeding the same threshold is about10�3.
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6.25 How does ther2 test work ?

In Section 6.24 we have derived the statistical properties of ther2 test, and described it in mathematical
terms. This is a bit deceptive, because this test was actually developed based on some simple physical
intuition. We noticed with experience that many of the high SNR events that were not found by the out-
lier is gaussian() test did not sound anything like chirps (when listened to with theaudio() and
sound() functions). It was clear from just listening that for these spurious signals did not have the low
frequency signal arriving first, followed by the high frequency signal arriving last, in the same way as a chirp
signal. So in fact ther2 test was designed to discriminate the way in which the different frequencies arrived
with time. In effect, the filter used to construct the signalS1 passes only the lowest frequencies, the filter
used to construct the signalS2 passes the next-to-lowest frequencies, and so on. The filter which produces
the signalSp passes the highest range of frequencies which would make a significant contribution (i.e. a
fraction1=p) of the SNR for a true chirp.

If the signal is a true chirp, then the outputs of each of these different filters (theSi(t0) may be thought
of as functions of lagt0) all peak at the same time-offsett0, thesametime-offset that maximizes the total
signalS(t0). This is illustrated in Figure 41. It is also instructive to compare the values of the filter outputs
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Figure 41: This figure shows the output of four single-phase filters for thep = 4 case, for a “true chirp”
injected into a stream of real IFO data (left set of figures) and a transient noise burst already present in
another stream of real IFO data (right set of figures). When a true chirp is present, the filters in the different
frequency bands all peak at the same time offsett0: the time offset which maximizes the SNR. At this
instant in time, all of theSi are about the same value. However when the filter was triggered by a non-chirp
signal, the filters in the different frequency bands peak at different times, and in fact at timet0 they have
very different values (some large, some small, and so on).

(single-phase test) for the two cases shown in Figure 41. For the injected chirp, the signal-to-noise ratio was
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9.2, and the signal values in the different bands were

S1 = 2:25

S2 = 2:44

S3 = 1:87

S4 = 2:64

S = S1 + S2 + S3 + S4 = 9:2 (6.25.1)

r2 =
4X
i=1

(S=4 � Si)2 = 0:324

P = Q(3=2; 2r2) = 0:730;

so there is a large probabilityP of havingr2 this large.
For the spurious noise event shown in Figure 41 the SNR was quite similar (8.97) but the value ofr2 is

very different:

S1 = 0:23

S2 = 0:84

S3 = 5:57

S4 = 2:33

S = S1 + S2 + S3 + S4 = 8:97 (6.25.2)

r2 =
4X
i=1

(S=4� Si)
2 = 17:1

P = Q(3=2; 2r2) = 9:4� 10�15;

so the probability that this value ofr2 would be obtained for a chirp plus Gaussian noise is extremely small.
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6.26 Function: splitup()

void splitup(float *working, float template, float *r, int n, float total,
int p, int *indices)
This routine takes as inputs a template and a noise-power spectrum, and splits up the frequency spectrum
into a set of sub-intervals to use with the vetoing technique just described.

The arguments are:

working: Input. An arrayworking[0..n-1] used for working space.

template: Input. The arraytemplate[0..n-1] contains the positive frequency (f � 0) part
of the complex function~T (f). The packing of~T into this array follows the scheme used by the
Numerical Recipesroutine realft() , which is described between equations (12.3.5) and (12.3.6)
of [1]. The DC component~T (0) is real, and located intemplate[0] . The Nyquist-frequency
component~T (fNyquist) is also real, and is located intemplate[1] . The array elementstem-
plate[2] andtemplate[3] contain the real and imaginary parts, respectively, of~T (�f) where
�f = 2fNyquist=n = (n�t)�1. Array elementstemplate[2j] andtemplate[2j+1] contain
the real and imaginary parts of~T (j �f) for j = 1; � � � ; n=2� 1.

r : Input. The arrayr[0..n/2] contains the values of the real function~r which is twice the inverse of the
receiver noise, as in equation (6.14.15), so that~r(f) = 2= ~Sh(jf j). The array elements are arranged in
order of increasing frequency, from the DC value at subscript 0, to the Nyquist frequency at subscript
n/2. Thus, thej’th array elementr[j] contains the real value~r(j �f), for j = 0; 1; � � � ; n=2. Again
it is assumed that~r(�f) = ~r�(f) = ~r(f).

n: Input. The total length of the complex arraystemplate andworking , and the number of points in
the output arrays . Note that the arrayr containsn=2 + 1 points. n must be even.

total: Input. This is the total value of the integrated template squared overSh; the frequency subinter-
vals are choose so that each of thep subintervals contains1=p of this total.

p: Input. The number of frequency bands into which you want to divide the range from DC tofNyquist.

indices: Ouput. The frequency bins of the first frequency band arei=0..indices[0] . The next
frequency band isi=indices[0]+1..indices[1] . Thep’th frequency band isi=indices[p-
2]+1..indices[p-1] . Note thatindices[p-1]=n-1 .

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.27 Function: splitup freq()

float splitup freq(float c0, float c90, float *chirp0, float *chirp90, float
norm, float* twice inv noise, int n, int offset, int p, int* indices, float*
stats, float* working, float* htilde)
This routine returns the value of the statisticr2 =

Pp
i=1(�Si)

2. This is a less-efficient version, which
internally constructs filters for each of the different frequency subintervals, and then filters the metric per-
turbation through those filters. It is useful to understand how the different frequency components behave in
the time domain, after filtering.

The arguments are:

c0: Input. The coefficient of the 0-phase template.

c90: Input. The coefficient of the90Æ-phase template. Note thatc20 + c290 should be 1.

chirp0: Input. An arraychirp0[0..n-1] containing the FFT of the 0-phase chirp.

chirp90: Input. An arraychirp90[0..n-1] containing the FFT of the90Æ-phase chirp.

norm: Input. The normalization of the 0-phase chirp.

twice inv noise: Input. The arraytwice inv noise[0..n/2] contains2=Sh(f), as described
previously. The array elementtwice inv noise[0] contains the DC value, and the array element
twice inv noise[n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.

offset: Input. The offset of the moment of maximum signal in the filter output.

p: Input. The number of frequency bandsp for the vetoing test.

indices: Output. An arrayindices[0..p-1] used for internal storage of the frequency subintervals
(seesplitup() .

stats: Output. An arraystats[0..p-1] containing the values of theSi for i = 1; � � � ; p.
working: Output. An arrayworking[0..n-1] used for internal storage.

htilde: Input. An arrayhtilde[0..n-1] containing the positive frequency part of~h(f).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.28 Function: splitup freq2()

float splitup freq2(float c0, float c90, float *chirp0, float *chirp90, float
norm, float* twice inv noise, int n, int offset, int p, int* indices, float*
stats, float* working,float* htilde)
This routine returns the value of the statisticr2 =

Pp
i=1(�Si)

2. This is a more computationally-efficient
version, which does not filter~h through each of thep independent time domain filters. The arguments are
identical to those ofsplitup freq() .

The arguments are:

c0: Input. The coefficient of the 0-phase template.

c90: Input. The coefficient of the90Æ-phase template. Note thatc20 + c290 should be 1.

chirp0: Input. An arraychirp0[0..n-1] containing the FFT of the 0-phase chirp.

chirp90: Input. An arraychirp90[0..n-1] containing the FFT of the90Æ-phase chirp.

norm: Input. The normalization of the 0-phase chirp.

twice inv noise: Input. The arraytwice inv noise[0..n/2] contains2=Sh(f), as described
previously. The array elementtwice inv noise[0] contains the DC value, and the array element
twice inv noise[n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.

offset: Input. The offset of the moment of maximum signal in the filter output.

p: Input. The number of frequency bandsp for the vetoing test.

indices: Output. An arrayindices[0..p-1] used for internal storage of the frequency subintervals
(seesplitup() .

stats: Output. An arraystats[0..p-1] containing the values of theSi for i = 1; � � � ; p.
working: Output. An arrayworking[0..n-1] used for internal storage.

htilde: Input. An arrayhtilde[0..n-1] containing the positive frequency part of~h(f).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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6.29 Function: splitup freq3()

float splitup freq2(float c0, float c90, float *chirp0, float *chirp90, float
norm, float* twice inv noise, int n, int offset, int p, int* indices, float*
stats, float* working,float* htilde)
This routine implements the two-phaser2 statistic test. It returns the value of the statisticr2 =

Pp
i=1 j�Sij2

as defined in Eq. (6.24.34). It is algorithmically similar tosplitup freq2() , except that it allows for the
case where the phase of the signal is unknown. The arguments are identical to those ofsplitup freq2()
but the arraystats has2p elements since the signals are complex.

Note: The GRASP library includes two additional functions which are operationally identical tosplitup freq3() ,
calledsplitup freq4() andsplitup freq5() . The last of these is currently the most efficient im-
plementation of the two-phaser2 test. All the arguments ofsplitup freq[3-5]() areidentical.

The arguments are:

c0: Input. Used in the same way as insplitup freq2() .

c90: Input. Used in the same way as insplitup freq2() . Note that if templates have unit norm you
can setc20 + c21 = 4.

chirp0: Input. An arraychirp0[0..n-1] containing the FFT of the 0-phase chirp.

chirp90: Input. An arraychirp90[0..n-1] containing the FFT of the90Æ-phase chirp.

norm: Input. The normalization of the 0-phase chirp.

twice inv noise: Input. The arraytwice inv noise[0..n/2] contains2=Sh(f), as described
previously. The array elementtwice inv noise[0] contains the DC value, and the array element
twice inv noise[n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.

offset: Input. The offset of the moment of maximum signal in the filter output.

p: Input. The number of frequency bandsp for the vetoing test.

indices: Output. An arrayindices[0..p-1] used for internal storage of the frequency subintervals
(seesplitup() .

stats: Output. An arraystats[0..2p-1] containing the real and imaginary parts of theSi for
i = 1; � � � ; p.

working: Output. An arrayworking[0..n-1] used for internal storage.

htilde: Input. An arrayhtilde[0..n-1] containing the positive frequency part of~h(f).

Authors Bruce Allen, ballen@dirac.phys.uwm.edu, and Patrick Brady, patrick@tapir.caltech.edu, and Jolien
Creighton jolien@tapir.caltech.edu.

Comments: None.
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6.30 Example:optimal program

This program reads the 40-meter data stream, and then filters it though a chirp template corresponding to a
pair of inspiraling1:4M� neutron stars.

The correspondence between different arrays in this program, and the quantities discussed previously
in this section, is given below. In these equations,�t = 1=srate is the sample time in seconds, and
�f = (n�t)�1 = srate=npoint is the size of a frequency bin, in Hz. Heren = npoint is the number of
points in the data stream which are being optimally filtered in one pass.

Chirp templates (in frequency space) for the two polarizations are related to the arrayschirp0[ ] and
chirp1[ ] by

~T0(f) =
�t

HSCALE
chirp0[ ] (6.30.1)

~T90(f) =
�t

HSCALE
chirp1[ ] (6.30.2)

where the elementschirp0[2j] and chirp0[2j+1] are the real and imaginary parts at frequency
f = j�f (with the exception of the Nyquist frequency, stored inchirp0[1] ). Note that to ensure that
quantities within the code remain within the dynamic range of floating point numbers, we have scaled up the
template strain by a constant factorHSCALE; we also scale up the interferometer output by the same factor,
so that all program output (such as signal-to-noise ratios) is independent of the value ofHSCALE. If you’re
not comfortable with this, go ahead and changeHSCALEto 1. It won’t change anything, provided that
you don’t overflow the dynamic range of the floating point variables! The scaled interferometer response
function is

response[ ] = HSCALE=ARMLENGTH�R(f); (6.30.3)

where the functionR(f) is defined by equation (3.12.3). The Fourier transform~h of the dimensionless
strain is obtained by multiplying�t and the FFT ofchannel.0 by response[ ] , yielding

~h(f) =
�t

HSCALE
htilde[ ]: (6.30.4)

The one-sided noise power spectrumSh(f) is the average of

Sh(f) =
2

n�t
j~h(f)j2 = 2

n�t

(�t)2

HSCALE2
jhtilde[ ]j2 = 2�t

n HSCALE2
jhtilde[ ]j2: (6.30.5)

The power spectrumSh(f) is averaged using the same exponential averaging technique described for the
routineavg spec() . This average is stored as

Sh(f) =
2�t

n HSCALE2
hjhtilde[ ]j2i = �t

n HSCALE2
mean pow spec[ ] (6.30.6)

Twice the inverse of this average is stored in the arraytwice inv noise[ ] , so that

2

Sh(f)
=
n HSCALE2

�t
twice inv noise[ ]: (6.30.7)

The expected noise-squared for the plus polarization is given by equation (6.14.8):

hN2i =
1

2
(Q;Q) =

1

2

Z 1

�1
df
j ~T0(f)j2
Sh(f)

=
1

2

1

n�t
FFT�10

"
(�t)2

HSCALE2
jchirp0[ ]j2nHSCALE

2

�t

1

2
twice inv noise[ ]

#
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=
1

2
FFT�10

�
jchirp0[ ]j2 1

2
twice inv noise[ ]

�
! 1

2
correlate(� � � ; chirp0[ ]; chirp0[ ]; twice inv noise[ ]; npoint):

where the subscript on the inverse FFT means “at zero lag”, and “! f ” means “returned by the call to the
function f”. We have chosen a distance for the system producing the “chirp”~T(f) so that the expected value
of hN2i = 1.

In similar fashion, the signalS at lagt0 is given by

S = (
~h

Sh
; ~Q)

=

Z 1

�1
df

~h(f) ~T �0 (f)
Sh(f)

e�2�ift0

=
1

n�t
FFT�1i

"
�t

HSCALE
htilde[ ]

�t

HSCALE
(chirp0[ ])�

n HSCALE2

�t

1

2
twice inv noise[ ]

#

= FFT�1i

�
htilde[ ] chirp0[ ]

1

2
twice inv noise[ ]

�
! correlate(� � � ; htilde[ ]; chirp0[ ]; twice inv noise[ ]; npoint); (6.30.8)

where now the subscript on the FFT means “at lagt = i �t”.
You might wonder why we have been so careful – after all, both the signal and the noise, as we’ve

defined them, are dimensionless, so it’s not surprising that all of the factors of�t drop out of the final
formulae for the signal and the expected noise-squared. The main reason we’ve been so long winded is
to show exactly how the units cancel out, and to demonstrate that there aren’t any missing dimensionless
constants, likenpoint , left out of the program. Some sample output from this program is shown in the
next section.
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define NPOINT 131072 =� The size of our segments of data (13.1 secs)�=
#define FLO 120.0 =� The low frequency cutoff for filtering�=
#define HSCALE 1.e21 =� A convenient scaling factor; results independent of it�=
#define MIN INTO LOCK 3.0 =� Number of minutes to skip into each locked section�=
#define SAFETY 1000 =� Padding safety factor to avoid wraparound errors�=
#define PR2 8 =� Value of p for the R̂ 2 splitup test�=

int main() f
void realft(float �,unsigned long,int);
int i,code=0,npoint,remain=0,maxi,chirplen,needed,diff,impulseoff,chirppoints,indices[PR2];
float distance,snr max,srate=9868.4208984375,tstart, �mean pow spec,timeoff,timestart;
float �data, �htilde, �output90, �output0, �chirp0, �chirp90, �ch0tilde, �ch90tilde;
float n0,n90,inverse distance scale,decaytime, �twice inv noise,datastart,tc;
float lin0,lin90,invMpc inject,varsplit,stats[2 �PR2],gammq(float,float),var, �response;
double decay=0.0,norm,prob;
short �datas;
FILE �fpifo, �fpss, �fplock;

=� open the IFO output file, lock file, and swept-sine file�=
fpifo=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");
fpss=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");

=� number of points to sample and fft (power of 2)�=
needed=npoint=NPOINT;

=� stores ADC data as short integers�=
datas=(short �)malloc(sizeof(short) �npoint);

=� stores ADC data in time& freq domain, as floats�=
data=(float �)malloc(sizeof(float) �npoint);

=� The phase 0 and phase pi=2 chirps, in time domain�=
chirp0=(float �)malloc(sizeof(float) �npoint);
chirp90=(float �)malloc(sizeof(float) �npoint);

=� Orthogonalized phase 0 and phase pi=2 chirps, in frequency domain�=
ch0tilde=(float �)malloc(sizeof(float) �npoint);
ch90tilde=(float �)malloc(sizeof(float) �npoint);

=� The response function (transfer function) of the interferometer�=
response=(float �)malloc(sizeof(float) �(npoint+2));

=� The gravity wave signal, in the frequency domain�=
htilde=(float �)malloc(sizeof(float) �npoint);

=� The autoregressive-mean averaged noise power spectrum�=
mean pow spec=(float �)malloc(sizeof(float) �(npoint =2+1));

=� Twice the inverse of the mean noise power spectrum�=
twice inv noise=(float �)malloc(sizeof(float) �(npoint =2+1));

=� Ouput of matched filters for phase0 and phase pi=2, in time domain, and temp storage�=
=� factor of 2 in size of output0 because it is used in splitupfreq4 for temp storage�=
output0=(float �)malloc(sizeof(float) �2�npoint);
output90=(float �)malloc(sizeof(float) �npoint);
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=� get the response function, and put in scaling factor�=
normalize gw(fpss,npoint,srate,response);
for (i=0;i <npoint+2;i++)

response[i] �=HSCALE=ARMLENGTH1994;

=� manufacture two chirps (dimensionless strain at 1 Mpc distance)�=
make filters(1.4,1.4,chirp0,chirp90,FLO,npoint,srate, &chirppoints, &tc,0,4);
=� normalization of next line comes from GRASP (5.6.3) and (5.6.4)�=
inverse distance scale=2.0 �HSCALE�(TSOLAR�C LIGHT=MPC);
for (i=0;i <chirppoints;i++) f

ch0tilde[i]=chirp0[i] �=inverse distance scale;
ch90tilde[i]=chirp90[i] �=inverse distance scale;

g

=� zero out the unused elements of the tilde arrays�=
for (i=chirppoints;i <npoint;i++)

ch0tilde[i]=ch90tilde[i]=0.0;

=� and FFT the chirps�=
realft(ch0tilde �1,npoint,1);
realft(ch90tilde �1,npoint,1);

=� set length of template including a safety margin�=
chirplen=chirppoints+SAFETY;
if (chirplen >npoint) abort();

=� This is the main program loop, which aquires data, then filters it�=
while (1) f

=� Seek MIN INTO LOCK minutes into a locked stretch of data�=
while (remain <needed) f

code=get data(fpifo,fplock, &tstart,MIN INTO LOCK�60�srate,
datas, &remain, &srate,1);

if (code==0) return 0;
g

=� if just entering a new locked stretch, reset averaging over power spectrum�=
if (code==1) f

norm=0.0;
clear(mean pow spec,npoint =2+1,1);

=� decay time for spectrum, in sec. Set to 15x length of npoint sample�=
decaytime=15.0 �npoint =srate;
decay=exp( �1.0 �npoint =(srate �decaytime));

g

=� Get the next needed samples of data�=
diff=npoint �needed;
code=get data(fpifo,fplock, &tstart,needed,datas+diff, &remain, &srate,0);
datastart=tstart �diff =srate;

=� copy integer data into floats�=
for (i=0;i <npoint;i++) data[i]=datas[i];

=� inject signal in time domain (note output0[ ] used as temp storage only)�=
invMpc inject=0.0; =� To inject a signal at 10 kpc, set this to 100.0�=
time inject chirp(1.0,0.0,12345,invMpc inject,chirp0,chirp90,data,

response,output0,npoint);
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=� find the FFT of data�=
realft(data �1,npoint,1);

=� normalized delta-L=L tilde �=
product(htilde,data,response,npoint =2);

=� update the inverse of the auto-regressive-mean power-spectrum�=
avg inv spec(FLO,srate,npoint,decay, &norm,htilde,mean pow spec,twice inv noise);

=� inject a signal in frequency domain, if desired�=
invMpc inject=0.0; =� For a signal at 10 kpc, set this to 100.0, else 0.0�=
freq inject chirp( �0.406,0.9135,23456,invMpc inject,ch0tilde,ch90tilde,htilde,

npoint);

=� orthogonalize the chirps: we never modify ch0tilde, only ch90tilde�=
orthonormalize(ch0tilde,ch90tilde,twice inv noise,npoint, &n0, &n90);

=� distance scale Mpc for SNR=1�=
distance=sqrt(1.0 =(n0 �n0)+1.0 =(n90 �n90));

=� find the moment at which SNR is a maximum�=
find chirp(htilde,ch0tilde,ch90tilde,twice inv noise,n0,n90,output0,output90,

npoint,chirplen, &maxi, &snr max, &lin0, &lin90, &var);

=� identify when an impulse would have caused observed filter output�=
impulseoff=(maxi+chirppoints)%npoint;
timeoff=datastart+impulseoff =srate;
timestart=datastart+maxi =srate;

=� if SNR greater than 5, then print details, else just short message�=
if (snr max<5.0)

printf("max snr: %.2f offset: %d data start: %.2f sec. variance: %.5f\n",
snr max,maxi,datastart,var);

else f
=� See if the nominal chirp can pass a frequency-space single-phase veto test�=
varsplit=splitup freq2(lin0 �n0=sqrt(2.0),lin90 �n90=sqrt(2.0),ch0tilde,

ch90tilde,2.0 =(n0 �n0),twice inv noise,npoint,maxi,PR2,
indices,stats,output0,htilde);

prob=gammq(0.5 �(PR2�1),0.5 �PR2�varsplit);
=� See if the nominal chirp can pass a frequency-space two-phase veto test�=
varsplit=splitup freq3(lin0 �n0=sqrt(2.0),lin90 �n90=sqrt(2.0),ch0tilde,

ch90tilde,2.0 =(n0 �n0),twice inv noise,npoint,maxi,PR2,
indices,stats,output0,htilde);

prob=gammq(PR2�1,0.5 �PR2�varsplit);
=� printf(“Splitup 3 returns variance: %fnn”,varsplit);�=

varsplit=splitup freq5(lin0 �n0=sqrt(2.0),lin90 �n90=sqrt(2.0),ch0tilde,
ch90tilde,2.0 =(n0 �n0),twice inv noise,npoint,maxi,PR2,
indices,stats,output0,htilde);

prob=gammq(PR2�1,0.5 �PR2�varsplit);
=� printf(“Splitup 5 returns variance: %fnn”,varsplit);�=

printf("\nMax SNR: %.2f (offset %d) variance %f\n",snr max,maxi,var);
printf(" If impulsive event, offset %d or time %.2f\n",impulseoff,timeoff);
printf(" If inspiral, template start offset %d (time %.2f) ",maxi,timestart);
printf("coalescence time %.2f\n",timestart+tc);
printf(" Normalization: S/N=1 at %.2f kpc\n",1000.0 �distance);
printf(" Lin combination of max SNR: %.4f x phase_0 + %.4f x phase_pi/2\n",

lin0,lin90);
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if (prob <0.01)
printf(" Less than 1%% probability that this is a chirp (p=%f).\n",prob);

else
printf(" POSSIBLE CHIRP! with > 1%% probability (p=%f).\n",prob);

=� See if the time-domain statistics are unusual or appears Gaussian�=
if (is gaussian(datas,npoint, �2048,2047,1))

printf(" Distribution does not appear to have outliers. . .\n\n");
else

printf(" Distribution has outliers! Reject\n\n");
g

=� shift ends of buffer to the start�=
needed=npoint �chirplen+1;
for (i=0;i <chirplen �1;i++)

datas[i]=datas[i+needed];

=� reset if not enough points remain to fill the buffer�=
if (remain <needed)

needed=npoint;
g

g
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6.31 Some output from theoptimal program

Some output from theoptimal program follows:

...
max snr: 3.11 offset: 23623 data start: 180.00 sec. variance: 0.94044
max snr: 2.91 offset: 3311 data start: 185.17 sec. variance: 0.84484
...
max snr: 2.53 offset: 19041 data start: 309.26 sec. variance: 0.70333
max snr: 2.98 offset: 35711 data start: 314.43 sec. variance: 0.67523

Max SNR: 8.71 (offset 42109) variance 0.805030
If impulsive event, offset 55624 or time 325.23
If inspiral, template start offset 42109 (time 323.86) coalescence time 325.23
Normalization: S/N=1 at 116.75 kpc
Linear combination of max SNR: 0.9315 x phase_0 + 0.3638 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
Distribution: s= 23, N>3s= 12 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

max snr: 2.51 offset: 31183 data start: 324.77 sec. variance: 0.63028
max snr: 2.56 offset: 49909 data start: 329.94 sec. variance: 0.66853
...
max snr: 2.82 offset: 35080 data start: 3002.03 sec. variance: 0.77306
max snr: 2.61 offset: 33141 data start: 3007.20 sec. variance: 0.74268

Max SNR: 89.75 (offset 16678) variance 82.547005
If impulsive event, offset 30193 or time 3015.43
If inspiral, template start offset 16678 (time 3014.06) coalescence time 3015.4 3
Normalization: S/N=1 at 128.49 kpc
Linear combination of max SNR: -0.3955 x phase_0 + 0.9185 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
Distribution: s= 29, N>3s= 157 (expect 176), N>5s= 30 (expect 0)
Distribution has outliers! Reject

max snr: 3.24 offset: 22412 data start: 3017.54 sec. variance: 0.99474
max snr: 2.73 offset: 37777 data start: 3022.71 sec. variance: 0.75325
...
max snr: 2.80 offset: 5893 data start: 4140.89 sec. variance: 0.73240
max snr: 2.75 offset: 46932 data start: 4146.06 sec. variance: 0.69654

Max SNR: 6.08 (offset 30002) variance 0.883380
If impulsive event, offset 43517 or time 4155.64
If inspiral, template start offset 30002 (time 4154.27) coalescence time 4155.6 4
Normalization: S/N=1 at 113.04 kpc
Linear combination of max SNR: -0.4773 x phase_0 + 0.8787 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.024142).
Distribution: s= 31, N>3s= 399 (expect 176), N>5s= 53 (expect 0)
Distribution has outliers! Reject
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max snr: 2.77 offset: 15985 data start: 4156.40 sec. variance: 0.72095
max snr: 2.69 offset: 47338 data start: 4161.57 sec. variance: 0.69708
...

This output shows three events that triggered an optimal filtering routine. The first and second of these
events were rejected for different reasons. The first was rejected because if failed the frequency-distribution
test. The second was rejected because it had 30 outlier points. The third failed for the same reason: it had
53 outlier points.

Next, we show some output when a fake chirp signal is injected into the data stream. This can be done
for example by modifyingoptimal to read:

invMpc_inject=100.0; /* To inject a signal at 10 kpc, set this to 100.0 */
time_inject_chirp(1.0,0.0,12345,invMpc_inject,chirp0,chirp90,data,response,output0 ,

This produces the following output:

...
Max SNR: 9.96 (offset 12345) variance 0.872624

If impulsive event, offset 25860 or time 187.79
If inspiral, template start offset 12345 (time 186.42) coalescence time 187.79
Normalization: S/N=1 at 152.17 kpc
Linear combination of max SNR: 0.9995 x phase_0 + -0.0304 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.421294).
Distribution: s= 23, N>3s= 12 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 12.84 (offset 12345) variance 0.834527
If impulsive event, offset 25860 or time 192.96
If inspiral, template start offset 12345 (time 191.59) coalescence time 192.96
Normalization: S/N=1 at 132.47 kpc
Linear combination of max SNR: 0.9953 x phase_0 + 0.0973 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.949737).
Distribution: s= 22, N>3s= 28 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 14.86 (offset 12345) variance 0.801640
If impulsive event, offset 25860 or time 198.13
If inspiral, template start offset 12345 (time 196.76) coalescence time 198.13
Normalization: S/N=1 at 127.90 kpc
Linear combination of max SNR: 0.9993 x phase_0 + -0.0372 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.999236).
Distribution: s= 22, N>3s= 35 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

...

The code is correctly finding the chirps, getting the distance and phase and time location of the chirps about
as accurately as one would expect given the level of the IFO noise.
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0.0 20000.0 40000.0 60000.0 80000.0
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0.0
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100.0
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O
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ut

Data Stream
19 Nov 94 run 1

Drip

Figure 42: This shows the event that triggered the2 � 1:4 solar mass binary inspiral filter with a SNR of
8.71 (see the first set of sample output from the optimal filtering code above, at time 325.23). This same
“event” can also be seen in Figure 9. The horizontal axis is sample number, with samples� 10�4 seconds
apart; the vertical axis is the raw (whitened) IFO output. The event labeled “drip” can be heard in the data
(it sounds like a faucet drip) and is picked up by the optimal filtering technique, but it is NOT visible to the
naked eye. This event is vetoed by the splitup technique described earlier - it has extremely low probability
of being a chirp plus stationary noise.

There are several interesting lessons that one can learn from this optimal filtering experience. The first
is that (roughly speaking) the events that trigger an optimal filter (driving the output to a value much larger
than would be expected for a colored-noise Gaussian input) can be broken into two classes: those which can
be seen in the raw data stream, and those which can not. Here, by “seen in the raw data stream”, we mean
“visible to the naked eye upon examination of a graph”. Shown in the following two figures are examples
of each type of spurious event.
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0.0 20000.0 40000.0 60000.0 80000.0
Sample Number

−400.0

−200.0

0.0

200.0

400.0

600.0

IF
O

 O
up

ut

Data Stream
19 Nov 94 run 1

Bump
SNR: 17.33

Figure 43: This another event that triggered the2 � 1:4 solar mass binary inspiral filter with a SNR of
17.33. This event sounds like a “bump”; it is probably due to a bad cable connection. It can be easily seen
(and vetoed) in the time domain. A close-up of this is shown in the next figure.
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Figure 44: A close-up of the previous graph, showing the structure of the “bump”.
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Figure 45: This another event that triggered the2 � 1:4 solar mass binary inspiral filter with a SNR of
32.77. This event sounds like a shovel scraping on the ground; its origin is unknown. It can be easily seen
(and vetoed) in the time domain.
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Figure 46: A close-up of the previous graph, showing the structure of the “scrape”.
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6.32 The effective distance to which a source can be seen

Given a gravitational-wave detector with some known noise spectrum, it would clearly be useful to
define an “effective distance”De� to which some given gravitational-wave source can be seen. To first
order, any source located farther away from the detector thanDe� would be too weak to be detectable in the
datastream. Sources closer thanDe� would be detectable.

This naive, heuristic picture ofDe� doesn’t make much sense in the real world because the source does
not emit isotropically, and the detector does not detect isotropically: there are positions on the sky for which
the detector can “see” farther, and the source radiates more strongly into some angles than others. A useful
definition ofDe� must therefore average over angles in a meaningful, well-understood way.

One simple way to average over angles is to use Eq. (2.30) of Ref. [13]. In that reference, Flanagan and
Hughes show that the signal-to-noise ratio, rms angle averaged over all source orientations and all positions
on the sky, depends only on the spectrum of emitted gravitational-wave energy,dEgw=df . Rearranging their
formula (2.30) slightly, the effective distance to which a source can be seen with some rms angle-averaged
signal-to-noise ratio�0 is then

DFH
e� (�0)

2 =
2(1 + z)2

5�2�20

�
G

c3

�Z 1

0
df

1

f2Sh(f)

dEgw

df
[(1 + z)f ] : (6.32.1)

The distanceDFH
e� so defined is actually a luminosity distance; assuming some set of cosmological parame-

ters and using standard formulae, one can then easily convertDFH
e� to an effective redshiftzFHe� , and thence

compute the comoving volumeVc(zFHe� ) that is contained to that distance. If one assumes that the event rate
of sources locked into Hubble flow does not evolve with redshift, this allows one to simply convert from an
event rate densityR [with units number/(Mpc3 year)] to a detected event rateN (with units number/year).
(This assumption is clearly a rather bad one: the event rate will undoubtedly evolve with redshift. However,
we don’t currently knowhow it will so evolve. This simple, albeit stupid, assumption is a useful one for
estimating event rates for gravitational-wave sources.)

Notice that the cosmological redshiftz explicitly appears in Eq. (6.32.1). These factors enter in such a
way that the mass “imprinted” on the gravitational waveform (i.e., the mass that gravitational-wave detec-
tions measure at the earth) will be redshift fromM to (1 + z)M .

Finn and Chernoff [15] define an effective distance in a somewhat different and more careful manner.
Given a noise spectrum and given a threshold signal-to-noise ratio�0, they define an effective distance
DFC
e� (�0) as

N(� > �0) =
4�

3
DFC
e� (�0)

3R : (6.32.2)

In words, the detection rate of events with signal-to-noise ratio� greater than the threshold�0 is given the
event rate density in spaceR times the volume of a sphere of radiusDFC

e� (�0). Finn and Chernoff then
calculateDFC

e� using Monte-Carlo integration; see [15] for details.
Thorne [16],[17] has shown that for a pair of1:4M� � 1:4M� neutron starsand for distances small

enough that cosmological effects are negligible, the definitions given in Eqs. (6.32.1) and (6.32.2) are related
by

DFC
e�

DFH
e�

= 1:10 : (6.32.3)

For the purposes of GRASP, we will use an effective distance that is based on (6.32.1) because it is quick
and simple to calculate, but correct using (6.32.3) in the hope that this will put us in reasonable agreement
with the very careful calculations of Finn and Chernoff. (This factor of1:10 probably varies somewhat with
total system mass and with cosmological effects.) The formula forDe�(�0) that we use is

De�(�0)
2 = (1:10)2 � 2(1 + z)2

5�2�20

Z 1

0
df

1

f2Sh(f)

dEgw

df
[(1 + z)f ] : (6.32.4)

GRASP RELEASE 1.9.8 Page 204 May 19, 2000



Section
6.32

GRASP Routines: Gravitational Radiation from Binary Inspiral
The effective distance to which a source can be seen

Page
205

The following routine calculates this effective distance, providing also the associated redshift and co-
moving volume.
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6.33 Function: inspiral dist()

void inspiral_dist(double *deff, double *z, double *Vc, double m1_z,
double m2_z, double snr, double S_h[], int npoint,
double srate, double h100)

This function computes the effective distance to which a binary inspiral with redshifted massesm1 z and
m2 z can be seen with the noise spectrumS h[] .

It uses the energy spectrum
dEgw

df
=
�2=3

3
�M2=3f�1=3 (6.33.1)

to describe the inspiral for frequenciesf < fmerge = 0:02=M , and zero abovefmerge (as in reference [13]).
To convert from luminosity distance to redshift, it assumes a universe flat cosmology (� = 0, 
 = 1) with
a Hubble constantH0 = 75 km=Mpc sec, and uses an Eq. (11) from [18]. To convert from redshift to
comoving volume, it uses Eq. (27) of [19] or Eq. (2.56) withq0 = 1=2 of [20].

The arguments to the function are:

deff: Output. The effective distance in megaparsecs.

z: Output. Redshift corresponding that effective distance.

Vc: Output. Comoving volume at the redshift in cubic megaparsecs.

m1 z: Input. Redshifted mass one,(1 + z)m1.

m2 z: Input. Redshifted mass two,(1 + z)m2.

snr: Input. The signal-to-noise ratio at which the effective distance isdeff .

S h: Input. The spectral density of noise in Hz�1.

npoint: Input. The number of data points inS h.

srate: Input. The sampling rate used to construct the noise spectrum, Hz.

h100: Input. The Hubble constant in units of 100 km/sec/Mpc.

Author: Scott Hughes, hughes@tapir.caltech.edu
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6.34 Function: merger dist()

void merger_dist(double *deff, double *z, double *Vc, double m1_z,
double m2_z, double snr, double S_h[], int npoint,
double srate,double h100)

This function computes the effective distance to which a binary merger with redshifted massesm1 z and
m2 z can be seen with the noise spectrumS h[] .

It uses the energy spectrum
dEgw

df
=

�M

fqnr � fmerge
(6.34.1)

to describe the merger, using parameters� = 0:1, fqnr = 0:13=M , fmerge = 0:02=M (as in reference [13]).
As such it is, strictly speaking, only applicable to binary black hole mergers. Its operation is otherwise
identical toinspiral dist() .

The arguments to the function are:

deff: Output. The effective distance in megaparsecs.

z: Output. Redshift corresponding that effective distance.

Vc: Output. Comoving volume at the redshift in cubic megaparsecs.

m1 z: Input. Redshifted mass one,(1 + z)m1.

m2 z: Input. Redshifted mass two,(1 + z)m2.

snr: Input. The signal-to-noise ratio at which the effective distance isdeff .

S h: Input. The spectral density of noise in Hz�1.

npoint: Input. The number of data points inS h.

srate: Input. The sampling rate used to construct the noise spectrum, Hz.

h100: Input. The Hubble constant in units of 100 km/sec/Mpc.

Author: Scott Hughes, hughes@tapir.caltech.edu
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6.35 Example:compute dist program

This program will tell you the distance to which a binary with given redshifted masses [(1+z)m1; (1+z)m2]
can be seen with a given signal-to-noise rate in some given detector (which must be listed in the GRASP
file detectors.dat ). It will also tell you the redshift at that effective (luminosity) distance and the
corresponding comoving volume. It uses that comoving volume to convert a given event rate density to a
measured event rate.

The code specifies its various input parameters with command line flags. Thus,
compute dist -m1 5 -m2 7 -snr 6 -d 24 -R 2.e-7 -h100 0.75
will compute the effective distance for a binary that has(1 + z)m1 = 5M�, (1 + z)m2 = 7M� with
signal-to-noise ratio 6 in detector 24 (the zeroth stage of enhancement at the Livingston LIGO site); and
it will compute the detected event rate with an assumption that the event rate density is2 � 10�7 events
per cubic megaparsec per year, in a cosmology with Hubble constant today of 75 km/sec/Mpc. If a flag or
parameter is omitted, default values are used; type
compute dist -h
to see those default values.

#include "grasp.h"

#define NPOINTS 32768

int main(int argc,char ��argv) f
void HELP();
double �S h;
float site parameters[8];
double delta f,srate = 20000.; =� Hz �=
char noise file[128],whiten file[128],site name[128];
int i,npoint=131072;

=� default parameter values�=
double m1 z=1.4,m2 z=1.4,R=1.e �8,snr=5.5,h100=0.75;
int detector=21;
double dinsp,dmerge,zinsp,zmerge,Vcinsp,Vcmerge;

=� get paramters from the command line�=
for(i=0;i <argc �1;i++) f

if(!strcmp(argv[i+1],"-h")) f
HELP();
exit(0);

g
if(!strcmp(argv[i+1],"-snr")) f

if(!(snr=strtod(argv[i+2],NULL))) f
fprintf(stderr,"Error assigning SNR, defaulting to 5.5.\n");
snr=5.5;

g
if(snr <0.) snr=5.5;

g
if(!strcmp(argv[i+1],"-h100")) f

if(!(h100=strtod(argv[i+2],NULL))) f
fprintf(stderr,"Error assigning Hubble constant h100, defaulting to 0.75\n");
h100=0.75;

g
if(h100 <0.) h100=fabs(h100);

g
if(!strcmp(argv[i+1],"-m1")) f
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if(!(m1 z=strtod(argv[i+2],NULL))) f
fprintf(stderr,"Error assigning redshifted m1, defaulting to 1.4\n");
m1 z = 1.4;

g
if(m1 z<0.) m1 z=1.4;

g
if(!strcmp(argv[i+1],"-m2")) f

if(!(m2 z=strtod(argv[i+2],NULL))) f
fprintf(stderr,"Error assigning redshifted m2, defaulting to 1.4\n");
m2 z = 1.4;

g
if(m2 z<0.) m2 z=1.4;

g
if(!strcmp(argv[i+1],"-d")) f

if(!(detector=atoi(argv[i+2]))) f
fprintf(stderr,"Error assigning detector number, defaulting to 21\n");
detector=21;

g
if(detector <1) detector=21;

g
if(!strcmp(argv[i+1],"-R")) f

if(!(R=strtod(argv[i+2],NULL))) f
fprintf(stderr,"Error assigning rate density, defaulting to 1.e-8\n");
R=1.e �8;

g
if(R <0.) R=1.e �8;

g
g

=� Get info for that detector�=
detector site("detectors.dat",detector,site parameters,site name,

noise file,whiten file);

=� allocate memory for the noise power spectrum�=
S h=(double �)malloc(sizeof(double) �(npoint =2+1));
delta f=srate =((double)npoint);

=� Fill in the noise power spectrum for the detector�=
noise power(noise file,npoint =2+1,delta f,S h);

=� compute effective distance for which inspiral has SNR = value�=
inspiral dist( &dinsp, &zinsp, &Vcinsp,m1 z,m2 z,snr,S h,npoint,srate,h100);

=� compute effective distance for which merger has SNR = value�=
merger dist( &dmerge, &zmerge, &Vcmerge,m1 z,m2 z,snr,S h,npoint,srate,h100);

printf("%s: D_insp = %e z_insp = %e Vc_insp = %e N = %e\n",
site name,dinsp,zinsp,Vcinsp,R �Vcinsp);

printf("%s: D_merge = %e z_merge = %e Vc_merge = %e N = %e\n\n",
site name,dmerge,zmerge,Vcmerge,R �Vcmerge);

return 0;
g

void HELP()
f

fprintf(stderr,"\nThis GRASP code takes the following flags:\n\n");
fprintf(stderr," -h: Show this help message.\n\n");
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fprintf(stderr," -snr [snr]: Use a signal to noise ratio of snr.\n");
fprintf(stderr," Default value is 5.5.\n\n");
fprintf(stderr," -m1 [(1+z)m1]: Set redshifted mass 1.\n");
fprintf(stderr," Default value is 1.4.\n\n");
fprintf(stderr," -m2 [(1+z)m2]: Set redshifted mass 2.\n");
fprintf(stderr," Default value is 1.4.\n\n");
fprintf(stderr," -d [dn] : Set detector number to dn. dn must\n");
fprintf(stderr," be a detector integer defined in the\n");
fprintf(stderr," GRASP file detectors.dat.\n");
fprintf(stderr," Default value is 16, corresponding to\n");
fprintf(stderr," Hanford enhancement 0.\n\n");
fprintf(stderr," -R [R] : Set rate density to R. Units are events\n");
fprintf(stderr," per (year Mpcˆ3).\n");
fprintf(stderr," Default value is 1.e-8.\n\n");
fprintf(stderr," -h100 [h100] : Set Hubble constant in units of 100 km/sec/Mpc\n");
fprintf(stderr," Default value is 0.75\n\n");
return;

g

Author: Scott Hughes, hughes@tapir.caltech.edu
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7 GRASP Routines: Waveforms from perturbation theory

An alternative method of calculating the waveforms generated during a binary inspiral is provided by black
hole perturbation theory. In the limit of a small mass ratio� = m1m2=(m1+m2)2 (the test mass limit) we
can treat the effects of the smaller body as perturbations of the gravitational field of the larger mass. If
the latter is a black hole then the Teukolsky formalism [30] can be used to calculate these perturbations.
The corrections to the metric are then expressed as an infinite sum over multipole moments. Here we will
consider the case of a Schwarzschild black hole.

7.1 The waveform

The Teukolsky formalism gives the two componentsh+ andh� of the gravitational waves produced by a
test mass in a fixed, circular orbit of radiusr0 as

h+(u)� ih�(u) = 2G�

rc2

X
l�2;jmj�l

Alm(M
)e�im
(t�cr�)�2Ylm(#; '); (7.1.1)

whereu = t � cr� is the standard retarded time. HereG is Newton’s constant andc the speed of light.
Here the functions�2Ylm(#; ') are the spherical harmonics of spin weight�2, 
 is the angular velocity
andM = m1 +m2 is the total mass of the system. The angles# and' are the usual spherical coordinates,
as defined in Section 8.1, Figure 50 (# = � and# = �). Since the motion is symmetric around thez-axis'
does not have an intrinsic meaning. Throughout this section angles are measured in radians. The amplitudes
Alm are constants and have to be calculated numerically by solving the Teukolsky equation. We provide
Alm tabulated in a datafile [45] as a function of the orbital velocityv (measured in units of the speed of light
c)

cv = r0
 =

s
GM

r0
= (GM
)

1
3 = (2�GMf)

1
3 : (7.1.2)

Heref is theorbital frequency measured in units on Hertz.
To account for the decay of the orbit due to the emission of gravitational waves we use an adiabatic

approximation: The energy radiated away as calculated from expression (7.1.1) is used to calculate the
change in orbital frequency. By doing so,
, and thus alsov, become functions of time and we have to
replace the product
u by an integral

R

(u)du.

Following [46] we find that the time evolution of the velocity is governed by

_v =
32

5

�c3

GM2
v9
P (v)

Q(v)
; (7.1.3)

where� = m1m2=M is the reduced mass of the system. The functionP (v), which is determined by the
Alm’s, is defined by the equation

_E =
dE

dt
= P (v)

�
dE

dt

�
N

where(dE=dt)N = �32�2v10c4=5GM2 is the quadrupole-formula expression for the gravitational-wave lumi-
nosity. We also provideP (v) in tabulated form [45]. The functionQ(v) = (1 � 6v2)(1 � 3v2)�

3
2 relates

the energy and frequency of the orbiting particle:

dE

df
= E(v)

�
dE

df

�
N

:

This can be calculated by solving the geodesic equation for circular orbits in the Schwarzschild spacetime.
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Note thatv(t) can be calculated from equation (7.1.3) once and for all: First (numerically) calculate the
solutionV (t) of equation (7.1.3) with the factor�c3=GM2 set to one; then the solutionv(t) for general�=M2

is simply

v(t) = V

 
�c3

GM2
t

!
: (7.1.4)

As mentioned before, we have to replace the product
u in equation (7.1.1) by an appropriate integral. We
first note that we want to look at waves at a fixed radiusr� !1. We can thus simply ignore the dependence
onr� because it will only contribute a fixed phase'0. Since our data are tabulated as functions of the orbital
velocity v, it is convenient to usev instead of the timet as an independent variable. This is permissible
becausev depends monotonically ont. Thus the phase becomes:

� im
t �! �imM

�

5

32

Z v

v0
dv0

Q(v0)
P (v0)v06

=: �imM

�
�(v0; v): (7.1.5)

It is important to note that� is not unique, but depends on an arbitrary parameterv0. As with r�, a change
in v0 will only affect the phase'0. Since� can become rather large, the freedom in choosingv0 can be
used to keep� small in the region of interest. A good choice ofv0 will improve the numerical accuracy
tremendously. (For example, the standard trigonometric functions in C become hopelessly inaccurate for
arguments> 106 for floats and> 1010 for doubles).

The signal is now given by

h+(t)� ih�(t) =
2G�

rc2

X
l�2;jmj�l

Alm(v(t))e
�imM

�
�(v0;v(t))�2Ylm(#; '); (7.1.6)

wherev(t) is given by equation (7.1.4).
To extracth+ andh� independently we use the fact thatAl�m = (�1)lAlm and, since�2Ylm(#; ') =

�2Ylm(#; 0) eim' and�2Ylm(#; 0) is real, we have�2Yl�m(#; ') = �2Ylm(#; 0) e�im' [26]. We can now
split the sum (7.1.6) into real and imaginary part. This gives the two components as

h+ =
2G�

rc2

X
2�l;1�m�l

(cm <lm � sm=lm)
�
�2Ylm(#; 0) + (�1)l�2Yl�m(#; 0)

�
(7.1.7)

h� =
2G�

rc2

X
2�l;1�m�l

(sm <lm + cm =lm)
�
��2Ylm(#; 0) + (�1)l�2Yl�m(#; 0)

�
:

Here we have introduced the notation<lm := ReAlm, =lm := ImAlm andsm := sin(�m(�M=�� '))
andcm := cos(�m(�M=�� ')).

The GRASP routine which calculatesh+ andh� uses expression (7.1.7) truncated to a finite number of
terms determined by the user. Finally we note that a change in' has the same effect on the waveforms as a
change inr� andv0.

A note on the allowed frequency range

The frequency range of a signal calculated from black hole perturbation theory is bounded from above by
the innermost stable circular orbit. This corresponds, by virtue of equation (7.1.3), to an orbital velocity of
vmax = 1=

p
6. In practice there is also a lower bound. Since zero frequency would correspond to an infinite

orbital radius we have to introduce a cutoff. In the present data filesvmin ' 0:0395. Figure 47 shows the
allowed frequency range as a function of the total massM .
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Figure 47: Maximum and minimum orbital frequencies as a function of the total massM=M� of the
system.

Since _v in equation (7.1.3) diverges atv = vmax calculatingv(t) at the upper limit is numerically
difficult. However this is not a problem in the time domain, since the system spends very little time near
v = vmin. An value offmax inaccurate by several percent will typically not change the signal by even one
wave cycle.

7.2 Chirp generation for test mass signals

The routines provided in this package were designed to resemble as closely as possible the chirp generating
routines for post-Newtonian signals. However, because of the different functional forms for the two types
of waveforms some differences where unavoidable.

The main routine istestmass chirp() which returnsh+ andh� in a given frequency interval.
However, before being able to usetestmass chirp() , one has to read in the data files, calculate the
phase�(v0; v), etc. There are a number of routines provided that allow one to perform these tasks with a
minimum of amount of work.

For testmass chirp() to work, the program must make sure that the two data files containing the
mode amplitudesAlm(v) and the luminosityP (v) have been read. It then has to calculateV (t) (which can
be inverted to givet(V )) and�(v0; v). Furthermore, it has to make the number of data points known to the
package, in order for the interpolation routines to work. The package currently assumes that all data files
have the same number of points and thatv is equally spaced. Note that all the functions in the package take
the orbital frequencyf = v3c3=GM�, instead ofv, as input.
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7.3 Function: testmass chirp()

int testmass chirp(float m1, float m2, float theta, float phi, float *Phase,
float f start, float f end, float *f started, float *f ended, float dt, float
**hplus, float **hcross, float **frequency, int *number of points, int MaxL,
int *modes)
This function calculates the two unnormalized signalsh+ andh�. To normalize just multiply the output by
the prefactor2�=r. This is the main routine of the test mass package. The arguments are:

m1: Input. The mass of the first body in units of the solar mass.

m2: Input. The mass of the second body in units of the solar mass.

theta : Input. The inclination angle# in radians.

phi : Input. The azimuth' in radians.

Phase : Input: A pointer to an array containing the phase function�(f0; v). The number of points cal-
culated must have been set beforehand, either by the supplied routines or through an explicit call of
Set Up Data() .

f start : Input. Startingorbital frequency in Hertz. If the frequency is too low it will be adjusted to the
minimum allowed frequency.

f end : Input. Finalorbital frequency in Hertz. If set too high the program will terminate at the maximum
frequency.

f started : Output. The frequency in Hertz where the chirp actually started. This is max(fstart; v
3
minc

3=(2�GM)).

f ended : Output. The frequency in Hertz where the chirp terminated. This is min(fend; v
3
maxc

3=(2�GM))

dt : Input. The time interval between successive samples in seconds.

hplus : Input/Output. The signalh+ is stored in the array*hplus[0..number of points-1] .
If **hplus == NULL memory will be allocated, otherwise the user has to provide the memory.
The allocated memory is given by((number of points/kNumberOfFloats +1)*kNum-
berOfFloats*sizeof(floats) . Note that this performs integer arithmetic, so it’s not what
you might expect.

hcross : Input/Output. The signalh� is stored in the array*hcross[0..number of points-1] .
If **hcross == NULL memory will be allocated, otherwise the user has to provide the memory.
Use the same expression as above to get the memory allocated.

frequency : Input/Output. The orbital frequencyf(t) is stored in the array*frequency[0..number of points-
1] . If **frequency == NULL memory will be allocated, otherwise the user has to provide the
memory.

number of points : Input/Output. The number of points requested. Ifnumber of points == 0
then memory will be allocated for you. Ifnumber of points is nonzero, then at most this number
of points will be returned. You must give the number of points if you allocated memory for any of the
arrayshplus , hcross or frequency yourself. On exit this variable holds the actual number of
points calculated.
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MaxL: Input. The maximum number of modes to be used. For the supplied data file this has to be less than
or equal to five. It is assumed that allm’s are available for a givenl.

modes: Input. An array containing a list of modes to include in the sum (7.1.1). The array contains1’s
for modes to be included and0’s otherwise. The sequence of modes is

index 0 1 2 3 4 5 6 7 8 9 10 11 . . .
l 2 2 2 2 3 3 3 3 3 3 4 4 . . .
m -2 -1 +1 +2 -3 -2 -1 +1 +2 +3 -4 -3 . . .

Use the macro
#define mode2(l,m) ((l)*(l) + m - 2 - ((m > 0) ? 1 : 0)) to calculate the
index.

Return value: Output.testmass chirp() returns0 if there was no error, and an error code otherwise.
These codes are described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: As was mentioned above, you will get an error if the required data files are not read into
memory. See Section 7.15 for a detailed description of the errors.
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7.4 Function: calculate testmass phase()

int calculate testmass phase(float fo, float M, float **Phi)
This function calculates the phase�(f0; v) which is needed to get the wave form.

fo : Input. The orbital frequency in Hertz at which� should vanish. f0 is related tov0 by v30 =
2�GMf0=c

3.

M: Input. The total mass of the system in units of the solar mass.M is only used to convert the orbital
frequencyf0 into the orbital velocityv0.

Phi : Input/Output. The array*Phi will contain the calculated phase�(f0; v). It will contain the same
number of points as the data read in from the stored files. If**Phi==NULL , memory will be allo-
cated.

Return value: Output. Returns0 if there was no error, and an error code otherwise. These codes are
described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You will get an error if the required data files are not read into memory. You must call this
routine at least once before you can usetestmass chirp() .
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7.5 Function: Get Duration()

float Get Duration(float f1, float f2, float m1, float m2)
Calculates how many seconds it takes for the system to evolve from the initial frequencyf1 to final frequency
f2, i.e. the “duration” of a chirp.

f1 : Input. The initial frequencyf1 in Hertz.

f2 : Input. The final frequencyf2 in Hertz.

m1: Input. The mass of the first body in units of the solar mass.

m2: Input. The mass of the second body in units of the solar mass.

Return value: Output. The duration of the chirp in seconds or a value< 0 if an error occurred (ift(v) has
not been calculated).

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You must have read in the data files and calculatedt(v) for this to work.
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7.6 Function: Get Fmax()

float Get Fmax(float m1,float m2)
Get the maximum frequency.

m1: Input. The mass of the first body in units of the solar mass.

m2: Input. The mass of the second body in units of the solar mass.

Return value: Output. The maximum frequency in Hertz for the given masses.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You must have read in the data files and calculatedt(v) for this to work.
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7.7 Function: ReadData()

int ReadData(char *filenameP, char *filenameAlm, float **v, int *number of points)
This function reads in all the required data and calculatesv(t). Using this function is probably the easiest
method to ensure that the data is read into memory correctly. This routine can allocate all the necessary
memory automatically.

filenameP : Input. The filename of the data file for the functionP (v). You must set the environment
variableGRASPPARAMETERSto the directory where the data files are stored (normally the param-
eter directory of your GRASP installation, for example/usr/local/GRASP/parameters ). If
filename == NULL the default file will be read.

filenameAlm : Input. The filename of the data file for the functionAlm(v). See comments forfile-
nameP.

v : Input. The arrayv[0..number of points-1] will contain all the read in values of v. Ifv==NULL
memory is allocated.

number of points : Input/Output. If not set to zero, at most*number of points data points will
be read. If you allocate memory yourself this variable must contain the maximal number of points
that can be saved. On exit this variable will contain the actual number of points read into memory.

Return value: Output. Returns0 if there was no error, and an error code otherwise. These codes are
described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: None.
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7.8 Function: Clean Up Memory()

void Clean Up Memory( float *Phase )
Frees the memory allocated byReadData() .

Phase : Input: A pointer to the array containing the phase. If notNULL free the memory pointed to. Do
only use this if memory was allocated from within GRASP or by usingmalloc() .

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: None.
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7.9 Function: Set Up Data()

void Set Up Data( float *v, float *P, float *T, float *ReA, float *ImA, int
num of datapoints)
Allows a user to supply their own arrays containing data. If a pointer is non null, the array it points to will
be used for the specific data.
Warning: This routine does very little error checking.

v : Input. An array containing the orbital velocities.

P: Input. An array containingP (v).

T: Input. An array containing the timet(v).

ReA: Input. An array containing the real part ofAlm(v).

ImA: Input. An array containing the imaginary part ofAlm(v).

num of datapoints : Input. The number of data points.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: It’s assumed that all arrays contain the same number of data points, and that the values ofv
are equally spaced.

GRASP RELEASE 1.9.8 Page 221 May 19, 2000



Section
7.10

GRASP Routines: Waveforms from perturbation theory
Function: minustwoSlm()

Page
222

7.10 Function: minustwoSlm()

float minustwoSlm(float theta, int l, int m)
Calculate�2Ylm(#; 0).

theta : Input. # in radians.

l : Input. l.

Return value: Output.�2Ylm(#; 0).

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: This function calls the more general GRASP functionsw spheroid() to calculate�2Ylm(#; 0).
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7.11 Function: read modes()

int read modes(const char *filename, float **x, float **ReA, float **ImA,
int *number of points, int *MaxL, int ReadX)
Read the modesAlm(v) from a data file. The data file is assumed to be of the form
2 1
v0 (Re(A21)0,Im(A21)0)
v1 (Re(A21)1,Im(A21)1)

...
2 2
v0 (Re(A22)0,Im(A22)0)

...
2 1
v0 (Re(A31)0,Im(A31)0)

...

There is some consistency checking done during the reading of the file (e.g. the number of points per
mode have to agree for all modes, etc.).

filename : The name of the file containing the modesAlm. If NULLthen the default file is use.

x : Input/Output. The array*v[0..number of points-1] will contain the valuesv0 . . . . If **x ==
NULLallocate the memory. IfReadX is false do not read the v-values (they still have to be in the data
file though).

ReA: Input/Output. The array*ReA will contain the real parts of theAlm’s. If set to NULL memory is
allocated and a pointer to it will be returned.

ImA: Input/Output. The array*ReA will contain the imaginary parts of theAlm’s. If NULL allocate
memory.

number of points : Input/Output. The number of points read. If zero the routine reads all available
data points. If memory is provided by the user for any of the arrays mentioned above, this must be the
maximum number of points you can store.

MaxL: Input/Output. The number ofl modes to read. If zero read all of them (currently five). The output
value is the number of successfully readl’s.

ReadX: Input. If false (=0) don’t save the v-values in*x .

Return value: An error code described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You must set the environment variableGRASPPARAMETERSto the name of the GRASP
parameter directory.
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7.12 Function: read real data file()

int read real data file(const char *filename, float **x, float **y, int *num-
ber of points, int ReadX)
Read in a simple data file consisting of just two columns of data.

filename : Input. The file to read.

x : Input/Output. IfReadX is true (6= 0) the arrayx[0..*number of points-1] will contain the
first column of data. If**x == NULL allocate the memory. Ifnumber of points is nonzero
allocate space fornumber of points points.

y : Input/Output. The arrayy[0..*number of points-1] will contain the second column of data. If
**y == NULL allocate the memory. Ifnumber of points is nonzero allocate space fornum-
ber of points points.

ReadX: Input. If false (=0) don’t read the x-values.

Return value: Output. Errors.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You must set the environment variableGRASPPARAMETERSto the name of the GRASP
parameter directory.

GRASP RELEASE 1.9.8 Page 224 May 19, 2000



Section
7.13

GRASP Routines: Waveforms from perturbation theory
Function: integrate function()

Page
225

7.13 Function: integrate function()

int integrate function(float vl, float vr, float vo, float (*f)(float ),
float **F, int number of points)
This function returns an array containing the values ofF (v) =

R v
v0
f(x)dx in the interval[vl; vr].

vl : Input. vl.

vr : Input. vr.

vo : Input. v0.

f : Input. The function to be integrated.

F: Input. An array containing the result at equally spaced values ofv. If **F==NULL allocate the memory.

number of points : Input. The number of points desired.

Return value: Output. Returns0 if there was no error, and an error code otherwise. These codes are
described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: None.
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7.14 Function: integrateODE()

int integrateODE(float ystart[], int nvar, float *x1, float x2, float eps,
float h1, float hmin, void (*derivs)(float x, float *y, float *dy))
Integrate a set of ordinary, coupled first order differential equations fromx1 tox2. On return all the variables
are set up, so that only a new value ofx2 has to be given to continue integration.

ystart : Input/Output. Contains the initial values for input and the calculated solution as output.

nvar : Input. The number of equations.

x1 : Input/Output. The starting value. Becomesx2 on return.

x2 : Input. The final value.

eps : Input. The desired accuracy as discussed in chapter 16.2 of [1].

h1 : Input. The initial step size.

hmin : Input. The smallest allowed step size.

derivs : Input. A function describing the ode’s.derivs(x, y, dy) should setdy according tody
= dy

dx = F (x; y).

Return value: Output. Returns0 if there was no error, and an error code otherwise. These codes are
described in Section 7.15.

Author: Serge Droz, droz@physics.uoguelph.ca

Comments: You have to use Numerical Recipe notation, i.e. the first element in an arrayx is x[1] and
not x[0] . See the programLorenz for an example.
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7.15 Errors

Most routines return error codes (in addition to reporting them through the GRASP error mechanism)
from the following list: enum testmass errors f kBhptNoError, kBhptCantOpenFile,
kBhptOutOfMemory, kBhptUnknownMemory, kBhptNotEnoughPoints, kBhptCorrupt-
File, kBhptStepTooSmall, kBhptTooManySteps, kBhptNoDataRead, kBhptNoPhase,
kBhptNoTime, kBhptFOutOfRange g;
kBhptNoError : No error occurred.

kBhptCantOpenFile : The requested file could not be opened.

kBhptOutOfMemory : Not enough memory to finish an operation.

kBhptUnknownMemory : An array was passed to a routine without any information about its size. You
probably passed anumber of points variable set to zero, but an**X != NULL to some routine.

kBhptNotEnoughPoints : There is not enough data available to finish the operation.

kBhptCorruptFile : The data file which was tried to be read into memory seems corrupt. This happens
mostly with corrupt files for the modesAlm.

kBhptStepTooSmall : An integration could not be finished because the minimum step size was reached.

kBhptTooManySteps : An integration could not be finished because too many steps are needed.

kBhptNoDataRead : The data to perform a given calculation has not been read into memory.

kBhptNoPhase : The phase�(f0; v) has not been calculated.

kBhptNoTime : t(V ) has not been calculated.

kBhptFOutOfRange : The frequency requested is out of range.
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7.16 Example:tmwave program

This example uses the functiontestmass chirp() to compute the waveform and frequency evolution
for a binary system. The example letstestmass chirp() allocate all the memory. The output is saved
in the file waveform.dat . For example, running this with the two masses set tom1 = m2 = 1:4M�
produces an output similar to that of thefilters program described in section 6.7. (See figure 48.)

=� tmwave.c
This example calculates the two waveforms using the testmass formulas.
It saves these in the file waveorm.dat without doing much else. The purpose
of this example is to demonstrate how to calculate a waveform using GRASP.

Author: S. Droz (droz at physics.uoguelph.ca)
�=

#include "grasp.h"

#ifdef MACOS
=� If we run this on a Macintosh compatible machine use

the console package SIOUX. This is ignored on any other
platform.�=

#include <sioux.h >

=� Prototypes:�=
int PlayAudio(float �f, double Rate, int n);
#endif

int main()
f

int NoPo =0; =� Read in as many data points as possible�=
float �x = NULL; =� We let GRASP take care of all the memory�=
float �Phase = NULL; =� allocation.�=
float �hplus = NULL;
float �hcross = NULL;
int NoOfWavePoints = 10000; =� Calculate as many points as needed.�=
float �f = NULL;
float fend,fstart,dt;
int error, i;
FILE �fp;
float m1 = 1.4; =� Mass of the first body in units of the solar mass�=
float m2 = 1.4; =� Mass of the second body in units of the solar mass�=
float theta = 1.2; =� The inclination angle in radians�=
float phi = 0.0; =� The azimuthal angle in radians�=

=� Which modes should we include? (1 include, 0 omit)�=
=� m = -5 -4 -3 -2 -1 1 2 3 4 5 l�=
int modes[28] = f 1, 1, 1, 1, =� l = 2 �=

1, 1, 1, 1, 1, 1, =� l = 3 �=
0, 0, 0, 0, 0, 0, 0, 0, =� l = 4 �=

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 g; =� l = 5 �=

#ifdef MACOS =� Mac stuff, don’t worry�=
SIOUXSettings.asktosaveonclose = 0;

#endif

=� First we have to read in the data files. This will only work if you’ve
set the environment variable GRASPPARAMETERS. We just read in the default
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files, so we can give NULL as filenames. x[0. .NoPo-1] will contain all the
v - values. This routine sets up memory for the Aflmg(v)’s and P(v)
internally. It will also calculate V(t) and save it.�=

printf(" Reading data . . .\n");
error = ReadData(NULL, NULL, &x, &NoPo);
if ( error ) return error;

=� We now have to calculate the phase function
Phi(f 0,v). This function already knows
how many points to calculate; the same number
as the number of datapoints. Since we want to plot
the wave function around ˜ 100 Hz we set fo = 400.0�=

printf(" Calculating the phase . . .\n");
error = calculate testmass phase(400.0, (m1+m2) , &Phase);
if ( error ) printf("Error calculating the phase\n");

=� Uncomment the following code if you want to save Phi(f0,v) �=
=�
fp = fopen(“Phase.dat”,“w”);
for (i = 0; i < NoPo; i++)

fprintf(fp,“%f %f %20.18fnn”,x[i], pow(x[i],3.0)=(2.0�(m1+m2)�TSOLAR�Pi), Phase[i]);
fclose(fp);
�=

=� We’re now ready to calculate the chirp itself.�=
printf(" Calculating the chirp . . .\n");

dt =Get Duration(60.0, 785.0,m1,m2) =(1.0 �NoOfWavePoints �1.0); =� Set the timestep in seconds�=

testmass chirp(m1, m2, theta, phi , Phase, 60.0, 785.0, &fstart, &fend,
dt, &hplus, &hcross, &f, &NoOfWavePoints, 3, modes);

printf(" Calculated %d data points\nin the frequency intervall [%f, %f].\n",
NoOfWavePoints,fstart, fend);

printf(" The chirp lasted %f seconds.\n",dt �NoOfWavePoints);
printf(" Writing data to disk. This might take a few seconds.\n");
fp = fopen("waveform.dat","w");
for (i = 0; i < NoOfWavePoints; i++)

fprintf(fp,"%f %f %f %f %f\n", i �dt, f[i] , hplus[i],
hcross[i],pow(f[i] �2.0 �(m1+m2) �TSOLAR�M PI,1.0 =3.0) );

fclose(fp);

#ifdef MACOS
printf("Playing wave . . . . \n"); =� Play the wave�=
error = PlayAudio(hplus, 1.0 =dt, Noofcp �1);

#endif

Clean Up Memory(Phase); =� Clean up all the memory which was used internally.�=
free(hplus); =� Get rid of the waveforms�=
free(hcross);
printf("Goodbye. . .\n"); =� That’s all folks.�=
return error;

g
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Figure 48: The zero-phase chirp waveform from a2�1:4M� binary system, starting at an orbital frequency
of 60 Hz. This waveform consists of thel = 2 and l = 3 modes. The top graph shows the frequency as
function of time, and the middle graph shows the waveform. The bottom graph shows a 40-msec stretch
near the final inspiral/plunge. Compare this to figure 25 in Section 6.7.
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7.17 Example:lorenz program

This program illustrates the use ofintegrateODE() to solve a system of ODEs. Note thatintegra-
teODE() needs the Numerical Recipes library to run. The program solves the Lorenz equations. Invoke the
program by typingLorenz s r b number of Points filename , wheres, t andb are parameters
of the Lorenz equations.

=� Example lorenz
Solve the Lorenz equations:

dx=dt = s� (y - x),
dy=dt = (r � x - y - xz),
dz=dt = -b�z + xy,
starting at the point (0.0, 1.0, 1.0 ).
Try eg. lorenz 11.0 28.0 2.6666 2000 test.dat
Author: S. Droz
For more info see for example
http:==pineapple.apmaths.uwo.ca=˜blair=lorenzintro.html
Note that these equations are chaotic, and thus extremely
susceptible towards numerical errors over long time spans.
If you change the accuracy (eps below) by a factor of 10
you might get a rather different looking picture.

�=
#include "grasp.h"

float s,r,b;

void lorenz(float x, float y[ ], float dy[ ])
=� Set up the system of ordinary DE. Since we use the NR

integrator we use arrays going from 1. .3, rather than from
0. .2.�=

f
dy[1] = s � (y[2] � y[1]);
dy[2] = (r � y[3]) � y[1] � y[2];
dy[3] = y[1] � y[2] � b�y[3];

g

int main(int argc, char �argv[ ])
f

int NoPo,i;
int error = 0; =� No errors yet�=
float y[3] = f 0, 1.0, 1.0 g; =� Initial point �=
float t = 0.0; =� Time always starts at 0�=
float dt = 0.02; =� The time step used�=
FILE �fp;

if (argc != 6) =� Do we have enough command line arguments?�=
f

fprintf(stderr,"Usage: %s s r b number_of_Points filename\n" ,argv[0]);
fprintf(stderr,"E.g. %s 11.0 28.0 2.6666 2000 test.dat\n" ,argv[0]);
fprintf(stderr,"The numbers s, r and b are parameters of the Lorenz equations\n");
fprintf(stderr,"See e.g. http://pineapple.apmaths.uwo.ca/˜blair/lorenzintro.html for mor in f
return 1;

g
=� get the command line arguments�=
s = atof(argv[1]);
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r = atof(argv[2]);
b = atof(argv[3]);

NoPo = atoi(argv[4]);
fp = fopen(argv[5],"w");

=� Open the output file�=
if (! fp ) f printf("File error.\n"); exit(1); g
fprintf(fp, "%10.8e %10.8e %10.8e\n",y[0],y[1],y[2]);

=� Now we start at t=0 and integrate for NoPo-1 time steps:�=
for ( i = 1; i < NoPo; i++)
f

=� So starting at t integrate y to t+dt, using the
equations implemented in the function lorenz.

We start with an initial step of dt=10 and go
as low as dt�10̂ f-10g. We require an accuracy of at least 10ˆ f-6g,
See the NR for a detailed explanation of what all these numbers mean.�=

error = integrateODE(y �1, 3 , &t, t+dt, 1.0e �6, dt =10.0, dt �1.0e �10,
&lorenz);

if (error) break; =� We chicken out if something goes wrong.�=
fprintf(fp, "%10.8e %10.8e %10.8e\n",y[0],y[1],y[2]);

g
fclose(fp);
return error; =� Good bye�=

g
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7.18 Example:plot ambig program

This program creates a scan of the ambiguity function.
To following is based on sections 6.14 and 9.7. Using the definition (9.7.2) for the scalar productha; bi

we can rewrite the expectation value (6.14.12) of the signal to noise ratio (SNR)� as

h�i = 2
jhC; Tiit0 jpjTij ; (7.18.1)

wherejTij =
phTi; Tii. HereC(t) is the signal (i.e. the chirp), andTi is the i-th template. Obviouslyh�it0

is maximized ifTi = C andt0 = 0. We thus can rewrite equation (7.18.1) as

h�i = jhC; Tiit0 jpjTijjCj| {z }
Ait0

h�imax:

The functionAit0 gives the reduction of the SNR due to a nonoptimal templateTi. It is commonly called
theambiguityfunction. Since maximization over the parametert0 is trivially achieved by a FFT we often
work with thereduced ambiguity function

Ai = max
t0
Ait0 :

As was mentioned in section 6.14 every signal is a linear combination of two orthogonal modesT0 andT90
(we suppress the indexi for now), wherehT0; T90i = 0. We can filter for any linear combination by using
the template

T =
1p
2

�
T0
jT0j + i

T90
jT90j

�
:

UsingT , the ambiguity function becomes

Ai = max
t0

s
hC; T0i2t0
jT0jjCj +

hC; T90i2t0
jT90jjCj : (7.18.2)

The sample programplot ambig produces a file containingAi as a function of the chirp massM =
(m1m2)

3=5(m1+m2)
�1=5 and the mass ratio� = (m1m2)(m1+m2)

�2. The templates are taken to be the
2 pN spin-less wave forms and the signalC is one of the modes calculated from perturbation theory. The
output is saved to the filescan.dat .

=� plot ambig.c
Calculate a series of values of the ambiguity function,
using 2 pN waveforms as templates and a mode calculated from
black hole perturbation theory as signal.

Author: S. Droz (droz at physics.uoguelph.ca)
�=

#include "grasp.h"

=� Prototypes:�=
void realft(float �, unsigned long, int);
float norm(float � T,float � twice inv noise,int npoint);

float norm(float � That,float � twice inv noise,int npoint)
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=� Calculate $nint df = S(jfj) T(f) � Tˆ �(f)$ or, in the notaion
of the manual (T=Sh , T=Sh) =<T,T>. �=

f
int i,im,re;

float real, imag,c=0;

=� This loop is equivalent to (but faster than!)
correlate(output0,That,That,twiceinv noise,npoint);
c=output0[0];�=

for (i=1;i <npoint =2;i++) =� Negclect the DC and fc values�=
f

im=(re=i+i)+1;
real=That[re];
imag=That[im];
c+=twice inv noise[i] �(real �real+imag �imag);

g
return sqrt(c); =� Note that the 2 from 2=S compensates for the fact that

we only sum over positive frequencies.�=
g

int main()
f

int NoPo =0; =� Read in as many data points as possible�=
float �x = NULL; =� We let GRASP take care of all the memory�=
float �Phase = NULL; =� allocation.�=
float �hplus = NULL;
float �hcross = NULL;
float hNorm;
int Npoints = 32768; =� 2ˆ 20 points�=
int NoOfWavePoints = 10000; =� The number of points we want saved�=
int NoOfPointsGen;
float �f = NULL;
float fend,dt;
int error, i,j;
FILE �fp;
float m1 = 4.5; =� Mass of the first body in solar masses�=
float m2 = 4.5; =� Mass of the second body in solar masses�=
float eta,Mc,e,m,xx,yy;
float fstart = 70.0; =� Starting ORBITAL frequency.�=
float theta = 1.2; =� Pick an angle�=
float phi = 0.0;
float �pN0, �pN90,n0,n90,c0,c90, �output0, �output90;
float SNR,var;
int offset;
float �twice inv noise;
double �temp;
float t coal=0;
float MaxAmb = 0.0;
float Mx=0.0,My=0.0;

=� Which modes should we include? (1 include, 0 omit)�=
=� m = -5 -4 -3 -2 -1 1 2 3 4 5 l�=
int modes[28] = f 1, 1, 1, 1, =� l = 2 �=

1, 1, 1, 1, 1, 1, =� l = 3 �=
0, 0, 0, 0, 0, 0, 0, 0, =� l = 4 �=

0, 0, 0, 0, 0, 0, 0, 0, 0, 0 g; =� l = 5 �=
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=� First we have to read in the data file. This will only work if you’ve
set the environment variable GRASPPARAMETERS. We just read in the default
files, so we can give NULL as filenames. x[0. .NoPo-1] will contain all the
v - values. This routine sets up memory for the Aflmg(v)’s and
P(v) internally. It will also calculate V(t) and save it.�=

printf(" Reading data . . .\n");
error = ReadData(NULL, NULL, &x, &NoPo);
if ( error ) return error;

=� We now have to calculate the phase function
Phi(f 0,v). This function already knows
how many points to calculate; the same number
as we’ve read datapoints. Since we are interested in freqencies
of a couple of 100 Hz we set f0 = 200.0�=

printf(" Calculating the phase . . .\n");
error = calculate testmass phase(200.0, (m1+m2) , &Phase);
if ( error ) printf("Error calculating the phase\n");

=� We’re now ready to calculate the chirp itself.�=
printf(" Calculating the chirp . . .\n");
printf(" MaxF = %f -> T = %e\n",Get Fmax(m1,m2),Get Duration(fstart, Get Fmax(m1,m2),m1,m2));
dt = Get Duration(fstart, Get Fmax(m1,m2),m1,m2) =(NoOfWavePoints �1); =� Set the timestep in seconds�=
printf(" dt = %e\n", dt);
NoOfWavePoints = Npoints;

testmass chirp(m1, m2, theta, phi , Phase, fstart ,Get Fmax(m1,m2) �10, &fstart, &fend,
dt, &hplus, &hcross, &f, &NoOfWavePoints, 3, modes);

Clean Up Memory(Phase); =� Clean up all the memory which was used internally.�=
free(hcross); =� We don’t need htimes.�=
printf(" Calculated %d data points\n in the frequency intervall [%f, %f].\n",

NoOfWavePoints,fstart, fend);
printf(" The cirp lasted %f seconds.\n",dt �NoOfWavePoints);
=� Zero out the remaining points�=
clear(hplus + NoOfWavePoints, Npoints �NoOfWavePoints,1);

=� Get the spectral desnity�=

twice inv noise = (float �)malloc((Npoints =2+1) �sizeof(float));
temp = (double �)malloc((Npoints =2+1) �sizeof(double));
if ( ! ( temp && twice inv noise )) return �1; =� Not enough memory�=

noise power("noise_40smooth.dat", Npoints =2, 1.0 =(Npoints �dt), temp);
for (i=0; i < Npoints =2 ; i++) twice inv noise[i] = (float)(2.0e �31=temp[i]);
free(temp);

=� Allocate memory for the templates, etc.�=
pN0 = (float �)malloc(Npoints �sizeof(float));
pN90 = (float �)malloc(Npoints �sizeof(float));
output0 = (float �)malloc(Npoints �sizeof(float));
output90 = (float �)malloc(Npoints �sizeof(float));
if ( ! ( pN0 && pN90 && output0 && output90)) return �1; =� Not enough memory�=

realft(hplus �1,Npoints,1); =� FFT the signal�=
hNorm = norm(hplus, twice inv noise, Npoints); =� Get the signal’s norm�=

=� Now get ready to loop over the mass range. We use the chirp mass and
mass ratio eta as parameters.�=
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Mc = pow(m1�m1�m1�m2�m2�m2=(m1+m2),1.0 =5.0);
eta = m1 �m2=pow(m1+m2,2);
printf(" Chirpmass Mc = %e Msun, eta = %e\n",Mc,eta);
fp = fopen("scan.dat","w");
for (i = 0; i <=50; i++)
f

for (j = 0; j <=50;j++)
f

xx = (0.25 + j �(1.0 � 0.25) =50.0); =� Deviation from the ‘true’ value�=
yy = (1.00 + i �(1.3 � 1.0) =50.0);
e = eta �xx;
m = Mc�yy;
m1 = 0.5 �m�pow(e, �3.0 =5.0) �(1 �sqrt(1 �4.0 �e));
m2 = 0.5 �m�pow(e, �3.0 =5.0) �(1+sqrt(1 �4.0 �e));
=� Use makefilters to make the templates, then FFT and orthonormalize.�=

make filters(m1, m2, pN0, pN90, 2.0 �fstart, Npoints, 1.0 =dt , &NoOfPointsGen,
&t coal, 2000, 4);

realft(pN0 �1,Npoints,1);
realft(pN90 �1,Npoints,1);
orthonormalize(pN0,pN90, twice inv noise, Npoints, &n0, &n90);

find chirp(hplus,pN0,pN90,twice inv noise,n0,n90,output0, output90 , Npoints, NoOfWav
&offset, &SNR, &c0, &c90, &var);

if ( SNR > MaxAmb)
f

MaxAmb = SNR;
Mx = xx;
My = yy;

g
fprintf(fp, "%e %e %e\n",xx,yy, SNR =hNorm); =� Savefncal Ag �=

g
fprintf(fp,"\n");fflush(fp);
printf(".");fflush(stdout);

g
fclose(fp);
MaxAmb == hNorm;

=� Clean up the remaining memory and exit�=
free(hplus); =� Get rid of the waveforms�=
free(pN0);
free(pN90);
free(output0);
free(output90);
free(twice inv noise);
printf("\n The maximum of A_i in the scaned intervall was %4.1f%% and occured at eta*=%4.3f, Mc*= %
printf("\nGoodbye. . .\n"); =� That’s it folks.�=
return error;

g
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Figure 49: A contour plot of the reduced Ambiguity functionAi. The axes are labeled by the relative
deviations from the true values of� = 0:25 and the chirp massM = 3:92M� corresponding to am1 =
m2 = 4:5M� binary system. The Maximum value of86:8% is attained at�� = 0:61� andM � = 1:084M.
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8 GRASP Routines: Black hole ringdown

Stellar-sized black hole binaries are an important source of gravitational radiation for ground-based inter-
ferometric detectors. The radiation arises from three phases: the inspiral of the two black hole companions,
the merger of these two companions to form a single black hole, and the ringdown of this initially distorted
black hole to become a stationary Kerr black hole. The gravitational radiation of the black hole inspiral has
been discussed in section 6; calculations of the late stages of inspiral, the merger, and the early stages of the
ringdown have not yet been completed; the radiation produced in the late stages of black hole ringdown is
the topic of this section.

At late times, the distorted black hole will be sufficiently “similar to” a stationary Kerr black hole that
the distortion can be expanded in terms of “resonant modes” of the Kerr black hole. By “resonant modes”
we refer to the eigenfunctions of the Teukolsky equation—which describes linear perturbations of the Kerr
spacetime—with boundary conditions corresponding to purely ingoing radiation at the event horizon and
purely outgoing radiation at large distances. These resonant modes are also called the quasinormal modes;
they are described in the next subsection.
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8.1 Quasinormal modes of black holes

Gravitational perturbations of the curvature of Kerr black holes can be described by two components of
the Weyl tensor:	0 and	4. Because these are components of the curvature tensor, they have dimensions
of [L�2]. Of particular interest is the quantity	4 since it is this term that is suitable for the study of
outgoing waves in the radiative zone. The formalism for the study of perturbations of rotating black holes
was developed originally by Teukolsky [30] who was able to separate the differential equation to obtain
solutions of the form

(r � i�a)4	4 = e�i!t�2R`m(r)�2S`m(�)eim� (8.1.1)

where�2R`m(r) is a solution to a radial differential equation, and�2S`m(�) is a spin-weighted spheroidal
wave function (see [30], equations (4.9) and (4.10)). The black hole has massM and specific angular
momentuma = cJ=M (which has dimensions of length) whereJ is the angular momentum of the spinning
black hole. We shall often refer to thedimensionless angular momentum parameter, â = c2a=GM =
c3J=GM2. For a Kerr black hole,̂a must be between zero (Schwarzschild limit) and one (extreme Kerr
limit). The observer of the perturbation is located at radiusr, inclination� = cos �, and azimuth� (see
figure 50). The perturbation itself has the spheroidal eigenvalues` andm, and has a (complex) frequency!.
The constantsG andc are Newton’s gravitational constant and the speed of light.

β

ι
to observer

sp
in

 a
xi

s

axis of
perturbation

black hole

Figure 50: The polar angle,�, and the azimuthal angle,�, of the observer relative to the spin axis of a black
hole and the (somewhat arbitrary) axis of perturbation.

The important physical quantities for the study of the gravitational waves arising from black hole per-
turbations can be recovered from the field	4. In particular, the “+” and “�” polarizations of the strain
induced by the gravity waves are found by [30]

h+ � ih� = � 2c2

j!j2 	4 : (8.1.2)

The quantityh+ = h�̂�̂ is the metric perturbation that represents the linear polarization state alonge�̂ ande�̂,
while the quantityh� = h�̂�̂ represents the linear polarization state alonge�̂ � e�̂. The power radiated
towards the observer (per unit solid angle) is

d2E

dt d

= lim

r!1
c7r2

4�Gj!j2 j	4j2 : (8.1.3)
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Thus, in order to compute the relevant information about gravitational waves emitted as perturbations to
rotating black hole spacetimes, one needs to calculate the value of	4 at large radii from the black hole.

The quasinormal modes are resonant modes of the Teukolsky equation that describe purely outgoing
radiation in the wave-zone and purely ingoing radiation at the event horizon. The quasi-normal modes are
described by a spectrum of complex eigenvalues (which include the spectrum of eigenfrequencies!n), and
eigenfunctions�2R`m(r) and�2S`m(�) for each value spheroidal mode` andm. These eigenvalues and
functions also depend on the mass and angular momentum of the black hole. We shall only consider the
fundamental (n = 0) mode since the harmonics of this mode have shorter lifetimes. For the same reason,
we are most interested in the quadrupole (` = 2 andm = 2) mode. The observer is assumed to be at a large
distance; in this case, one can approximate the perturbation as follows:

	4 � A

r
e�i!tret�2S`m(�)eim� : (8.1.4)

Heretret = t� r?=c represents the retarded time, wherer? is a “tortoise” radial parameter. For large radii,
the tortoise radius behaves asr � r+ log(r=r+) wherer+ is the “radius” of the black hole event horizon.
Thus, we see that the tortoise radius is nearly equal to the distance of the objects surrounding the black hole,
and we shall view it as the “distance to the black hole.” The parameterA represents the amplitude of the
perturbation, which has the dimensions of[L�1].

Given the asymptotic form of the perturbation in equation 8.1.4, we can integrate equation 8.1.3 over the
entire sphere and the intervaltret 2 [0;1) to obtain an expression for the total energy radiated in terms of
the amplitudeA of the perturbation. Thus, we can characterize the amplitude by the total amount of energy
emitted:A2 = 4Gc�7Ej!j2(�Im!). The gravitational waveform is found to be

h+ � ih� � �4c

r

��Im!

j!j2
�1=2�GE

c5

�1=2
e�i!tret�2S`m(�)eim� : (8.1.5)

In order to simulate the quasinormal ringing of a black hole, it is necessary to determine the complex
eigenvalues of the desired mode, and then to compute the spheroidal wave functionS`m(�). The routines to
perform these computations are discussed in the following sections.

Rather than computing the actual gravitational strain waveforms at the detector, the routines will calcu-
late the quantityH+� iH� = (c2r=GM�)(h+� ih�); the normalization of these waveforms to the correct
source distance is left to the calling routine. The distance normalization can be computed as follows:

c2r

GM�
=

r

T�c
=

�
r

1:4766 km

�
= 2:090 � 1019

�
r

Mpc

�
: (8.1.6)

whereT� = 4:925491�s is the mass of the sun expressed in seconds (see equation 6.0.2). It will be
convenient to write the time dependence of the strain as the complex functionH(tret) so thatH+ � iH� =
H(tret)�2S`m(�)eim� . The dimensionless eigenfrequency,!̂ = GM!=c3, depends only on the mode and
the dimensionless angular momentum of the black hole. In terms of this quantity, the functionH(tret) is

H(tret) � �4�1=2 (�Im !̂)1=2

j!̂j
�
M

M�

�
exp

�
�i!̂

�
tret
T�

��
M

M�

��1�
(8.1.7)

where� is the fractional mass loss due to the radiation in the excited quasinormal mode.
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8.2 Function: qn eigenvalues()

void qn_eigenvalues(float eigenvalues[], float a, int s, int l, int m)

This routine computes the eigenvalues associated with the spheroidal and radial wave functions for a speci-
fied quasinormal mode. The arguments are:

eigenvalues : Output. An array,eigenvalues[0..3] , which contains, on output, the real and
imaginary parts of the eigenvalueŝ! andA (see below) as follows:eigenvalues[0] = Re !̂,
eigenvalues[1] = Im !̂, eigenvalues[2] = ReA, andeigenvalues[3] = ImA.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole,jâj � 1, which is
negative if the black hole is spinning clockwise about the� = 0 axis (see figure 50).

s : Input. The integer-valued spin-weights, which should be set to0 for a scalar perturbation (e.g., a scalar
field perturbation),�1 for a vector perturbation (e.g., an electromagnetic field perturbation), or�2
for a spin two perturbation (e.g., a gravitational perturbation).

l : Input. The mode integerl � js j.
m: Input. The mode integerjmj � l .

For a Kerr black hole of a given dimensionless angular momentum parameter,â, with a perturbation
of spin-weights and modè andm, there is a spectrum of quasinormal modes which are specified by the
eigenvalueŝ!n andAn. As discussed in the previous subsection, the eigenvalue!̂n is associated with the
separation of the time dependence of the perturbation, and it specifies the frequency and damping time of
the radiation from the perturbation. The additional complex eigenvalueAn results from the separation of the
radial and azimuthal dependence into the spheroidal and radial wave functions. Both of these eigenvalues
will be necessary for the computation of the spheroidal wave function (below).

The routineqn eigenvalues() can be used to compute the eigenvalues of the fundamental (n = 0)
mode. To convert the dimensionless eigenvalue!̂ to the (complex) frequency of the ringdown of a Kerr
black hole of massM , one simply computes! = c3!̂=GM . The eigenfrequency is computed using the
method of Leaver [27]. Note that Leaver adopts units in which2M = 1, so one finds that̂! = 1

2!Leaver

andâ = 2aLeaver in our notation. The eigenvalues satisfy the following symmetry: if�m = �i!̂m andAm
are the eigenvalues for an azimuthal indexm, then��m = ��m andA�m = A�m are the eigenvalues for the
azimuthal index�m.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comment: For simplicity, we require that the spin-weight number,s, be an integer. Thus, the spinor
perturbations�0 and�1, associated withs = �1

2 respectively [30], are not allowed.
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8.3 Example:eigenvalues program

This example uses the functionqn eigenvalues() to compute the eigenvaluess!̂`m andsA`m for the
s spin-weighted quasinormal mode specified by` andm, and for a range of values of the dimensionless
angular momentum parameter,â. To invoke the program, type:

eigenvalues s ` m

for the desired (integer) values ofs, `, andm. Make sure that̀ � jsj and0 � m � ` (the eigenvalues for
negative values ofm can be inferred from the symmetries discussed in subsection 8.2). The output of the
program is five columns of data: the first column is the value ofâ running from just greater than�1 to just
less than1 (or between0 and1 if m = 0), the second and third columns are the real and imaginary parts
of the eigenfrequencŷ!, and the fourth and fifth columns are the real and imaginary parts of the angular
separation eigenvalueA. For the values of̂a < 0, the eigenvalues correspond to the mode with azimuthal
index�m so that the real part of the eigenfrequency is positive. A plot of the eigenfrequency output of the
programeigenvalues for several runs withs = �2 is shown in figure 51. The blue curves in figure 51
can be compared to figure 5 of reference [28] keeping in mind the conversion factors between Leaver’s
convention (which is also used in [28]) and the convention used here (see subsection 8.2).
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Figure 51: The real and imaginary parts of the eigenfrequencies,!̂, as computed by the programeigen-
values with s = �2. Each curve corresponds to a range of values ofâ from �0:9 (left) to +0:9 (right)
for a single modè and jmj. The open circles are placed at the valuesâ = �0:9, �0:6, �0:3, 0, +0:3,
+0:6, and+0:9 except whenm = 0 in which case there are no negative values ofâ plotted. The blue curves
correspond to thè= 2 modes and the red curves correspond to the` = 3 modes.
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc,const char �argv[ ])
f

float a,da=0.1,eigen[4];
int s,l,m;

=� process the command line arguments�=
if (argc==4) f =� correct number of arguments�=

s = atoi(argv[1]);
l = atoi(argv[2]);
m = atoi(argv[3]);

g else f =� incorrect number of arguments�=
fprintf(stderr,"usage: qn_eigen_values s l m\n");
return 1;

g

=� scan through the range of a�=
for (a=1 �da;a >�1;a �=da) f

=� compute the eigenvalues�=
if (a <0) f

if (m==0) break;
qn eigenvalues(eigen,a,s,l, �m);

g else f
qn eigenvalues(eigen,a,s,l,m);

g
=� print the eigenvalues�=
printf("%f\t%f\t%f\t%f\t%f\n",a,eigen[0],eigen[1],eigen[2],eigen[3]);

g

return 0;
g

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.4 Function: sw spheroid()

void sw_spheroid(float *re, float *im, float mu, int reset,
float a, int s, int l, int m, float eigenvalues[])

This routine computes the spin-weighted spheroidal wave functionsS`m(�). The arguments are:

re : Output. The real part of the spin-weighted spheroidal wave function.

im : Output. The imaginary part of the spin-weighted spheroidal wave function.

mu: Input. The independent variable,� = cos � with � being a polar angle, of the spin-weighted spheroidal
wave function;�1 < mu< 1.

reset : Input. A flag that indicates that the function should reset (reset = 1) the internally stored
normalization of the spin-weighted spheroidal wave function. The reset flag should be set if any of
the following five arguments are changed between calls; otherwise, setreset = 0 so that the routine
does not recompute the normalization.

a: Input. The dimensionless angular momentum parameter,�1 < a < 1, of the Kerr black hole for which
the spin-weighted spheroidal wave function is associated.

s : Input. The integer-valued spin-weights, which should be set to0 for a scalar perturbation (e.g., a scalar
field perturbation),�1 for a vector perturbation (e.g., an electromagnetic field perturbation), or�2
for a spin two perturbation (e.g., a gravitational perturbation).

l : Input. The mode integerl � js j.
m: Input. The mode integerjmj � l .

eigenvalues : Input. An array,eigenvalues[0..3] , which contains the real and imaginary parts
of the eigenvalueŝ! andA (see below) as follows:eigenvalues[0] = Re !̂, eigenvalues[1] =
Im !̂, eigenvalues[2] = ReA, andeigenvalues[3] = ImA. These may be calculated for
a quasinormal mode using the routineqn eigenvalues() .

The spin-weighted spheroidal wave function is also computed using the method of Leaver [27]. We
have adopted the following normalization criteria for the spin-weighted spheroidal wave functionssS`m(�).
First, the angle-averaged value of the squared modulus ofsS`m(�) is unity:

R 1
�1 jsS`m(�)j2d� = 1. Second,

the complex phase is partially fixed by the requirement thatsS`m(0) is real. Finally, the sign is set to be
(�)`�max(m;s) for the real part in the limit that�! �1 in order to agree with the sign of the spin-weighted
spherical harmonicssY`m(�; 0) (see [26]).

It is sufficient to compute the spin-weighted spheroidal wave functions withs < 0 anda! = â!̂ � 0
because of the following symmetries [29]:

�sS`m(�; a!) = sS`m(��; a!) with �sE`m(a!) = sE`m(a!) (8.4.1)

and

sS`m(�;�a!) = sS`;�m(��; a!) with sE`m(�a!) = sE`;�m(a!) (8.4.2)

wheresE`m = sA`m + s(s+ 1).

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.5 Example:spherical program

The programspherical is an example implementation of the routinesw spheroid() to compute
the standard spin-weighted spherical harmonics [26]. The program also computes these functions using
equation (3.1) of [26] for comparison. According to the normalization convention stated in subsection 8.4,
the relationship between the spin-weighted spheroidal harmonics and the spin-weighted spherical harmonics
is:

sY`m(�; �) = (2�)�1=2sS`m(cos �)eim� (8.5.1)

with a! = 0 andA = (`� s)(`+ s+ 1).
To invoke the program, type:

spherical s ` m

for the desired (integer) values ofs, `, andm (` � jsj and jmj � `). The output is three columns of
data: the first column is the independent variable� between�1 and+1, the second column is the value
of (2�)�1=2sS`m(�), and the third column is the value ofsY`m(�; 0) as computed from equation (3.1)
of [26]. A comparison of the results produced by the programspherical for ` = m = �s = 2 with the
exact values of�2Y22(�; 0) = (5=64�)1=2(1 + �)2 is shown in table 7.

� Goldberg sw spheroid() exact

�0:99 1:576955 � 10�5 1:576955 � 10�5 1:576958 � 10�5

�0:95 3:942387 � 10�4 3:942387 � 10�4 3:942395 � 10�4

�0:75 9:855968 � 10�3 9:855967 � 10�3 9:855986 � 10�3

�0:55 3:193334 � 10�2 3:193333 � 10�2 3:193340 � 10�2

�0:35 6:662639 � 10�2 6:662639 � 10�2 6:663647 � 10�2

�0:15 1:139351 � 10�1 1:139351 � 10�1 1:139352 � 10�1

+0:15 2:085525 � 10�1 2:085525 � 10�1 2:085527 � 10�1

+0:35 2:874004 � 10�1 2:874005 � 10�1 2:874006 � 10�1

+0:55 3:788640 � 10�1 3:788639 � 10�1 3:788641 � 10�1

+0:75 4:829430 � 10�1 4:829430 � 10�1 4:829433 � 10�1

+0:95 5:996378 � 10�1 5:996379 � 10�1 5:996382 � 10�1

+0:99 6:244906 � 10�1 6:244906 � 10�1 6:244911 � 10�1

Table 7: A comparison of the values of the spin-weighted spherical harmonic�2Y22(�; 0) calculated by
equation (3.1) of Goldberg [26], the values of(2�)�1=2�2S22(�) using routinesw spheroid() , and the
values of the exact result(5=64�)1=2(1 + �)2. The three methods give excellent agreement.
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define TWOPI 6.28318530718
#define FOURPI 12.5663706144
static int imaxarg1,imaxarg2;
#define IMAX(a,b) (imaxarg1=(a),imaxarg2=(b),(imaxarg1) > (imaxarg2) ? n

(imaxarg1) : (imaxarg2))
static int iminarg1,iminarg2;
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ? n

(iminarg1) : (iminarg2))

float sw spherical(float mu, int s, int l, int m)
=� Computes the spin-weighted spherical harmonic (with phi=0) using

equation (3.1) of Goldberg et al (1967).�=
f

float factrl(int);
float bico(int, int);
float sum,coef,x;
int sign,r,rmin,rmax;

if (mu== �1.0) f
fprintf(stderr,"error in sw_spherical(): division by zero");
return 0;

g else f
x = (1 + mu) =(1 � mu);

g
coef = factrl(l+m) �factrl(l �m)�(2 �l+1) =(factrl(l �s) �factrl(l+s) �FOURPI);
rmin = IMAX(0,m �s);
rmax = IMIN(l �s,l+m);
sum = 0;
for (r=rmin;r <=rmax;r++) f

(((l �r+s)%2)==0) ? (sign = 1) : (sign = �1);
sum += sign �bico(l �s,r) �bico(l+s,r+s �m)�pow(x,0.5 �(2 �r+s �m));

g
sum �= sqrt(coef) �pow(0.5 �(1 �mu),l);

return sum;
g

int main(int argc, char �argv[ ])
f

float Sre,Sim,Y,norm=1.0 =sqrt(TWOPI),mu=0,dmu=0.02;
float eigenvalues[4];
int s,l,m;

=� process arguments�=
if (argc==4) f =� correct number of arguments�=

s = atoi(argv[1]);
l = atoi(argv[2]);
m = atoi(argv[3]);

g else f =� incorrect number of arguments�=
fprintf(stderr,"usage: spherical s l m\n");
return 1;

g

=� set the eigenvalues to produce spin-weighted spherical harmonics�=
eigenvalues[0] = eigenvalues[1] = eigenvalues[3] = 0;
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eigenvalues[2] = (l � s) �(l + s + 1);

=� reset the normalization�=
sw spheroid( &Sre, &Sim,mu,1,0.0,s,l,m,eigenvalues);

for (mu= �1+0.5 �dmu;mu<1;mu+=dmu) f
=� compute the spin-weighted spheroidal harmonic�=
sw spheroid( &Sre, &Sim,mu,0,0.0,s,l,m,eigenvalues);
=� compute the spin-weighted spherical harmonic�=
Y = sw spherical(mu,s,l,m);
=� print results with correct normalization for the spheroidal harmonic�=
printf("%e\t%e\t%e\n",mu,norm �Sre,Y);

g

return 0;
g

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.6 Example:spheroid program

This is a second implementation of the functionsw spheroid() which is used to compute the spin-
weighted spheroidal wave function associated with a quasinormal ringdown mode of a Kerr black hole with
a certain (specified in the code) dimensionless angular momentum parameter. To invoke the program, type:

spheroid s ` m

for the desired (integer) values ofs, `, andm (` � jsj andjmj � `) of the desired mode. The output is three
columns of data: the first column is the independent variable� between�1 and+1, the second column is
the value of the real part ofsS`m(�), and the third column is the value of the imaginary part ofsS`m(�).
Figure 52 depicts the output for the spin-weighted spheroidal wave function�2S22(�).
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Figure 52: A plot of the real and imaginary parts of the` = m = �s = 2 spin-weighted spheroidal wave
function, �2S22(�), associated with a black hole with dimensionless angular momentum parameterâ =
0:98. The imaginary part is scaled by a factor of ten.
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define SPIN 0.98 =� the dimensionless angular momentum parameter�=

int main(int argc, char �argv[ ])
f

float re,im,mu=0,dmu=0.02,a=SPIN;
float eigenvalues[4];
int s,l,m;

=� process arguments�=
if (argc==4) f =� correct number of arguments�=

s = atoi(argv[1]);
l = atoi(argv[2]);
m = atoi(argv[3]);

g else f =� incorrect number of arguments�=
fprintf(stderr,"usage: spheroid s l m\n");
return 1;

g

=� get the eigenvalues for the appropriate quasinormal mode�=
qn eigenvalues(eigenvalues,a,s,l,m);

=� reset the normalization�=
sw spheroid( &re, &im,mu,1,a,s,l,m,eigenvalues);

for (mu= �1+0.5 �dmu;mu<1;mu+=dmu) f
=� compute the spin-weighted spheroidal harmonic�=
sw spheroid( &re, &im,mu,0,0.0,s,l,m,eigenvalues);
=� print results�=
printf("%e\t%e\t%e\n",mu,re,im);

g

return 0;
g

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.7 Function: qn ring()

int qn_ring(float iota, float beta,
float eps, float M, float a, int l, int m,
float dt, float atten, int max,
float **plusPtr, float **crossPtr)

This routine is used to compute the “+” and “�” polarizations of the gravitational waveform,H(tret),
produced by a black hole ringdown at a distanceGM�=c2 = T�c ' 1:4766 km. To obtain the waveforms
at a distancer, multiply the result byGM�=c2r = T�c=r. The arguments are:

iota : Input. The polar angle (inclination),� (in radians), of the sky position of the observer with respect
to the (positive) spin axis of the black hole,0 � iota � �.

beta : Input. The azimuth,� (in radians), of the sky position of the observer with respect to the axis of
the perturbation at the start time. (0 � beta � 2�.)

eps : Input. The fraction of the total mass lost in gravitational radiation from the particular mode. (0 <
eps � 1.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole,jâj � 1, which is
negative if the black hole is spinning clockwise about the� = 0 axis (see figure 50).

l : Input. The mode integer̀. (l � 2)

m: Input. The mode integerm. (jmj � l )

dt : Input. The time interval, in seconds, between successive data points in the returned waveforms.

atten : Input. The attenuation level, in dB, at which the routine will terminate calculation of the wave-
forms. I.e., the routine will terminate when the amplitude,A = A0 exp(�Im!tret), falls below the
levelAcuto� = A0 alog10(�0:1� atten ).

max: Input. The maximum number of data points to be returned in the waveforms.

plusPtr : Input/Output. A pointer to an array which, on return, contains the waveformH+ sampled at
intervalsdt . If the array has the valueNULLon input, the routine allocates an amount of memory to
*plusPtr to holdmax elements.

crossPtr : Input/Output. A pointer to an array which, on return, contains the waveformH� sampled at
intervalsdt . If the array has the valueNULLon input, the routine allocates an amount of memory to
*crossPtr to holdmax elements.

The routineqn ring() returns the number of data points that were written to the arrays(*plusPtr)[]
and (*crossPtr)[] ; this is either the number specified by the input parametermax or the number of
points computed when the waveform was attenuated by the thresholdatten . The eigenvalues are ob-
tained from the functionqn eigenvalues() . The waveform is then computed usingH+ � iH� =
H(tret)�2S`m(�)eim� with H(tret) given by equation (8.1.7). The spheroidal wave function is obtained
from the functionsw spheroid() .

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.8 Example: ringdown program

This example uses the functionqn ring() to compute the black hole quasinormal ringdown waveform
for a preset mode and inclination. The waveform as a function of time is written to standard output in three
columns: the time, the plus polarization, and the cross polarization. A Plot of the quasinormal ringdown
waveform data is shown in figure 53.
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Figure 53: A plot of the plus and cross polarizations of the gravitational wave strain, at a (unphysical!)
distanceGM�=c2 = T�c ' 1:4766 km, for the fundamental̀ = m = 2 mode of a black hole with mass
M = 50M�, dimensionless angular momentum parameter0:98, and fractional mass loss� = 0:03, with
inclination and azimuth� = 0 and� = 0. The data was produced by the programringdown .
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define IOTA 0.0 =� inclination (radians)�=
#define BETA 0.0 =� azimuth (radians)�=
#define EPS 0.03 =� fractional mass loss�=
#define MASS 50.0 =� mass (solar masses)�=
#define SPIN 0.98 =� specific angular momentum�=
#define MODE L 2 =� mode integer l�=
#define MODE M 2 =� mode integer m�=
#define SRATE 16000.0 =� sampling rate (Hz)�=
#define ATTEN 20.0 =� attenuation leven (dB)�=
#define MAX 1024 =� max number of points in waveform�=

int main()
f

float �plus, �cross,t,dt=1 =SRATE;
int i,n;

=� set arrays to NULL so that memory is allocated in called routines�=
plus = cross = NULL;

=� generate the waveform function data�=
n = qn ring(IOTA,BETA,EPS,MASS,SPIN,MODE L,MODE M,dt,ATTEN,MAX, &plus, &cross);

=� output the data�=
for (i=0,t=0;i <n;i++,t+=dt) printf("%e\t%e\t%e\n",t,plus[i],cross[i]);

return 0;
g

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.9 Function: qn qring()

int qn_qring(float psi0, float eps, float M, float a,
float dt, float atten, int max, float **strainPtr)

The routineqn qring() is a quick ringdown generator which constructs a damped sinusoid with a fre-
quency and quality approximately equal to that of the` = m = 2 quasinormal mode of a Kerr black
hole and an amplitude approximately equal to angle-averaged strain expected for black hole radiation at
a distanceGM�=c2 = T�c ' 1:4766 km. To obtain the waveforms at a distancer, multiply the result
byGM�=c2r = T�c=r. The arguments to the routine are:

psi0 : Input. The initial phase (in radians) of the waveform (see below).

eps : Input. The fractional mass loss in quadrupolar (` = m = 2) radiation. (0 < eps � 1.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole,jâj � 1, which is
negative if the black hole is spinning clockwise about the� = 0 axis (see figure 50).

dt : Input. The time interval, in seconds, between successive data points in the returned waveform.

atten : Input: The attenuation level, in dB, at which the routine will terminate calculation of the wave-
forms.

max: Input. The maximum number of data points to be returned in the waveforms.

strainPtr : Input/Output. A pointer to an array which, on return, contains the angle-averaged waveform
sampled at intervalsdt . If the array has the valueNULLon input, the routine allocates an amount of
memory to*strainPtr to holdmax elements.

The routineqn ring() returns the number of data points that were written to the array(*strainPtr)[] ;
this is either the number specified by the input parametermax or the number of points computed when the
waveform was attenuated by the thresholdatten . The array contains theangle averaged waveform

Have(tret) =
1p
5
Re [H(tret)ei 0 ]; (8.9.1)

whereH(tret) is given by equation (8.1.7), sampled at time intervalsdt. The constant 0 defines the initial
phase of the waveform. The amplitude factor is set by the following argument: The gravitational strain (at a
distanceGM�=c2 = T�c ' 1:4766 km) that would be observed by an interferometer is given byH(tret) =
F+(�; �;  )H+(tret; �; �) + F�(�; �;  )H�(tret; �; �) whereF+ andF� represent the antenna patterns of
the interferometer. When averaged over�, �, and , one findshF 2

+i = hF 2�i = 1
5 andhF+F�i = 0. Thus,

hH2(tret)i�;�; ;�;� = 1
5hH2

+(tret; �; �) +H2
�(tret; �; �)i�;�

= 1
5hj(H+ � iH�)(tret; �; �)j2i�;�

= 1
10 jH(tret)j2

� H2
ave (8.9.2)

where the overbar indicates a time average over a single cycle; approximate equality becomes exact in
the limit of a high quality ringdown. It is in this sense that the quantityHave(tret) can be viewed as an
angle-averaged waveform.
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Rather than compute the eigenfrequency using the routineqn eigenvalues() , this routine uses the
analytic fits to the eigenfrequency found by Echeverria [25]. These expressions are:

!̂ ' f(â)(1� 1
4 ig(â)) (8.9.3)

with

f(â) = 1� 0:63(1 � â)3=10 (8.9.4)

g(â) = (1� â)9=20: (8.9.5)

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: Since this routine does not need to compute the spheroidal wave function and uses an analytic
approximation to the eigenfrequency, it is much simpler than the routineqn ring() . The approxi-
mate eigenfrequencies are typically accurate to within� 5%, so this routine is to be preferred when
computing quadrupolar(` = m = 2) quasinormal waveforms unless accuracy is critical.
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8.10 Function: qn filter()

int qn_filter(float freq, float qual,
float dt, float atten, int max, float **filterPtr)

Quasinormal ringdown waveforms are characterized by two parameters: the central frequency of the wave-
form, and thequality of the waveform. The parameter space is most easily described in terms of these
variables (rather than the mass and the angular momentum of the corresponding black hole), so it is useful
to construct filters for quasinormal ringdown waveform searches in terms of the frequency and quality of the
waveform. This routine constructs such a filter, with a specified frequency and quality. The routine returns
the number of filter elements computed before a specified attenuation level was reached. The arguments are:

freq : Input. The central frequency, in Hertz, of the ringdown filter.

qual : Input. The quality of the ringdown filter.

dt : Input. The time interval, in seconds, between successive data points in the returned waveform.

atten : Input: The attenuation level, in dB, at which the routine will terminate calculation of the wave-
forms.

max: Input. The maximum number of data points to be returned in the waveforms.

filterPtr : Input/Output. A pointer to an array which, on return, contains the filter sampled at inter-
vals dt . If the array has the valueNULL on input, the routine allocates an amount of memory to
*filterPtr to holdmax elements.

The constructed filter,q(t), is the function

q(t) = e��ft=Q cos(2�ft) (8.10.1)

wheref is the central frequency andQ is the quality. The routineqn filter() performs no normal-
ization, nor does it account for different possible starting phases. The latter is not important for detection
template construction. Normalization is achieved using the functionqn normalize() , which is described
later.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.11 Function: qn normalize()

void qn_normalize(float *u, float *q, float *r, int n, float *norm)

Given a filter,~q(f), and twice the inverse power spectrum,r(f), this routine generates a normalized tem-
plate~u(f) for which1 = hN2i ! 1

2correlate(...,u,u,r,n) . The arguments are:

u: Output. The arrayu[0..n-1] contains the positive frequency part of the complex template func-
tion ~u(f), packed as described in the Numerical Recipes routinerealft() .

q: Input. The arrayq[0..n-1] contains the positive frequency part of the complex filter function~q(f),
also packed as described in the Numerical Recipes routinerealft() .

r : Input. The arrayr[0..n/2] contains the values of the real functionr(f) = 2=Sh(jf j) used as a
weight in the normalization. The array elements are arranged in order of increasing frequency from
the DC component at subscript 0 to the Nyquist frequency at subscriptn/2.

n: Input. The total length of the arraysu andq. Must be even.

norm : Output. The normalization constant,�, defined below.

Given a filter,q(t), this routine computes a template,u(t) = �q(t), which is normalized so that(u; u) =
2, where(�; �) is the inner product defined by equation (6.14.9). Thus, the normalization constant is given
by

1

�2
=

1

2
(q; q): (8.11.1)

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.12 Function: find ring()

void find_ring(float *h, float *u, float *r, float *o,
int n, int len, int safe, int *off,
float *snr, float *mean, float *var)

This optimally filters the strain data using an input template and then finds the time at which the SNR peaks.
The arguments are:

h: Input. The FFT of the strain data~h(f).

u: Input. The normalized template~u(f).

r : Input. Twice the inverse power spectrum2=Sh(jf j).
o: Output. Upon return, contains the filter output.

n: Input. Defines the lengths of the arraysh[0..n-1] , u[0..n-1] , o[0..n-1] , andr[0..n/2] .

len : Input. The number of time domain bins for which the filteru(t) is non-zero. Needed in order to
eliminate the wrap-around ambiguity described in subsection 6.19.

safe : Input. The additional number of time domain bins to use as a safety margin. This number of
points are ignored at the beginning of the filter output and, along with the number of pointslen , at
the ending of the filter output. Needed in order to eliminate the wrap-around ambiguity described in
subsection 6.19.

off : Output. The offset, in the rangesafe to n-len-safe-1 , for which the filter output is a maximum.

snr : Output. The maximum SNR in the domain specified above.

mean: Output. The mean value of the filter output over the domain specified above.

var : Output. The variance of the filter output over the domain specified above. Would be unity if the input
to the filter were Gaussian noise with a spectrum defined bySh.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.13 Function: qn inject()

void qn_inject(float *strain, float *signal, float *response, float *work,
float invMpc, int off, int n, int len)

This routine injects a signals(t), normalized to a specified distance, into the strain datah(t), with some
specified time offset. The arguments to the routine are:

strain : Input/Output. The arraystrain[0..n-1] containing the strain data on input, and the strain
data plus the input signal on output.

signal : Input. The arraysignal[0..len-1] containing the signal, in strain units at 1 Mpc distance,
to be input into the strain data stream.

response : Input. The arrayresponse[0..n+1] containing the response functionR(f) of the IFO.

work : Output. A working arraywork[0..n-1] .

invMpc : Input. The inverse distance of the system, measured in 1/Mpc, to be used in normalizing the
signal.

off : Input. The offset number of samples (in the time domain) at which the injected signal starts.

n: Input. Defines the length of the arraysstrain[0..n-1] ,work[0..n-1] , andresponse[0..n+1] .

len : Input. Defines the length of the arraysignal[0..len-1] .

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: See the description of the routinetime inject() .
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8.14 Vetoing techniques for ringdown waveforms

Vetoing techniques for binary inspirals have already been described in subsection 6.24; these techniques are
equally applicable to searches for ringdown waveforms. However, since ringdown waveforms are short lived
and have a narrow frequency band, it is much more difficult to distinguish between a ringdown waveform and
a purely impulsive event. Furthermore, since the ringdown waveform will be preceded by some unknown
waveform corresponding to a black hole merger, one should not be too selective as to which events should
be vetoed.

Nevertheless, the Caltech 40 meter interferometer data has many spurious events that will trigger a
ringdown filter, and we would expect that other instruments will have similar properties. These spurious
events will (hopefully) not be too common, and most will be able to be rejected if they are not reported
by other detectors. At present, however, we have only the Caltech 40 meter data to analyze, so we must
consider every event that is detected by the optimal filter. The single vetoing technique that we will use at
present is to look for non-Gaussian events in the detector output using the routineis gaussian() . Since
the expected ringdown waveforms will be only barely discernible in the raw data, such a test has no chance
of accidentally vetoing an actual ringdown, but it will veto the obvious irregularities in the data.
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8.15 Example:qn optimal program

This program is a reworking of the programoptimal to be run on simulated 40-meter data. Instead
of searching for binary inspiral,qn optimal searches for an injected quasinormal ringdown waveform.
Refer to the sections on optimal filtering and theoptimal program for a detailed discussion.

The program is setup to inject a quasinormal ringdown, produced by the routineqn qring() , due to
a black hole of massM = 50M�, dimensionless angular momentum parameterâ = 0:98, and fractional
mass loss of� = 0:03. The injection occurs at a time of500 s and the source distance is set to100 kpc. The
filter is constructed from the same waveform.

The following is some sample output fromqn optimal :

max snr: 3.74 (offset 30469) data start: 466.77 variance: 0.72159
max snr: 4.03 (offset 50156) data start: 479.80 variance: 0.78550
Max SNR: 9.26 (offset 70785) variance 0.796263

If ringdown, estimated distance: 0.114364 Mpc, start time: 499.999968
Distribution: s= 40, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.58 (offset 70974) data start: 505.86 variance: 0.77432
...
max snr: 3.62 (offset 123006) data start: 1339.81 variance: 0.70885
Max SNR: 67.01 (offset 126129) variance 4.637304

If ringdown, estimated distance: 0.009777 Mpc, start time: 1365.618108
Distribution: s= 40, N>3s= 320 (expect 353), N>5s= 780 (expect 0)
Distribution has outliers! Reject

Max SNR: 93.03 (offset 1295) variance 4.444335
If ringdown, estimated distance: 0.005934 Mpc, start time: 1365.998780
Distribution: s= 40, N>3s= 109 (expect 353), N>5s= 280 (expect 0)
Distribution has outliers! Reject

max snr: 2.71 (offset 127389) data start: 1378.90 variance: 0.29810
...
max snr: 4.85 (offset 118137) data start: 2152.18 variance: 0.91870
Max SNR: 12.74 (offset 69426) variance 1.332324

If ringdown, estimated distance: 0.081144 Mpc, start time: 2172.249524
Distribution: s= 39, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.65 (offset 35976) data start: 2178.24 variance: 0.77820
max snr: 3.76 (offset 122854) data start: 2191.28 variance: 0.67849

As can be seen,qn optimal is able to find the ringdown and correctly estimates its distance and time
of arrival.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define NPOINT 131072 =� number of data points�=
#define HSCALE 1.0e21 =� convenient scaling factor�=
#define FLO 120.0 =� low frequency cutoff for filtering�=
#define MIN INTO LOCK 3.0 =� time (minutes) to skip into each locked section�=
#define THRESHOLD 6.0 =� detection threshold SNR�=
#define ATTEN 30.0 =� attenuation cutoff for ringdown waveforms�=
#define SAFETY 1000 =� padding safety to avoid wraparound errors�=
#define DATA SEGMENTS 3000=� maximum number of data segments to filter�=

double datastart;
float �response,srate=9868.4208984375;
short �datas;
int needed=NPOINT;

int main()
f

void realft(float �, unsigned long, int);
int fill buffer();
double norm;
float �data, �htilde, �output;
float �mean pow spec, �twice inv noise;
float �ring, �ringtilde, �template;
float decaytime,decay=0.0,scale,snr,mean,var,tmpl norm,dist;
float mass=50.0,spin=0.98,eps=0.03,psi0=0.0,invMpc=10.0,ringstart=500.0;
int i,code,len,safe=SAFETY,diff,off,n=NPOINT;

=� allocate memory for arrays�=
response=(float �)malloc(sizeof(float) �(NPOINT+2));
datas=(short �)malloc(sizeof(short) �NPOINT);
data=(float �)malloc(sizeof(float) �NPOINT);
htilde=(float �)malloc(sizeof(float) �NPOINT);
output=(float �)malloc(sizeof(float) �NPOINT);
ringtilde=(float �)malloc(sizeof(float) �NPOINT);
template=(float �)malloc(sizeof(float) �NPOINT);
mean pow spec=(float �)malloc(sizeof(float) �(NPOINT=2+1));
twice inv noise=(float �)malloc(sizeof(float) �(NPOINT=2+1));

=� manufacture quasinormal ring data; obtain length of signal�=
ring = NULL;
len = qn qring(psi0,eps,mass,spin,1.0 =srate,ATTEN,n, &ring);

=� normalize quasinormal ring to one megaparsec�=
scale = HSCALE �M SOLAR=MPC;
for (i=0;i <len;i++) ringtilde[i] = ring[i] �= scale;
for (i=len;i <n;i++) ringtilde[i] = ring[i] = 0;

=� FFT the quasinormal ring waveform�=
realft(ringtilde �1,n,1);
if (n <len+2 �safe) abort();

while (1) f

=� fill buffer with number of points needed�=
code = fill buffer();

=� if no points left, we are done!�=
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if (code==0) break;

=� if just entering a new locked stretch, reset averaging over power spectrum�=
if (code==1) f

norm = 0;
clear(mean pow spec,n =2+1,1);

=� decay time in seconds: set to 15 x length of NPOINT sample�=
decaytime = 15.0 �n=srate;
decay = exp( �1.0 �n=(srate �decaytime));

g

=� copy data into floats�=
for (i=0;i <NPOINT;i++) data[i] = datas[i];

=� inject a time-domain signal before FFT (note output is used as temp storage only)�=
qn inject(data,ring,response,output,invMpc,(int)(srate �(ringstart �datastart)),n,len);

=� compute the FFT of data�=
realft(data �1,n,1);

=� normalized dL=L tilde �=
product(htilde,data,response,n =2);

=� update auto-regressive mean power spectrum�=
avg inv spec(FLO,srate,n,decay, &norm,htilde,mean pow spec,twice inv noise);

=� normalize the ring to produce a template�=
qn normalize(template,ringtilde,twice inv noise,n, &tmpl norm);

=� calculate the filter output and find its maximum�=
find ring(htilde,template,twice inv noise,output,n,len,safe, &off, &snr, &mean, &var);

=� perform diagnostics on filter output�=
if (snr <THRESHOLD)f =� threshold not exceeded: print a short message�=

printf("max snr: %.2f (offset %6d) ",snr,off);
printf("data start: %.2f variance: %.5f\n",datastart,var);

g else f =� threshold exceeded�=
=� estimate distance to signal (template distance [Mpc] = 1= tmpl norm)�=
dist = 2 =(tmpl norm�snr);
printf("\nMax SNR: %.2f (offset %d) variance %f\n",snr,off,var);
printf(" If ringdown, estimated distance: %f Mpc, ",dist);
printf("start time: %f\n",datastart+off =srate);
=� See if time domain statistics are non-Gaussian�=
if (is gaussian(datas,n, �2048,2047,1))

printf(" POSSIBLE RINGDOWN: Distribution does not appear to have outliers\n\n");
else

printf(" Distribution has outliers! Reject\n\n");
g

=� shift ends of buffer to the start�=
diff = len + 2 �safe; =� safety is applied at beginning and end of buffer�=
needed = NPOINT � diff;
for (i=0;i <diff;i++) datas[i] = datas[i+needed];

g

return 0;
g
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=� this routine gets the data, overlapping the data buffer as needed�=
int fill buffer()
f

static FILE �fpifo, �fplock;
static int first=1,remain=0,num sent=0;
float tstart;
int i,temp,code=2,diff=NPOINT �needed;

if (first) f =� on first call only�=
FILE �fpss;
first = 0;
diff = 0;
=� open the IFO output file, lock file, and swept-sine file�=
fpifo = grasp open("GRASP_DATAPATH","channel.0","r");
fplock = grasp open("GRASP_DATAPATH","channel.10","r");
fpss = grasp open("GRASP_DATAPATH","swept-sine.ascii","r");
=� get the response function and put in scaling factor�=
normalize gw(fpss,NPOINT,srate,response);
for (i=0;i <NPOINT;i++) response[i] �= HSCALE=ARMLENGTH1994;
fclose(fpss);

g

if (num sent==DATA SEGMENTS) return 0;

=� if new locked section, skip forward�=
while (remain <needed) f

fprintf(stderr,"\nEntering new locked set of data\n");
temp = get data(fpifo,fplock, &tstart,MIN INTO LOCK�60�srate,datas, &remain, &srate,1);
if (temp==0) return 0;

=� number of points needed will be full length�=
needed = NPOINT;
diff = 0;
code = 1;

g

=� get the needed data and compute the start time of the buffer�=
temp = get data(fpifo,fplock, &tstart,needed,datas+diff, &remain, &srate,0);
if (temp==0) return 0;
datastart = tstart � diff =srate;

num sent++;
return code;

g
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8.16 Structure: struct qnTemplate

The structure that will hold the filters for quasinormal ringdown waveforms is:struct qnTemplate f
int num : The number of the particular filter.

float freq : The central frequency of the filter template.

float qual : The quality of the filter template.

g;
The actual filter data that corresponds to the parameters set by the fieldsfreq andqual is generated

by the routineqn filter() above.
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8.17 Structure: struct qnScope

The structurestruct qnScope specifies a domain of parameter space and contains a set of templates
that cover this domain. The fields of this structure are:struct qnScope f
int n tmplt : The total number of templates required to cover the region in parameter space. This is

typically set byqn template grid() .

float freq min : The minimum frequency of the region of parameter space.

float freq max: The maximum frequency of the region of parameter space.

float qual min : The minimum quality of the region of parameter space.

float qual max: The maximum quality of the region of parameter space.

struct qnTemplate *templates : Pointer to the array of templates. This pointer is usually set by
qn template grid() when it allocates the memory necessary to store the templates and creates
the necessary templates.

g;
Although we are interested in the physical parameters, such as the mass and angular momentum, of the

black hole sources of gravitational radiation, it will be more convenient to work with the frequency and
quality parameters of damped sinusoids when creating detection templates. For the fundamental quadrupole
quasinormal mode, there is a one-to-one correspondence between the mass and angular momentum param-
eters and the frequency and quality parameters which is approximately given by Echeverria [25].
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8.18 Function: qn template grid()

void qn_template_grid(float dl, struct qnScope *grid)

This function is responsible for allocating the memory for a grid of templates on the parameter space and
for choosing the location of the templates. The arguments are:

dl : Input. The length of the ‘sides’ of the square templates. This quantity should be set tod` =p
(2ds2threshold) (see the discussion below).

grid : Input/Output. The grid of templates of typestruct qnScope . On input, the fields that relate
to parameter ranges should be set. On output, the fieldn tmplt is set to the number of templates
generated, and these templates are put into the array fieldtemplates[0..n tmplt-1] (which is
allocated by the function).

The functionqn template grid() attempts to create a set of templates,fui(t)g, which “cover”
parameter space finely enough that the distance between an arbitrary point on the parameter space and one
of the templates is small. A precise statement of this goal, and how it is achieved, can be found in the paper
by Owen [5]. We hilight the relevant parts of reference [5] here.

The templatesfui(t)g are damped sinusoids with a set of frequency and quality parametersf(f;Q)ig.
They are normalized so that(uijui) = 1 where(�j�) is the inner product defined by Cutler and Flanagan [21].
Since we are most interested in the high quality region of parameter space, it is a good approximation that
the value of the one-sided noise power spectrum is approximately constant,Sh(f) � Sh(fi), over the
frequency band of the template. This approximation simplifies the form of the inner product as the noise
power spectrum appears in the inner product as a weighting function.

In order to estimate how close together the templates must be, we define the distance functionds2ij =
1 � (uijuj) corresponding to the mismatch between the two templatesui anduj . This interval can be
expressed in terms of a metric asds2 = g��dx

�dx� wherex� = (f;Q)� are coordinates on the two
dimensional parameter space. Such an expression is only valid for sufficiently close points on parameter
space. In the limit of a continuum of templates over parameter space, the metric can be evaluated byg�� =
�1

2(uj@�@�u) where@� is a partial derivative with respect to the coordinatex�. We find that the mismatch
between templates that differ in frequency bydf and in quality bydQ is given by

ds2 =
1

8

�
3 + 16Q4

Q2(1 + 4Q2)2
dQ2 � 2

3 + 4Q2

fQ(1 + 4Q2)
dQdf +
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�
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In the approximate metric of equation (8.18.2), we have kept only the dominant term in the limit of high
quality. The minimum number of templates,N , required to span the parameter space such that there is no
point on parameter space that is a distance larger thands2threshold from the nearest template can be found by
integrating the volume element

p
det g�� over the parameter space. Using the approximate metric and the

parameter rangesQ � Qmax andf 2 [fmin; fmax], we find that the number of templates required is

N � 1

4
p
2
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100
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�
� log
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100Hz

���
: (8.18.3)

The issue of template placement is more difficult than computing the number of templates required.
Fortunately, for the problem of quasinormal ringdown template placement, the metric is reasonably simple.
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By using the coordinate� = log f rather thanf , we see that the metric components depend onQ alone.
We can exploit this property for the task of template placement as follows: First, choose a “surface” of
constantQ = Qmin, and on this surface place templates at intervals in� of d� = d`=g�� for the entire
range of�. Here,d` =

p
(2ds2threshold). Then choose the next surface of constantQ with dQ = d`=gQQ

and repeat the placement of templates on this surface. This can be iterated until the entire range ofQ has
been covered; the collection of templates should now cover the entire parameter region with no point in the
region being farther thands2threshold from the nearest template.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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8.19 The close-limit approximation and numerical simulations

For a subset of black hole collisions, where the black holes collide head-on, there exist as of today (Feb
1999) reasonably reliable full numerical simulations of the collision. Because of the lack of an inspiral
phase, the waveform profiles of these kind of collisions are completely dominated by the ringdown of the
final black hole [for a recent reference see Anninos, Brandt, and Walker [49] (ABW). Even for this simple
case, there are some discrepancies between various numerical codes.

A separate approach to black hole collisions has been the close-limit approximation (see Khanna et al.
gr-qc/9905081 for a description of the close-limit approximation applied to inspiralling black holes), which
describes the merger of two black holes as a perturbation of a single black hole; the perturbation is based on
a small parameter measuring the separation of the two black holes. This approximation has had an uncanny
degree of success in replicating (at least for the head-on case) numerical estimates of the merger waveform,
and it provides “a little-bit more” of the merger waveform than the quasinormal ringdown. It is useful to
examine how good ringdown filters will work in detecting the more realistic waveforms produced by the
close-limit approximation. In this addendum we will describe the use of both close limit and full nuemerical
simulations in the GRASP package.

There are two data sets containing full numerical waveforms for head on collisions of two black holes
released initially from rest. These correspond to the two codes described in ABW [49] for a moderate
separation of the holes (�0 = 1:9 in the ABW [49] notation, about 10 in terms of single black hole radii).
These waveforms are shown in figure 54.
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Figure 54: ABW waveforms with�0 = 1:9.

These two waveforms correspond to the two codes described in ABW [49], based on two different set
of coordinate systems. To a certain extent, they exhibit the limitations of the state of the art in numerical
relativity: both waveforms represent the best effort by correct, “convergent” codes, and yet there is some
disagreement among them. This disagreement can be settled by comparing with the close approximation
(see ABW [49]). But it is also instructive to compare how bad the disagreement is from the point of view of
a data analyst.

The fitting factor is defined by

� = max
t
r(t) = max

t
��1<

Z 1

0
dfe�2�ift

~a(f)~b�(f)
S(f)

(8.19.1)
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(8.19.2)
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with a(t) being the close-limit approximation waveform,b(t) being the ringdown waveform, andS(f)
being the detector noise power spectrum. This is computed by the programcorr (below). For the LIGO-
I interferometer noise curve and a200M� black hole, the fitting factors are91% and 85% for the full
numerical waveforms. These factors represent the fraction of the signal-to-noise ratio that the ringdown
filter will obtain relative to the optimal filter. As can be seen in the following figure, the moment at which
the ABW [49] waveform looks most “ringdown-like” isnot the moment at which the peak signal-to-noise
ratio is obtained.
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Figure 55: Pure ringdown fits to the ABW waveform. First: the correlation between the ABW waveform
and a pure ringdown as a function of time. Second: pure ringdowns superimposed on the ABW waveform
for the times of greatest correlation.

From the point of view of source modelling, the difference in head-on collisions between the full nu-
merical waveforms and the close limit ones is not substantial.

Authors: Jolien Creighton (jolien@tapir.caltech.edu) and Jorge Pullin (pullin@phys.psu.edu)
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Figure 56: The waveform for the ringdown of an inspiralling collision with Kerr parametera = 0:35M and
initial separationL = 0:9M . Extrapolations beyond the realm of validity of the close limit suggest that for
a “realistic” collision witha=M close to unity about1% of the mass is radiated.

8.20 Inspiralling collisions

For the collision of inspiralling black holes there are no currently available full numerical simulations. Here
the only information available is from the close limit approximation. In this case, one only expects to get
correctly one portion of the waveform, since in addition to the final ringdown captured by the close limit
approximation, one also will have the “chirp” and “merger” phases of the collision. Nevertheless, it is
instructive to see what the use of the “realistic” ringdown part of the waveforms yields. The close-limit
approximation is quite limited in validity for inspiralling black hole. The problem is that for large values
of the angular momentum, as are expected in realistic collisions, the spacetime departs quite radically from
that of a single spinning black holes. Best educated guesses suggest that trustworthy results from the close
limit approximation can only be obtained up to values of the Kerr parameter ofa = 0:5M . At such values,
for separations of a fewM , the radiated energy is of the order of0:3% of the total mass of the system.
Of the angular momentum, a similar fraction gets radiated away. By eyeballing the curve showing the
energy dependence as a function of angular momentum, one could expect that a “realistic” collision with
values ofa=M close to unity would probably radiate of the order of1% of the total mass. This is a significant
extrapolation from the “reliable” results, but barring unexpected physics at the last moments of the collision,
it is probably right. We present here the analysis of a “close-limit” type waveform for the ringdown of the
final moments of an inspiralling collision. The waveform was calculated fora = 0:35M and separation
L = 0:9M (�0 = 1:5). The waveform is shown in figure 56.

For the LIGO-I noise curve and a total black hole mass of200M�, the fitting factor achieved by a
quasinormal ringdown template with the “correct”a = 0:35M is 69% (see figure 57). However, this is not
a true fitting factor in the sense that the maximization has been over the time of arrival only—for different
values of the ringdown template mass and spin, the fit will improve. In particular, only the` = m =
2 quasinormal mode is considered in constructing the ringdown template while the close-limit waveform
contains excitations from thè= 2,m = 0 as well. For a rapidly spinning black hole, the` = m = 2 mode
will (eventually) dominate the waveform because it is much longer lived. However, the spin of the black
hole in the present case is not particularly large, and them = 0 mode tends to dominate. In fact, the fitting
factor obtained by using a ringdown template witha = 0 is 84%—much better than the fit obtained using
the ` = m = 2 ringdown witha = 0:35M . It would be useful to examine the entire parameter space of
quasinormal ringdowns in mass and spin as well as arrival time in order to obtain the “true” fitting factor.

Authors: Jolien Creighton (jolien@tapir.caltech.edu) and Jorge Pullin (pullin@phys.psu.edu)
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Figure 57: Pure ringdowns superimposed on the waveform for the ringdown of an inspiralling collision with
Kerr parametera = 0:35M and initial separationL = 0:9M for the times of greatest correlation.
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8.21 Example:ring-corr program

This program computes the maximum weighted cross-correlation of a black hole merger waveforms (con-
tained in data files) with ringdown waveforms. The input data file(s) contain close-limit approximations or
numerical relativity results for the merger of two black holes.

To execute the program:

corr [options] [file1 [file2]]
options:

-h prints a help message
-m mass specifies the black hole mass (in solar masses)
-s spin specifies the dimensionless black hole spin [0,1)
-p powfile file containing the noise power spectrum

Here, file1 and file2 are optional filenames containing the waveform data. If two arguments are
present, the cross-correlations of the data in the two files is computed; otherwise, the cross-correlation of
the data in the single file (or in fileclose-limit.dat if there are no arguments) with a Schwarzschild
ringdown is computed. If a power spectrum filename is not specified, the program looks forligo-0.dat .

#include <assert.h >
#include <stdlib.h >
#include <string.h >
#include <stdio.h >
#include <math.h >

#include "grasp.h"

extern char �optarg;
extern int optind;
int getopt(int, char � const [ ], const char �);

int main(int argc, char �argv[ ])
f

void usage(char �);
void realft(float [ ], unsigned long, int);
void readNoisePower(FILE �, double [ ], int, float);
void readCloseLimitData(FILE �, float [ ], int, float, float);
void makeQuasiNormalRing(float [ ], int, float, float, float);

const double hscale = 1e21; =� a convenient scale factor�=
const float Msun = 4.89e �6; =� solar mass (s)�=
const float srate = 16384; =� sample rate (Hz)�=
const int npoint = 65536; =� segment length (samples)�=

double scale;
double �power; =� power spectrumS(f) �=
float �weight; =� weigting factor4=S(f) �=
float �arrayA; =� waveforma(t) �=
float �arrayB; =� waveformb(t) �=

float �crossCorr; =�
R
df e2�ift~a(f)~b�(f)=S(f) �=

float �autoCorrA; =�
R
df e2�iftj~a(f)j2=S(f) �=

float �autoCorrB; =�
R
df e2�iftj~b(f)j2=S(f) �=

float spin = 0.35; =� dimensionless spin of black hole�=
float mass = 200; =� mass of black hole (solar masses)�=
float norm;
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float max;
char powfile[256] = "ligo-0.dat"; =� noise power filename�=
FILE �fp;
int i;

=� allocate memory to arrays�=
assert(power = (double �)malloc((npoint =2+1) �sizeof(double)));
assert(weight = (float �)malloc((npoint =2+1) �sizeof(float)));
assert(arrayA = (float �)malloc(npoint �sizeof(float)));
assert(arrayB = (float �)malloc(npoint �sizeof(float)));
assert(crossCorr = (float �)malloc(npoint �sizeof(float)));
assert(autoCorrA = (float �)malloc(npoint �sizeof(float)));
assert(autoCorrB = (float �)malloc(npoint �sizeof(float)));

while (1) f =� parse command line options�=

int c;

=� call the standard C library option parser�=
c = getopt(argc,argv,"hs:m:p:");
if (c == �1) break;

switch (c) f

case 'h': =� print a simple message and exit�=
usage(argv[0]);
exit(0);

case 's':
spin = atof(optarg);
assert(spin >= 0 && spin < 1);
break;

case 'm':
mass = atof(optarg);
assert(mass > 0);
break;

case 'p':
strncpy(powfile,optarg,sizeof(powfile));
break;

default: =� something went wrong�=
fprintf(stderr,"warning: getopt returned character code O%o\n",c);

g

g

switch (argc � optind) f =� process remaining command line arguments�=

case 0: =� compare a default data file and a computed ringdown�=
fprintf(stderr,"compare waveform data from file close-limit.dat\n");
assert(fp = fopen("close-limit-insp.dat","r"));
readCloseLimitData(fp,arrayA,npoint,srate,mass �Msun);
fclose(fp);
fprintf(stderr,"with a computed ringdown waveform\n");
makeQuasiNormalRing(arrayB,npoint,srate,mass �Msun,spin);
fprintf(stderr," black hole mass: %.2f solar masses\n",mass);
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fprintf(stderr," black hole spin: %05.2f%% of extreme\n",spin �100);
break;

case 1: =� compare a specified data file and a computed ringdown�=
fprintf(stderr,"compare waveform data from file %s\n",argv[optind]);
assert(fp = fopen(argv[optind++],"r"));
readCloseLimitData(fp,arrayA,npoint,srate,mass �Msun);
fclose(fp);
fprintf(stderr,"with a computed ringdown waveform\n");
makeQuasiNormalRing(arrayB,npoint,srate,mass �Msun,spin);
fprintf(stderr," black hole mass: %.2f solar masses\n",mass);
fprintf(stderr," black hole spin: %05.2f%% of extreme\n",spin �100);
break;

case 2: =� compare two specified data files�=
fprintf(stderr,"compare waveform data from file %s\n",argv[optind]);
assert(fp = fopen(argv[optind++],"r"));
readCloseLimitData(fp,arrayA,npoint,srate,mass �Msun);
fclose(fp);
fprintf(stderr,"with waveform data from file %s\n",argv[optind]);
assert(fp = fopen(argv[optind++],"r"));
readCloseLimitData(fp,arrayB,npoint,srate,mass �Msun);
fprintf(stderr," black hole mass: %.2f solar masses\n",mass);
fclose(fp);
break;

default: =� too many arguments�=
usage(argv[0]);
exit(1);

g

=� get correlation weighting factor�=
fprintf(stderr,"using power spectrum from file %s\n",powfile);
assert(fp = grasp open("GRASP_PARAMETERS",powfile,"r"));
readNoisePower(fp,power,npoint =2,srate);
fclose(fp);
scale = 4 =(npoint �srate �hscale �hscale);
weight[0] = weight[npoint =2] = 0;
for (i = 1; i < npoint =2; ++i)

weight[i] = scale =power[i];

=� FFT waveform arrays�=
realft(arrayA �1,npoint,1);
realft(arrayB �1,npoint,1);

=� compute cross- and auto-correlations�=
autoCorrA[0] = autoCorrA[1] = 0;
autoCorrB[0] = autoCorrB[1] = 0;
crossCorr[0] = crossCorr[1] = 0;
for (i = 1; i < npoint =2; ++i) f

int ir = i + i;
int ii = ir + 1;
float ar = arrayA[ir];
float ai = arrayA[ii];
float br = arrayB[ir];
float bi = arrayB[ii];
float fac = weight[i];
autoCorrA[ir] = fac �(ar �ar + ai �ai);
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autoCorrA[ii] = 0;
autoCorrB[ir] = fac �(br �br + bi �bi);
autoCorrB[ii] = 0;
crossCorr[ir] = fac �(ar �br + ai �bi);
crossCorr[ii] = fac �(ai �br � ar �bi);

g
realft(autoCorrA �1,npoint, �1);
realft(autoCorrB �1,npoint, �1);
realft(crossCorr �1,npoint, �1);

=� compute fitting factor normalization�=
assert(autoCorrA[0] > 0);
assert(autoCorrB[0] > 0);
norm = sqrt(autoCorrA[0] �autoCorrB[0]);
assert(norm > 0);

=� find maximum of cross-correlation and print fitting factor�=
max = 0;
for (i = 0; i < npoint; ++i)

if (fabs(crossCorr[i]) > fabs(max))
max = crossCorr[i];

printf("fitting factor: %.2f%%\n",100 �max=norm);

return 0;
g

=� Print a message describing the usage of this program.
� Arguments:
� �program the program name
�=

void usage(char �program)
f

fprintf(stderr,"usage: %s [options] [file1 [file2]]\n",program);
fprintf(stderr,"options:\n");
fprintf(stderr," -h prints this message\n");
fprintf(stderr," -s spin dimensionless spin of the black hole [0,1)\n");
fprintf(stderr," -m mass mass of the black hole (solar masses)\n");
fprintf(stderr," -p file file containing the noise power spectrum\n");
return;

g

=� Read a data file containing a close-limit waveform.
� Arguments:
� �fp the data file
� �arr array to store the data
� npoint size of array�arr
� srate sample rate for data in�arr (in Hz)
� mass mass of black hole (in seconds)
�=

void readCloseLimitData(FILE �fp, float �arr, int npoint, float srate,
float mass)

f
void spline(float [ ], float [ ], int, float, float, float [ ]);
void splint(float [ ], float [ ], float [ ], int, float, float �);

const int ninc = 1024;
const float natural = 1e30;
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float �time, �data, �datapp;
int i, imax, nmax = ninc, n = 0;

=� alocate memory�=
assert(data = (float �)malloc(nmax �sizeof(float)));
assert(time = (float �)malloc(nmax �sizeof(float)));

=� read waveform data file�=
while (EOF != fscanf(fp,"%e\t%e\n",time+n,data+n))

if (++n >= nmax) f
nmax += ninc;
assert(data = (float �)realloc(data,nmax �sizeof(float)));
assert(time = (float �)realloc(time,nmax �sizeof(float)));

g

=� use cubic spline interpolation to generate waveform at
� the required sample times
�=

assert(datapp = (float �)malloc(n �sizeof(float)));
spline(time �1,data �1,n,natural,natural,datapp �1);
imax = (int)floor((time[n �1] � time[0]) �srate �mass);
for (i = 0; i < npoint; ++i)

if (i > imax)
arr[i] = 0;

else
splint(time �1,data �1,datapp �1,n,(float)i =(srate �mass)+time[0],arr+i);

=� free memory and return�=
free(time);
free(data);
free(datapp);
return;

g

=� Generate a quasinormal ringdown waveform.
� Arguments:
� �arr array to store the data
� npoint size of array�arr
� srate sample rate for data in�arr (in Hz)
� mass mass of black hole (in seconds)
� spin dimensionless spin of black hole
�=

void makeQuasiNormalRing(float �arr, int npoint, float srate,
float mass, float spin)

f
const float pi = 3.14159265358979;
const float freq = (1 � 0.63 �pow(1 �spin,0.3)) =(2 �pi �mass);
const float qual = 2 �pow(1 �spin, �0.45);
=� freq andqual are computed using the fits by Echeverria�=
int i;

for (i = 0; i < npoint; ++i) f
float time = (float)i =srate;
arr[i] = exp( �pi �time �freq =qual) �cos(2 �pi �time �freq);

g

return;
g
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=� Read the noise power spectrum.
� Arguments:
� �fp the noise power file
� �power array to store the data
� n size of array�power
� srate sample rate for data (in Hz)
�=

void readNoisePower(FILE �fp, double �power, int n, float srate)
f

void spline(float [ ], float [ ], int, float, float, float [ ]);
void splint(float [ ], float [ ], float [ ], int, float, float �);
const int nmax = 65536; =� assumed maximum size of data file�=
const float natural = 1e30;
float �freq, �ampl, �amplpp;
char line[100];
int i, length;

=� allocate memory�=
assert(freq = (float �)malloc(nmax �sizeof(float)));
assert(ampl = (float �)malloc(nmax �sizeof(float)));
assert(amplpp = (float �)malloc(nmax �sizeof(float)));

=� read power spectrum data file�=
length = 0;
while (1) f

if (fgets(line,sizeof(line),fp) == NULL) =� end of file�=
break;

if (line[0] != '#') f
assert(length < nmax);
sscanf(line,"%e\t%e\n",freq+length,ampl+length);
++length;

g
g

=� use cubic spline interpolation to get the spectrum
� at the required frequencies
�=

spline(freq �1,ampl �1,length,natural,natural,amplpp �1);
for (i = 0; i < n; ++i) f

float f = i �srate =(float)n;
float value;
double dvalue;
splint(freq �1,ampl �1,amplpp �1,length,f, &value);
dvalue = (double)value;
power[i] = dvalue �dvalue;

g

=� free memory and return�=
free(freq);
free(ampl);
free(amplpp);
return;

g

=� The following routines is to be run to display data during
debugging it’s based on the GRASP graph() routine�=

void graphSpec(float arr[ ], int n)
f
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FILE �fp;
int i;
fp = fopen("temp.graph","w");
for (i = 0; i < n=2; ++i) f

int ir = i + i;
int ii = ir + 1;
float re = arr[ir];
float im = arr[ii];
float pow = re �re + im �im;
float arg = atan2(im,re);
fprintf(fp,"%d\t%e\t%e\n",i,pow,arg);

g
fclose(fp);
system("xmgr -nxy temp.graph 1>/dev/null 2> &1 &");
return;

g

Authors: Jolien Creighton (jolien@tapir.caltech.edu) and Jorge Pullin (pullin@phys.psu.edu)
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9 GRASP Routines: Template Bank Generation & Searching

For the most part, one of our main interests is the search for signals whose wave-forms are characterized by
unknown values of a set of parameters (for binary inspiral, these would bem1 andm2). In order to use the
matched filtering technique described in the previous section, it is necessary to set up a “bank” of templates,
designed so that any expected signal is “close” (in parameter space) to one of the elements of the bank.
This section contains a set of routines for setting up such a template bank, in the case where the signals are
parameterized by two parameters.

It also contains a (parallel) routine to search for binary inspiral in a bank of templates.

9.1 Structure: struct Template

The structure used to describe the “chirp” signals from coalescing binary systems is:struct Template
f
int num: In order to deal with templates “wholesale” it is useful to number them. The numbering

system is up to you; we typically give each template a number, starting from 0 and going up to the
number of templates minus one!

float f lo: This is the starting (low) frequencyf0 of template, in units ofsec�1.

float f hi: This is the ending (high) frequency of the template, in units ofsec�1

float tau0: The Newtonian time�0 to coalescence, in seconds, starting from the moment when the
frequency of the waveform is flo.

float tau1: First post-Newtonian correction�1 to �0.

float tau15: 3/2 PN correction

float tau20: second order PN correction

float pha0: Newtonian phase to coalescence, radians

float pha1: First post-Newtonian correction to pha0

float pha15: 3/2 PN correction

float pha20: second order PN correction

float mtotal: total massm1 +m2, in solar masses

float mchirp: chirp mass���2=5, in solar masses

float mred: the reduced mass� = m1m2=(m1 +m2), in solar masses

float eta: reduced mass/total mass� = m1m2=(m1 +m2)
2 , dimensionless

float m1: the smaller of the two masses, in solar masses.

float m2: the larger of the two masses, in solar masses.
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g;
One may use the technique ofmatched filteringto search for chirps. The (noisy) signal is compared

with templates, each formed from a chirp with a particular values ofm1, m2, and a “start frequency”f0 of
the waveform at the time that it enters the bandpass of the gravitational wave detector. Several theoretical
studies [4, 5] have shown how the template filtering technique performs when the detector is not ideal, but
is contaminated by instrument noise.

In the presence of detector noise, one can never be entirely certain that a given chirp (determined by
m1;m2) will be detected by a particular template, even one with the exact same mass parameters. However
one can make statistical statements about a template, such as “if the massesm1 andm2 of the chirp lie in
regionR of parameter space, then with 97% probability, they will be detected if their amplitude exceeds
valueh”. Thus, associated with each chirp, and a specified level of uncertainty, is a region of parameter
space.

It turns out that if we use the correct choice of coordinates on the parameter space(m1;m2) then these
regionsR are quite simple. If we demand that the uncertainty associated with each template be fairly small,
then these regions are ellipses. Moreover, to a good approximation, the shape of the ellipses is determined
only by the noise power spectrum of the detector, and does not change significantly as we move about in the
parameter space. These “nice” coordinates(�0; �1) have units of time, and are defined by

�0 =
5

256

�
GM

c3

��5=3
��1(�f0)�8=3 (9.1.1)

=
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�
(�f0)

�2T�1� :

The symbol
M � m1 +m2 (9.1.3)

denotes the total mass of the binary system, and

� � m1m2

(m1 +m2)2
(9.1.4)

is the ratio of the reduced mass toM . Notice that� is always (by definition) less than or equal to1=4.
We are generally interested in a region of parameter space corresponding to binary systems, each of

whose masses lie in some given range, say from1=2 to 3 solar masses. The region of parameter space is
determined by a minimum and maximum mass; we show an example of this in Figure 58. Since we may
takem2 � m1 without loss of generality, the region of interest is triangular rather than rectangular. The
three lines on this diagram are:

(1) The equal mass line. Along this line� = 1=4.

(2) The minimum mass line. Along this line, one of the masses has its smallest value.

(3) The maximum mass line. Along this line, one of the masses has its largest value.

This triangular region is mapped into the(�0; �1) plane as shown in Figure 59 In this diagram, the lower

curve�1 / �
3=5
0 is the equal mass line (1). The upper curve, to the right of the “kink” is the minimum mass

line (2). The upper curve, to the left of the “kink” is the maximum mass line (3).
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Figure 58: The set of binary stars with masses lying between set minimum and maximum values defines
the interior of a triangle in parameter space
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Figure 59: The triangular region of the previous figure is mapped into a distorted triangle in the(�0; �1)
plane. Heref0 is 120 Hz.
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9.2 Structure: struct Scope

The set of templates is described by a structurestruct Scope . This structure specifies a set of templates
covering the mass range in parameter space described above and shown in Figure 59. The fields of this
structure are:
struct Scope f
int n tmplt: This integer is the total number of templates needed to cover the region in parameter

space. This is typically computed or set bytemplate grid() .

float m mn: The minimum mass of an object in the binary system, as described above, in solar masses.

float m mx: The maximum mass of an object in the binary system, as described above, in solar masses.
Together with themmn, this describes the region in parameter space covered by the set of templates.

float theta: The angle to the axis of the constant ambiguity ellipse whose axis has diameterdp . The
angle is measured in radians counterclockwise from the�0 axis. The range is� 2 (��=2; �=2).

float dp: The diameter along the ellipse (in sec). This is twice the radiusr1 given in Table 8. The
angle� is measured to this axis.

float dq: The diameter along the ellipse (in sec). This is twice the radiusr2 given in Table 8.

float f start: The frequencyf0 used in the definitions of�0 and�1 (9.1.1,9.1.2); this is typically the
frequency at which a binary chirp first enters the usable bandpass of the detector.

struct Template* templates: Pointer to the array of templates. This pointer is typically set by
template grid() , when it allocates the memory necessary to store the templates, and creates the
necessary templates.

g;
Note that a given constant ambiguity ellipse can be specified in either of two equivalent ways. For

example the elllipse defined by

� = �=4; dp = 1 msec; dq = 5 msec (9.2.1)

is completely equivalent to the ellipse

� = 5�=4; dp = 5 msec; dq = 1 msec: (9.2.2)

Either of these is acceptable. The literature frequently uses the second convention (angle measured to the
major axis).
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9.3 Function: tau of mass()

void tau of mass(double m1, double m2, double pf, double *tau0, double *tau1)
This function calculates the coordinates(�0; �1) associated with particular values of the masses of the objects
in the binary system, and a particular value of frequencyf0.

The arguments are:

m1: Input. The first mass (in solar masses).

m2: Input. The second mass (in solar masses).

pf : Input. The value�f0. Heref0 is the frequency used in defining the� coordinates (see below). It
is often chosen to be at (or below) the frequency at which the chirp first enters the bandpass of the
gravitational wave detector.

tau0 : Output. Pointer to�0 (in seconds).

tau1 : Output. Pointer to�1 (in seconds).

Although one can think of�0 and�1 as coordinates in the parameter space defined by (9.1.1) and (9.1.2)
they have simple physical meanings.�0 is the time to coalescence of the binary system, measured from the
time that the waveform passes through frequencyf0, in the zeroth post-Newtonian approximation.�1 is the
first-order post-Newtonian correction to this quantity, so that to this order the time to coalescence is�0+ �1.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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9.4 Function: mand eta()

int m and eta(double tau0, double tau1, double *M, double *eta, double Mmin,
double Mmax, double pf)
This function takes as inputs the coordinates(�0; �1). If these correspond to individual massesm1 andm2

each lying in the range fromMmin to Mmax then the function sets the total massM = m1 +m2 and sets
� = m1m2=(m1 +m2)

2 and returns the value 1. Otherwise, the function returns 0 and does not change the
values of massM or �.

The arguments are:

tau0 Input. The value of�0 (positive, sec).

tau1 Input. The value of�1 (positive, sec).

MOutput. The total massM (solar masses). Unaltered if no physical mass values are found in the desired
range.

eta Output. The value of� (dimensionless). Unaltered if no physical mass values are found in the desired
range.

Mmin Input. Minimum mass of one object in the binary pair, in solar masses (positive).

MmaxInput. Maximum mass of one object in the binary pair, in solar masses (positive).

pf : Input. The value�f0. Heref0 is the frequency at which the chirp first enters the bandpass of the
gravitational wave detector.

The algorithm followed bymand eta() is as follows. Eliminate� from the equations defining�0 (9.1.1)
and�1 (9.1.2) to obtain the following relation:

c1 + c2

�
M

M�

�5=3
� c3

�
M

M�

�
= 0; (9.4.1)

with the constants given by:

c1 = 1155 T�
c2 = 47552 (�f0T�)8=3�0 (9.4.2)

c3 = 16128 (�f0T�)2�1:

Given (�0; �1) our goal is to find the roots of equation (9.4.1). It is easy to see that the function on the lhs
of (9.4.1) has at most two roots. The function is positive atM = 0 but decreasing for small positiveM .
However it is positive and increasing again asM !1. Hence the function on the lhs of (9.4.1) has at most
a single minimum forM > 0. Setting the derivative equal to zero and solving, this minimum lies at a value
of the total massMcrit which satisfies

Mcrit

M�
=

�
3

5

c3
c2

�3=2
(9.4.3)

Hence the lhs of (9.4.1) has no roots if its value is positive atM = Mcrit or it has two roots if that value is
negative. (The “set of measure zero” possibility is a single root atMcrit.)

If 2Mmin < Mcrit < 2Mmax thenmand eta() searches for roots2Mmin < M < Mcrit andMcrit <
M < 2Mmax separately, else it looks for a rootM in the range2Mmin < M < 2Mmax. If the lhs of (9.4.1)
changes sign at the upper and lower boundaries of the interval, then a double-precision routine, similar to
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theNumerical Recipesroutinertsafe() , is used to obtain the root with a combination of “safe” bisection
and “rapid” Newton-Raphson.

If a rootM is found in the desired range, then� is determined by (9.1.1) to be

� =
5

256

�
M

M�

��5=3
(�f0T�)�8=3

T�
�0

(9.4.4)

If � � 1=4 then the smaller and larger masses are calculated from

m1 =
M

2

�
1�p1� 4�

�
m2 =

M

2

�
1 +

p
1� 4�

�
: (9.4.5)

(If both roots forM correspond to� � 1=4 then an error message is generated and the routine aborts.) If
bothm1 andm2 are in the desired rangeMmin < m1;m2 < Mmax thenmand eta() returns 1 and sets
M and� appropriately, else it returns 0, leavingM and� unaffected.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Although the arguments to this function are double precision floats, the values ofm1 andm2

that may be inferred from them can generally only be determined to single precision, particulary in
the neighborhood ofm1 = m2. The reason is that in the vicinity of� � 1=4, a fractional error� is
the value of� produces a fractional error

p
� in the masses.
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9.5 Function: template area()

float template area(struct Scope *Grid)
This function computes the area of the enclosed region of parameter space shown in Figure 59.

The arguments are:

Grid : Input. This function uses only the minimum mass, maximum mass and the cut-off frequencyf0
fields ofGrid .

The function returns the numerical value of the area in units ofsec2. See the example in the following
subsection.

The function uses an analytic expression for the area obtained by integration of formulae (9.1.1,9.1.2)
for �0 and�1 given earlier. For example, to obtain the area of the trapezoidal region bounded above by the
maximum-mass curve and below by the�0 axis, we integrate

A1 =

Z mmin

mmax

�1(mmin;m)
d�0(mmin;m)

dm
dm

= A0

�
mmin

M�

�8=3 ��[3 + 2(4 + 2a)u+ (5 + 9a)u2]

2u2(1 + u)2=3

+
9a� 1p

3
arctan

"
1 + 2(1 + u)1=3p

3

#

+
9a� 1

6
log

"
1 + (1 + u)1=3 + (1 + u)2=3

1� 2(1 + u)1=3 + (1 + u)2=3

#�u=1
u=mmin=mmax

:

Herea = 924=743 andA0 is a quantity with dimensionssec2 given by

A0 =
18575

49545216

M2�
(�M�f0)14=3

 
c3

G

!8=3

:

The areaA2 under the minimum-mass curve can be obtained from the formula above by interchanging
mmin andmmax. (If you wish to use geomtrized units in which the solar mass is4:92� 10�6 sec simply set
G = c = 1.) The area under the equal-mass curveA3 can be obtained by performing a similar integration
along the equal-mass curve

A3 =

Z mmin

mmax

�1(m;m)
d�0(m;m)

dm
dm

=
60875

2064384

M2�
(�f0M�)14=3

"�
M�
mmin

�8=3
�
�
M�
mmax

�8=3# c3
G

!8=3
:

These three results can be combined to give the total area enclosed

Atotal = A1 +A2 �A3 : (9.5.1)

Equation (9.5.1) is the basis oftemplate area() ; the next example shows an application of this func-
tion.

Author: Alan Wiseman, agw@tapir.caltech.edu

Comments: None.
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9.6 Example:area program

This example uses the functiontemplate area() described in the previous section to compute the area
of the specified parameter space. The parameters specifying the region are set: the minimum and maximum
mass in solar masses and the cut off frequency in seconds�1. The numerical value of the area is returned
and printed.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
struct Scope Grid;
float area;

=� Specify the parameter space�=
Grid.m mn=0.8;
Grid.m mx=50.0;
Grid.f start=140.0;

=� find area of parameter space�=
area=template area( &Grid);

=� and print it�=
printf("The area in parameter space is %f secondsˆ2.\n",area);
return 0;

g
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9.7 The match between two templates

When one performs a search for a gravitational wave signal in noisy instrumental data, one lays a grid
of templates out in parameter space. For instance, if one uses�0 and�1 [see Eqs. (9.1.1) and (9.1.2)] as
parameter space coordinates, then one’s templates can be described as a set of points(� i0; �

i
1) (with i ranging

from 1 to the total number of templates). One requires these points to be spaced such that no more than
somea priori fraction of SNR is lost due to the discreteness of the template family.

Suppose one has decided that a set templates can lose no more than3% SNR in a search. This means
that if some arbitrary signalb(t) is dropped onto the template grid, there must exist a template,a(t), such
that

max
t0

Z 1

�1
df
~b(f)~a�(f)
Sh(f)

e�2�ift0 � :97

"Z 1

�1
df
j~b(f)j2
Sh(f)

#1=2 "Z 1

�1
df
j~a(f)j2
Sh(f)

#1=2
(9.7.1)

(“max t0” indicates the integral on the left hand side is to be maximized over all possible values oft0.) The
integral on the left is the SNR obtained when the signalb(t) is measured using the Wiener optimal filter
corresponding to the templatea(t). The first integral on the right is the SNR obtained whenb(t) is measured
with the Wiener optimal filter corresponding to a templateb(t); the second when the signal and template are
botha(t). (The integrals on the right hand side, in other words, describe the situation in which the template
exactly matches the signal). For a detailed discussion of Wiener filtering, see Section 6.14.

To simplify this discussion, let us introduce the following inner product:

ha; bit0 �
Z 1

�1
df
~a�(f)~b(f)
Sh(f)

e�2�ift0 : (9.7.2)

[Note: this inner product is not to be confused with the inner product(a; b) defined in Eq. (6.14.9).] We will
use the convention that not including thet0 subscript on the angle bracket is equivalent tot0 = 0. Eq. (9.7.1)
can now be rewritten

max
t0

ha; bit0 � :97
q
ha; aihb; bi: (9.7.3)

This motivates the definition of thematchbetweena(t) andb(t):

� � max
t0

ha; bit0pha; aihb; bi : (9.7.4)

The match can be thought of as a distance measure betweena(t) andb(t) (it is in fact one of the starting
points for the metric that Owen defines in [5]). One uses the match function as a means of determining how
one must space templates on the parameter space. If one requires that no more than3% of possible SNR be
lost due to template discreteness, then one must require adjacent templates to have a match� = :97.

The next few functions described in this manual are tools that can be used for calculating the match
function and understanding how it varies over one’s parameter space.
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9.8 Function: compute match()

float compute match(float m1, float m2, float ch0tilde[], float ch90tilde[],
float inverse distance scale, float twice inv noise[], float flo, float s n0,
float s n90, int npoint, float srate, int err cd sprs, int order)
This function computes and returns the match function between a binary inspiral template that is stored in
the arraysch0tilde[] andch90tilde and the binary inspiral template that corresponds to the binary
system whose bodies have massesm1andm2.

The two phases of the “reference chirp”,ch0tilde[] andch90tilde[] , are assumed to have been
precomputed and run through the functionorthonormalize() . (The parameterss n0 ands n90 are
assumed to have been found when the reference chirp wasorthonormalize d.) This allows efficient
computation of the match of many different templates with the reference chirp.

The arguments to the function are:

m1: Input. Mass of body 1 in the template that is cross-correlated with the reference chirp, solar masses.

m2: Input. Mass of Body 2 in the template, solar masses.

ch0tilde: Input. The FFT of the0Æ-phase reference chirp.

ch90tilde: Input. The FFT of the90Æ-phase reference chirp.

inverse distance scale: Input. The inverse distance to the binary system, in1=Mpc. Because the
match is a normalized correlation, this parameter isn’t physically relevant: moving the binary twice
as far from the earth has no effect on the match. However, it may be computationally convenient to
scale the inner products that go into the match defintion by some amount to prevent numerical error.

twice inv noise: Input. Twice the inverse noise power spectrum, used for optimal filtering. For a
more detailed description, see the routinefind chirp() (which is used withincompute match() ).

flo: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; seemake filters() .

s n0: Input. The normalization ofch0tilde[] , found usingorthonormalize() .

s n90: Input. The normalization ofch90tilde[] , found usingorthonormalize() . Note that
only the ratios n0/s n90 is physically relevant, because the match is normalized; if boths n0 and
s n90 are multiplied by some constant, the match is unaffected.

npoint: Input. Defines the lengths of the various arrays:ch0tilde[0..npoint-1] ,
ch90tilde[0..npoint-1] , twice inverse noise[0..npoint/2] .

srate: Input. The sampling rate, in Hz. Used to convert between integer array time-domain subscripts
and frequency subscripts. For example this is the sample rate of the0Æ- and 90Æ-phase reference
chirps, before they are FFT’d.

err cd sprs: Input. The error suppression code to be passed to the chirp generator; seechirp filters() .

order: Input. Twice the post-Newtonian order;i.e., the power of(v=c) used in the expansion. See
chirp filters() .

Author: Scott Hughes, hughes@tapir.caltech.edu
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9.9 Function: match parab()

int match parab(float m1ref, float m2ref, float matchcont, int order, float
srate, float flo, float ftau, char *noisefile, float *semimajor, float *semimi-
nor, float *theta, float mcoef[])
This function attempts to find a parabolic fit to the match function near a reference template with masses
(m1ref,m2ref ). It works in (�0; �1) coordinates, and can can use any noise curve listed indetec-
tors.dat for its inner products when computing the match.

Let the coordinates of the reference chirp be (� r0 ; �
r
1 ), and definex � �0� � r0 , y � �1� � r1 . Then, the fit

to the match is of the form

� = 1 + ax2 + 2bxy + cy2

= 1 + (x y ) �
�
a b
b c

�
�
�
x
y

�
: (9.9.1)

Written in the form on the second line, it is easy to show that, if the match is in fact parabolic, it has surfaces
of constant value that are ellipses. The (unnormalized) eigenvectors of this matrix are given by

~v0 =

0@x
y

1A =

0B@ (a� c)=2b +
q
[(a� c)=2b]2 + 1

1

1CA

~v1 =

0@x
y

1A =

0B@ (a� c)=2b �
q
[(a� c)=2b]2 + 1

1

1CA ; (9.9.2)

and the eigenvalues are

�0 =
1

2
(a+ c) +

r
1

4
(a� c)2 + b2

�1 =
1

2
(a+ c)�

r
1

4
(a� c)2 + b2: (9.9.3)

(Note: because the match is maximal atx = y = 0 and falls off asx andy increase, the matrix is negative
definite. The eigenvalues are therefore negative, and soj�1j > j�0j.) From these values, it is simple to
construct the equimatch ellipse. If the value of the match on the contour is�cont, then the semimajor axis of
the ellipse has length

rmajor =

s
�cont � 1

�0
; (9.9.4)

and the semiminor axis has length

rminor =

s
�cont � 1

�1
: (9.9.5)

The counterclockwise angle between the semimajor axis and the�0 axis is easily found from~v0:

� = atan2(v0y; v0x) = arctan

�
1=

�
(a� c)=2b+

q
[(a� c)=2b]2 + 1

��
: (9.9.6)

(Here,atan2() is theC math library function; usingatan2() insures that the computer points� to the
correct quadrant of the�0; �1 plane.) If we now define normalized eigenvectors~e0 = ~v0=j~v0j, ~e1 = ~v1=j~v1j,
the ellipses are then easily constructed using the parametric curve�

x
y

�
= rmajor cos� ~e0 + rminor sin� ~e1; (9.9.7)
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with � varying from 0 to2�.
The arguments to the function are:

m1ref : Input. Mass of body 1 for the reference chirp (solar masses).

m2ref : Input. Mass of body 2 for the reference chirp (solar masses).

matchcont : Input. The value of the match contour.

order : Input. Twice the post-Newtonian order to be used in computing the templates;i.e., the power of
(v=c) used in the post-Newtonian expansion.

srate : Input. The sample rate, in Hz. Used to convert between integer array time-domain subscripts and
frequency subscripts. For example this is the sample rate of the0Æ- and90Æ-phase reference chirps,
before they are FFT’d.

flo : Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; seemake filters() .

ftau : Input. The frequency used to find�0 and�1; see Eqs. (9.1.1) and (9.1.2). Different authors use
different conventions for this frequency—for example, Sathyaprakash uses the seismic wall frequency,
whereas Owen uses the frequency at which the noise power is minimum.ftau is arbitrary, but should
be used consistently: pick a value and stick with it.

noisefile : Input. A character string that specifies the name of a data file containing information about
the noise power spectrumP (f) of a dectector. Seenoise power() for extended discussion.

semimajor : Output. The semimajor axis of the ellipse along which the match has the valuematch-
cont .

semiminor : Output. The semiminor axis of the ellipse.

theta : Output. The counterclockwise angle, in radians, betweensemimajor and the�0 axis.

mcoef : Output. The arraymcoef[0..2] contains the coefficients of the parabolic fit to the match:
��t = 1 + mcoef[0] x2 + mcoef[1] xy + mcoef[2] y2.

The function works by sampling many templates in (�0; �1) coordinates that are close to the template
with masses (m1ref,m2ref ). Periodically, it computes the best parabolic fit to the data it has gathered so
far and constructs the elliptical contour corresponding to that fit. It then takesNell steps around this ellipse
and compares the value of the match predicted by the fit with the actual match value at each point. It then
computes the following “�2-like” statistic:

" =
1

Nell

NellX
i=1

 
�iactual � �i�t

10�3

!2

: (9.9.8)

If " = 1, then each fit point differs from the match by10�3. A “good” fit will have " of order 1.
This function returns 0 if a good fit is not found (" is greater than 5 yet more than 250 templates have

been used to generate fit data), and 1 otherwise. If a good fit is not found, then the match is not parabolic
in the vicinity of the template (m1ref,m2ref ) down to� = matchcont. This is typically the case if the
masses are large (so that there are few cycles measured, and relativistic effects are very important), and if the
value ofmatchcont is too far from 1. For instance, with the LIGO 40-meter prototype,match parab()
cannot find a parabolic fit to the .97 match contour for a binary withm1 = 1:2M�, m2 = 1:6M�; but it
doesfind a parabolic fit for this binary at the .99 match contour.
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Author: Scott Hughes, hughes@tapir.caltech.edu
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9.10 Function: match cubic()

int match cubic(float m1ref, float m2ref, float matchcont, int order, float
srate, float flo, float ftau, char *noisefile, float *semimajor, float *semimi-
nor, float *theta, float mcoef[])
This function is almost identical tomatch parab() , except that it attempts to fit the match to a cubic
form:

m = 1 + ax2 + 2bxy + cy2 + dx3 + ey3 + fx2y + gxy2 (9.10.1)

The arguments to the function are:

m1ref : Input. Mass of body 1 for the reference chirp (solar masses).

m2ref : Input. Mass of body 2 for the reference chirp (solar masses).

matchcont : Input. The value of the match contour.

order : Input. Twice the post-Newtonian order to be used in computing the templates;i.e., the power of
(v=c) used in the post-Newtonian expansion.

srate : Input. The sample rate, in Hz. Used to determine the spacing of frequency bins for the templates.

flo : Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; seemake filters() .

ftau : Input. The frequency used to find�0 and�1; see Eqs. (9.1.1) and (9.1.2). Different authors use
different conventions for this frequency—for example, Sathyaprakash uses the seismic wall frequency,
whereas Owen uses the frequency at which the noise power is minimum.ftau is arbitrary, but should
be used consistently: pick a value and stick with it.

noisefile : Input. A character string that specifies the name of a data file containing information about
the noise power spectrumP (f) of a dectector. Seenoise power() for extended discussion.

semimajor : Output. The semimajor axis of the ellipse along which the match has the valuematch-
cont .

semiminor : Output. The semiminor axis of the ellipse.

theta : Output. The counterclockwise angle, in radians, betweensemimajor and the�0 axis.

mcoef : Output. The arraymcoef[0..6] contains the coefficients of the parabolic fit to the match:
��t = 1 + mcoef[0] x2 + mcoef[1] xy + mcoef[2] y2 + mcoef[3] x3 + mcoef[4] y3 +
mcoef[5] x2y + mcoef[6] xy2.

The function works in almost exactly the same manner asmatch parab() . In particular, it constructs
an ellipse using the parabolic piece of the cubic fit, and checks the goodness of the fit along that ellipse.
Because the ellipse is not made from the full functional form of the fit, the fit does not have constant
value along the ellipse. Thus,match cubic() does not really find contours with constant match value
matchcont . The ellipses it finds, however, generally have match values fairly close tomatchcont ; and,
more importantly, the match values along the ellipse are never less thanmatchcont .

Author: Scott Hughes, hughes@tapir.caltech.edu
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9.11 Example:match fit program

This program will try to find the fit to the match function about some template. It is called with four
arguments: the mass of body 1 (in solar masses), the mass of body 2 (in solar masses), the value of the
match for which it tries to fit, and (twice) the order of the post-Newtonian expansion used to compute the
templates. For example,match fit 1.2 1.8 .98 4 will try to find a fit to the .98 match contour near
the template for the1:2M� � 1:8M� using post-2-Newtonian templates.

The program first attempts to find a parabolic fit; if it is unable to do so, it then tries a cubic. If the cubic
fails, you are in a region of parameter space where the match is badly behaved. This is typically the case
if you ask for masses that are too large—for example, no fit can be found near a5M� � 5M� solar mass
binary with the LIGO 40-meter prototype noise curve. When the masses are large, the system radiates very
few gravitational-wave cycles in the instrument’s frequency band; and, those cycles typically correspond to
a strongly relativistic regime of inspiral. If you find yourself in this circumstance, either give up on the large
mass binaries, or try to find a fit at a match level closer to 1.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define DETECTOR NUM 15 =� Smooth fit to Caltech 40m prototype�=
#define FLO 120. =� Hz - low frequency cut off for filtering�=
#define FTAU 140. =� Hz - frequency used in definitions of

tau0, tau1.�=
=�#define DETECTORNUM 8 Caltech 40m prototype�=
=�#define DETECTORNUM 1 LIGO initial interferometer�=
=�#define DETECTORNUM 12 LIGO Advanced interferometer�=

int main(int argc,char ��argv)
f

float �pfit, �cfit,semimajor,semiminor,theta;
float m1,m2,matchcont;
float srate=50000;
float site parameters[9];
char noise file[128],whiten file[128],site name[128];
int order,tstp,tstc;

=� Check that the program is called with the correct number of
arguments; print out argument information if it’s not.�=

if(argc != 5) f
fprintf(stderr,"4 Arguments: 1. Mass of body 1 (solar masses)\n");
fprintf(stderr," 2. Mass of body 2 (solar masses)\n");
fprintf(stderr," 3. Match contour match value;\n");
fprintf(stderr," 4. Waveform order [power of (v/c)]\n");
fprintf(stderr,"\nExample: match_fit 1.2 1.6 .97 4\n");
exit(0);

g
=� Assign arguments to variables�=
m1=atof(argv[1]);
m2=atof(argv[2]);
matchcont=atof(argv[3]);
order=atoi(argv[4]);

=� Get the file names for the desired noise curve�=
detector site("detectors.dat",DETECTOR NUM,site parameters,

site name,noise file,whiten file);

printf("\nEvaluating templates for detector: %s using data from file: \"%s\"\n\n\n",
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site name,noise file);

=� Allocate memory for the coefficients used in the parabolic fits�=
pfit=(float �)malloc(sizeof(float) �3);
cfit=(float �)malloc(sizeof(float) �7);

=� Try to find a parabolic fit�=
tstp=match parab(m1,m2,matchcont,order,srate,FLO,FTAU,noise file,

&semimajor, &semiminor, &theta,pfit);
if(tstp) f

printf("Found a parabolic fit to the match around template with\n");
printf("m1=%f, m2=%f.\n\n",m1,m2);
printf("Semimajor axis of best fit ellipse: %e ms\n",

semimajor �1.e3);
printf("Semiminor axis of best fit ellipse: %e ms\n",

semiminor �1.e3);
printf("Angle between semimajor and tau0 axis: %f rad\n",theta);
printf("Fit: m = 1 + %e xˆ2 + %e xy + %e yˆ2\n",

pfit[0],pfit[1],pfit[2]);
printf("[where x=dtau0, y=dtau1]\n");

g else
printf("Unable to find parabolic fit. Attempting cubic fit.\n");

=� If the parabola failed, try to find a cubic fit�=
if(!tstp) f

tstc=match cubic(m1,m2,matchcont,order,srate,FLO,FTAU,noise file,
&semimajor, &semiminor, &theta,cfit);

if(tstc) f
printf("Found a cubic fit to the match around template with\n");
printf("m1=%f, m2=%f.\n\n",m1,m2);
printf("Using ellipse constructed from parabolic part of cubic.\n");
printf("Semimajor axis of best fit ellipse: %e ms\n",

semimajor �1.e3);
printf("Semiminor axis of best fit ellipse: %e ms\n",

semiminor �1.e3);
printf("Angle between semimajor and tau0 axis: %f rad\n",theta);
printf("Fit: m = 1 + %e xˆ2 + %e xy + %e yˆ2\n",

cfit[0],cfit[1],cfit[2]);
printf(" + %e xˆ3 + %e yˆ3 + %e xˆ2 y + %e xyˆ2\n",

cfit[3],cfit[4],cfit[5],cfit[6]);
printf("[where x=dtau0, y=dtau1]\n");

g else f
printf("Unable to find a cubic fit. Try looking for a match\n");
printf("contour at smaller match value; or, give up on this\n");
printf("mass regime.\n");

g
g

return 0;
g

Author: Scott Hughes, hughes@tapir.caltech.edu
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9.12 Structure: struct cubic grid

This structure is used to store precomputed coefficients of the cubic fit to the match function, generated
by match cubic() on an equally spaced grid in them1;m2 parameter space. The stucture stores the
coefficients as well as all the information required to generate, retrieve, and interpolate among them. The
fields of this structure are:
struct cubic grid f
int n; The number of points along the side of the grid.

float m mn; The minimum mass of an object in the parameter space covered by the grid (solar masses).

float m mx; The minimum mass of an object in the parameter space covered by the grid (solar masses).

float dm; The spacing between grid points (solar masses); equal to(mmx�mmn)=(n � 1).

float match; The match level (between 0 and 1) out to which the cubic fit was made.

float angle; The angle (radians) counterclockwise from the�0 axis to thex axis (see below).

int order; Twice the post-Newtonian order of the chirp templates used to compute the match function.

float srate; The sampling rate of the chirp templates used to compute the match function.

float flo; The initial frequency of the chirp templates used to compute the match function.

float ftau; The reference frequency used to define the�0; �1 coordinates.

int detector; The index of the detector site in the data filedetectors.dat , used to identify a
noise curve for computing the match function.

float ***coef; A pointer to the array of coefficients.

g;
The cubic grid.coef field points to an array of the formcoef[0..n-1][0..n-1][0..9] .

The first two indecies[i][j] identify a point in the mass parameter space:m1 = mmn+ i � dmand
m2 = mmn+ j � dm. The third index identifies a particular coefficient computed at that point. The
individual coefficients are defined as follows: The first 7 entries[0..6] are the actual coefficients of the
cubic fit to the match function�:

� = 1 + [0] x2 + [1] xy + [2] y2 + [3] x3 + [4] y3 + [5] x2y + [6] xy2 ; (9.12.1)

wherex; y are small displacements in directions at an anglecubic grid.angle counterclockwise from
the �0; �1 directions, respectively. If one considers only the quadratic part of this fit, the equation� =
cubic grid.match defines an ellipse in thex; y plane. Entries[7] and [8] are then the semimajor
and semiminor axes of this ellipse, respectively (in units of seconds), and entry[9] is the angle (in radians)
counterclockwise from thex axis to the semimajor axis. The entries[7..9] can be computed without
too much difficulty from the entries[0..2] and the value ofmatch , but it can be useful to have them
precomputed.
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9.13 Function: generate cubic

void generate_cubic(struct cubic_grid grid, char *detectors_file,
const char *outfile, const char *logfile);

This routine computes the coefficients of the cubic fit to the match function on a mesh in parameter space,
and writes the results to an ASCII textfile, suitable for reading by the routineread cubic() (sec-
tion 9.15).

The arguments are:

grid: Input/Output. This structure contains the parameters for the computation of the cubic fits. All
of the fields except forgrid.dm andgrid.coef must be set; those fields are the ones that are
computed.

detectors file: Input. The name of a data file containing detector site information, such as detec-
tors.dat. This is used to get a noise file for computing the match function.

outfile: Input. The name of the output file to which the coefficients and related information will be
written.

logfile: Input. The name of a log file which tracks the progress of this routine (since it can take several
hours to generate a reasonable grid).

The output file is an ASCII textfile containing the fields of the structuregrid . Each field except the
coef field is printed on a separate line of the output file. Thecoef data is written as0:5 � grid.n �
(grid.n +1) lines of 10 floating point numbers; each line represents the 10 coefficientscoef[i][j][0..9]
for a giveni,j . The lines are ordered by increasingj from 0 toi for eachi from 0 togrid.n -1. Integers
are printed exactly; floats are printed in 10-digit precision exponential notation.

One should also note that this routine can take quite a long time to run: on a 100 MHz pentium it
typically takes 10 to 15 minutes per point in the grid. This is the reason for creating the log file to track the
routine’s progress.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.14 Function: regenerate cubic

int regenerate_cubic(char *detectors_file, const char *infile,
const char *outfile, const char *logfile);

It may happen that the routinegenerate cubic() terminates before completing the entire coefficient
grid. Since each grid point takes so long to compute, it would be foolish to discard those already gener-
ated. This routine, therefore, reads in a partially-complete data file, and then continues the computation
wheregenerate cubic() left off. The results are written to a new data file (leaving the original file
incomplete). It returns 0 upon successful completion, or 1 if the data file was absent or corrupt.regener-
ate cubic() also creates its own log file to track its progress.

The arguments are:

detectors file: Input. The name of a data file containing detector site information, such asdetec-
tors.dat . This is used to get a noise file for computing the match function.

infile: Input. The name of the incomplete data file of coefficients.

outfile: Input. The name of the data file where this routine stores its results.

logfile: Input. The name of a log file which tracks the progress of this routine.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.15 Function: read cubic

int read_cubic(struct cubic_grid *grid, char *infile);

This routine reads a textfile generated bygenerate cubic() , stores the data in a variablegrid of type
struct cubic grid , and passes this structure back.read cubic() itself returns 0 after successful
completion, or 1 if the data file was absent or corrupt (in which casegrid is left unchanged).

Note that memory for the coefficient array grid.coef is allocated in this routine; to free this memory, call
free cubic(grid) . Allocating and de-allocating this array requires some care: sincegrid.coef[i][j][k]
is necessarily symmetric in the first two indecies, the pointersgrid.coef[i][j] andgrid.coef[j][i]
have been explicitly set to point to the same memory location, in order to save memory.

The arguments are:

grid: Output. The coefficient array and related data read from the data file.

infile: Input. The name of the data file.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.16 Function: get cubic

int get_cubic(float m1, float m2, struct cubic_grid grid, float *coef);

This routine computes the coefficients of a cubic fit to the match function at a specified point in parameter
space, by linear interpolation of precomputed coefficients on a grid in parameter space. It returns 0 if
successfully executed, or 1 if the point (m1,m2) lies outside of the grid. In the latter case,get cubic()
will compute extrapolated coefficients, but these are unreliable.

The arguments are:

m1: Input. One of the binary mass coordinates of the requested point in parameter space.

m2: Input. The other binary mass coordinates of the requested point in parameter space.

grid: Input. The data structure containing the precomputed coefficients and the information required to
retrieve them.

coef: Output. The arraycoef[0..9] is filled with the interpolated coefficients.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.17 Function: free cubic

void free_cubic(struct cubic_grid grid);

Frees the memory allocated to the arraygrid.coef by read cubic() .
The argument is:

grid: Input. Thecubic grid structure whose coefficient array is to be freed.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.18 Function: transform cubic

void transform_cubic(struct cubic_grid *grid, float angle, float match);

This routine applies a rotation to the coefficients stored in*grid , and rescales the equimatch ellipses to a
new match level.

The arguments are:

grid: Input/Output. The structure containing the coefficients to be transformed.

angle: Input. The new value ofgrid.angle (the elements(*grid).coef[i][j][0..6,9]
will be transformed to fit this new angle).

match: Input. The new value ofgrid.match (the elements(*grid).coef[i][j][7,8] will be
rescaled according to this value).

Author: Teviet Creighton, teviet@tapir.caltech.edu

Comments: The result of this transformation is not quite the same as if the grid were originally generated
with the new value of the match. During initial generation of the grid, the match field also specifies
the domain over which the cubic fit is made, as well as setting the scale for the equimatch ellipse axes.
This routine only rescales the ellipses; it does not regenerate a cubic fit over a new match range.
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9.19 Example:make grid program

This example program uses the functiongenerate cubic() to create a grid of match function coeffi-
cients over the mass range of 0.8 to 3.2 solar masses, down to a match level of 0.98, using the smooth fit to
the LIGO noise power spectrum in computing the match function. The resulting grid structure is stored in
the data filecubic coef 40meter m=0.8-3.2.ascii . Note that the program can take quite a long
time to run: approximately 20 hours on a 100 MHz Pentium computer. The program’s progress is tracked
in the log filecubic coef 40meter m=0.8-3.2.log .

The program makes frequent calls to the routinematch cubic() , which generates a lot of messages
in stderr , which are generally unimportant unless things go wrong. You’ll probably want to redirect
stderr to some junk file. The important progress record is stored incubic coef 40meter m=0.8-
3.2.log , which, when complete, looks like this:

Using Caltech-40 noise curve from the file noise_40smooth.dat.
Generating match coefficients at 91 points:
.
..
...
....
.....
......
.......
........
.........
..........
...........
............
.............

The source code formake grid.c is listed below:

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc, char ��argv)
f

struct cubic grid grid;

=� Set grid parameters.�=
grid.n=13;
grid.m mn=0.8;
grid.m mx=3.2;
grid.match=0.98;
grid.angle=0.0;
grid.order=4;
grid.srate=50000.0;
grid.flo=120.0;
grid.ftau=140.0;
grid.detector=15; =� Smooth fit to Caltech 40m prototype.�=
=� grid.detector=8; Caltech 40m prototype.�=
=� grid.detector=1; LIGO initial interferometer.�=
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=� grid.detector=12; LIGO advanced interferometer.�=

=� Generate grid of cubic-fit coefficients�=
generate cubic(grid,"detectors.dat",

"cubic_coef_40meter_m=0.8-3.2.ascii",
"cubic_coef_40meter_m=0.8-3.2.log");

return 0;
g

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.20 Example:read grid program

This example program uses the functionread cubic() to read the data filecubic coef 40meter m=0.8-
3.2.ascii generated bymake grid (section 9.19), and return the coefficients of the cubic fit to the
match function for any pointm1;m2 in mass space. Here are some sample runs ofread cubic :

% read_grid
Usage: read_grid M1 M2
% read_grid 1.3 1.5
Match coefficients: -5.075e+03 2.977e+04 -4.602e+04

-2.703e+04 6.656e+06 7.090e+05 -4.044e+06
Axis lengths: 9.245e-03 6.272e-04
Axis angle: 3.144e-01
% read_grid 1.3 3.5
(1.300,3.500) lies outside of grid. Extrapolating...
Match coefficients: -4.159e+03 2.058e+04 -2.716e+04

2.866e+04 2.770e+06 1.424e+05 -1.620e+06
Axis lengths: 9.631e-03 8.116e-04
Axis angle: 3.688e-01
%

Masses are entered in solar masses. However, the coefficients are the cubic fit coefficients in�0; �1 space,
so the first three coefficients have units of s�2, the next four coefficients of s�3, and the axis lengths of s.
The angle (counterclockwise from the�0 axis to the principle axis of the equimatch ellipse) is in radians.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc, char ��argv)
f

struct cubic grid grid;

=� Set grid parameters.�=
grid.n=13;
grid.m mn=0.8;
grid.m mx=3.2;
grid.match=0.98;
grid.angle=0.0;
grid.order=4;
grid.srate=50000.0;
grid.flo=120.0;
grid.ftau=140.0;
grid.detector=15; =� Smooth fit to Caltech 40m prototype.�=
=� grid.detector=8; Caltech 40m prototype.�=
=� grid.detector=1; LIGO initial interferometer.�=
=� grid.detector=12; LIGO advanced interferometer.�=

=� Generate grid of cubic-fit coefficients�=
generate cubic(grid,"detectors.dat",

"cubic_coef_40meter_m=0.8-3.2.ascii",
"cubic_coef_40meter_m=0.8-3.2.log");

return 0;
g
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Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.21 Function: template grid()

void template grid(struct Scope *Grid)
This function evolved fromgrid4.f , a FORTRAN routine written by Sathyaprakash. This function lays
down a grid of templates that cover a particular mass range (the region inside the distorted triangle shown
in Figure 59).

The arguments are:

Grid : Input/Output. This function uses as input all of the fields ofGrid except forGrid.n tmplt
and Grid.templates . On return fromtemplate grid these latter two fields are set. The
function usesmalloc() to allocate storage space and creates in this space an array containing
Grid.n tmplt objects of typeTemplate . If you wish to free the memory, callfree(Grid.templates) .

It is easy to cover the parameter space shown in Figure 59 with ellipses. However each ellipse represents
a filter, and filtering takes computer time and memory, so the real problem is to cover the parameter space
completely, using thesmallest possible numberof templates. This is a non-trivialpacking problem; while
our solution is certainly not optimal, it is quite close.

The algorithm used to place the templates works in coordinates(x0; x1) which are rotated versions of
(�0; �1), aligned along the minor and major (or major and minor) axes of the template ellipses. The input
angleGrid.theta ,in the range(��; �), is the counterclockwise angle through which the(x0; x1) axes
need to be rotated to bring them into alignment with the principal axis of the template ellipses.

Although each template is an ellipse, the problem of packing templates onto the parameter space can be
more easily described in terms of a more familiar packing problem: packing pennies on the plane. One can
always transform an ellipse into a circle by merely scaling one coordinate uniformly while leaving the other
coordinate unchanged. So we introduce coordinatesx1 along the major diameter andxo along the minor
diameter of the ellipse, and then “shrinking” thex1 coordinate by the ratio of major to minor diameters. In
this way the ellipses are transformed into circles.

-2 -1 1 2

-2

-1

1

2

Figure 60: Covering a plane with a square lattice of pennies (or templates) leaves 21% of the area exposed

First, a template is laid down at the point where the equal mass line intersects the maximum mass line.
Then additional templates are placed along the equal mass line, at increasing values ofx0. These templates
are staggered up and down in thex1 direction. After laying down this set of templates, the remaining
part of parameter space is covered with additional templates, in columns starting at each of the previously
determined template locations. These columns have the same value ofx0 as the previously determined
templates but increasing values ofx1. The columns are continued until the “leading edge” of the final
template lies outside the parameter space.

We can describe the packing (and the “efficiency”) of the packing in terms of the penny-packing prob-
lem. Suppose we start by setting pennies of radius1=2 on all points in the plane with integer coordinates,
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as shown in Figure 60. It is easy to show that the fraction of the plane (i.e., parameter space!) which is not
covered by any pennies is� = 1� �=4 = 0:214 � � � or about 21%.
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Figure 61: Staggering the pennies (or templates) decreases the uncovered fraction of the plane to 9.3%

Now suppose that we “stagger” the pennies as shown in Figure 61. In this case, the fraction of area not
covered is� = 1 � �

2
p
3
= 0:093 � � � or about 9.3%. If we wish to completely cover the missing bits of

the plane, then we can do so by increasing the radius of each penny by
p
5=4 (or, equivalently, by moving

the points at which the pennies lie closer together by that same factor). The resulting diagram is shown in
Figure 62. By increasing the number-density of pennies on the plane by 25% we have successfully covered
up the remaining 9.3% of the area.
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Figure 62: Decreasing the spacings of the pennies (or templates) by a factor of(5=4)1=2 = 1:118 � � � then
covers the entire plane.

Now it is not possible to implement this algorithm exactly, because we are not attempting to cover the
entire plane, but rather only a finite region of it. You might think that we could just start laying down
templates in the same was as for Figure 62 and stick in a few extra ones for any parts of the parameter space
which were not covered, but unfortunately this would then lead us to place templates centered at points in
(�0; �1) space that do not correspond to� � 1=4, and for which the very meaning of a “chirp” is ill-defined.

The code intemplate grid() thus uses a heuristic method to place templates, trying whenever
possible to stagger them in the same way as Figure 62 but then shifting the center locations when necessary
to ensure that the template corresponds to physical values of the mass parametersm1 andm2. This is often
referred to as “hexagonal packing”. In practice, to see if this placement has been successful or not, the
functionplot template() can be used to visually examine the template map.

Table 8 gives information about the appropriate template sizes, spacings and orientations as found in
the recent literature, and using thematch fit example program. The angle� is the angle to the axis of
the ellipse whose radius isr1, measured counterclockwise from the�0 axis. The other radius (semi-axis)
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Author Detector f0/Hz �/rad radiusr1 (msec) radiusr2 (msec)
Sathyaprakash Caltech 40m (Nov 94) 140 0.307 8.0 0.6
Owen Initial LIGO 200 0.5066 2.109 0.162
Owen Advanced LIGO 70 0.4524 3.970 0.352

Table 8: Orientation and dimensions of 0.97 ambiguity templates.

of the ellipse has lengthr2. Equation (3.16-18) of reference [5] do not appear to agree with Table 8, but
that is because theri = dxi of [5] are defined by(dxi)Owen = dli=

p
Ei. Thedli are the edge lengths of

a hypercube in dimensionN , chosen so that if templates are centered on its vertices, then the templates
touch in the center of the cube, so that(dxi)Owen = dli=

p
Ei. In ourN = 2 dimensional case, this gives

ri = dxi = (dxi)Owen=
p
2. Note also that in this table, Owen and Sathyaprakash use different definitions

of f0, so that their results may not be directly compared. In Owen’s case,f0 refers to the frequency of
maximum sensitivity of the detector, whereas in Sathyaprakash’s case it refers to the frequency at which
the chirp first enters the bandpass of the detector. In the case of the November 1994 data set, we quote two
different sizes an orientations for the ellipses, depending upon the choice off0.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine evolved fromgrid4.f , which was written by Sathyaprakash. The method used
to stagger templates is heuristic, and could perhaps be improved. Very small regions of the parameter
space along the equal-mass line (� = 1=4) may not be covered by any templates.

GRASP RELEASE 1.9.8 Page 309 May 19, 2000



Section
9.22

GRASP Routines: Template Bank Generation & Searching
Function: plot template()

Page
310

9.22 Function: plot template()

void plot template(char *filename, struct Scope Grid, int npages, int num-
ber)
This function generates a PostScript (tm) file that draws a set of templates on top of the region of parameter
space which they cover.

The arguments are:

filename : Input. Pointer to a character string. This is used as the name of the output file, into which
postscript output is written. We suggest that you use “.ps ” as the final three characters of the file-
name. These files are best viewed using GhostView.

Grid : Input. The mass range specified byGrid is used to draw an outline of the region in(�0; �1)
parameter space covered by the mass range, and an ellipse for each template included inGrid is then
drawn on top of this outline.

npages : Input. If there are more than a few templates (and there can be thousands, or more) it is impossi-
ble to view this graphical output unless it is spread across many pages.npages specifies the number
of pages to spread the output across. We suggest at least one page per hundred templates.

number : Input. Each template specified inGrid is numbered by the fieldGrid.n tmplt . If number
is set to 1, then when each ellipse is drawn in parameter space, the number of the template is placed
inside the ellipse so that the particular template associated with each ellipse may be easily identified.
If number is set to 0, then the templates are not identified in this way; each template is simply drawn
as an empty ellipse.
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Figure 63: Part of some sample output fromplot template() .

Note that the output postscript file is designed to be edited if needed to enable clear viewing of details. Each
file is broken into pages. At the beginning of each page are commands that set the magnification scale of
each page, and determine if the page will be clipped at the boundaries of the paper or not. You can edit these
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lines in the postscript file to enable you to “zoom in” on part of the parameter space, if desired. By turning
off the clipping, you can easily move off the boundaries of a given page, if desired. Some sample output
from plot template() is shown in Figure 63. (In fact, this is part of the output file produced by the
example program, showing a small number of the total of 1001 templates required).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Another option should be added, to print out at the center of each template, the mass parameters
m1 andm2 associated with the template.
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9.23 Example:template program

This example lays down an optimal grid of templates covering parameter space. It also outputs a postscript
file (best viewed with GhostView) which shows the elliptical region of parameter space covered by each
template.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
struct Scope Grid;

=� Set parameters for the inspiral search in CIT 40 meter�=
Grid.m mn=0.9;
Grid.m mx=3.0;
Grid.theta=0.307;
Grid.dp=2 �0.008;
Grid.dq=2 �0.0006;
Grid.f start=140.0;

=� construct template set covering parameter space�=
template grid( &Grid);

=� create a postscript file showing locations of templates�=
plot template("templates_40meter.ps",Grid,15,1);
return 0;

g

Part of a typical picture contained in the output filetemp list.ps is shown in Figure 63 (though for
different parameters than those shown above).
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9.24 Example:multifilter program

This example implements optimal filtering by a bank of properly-spaced templates. One could do this
with trivial modifications of the exampleoptimal program given earlier. Here we have shown something
slightly more ambitious. Themultifilter program is an MPI-based parallel-processing code, designed
to run on either a network of workstations or on a dedicated parallel machine. It is intended to illustrate a
particularly simple division of labor among computing nodes. Each segment of data (of lengthNPOINT)
is broadcast to the next available node. That node is responsible for filtering the data through a bank of
templates, chosen to cover the mass range fromMMINto MMAX. The output of each one of these filters is a
set of 11 signals, which measure the following quantities:

1. The largest signal-to-noise ratio (SNR) at the output of the filter, for the given segment of data,

2. The distance for an optimally-oriented source, in Mpc, at which the SNR would be unity.

3. The amplitude� of the zero-degree phase chirp matching the observed signal.

4. The amplitude� of the ninety-degree phase chirp matching the observed signal.

5. The offset of the best-fit chirp into the given segment of data

6. The offset of the impulse into the given segment of data, which would produce the observed output.

7. The time of that impulse, measured in seconds from the start of the data segment,

8. The time (in seconds, measured from the start of the data segment) at which an inspiral, best fitting
the observed filter output, would have passed through the start frequencyFLO.

9. The time (in seconds, measured from the start of the data segment) at which an inspiral, best fitting
the observed filter output, would have passed through coalescence.

10. The observed average value of the output SNR (should be approximately unity).

11. The probability, using the splitup technique described earlier, that the observed filter output is consis-
tent with a chirp plus stationary detector noise.

For completeness, we give this code in its entirety here. We also show some typical graphs produced by
the MPE utilitynupshot which illustrates the pattern of communication and computation for an analysis
run. For these graphs, the analysis run lasted only about four minutes, and analyzed about three minutes of
IFO data. We have performed an identical, but longer run, which analyzed about five hours of IFO ouput
in just over three hours, running on a network of eight SUN workstations. The data is analyzed in 6.5
second segments, each of which is processed through a set of 66 filter templates completely covering the
mass range from 1.2 to 1.6 solar masses. For the run that we have profiled here,STORETEMPLATESis
set to 1. This means that each slave allocates memory internally for storing the Fourier-transformed chirp
signals; the slaves only compute these once. However this does place demands on the internal storage
space required - in the run illustrated here each individual process allocated about 34 Mbytes of internal
memory. Another version of the code has also been tested; in this version the slave nodes compute the
filters and Fourier transform them each time they are needed, for each new segment of data. This code
hasSTORETEMPLATESset to 0. This is less efficient computationally, but requires only a small amount
of internal storage. For a given hardware configuration, the optimal balance between these extremes, and
between the amount of redundant broadcasting of data, depends upon the relative costs of communication
and computation, and the amount of internal storage space available.

Based on these figures, it is possible to provide a rough table of computation times. These are given in
tabular form in Table 9.
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Templates->Slaves Data->Slaves Master Receive

Data->Master Slave Receive Slaves<-templates

compute template real fft correlate orthonormalize

likelyhood test
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Figure 64: Output of thenupshot profiling tool, showing the behavior of themultifilter program
running on a workstation network of 8 machines (the fastest of these are Sparc-20 class processors). This
shows the first 8 seconds of operation (time on the horizontal axis). The gray segments show the slave pro-
cesses receiving the template list. During the orange segments, the slave processes are waiting for data; the
blue segments show the master transmitting data to each slave. During the light gray segments, the slaves are
computing the templates, during the green segments they are computing the FFT’s of those templates, and
during the purple segments they are correlating the data against the templates. During the brown segment,
the master is waiting to receive data back from the slaves.

Task Color Approximate time Processing done
data! slaves dark blue 350 msec transfer 384 kbytes
data! master yellow 1 msec transfer 3 kbytes
correlate purple 500 msec 2 ffts of 64k floats, and search
splitup (likelihood) light blue 330 msec several runs through 64k floats
real FFT (one phase) green 150 msec 1 fft of 64k floats
compute template gray 350 msec compute 2 arrays of� 18k floats
orthonormalize templates wheat 25 msec several runs through 64k floats

Table 9: Approximate computation times for different elements of the optimal-filtering process.
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Figure 65: This is a continutation of the previous figure. Slave number 1 has completed its computation
of the templates, and during the orange segment, waits to make a connection with the master. This is
followed by a (very small) yellow segment, during which the slave transmits data back to the master, and a
blue segment during which the master transmits new data to slave number 1. Immediately after this, slave
number 1 begins a new (purple) sequence of correlation calculations on the newly received block of data.
Notice that because slave 1 has already computed the templates, the light gray and green operations are no
longer needed.
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Figure 66: This is a continutation of the previous figure, and represents the “long-term” or “steady-state”
behavior of the multiprocessing system. In this state, the different processors are spending all of their time
doing correlation measurements of the data, as indicated by the purple segments, and the master is waiting
for the results of the analysis (brown segments).
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Figure 67: This is a continuation of the previous figure, and shows the termination of some of the slave
processes (all the data has been analyzed, and there is no new data remaining). The blue segments (data
being sent to slaves) are actually termination messages being sent to the different processes 2,3,4 and 6.
Processes 5 and 7 are still computing. In the case of process 7, the data being analyzed contains a non-
stationary “spurion” which triggered most of the filters beyond a pre-set threshold level. As a result, process
7 is performing some additional computations (the split-up likelihood test, shown as light blue segments) on
the data.
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Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: There are many other ways in which this optimal filtering code could be parallelized. This pro-
gram illustrates one of the possibilities. Other possibilities include: maintaining different templates on
different processes, and broadcasting identical IFO data to these different processes, or parallelizing
across both data and templates.
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� multifilter.c
This code is intended for machines where computation is cheap,
and communication is expensive. The processsing is organized as
master=slaves (or manager=workers!). The master process sends out data
chunks to individual slave processes. These slave processes analyze
the data against all templates, then return the largest signal values
obtained for each template, along with other parameters like the time of
coalescense and the phase of coalescence. They then get a new data chunk.
If STORE TEMPLATES is set to 1, then the filters are computed once,
then stored internally by each slave. This is the correct choice if each
slave has lots of fast memory available to it. If STORETEMPLATES is set
to 0, then the slaves recompute the templates each time they use them.
This is the correct choice if each slave has only small amounts of fast
memory available.
�=

#include "mpi.h"
#include "mpe.h"
#include "grasp.h"

#define NPOINT 65536 =� The size of our segments of data (26.2 secs)�=
#define FLO 120.0 =� The low frequency cutoff for filtering�=
#define HSCALE 1.e21 =� A convenient scaling factor; results independent of it�=
#define MIN INTO LOCK 3.0 =� Number of minutes to skip into each locked section�=
#define SAFETY 200 =� Padding safety factor to avoid wraparound errors�=
#define CHIRPLEN 18000 =� length of longest allowed chirp�=
#define MMIN 1.2 =� min mass object, solar masses�=
#define MMAX 1.6 =� max mass object, solar masses�=
#define DATA SEGMENTS 25 =� largest number of data segments to process�=
#define NSIGNALS 11 =� number of signal values computed for each template�=
#define STORE TEMPLATES 0 =� 0: slaves recompute templates. 1: slaves save templates.�=

void shiftdata();
void realft(float �,unsigned long,int);
int get calibrated data();

struct Saved f
float tstart;
int gauss;

g;

short �datas;
int npoint,remain=0,needed,diff,gauss test,num sent=0,fill buffer();
float �twice inv noise, �htilde, �data, �mean pow spec,tstart;
float srate=9868.4208984375,decaytime,datastart, �response;
double norm,decay;
FILE �fpifo, �fpss, �fplock;

int main(int argc,char �argv[ ])
f

int �lchirppoints,num stored;
float �ltc, �lch0tilde, �lch90tilde;
int myid,numprocs,i,j,maxi,impulseoff, �chirppoints,indices[8],num templates;
int slave,more data,temp no,num recv=0,namelen,completed=0,longest template=0;
float �tc,m1,m2, �template list, �sig buffer,distance,snr max,var,timeoff,timestart;
float n0,n90,inverse distance scale, �output90, �output0, �ch0tilde, �ch90tilde;
float lin0,lin90,varsplit,stats[8],gammq(float,float);
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double prob;
FILE �fpout;
MPI Status status;
char processor name[MPI MAXPROCESSORNAME],logfile name[64],name[64];
struct Scope Grid;
struct Saved �saveme;

=� start MPI, find number of processes, find process number�=
MPI Init( &argc, &argv);
MPI Commsize(MPI COMMWORLD,&numprocs);
MPI Commrank(MPI COMMWORLD,&myid);
MPI Get processor name(processor name, &namelen);
MPEInit log();

=� number of points to sample and fft (power of 2)�=
needed=npoint=NPOINT;

=� Gravity wave signal (frequency domain)& twice inverse noise power�=
htilde=(float �)malloc(sizeof(float) �npoint+sizeof(float) �(npoint =2+1));
twice inv noise=htilde+npoint;

=� Structure for saving information about data sent to slaves�=
saveme=(struct Saved �)malloc(sizeof(struct Saved) �numprocs);

=� MASTER�=
if (myid==0) f

MPEDescribe state(1,2,"Templates->Slaves","red:vlines3");
MPEDescribe state(3,4,"Data->Slaves","blue:gray3");
MPEDescribe state(5,6,"Master Receive","brown:light_gray");
MPEDescribe state(7,8,"Data->Master","yellow:dark_gray");
MPEDescribe state(9,10,"Slave Receive","orange:white");
MPEDescribe state(13,14,"Slaves<-templates","gray:black");
MPEDescribe state(15,16,"compute template","lavender:black");
MPEDescribe state(17,18,"real fft","lawn green:black");
MPEDescribe state(19,20,"correlate","purple:black");
MPEDescribe state(21,22,"orthonormalize","wheat:black");
MPEDescribe state(23,24,"likelyhood test","light sky blue:black");

=� Set parameters for the inspiral search�=
Grid.m mn=MMIN;
Grid.m mx=MMAX;
Grid.theta=0.964;
Grid.dp=2 �0.00213;
Grid.dq=2 �0.0320;
Grid.f start=140.0;

=� construct template set covering parameter space, m1 m2 storage�=
template grid( &Grid);
num templates=Grid.n tmplt;
printf("The number of templates being used is %d\n",num templates);
template list=(float �)malloc(sizeof(float) �2�num templates);

=� put mass values into an array�=
for (i=0;i <Grid.n tmplt;i++) f

template list[2 �i]=Grid.templates[i].m1;
template list[2 �i+1]=Grid.templates[i].m2;
printf("Mass values are m1 = %f m2 = %f\n",Grid.templates[i].m1,Grid.templates[i].m2);

g
fflush(stdout);
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=� storage for returned signals (NSIGNALS per template)�=
sig buffer=(float �)malloc(sizeof(float) �num templates �NSIGNALS);

=� broadcast templates�=
MPELog event(1,myid,"send");
MPI Bcast( &num templates,1,MPI INT,0,MPI COMMWORLD);
MPI Bcast(template list,2 �num templates,MPI FLOAT,0,MPI COMMWORLD);
MPELog event(2,myid,"sent");

=� number of points to sample and fft (power of 2)�=
needed=npoint=NPOINT;

=� stores ADC data as short integers�=
datas=(short �)malloc(sizeof(short) �npoint);

=� stores ADC data in time& freq domain, as floats�=
data=(float �)malloc(sizeof(float) �npoint);

=� The response function (transfer function) of the interferometer�=
response=(float �)malloc(sizeof(float) �(npoint+2));

=� The autoregressive-mean averaged noise power spectrum�=
mean pow spec=(float �)malloc(sizeof(float) �(npoint =2+1));

=� Set up noise power spectrum and decay time�=
norm=0.0;
clear(mean pow spec,npoint =2+1,1);
decaytime=10.0 �npoint =srate;
decay=exp( �1.0 �npoint =(srate �decaytime));

=� open the IFO output file, lock file, and swept-sine file�=
fpifo=grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");
fpss=grasp open("GRASP_DATAPATH","swept-sine.ascii","r");

=� get the response function, and put in scaling factor�=
normalize gw(fpss,npoint,srate,response);
for (i=0;i <npoint+2;i++)

response[i] �=HSCALE=ARMLENGTH1994;

=� while not finished, loop over slaves�=
for (slave=1;slave <numprocs;slave++) f

if (get calibrated data()) f
=� if new data exists, then send it (nonblocking?)�=
fprintf(stderr,"Master broadcasting data segment %d\n",num sent+1);
MPELog event(3,myid,"send");
MPI Send(htilde,NPOINT+NPOINT =2+1,MPI FLOAT,slave,++num sent,MPI COMMWORLD);
MPELog event(4,myid,"sent");
saveme[slave �1].gauss=gauss test;
saveme[slave �1].tstart=datastart;
shiftdata();

g
else f

=� tell remaining processes to exit�=
MPELog event(3,myid,"send");
MPI Send(htilde,NPOINT+NPOINT =2+1,MPI FLOAT,slave,0,MPI COMMWORLD);
MPELog event(4,myid,"sent");

g
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g

=� now loop, gathering answers, sending out more data�=
while (num sent!=num recv) f

more data=get calibrated data();

=� listen for answer�=
MPELog event(5,myid,"receiving. . .");
MPI Recv(sig buffer,NSIGNALS �num templates,MPI FLOAT,MPI ANY SOURCE,

MPI ANY TAG,MPI COMMWORLD,&status);
MPELog event(6,myid,"received");
num recv++;

=� store the answers. . .�=
sprintf(name,"signals.%05d",status.MPI TAG�1);
fpout=fopen(name,"w");
if (fpout==NULL) f

fprintf(stderr,"Multifilter: can't open output file %s\n",name);
MPI Finalize();
return 1;

g
fprintf(fpout,"# Gaussian %d\n",saveme[status.MPI SOURCE�1].gauss);
fprintf(fpout,"# tstart %f\n",saveme[status.MPI SOURCE�1].tstart);
fprintf(fpout,"# snr distance phase0 phase90 maxi\
impulseoff impulsetime startinspiral coalesce variance prob\n");
for (i=0;i <num templates;i++) f

for (j=0;j <NSIGNALS�1;j++)
fprintf(fpout,"%g\t",sig buffer[i �NSIGNALS+j]);

fprintf(fpout,"%f\n",sig buffer[i �NSIGNALS+j]);

=� if data stream has no obvious outliers, and chirp prob is high, print�=
if (sig buffer[i �NSIGNALS+10]>0.03 && saveme[status.MPI SOURCE�1].gauss) f

printf("POSSIBLE CHIRP: signal file %d, template %d, SNR = %f, prob = %f\n",
status.MPI TAG�1,i,sig buffer[i �NSIGNALS],sig buffer[i �NSIGNALS+10]);

fflush(stdout);
g

g
fclose(fpout);

=� if there is more data, send it off�=
if (more data) f

fprintf(stderr,"Master broadcasting data segment %d\n",num sent+1);
MPELog event(3,myid,"send");
MPI Send(htilde,NPOINT+NPOINT =2+1,MPI FLOAT,status.MPI SOURCE,++numsent,MPI COMMWORLD);
MPELog event(4,myid,"sent");
saveme[status.MPI SOURCE�1].gauss=gauss test;
saveme[status.MPI SOURCE�1].tstart=datastart;
shiftdata();

g
=� or else tell the process that it can pack up and go home�=
else f

printf("Shutting down slave process %d\n",status.MPI SOURCE);
MPELog event(3,myid,"send");
MPI Send(htilde,NPOINT+NPOINT =2+1,MPI FLOAT,status.MPI SOURCE,0,MPI COMMWORLD);
MPELog event(4,myid,"sent");

g
g
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=� when all the answers are in, print results�=
printf("This is the master - all answers are in!\n");

g

=� SLAVES�=
else f

printf("Slave %d (%s) just got started. . .\n",myid,processor name);
fflush(stdout);

=� allocate storage space�=
=� Ouput of matched filters for phase0 and phase pi=2, in time domain, and temp storage�=
output0=(float �)malloc(sizeof(float) �npoint);
output90=(float �)malloc(sizeof(float) �npoint);

=� get the list of templates to use�=
MPELog event(13,myid,"receiving. . .");
MPI Bcast( &num templates,1,MPI INT,0,MPI COMMWORLD);
sig buffer=(float �)malloc(sizeof(float) �num templates �NSIGNALS);
template list=(float �)malloc(sizeof(float) �2�num templates);
MPI Bcast(template list,2 �num templates,MPI FLOAT,0,MPI COMMWORLD);
MPELog event(14,myid,"received");
printf("Slave %d (%s) just got template list. . .\n",myid,processor name);
fflush(stdout);

=� Orthogonalized phase 0 and phase pi=2 chirps, in frequency domain�=
num stored=STORE TEMPLATES�(num templates �1)+1;
lch0tilde=(float �)malloc(sizeof(float) �npoint �num stored);
lch90tilde=(float �)malloc(sizeof(float) �npoint �num stored);
lchirppoints=(int �)malloc(sizeof(float) �num stored);
ltc=(float �)malloc(sizeof(float) �num stored);

if (lch0tilde==NULL j j lch90tilde==NULL j j lchirppoints==NULL j j ltc==NULL) f
fprintf(stderr,"Node %d on machine %s: could not malloc() memory!\n",

myid,processor name);
MPI Abort(MPI COMMWORLD,1);

g

=� now enter an infinite loop, waiting for new inputs�=
while (1) f

=� listen for data, parameters from master�=
MPELog event(9,myid,"receiving. . .");
MPI Recv(htilde,NPOINT+NPOINT =2+1,MPI FLOAT,0,MPI ANY TAG,MPI COMMWORLD,&status);
MPELog event(10,myid,"received");
printf("Slave %d (%s) got htilde (and noise spectrum) for segment %d \n",

myid,processor name,status.MPI TAG);
fflush(stdout);

=� if this is a termination message, we are done!�=
if (status.MPI TAG==0) break;

=� compute signals�=
for (temp no=0;temp no<num templates;temp no++) f

ch0tilde=lch0tilde+npoint �temp no�STORETEMPLATES;
ch90tilde=lch90tilde+npoint �temp no�STORETEMPLATES;
chirppoints=lchirppoints+temp no�STORETEMPLATES;
tc=ltc+temp no�STORETEMPLATES;

=� Compute the template, and store it internally, if desired�=
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if (completed!=num templates) f
=� manufacture two chirps (dimensionless strain at 1 Mpc distance)�=
m1=template list[2 �temp no];
m2=template list[2 �temp no+1];

MPELog event(15,myid,"computing");
make filters(m1,m2,ch0tilde,ch90tilde,FLO,npoint,srate,chirppoints,tc,4000,4);
MPELog event(16,myid,"computed");

if ( �chirppoints >longest template) longest template= �chirppoints;

if ( �chirppoints >CHIRPLEN) f
fprintf(stderr,"Chirp m1=%f m2=%f length %d too long!\n",m1,m2,

�chirppoints);
fprintf(stderr,"Maximum allowed length is %d\n",CHIRPLEN);
fprintf(stderr,"Please recompile with larger CHIRPLEN value\n");
fflush(stderr);
MPI Abort(MPI COMMWORLD,1);

g

=� normalize the chirp template�=
=� normalization of next line comes from GRASP (5.6.3) and (5.6.4)�=
inverse distance scale=2.0 �HSCALE�(TSOLAR�C LIGHT=MPC);
for (i=0;i <�chirppoints;i++) f

ch0tilde[i] �=inverse distance scale;
ch90tilde[i] �=inverse distance scale;

g

=� and FFT the chirps�=
MPELog event(17,myid,"starting fft");
realft(ch0tilde �1,npoint,1);
MPELog event(18,myid,"ending fft");
MPELog event(17,myid,"starting fft");
realft(ch90tilde �1,npoint,1);
MPELog event(18,myid,"ending fft");

if (STORE TEMPLATES) completed++;

=� print out the length of the longest template�=
if (completed==num templates)

printf("Slave %d: templates completed. Longest is %d points\n",
myid,longest template);

fflush(stdout);
g =� done computing the template�=

=� orthogonalize the chirps: we never modify ch0tilde, only ch90tilde�=
MPELog event(21,myid,"starting");
orthonormalize(ch0tilde,ch90tilde,twice inv noise,npoint, &n0, &n90);
MPELog event(22,myid,"done");

=� distance scale Mpc for SNR=1�=
distance=sqrt(1.0 =(n0 �n0)+1.0 =(n90 �n90));

=� find the moment at which SNR is a maximum�=
MPELog event(19,myid,"searching");
find chirp(htilde,ch0tilde,ch90tilde,twice inv noise,n0,n90,output0,output90,

npoint,CHIRPLEN, &maxi, &snr max, &lin0, &lin90, &var);
MPELog event(20,myid,"done");
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=� identify when an impulse would have caused observed filter output�=
impulseoff=(maxi+ �chirppoints)%npoint;
timeoff=impulseoff =srate;
timestart=maxi =srate;

=� collect interesting signals to return�=
sig buffer[temp no�NSIGNALS]=snr max;
sig buffer[temp no�NSIGNALS+1]=distance;
sig buffer[temp no�NSIGNALS+2]=lin0;
sig buffer[temp no�NSIGNALS+3]=lin90;
sig buffer[temp no�NSIGNALS+4]=maxi;
sig buffer[temp no�NSIGNALS+5]=impulseoff;
sig buffer[temp no�NSIGNALS+6]=timeoff;
sig buffer[temp no�NSIGNALS+7]=timestart;
sig buffer[temp no�NSIGNALS+8]=timestart+ �tc;
sig buffer[temp no�NSIGNALS+9]=var;

prob=0.0;
if (snr max>5.0) f

MPELog event(23,myid,"testing");
varsplit=splitup freq2(lin0 �n0=sqrt(2.0),lin90 �n90=sqrt(2.0),ch0tilde,

ch90tilde,2.0 =(n0 �n0),twice inv noise,npoint,maxi,8,
indices,stats,output0,htilde);

prob=gammq(4.0,4.0 �varsplit);
MPELog event(24,myid,"done");

g
sig buffer[temp no�NSIGNALS+10]=prob;

g =� end of loop over the templates�=

=� return signals to master�=
MPELog event(7,myid,"send");
MPI Send(sig buffer,NSIGNALS �num templates,MPI FLOAT,0,status.MPI TAG,MPI COMMWORLD);
MPELog event(8,myid,"sent");

g =� end of loop over the data�=
g

=� both slaves and master exit here�=
printf("%s preparing to shut down (process %d)\n",processor name,myid);
sprintf(logfile name,"multifilter.%d.%d.log",numprocs,DATA SEGMENTS);
MPEFinish log(logfile name);
MPI Finalize();
printf("%s shutting down (process %d)\n",processor name,myid);
return 0;
g

=� This routine gets the data set, overlapping the data buffer as needed�=
int get calibrated data() f

int i,code;

if (num sent >=DATA SEGMENTS)
return 0;

while (remain <needed) f
code=get data(fpifo,fplock, &tstart,MIN INTO LOCK�60�srate,

datas, &remain, &srate,1);
if (code==0) return 0;

g
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=� Get the next needed samples of data�=
diff=npoint �needed;
code=get data(fpifo,fplock, &tstart,needed,datas+diff, &remain, &srate,0);
datastart=tstart �diff =srate;

=� copy integer data into floats�=
for (i=0;i <npoint;i++) data[i]=datas[i];

=� find the FFT of data�=
realft(data �1,npoint,1);

=� normalized delta-L=L tilde �=
product(htilde,data,response,npoint =2);

=� update the inverse of the auto-regressive-mean power-spectrum�=
avg inv spec(FLO,srate,npoint,decay, &norm,htilde,mean pow spec,twice inv noise);

=� see if the data has any obvious outliers�=
gauss test=is gaussian(datas,npoint, �2048,2047,0);

return 1;
g

=� this function shifts data by CHIRPLEN points in buffer�=
void shiftdata() f

int i;

=� shift ends of buffer to the start�=
needed=npoint �CHIRPLEN+1;
for (i=0;i <CHIRPLEN�1;i++) datas[i]=datas[i+needed];

=� reset if not enough points remain to fill the buffer�=
if (remain <needed) needed=npoint;

return;
g
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9.25 Optimization and computation-speed considerations

The previous subsection describes themultifilter program, which filters data through a bank of tem-
plates. We have experimented with the optimization of this code on several platforms, and here recount
some of that experience.

The first comment is that theNumerical Recipesroutine realft() is not as efficient as possible.
In order to produce a production version of the GRASP code, we suggest replacing this function with
a more-optimal version. For example, on the Intel Paragon, the CLASSPACK library provides optimized
real-FFT functions. To replace therealft() routine, we provide a replacement routine by the same name,
which calls the CLASSPACK library. This routine may be found in thesrc/optimization/paragon
directory of GRASP. By including the object file for this routine in the linking path, before theNumer-
ical Recipeslibrary, it replaces therealft() routine. (Note: GRASP currently contains optimized
replacement routines for the FFT on SGI/Cray, Sun, Paragon, DEC and Intel Linux machines; see the
src/optimization/* directories of GRASP,described in Section 2.6.9).

The second comment is related to inspiral-chirp template generation. The binary inspiral chirps may be
saved in the multifilter program, but one is then limited by the available memory space, as well as incurring
the overhead of frequent disk accesses if that memory space is swapped onto and off the disk. To avoid
this, it is attractive to generate templates “on the fly”, then dispose of them after each segment of data is
analyzed. This corresponds to settingSTORETEMPLATESto 0 in multifilter . In this instance, the
computational cost of computing binary chirp templates may become quite high, relative to the cost of the
remaining computation (FFT’s, orthogonalization, searching for the maximum SNR).

To cite a specific example, on the Intel Paragon, we found that the template generation was almost a
factor of ten more time-consuming than the rest of the searching procedure. Some profiling revealed that
the two culprits were the cube-root operation and the calculations of sines and cosines. Because the floating
point hardware on the Paragon only does add, subtract and multiply, these operations required expensive
library calls. In both cases, a small amount of work serves to eliminate most of this computation time.
In the case of the cube root function, we have provided (through anifdef INLINE CUBEROOTin the
code) an inline computation of cuberoot in 15 FLOPS, which only uses add, subtract and multiply. This
routine shiftsx into the range from1 ! 2, then uses a fifth-order Chebyshev approximation ofx�2=3 then
make one pass of Newton-Raphson to clean up to float precision, and returnsx1=3 = x�2=3x. In the case
of the trig functions we have provided (through anifdef INLINE TRIGS in the code) inline routines to
calculate the sine and cosine as well.After reducing the range of the argument tox 2 [��; �], these use a 6th
order Chebyshev polynomial to approximate the sine and cosine. These techniques speed up the template
generation to the point where it is approximately as expensive as the remaining computations. While there
is some small loss of computational accuracy, we have not found it to be significant. Shown in Figure 68 is
a timing diagram illustrating the relative computational costs of these operations.
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Figure 68: This shows the performance of an “on the fly” template search on the Intel Paragon, with
different levels of optimization. The top diagram uses theNumerical RecipesFFT routinerealft() , and
takes about 4.2 seconds to process 6 seconds of data. The middle diagram shows identical code using the
CLASSPACKoptimized FFT routine, and takes about 2.1 seconds. Note that the template generation process
is now becoming expensive. The bottom diagram shows identical code which includes inline functions for
cube-root and sine/cosine functions to speed up the template generation process. The template generation
takes about 325 msec, and the entire search procedure (including template generation) takes 780 msec per
template per processor per 6-second stretch of data. Relative to the top diagram, this represents a speed-up
factor of more than 5. Running on 256 nodes, it is possible to filter 5 hours of data through 66 templates
(representing the mass range from 1.2 to 1.6 solar masses) in 5x3600x66x(0.780)/(256x6) seconds = 10.1
minutes.
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9.26 Template Placement

As mentioned in preceding sections, when detecting signals using a discrete bank of templates, some loss
in signal strength will always occur due to imperfect matching of the signal with the closest template in
the bank. Thematch function� measures this signal loss; themismatch1 � � can then be thought of as a
proper distance interval on the template parameter space. The goal of template bank construction is to place
templates with a sufficient density in parameter space that the fractional signal loss is reduced to less than
some specified amount. However, since each template in the bank represents a computational investment,
one would like to do this with as few templates as possible.

Conceptually this can be thought of as a tiling problem — one attempts to cover the parameter space
completely with “tiles”, each representing a template. Each tile is small enough to fit entirely within the
equimatch contour at the specified match level, drawn about the tile’s centre. For match levels close to 1,
the match function� drops off quadratically with parameter offsets, and the equimatch contours are ellipses.
However, the sizes and orientations of these ellispes will in general vary over the parameter space, as the
behaviour of the match function changes. This complicates the problem significantly. For instance, while
hexagonal tiling can be shown to be the most efficient tiling scheme when tile sizes are constant, it is not at
all clear how to implement such a scheme when the sizes and shapes of the hexagons are allowed to vary.

For this reason, a somewhat less efficient but algorithmically simpler tiling scheme has been adopted.
We lay out on the parameter space a rectilinear coordinate system with some arbitrary rotation, take our tiles
to be rectangles whose sides are aligned with the coordinate axes. The width and height of each tile may vary
so that it exactly inscribes the equimatch ellipse, but its orientation is fixed by the coordinate system. As
figure 69(a) shows, aligning the coordinate axes with the principle axes of the ellipse results in the largest
tile areas, and hence the fewest number of templates. When the ellipse have changing orientations, one
must choose some appropriate averaged angle for the coordinate system. Several guesses are often required
before an optimal orientation is found.

(a) (b) (c)

Figure 69: Some aspects of template placement using rectangular tiling: (a) By applying a coordinate
rotation, the axes of the equimatch ellipse can be alligned with the axes of the rectanglular tiles, maximizing
the tile area. (b) Rectangular tiles can easily be stacked into columns, even when the match contours are
varying. (c) At the ends of a column, extra overlapping tiles may be required to cover the edges of the
parameter space.

Once a coordinate system is chosen, the parameter space can be divided into columns, into which the
rectangular tiles are stacked. The height of each tile is chosen so as to stay within its equimatch ellipse, as
shown in figure 69(b), and the column widths may vary between columns so as to maximize the resulting
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tile areas. At the boundaries of the parameter space, extra tiles may have to be added at the corners of a
column to provide complete coverage, as shown in figure 69(c).

The functiontiling 2d() (section 9.28) is a generic implementation of such a rectangular tiling
scheme. It works on nearly any parameter space on which a proper distance metric can be defined. The func-
tion get chirp templates() (section 9.37) implements thetiling 2d() algorithm for the specific
case of binary inspiral templates, using the quadratic terms of a fit to the chirp template match function
(equation 9.12.1) to define the distance metric on the space.
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9.27 Structure: struct tile

For routines which lay out a mesh of tiles, a convenient data structure for keeping track of these templates is a
linked list. Such a structure allows new tiles to be added or inserted into the list, without knowing in advance
how many tiles are going to be generated. The following structure stores data for a rectangular tile inscribed
within an ellipse; this is suitable for many tiling problems in which the goal is to fill a two-dimensional
space with some minimum density of tiles.
struct tile f
int flag; Error codes generated while processing this tile.

double x; The horizontal position of the patch.

double y; The vertical position of the patch.

double dx; The horizontal width of the patch.

double dy; The vertical height of the patch.

double r1; The semimajor axis of the circumscribing ellipse.

double r2; The semiminor axis of the circumscribing ellipse.

double theta; The angle between the x and semimajor axes.

struct tile *next; A pointer to the next tile in the list.

g;
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9.28 Function: tiling 2d

int tiling\_2d(double *x_bound, double *y_bound, int npts,
int (*metric)(double , double , double *),
struct tile **tail, int *n_tiles);

This is a generic routine for laying out a mesh of overlapping rectangular tiles in a (relatively) arbitrary
two-dimensional parameter space. The tiles are sized such that no point on the tile is more than one unit
of proper distance from its centre, where the proper distance is computed with a metric function which can
vary arbitrarily over the parameter space. Thus the size and shape of the tiles can and will vary over the
space. The tiles are rectangular, aligned with the coordinate axes, and are laid out in columns, with extra
overlapping tiles on the edges to ensure complete coverage of the space. The lattice of tile positions is stored
as a linked list.

Note that the routine can be easily modified to lay out tiles with non-unit proper radius. To scale the tiles
by a factord, simply multiply the metric function by a factord�2.

Upon successful execution,tiling 2d() attaches the new linked list to(**tail).next , updates
*tail to point to the new tail of the list, and returns a value of 0. It returns an error code of 1 if it suspects
that some of the columns may not be properly filled. It returns 2 if at any point the width of the parameter
space was more thanN COLStimes the computed column width. It returns 3 if the routine terminated
prematurely for any other reason (usually because the algorithm accidentally stepped out of the parameter
space, due to imprecise interpolation of the boundary). In the case of error codes 2 and 3,tiling 2d()
still attaches the generated list onto(**tail).next (up to the point where the error occurred), but does
not update the position of*tail . tiling 2d() will also write appropriate error messages indicating
where any errors took place, and theflag field of the tile on the list (at the time of the error) is set to the
error code. Aflag value of�1 on any tile is a warning flag; the tile was placed correctly, but not all of the
fields were calculated.

The arguments are:

x bound: Input. An array[0..npts] storing thex-coordinates ofnpts points along the boundary of
the parameter space. The array has lengthnpts+1 , but the index[npts] should refer to the same
point as[0] .

y bound: Input. As above, but they-coordinates.

npts: Input. The number of points used to specify the boundary.

metric(): Input. This function computes the three independent components of the distance metric
matrix at a given point in parameter space. The first two arguments are thex andy coordinates of the
requested point, the third passes back the metric components in a three-element array. The[0] , [1] ,
and[2] metric components are defined in terms of the proper interval as follows:

ds2 = [0] dx2 + [1] dxdy + [2] dy2:

metric() itself should return 0, or 1 if the metric is undefined or not computable at the specified
location.

tail: Input/Output. Initially points to the “tail” of a pre-existing list; the generated list is attached to
(**tail).next . Upon successful completion,**tail is updated to the new tail of the list.

n tiles: Input/Output. A running tally of the number of tiles in the mesh; it is incremented each time a
tile is added (and decremented whenever a tile is removed).
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Thetiling 2d() routine makes very few assumptions about the parameter space. The most stringent
is the assumption that the parameter space boundary can be expressed as bivalued functions of bothx andy;
that is, both vertical and horizontal lines intersect the boundary at no more than two points. If a vertical line
intersects at more than two points, the routine may come to a point where it cannot determine the location
or width of a column of tiles, and will terminate. If a horizontal line intersects at more than two points, the
routine may not completely cover the edges of the parameter space. Appropriate warning or error messages
are generated in these cases.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.29 Function: plot list

int plot_list(double *x_bound, double *y_bound, int npts,
struct tile *head, int n_tiles, double angle,
double magnification, int plot_boundary,
int plot_tiles, int plot_ellipses, int plot_flags,
const char *psfile);

This routine generates a postscript file displaying a parameter space, the brickwork mesh of tiles cov-
ering it, and an overlapping mesh of elliptical contours of unit proper radius, circumscribing each tile. The
function returns the number of pages of postscript output.

The arguments are:

x bound: Input. The arrayx bound[0..npts] contains thex components of a set ofnpts boundary
points. Note that the array is of lengthnpts+1 ; the[0] and[npts] index values refer to the same
point, so the array explicitly describes a closed boundary; however, this is irrelevant to the current
routine.

y bound: Input. The arrayy bound[0..npts] contains they components of the boundary points, as
above.

npts: Input. The number of points along the boundary.

head: Input. The head of the linked list of tiles to be plotted.

n tiles: Input. The number of tiles to be plotted from the list.

angle: Input. The angle counterclockwise from thex-axis of the parameter space to the horizontal axis
of the plot.

magnification: Input. The scale factor of points (1=72 of an inch) per unit coordinate distance in the
parameter space.

plot boundary: Input. 1 if boundary is to be shown, 0 otherwise.

plot tiles: Input. 1 if the tile brickwork is to be shown, 0 otherwise.

plot ellipses: Input. 1 if the overlapping ellipses are to be shown, 0 otherwise.

plot flags: Input. If nonzero, indicates the size of dot used to mark flagged tiles (in points =1=72
inches). If zero, flags are ignored.

psfile: Input. The name of the postscript file created.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.30 Constants intiling 2d.c

The following constants are#define d in the moduletiling 2d.c , and are used by the routinestiling 2d()
andplot list() . There may be circumstances in which they might need to be changed.

N COLS= 1 000 000: The maximum number of columns of tiles allowed in the parameter space.

N ROWS= 1 000 000: The maximum number of rows of tiles allowed in any one column.

X MARGIN= 36 points =0:500: The horizontal separation between the left and right borders of the plot and
the edge of the page.

Y MARGIN= 36 points =0:500: The vertical separation between the top and bottom borders of the plot and
the edge of the page.

X SIZE = 612 points =8:500: The width of the page.

Y SIZE = 792 points =1100: The height of the page.

N OBJ= 797: The maximum number of objects which may be placed into a single PostScript macro. This
limitation is required in order to prevent errors in certain PostScript interpreters (such as Ghostscript).
This value may be set smaller: the only effect is to generate additional PostScript macros containing
fewer objects each.
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9.31 Structure: struct chirp space

The following data structure, when fully assigned, contains complete information about a region of the pa-
rameter space of chirp signals: it describes the extent of the region, the coordinates used on it, the behaviour
of the match function over it, and the number and location of chirp templates covering it. It is assumed that
the templates will be placed using coordinatesx; y which are related to the�0; �1 coordinates by a simple
rotation; for the best results, thex; y axes should be roughly aligned with the principle axes of the elliptical
equimatch contours discussed in section 9.9. The fields of this structure are:
struct chirp space f
float m mn; The minimum mass of a binary component in the parameter space (solar masses).

float m mx; The maximum mass of a binary component in the parameter space (solar masses).

float ftau; The reference frequency used to define the�0; �1 coordinates.

float angle; The angle (radians) counterclockwise from the�0 axis to thex coordinate axis used in
placing the template patches.

float match; The minimum match level of the covering template patches.

int n bound; The number of points used to define the boundary of the region.

double *x bound; An array[0..n bound] containing thex coordinates of the points defining the
boundary. The array is of lengthn bound+1 , but the index values[0] and [n bound] should
refer to the same point, so as to define an explicitly closed polygon.

double *y bound; An array[0..n bound] as above, but they coordinates.

struct cubic grid grid; A data structure containing coefficients of a cubic fit to the match func-
tion, evaluated on a grid of points in the parameter space, plus related information. See the documen-
tation for thestruct cubic grid data structure in section 9.12.

int n templates; The number of template patches covering the space.

struct chirp template *templates; An array [0..n templates-1] of data structures
describing the positions of the covering templates. See the next section for a descrition of these
data structures.

g;
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9.32 Structure: struct chirp template

The following data structure is used to carry information about the position of a chirp template in a variety of
coordinate systems, from the most specific computational parameters (its index in an enumerated list) to the
most general physical parameters (the masses of its binary components). In many cases the transformations
among these coordinates depend on additional parameters, such as the reference frequency for the�0; �1
coordinates, or the angle between the�0 andx axes; this global information is typically stored in a data
structure of typestruct chirp space (section 9.31). In addition, the following structure contains
some information about the size of the coordinate patch covered by the template. The fields are:
struct chirp template f
int flag; An indicator of any errors which occured while generating or placing this template. At

present, the following codes are recognized:

�1: Template is incomplete; some fields could not be filled.

0: No errors occured.

1: Possible uncovered region of parameter space near the corners of this template.

2: Template placement terminated prematurely at this template, due to a metric singularity.

3: Template placement terminated prematurely at this template, for some other reason.

int num; The index of the template in an enumerated list, normally ranging from 0 to the number of
templates�1.

double x; Thex coordinate of the template in a computational Cartesian coordinate system. Normally
this system is related to the�0; �1 coordinate system by a simple rotation, so it has units of seconds.

double y; As above, but they coordinate.

double dx; The width in thex direction of a rectangular patch about the template, which is inscribed
within an equimatch ellipse.

double dy; The height in they direction of the rectangular patch.

double semimajor; The length of the semimajor axis of the equimatch ellipse circumscribing the
template patch.

double semiminor; The length of the semiminor axis of the equimatch ellipse circumscribing the
template patch.

double theta; The angle counterclockwise from thex axis to the semimajor axis (radians).

double tau0; The 0th order post-Newtonian time to coalescence (seconds).

double tau1; The 1st order post-Newtonian correction to the time to coalescence (seconds).

double mtotal; The total mass of the binary system (solar masses).

double mchirp; The chirp mass of the system (solar masses).

double mred; The reduced mass of the system (solar masses).

double eta; The ratio of the reduced mass to the total mass.
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double m1; The mass of one of the binary components (by convention, the larger), in solar masses.

double m2; The mass of the other binary component (by convention, the smaller), in solar masses.

g;
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9.33 Function: set chirp space

void set_chirp_space(struct chirp_space space);

This routine sets a global parameterglobal space in the chirp templates.c module, which is
required for thechirp metric() routine to function — see section 9.34. This data must be passed to
chirp metric() as a global parameter, rather than an argument, in order forchirp metric() to have
a “generic” argument list as required by the routinetiling 2d() (section 9.28).

The argument is:

space: Input. The structure thatglobal space is set to equal.
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9.34 Function: chirp metric

int chirp_metric(double x, double y, double *m);

This routine computes the coefficients of a local distance metric on the space of chirp templates, at a specified
location in that space. It returns 0 upon successful completion, or 1 if the metric could not be computed at
that point.

The arguments are:

x: Input. Thex coordinate of the specified point.

y: Input. They coordinate of the specified point.

m: Output. The arraym[0..2] contains the three independent components of the local distance metric;
see below.

Note that this routine uses the global parameterglobal space , defined at the top of the
chirp templates.c module. This parameter must be set by the routinesset chirp space() or
get chirp templates() beforechirp metric() can be called. Thex; y coordinate system used
is the one defined in theglobal space structure: it is to a (counterclockwise) rotation of the�0; �1
coordinate system by an angle ofglobal space.angle . The metric is computed by interpolating the
grid of precomputed quadratic coefficients of the match function, stored inglobal space.grid .

The local distance function is defined so that the match decreases to the valueglobal space.match
at a proper distance of 1. That is, the unit of proper distance is defined to be the maximum template patch
radius. The metric coefficientsm[0..2] are related to the proper intervalds2 by:

ds2 = m[0] dx2 + m[1] dxdy + m[2] dy2 : (9.34.1)

Note thatds2 = 1 corresponds to the match being equal to�=global space.match in equation 9.12.1.
We ignore the cubic components of the match function when dealing with the local distance metric. So we
have:

global space.match = 1 + coef[0] dx2 + coef[1] dxdy + coef[2] dy2 (9.34.2)

whends2 = 1. So the metric componentsm[] are related to the match function coefficientscoef[] via:

m[i] =
coef[i]

global space.match
; i = 0 : : : 2 : (9.34.3)

This routine also checks to make sure that the resulting metric is positive definite, which should always
be the case if the match function is locally paraboloidal (rather than a saddle).

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.35 Function: get chirp boundary

void get_chirp_boundary(struct chirp_space *space);

This routine computes the boundary of the triangular parameter space of chirp signals, setting the fields
x bound andy bound of *space . Memory for these arrays is allocated in this routine; to free it, call
free((*space).x bound) andfree((*space).y bound) .

The argument is:

space: Input/Output. The data structure describing the parameter space of chirps. This routine uses
as input the fieldsmmn, mmx, ftau , angle , andn bound , and assigns the fieldsx bound and
y bound .

Author: Teviet Creighton, teviet@tapir.caltech.edu

Comments: The boundary is actually made to lie just inside of the triangular region specified bymmn<
m2 < m1 <mmx. Particular care is taken along the equal mass line to insure that when one connects
the computed points, the resulting line segments lie entirely inside the true boundary: the points
must be shifted inwards to account for the slight concavity along this curve. Such caution is required
because we must occasionally convert points back into mass space, and bad things happen if the points
lie even slightly past the equal mass line.
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9.36 Function: get chirp grid

int get_chirp_grid(struct chirp_space *space, const char *gridfile);

This routine sets the field(*space).grid , which contains pre-computed coefficients of the cubic fit to
the match function at various points over the parameter space. It returns 0 if no warnings were generated,
1 if parameters used to generate the coefficient grid differed in some nontrivial way from those of the
parameter space, or 2 if the coefficient grid could not be read in; in the latter case,(*space).grid is
unchanged. Otherwise, this routine will allocate memory for the coefficient grid; to free this memory, call
free cubic((*space).grid) .

The arguments are:

space: Input/Output. The parameter space over which the coefficient grid is being assigned. The fields
mmnandmmxare used only to check that the grid covers the space. The fieldsftau , angle , and
match are used to check, rotate, and rescale the grid’s coordinate system (repsectively). The field
grid is the one which is set by this routine.

gridfile: Input. The name of a file containing the pre-computed coefficients of the match function;
see the routinegenerate cubic() in section 9.13.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.37 Function: get chirp templates

int get_chirp_templates(struct chirp_space *space);

This routine computes the positions of a mesh of chirp templates on a parameter space, using the generic
tiling routinetiling 2d() . See section 9.28 for documentation of this routine. The functionget chirp templates( )
passes totiling 2d() the boundary polygon defined by(*space).x bound , (*space).y bound ,
and (*space).n bound , as well as the template space metric functionchirp metric() , then con-
verts the returned list of templates into the array(*space).templates . Thechirp metric() rou-
tine requires the parameter space to be passed to it as a global static variable namedglobal space ;
this variable is set equal to*space . The routineget chirp templates() itself returns the er-
ror code generated by the call totiling 2d() ; see the documentation of that routine. If a fatal er-
ror occurs beforetiling 2d() is even called,get chirp templates() returns an error code of 3,
(*space).n templates is set to 0 and(*space).templates to NULL. Otherwise, memory for
the template array will be allocated; to free this memory, callfree((*space).templates) .

The argument is:

space: Input/Output. The data structure of the parameter space being filled with templates. This
routine uses as input the fieldsn bound , x bound , y bound , andgrid , and assigns the fields
n templates andtemplates .

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.38 Function: plot chirp templates

int plot_chirp_templates(struct chirp_space space,
double magnification, int plot_boundary,
int plot_patches, int plot_ellipses,
int plot_flags, const char *psfile);

This routine plots a postscript file of a chirp parameter space and the templates covering it, using the
generic template-plotting routineplot list() . See section 9.29 for documentation on this routine. The
input parameters forplot list() are passed directly from the parameters forplot chirp templates() ,
except as follows: the boundary is taken fromspace.x bound , space.y bound , andspace.n bound ,
the linked list of templates is generated fromspace.templates andspace.n templates , and the
rotation angle of the plot is such that�0 runs down the length of the page. The routineplot chirp templates()
itself returns the number of pages of postscript output.

The arguments are:

space: Input. The data structure of the parameter space and its templates. This routine makes use of the
fieldsn bound , x bound , y bound , andangle ; if template patches or flags are to be plotted, the
fieldsn templates andtemplates are also used.

magnification: Input. The scale factor of points (1=72 of an inch) per unit coordinate distance in the
parameter space.

plot boundary: Input. 1 if boundary is to be shown, 0 otherwise.

plot patches: Input. 1 if rectangular brickwork of patches is to be shown, 0 otherwise.

plot ellipses: Input. 1 if the overlapping match contours are to be shown, 0 otherwise.

plot flags: Input. If nonzero, indicates the size of dot used to mark flagged templates (in points =1=72
inches). If zero, flags are ignored.

psfile: Input. The name of the postscript file created.

Author: Teviet Creighton, teviet@tapir.caltech.edu
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9.39 Example:make mesh program

This example program generates a template space and template bank for a binary inspiral search. It uses the
functionsget chirp boundary() to compute the perimeter of the template space,get chirp grid()
to read in precomputed match coefficients over that space,get chirp templates() to place the tem-
plate bank, andplot chirp templates() to plot a PostScript file of the template space.

Note that theget chirp grid() function requires the existence of a match coefficient data file
namedcubic coef 40meter m=0.8-3.2.ascii , as generated by the example programmake grid
in section 9.19.

This program prints log messages tostdout , a list of the perimeter points (inx; y coordinates) to
boundary.ascii , a list of the template positions (in mass coordinates) totemplates.ascii , and
the PostScript image totemplates.ps . Here is the standard output produced by this program when
everything functions normally:

make_mesh: get_chirp_templates generated 687 templates and exited with code 0.
make_mesh: plot_chirp_templates generated 8 pages of postscript output.

Here are the first few lines of the filetemplates.ascii , which lists the positions of the templates
in mass space. The numbers in the two columns are them1;m2 coordinates, in solar masses.

2.963451 2.980348
2.941810 2.960199
2.986875 2.999635
2.918038 2.932353
2.896092 2.911018
2.895651 2.999934
2.869409 2.885002
2.847899 2.862208
...

Figure 70 shows a portion of the PostScript filetemplates.ps generated byplot chirp templates() .
The figure is magnified by an extra factor of 2 for clearer display.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main(int argc, char ��argv)
f

struct chirp space space;
double mag;
int i,code,plot boundary,plot patches,plot ellipses,plot flags;
FILE �fpout;

=� Set the chirp space parameters.�=
space.m mn=1.0;
space.m mx=3.0;
space.angle=0.318;
space.ftau=140.0;
space.match=0.98;
space.n bound=600;

=� Set the plotting parameters.�=
mag=4200.0; =� Magnification factor.�=
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Figure 70: A portion of the chirp template parameter space generated by the programmake mesh, showing
the template patches which cover the space to a match level of 0.98. This figure illustrates how the templates
are stacked in columns, with additional overlapping patches along the boundary. Less obvious is the fact
that the rectangles are not of uniform size, reflecting the changing behaviour of the match function over the
space.

plot boundary=1; =� Do show the boundary.�=
plot patches=1; =� Do show the patches.�=
plot ellipses=0; =� Don’t show the circumscribed ellipses.�=
plot flags=1; =� Do indicate any flagged templates.�=

=� Generate the parameter space boundary.�=
get chirp boundary( &space);

=� Print out the boundary points.�=
fpout=fopen("boundary.ascii","w");
for(i=0;i <=space.n bound;i++)

fprintf(fpout,"%f %f\n",space.x bound[i],space.y bound[i]);
fclose(fpout);

=� Get the match function parameters over the space.�=
if(get chirp grid( &space,"cubic_coef_40meter_m=0.8-3.2.ascii"))

return 1;

=� Generate the template mesh.�=
code=get chirp templates( &space);
fprintf(stdout,"%s: get_chirp_templates generated %i templates and"

" exited with code %i.\n",argv[0],space.n templates,code);

=� Print a list of template positions in mass space.�=
fpout=fopen("templates.ascii","w");
for(i=0;i <space.n templates;i++)

fprintf(fpout,"%f %f\n",space.templates[i].m1,
space.templates[i].m2);

fclose(fpout);

=� Flag every template, so that their centres will be marked with
dots on the plot. Normally, a template will be flagged only if
an error occured while generating it.�=

for(i=0;i <space.n templates;i++)
space.templates[i].flag=1;
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=� Plot a postscript diagram of the parameter space.�=
code=plot chirp templates(space,mag,plot boundary,plot patches,

plot ellipses,plot flags,"templates.ps");
fprintf(stdout,"%s: plot_chirp_templates generated %i pages of"

" postscript output.\n",argv[0],code);

return 0;
g

Author: Teviet Creighton, teviet@tapir.caltech.edu
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10 GRASP Routines: Time-Frequency Methods

This section describes the use of software written to extract signals in noise via time frequency methods.
Such methods will be useful in extracting signals from poorly modeled or unmodeled sources. The basic
procedure we adopt involves the following steps,

� Construction of two dimensional ‘time-frequency’ (TF) maps of the time series data,

� Search for one-dimensional structures in the map.

� Use a statistic based on the length and/or the intensity of the line to determine whether the structure
is due to a signal.

Each of the above defined steps can be accomplished by various algorithms. For a detailed discussion of
one implementation of this strategy, please refer to [33] and references therein. In this implementation we
use the Wigner-Ville distribution to construct the TF map and the Steger’s line detection algorithm to detect
the line features in the map and a simple length threshold to determine whether we have detected a signal.

In order to improve the computation/communication ratio during code parallelization we introduce the
concepts of segment and subsegment. The master process sends out large chunks of data called data seg-
ments. Each data segment contains many subsegments and the slave processes compute the TF map for
each subsegment in turn. The sizes of the segments and the subsegments are user defined. Also some
points at the beginning and the end of each segments are not analysed. This can, of course, be compen-
sated for by padding. The number of points skipped at the beginning and end are termed PRESAFETY and
POSTSAFETY respectively and are user defined.

10.1 Construction of the TF map

As mentioned earlier, there exist many algorithms to construct a “time-frequency” map of a data stream.
We have currently implemented three algorithms for the construction of the map. We describe each of these
below.

10.1.1 Wigner-Ville Distribution

The Wigner-Ville distribution (WVD)�(t; f) is defined by the relation,

�(t; f) =

Z 1

�1
h

�
t� �

2

�
h�
�
t+

�

2

�
e2�if�d�; (10.1.1)

whereh(t) is the time series data. In practice we use the discrete analog of the previous equation,

�jk =

N=2X
`=�N=2

h(j�`=2) h(j+`=2) e2�ik`=N : (10.1.2)

This appears to presents a minor dilemma, since (10.1.1) contains expressions of the formh(t � �=2),
which when discretized becomehj�k=2. This implies that the original data has to be oversampled by at
least a factor of 2. We resample our simulated data so thathj � h(2j�t) accordingly. Among the various
algorithms to generated a TF map, we find that the WVD is most suitable for our purpose. We show in
figures 71 and 72 WVD distributions of timeseries data containing only noise and timeseries data containing
noise and an injected signal. The signal has been injected at an optimal filter signal to noise ration of 8.

Two versions of the Wigner-Ville transform are implemented. Equation (10.1.1) contains expressions
of the formh(t � �=2), which when discretized becomehj�k=2. This implies that forj = 0 we require
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Figure 71: The WVD of simulated initial LIGO noise.

Figure 72: The WVD of simulated initial LIGO noise and a signal embedded at an SNR or 8.
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array points with negative indices. There are two ways of handling this problem. One can assume that these
array points have a value of zero or one can assume that these array points refer to data points beforeh0. We
implement both versions of the Wigner transform. Please note that we have used the former one in [33].

10.1.2 Windowed Fourier transform

The basic idea here is to multiply the data train with a window function and compute the Fourier transform.
We use the Welch Window for our Windowed Fourier transforms (WFT). The WFT is defined by the relation,

�(t; f) =

Z 1

�1
h(�)w(� � t)e2�if�d�;

where,w(t; �) is given as,

w(�) = 1:0� 4:0�2

d2
: k�k < d=2 (10.1.3)

= 0:0 : k�k � d=2; (10.1.4)

whered is the width of the window.

10.1.3 Choi-William’s distribution

The Choi Williams distribution (CWD), is given by the relation,

�(t; f) =
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�2�i�fd�du; (10.1.5)

where� is the width of the window. As described in section 10.1.1 we again need to oversample the data
train at least by a factor of two. Also it is to be noted that the Choi-Williams transform is quite expensive to
compute.

10.2 Steger’s Line Detection Routines

A gravitational wave signal in interferometer datah(t) should produce a ridge in the TFD�(t; f). Therefore,
to detect GWs, a ridge detection algorithm (or equivalently line detection algorithm if�(t; f) is represented
as a gray-scale map as in Fig. 72) is required. Fortunately, there are a number of ridge detection algorithms
in the digital image processing and computer vision literature from which to choose.

We use Steger’s second-derivative hysteresis-threshold algorithm [35]. The essential idea of this scheme
is simple. A ridge in a surface will have high curvature (second derivative of�(t; f)) in the direction
perpendicular to the ridge. Furthermore, the first derivative will vanish at the top of the ridge, since it is a
local maximum. Thus, ridges are identified as contiguous sets of point at which�(t; f) has a high-curvature
local maximum. We have included Stegers code [34] in the GRASP package with minor changes. The main
aim of making the the changes was to enable Steger’s routines to take a map whose pixels are of typefloat
rather thanunsigned char . For details about this algorithm please see [33, 35]
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10.3 Structure: struct struct tfparam

The structurestruct tfparam is the main structure used by the time-frequency routines and the program
calling these routines. Some of the fields of this structure are used by the time-frequency routines while
others are others are useful for book keeping. (We will use the abbreviation BK to denote the fields used for
Book Keeping.)

The fields of this structure are:
struct tfparam f
int run number : BK. An identification label.

float f lower : BK. The lower frequency cutoff for the signals injected.

int start segment : BK. Used by the calling program to identfy the first data segment to analyse.

int transformtype : The type of the time-frequency transform to be used to construct the map.
Should be set to any one of the three Macros defined in file grasp.h, namely, WIGNERTF, WIGN-
ERTF NP, WFFTWTF, or CHOIWILLIAMS which correspond to the currently implemented trans-
forms namely,the Wigner-Ville transform with zero padding, Wigner-Ville transform without zero
padding, the windowed Fourier transform and the Choi-Williams transform respectively.

int windowidth : The width (in number of data points) of the window to use for the Choi-Williams
and the windowed Fourier transform.

int offset step size : This variable governs the resolution at which the TF map is computed and
should normally be set to unity. If this variable is not set to unity then the TF distributions are not
computed for every value of time. For example if this variable is set to 2 then the TF distribution is
computed at half the resolution.

int num of segments : BK. The number of data segments to analyse.

float maxpixelval : Can be used to set a threshhold on the values of the pixels in the TF map. This
value can be computed using the routinecompute scalefactor() .

int DIM : The data dimension of the data segment array.

int ND : The data dimension of the subsegment array.

int PD : The dimension of the TF map. Must be less that ND/4.

int PRE : The number of data points to skip at the beginning of each segment.

int POST : The number of data points to skip at the end of each segment.

int TD : Has to be set to ND/PD.

int FD : Has to be set to ND/(4*PD)

float rescale factor : Used to compute maxpixelval via the routinecompute scale factor() .
Has to be set to a number greater than unity.

float hscale : BK. An arbitrary scaling number.

int noisetype : BK. The type of noise.

float srate : The sampling rate.

g
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10.4 Function: time freq map()

void time freq map(float *htilde, struct tfparam *tfs,int index,float **tf-
general,float **pic)

This function is the main routine responsible for creating the time-frequency map. Currently three algo-
rithms are implemented for creating TF maps from time series data, namely, the Wigner-Ville distribution,
the Windowed Fourier transform and the Choi-Williams distribution. There are two versions of the Wigner-
Ville transform which have both been implemented. This function calls the appropriate transform routine
based on the variabel(*tfs).transformtype .

The arguments are:

float *htilde : Input. The pointer to the beginning of the data segment.

struct tfparam *tfs : Input. A pointer to a structure (defined in the previous subsection).

int index : Input. The subsegment for which the map is to be computed.

float **tfgeneral : Input. A temporary work space. Memory must be allocated by the calling
program.tfgeneral must point to an array of size((*tfs).TD * sizeof(*float)) . Each
of these pointers must be allocated a space of((*tfs).ND * sizeof(float)) bytes.

float **pic : Output. The computed TF map. Memory must be allocated by the calling program.pic
must point to an array of size((*tfs).PD * sizeof(*float)) . Each of these pointers must
be allocated a space of((*tfs).PD * sizeof(float)) bytes.

In addition to the arguments the structure variable(*tfs) contains all the additional parameters for
the construction of the map. This structure is defined in the previous subsection.
Author: R. Balasubramanian, bala@chandra.phys.uwm.edu

10.5 Functioncompute scalefactor()

float compute scalefactor(float **pic,float rescale, int pdim)
This function is used to compute the rescale value for the TF maps. Such a rescaling is required for

instance if the line recognition algorithm requires input maps whose pixels are of type unsigned char or
short. It returns the maximum pixel value in the TF map multiplied by the argument rescale. The arguments
are:

float **pic : Input. The pointer to the TF map.

float rescale : Input. The factor by which to multiply the maximum pixel value.

int pdim : Input. The size of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu
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10.6 Functionrescale()

void rescale(float **pic, int pdim, float rescale)
This function is used to rescale and threshold TF maps so that the pixel values lie between zero and

unity. The routine simply divides each pixel by the argument rescale and sets any value greater than unity to
unity. Since the TF maps contain noise, it is possible for the pixels to attain values which are much higher
than the average. To avoid losing information the argument rescale should be obtained by averaging the
maximum pixel value in a large number of maps. The routinecompute scalefactor() can be used
for this purpose. The arguments are:

float **pic : Input/Output. The pointer to the TF map.

int pdim : Input. The size of the TF map.

float rescale : Input. The factor by which to divide each pixel of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu

10.7 Functionnormalize picture()

void normalize picture(float **pic, int pdim)
This function is used to normalize the TF map so that the pixel values lie between zero and unity. In

other words the maximum value is set to unity and the minimum to zero and the rest of the values are scaled
uniformly. This function is useful since the routineplottf() requires the pixels of the TF maps to lie
between zero and unity. The arguments are:

float **pic : Input/Output. The pointer to the TF map.

int pdim : Input. The size of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu

10.8 Functiongen quasiperiodic signal()

void gen quasiperiodic signal(float *arr, int n, float fa, float fs, float
pind, float ampind, float timfrac, float freqfrac, int *filled)

This routine generates a quasiperiodic signal with both frequency and amplitude increasing in time as
power laws. The arguments are:

float *arr : Output. The array to contain the signal points.

int n : Input. The size of the data array.

float fa : Input. The initial frequency of the signal.

float fs : Input. The sampling frequency.

float pind : Input. The exponent for the power law increase in frequency.

float ampind : Input. The exponent for the power law increase in amplitude.

float timfrac : Input. The fraction of the length of the data array for which the signal lasts.

float freqfrac : Input. The fraction of the sampling frequency to be used as the upper cutoff fre-
quency. Typically this should be around 15% of the sampling frequency.
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int *filled Output. On return*filled contains the length of the signal.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu
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10.9 Function: ppmprint()

void ppmprint(float **pic, char *file, int pdim)
This function is used to print the TF map as a PPM format file. The arguments are:

float **pic : Input. The pointer to the TF map. The pixel values must be between zero and unity.

char *file : Input. A pointer to the name of the PPM file.

int pdim : Input. The size of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu

10.10 Function:pgmprint()

void pgmprint(float **pic, char *file, int pdim)
This function is used to print the TF map as a PGM format file. The arguments are:

float **pic : Input. The pointer to the TF map. The pixel values must be between zero and unity.

char *file : Input. A pointer to the name of the PGM file.

int pdim : Input. The size of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu

10.11 Function:plottf()

void plottf(float **pic, int pdim)
This function is used to print the TF map on the screen using GL/MESA calls. The arguments are:

float **pic : Input. The pointer to the TF map. The pixel values must be between zero and unity.

int pdim : Input. The size of the TF map.

Author: R. Balasubramanian, bala@chandra.phys.uwm.edu
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10.12 Function:get line lens()

int get line lens(double sigma, double high, double low, int rows, int cols,
float **pic, char *file)

This function detects one dimensional structures in the TF map. The arguments are:

double sigma : Input. The width of the line to be detected in pixels.

double high : Input. The upper threshhold on the second directional derivative.

double low : Input. The lower threshhold on the second directional derivative.

int rows : Input. The number of rows in the TF map.

int cols : Input. The number of columns. in the TF map.

float **pic : Input. The pointer to the TF map.

char *file : Input. The name of the file to which the output is to be written. The file is written to disk
only if at least one line is detected in the map. The first entry in the file is the number of lines detected.
Then for each line detected the number of pixels in the line and the sum of the TF map pixel values
along the line is recorded. A typical output file looks as shown below:

3
57 44.564186
24 10.698793
20 9.513889

Author: Warren G. Anderson, warren@ricci.phys.uwm.edu This routine is an interface to the routines by
Carsten Steger to detect one dimensional structures in two dimensional images, [34, 35].

10.13 Function:get lines()

int get lines(double sigma, double high, double low, int rows, int cols,
float **pic, float **out img)

This function is almost identical with the functionget line lens() defined in the previous subsec-
tion. The only difference being the last argument of the function. The routine returns a map (out img )
whose pixels have the value of either unity if the pixel corresponds to a line point and zero otherwise.
Author: Warren G. Anderson, warren@ricci.phys.uwm.edu This routine is an interface to the routines by
Carsten Steger to detect one dimensional structures in two dimensional images, [34, 35].
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10.14 Example: tfmain program

This program was used to test the alogorithm described in the Introduction (see section 10. We generate
coloured Gaussian noise and compute the TF map of each data subsegment and then search for one dimen-
sional structures in the map. The overall structure of the code is as follows. We use MPI code to set up a
master slave operation. We have a single master which generates data segments containing simulated Gaus-
sian noise with a signal embedded in the segment at an SNR as specified in the input file (tfmain.in ).
Data segments containing only noise are generated by setting SNR =0:0. These segments are then passed
on to the slaves who compute the TF maps, detect the lines in each map and write the output files directly
to disk. In order to reduce the communication overheads, the slaves compute many TF maps before they
request for more data. Each segment of data contains many subsegments of data. The slave computes the
the TF map and detects the lines therein for every subsegment in the segment successively.

The program is divided into the following files:

tfmain.h : A header file containing function prototypes and parameters.

tfmain.c : The main program containing MPI code and organizing the data flow.

tf get data.c : Routines to generate Gaussian random noise and insert a signal at a given SNR.

tf misc.c : Miscellaneous routines.

randomseeds : Contains a single column of random number seeds.

tfmain.in : An input file containing various parameters read in by the program.

MergeSig.dat : This file contains a single column of floating point numbers and these are equally
spaced samples of the coalescence waveform for a pair of30M� blackholes. The sampling frequency
is 9868.4209 Hz. In addition we also include coalescence waveforms for binaries in the mass range
45M� � 70M�. These files are calledMergeSig.dat.* where * is a wildcard denoting the total
mass of the binary.

combine.c : A program to combine the various output files produced during a run. The original output
files are deleted and all the output information is written to a single file.

readertf.c : A program to interpret the file produced bycombine.c .

10.14.1 Environment variables used by tfmain

The tfmain program uses the environment variableGRASPPARAMETERS, the directory path which con-
tains information to construct the power spectrum for various detectors.

GRASP RELEASE 1.9.8 Page 356 May 19, 2000



Section
10.14

GRASP Routines: Time-Frequency Methods
Example: tfmain program

Page
357

10.14.2 File:tfmain.h

=�GRASP: Copyright, 1997,1998 Bruce Allen�=

#define DATADIM 65536 =� size of segment (must be power of 2)�=
#define NDIM 4096 =� size of the subsegment to be transformed (must be power of 2)�=
#define PDIM 512 =� dimension of time-freq map; (max value NDIM=4) �=
#define PRESAFETY DATADIM=8 =� number of points to ignore at beginning of correlation�=
#define POSTSAFETY DATADIM=8 =� number of points to ignore at end of correlation�=
#define FDIM (NDIM =(4 �PDIM)) =� number of bins to average over in frequency space�=
#define TDIM (NDIM =PDIM) =� number of bins to average over in time space�=

=� THE TYPE OF NOISE�=
#define NOISE WHITE 1 =� white noise�=
#define NOISE LIGO INI 2 =� initial ligo noise curve�=

=� THE TYPE OF SIGNAL�=
#define INSERT INSPIRAL 1 =� the inspiral waveform�=
#define INSERT QUASPER 2 =� a waveform with power law increase of freq and amp�=
#define INSERT COALESCENCE 3=� the full coalescence waveform�=

#define RESCALE FACTOR 2.0 =� used to decide the rescale number�=
#define DEBUG 0 =� For debugging purposes�=
#define DEBUG1 0 =� temprorary debugging�=
#define DEBUG2 0 =� temprorary debugging�=
#define NOISE TYPE NOISELIGO INI =� To determine the noisetype�=

#ifndef SRATE
#define SRATE 9868.4208984375 =� sample rate in HZ of IFODMRO channel�=
#endif

=� Function declarations�=
void fill data with signal(int, float �, float �, float);
void get coalescence(float �, int , float , float ,int �);
int get time series data();
int gethtilde();
void getshf(int,float �,float);
void gettfparameters();
void master();
float mygasdev(long �);
void noise gau col(long �,unsigned long,float �, float �);
void noise gau col fr(long �,unsigned long , float �, float �);
void normalizehtilde(float �, int,float � );
void over whiten filter(float �, long , float �);
void picturerawprint(float ��);
void realft(float �, unsigned long, int);
void slave();
void timstat(int, FILE �, float �htilde);
void whiten filter(float �, long , float �);

=� Structure definitions�=
typedef struct
f

int signaltype; =� the type of signal to be used�=
float m1; =� the mass of one of the stars; used if signaltype = 1�=
float m2; =� the mass of the other star; used if signaltype = 1�=
float pind; =� the exponent for the power law freq. increase;used if signaltype = 2�=
float ampind; =� the exponent for the power law amplitude. increase;used if signaltype=2�=
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float timfrac; =� the fraction of time for which the signal lasts in each subsegment
;used if signaltype=2�=

float freqfrac; =� the bandwidth of the signal as a fraction of the sampling rate;
used if signaltype=2�=

float cons noise pow; =� an arbitrary scaling factor for the power spectrum�=
float snr; =� the signal to noise ratio�=
int signaloffset; =� the offset at which the signal begins in each subsegment�=
int addsignal; =� flag; TO ADD signal 1; if signal is not to be added 0�=

g struct signalparameters;
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10.14.3 File:tfmain.c

=� To investigate the Time Frequency distribution of chirps�=
=� using MPI and GL calls�=
=� prototype program�=

#include "mpi.h"
#include "grasp.h"
#include "tfmain.h"

=��������������������������������������������������
GLOBAL VARIABLES TO BE USED ACROSS FILES
������������������������������������������������=

struct tfparam tfparam; =� the parameters of the timefrequency program defined in file timefreq.h�=
dl options dlopt; =� the parameters for the linerecognition algorithms�=
struct signalparameters snpar; =� the parameters of the signal and noise; defined in tfmain.h�=
MPI Comm comm = 91;
long longn=DATADIM;
float �htilde,srate=SRATE;
int reply=1,count=0,counter;
int npoint=DATADIM,numprocs,myid,new lock=0;

int main(int argc,char ��argv)
f

char processor name[256],command[256];
int namelen,mypid;

=� initialize the MPI processes�=
MPI Init ( &argc, &argv);
MPI Commsize ( comm, &numprocs );
MPI Commrank ( comm, &myid );
MPI Get processor name(processor name, &namelen);

=� Renice the processes�=
mypid = getpid();
sprintf(command,"renice 10 %d &\n",mypid);
system(command);

=� For debugging purposes�=
#if(DEBUG==1)

if(myid==0) f
sprintf(command,"xxgdb tf %d &\n",mypid);
system(command);

g
sleep(20);

#endif
=�allocate space various common arrays�=

htilde = (float �) malloc(sizeof(float) �npoint);
=� get the parameters from the file tfmain.in�=

gettfparameters();
=� branch off to either the master or the slaves�=

if(myid==0)
master();

else
slave();
=� exit �=

MPI Finalize();
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return 0;
g

void master()
f

int slaves,recv=0,from,mdata=0,i;
MPI Status status;
char tmp str[256];
float �scale;
FILE �fp, �fp1, �fp2;

=� create the output directory and copy the input file there�=
sprintf(tmp str,"mkdir run%02d\n",tfparam.run number);
system(tmp str);
sprintf(tmp str,"cp tfmain.in run%02d\n",tfparam.run number);
system(tmp str);
sprintf(tmp str,"cp tfmain.h run%02d\n",tfparam.run number);
system(tmp str);
sprintf(tmp str,"run%02d/timstat",tfparam.run number);
fp = fopen(tmp str,"w");
sprintf(tmp str,"run%02d/rescale",tfparam.run number);
fp1 = fopen(tmp str,"w");
if(snpar.signaltype==INSERT COALESCENCE)f

sprintf(tmp str,"cp MergeSig.dat run%02d\n",tfparam.run number);
system(tmp str);

g
sprintf(tmp str,"run%02d/segments",tfparam.run number);
fp2 = fopen(tmp str,"w");
sprintf(tmp str,"printenv > run%02d/environment\n",tfparam.run number);
system(tmp str);
sprintf(tmp str,"echo number of processes = %d >> run%02d/prog",numprocs,tfparam.run number);
system(tmp str);

=� set the rescale parameter�=
snpar.addsignal = 0;
scale = (float �) malloc(sizeof(float) �numprocs);
for (slaves=1;slaves <numprocs;slaves++) f

mdata = get time series data();
MPI Send( &count, 1, MPI INT, slaves , 1001, comm);
MPI Send(htilde,npoint,MPI FLOAT,slaves,1002,comm);

g
for(i=0;i <tfparam.start segment;i++) f

mdata = get time series data();
printf("Skipping segment %d, mdata = %d\n",i,mdata);
fflush(stdout);

g
for(slaves=1;slaves <numprocs;slaves++) f

MPI Recv(scale+slaves, 1,MPI FLOAT, slaves , 1004, comm, &status);
fprintf(fp1,"%d %f\n",slaves,scale[slaves]);

g
fclose(fp1);

=� Compute average of the rescale values�=
tfparam.maxpixelval = 0.0;
for(slaves=1;slaves <numprocs;slaves++) tfparam.maxpixelval += scale[slaves];
tfparam.maxpixelval == (numprocs �1);
printf(" The average rescale value : %f\n",tfparam.maxpixelval);
fflush(stdout);
free(scale);

=� send the rescale value to all the slaves�=
MPI Bcast( &tfparam.maxpixelval, 1, MPI FLOAT, 0, comm);
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for(slaves=1;slaves <numprocs;slaves++) f
MPI Recv( &reply, 1,MPI INT, slaves , 1003, comm, &status);
MPI Recv( &counter , 1,MPI INT, slaves , 1003, comm, &status);

g

count= tfparam.start segment;
recv = tfparam.start segment;
snpar.addsignal = 1;

=� all set to start the actual simulation loop over
slaves and send the datasegments to the slaves�=

sprintf(tmp str,"date >> run%02d/prog\n",tfparam.run number);
system(tmp str);
for (slaves=1;slaves <numprocs;slaves++) f

=� get the data�=
mdata = get time series data();

#if(DEBUG1)
graph(htilde,npoint,1);
sleep(5);

#endif
timstat(count, fp, htilde);
MPI Send( &count, 1, MPI INT, slaves , 1001, comm);
MPI Send(htilde,npoint,MPI FLOAT,slaves,1002,comm);
printf("master : sent segment %d to slave %d mdata = %d\n",count,slaves,mdata);
fflush(stdout);
count++;

g
=� wait for the slaves to send the done message and send fresh datasegments�=

while(recv <count) f
MPI Recv( &reply , 1, MPI INT, MPI ANY SOURCE, 1003, comm, &status);
from = status.MPI SOURCE;
MPI Recv( &counter , 1,MPI INT, from , 1003, comm, &status);
printf("master : Received reply for segment %d back from slave %d\n",counter,from);
fflush(stdout);
recv++;
if(mdata) mdata = get time series data();
printf("master :count=%d,recv=%d,mdata=%d\n",count,recv,mdata);
if((count <tfparam.num of segments) &&(mdata)) f

fprintf(fp2,"%d %d %d \n",count, from,new lock);
MPI Send( &count, 1, MPI INT, from , 1001, comm);
MPI Send(htilde, npoint, MPI FLOAT, from , 1002, comm);
printf("master : sent segment %d to slave %d\n",count,from);
fflush(stdout);
timstat(count, fp,htilde);
count++;

g
=� send slave the termination message�=

else f
counter= �1;
printf("master :Sending termination signal to slave %d \n",from);
MPI Send( &counter, 1, MPI INT, from , 1001, comm);

g
g
fclose(fp);
fclose(fp2);
sprintf(tmp str,"date >> run%02d/prog\n",tfparam.run number);
system(tmp str);
return;

g
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void slave()
f

MPI Status status;
float �tfgeneral[TDIM], �pic[PDIM], �out img[PDIM],scalefactor=0.0;
int i,rows=PDIM,cols=PDIM,noofsub,ind;
char filen[256];
static int first = 1;

=� the number of subsegments in each segment of data�=
noofsub = (DATADIM �(POSTSAFETY+PRESAFETY))=NDIM;

=� allocate memory of the timefrequency block and for the picture matrices�=
for(i=0;i <TDIM=tfparam.offset step size;i++)

tfgeneral[i] = (float �)malloc(sizeof(float) �NDIM);
for(i=0;i <PDIM;i++) f

pic[i] = (float �)malloc(sizeof(float) �PDIM);
out img[i] = (float �)malloc(sizeof(float) �PDIM);

g
=� loop for receiving the data�=

while(1) f
MPI Recv( &count,1,MPI INT,0,1001,comm, &status);

=� Terminate if count is less that 0�=
if(count <0) return;

=� Recv the htilde array from the master�=
MPI Recv(htilde, npoint, MPI FLOAT, 0, 1002, comm, &status);
printf("slave %d: received segment %d from master\n",myid,count);
fflush(stdout);

=� compute the time-frequency maps for the data segment�=
for(ind=0;ind <noofsub;ind++) f

=� compute the time-frequency maps for each subsegment�=
time freq map(htilde, &tfparam, ind,tfgeneral,pic);
if(first) f

scalefactor += compute scalefactor(pic,tfparam.rescale factor,PDIM);
#if(DEBUG1)

printf("slave %d: nofsub = %d scalefactor = %f\n",myid,ind,compute scalefactor(pic, t
fflush(stdout);

#endif
if(ind==(noofsub �1)) f

first = 0;
scalefactor == noofsub;
MPI Send( &scalefactor,1,MPI FLOAT, 0, 1004, comm);
MPI Bcast( &tfparam.maxpixelval, 1, MPI FLOAT, 0, comm);

g
g
else f

rescale(pic,PDIM,tfparam.maxpixelval);
sprintf(filen,"./run%02d/out_%d.%02d",tfparam.run number,count,ind);
get line lens(dlopt.sigma,dlopt.high,dlopt.low,rows,cols,pic,filen);

#if(DEBUG2)
if((ind==0) &&(count==0))

ppmprint(pic,"picture.ppm",PDIM);
#ifdef HAVE GL

=� if you want to display the TF map on the screen�=
if(myid==1)

plottf(pic,PDIM);
#endif

printf("slave %d: nofsub = %d\n",myid,ind);
fflush(stdout);

#endif
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g
g

=� inform master that you have finished the current segment�=
MPI Send( &reply, 1, MPI INT, 0, 1003, comm);

=� send the counter back to the master as a check�=
MPI Send( &count, 1, MPI INT, 0, 1003, comm);

g
g
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10.14.4 File:tf get data.c

#include "grasp.h"
#include "tfmain.h"

float �twice inv noise, �ch0, �ch1, �buff, �shf, �shf root,deltaf;
extern float �htilde,srate;
extern int npoint;
extern long longn;
extern struct tfparam tfparam;
extern struct signalparameters snpar;
long idummy= �89473884; =� initialized to a random seed�=

int get time series data()
f

return gethtilde();
g

int gethtilde()
f

int i,order=1,err cd sprs=4000,filled;
static int first=1;
float t coal,tempfloat;
FILE �randfp;

if(first) f
first = 0;

=� read in the random number seed�=
if((randfp = fopen("randomseeds","r"))==NULL) f

printf("the randomseeds file is not present\n");
printf("Please create a file called randomseeds which contains\n");
printf("a column of negative random numbers seeds \n");
exit( �1);

g
for(i=0;i <tfparam.run number;i++)

if(fscanf(randfp,"%ld\n", &idummy) <0) f
printf("the randomseeds file does not contain enough random numbers\n");
exit( �1);

g
fclose(randfp);

=� allocate memory for the inverse power spectrum, signal arrays and buffers�=
twice inv noise = (float �) malloc(sizeof(float) �(npoint =2 + 1));
ch0 = (float �) malloc(sizeof(float) �npoint);
ch1 = (float �) malloc(sizeof(float) �npoint);
buff = (float �) malloc(sizeof(float) �npoint);
shf = (float �)malloc (sizeof(float) �(npoint =2+1));
shf root = (float �)malloc (sizeof(float) �(npoint =2+1));

=� initialize the signal arrays to zero�=
for(i=0;i <npoint;i++) ch0[i]=ch1[i]=0.0;

=� switch between the signal types�=
switch(snpar.signaltype) f

case INSERT QUASPER:
gen quasiperiodic signal(ch1,NDIM,tfparam.f lower,srate,snpar.pind, snpar.ampind,snpa

snpar.freqfrac, &filled);
break;

case INSERT INSPIRAL:
make filters(snpar.m1,snpar.m2,ch0,ch1,tfparam.f lower,npoint,

srate, &filled, &t coal, err cd sprs, order);
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break;
case INSERT COALESCENCE:

get coalescence(ch1,npoint,tfparam.f lower,srate, &filled);
break;

g
=� offset the signal to the right by tfparam.signaloffset points�=

for(i=filled �1;i >=0;i ��) ch1[i+snpar.signaloffset] = ch1[i];
for(i=0;i <snpar.signaloffset;i++) ch1[i] = 0.0;

=� copy ch1 to ch0�=
for(i=0;i <npoint;i++)

ch0[i] = ch1[i];
=� take the Fourier transform of the signal�=

realft(ch0 �1,longn,1);
=� get the power spectrum for noise�=

deltaf = srate =npoint;
getshf(npoint =2+1,shf,deltaf);
for(i=0;i <=npoint =2;i++) twice inv noise[i] = 1. =shf[i];
for(i=0;i <=npoint =2;i++) shf root[i] = sqrt(shf[i]);

=� normalize the signal to a particular SNR�=
correlate(buff,ch0,ch0,twice inv noise,npoint);
tempfloat = snpar.snr =sqrt(buff[0]);
fill data with signal(npoint,ch1,ch0,tempfloat);
realft(ch0 �1,longn,1);

g
noise gau col fr( &idummy, npoint, htilde, shf root);

=� add the signal to the noise�=
if(snpar.addsignal)

for(i=0;i <npoint;i++) htilde[i] += ch0[i];
over whiten filter(htilde,npoint,twice inv noise);

=� zero out the higher frequency to avoid aliasing�=
if((tfparam.transformtype==WIGNERTF) j j(tfparam.transformtype==CHOIWILLIAMS))

for(i=npoint =2;i <npoint;i++) htilde[i] = 0.0;
realft(htilde � 1, longn, �1);
return DATADIM;

g

10.14.5 File:tfmain.in

This file acts as the input to the tfmain program. The routinegettfparameters() defined in the file
tf misc.c reads in this input file. The file contains dummy strings describing the parameters followed by
that parameter. We list below the various input parameters. The default values for the various parameters
are the ones used by us in investigating the efficiency of the algorithm described in this section and is
documented in [33]. A run with these parameters reproduces the point corresponding to the60M� curve at
an SNR of 10 in Figure 5 of [33]. For convenience we reproduce the figure here, 73. Please note that the
parameters defined in filetfmain.h must also be unchanged to reproduce the results of our paper.

run number : This is used when you need to make multiple runs of the code for different parame-
ters. The name of the directory to write the output files is set to be./run$(run number) where
$(run number) is the value of the parameter runnumber. Also the random number seed used is
determined by this number. The file randomseeds contains a single column of user generated random
numbers which are used as seeds and the runnumber determines which random seed to use and is
essentially the random seed on the runnumberth line in the file randomseeds.

flo : This is the lower frequency cutoff for the generated signal.
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Figure 73: False dismissal probability as a function of mass. The three curves correspond to three different
values the optimal filter signal-to-noise ratio. With the parameters we have chosen, our method tends to
work better for higher mass binaries, where the energy is more localized in the TF map.

start segment : the first segment to start analysing; segments are numbered 0 onwards.

transform type : To select between the Wigner-Ville(1), windowed Fourier transform(2) and
Choi-Williams distribution (3), and Wigner-Ville with no zero padding (4).

window width : the size of the window used in the windowed Fourier transform.

offset step size : to be set to unity.

signal type : the type of signal to insert in the subsegments, inspiral waveform (1), quasiperiodic
waveform with power law increase in frequency and amplitude (2), coalescence waveform(3).

signal offset : the offset at which to insert the signal in each subsegment.

m1 : mass of the star; used ifsignal type = 1

m2 : mass of the other star; used ifsignal type = 1

pind : the exponent for the power law increase in frequency; used ifsignal type = 2

ampind : the exponent for the power law increase in amplitude; used ifsignal type = 2

timfrac : the fraction of the subsegment for which the signal lasts; used ifsignal type = 2

snr : the signal to noise ratio at which to insert the signal

numberof segments : the number of segments to analyse

dl sigma : the value of the thickness of the lines expected in the map in pixels.

dl high : used as a threshold to determine whether a pixel is part of a curve.
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10.14.6 File: combine.c

Usage:combine directory name nseg nsubseg
wheredirectory name is the name of the directory containing the output files of thetfmain program
e.g. run01. The argumentnseg is the number of segments which have been analysed. The argument
nsubseg is the number of subsegments in each segment of data.

The program outputs a single file calledallcurv.dat in the output directory. The format of the file
is as follows. There is one line for every subsegment analysed. The first number in each line is simply an
index from 0 tonseg*nsubseg - 1 . The next number in each line is the number of lines detected and
the subsequent numbers are the number of pixels and the strength of each line in a alternating sequence. The
original output files are deleted.

10.14.7 File:readertf.c

Usage:readertf directory name
wheredirectory name is the name of the directory containing the fileallcurv.dat . This program
reads this file and writes a new file calledcurves.dat . The basic purpose is to select the longest line
in each analysed subsegment. The format of the file is described below. There is again one line for every
analysed data subsegment. The first column is an index ranging from 0 to the total number of data subseg-
ments analysed. The subsequent columns are, the number of curves found, the length of the longest curve,
the strength of the curve, and the average strength for that curve respectively. The average strength is just
the strength divided by the length.
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11 GRASP Routines: Stochastic background detection

11.1 Data File:detectors.dat

This file contains site location and orientation information, a convenient name for the detector, and filenames
for the detector noise power spectrum and whitening filter, for 11 different detector sites. These site are:

(1) Hanford, Washington LIGO site,
(2) Livingston, Louisiana LIGO site,
(3) VIRGO site,
(4) GEO-600 site,
(5) Garching site,
(6) Glasgow site,
(7) MIT 5 meter interferometer,
(8) Caltech 40 meter interferometer,
(9) TAMA-300 site,
(10) TAMA-20 site,
(11) ISAS-100 site.

As explained below, information for additional detector sites can be added todetectors.dat as needed.
[In fact, there are many additional sites currently in the file – look at it to see for yourself. For example, this
file and the referenced parameter files now include the 7 distinct stages of “enhanced LIGO”. Thus a given
site, for example the Hanford Washington LIGO site, has a number of different entries, corresponding to
different noise power spectra.]

The data contained within this file is formatted as follows: Any line beginning with a# is regarded as
a comment. All other lines are assumed to begin with an integer (which is the site identification number)
followed by five floating point numbers and three character strings, each separated bywhitespace (i.e., one
or more spaces, which may include tabs). The first two floating point numbers specify the location of the
central station (the central vertex of the two detector arms) on the earth’s surface: The first number is the
latitude measured in degrees North of the equator; the second number is the longitude measured in degrees
West of Greenwich, England. The third floating point number specifies the orientation of the first arm of
the detector, measured in degrees counter-clockwise from true North. The fourth floating point number
specifies the orientation of the second arm of the detector, also measured in degrees counter-clockwise from
true North. The fifth floating point number is the arm length, in cm. The three character strings specify:
(i) a convenient name (e.g., VIRGO or GEO-600) for the detector site, (ii) the name of a data file that
contains information about the noise power spectrum of the detector, and (iii) the name of a data file that
contains information about the spectrum of the whitening filter of the detector. (We will say more about the
content and format of these two data files in Secs. 11.4 and 11.5.) The information currently contained in
detectors.dat is shown below:

#
# Hanford, Washington LIGO Site (initial detector)
# Fred Raab fjr@ligo.caltech.edu
1 46.45236 119.40753 36.8 126.8 4.e5 LIGO �WAinit noise ligo init.dat whiten ligo init.dat
#
# Livingston, Louisiana LIGO Site (initial detector)
# Fred Raab fjr@ligo.caltech.edu
2 30.56277 90.77425 108.0 198.0 4.e5 LIGO �LA init noise ligo init.dat whiten ligo init.dat
#
# VIRGO Site
# Biplab Bhawal biplab@iucaa.iucaa.ernet.in
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# 3 43.3 �10.1 71.5 341.5
# Raffaele Flaminio flaminio@lapphp0.in2p3.fr
# Carlo Bradaschia BRADASCHIA@VAXPIA.PI.INFN.IT
# Rosa Poggiani POGGIANI@pisa.infn.it
3 43.6333 �10.5 71.5 341.5 3.e5 VIRGO noise virgo.dat whiten virgo.dat
#
# GEO�600 as of April 1995
# Albrecht Ruediger atr@mpq.mpg.de
4 52.2467 �9.82167 25.94 291.61 6.e4 GEO �600 noise geo.dat whiten geo.dat
#
# Garching 30 Meter Interferometer
# Albrecht Ruediger atr@mpq.mpg.de
5 48.244 �11.675 329.0 239.0 3.e3 Garching �30 XXXXX XXXXX
#
# Glasgow 10 Meter Interferometer
# Albrecht Ruediger atr@mpq.mpg.de
# 6 55.86 4.23 77.0 167.0
# Jim Hough hough@physics.gla.ac.uk
6 55.8667 4.28333 62.0 152.0 1.e3 Glasgow �10 XXXXX XXXXX
#
# MIT 5 Meter Interferometer
# Gabriela Gonzalez gg@tristan.mit.edu
7 42.3667 71.1 34.5 304.5 5.e2 MIT �5 XXXXX XXXXX
#
# Caltech 40 Meter Interferometer NEEDS CORRECTION
# Fred Raab fjr@ligo.caltech.edu
8 34.1667 118.133 180.0 270.0 4.e3 Caltech �40 noise 40.dat whiten 40.dat
#
# TAMA 300 Meter
# Masa�Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp
9 35.6766 �139.536 90.0 180.0 3.0e4 TAMA �300 noise tama.dat whiten tama.dat
#
# TAMA 20 Meter
# Masa�Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp
10 35.6751 �139.536 45.0 315.0 2.0e3 TAMA �20 XXXXX XXXXX
#
# ISAS 100 Meter delay line
# Hide Mizuno hide@pleiades.sci.isas.ac.jp
11 35.5678 �139.467 42.0 135.0 1.0e4 ISAS �100 XXXXX XXXXX
#

Site information for new (or hypothetical) detectors can be added todetectors.dat by simply ad-
hering to the above data format. For example, as the noise in the LIGO detectors improves, one can accom-
modate these changes indetectors.dat by adding additional lines that have the same site location and
orientation information as the “old” detectors, but refer to different noise power spectra and whitening filter
data files. The only other requirement is that the site identification numbers for these “new and improved”
detectors be different from the old site identification numbers, so as to avoid any ambiguity. Explicitly,
one could add the following lines todetectors.dat to include information about the advanced LIGO
detectors:

#
# Hanford, Washington LIGO Site (advanced detector)
# Fred Raab fjr@ligo.caltech.edu
12 46.45236 119.40753 36.8 126.8 4.e5 LIGO �WAadv noise ligo adv.dat whiten ligo adv.dat
#
# Livingston, Louisiana LIGO Site (advanced detector)
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# Fred Raab fjr@ligo.caltech.edu
13 30.56277 90.77425 108.0 198.0 4.e5 LIGO �LA adv noise ligo adv.dat whiten ligo adv.dat
#

The file detectors.dat currently resides in theparameters subdirectory ofGRASP. In order
for the stochastic background routines and example programs that are defined in the following sections
to be able to access the information contained in this file, the user must set the environment variable
GRASPPARAMETERSto point to this directory. For example, a command like:
setenv GRASP PARAMETERS /usr/local/GRASP/parameters
should do the trick. If, however, you want to modify this file (e.g., to add another detector or to add another
noise curve), then just copy thedetectors.dat file to your own home directory, modify it, and set the
GRASPPARAMETERSenvironment variable to point to this directory.

Comment: If you happen to find an error in thedetectors.dat file, pleasecommunicate it to the
caretakers of GRASP.
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11.2 Function: detector site()

void detector site(char *detectors file, int site choice, float site parameters[9],
char *site name, char *noise file, char *whiten file)
This function calculates the components of the position vector of the central station, and the components
of the two vectors that point along the directions of the detector arms (from the central station to each end
station), for a given choice of detector site, using information contained in an input data file. This function
can also be used to obtain the latitude, longitude, arm orientations, and arm length of a detector site. This
function also outputs three character strings that specify the site name, the name of a data file containing
the detector noise power information, and the name of a data file containing information about the detector
whitening filter, respectively.

The arguments ofdetector site() are:

detectors file: Input. A character string that specifies the name of a data file containing detector site
information. This file is most likely thedetectors.dat data file described in Sec. 11.1. If the file
is different fromdetectors.dat , it must have the same data format asdetectors.dat , and
it must reside in the directory pointed to by theGRASPPARAMETERSenvironment variable (which
you may set as you wish). If you want to use thedetectors.dat file distributed with GRASP, use
a command like:
setenv GRASP PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing this file. If you want to modify this file (e.g., to add another
detector or to add another noise curve), then just copy thedetectors.dat file to your own home
directory, modify it, and set theGRASPPARAMETERSenvironment variable to point to this directory.

site choice: Input. An integer value used as an index into the input data file. The absolute value
of site choice should be chosen to match the site identification number for one of the detectors
contained in this file. The integer can be positive or negative depending on whether the user wants the
positions of the end stations (positive), or simply the latitude, longitude, arm orientation and length
(negative).

site parameters: Output. If site choice was positive,site parameters[0..8] is an ar-
ray of nine floating point variables that define the position of the central station of the detector site
and the orientation of its two arms. The three-vectorsite parameters[0..2] are the(x; y; z)
components (in cm) of the position vector of the central station, as measured in a reference frame
with the origin at the center of the earth, thez-axis exiting the North pole, and thex-axis passing out
the line of0Æ longitude. The three-vectorsite parameters[3..5] are the(x; y; z) components
(in cm) of a vector pointing along the direction of the first arm (from the central station to the end
station). The three-vectorsite parameters[6..8] are the(x; y; z) components (in cm) of a
vector pointing along the direction of the second arm (from the central station to the end station).
If site choice was negative,site parameters[0] contains the site latitude (degrees north),
site parameters[1] contains the site longitude (degrees west),site parameters[2] con-
tains the orientation of the first arm (degrees CCW from North),site parameters[3] contains
the orientation of the second arm (degrees CCW from North), andsite parameters[4] con-
tains the armlength (in cm). In this case, the unused elementssite parameters[5..7] are
unchanged.

site name: Output. A character string that specifies a convenient name (e.g., VIRGO or GEO-600) for
the chosen detector site.

noise file: Output. A character string that specifies the name of a data file containing information
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about the noise power spectrum of the detector. (See Sec. 11.4 for more details regarding the content
and format of this data file.)

whiten file: Output. A character string that specifies the name of a data file containing information
about the spectrum of the whitening filter of the detector. (See Sec. 11.5 for more details regarding
the content and format of this data file.)

detector site() reads input data from the file specified bydetectors file . This file is
searched (linearly from top to bottom) until the absolute value ofsite choice matches the site iden-
tification number for one of the detectors contained in this file. The site location and orientation information
for the chosen detector site are then read into variables local todetector site() . If site choice was
negative, this information is returned in the arraysite parameters[] ; otherwise the values contained
in the arraysite parameters[] are calculated from these input variables using standard equations from
spherical analytic geometry. (A correctionis made, however, for the oblateness of the earth, using infor-
mation contained in Ref. [37].) Thesite name, noise file , andwhiten file character strings are
simply copied from input data file. Ifsite choice does not match any of the site identification numbers,
detector site() prints out an error message and aborts execution.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.3 Comment: noise power spectra for “advanced” LIGO & the Cutler-Flanagan model

During the years 1992-96, the upcoming LIGO experiment was planned in two stages, an “initial” and an
“advanced” stage. These words were taken from an important article inScience[38] which described the
LIGO plans. (The “advanced” stage has now been supplanted by a series of seven enhancements and is now
described as “enhanced” LIGO).

During this period 1992-96, research on data analysis algorithms made use of detector noise curves
taken from theSciencearticle. Unfortunately two of the figures in the article (Figs. 7 and 10) which gave
the noise curve were inconsistent, and also inconsistent with the parameters given in the article. The GRASP
parameters/ directory contains a noise curve corresponding to Fig. 7, and another noise curve, generally
called the “Cutler and Flanagan” approximation, which is an approximation to the curve used in Fig. 10.

Note that the noise level in Fig. 7 in the Science article [38] is a factor of 3 inhrms [or a factor of� 10
in Sn(f)] lower than that of Fig. 10 in between� 10 Hz and� 70 Hz. Kip Thorne has informed us that Fig.
10 is the correct figure and Fig. 7 is in error, and that the error does not appear in the corresponding figure
V.4 of the 1989 LIGO proposal. The error can be seen by inserting the parameter valuesm = 1000 kg,
f0 = 1Hz, andQ0 = 109 given in [38] into the standard equation for suspension thermal noise due to
viscous damping, as given in, e.g., Eq. (4.3) of Reference [15]. The resulting noise level is a factor of 3
higher than the noise level shown in Fig. 7, and agrees with the noise level of Fig. 10. Note however that the
noise curve of Fig. 7 has been adopted and used by several researchers as the “advanced ligo noise curve”,
and that the GRASP “advanced” advanced noise curve is that of Fig. 7.

The Cutler and Flanagan approximation to the advanced ligo noise curve is

Sn(f) =
1

5
S0

"
f40
f4

+ 2

 
1 +

f2

f20

!#
(11.3.1)

for f � 10 Hz, andSn(f) =1 for f < 10 Hz, whereS0 = 3 � 10�48 Hz�1 andf0 = 70Hz. This is Eq.
(2.1) of Reference [21] withS0 replaced byS0=5 to correct a typo in the published paper. The noise curve
(11.3.1) is an approximate analytic fit to the advanced noise curve shown in Fig. 10 (not Fig. 7) of the LIGO
Science article [38]. It is the GRASP noise curvenoise cutler flanagan.dat . The accuracy of the
fit is fairly good but not a perfect fit – in particular the noise curve (11.3.1) is slightly larger than the noise
curve in [38] at high frequencies. A slightly more accurate fit has been obtained by Scott Hughes and Kip
Thorne (quoted in Reference [6]), which uses the same functional form but the slightly different parameter
valuesf0 = 75 Hz andS0 = 2:3� 10�48 with a lower shutoff frequency of12 Hz.
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11.4 Function: noise power()

void noise power(char *noise file, int n, float delta f, double *power)
This function calculates the noise power spectrumP (f) of a detector at a given set of discrete frequency
values, using information contained in a data file.

The arguments ofnoise power() are:

noise file: Input. A character string that specifies the name of a data file containing information about
the noise power spectrumP (f) of a detector. Like thedetectors.dat file described in Sec. 11.1,
the noise power data file should reside in the directory pointed to by theGRASPPARAMETERSenvi-
ronment variable (which you may set as you wish). If you want to use the noise power spectrum data
files distributed with GRASP, use a command like:
setenv GRASP PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own noise power spectrum
data files, then simply set theGRASPPARAMETERSenvironment variable to point to the directory
containing these files. Note, however, that if a program needs to accessbothdetector site information
and noise power spectrum data, then all of the files containing this information should reside in the
samedirectory. (A similar remark applies for the whitening filter data files described in Sec. 11.5.)

n: Input. The numberN of discrete frequency values at which the noise power spectrumP (f) is to be
evaluated.

delta f: Input. The spacing�f (in Hz) between two adjacent discrete frequency values:�f :=
fi+1 � fi.

power: Output. power[0..n-1] is an array of double precision variables containing the values of
the noise power spectrumP (f). These variables have units ofstrain2=Hz (or seconds).power[i]
contains the value ofP (f) evaluated at the discrete frequencyfi = i�f , wherei = 0; 1; � � � ; N � 1.

The input data file specified bynoise file contains information about the noise power spectrum
P (f) of a detector. The data contained in this file is formatted as follows: Any line beginning with a# is
regarded as a comment. All other lines are assumed to consist of two floating point numbers separated by
white space. The first floating point number is a frequencyf (in Hz); the second floating point number is
the square root of theone-sidednoise power spectrumP (f), evaluated atf . P (f) is defined by equation
(3.18) of Ref. [36]:

h~n�(f)~n(f 0)i =: 1
2
Æ(f � f 0) P (f) : (11.4.1)

Hereh i denotes ensemble average, and~n(f) is the frequency spectrum (i.e., Fourier transform) of the strain
n(t) produced by the noise intrinsic to the detector.P (f) is a non-negative real function, having units of
strain2=Hz (or seconds). It is defined with a factor of 1/2 to agree with the standard definition used by
instrument builders. The total noise power is the integral ofP (f) over all frequencies from 0 to1 (not
from�1 to1). Hence the nameone-sided.

Since the frequency values contained in the input data file need not agree with the desired frequencies
fi = i�f , noise power() must determine the desired values of the noise power spectrum by doing
an interpolation/extrapolation on the input data.noise power() performs a cubic spline interpolation,
using theNumerical Recipes in Croutinesspline() andsplint() . noise power() assumes that
the length of the input data is� 65536, and it uses boundary conditions for a natural spline (i.e., with zero
second derivative on the two boundaries).noise power() also squares the output of thesplint()
routine, since the desired values areP (f)—and not their square roots (which are contained in the input data
file).
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations toP (f) that are not
contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) components, it is important
that the input data file specified bynoise file contain noise power information down to, and
including, zero Hz. This information can be added in “by hand,” for example, if the experimental data
for the noise power spectrum only goes down to 1 Hz. In this case, setting the values of

p
P (f) at

0:0; 0:1; 0:2; � � � ; 0:9 Hz equal to its 1 Hz value seems to be sufficient. (See Sec. 11.5 for a similar
comment regardingwhiten() .)
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11.5 Function: whiten()

void whiten(char *whiten file, int n, float delta f, double *whiten out)
This function calculates the real and imaginary parts of the spectrum~W (f) of the whitening filter of a
detector at a given set of discrete frequency values, using information contained in a data file.

The arguments ofwhiten() are:

whiten file: Input. A character string that specifies the name of a data file containing information
about the spectrum~W (f) of the whitening filter of a detector. Like thedetectors.dat and noise
power spectrum data files described in Secs. 11.1 and 11.4, the whitening filter data file should reside
in the directory pointed to by theGRASPPARAMETERSenvironment variable (which you may set as
you wish). If you want to use the whitening filter data files distributed with GRASP, use a command
like:
setenv GRASP PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own whitening filter data files,
then simply set theGRASPPARAMETERSenvironment variable to point to the directory containing
these files. Note, however, that if a program also needs to access either detector site information or
noise power spectrum data, then all of the files containing this information should reside in thesame
directory.

n: Input. The numberN of discrete frequency values at which the real and imaginary parts of the spectrum
~W (f) of the whitening filter are to be evaluated.

delta f: Input. The spacing�f (in Hz) between two adjacent discrete frequency values:�f :=
fi+1 � fi.

whiten out: Output.whiten out[0..2*n-1] is an array of double precision variables containing
the values of the real and imaginary parts of the spectrum~W (f) of the whitening filter. These variables
have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root of the noise
power spectrumP (f). whiten out[2*i] andwhiten out[2*i+1] contain, respectively, the
values of the real and imaginary parts of~W (f) evaluated at the discrete frequencyfi = i�f , where
i = 0; 1; � � � ; N � 1.

The input data file specified bywhiten file contains information about the spectrum~W (f) of the
whitening filter of a detector. The data contained in this file is formatted as follows: Any line beginning
with a # is regarded as a comment. All other lines are assumed to consist of three floating point numbers,
each separated by white space. The first floating point number is a frequencyf (in Hz). The second and
third floating point numbers are, respectively, the real and imaginary parts of the spectrum~W (f), evaluated
at f . These last two numbers have units ofrHz=strain (or sec�1=2). This is because the whitening filter is,
effectively, the inverse of the amplitude

p
P (f) of the noise power spectrum.

Since the frequency values contained in the input data file need not agree with the desired frequencies
fi = i�f , whiten() must determine the desired values of the real and imaginary parts of the spectrum of
the whitening filter by doing an interpolation/extrapolation on the input data. Similar tonoise power()
(see Sec. 11.4),whiten() performs a cubic spline interpolation, using thespline() andsplint()
routines fromNumerical Recipes in C.Like noise power() , whiten() assumes that the length of the
input data is� 65536, and it uses boundary conditions for a natural spline. Unlikenoise power() ,
whiten() does not have to square the output of thesplint() routine, since the data contained in the
input file and the desired output data both have the same form (i.e., both involve just the real and imaginary
parts of ~W (f)).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu
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Comments: In order for the cubic spline interpolation routines to yield approximations to~W (f) that are not
contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) components, it is important
that the input data file specified bywhiten file contain information about the whitening filter
down to, and including, zero Hz. This information can be added in “by hand,” for example, if the
experimental data for the spectrum of the whitening filter only goes down to 1 Hz. In this case, setting
the values of~W (f) at 0:0; 0:1; 0:2; � � � ; 0:9 Hz equal to their 1 Hz values seems to be sufficient. (See
Sec. 11.4 for a similar comment regardingnoise power() .)

Also, for the initial and advanced LIGO detector noise models, the spectra~W (f) of the whitening
filters contained in the input data files were constructed by simply inverting the square roots of the
corresponding noise power spectraP (f). The spectra of the whitening filters thus constructed are
real. Although this method of obtaining information about the spectra of the whitening filters is
fine for simulation purposes, the data contained in the actual whitening filter input data files will
be obtainedindependentlyfrom that contained in the noise power spectra data files, and the spectra
~W (f)will in general be complex. The functionwhiten() described above—and all other stochastic

background routines—allow for this more general form of whitening filter data.
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11.6 Function: overlap()

void overlap(float *site1 parameters, float *site2 parameters, int n, float
delta f, double *gamma12)
This function calculates the values of the overlap reduction function(f), which is the averaged product
of the response of a pair of detectors to an isotropic and unpolarized stochastic background of gravitational
radiation.

The arguments ofoverlap() are:

site1 parameters: Input. site1 parameters[0..8] is an array of nine floating point variables
that define the position of the central station of the first detector site and the orientation of its two
arms. The three-vectorsite1 parameters[0..2] are the(x; y; z) components (in cm) of the
position vector of the central station of the first site, as measured in a reference frame with the origin
at the center of the earth, thez-axis exiting the North pole, and thex-axis passing out the line of0Æ

longitude. The three-vectorsite1 parameters[3..5] are the(x; y; z) components (in cm) of a
vector pointing along the direction of the first arm of the first detector (from the central station to the
end station). The three-vectorsite1 parameters[6..8] are the(x; y; z) components (in cm)
of a vector pointing along the direction of the second arm of the first detector (from the central station
to the end station).

site2 parameters: Input. site2 parameters[0..8] is an array of nine floating point variables
that define the position of the central station of the second detector site and the orientation of its two
arms, in exactly the same format as the previous argument.

n: Input. The numberN of discrete frequency values at which the overlap reduction function(f) is to
be evaluated.

delta f: Input. The spacing�f (in Hz) between two adjacent discrete frequency values:�f :=
fi+1 � fi.

gamma12: Output. gamma12[0..n-1] is an array of double precision variables containing the val-
ues of the overlap reduction(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i�f , where
i = 0; 1; � � � ; N � 1.

The values of(f) calculated byoverlap() are defined by equation (3.9) of Ref. [36]:

(f) :=
5

8�

Z
S2
d
̂ e2�if
̂��~x=c

�
F+
1 F

+
2 + F�1 F

�
2

�
: (11.6.1)

Here
̂ is a unit-length vector on the two-sphere,�~x is the separation vector between the two detector sites,
andF+;�

i is the response of detectori to the+ or� polarization. For the first detector(i = 1) one has

F+;�
1 =

1

2

�
X̂a
1 X̂

b
1 � Ŷ a

1 Ŷ
b
1

�
e+;�ab (
̂) ; (11.6.2)

where the directions of the first detector’s arms are defined byX̂a
1 and Ŷ a

1 , ande+;�ab (
̂) are the spin-two
polarization tensors for the “plus” and “cross” polarizations, respectively. (A similar expression can be
written down for the second detector.) The normalization of(f) is determined by the following statement:
For coincident and coaligned detectors (i.e., for two detectors located at the same place, with both pairs of
arms pointing in the same directions),(f) = 1 for all frequencies.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

GRASP RELEASE 1.9.8 Page 378 May 19, 2000



Section
11.7

GRASP Routines: Stochastic background detection
Example: overlap program

Page
379

11.7 Example:overlap program

The following example program shows one way of combining the functionsdetector site() and
overlap() to calculate the overlap reduction function(f) for a given pair of detectors. In particu-
lar, we calculate(f) for the Hanford, WA and Livingston, LA LIGO detector sites. The resulting overlap
reduction function data is stored as two columns of double precision numbers (fi and (fi)) in the file
LIGO overlap.dat . Herefi = i�f with i = 0; 1; � � � ; N � 1. The values ofN and�f are input
parameters to the program, which the user can change if he/she desires. (See the#define statements
listed at the beginning of the program.) Also, by changing the site location identification numbers and the
output file name, the user can calculate and save the overlap reduction function foranypair of detectors—
e.g., the Hanford, WA LIGO detector and the GEO-600 detector; the GEO-600 and VIRGO detector; the
Garching and Glasgow detectors; etc. The overlap reduction function data that is stored in the file can then
be displayed withxmgr , for example. (See Fig. 74.)

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program to illustrate the function overlap()�=

#include "grasp.h"

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� 1=LIGO-Hanford site�=
#define SITE2 CHOICE 2 =� 2=LIGO-Livingston site�=
#define N 10000 =� number of frequency points�=
#define DELTA F 1.0 =� frequency spacing (in Hz)�=
#define OUT FILE "LIGO_overlap.dat" =� output filename�=

int main(int argc,char ��argv)
f

int i;
double f;

float site1 parameters[9],site2 parameters[9];
char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �gamma12;

FILE �fp;
fp=fopen(OUT FILE,"w");

=� ALLOCATE MEMORY �=
gamma12=(double �)malloc(N �sizeof(double));

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
detector site(DETECTORS FILE,SITE1 CHOICE,site1 parameters,site1 name,

noise1 file,whiten1 file);
detector site(DETECTORS FILE,SITE2 CHOICE,site2 parameters,site2 name,

noise2 file,whiten2 file);

=� CALL OVERLAP() AND WRITE DATA TO THE FILE �=
overlap(site1 parameters,site2 parameters,N,DELTA F,gamma12);

for (i=0;i <N;i++) f
f=i �DELTA F;
fprintf(fp,"%e %e\n",f,gamma12[i]);

g
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fclose(fp);

return 0;
g
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Figure 74: The overlap reduction function(f) for the Hanford, WA and Livingston, LA LIGO detector
pair.
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11.8 Function: get IFO12()

get IFO12(FILE *fp1, FILE *fp2, FILE *fp1lock, FILE *fp2lock, int n, float
*out1, float *out2, float *srate1, float *srate2)
This function gets real interferometer output (IFO) data from two detector sites.

The arguments ofget IFO12() are:

fp1: Input. A pointer to a file that contains the interferometer output (IFO) data produced by the first
detector.

fp2: Input. A pointer to a file that contains the interferometer output (IFO) data produced by the second
detector.

fp1lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the first detector.

fp2lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the second detector.

n: Input. The numberN of data points to be retrieved.

out1: Output.out1[0..n-1] is an array of floating point variables containing the values of the inter-
ferometer output produced by the first detector. These variables have units of ADC counts.out1[i]
contains the value of the whitened data streamo1(t) evaluted at the discrete timeti = i�t1, where
i = 0; 1; � � � ; N � 1 and�t1 is the sampling period of the first detector, defined below.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
interferometer output produced by the second detector, in exactly the same format as the previous
argument.

srate1: Output. The sample rate�f1 (in Hz) of the first detector.�t1 := 1=�f1 (in sec) is the
corresponding sampling period of the first detector.

srate2: Output. The sample rate�f2 (in Hz) of the second detector.�t2 := 1=�f2 (in sec) is the
corresponding sampling period of the second detector.

get IFO12() consists effectively of two calls toget data() , which is described in detail in Sec. 3.6
It prints out a warning message if no data remains for one or both detectors. For that case, bothout1[]
andout2[] are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Currently,get IFO12() callsget data() andget data2() , whereget data2() is
simply a copy of theget data() routine. get data() should eventually be modified so that it
can handle simultaneous requests for data from more than one detector. After this change is made, the
functionget data2() should be removed.
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11.9 Function: simulate noise()

void simulate noise(int n, float delta t, double *power, double *whiten out,
float *out, int *pseed)
This function simulates the generation of noise intrinsic to a detector. The output is a (not necessarily
continuous-in-time) whitened data streamo(t) representing the detector output when only detector noise is
present.

The arguments ofsimulate noise() are:

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detector, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detector.

power: Input. power[0..n/2-1] is an array of double precision variables containing the values of the
noise power spectrumP (f) of the detector. These variables have units ofstrain2=Hz (or seconds).
power[i] contains the value ofP (f) evaluated at the discrete frequencyfi = i=(N�t), where
i = 0; 1; � � � ; N=2 � 1.

whiten out: Input. whiten out[0..n-1] is an array of double precision variables containing the
values of the real and imaginary parts of the spectrum~W (f) of the whitening filter of the detector.
These variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root
of the noise power spectrumP (f). whiten out[2*i] andwhiten out[2*i+1] contain, re-
spectively, the values of the real and imaginary parts of~W (f) evaluated at the discrete frequency
fi = i=(N�t), wherei = 0; 1; � � � ; N=2 � 1.

out: Output.out[0..n-1] is an array of floating point variables containing the values of the whitened
data streamo(t) representing the output of the detector when only detector noise is present.o(t) is
the convolution of detector whitening filterW (t) with the noisen(t) intrinsic to the detector. The
variablesout[] have units of rHz (orsec�1=2), which follows from the definition ofn(t) as a strain
and ~W (f) as the “inverse” of the square root of the noise power spectrumP (f). out[i] contains
the value ofo(t) evaluated at the discrete timeti = i�t, wherei = 0; 1; � � � ; N � 1.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulate noise() simulates the generation of noise intrinsic to a detector in the following series
of steps:

(i) It first constructs random variables~n(fi) in the frequency domain that have zero mean and satisfy:

h~n�(fi)~n(fj)i = 1

2
T Æij P (fi) ; (11.9.1)

whereh i denotes ensemble average. The above equation is just the discrete frequency version of
Eq. (11.4.1). This equation can be realized by setting

~n(fi) =
1

2

p
T P 1=2(fi) (ui + ivi) ; (11.9.2)

whereui andvi are statistically independent (real) Gaussian random variables, each having zero mean
and unit variance. These Gaussian random variables are produced by calls to theNumerical Recipes
in C random number generator routinegasdev() .

GRASP RELEASE 1.9.8 Page 382 May 19, 2000



Section
11.9

GRASP Routines: Stochastic background detection
Function: simulate noise()

Page
383

(ii) simulate noise() then whitens the data in the frequency domain by multiplying~n(fi) by the
frequency components~W (fi) of the whitening filter of the detector:

~o(fi) := ~n(fi) ~W (fi) : (11.9.3)

This (complex) multiplication in the frequency domain corresponds to the convolution ofn(t) and
W (t) in the time domain. By convention, the DC (i.e., zero frequency) and Nyquist critical frequency
components of~o(fi) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components~o(fi) into the time domain
to obtain the whitened data streamo(ti). Hereti = i�t with i = 0; 1; � � � ; N � 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to simulate the
noise attwo detectors simultaneously. Since the time-series data are real, the two Fourier transforms
that would need to be performed in step (iii) could be done simultaneously. However, for modularity
of design, and to simulate noise for “single-detector” gravity-wave searches, we decided to write the
above routine instead.
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11.10 Function:simulate sb()

void simulate sb(int n, float delta t, float omega 0, float f low, float f high,
double *gamma12, double *whiten1, double *whiten2, float *out1, float *out2,
int *pseed)
This function simulates the generation of an isotropic and unpolarized stochastic background of gravita-
tional radiation having a constant frequency spectrum:
gw(f) = 
0 for flow � f � fhigh. The outputs are
(not necessarily continuous-in-time) whitened data streamo1(t) ando2(t) representing the detector outputs
when only a stochastic background signal is present.

The arguments ofsimulate sb() are:

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detectors, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detectors.

omega 0: Input. The constant value
0 (dimensionless) of the frequency spectrum
gw(f) for the
stochastic background:


gw(f) =

(

0 flow � f � fhigh
0 otherwise:


0 should be greater than or equal to zero.

f low: Input. The frequencyflow (in Hz) below which the spectrum
gw(f) of the stochastic background
is zero. flow should lie in the range0 � flow � fNyquist, wherefNyquist is the Nyquist critical
frequency. (The Nyquist critical frequency is defined byfNyquist := 1=(2�t), where�t is the
sampling period of the detectors.)flow should also be less than or equal tofhigh.

f high: Input. The frequencyfhigh (in Hz) above which the spectrum
gw(f) of the stochastic back-
ground is zero.fhigh should lie in the range0 � fhigh � fNyquist. It should also be greater than or
equal toflow.

gamma12: Input. gamma12[0..n/2-1] is an array of double precision variables containing the values
of the overlap reduction function(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i=(N�t), where
i = 0; 1; � � � ; N=2 � 1.

whiten1: Input. whiten1[0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum~W1(f) of the whitening filter of the first detector. These
variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root of the
noise power spectrumP1(f). whiten1[2*i] andwhiten1[2*i+1] contain, respectively, the
values of the real and imaginary parts of~W1(f) evaluated at the discrete frequencyfi = i=(N�t),
wherei = 0; 1; � � � ; N=2� 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum~W2(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

out1: Output. out1[0..n-1] is an array of floating point variables containing the values of the
whitened data streamo1(t) representing the output of the first detector when only a stochastic back-
ground signal is present.o1(t) is the convolution of detector whitening filterW1(t) with the gravi-
tational strainh1(t). The variablesout1[] have units of rHz (orsec�1=2), which follows from the
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definition ofh1(t) as a strain and~W1(f) as the “inverse” of the square root of the noise power spec-
trum P1(f). out1[i] contains the value ofo1(t) evaluated at the discrete timeti = i�t, where
i = 0; 1; � � � ; N � 1.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
whitened data streamo2(t) representing the output of the second detector when only a stochastic
background signal is present, in exactly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulate sb() simulates the generation of an isotropic and unpolarized stochastic background of
gravitational radiation having a constant frequency spectrum
gw(f) = 
0 for flow � f � fhigh in the
following series of steps:

(i) It first constructs random variables~h1(fi) and~h2(fi) in the frequency domain that have zero mean
and satisfy:

h~h�1(fi)~h1(fj)i =
1

2
T Æij

3H2
0

10�2
f�3i 
0 (11.10.1)

h~h�2(fi)~h2(fj)i =
1

2
T Æij

3H2
0

10�2
f�3i 
0 (11.10.2)

h~h�1(fi)~h2(fj)i =
1

2
T Æij

3H2
0

10�2
f�3i 
0 (fi) ; (11.10.3)

whereh i denotes ensemble average. Here~h1(fi) and~h2(fi) are the Fourier components of the grav-
itational strainsh1(t) andh2(t) at the two detectors. The above equations are the discrete frequency
versions of equation (3.17) of Ref. [36], with
gw(f) = 
0 for flow � f � fhigh. They can be
realized by setting

~h1(fi) =
1

2

p
T

 
3H2

0

10�2

!1=2

f
�3=2
i 


1=2
0 (x1i + iy1i) (11.10.4)

~h2(fi) = ~h1(fi) (fi) + (11.10.5)

1

2

p
T

 
3H2

0

10�2

!1=2

f
�3=2
i 


1=2
0

q
1� 2(fi) (x2i + iy2i) ; (11.10.6)

wherex1i, y1i, x2i, andy2i are statistically independent (real) Gaussian random variables, each having
zero mean and unit variance. (Note: Thex1i, y1i, x2i, andy2i random variables are statistically
independent of theui andvi random variables defined in Sec. 11.9.) These Gaussian random variables
are produced by calls to theNumerical Recipes in Crandom number generator routinegasdev() .
Note also that the second term of~h2(fi) (which is proportional to

p
1� 2(fi)) is needed to obtain

equation (11.10.2). Without this term,h~h�2(fi)~h2(fj)i would include an additional (unwanted) factor
of 2(fi).

(iii) simulate sb() then whitens the data in the frequency domain by multiplying~h1(fi) and~h2(fi)
by the frequency components~W1(fi) and ~W2(fi) of the whitening filters of the two detectors:

~o1(fi) := ~h1(fi) ~W1(fi) (11.10.7)

~o2(fi) := ~h2(fi) ~W2(fi) : (11.10.8)

This (complex) multiplication in the frequency domain corresponds to the convolution ofh1(t) and
W1(t), andh2(t) andW2(t) in the time domain. By convention, the DC (i.e., zero frequency) and
Nyquist critical frequency components of~o1(fi) and~o2(fi) are set to zero.
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(iii) The final step consists of Fourier transforming the frequency components~o1(fi) and ~o2(fi) into
the time domain to obtain the whitened data streamso1(ti) and o2(ti). Here ti = i�t with i =
0; 1; � � � ; N � 1. Since~o�1(fi) and~o�2(fi) are the Fourier transforms of real data sets, the two Fourier
transforms can be performed simultaneously.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to simulate the genera-
tion of a stochastic background and intrinsic detector noise simultaneously, we have chosen—for the
sake of modularity—to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 11.9.)
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11.11 Function:combine data()

void combine data(int which, int n, float *in1, float *in2, float *out)
This low-level function takes two arrays as input, shifts them by half their length, and combines them
with one another and with data stored in an internally-defined static buffer to produce output data that is
continuous from one call ofcombine data() to the next.

The arguments ofcombine data() are:

which: Input. An integer variable specifying which internally-defined static buffer should be used when
combining the input arrays with data saved from a previous call. The allowed values are1 � which �
16.

n: Input. The numberN of data points contained in the input and output arrays.N is assumed to be even.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the first input
array.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the second
input array.

out: Output.out[0..n-1] is an array of floating point variables containing the output data, which is
continuous from one call ofcombine data() to the next.

combine data() produces continuous output data by modifying the appropriately chosen static
buffer buf[0..3*n/2-1] as follows:

buf[i]+ = sin[i � M PI=n] � in1[i] for 0 � i � n=2� 1

buf[i]+ = sin[i � M PI=n] � in1[i] + sin[(i� n=2) � M PI=n] � in2[i� n=2] for n=2 � i � n� 1

buf[i]+ = sin[(i� n=2) � M PI=n] � in2[i� n=2] for n � i � 3 � n=2� 1 :

The values of the output arrayout[0..n-1] are taken from the first two-thirds of the buffer, while the
last one-third of the buffer is copied to the first third of the buffer in preparation for the next call. When this
is complete, the last two-thirds of the buffer is cleared.

One nice feature of combining the data with a sine function (rather than with a triangle function, for
example) is that if the input data represent statistically independent, stationary random processes having
zero mean and the same variance, then the output data will also have zero mean and the same variance. This
is a consequence of the trigonometric identity

sin2[i � M PI=n] + sin
2[(i� n=2) � M PI=n] = 1 : (11.11.1)

Thus,combine data() preserves the first and second-order statistical properties of the input data when
constructing the output.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, the two input arrays would represent two
whitened data streams produced by a single detector, which are then time-shifted and combined to
simulatecontinuous-in-timedetector output. Since the contents of the internally-defined static buffer
are equal to zero whencombine data() is first called, the amplitude of the output array initially
builds up from zero to its nominal value over the course of the firstN=2 data points. This corresponds
to an effective “turn-on” transient, with turn-on time equal toN �t=2 (�t being the time between
successive data samples).

GRASP RELEASE 1.9.8 Page 387 May 19, 2000



Section
11.12

GRASP Routines: Stochastic background detection
Function: monte carlo()

Page
388

11.12 Function:monte carlo()

void monte carlo(int fake sb, int fake noise1, int fake noise2, int n, float
delta t, float omega 0, float f low, float f high, double *gamma12, double
*power1, double *power2, double *whiten1, double *whiten2, float *out1, float
*out2, int *pseed)
This high-level function simulates (if desired) the generation of noise intrinsic to a pair of detectors, and
an isotropic and unpolarized stochastic background of gravitational radiation having a constant frequency
spectrum:
gw(f) = 
0 for flow � f � fhigh. The outputs are two continuous-in-time whitened data
streamso1(t) ando2(t) representing the detector outputs in the presence of a stochastic background signal
plus noise.

The arguments ofmonte carlo() are:

fake sb: Input. An integer variable that should be set equal to 1 if a simulated stochastic background is
desired.

fake noise1: Input. An integer variable that should be set equal to 1 if simulated detector noise for the
first detector is desired.

fake noise2: Input. An integer variable that should be set equal to 1 if simulated detector noise for the
second detector is desired.

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detector, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detector.

omega 0: Input. The constant value
0 (dimensionless) of the frequency spectrum
gw(f) for the
stochastic background:


gw(f) =

(

0 flow � f � fhigh
0 otherwise:


0 should be greater than or equal to zero.

f low: Input. The frequencyflow (in Hz) below which the spectrum
gw(f) of the stochastic background
is zero. flow should lie in the range0 � flow � fNyquist, wherefNyquist is the Nyquist critical
frequency. (The Nyquist critical frequency is defined byfNyquist := 1=(2�t), where�t is the
sampling period of the detector.)flow should also be less than or equal tofhigh.

f high: Input. The frequencyfhigh (in Hz) above which the spectrum
gw(f) of the stochastic back-
ground is zero.fhigh should lie in the range0 � fhigh � fNyquist. It should also be greater than or
equal toflow.

gamma12: Input. gamma12[0..n/2-1] is an array of double precision variables containing the values
of the overlap reduction function(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i=(N�t), where
i = 0; 1; � � � ; N=2 � 1.

power1: Input. power1[0..n/2-1] is an array of double precision variables containing the values
of the noise power spectrumP1(f) of the first detector. These variables have units ofstrain2=Hz
(or seconds).power1[i] contains the value ofP1(f) evaluated at the discrete frequencyfi =
i=(N�t), wherei = 0; 1; � � � ; N=2 � 1.
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power2: Input. power2[0..n/2-1] is an array of double precision variables containing the values
of the noise power spectrumP2(f) of the second detector, in exactly the same format as the previous
argument.

whiten1: Input. whiten1[0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum~W1(f) of the whitening filter of the first detector. These
variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root of the
noise power spectrumP1(f). whiten1[2*i] andwhiten1[2*i+1] contain, respectively, the
values of the real and imaginary parts of~W1(f) evaluated at the discrete frequencyfi = i=(N�t),
wherei = 0; 1; � � � ; N=2� 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum~W2(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

out1: Output. out1[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data streamo1(t) representing the output of the first detector.o1(t) is
the convolution of detector whitening filterW1(t) with the data streams1(t) := h1(t) +n1(t), where
h1(t) is the gravitational strain andn1(t) is the noise intrinsic to the detector. These variables have
units of rHz (orsec�1=2), which follows from the definition ofs1(t) as a strain and~W1(f) as the
“inverse” of the square root of the noise power spectrumP1(f). out1[i] contains the value ofo1(t)
evaluated at the discrete timeti = i�t, wherei = 0; 1; � � � ; N � 1.

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data streamo2(t) representing the output of the second detector, in ex-
actly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

monte carlo() is a very simple function, consisting of calls tosimulate sb() , simulate noise() ,
andcombine data() . If fake sb=1 , monte carlo() callssimulate sb() twice, producing two
sets of data that are time-shifted and combined bycombine data() to simulate continuous-in-time de-
tector output. Similar statements apply when eitherfake noise1 or fake noise2 equals 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.13 Example:monte carlo program

The following example program is a simple demonstration of the functionmonte carlo() , which was
defined in the previous section. It produces animated output representing time-series data for simulated
detector noise and for a simulated stochastic background having a constant frequency spectrum:
gw(f) =

0 for flow � f � fhigh. The output from this program must be piped intoxmgr . The parameters that were
chosen for the example program shown below produce whitened time-series data for a stochastic background
having
gw(f) = 1:0 � 10�3 for 5 Hz � f � 5000 Hz. For this particular example, the noise intrinsic to
the detectors was set to zero. A sample “snapshot” of the animation is shown in Fig. 75.

By modifying the parameters listed at the top of the example program, one can also simulate an un-
whitened stochastic background signal (Fig. 76), and whitened and unwhitened data streams corresponding
to the noise intrinsic to an initial LIGO detector (Figs. 77 and 78). Other combinations of signal, noise,
whitening, and unwhitening are of course also possible. To produce the animated output, simply enter the
command:

monte carlo | xmgr -pipe &

after compilation.
Note: The amplitude of the animated output initially builds up from zero to its nominal value over

(approximately) the first 1.5 seconds. This “turn-on” transient is a consequence of the overlapping technique
used bycombine data() to produce continuous-in-time detector output. (See the comment at the end of
Section 11.11.)

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program to illustrate montecarlo()�=

#include "grasp.h"
void graphout(float,float,int);

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� identification number for site 1�=
#define SITE2 CHOICE 2 =� identification number for site 2�=
#define FAKE SB 1 =� 1: simulate stochastic background�=

=� 0: no stochastic background�=
#define FAKE NOISE1 0 =� 1: simulate detector noise at site 1�=

=� 0: no detector noise at site 1�=
#define FAKE NOISE2 0 =� 1: simulate detector noise at site 2�=

=� 0: no detector noise at site 2�=
#define WHITEN OUT1 1 =� 1: whiten output at site 1�=

=� 0: don’t whiten output at site 1�=
#define WHITEN OUT2 1 =� 1: whiten output at site 2�=

=� 0: don’t whiten output at site 2�=
#define N 65536 =� number of data points�=
#define DELTA T (5.0e �5) =� sampling period (in sec)�=
#define OMEGA 0 (1.0e �3) =� omega0 �=
#define F LOW (5.0) =� minimum frequency (in Hz)�=
#define F HIGH (5.0e3) =� maximum frequency (in Hz)�=
#define NUM RUNS 5 =� number of runs�=

int main(int argc,char ��argv)
f

int i,j,last=0,seed= �17;
float delta f,tstart=0.0,time now;

float site1 parameters[9],site2 parameters[9];
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char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �power1, �power2, �whiten1, �whiten2, �gamma12;
float �out1, �out2;

=� ALLOCATE MEMORY �=
power1=(double �)malloc((N =2) �sizeof(double));
power2=(double �)malloc((N =2) �sizeof(double));
whiten1=(double �)malloc(N �sizeof(double));
whiten2=(double �)malloc(N �sizeof(double));
gamma12=(double �)malloc((N =2) �sizeof(double));
out1=(float �)malloc(N �sizeof(float));
out2=(float �)malloc(N �sizeof(float));

=� IDENTITY WHITENING FILTERS (IF WHITEN OUT1=WHITEN OUT2=0)�=
for (i=0;i <N=2;i++) f

whiten1[2 �i]=whiten2[2 �i]=1.0;
whiten1[2 �i+1]=whiten2[2 �i+1]=0.0;

g

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
detector site(DETECTORS FILE,SITE1 CHOICE,site1 parameters,site1 name,

noise1 file,whiten1 file);
detector site(DETECTORS FILE,SITE2 CHOICE,site2 parameters,site2 name,

noise2 file,whiten2 file);

=� CONSTRUCT NOISE POWER SPECTRA, OVERLAP REDUCTION FUNCTION, AND�=
=� (NON-TRIVIAL) WHITENING FILTERS, IF DESIRED�=
delta f=(float)(1.0 =(N�DELTA T));
noise power(noise1 file,N =2,delta f,power1);
noise power(noise2 file,N =2,delta f,power2);
overlap(site1 parameters,site2 parameters,N =2,delta f,gamma12);
if (WHITEN OUT1==1) whiten(whiten1 file,N =2,delta f,whiten1);
if (WHITEN OUT2==1) whiten(whiten2 file,N =2,delta f,whiten2);

=� SIMULATE STOCHASTIC BACKGROUND AND=OR DETECTOR NOISE�=

for (j=0;j <NUMRUNS;j++) f
monte carlo(FAKE SB,FAKE NOISE1,FAKE NOISE2,N,DELTA T,OMEGA0,F LOW,F HIGH,

gamma12,power1,power2,whiten1,whiten2,out1,out2, &seed);

=� DISPLAY OUTPUT USING XMGR�=
for (i=0;i <N;i++) f

time now=tstart+i �DELTA T;
printf("%e\t%e\n",time now,out1[i]);

g
if (j==NUM RUNS�1) last=1;
graphout(tstart,tstart+N �DELTA T,last);

=� UPDATE TSTART�=
tstart+=N �DELTA T;

g =� end for (j=0;j<NUM RUNS;j++)�=

return 0;
g

void graphout(float xmin,float xmax,int last)

GRASP RELEASE 1.9.8 Page 391 May 19, 2000



Section
11.13

GRASP Routines: Stochastic background detection
Example: monte carlo program

Page
392

f
static int first=1;
printf(" &\n");

if (first) f

=� first time we draw plot�=
printf("@doublebuffer true\n"); =� keep display from flashing�=
printf("@focus off\n");
printf("@world xmin %e\n",xmin);
printf("@world xmax %e\n",xmax);
printf("@autoscale yaxes\n");
printf("@xaxis label \"t (sec)\"\n");
printf("@title \"Simulated Detector Ouput\"\n");
printf("@subtitle \"(stochastic background--whitened)\"\n");
printf("@redraw \n");
if (!last) printf("@kill s0\n"); =� kill set; ready to read again�=

first=0;
g
else f

=� other timeOAs we draw plot�=
printf("@world xmin %e\n",xmin);
printf("@world xmax %e\n",xmax);
printf("@autoscale yaxes\n");
if (!last) printf("@kill s0\n"); =� kill set; ready to read again�=

g

return;
g
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15.1 15.6 16.1 16.6 17.1 17.6 18.1
t (sec)
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−10.0

0.0

10.0

20.0

30.0

Simulated Detector Ouput
(stochastic background−−whitened)

Figure 75: Time-series data (whitened) for a stochastic background having a constant frequency spectrum:

gw(f) = 1:0 � 10�3 for 5 Hz � f � 5000 Hz.
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(stochastic background−−unwhitened)

Figure 76: Time-series data (unwhitened) for a stochastic background having a constant frequency spec-
trum:
gw(f) = 1:0 � 10�3 for 5 Hz � f � 5000 Hz.
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Figure 77: Time-series data (whitened) for the noise intrinsic to an initial LIGO detector.
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15.1 15.6 16.1 16.6 17.1 17.6 18.1
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(initial LIGO detector noise−−unwhitened)

Figure 78: Time-series data (unwhitened) for the noise intrinsic to an initial LIGO detector.
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11.14 Function: test data12()

int test data12(int n, float *data1, float *data2)
This function tests two data sets to see if they have probability distributions consistent with a Gaussian
normal distribution.

The arguments oftest data12() are:

n: Input. The numberN of data points contained in each of the input arrays.

data1: Input. data1[0..n-1] is an array of floating point variables containing the values of the first
array to be tested.

data2: Input. data2[0..n-1] is an array of floating point variables containing the values of the
second array to be tested.

test data12() is a simple function that makes use of theis gaussian() utility routine. (See
Sec. 16.5 for more details.)test data12() prints a warning message if either of the data sets contain
a value too large to be stored in 16 bits. (The actual maximum value was chosen to be 32765.) It returns
1 if both data sets pass theis gaussian() test. It returns 0 if either data set fails, and prints a message
indicating the bad set.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations,data1[] anddata2[] contain the
values of the whitened data streamso1(t) ando2(t) that are output by the two detectors.
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11.15 Function:extract noise()

void extract noise(int average, int which, float *in, int n, float delta t,
double *whiten out, double *power)
This function calculates the real-time noise power spectrumP (f) of a detector, using a Hann window and
averaging the spectrum for two overlapped data sets, if desired.

The arguments ofextract noise() are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time noise
power spectra corresponding to two overlapped data sets are to be averaged.

which: Input. An integer variable specifying which internally-defined static buffer should be used when
overlapping the new input data set with data saved from a previous call. The allowed values are
1 � which � 16.

in: Input. in[0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data streamo(t) produced by the detector.o(t) is the convolution of
detector whitening filterW (t) with the data streams(t) := h(t)+n(t), whereh(t) is the gravitational
strain andn(t) is the noise intrinsic to the detector. The variablesin[] have units of rHz (orsec�1=2),
which follows from the definition ofs(t) as a strain and~W (f) as the “inverse” of the square root of
the noise power spectrumP (f). in[i] contains the value ofo(t) evaluated at the discrete time
ti = i�t, wherei = 0; 1; � � � ; N � 1.

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detector, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detector.

whiten out: Input. whiten out[0..n-1] is an array of double precision variables containing the
values of the real and imaginary parts of the spectrum~W (f) of the whitening filter of the detector.
These variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root
of the noise power spectrumP (f). whiten out[2*i] andwhiten out[2*i+1] contain, re-
spectively, the values of the real and imaginary parts of~W (f) evaluated at the discrete frequency
fi = i=(N�t), wherei = 0; 1; � � � ; N=2 � 1.

power: Output.power[0..n/2-1] is an array of double precision variables containing the values of
the real-time noise power spectrumP (f) of the detector. Explicitly,

P (f) :=
2

T
~s�(f)~s(f) ; (11.15.1)

where~s(f) is the Fourier transform of the unwhitened data streams(t) produced by the detector.
These variables have units ofstrain2=Hz (or seconds).power[i] contains the value ofP (f) eval-
uated at the discrete frequencyfi = i=(N�t), wherei = 0; 1; � � � ; N=2 � 1.

extract noise() calculates the real-time noise power spectrumP (f) as follows:

(i) It first stores the input data streamo(t) in the last two-thirds of an appropriately chosen static buffer
buf[0..3*n/2-1] . The first one-third of this buffer contains the input data left over from the
previous call.
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(ii) It then multiplies the first two-thirds of this buffer by the Hann window function:

w(t) :=

r
8

3
� 1
2

�
1� cos

�
2�t

T

��
: (11.15.2)

The factor
p
8=3 is the “window squared-and-summed” factor described inNumerical Recipes in C,

p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequency domain, where it is unwhitened
by dividing by the (complex) spectrum~W (f) of the whitening filter of the detector. The resulting
unwhitened frequency components are denoted by(1)~s(f); the superscript(1) indicates that we are
analyzing the first of two overlapped data sets.

(iv) The real-time noise power spectrum is then calculated according to:

(1)P (f) :=
2

T
(1)~s�(f) (1)~s(f) : (11.15.3)

(v) The data contained in the last two-thirds of the buffer is then copied to the first two-thirds of the buffer,
and steps (ii)-(iv) are repeated, yielding a second real-time noise power spectrum(2)P (f).

(vi) If average=1,P (f) is given by:

P (f) :=
1

2

h
(1)P (f) + (2)P (f)

i
: (11.15.4)

Otherwise,P (f) = (2)P (f).

(vii) Finally, the data contained in the last two-thirds of the buffer is again copied to the first two-thirds, in
preparation for the next call toextract noise() . The data saved in the first one-third of this buffer
will match onto the next input data stream if the input data from one call ofextract noise() to
the next is continuous.

Note: One should callextract noise() with average 6= 1, when one suspects that the current in-
put data isnotcontinuous with the data that was saved from the previous call. This is because a discontinuity
between the “old” and “new” data sets has a tendency to introduce spurious large frequency components into
the real-time noise power spectrum, which should not be present. Since a single input data stream by itself
is continuous, the noise power spectrum(2)P (f) (which is calculated on the second pass through the data)
will be free of these spurious large frequency components. This is why we setP (f) equal to(2)P (f)—and
not equal to(1)P (f)—whenaverage 6= 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to extract the
real-time noise power spectra attwo detectors simultaneously. However, for modularity of design,
and to allow this function to be used possibly for “single-detector” gravity-wave searches, we decided
to write the above routine instead.
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11.16 Function:extract signal()

void extract signal(int average, float *in1, float *in2, int n, float delta t,
double *whiten1, double *whiten2, double *signal12)
This function calculates the real-time cross-correlation spectrum~s12(f) of the unwhitened data streams
s1(t) ands2(t), using a Hann window and averaging the spectrum for two overlapped data sets, if desired.

The arguments ofextract signal() are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
correlation spectra corresponding to two overlapped data sets are to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data streamo1(t) produced by the first detector.o1(t) is the convolution
of detector whitening filterW1(t) with the data streams1(t) := h1(t) + n1(t), whereh1(t) is the
gravitational strain andn1(t) is the noise intrinsic to the detector. The variablesin1[] have units of
rHz (or sec�1=2), which follows from the definition ofs1(t) as a strain and~W1(f) as the “inverse” of
the square root of the noise power spectrumP1(f). in1[i] contains the value ofo1(t) evaluated at
the discrete timeti = i�t, wherei = 0; 1; � � � ; N � 1.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data streamo2(t) produced by the second detector, in exactly the same
format as the previous argument.

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detectors, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detectors.

whiten1: Input. whiten1[0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum~W1(f) of the whitening filter of the first detector. These
variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root of the
noise power spectrumP1(f). whiten1[2*i] andwhiten1[2*i+1] contain, respectively, the
values of the real and imaginary parts of~W1(f) evaluated at the discrete frequencyfi = i=(N�t),
wherei = 0; 1; � � � ; N=2� 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum~W2(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

signal12: Output. signal12[0..n/2-1] is an array of double precision variables containing the
values of the real-time cross-correlation spectrum

~s12(f) := (~s�1(f) ~s2(f) + c:c:) ; (11.16.1)

where~s1(f) and ~s2(f) are the Fourier transforms of the unwhitened data streamss1(t) ands2(t)
produced by the two detectors. These variables have units ofstrain2 � sec2 (or simply sec2). sig-
nal12[i] contains the value of~s12(f) evaluated at the discrete frequencyfi = i=(N�t), where
i = 0; 1; � � � ; N=2 � 1.

extract signal() calculates the real-time cross-correlation spectrum~s12(f) as follows:
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(i) It first stores the input data streamso1(t) ando2(t) in the last two-thirds of internally-defined static
buffersbuf1[0..3*n/2-1] andbuf2[0..3*n/2-1] . The first one-third of these buffers con-
tains the input data left over from the previous call.

(ii) It then multiplies the first two-thirds of these buffers by the Hann window function:

w(t) :=

r
8

3
� 1
2

�
1� cos

�
2�t

T

��
: (11.16.2)

The factor
p
8=3 is the “window squared-and-summed” factor described inNumerical Recipes in C,

p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequency domain, where it is unwhitened by
dividing by the (complex) spectra~W1(f) and ~W2(f), which represent the whitening filters of the two
detectors. The resulting unwhitened frequency components are denoted by(1)~s(f) and (1)~s(f); the
superscript(1) indicates that we are analyzing the first of two overlapped data sets.

(iv) The real-time cross-correlation spectrum is then calculated according to:

(1)~s12(f) :=
h
(1)~s�1(f)

(1)~s2(f) + c:c:
i
: (11.16.3)

(v) The data contained in the last two-thirds of the buffers is then copied to the first two-thirds of
the buffers, and steps (ii)-(iv) are repeated, yielding a second real-time cross-correlation spectrum
(2)~s12(f).

(vi) If average=1,~s12(f) is given by:

~s12(f) :=
1

2

h
(1)~s12(f) +

(2)~s12(f)
i
: (11.16.4)

Otherwise,~s12(f) = (2)~s12(f).

(vii) Finally, the data contained in the last two-thirds of the buffers is again copied to the first two-thirds, in
preparation for the next call toextract sb() . The data saved in the first one-third of these buffers
will match onto the next input data streams if the input data from one call ofextract sb() to the
next is continuous.

Note: One should callextract sb() with average 6= 1, when one suspects that the current input
data isnot continuous with the data that was saved from the previous call. This is because a discontinuity
between the “old” and “new” data sets has a tendency to introduce spurious large frequency components
into the real-time cross-correlation spectrum, which should not be present. Since a single input data stream
by itself is continuous, the cross-correlation spectrum(2)~s12(f) (which is calculated on the second pass
through the data) will be free of these spurious large frequency components. This is why we set~s12(f)
equal to(2)~s12(f)—and not equal to(1)~s12(f)—whenaverage 6= 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to extract the real-time
detector noise power and cross-correlation signal spectra simultaneously, we have chosen—for the
sake of modularity—to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 11.15.)
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11.17 Function:optimal filter()

void optimal filter(int n, float delta f, float f low, float f high, double
*gamma12, double *power1, double *power2, double *filter12)
This function calculates the values of the spectrum~Q(f) of the optimal filter function, which maximizes
the cross-correlation signal-to-noise ratio for an isotropic and unpolarized stochastic background of gravita-
tional radiation having a constant frequency spectrum:
gw(f) = 
0 for flow � f � fhigh.

The arguments ofoptimal filter() are:

n: Input. The numberN of discrete frequency values at which the spectrum~Q(f) of the optimal filter is
to be evaluated.

delta f: Input. The spacing�f (in Hz) between two adjacent discrete frequency values:�f :=
fi+1 � fi.

f low: Input. The frequencyflow (in Hz) below which the spectrum
gw(f) of the stochastic background—
and hence the optimal filter~Q(f)—is zero.flow should lie in the range0 � flow � fNyquist, where
fNyquist is the Nyquist critical frequency. (The Nyquist critical frequency is defined byfNyquist :=
1=(2�t), where�t is the sampling period of the detectors.)flow should also be less than or equal to
fhigh.

f high: Input. The frequencyfhigh (in Hz) above which the spectrum
gw(f) of the stochastic background—
and hence the optimal filter~Q(f)—is zero. fhigh should lie in the range0 � fhigh � fNyquist. It
should also be greater than or equal toflow.

gamma12: Input. gamma12[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i�f , wherei =
0; 1; � � � ; N � 1.

power1: Input. power1[0..n-1] is an array of double precision variables containing the values of
the noise power spectrumP1(f) of the first detector. These variables have units ofstrain2=Hz (or
seconds).power1[i] contains the value ofP1(f) evaluated at the discrete frequencyfi = i�f ,
wherei = 0; 1; � � � ; N � 1.

power2: Input. power2[0..n-1] is an array of double precision variables containing the values of
the noise power spectrumP2(f) of the second detector, in exactly the same format as the previous
argument.

filter12: Output. filter12[0..n-1] is an array of double precision variables containing the
values of the spectrum~Q(f) of the optimal filter function for the two detectors. These variables
are dimensionless for our choice of normalizationhSi = 
0 T . (See the discussion below.)fil-
ter12[i] contains the value of~Q(f) evaluated at the discrete frequencyfi = i�f , wherei =
0; 1; � � � ; N � 1.

The values of~Q(f) calculated byoptimal filter() are defined by equation (3.32) of Ref. [36]:

~Q(f) := �
(f)
gw(f)

f3P1(f)P2(f)
: (11.17.1)
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Such a filter maximizes the cross-correlation signal-to-noise ratioSNR := �=�, where

� := hSi = T
3H2

0

20�2

Z 1

�1
df (jf j)jf j�3
gw(jf j) ~Q(f) (11.17.2)

�2 := hS2i � hSi2 � T

4

Z 1

�1
df P1(jf j)P2(jf j)j ~Q(f)j2 : (11.17.3)

(T corresponds to the observation time of the measurement.) We are working here under the assumption
that the magnitude of the noise intrinsic to the detectors is much larger than the magnitude of the signal due
to the stochastic background. If this assumption does not hold, Eq. 11.17.3 for�2 needs to be modified, as
discussed in Sec. 11.19.

Note that we have explicitly included a normalization constant� in the definition of ~Q(f). The choice
of � does not affect the value of the signal-to-noise ratio, since� and� are both multiplied by the same
factor of�. For a stochastic background having a constant frequency spectrum


gw(f) =

(

0 flow � f � fhigh
0 otherwise;

it is convenient to choose� so that
� = 
0 T : (11.17.4)

From equations (11.17.1) and (11.17.2), it follows that

� =

"
3H2

0

10�2

0

Z fhigh

flow

df
2(f)

f6P1(f)P2(f)

#�1
(11.17.5)

will do the job. With this choice of�, ~Q(f) is dimensionless and independent of the value of
0. This is
why
0 does not have to be passed as a parameter tooptimal filter() .

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.18 Example:optimal filter program

The following example program shows one way of combining the functionsdetector site() , noise power() ,
overlap() , andoptimal filter() to calculate the spectrum~Q(f) of the optimal filter function for
a given pair of detectors. Below we explictly calculate~Q(f) for the initial Hanford, WA and Livingston,
LA LIGO detectors. (We also choose to normalize the magnitude of the spectrum~Q(f) to 1, for later con-
venience when making plots of the output data.) Noise power information for these two detectors is read
from the input data filenoise init.dat . This file is specified by the information contained indetec-
tors.dat . (See Sec. 11.1 for more details.) The resulting optimal filter function data is stored as two
columns of double precision numbers (fi and ~Q(fi)) in the fileLIGO filter.dat , wherefi = i�f and
i = 0; 1; � � � ; N � 1. A plot of this data is shown in Fig. 79.

As usual, the user can modify the parameters in the#define statements listed at the beginning of the
program to change the number of frequency points, the frequency spacing, etc. used when calculating~Q(f).
Also, by changing the site location identification numbers and the output file name, the user can calculate
and save the spectrum of the optimal filter function foranypair of detectors. For example, Fig. 80 is a plot
of the optimal filter function for the advanced LIGO detectors.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program to illustrate the function optimalfilter() �=

#include "grasp.h"

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� 1=LIGO-Hanford site�=
#define SITE2 CHOICE 2 =� 2=LIGO-Livingston site�=
#define N 500 =� number of frequency points�=
#define DELTA F 1.0 =� frequency spacing (in Hz)�=
#define F LOW 0.0 =� minimum frequency (in Hz)�=
#define F HIGH (1.0e+4) =� maximum frequency (in Hz)�=
#define OUT FILE "LIGO_filter.dat" =� output filename�=

int main(int argc,char ��argv)
f

int i;
double f;
double abs value,max;

float site1 parameters[9],site2 parameters[9];
char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �power1, �power2;
double �gamma12;
double �filter12;

FILE �fp;
fp=fopen(OUT FILE,"w");

=� ALLOCATE MEMORY �=
power1=(double �)malloc(N �sizeof(double));
power2=(double �)malloc(N �sizeof(double));
gamma12=(double �)malloc(N �sizeof(double));
filter12=(double �)malloc(N �sizeof(double));

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
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detector site(DETECTORS FILE,SITE1 CHOICE,site1 parameters,site1 name,
noise1 file,whiten1 file);

detector site(DETECTORS FILE,SITE2 CHOICE,site2 parameters,site2 name,
noise2 file,whiten2 file);

=� CALL NOISE POWER() AND OVERLAP()�=
noise power(noise1 file,N,DELTA F,power1);
noise power(noise2 file,N,DELTA F,power2);
overlap(site1 parameters,site2 parameters,N,DELTA F,gamma12);

=� CALL OPTIMAL FILTER() AND DETERMINE MAXIMUM ABSOLUTE VALUE �=
optimal filter(N,DELTA F,F LOW,F HIGH,gamma12,power1,power2,filter12);

max=0.0;
for (i=0;i <N;i++) f

abs value=fabs(filter12[i]);
if (abs value >max) max=abs value;

g

=� WRITE FILTER FUNCTION (NORMALIZED TO 1) TO FILE�=
for (i=0;i <N;i++) f

f=i �DELTA F;
fprintf(fp,"%e %e\n",f,filter12[i] =max);

g

fclose(fp);

return 0;
g

GRASP RELEASE 1.9.8 Page 405 May 19, 2000



Section
11.18

GRASP Routines: Stochastic background detection
Example: optimal filter program

Page
406

0.0 100.0 200.0 300.0 400.0 500.0
f (Hz)

−1.0

−0.5

0.0

0.5

1.0

Optimal filter function
(for the initial LIGO detectors)

Figure 79: Optimal filter function~Q(f) (normalized to 1) for the initial LIGO detectors.
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Figure 80: Optimal filter function~Q(f) (normalized to 1) for the advanced LIGO detectors.
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11.19 Discussion: Theoretical signal-to-noise ratio for the stochastic background

In order to reliably detect a stochastic background of gravitational radiation, we will need to be able to say
(with a certain level of confidence) that an observed positive mean value for the cross-correlation signal
measurements is not the result of detector noise alone, but rather is the result of an incident stochastic
background. This leads us natually to consider the signal-to-noise ratio, since the larger its value, the more
confident we will be in saying that the observed mean value of our measurements is a valid estimate of
the true mean value of the stochastic background signal. Thus, an interesting question to ask in regard to
stochastic background searches is: “What is the theroretically predicted signal-to-noise ratio after a total
observation timeT , for a given pair of detectors, and for a given strength of the stochastic background?” In
this section, we derive the mathematical equations that we need to answer this question. Numerical results
will be calculated by example programs in Secs. 11.21 and 11.22.

To answer the above question, we will need to evaluate both the mean value

� := hSi (11.19.1)

and the variance
�2 := hS2i � hSi2 (11.19.2)

of the stochastic background cross-correlation signalS. The signal-to-noise ratio SNR is then given by

SNR :=
�

�
: (11.19.3)

As described in Sec. 11.17, if the magnitude of the noise intrinsic to the detectors is much larger than
the magnitude of the signal due to the stochastic background, then

� = T
3H2

0

20�2

Z 1

�1
df (jf j)jf j�3
gw(jf j) ~Q(f) (11.19.4)

�2 � T

4

Z 1

�1
df P1(jf j)P2(jf j)j ~Q(f)j2 ; (11.19.5)

where ~Q(f) is an arbitrary filter function. The choice

~Q(f) := �
(f)
gw(f)

f3P1(f)P2(f)
(11.19.6)

maximizes the signal-to-noise ratio (11.19.3). It is theoptimalfilter for stochastic background searches. As
also described in Sec. 11.17, if the stochastic background has a constant frequency spectrum


gw(f) =

(

0 flow � f � fhigh
0 otherwise;

it is convenient to choose the normalization constant� so that

� = 
0 T : (11.19.7)

For such a�,

�2 � T

2

 
10�2

3H2
0

!2 "Z fhigh

flow

df
2(f)

f6P1(f)P2(f)

#�1
; (11.19.8)

which leads to thesquaredsignal-to-noise ratio

(SNR)2 = T 
2
0

9H4
0

50�4

Z fhigh

flow

df
2(f)

f6P1(f)P2(f)
: (11.19.9)
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This is equation (3.33) in Ref. [36].
But suppose that we donot assume that the noise intrinsic to the detectors is much larger in magnitude

than that of the stochastic background. Then Eq. (11.19.5) for�2 needs to be modified to take into account
the non-negligible contributions to the variance brought in by the stochastic background signal. (Equation
(11.19.4) for� is unaffected.) This change in�2 implies that Eq. (11.19.6) for~Q(f) is no longer optimal.
But to simplify matters, we will leave~Q(f) as is. Although such a~Q(f) no longer maximizes the signal-
to-noise ratio, it at least has the nice property that, for a stochastic background having a constant frequency
spectrum, the normalization constant� can be chosen so that~Q(f) is independent of
0. The expression
for the actual optimal filter function, on the other hand, would depend on
0.

So keeping Eq. (11.19.6) for~Q(f), let us consider a stochastic background having a constant frequency
spectrum as described above. Then we can still choose� so that

� = 
0 T ; (11.19.10)

(the same� as before works), but now

�2 =
T

2

"Z fhigh

flow

df
2(f)

f6P1(f)P2(f)

#�2( 
10�2

3H2
0

!2 Z fhigh

flow

df
2(f)

f6P1(f)P2(f)

+
0

 
10�2

3H2
0

!Z fhigh

flow

df
2(f)

f9P 2
1 (f)P2(f)

+ 
0

 
10�2

3H2
0

!Z fhigh

flow

df
2(f)

f9P1(f)P 2
2 (f)

+
2
0

Z fhigh

flow

df
2(f)

f12P 2
1 (f)P

2
2 (f)

�
1 + 2(f)

�)
: (11.19.11)

The new squared signal-to-noise ratio is
2
0 T

2 divided by the above expression for�2.
Note the three additional terms that contribute to the variance�2. Roughly speaking, they can be thought

of as two “signal+noise” cross-terms and one “pure signal” variance term. These are the terms proportional
to 
0 and
2

0, respectively. When
0 is small, the above expression for�2 reduces to the pure noise
variance term (11.19.8). This is what we expect to be the case in practice. But for the question that we posed
at the beginning of the section, where no assumption is made about the relative strength of the stochastic
background and detector noise signals, the more complicated expression (11.19.11) for�2 should be used.
The functioncalculate var() , which is defined in the following section, calculates the variance using
this equation.
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11.20 Function:calculate var()

double calculate var(int n, float delta f, float omega 0, float f low, float
f high, float t, double *gamma12, double *power1, double *power2)
This function calculates the theoretical variance�2 of the stochastic background cross-correlation signalS.

The arguments ofcalculate var() are:

n: Input. The numberN of discrete frequency values at which the spectra are to be evaluated.

delta f: Input. The spacing�f (in Hz) between two adjacent discrete frequency values:�f :=
fi+1 � fi.

omega 0: Input. The constant value
0 (dimensionless) of the frequency spectrum
gw(f) for the
stochastic background:


gw(f) =

(

0 flow � f � fhigh
0 otherwise:


0 should be greater than or equal to zero.

f low: Input. The frequencyflow (in Hz) below which the spectrum
gw(f) of the stochastic background
is zero. flow should lie in the range0 � flow � fNyquist, wherefNyquist is the Nyquist critical
frequency. (The Nyquist critical frequency is defined byfNyquist := 1=(2�t), where�t is the
sampling period of the detector.)flow should also be less than or equal tofhigh.

f high: Input. The frequencyfhigh (in Hz) above which the spectrum
gw(f) of the stochastic back-
ground is zero.fhigh should lie in the range0 � fhigh � fNyquist. It should also be greater than or
equal toflow.

t: Input. The observation timeT (in sec) of the measurement.

gamma12: Input. gamma12[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i�f , wherei =
0; 1; � � � ; N � 1.

power1: Input. power1[0..n-1] is an array of double precision variables containing the values of
the noise power spectrumP1(f) of the first detector. These variables have units ofstrain2=Hz (or
seconds).power1[i] contains the value ofP1(f) evaluated at the discrete frequencyfi = i�f ,
wherei = 0; 1; � � � ; N � 1.

power2: Input. power2[0..n-1] is an array of double precision variables containing the values of
the noise power spectrumP2(f) of the second detector, in exactly the same format as the previous
argument.

The double precision value returned bycalculate var() is the theoretical variance�2 given by
Eq. (11.19.11) of Sec. 11.19. As discussed in that section, Eq. (11.19.11) for�2 makes no assumption about
the relative strengths of the stochastic background and detector noise signal, but it does use Eq. (11.19.6) for
the filter function ~Q(f), which is optimal only for the large detector noise case. For stochastic background
simulations,
0 is usually chosen to equal some known non-zero value. This is the value that should be
passed as a parameter tocalculate var() . For stochastic background searches (where
0 is not known
a priori) the value of of the parameter
0 should be set to zero. The variance for this case is given by
Eq. (11.19.8).
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.21 Example:snr program

As mentioned in Sec. 11.19, an interesting question to ask in regard to stochastic background searches is:
“What is the theroretically predicted signal-to-noise ratio after a total observation timeT , for a given pair
of detectors, and for a given strength of the stochastic background?” The following example program show
how one can combine the functionsdetector site() , noise power() , overlap() , andcalcu-
late var() to answer this question for the case of a stochastic background having a constant frequency
spectrum:
gw(f) = 
0 for flow � f � fhigh. Specifically, we calculate and display the theoretical SNR
after approximately 4 months of observation time (T = 1:0 � 107 seconds), for the initial Hanford, WA
and Livingston, LA LIGO detectors, and for
0 = 3:0 � 10�6 for 5 Hz � f � 5000 Hz. (The answer
is SNR = 1:73, which means that we could say, with greater than 95% confidence, that a stochastic back-
ground has been detected.) By changing the parameters in the#define statements listed at the beginning
of the program, one can calculate and display the signal-to-noise ratios for different observation timesT ,
for different detector pairs, and for different strengths
0 of the stochastic background.

Note: Values ofN and�f should be chosen so that the whole frequency range (from DC to the Nyquist
critical frequency) is included, and that there are a reasonably large number of discrete frequency values for
approximating integrals by sums. The final answer, however, is independent of the choice ofN and�f , for
N sufficiently large and�f sufficiently small.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program to calculate the theoretical snr�=

#include "grasp.h"

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� 1=LIGO-Hanford site�=
#define SITE2 CHOICE 2 =� 2=LIGO-Livingston site�=
#define OMEGA 0 (3.0e �6) =� Omega0 (for initial detectors)�=
#define F LOW 0.0 =� minimum frequency (in Hz)�=
#define F HIGH (1.0e+4) =� maximum frequency (in Hz)�=
#define T (1.0e+7) =� total observation time (in sec)�=
#define N 40000 =� number of frequency points�=
#define DELTA F 0.25 =� frequency spacing (in Hz)�=

int main(int argc,char ��argv)
f

double mean,variance,stddev,snr;

float site1 parameters[9],site2 parameters[9];
char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �power1, �power2;
double �gamma12;

=� ALLOCATE MEMORY �=
power1=(double �)malloc(N �sizeof(double));
power2=(double �)malloc(N �sizeof(double));
gamma12=(double �)malloc(N �sizeof(double));

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
detector site(DETECTORS FILE,SITE1 CHOICE,site1 parameters,site1 name,

noise1 file,whiten1 file);
detector site(DETECTORS FILE,SITE2 CHOICE,site2 parameters,site2 name,

noise2 file,whiten2 file);
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=� CALL NOISE POWER() AND OVERLAP()�=
noise power(noise1 file,N,DELTA F,power1);
noise power(noise2 file,N,DELTA F,power2);
overlap(site1 parameters,site2 parameters,N,DELTA F,gamma12);

=� CALCULATE MEAN, VARIANCE, STDDEV, AND SNR�=
mean=OMEGA0�T;
variance=calculate var(N,DELTA F,OMEGA0,F LOW,F HIGH,T,gamma12,

power1,power2);
stddev=sqrt(variance);
snr=mean =stddev;

=� DISPLAY RESULTS�=
printf("\n");
printf("Detector site 1 = %s\n",site1 name);
printf("Detector site 2 = %s\n",site2 name);
printf("Omega_0 = %e\n",OMEGA 0);
printf("f_low = %e Hz\n",F LOW);
printf("f_high = %e Hz\n",F HIGH);
printf("Observation time T = %e sec\n",T);
printf("Theoretical S/N = %e\n",snr);
printf("\n");

return 0;
g
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11.22 Example:omega min program

The example program described in the previous section calculates the theoretical signal-to-noise ratio after
a total observation timeT , for a given pair of detectors, and for a given strength
0 of the stochastic
background. A related—and equally important—question is theinverse: “What is the minimum value of

0 required to produce a given SNR after a given observation timeT?” For example, ifSNR = 1:65,
then the answer to the above question is the minimum value of
0 for a stochastic background that is
detectable with 95% confidence after an observation timeT . The following example program calculates and
displays this 95% confidence value of
0 for the inital Hanford, WA and Livingston, LA LIGO detectors, for
approximately 4 months (T = 1:0� 107 seconds) of observation time. (The answer is
0 = 2:87 � 10�6.)
Again, we are assuming in this example program that the stochastic background has a constant frequency
spectrum:
gw(f) = 
0 for 5 Hz � f � 5000 Hz. By modifying the parameters in the#define
statements listed at the beginning of the program, one can calculate and display the minimum required
0’s
for different detector pairs, for different signal-to-noise ratios, and for different observation timesT .

Note: As shown in Sec. 11.19, the squared signal-to-noise ratio can be written in the following form:

(SNR)2 =
T 
2

0

A+B 
0 + C 
2
0

; (11.22.1)

whereA, B, andC are complicated expressions involving integrals of the the overlap reduction function
and the noise power spectra of the detectors, but are independent ofT and
0. Thus, given SNR andT ,
Eq. (11.22.1) becomes a quadratic for
0:

a 
2
0 + b 
0 + c = 0 ; (11.22.2)

which we can easily solve. It is this procedure that we implement in the following program.
Theomega min example program can be run in two ways. Without any arguments:

machine-prompt> omega min
uses the detectors defined bySITE1 CHOICEandSITE2 CHOICE. The program can also be run with two
command line arguments which specify alternative detector site choices, for example:
machine-prompt> omega min 23 31
which produces the output:

Detector site 1 = LIGO-WA_enh7
Detector site 2 = LIGO-LA_enh7
S/N ratio = 1.650000e+00
f_low = 0.000000e+00 Hz
f_high = 1.000000e+04 Hz
Observation time T = 1.000000e+07 sec
Minumum Omega_0 = 5.290809e-09

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program to calculate the minimum detectable omega0 �=

#include "grasp.h"

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� 1=LIGO-Hanford site�=
#define SITE2 CHOICE 2 =� 2=LIGO-Livingston site�=
#define SNR 1.65 =� 1.65=SNR for 95% confidence�=
#define F LOW 3.0 =� minimum frequency (in Hz)�=
#define F HIGH (1.0e+4) =� maximum frequency (in Hz)�=
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#define T (1.0e+7) =� total observation time (in sec)�=
#define N 40000 =� number of frequency points�=
#define DELTA F 0.25 =� frequency spacing (in Hz)�=
#define PLOT WANTED 0

#if PLOT WANTED
FILE �fp;
#endif

int main(int argc,char ��argv)
f

int i;
float f;

double factor,f3,f6,f9,f12,p1,p2,g2;
double int1,int2,int3,int4;
double a,b,c,omega 0;
int site1 choice=SITE1 CHOICE,site2 choice=SITE2 CHOICE;

float site1 parameters[9],site2 parameters[9];
char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �power1, �power2;
double �gamma12;

=� ALLOCATE MEMORY �=
power1=(double �)malloc(N �sizeof(double));
power2=(double �)malloc(N �sizeof(double));
gamma12=(double �)malloc(N �sizeof(double));

=� Use detector sites specified on command line�=
if (argc==3) f

site1 choice=atoi(argv[1]);
site2 choice=atoi(argv[2]);

g

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
detector site(DETECTORS FILE,site1 choice,site1 parameters,site1 name,

noise1 file,whiten1 file);
detector site(DETECTORS FILE,site2 choice,site2 parameters,site2 name,

noise2 file,whiten2 file);

#if PLOT WANTED
=� output file of integrand if needed�=
fp=fopen(site1 name,"w");

#endif

=� CALL NOISE POWER() AND OVERLAP()�=
noise power(noise1 file,N,DELTA F,power1);
noise power(noise2 file,N,DELTA F,power2);
overlap(site1 parameters,site2 parameters,N,DELTA F,gamma12);

=� CALCULATE INTEGRALS FOR VARIANCE�=
int1=int2=int3=int4=0.0;

for (i=1;i <N;i++) f =� start sum at i=1 to avoid possible division�=
=� by 0 (e.g., if f low=0) �=
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f=i �DELTA F;
if (F LOW<=f && f <=F HIGH) f

f3=f �f �f;
f6=f3 �f3;
f9=f6 �f3;
f12=f9 �f3;
g2=gamma12[i] �gamma12[i];
p1=power1[i];
p2=power2[i];

#if PLOT WANTED
fprintf(fp,"%e\t%e\n",f,1.e �80�g2=(f6 �p1�p2));
#endif

int1+=DELTA F�g2=(f6 �p1�p2);
int2+=DELTA F�g2=(f9 �p1�p1�p2);
int3+=DELTA F�g2=(f9 �p1�p2�p2);
int4+=DELTA F�g2�(1.0+g2) =(f12 �p1�p1�p2�p2);

g
g

=� CALCULATE COEFFICIENTS OF QUADRATIC EQUATION�=
factor=10.0 �M PI �M PI =(3.0 �HUBBLE�HUBBLE);

a=(int4 =int1 �2.0 �T�int1 =(SNR�SNR)) =(factor �factor);
b=(int2+int3) =(int1 �factor);
c=1.0;

=� SOLVE THE QUADRATIC�=
omega 0=0.5 �( �b�sqrt(b �b�4�a�c)) =a;

=� DISPLAY RESULTS�=
printf("\n");
printf("Detector site 1 = %s\n",site1 name);
printf("Detector site 2 = %s\n",site2 name);
printf("S/N ratio = %e\n",SNR);
printf("f_low = %e Hz\n",F LOW);
printf("f_high = %e Hz\n",F HIGH);
printf("Observation time T = %e sec\n",T);
printf("Minumum Omega_0 h_100ˆ2 = %e\n",omega 0);
printf("(This corresponds to false alarm rate 5%% and false dismissal rate 50%%.)\n");
printf("With a 5%% false alarm rate and a 5%% false dismissal rate:\n");
printf("minumum Omega_0 h_100ˆ2 = %e\n",2.0 �omega 0);
printf("See Allen & Romano, PRD59 (1999) 102001 eqn (4.38) for details.\n");
printf("\n");

#if PLOT WANTED
fclose(fp);

#endif

return 0;
g

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.23 Function:analyze()

void analyze(int average, float *in1, float *in2, int n, float delta t, float
f low, float f high, double *gamma12, double *whiten1, double *whiten2, int
real time noise1, int real time noise2, double *power1, double *power2, dou-
ble *signal, double *variance)
This high-level function performs the optimal data processing for the detection of an isotropic and unpolar-
ized stochastic background of gravitational radiation having a constant frequency spectrum:
gw(f) = 
0

for flow � f � fhigh. It calculates the cross-correlation signal valueS and theoretical variance�2, taking
as input the continuous-in-time whitened data streamso1(t) ando2(t) produced by two detectors.

The arguments ofanalyze() are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
correlation and/or noise power spectra corresponding to two overlapped data sets are to be averaged.

in1: Input. in1[0..n-1] is an array of floating point variables containing the values of the continuous-
in-time whitened data streamo1(t) produced by the first detector.o1(t) is the convolution of detector
whitening filterW1(t) with the data streams1(t) := h1(t) + n1(t), whereh1(t) is the gravitational
strain andn1(t) is the noise intrinsic to the detector. These variables have units of rHz (orsec�1=2),
which follows from the definition ofs1(t) as a strain and~W1(f) as the “inverse” of the square root of
the noise power spectrumP1(f). in1[i] contains the value ofo1(t) evaluated at the discrete time
ti = i�t, wherei = 0; 1; � � � ; N � 1.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the continuous-
in-time whitened data streamo2(t) produced by the second detector, in exactly the same format as the
previous argument.

n: Input. The numberN of data points corresponding to an observation timeT := N �t, where�t is the
sampling period of the detectors, defined below.N should equal an integer power of 2.

delta t: Input. The sampling period�t (in sec) of the detectors.

f low: Input. The frequencyflow (in Hz) below which the spectrum
gw(f) of the stochastic background
is assumed to be zero.flow should lie in the range0 � flow � fNyquist, wherefNyquist is the Nyquist
critical frequency. (The Nyquist critical frequency is defined byfNyquist := 1=(2�t), where�t is
the sampling period of the detectors.)flow should also be less than or equal tofhigh.

f high: Input. The frequencyfhigh (in Hz) above which the spectrum
gw(f) of the stochastic back-
ground is assumed to be zero.fhigh should lie in the range0 � fhigh � fNyquist. It should also be
greater than or equal toflow.

gamma12: Input. gamma12[0..n/2-1] is an array of double precision variables containing the values
of the overlap reduction function(f) for the two detector sites. These variables are dimensionless.
gamma12[i] contains the value of(f) evaluated at the discrete frequencyfi = i=(N�t), where
i = 0; 1; � � � ; N=2 � 1.

whiten1: Input. whiten1[0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum~W1(f) of the whitening filter of the first detector. These
variables have unitsrHz=strain (or sec�1=2), which are inverse to the units of the square root of the
noise power spectrumP1(f). whiten1[2*i] andwhiten1[2*i+1] contain, respectively, the
values of the real and imaginary parts of~W1(f) evaluated at the discrete frequencyfi = i=(N�t),
wherei = 0; 1; � � � ; N=2� 1.
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whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum~W2(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

real time noise1: Input. An integer variable that should be set equal to 1 if the real-time noise power
spectrumP1(f) of the first detector should be calculated and used when performing the data analysis.

real time noise2: Input. An integer variable that should be set equal to 1 if the real-time noise
power spectrumP2(f) for the second detector should be calculated and used when performing the
data analysis.

power1: Input/Output. power1[0..n/2-1] is an array of double precision variables containing
the values of the noise power spectrumP1(f) of the first detector. These variables have units of
strain2=Hz (or seconds).power1[i] contains the value ofP1(f) evaluated at the discrete fre-
quencyfi = i=(N�t), wherei = 0; 1; � � � ; N=2 � 1. If real time noise1 = 1, the values of
power1[0..n/2-1] are changed to

P1(f) :=
2

T
~s�1(f)~s1(f) ; (11.23.1)

where~s1(f) is the Fourier transform of the unwhitened data streams1(t) at the first detector site. If
real time noise1 6= 1, the values ofpower1[0..n/2-1] are unchanged.

power2: Input/Output.power2[0..n/2-1] is an array of double precision variables containing the
values of the noise power spectrumP2(f) of the second detector, in exactly the same format as the
previous argument.

signal: Output. A pointer to a double precision variable containing the value of the cross-correlation
signal

S :=

Z fhigh

flow

df ~s12(f) ~Q(f) ; (11.23.2)

where~s12(f) is the real-time cross-correlation spectrum and~Q(f) is the spectrum of the optimal filter
function.S has units of seconds.

variance: Output. A pointer to a double precision variable containing the value of the theoretical
variance�2 of the cross-correlation signalS. �2 has units of sec2.

analyze() is very simple function, consisting primarily of calls to other more basic functions. If
real time noise1 or real time noise2 = 1, analyze() callsextract noise() to obtain the
desired real-time noise power spectra. It then callsextract signal() andoptimal filter() to
obtain the values of~s12(f) and ~Q(f), which are needed to calculate the cross-correlation signalS, according
to Eq. (11.23.2). Finally,analyze() calls calculate var() to obtain the theoretical variance�2

associated withS.
Note: One should callanalyze() with average 6= 1, when one suspects that the current input data

in1[] andin2[] arenotcontinuous with the data from the previous call toanalyze() . This is because
a discontinuity between the “old” and “new” data sets has a tendency to introduce spurious large frequency
components into the real-time cross-correlation and/or noise power spectra, which should not be present.
(See the discussion at the end of Secs. 11.15 and 11.16 for more details.)

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.24 Function:prelim stats()

prelim stats(float omega 0,float t,double signal,double variance)
This function calculates and displays the theoretical and experimental mean value, standard deviation, and
signal-to-noise ratio for a set of stochastic background cross-correlation signal measurements, weighting
each measurement by the inverse of the theoretical variance associated with that measurement.

The arguments ofprelim stats() are:

omega 0: Input. The constant value
0 (dimensionless) of the frequency spectrum
gw(f) for the
stochastic background:


gw(f) =

(

0 flow � f � fhigh
0 otherwise:


0 should be greater than or equal to zero.

float t: Input. The observation timeT (in sec) of an individual measurement.

double signal: Input. The valueS of the current cross-correlation signal measurement. This variable
has units of seconds.

double variance: Input. The value�2 of the theoretical variance associated with the current cross-
correlation signal measurement. This variable has units of sec2.

prelim stats() calculates the theoretical and experimental mean value, standard deviation, and
signal-to-noise ratio, weighting each measurementSi by the inverse of the theoretical variance�2i associated
with that measurement. This choice of weighting maximizes the theoretical signal-to-noise, allowing for
possible drifts in the detector noise power spectra over the course of time. More precisely, if we letSi
(i = 1; 2; � � � ; n) denote a set ofn statistically independent random variables, each having the same mean
value

� := hSii ; (11.24.1)

but different variances
�2i := hS2i i � hSii2 ; (11.24.2)

then one can show that the weighted-average

�S :=

Pn
i=1 �iSiPn
j=1 �j

(11.24.3)

has maximum signal-to-noise ratio when�i = ��2i . Roughly speaking, the above averaging scheme assigns
more weight to signal values that are measured when the detectors are “quiet,” than to signal values that are
measured when the detectors are “noisy.”

The values calculated and displayed byprelim stats() are determined as follows:

(i) The total observation time is
Ttot := n T ; (11.24.4)

wheren is the total number of measurements, andT is the observation time of an individual measure-
ment.

(ii) The theoretical mean is given by the product

�theory = 
0 T : (11.24.5)

This follows from our choice of normalization constant for the optimal filter function. (See Sec. 11.17
for more details.)
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(iii) The theoretical variance is given by

�2theory =
nPn

i=1 �
�2
i

: (11.24.6)

Note that when the detector noise power spectra are constant,�2i =: �2 for i = 1; 2; � � � ; n and
�2theory = �2. This case arises, for example, if we donot calculate real-time noise power spectra, but
use noise power information contained in data files instead.

(iv) The theoretical signal-to-noise ratio (forn measurements) is given by

SNRtheory =
p
n
�theory
�theory

: (11.24.7)

The factor of
p
n comes from our assumption that then individual measurements are statistically

independent.

(v) The experimental mean is the weighted-average

�expt :=

Pn
i=1 �

�2
i SiPn

j=1 �
�2
j

: (11.24.8)

(vi) The experimental variance is given by

�2expt :=

Pn
i=1 �

�2
i S2iPn

j=1 �
�2
j

� �2expt : (11.24.9)

When the weights��2i are constant, the above formula reduces to the usual expression

�2expt =
1

n

nX
i=1

S2i �
 
1

n

nX
i=1

Si

!2
(11.24.10)

for the variance ofn measurementsSi.

(vii) The experimental signal-to-noise ratio is given by

SNRexpt =
p
n
�expt
�expt

: (11.24.11)

(viii) The relative error in the signal-to-noise ratios is

relative error :=

�����SNRtheory � SNRexpt

SNRtheory

����� � 100% : (11.24.12)

The value of this quantity should be on the order of(1=SNRtheory) � 100%.

Note: prelim stats() has internally-defined static variables which keep track of the number of
times that it has been called, the sum of the weights, the sum of weights times the signal values, and the sum
of the weights times the signal values squared.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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11.25 Function:statistics()

void statistics(float *input, int n, int num bins)
This function calculates and displays the mean value, standard deviation, signal-to-noise ratio, and con-
fidence intervals for an input array of (assumed) statistically independent measurementsxi of a random
variablex. This function also write output data to two files:histogram.dat andgaussian.dat .
The first file contains a histogram of the input dataxi; the second file contains the Gaussian probability
distribution that best matches this histogram. (See Sec. 11.23 for more details.)

The arguments ofstatistics() are:

input: Input. input[0..n-1] is an array of floating point variables containing the values of a set of
(assumed) statistically independent measurementsxi of a random variablex.

n: Input. The lengthN of the input data array. IfN < 2, statistics() prints out an error message
and aborts execution.

num bins: Input. The number of bins to be used when constructing a histogram of the input dataxi.

statistics() calculates and displays the mean value and standard deviation of the input dataxi.
It also calculates and displays the signal-to-noise ratio and 68%, 90%, and 95% confidence intervals for
the input data, assuming that thexi are statistically independent measurements of a random variablex.
statistics() also writes output data to two files:

(i) histogram.dat is a two-column file of floating point numbers containing a histogram of the input
dataxi. The length of each column of data is equal tonum bins , and the histogram is normalized
so that it has unit area.

(ii) gaussian.dat is a two-column file of floating point numbers containing the Gaussian probability
distribution function that best matches the histogram of the input dataxi. Each column ofgaus-
sian.dat has a length equal to 8192. There are also threemarkersincluded in the Gaussian proba-
bility distribution data: One marker for the mean, and two for the� one standard deviation values of
x.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of the stochastic background routines,statistics() is used to perform a
statistical analysis of the cross-correlation signal valuesSi calculated by the functionanalyze() .
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11.26 Example:simulation program

By combining all of the functions defined in the previous sections, one can write a program to simulate the
generation and detection of a stochastic background of gravitational radiation having a constant frequency
spectrum:
gw(f) = 
0 for flow � f � fhigh. The following example program is a simulation for
the initial Hanford, WA and Livingston, LA LIGO detectors. The parameters chosen for this particular
simulation are contained in the#define statements listed at the beginning of the program. By changing
these parameters, one can simulate the generation and detection of a stochastic background for different
stochastic backgrounds (i.e., for different values of
0, flow, andfhigh) and for different detector pairs.
The number of data points, the sampling period of the detectors, and the total observation time for the
simulation, etc. can also be modified. Preliminary statistics are displayed during the simulation. In addition,
a histogram and the best-fit Gaussian probability distribution for the output data are stored in two files:
histogram.dat and gaussian.dat . Sample output produced by the simulation and a plot of the
histogram and best-fit Gaussian data are given in Sec. 11.27.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� main program for stochastic background simulation�=

#include "grasp.h"

#define DETECTORS FILE "detectors.dat" =� file containing detector info�=
#define SITE1 CHOICE 1 =� identification number for site 1�=
#define SITE2 CHOICE 2 =� identification number for site 2�=
#define FAKE SB 1 =� 1: simulate stochastic background�=

=� 0: stochastic background from real data�=
#define FAKE NOISE1 1 =� 1: simulate detector noise at site 1�=

=� 0: detector noise from real data at site 1�=
#define FAKE NOISE2 1 =� 1: simulate detector noise at site 2�=

=� 0: detector noise from real data at site 2�=
#define N 65536 =� number of data points�=
#define DELTA T (5.0e �5) =� sampling period (in sec)�=
#define OMEGA 0 (1.0e �3) =� omega0 �=
#define F LOW (0.0) =� minimum frequency (in Hz)�=
#define F HIGH (1.0e4) =� maximum frequency (in Hz)�=
#define REAL TIME NOISE1 0 =� 1: use real-time noise at site 1�=

=� 0: use noise information from data file�=
#define REAL TIME NOISE2 0 =� 1: use real-time noise at site 2�=

=� 0: use noise information from data file�=
#define NUM RUNS 2500 =� number of runs (for simulation)�=
#define NUM BINS 200 =� number of bins (for statistics)�=

int main(int argc,char ��argv)
f

int i,pass test=0,previous test,runs completed=0,seed= �17;
float delta f;
double signal,variance;

float site1 parameters[9],site2 parameters[9];
char site1 name[100],noise1 file[100],whiten1 file[100];
char site2 name[100],noise2 file[100],whiten2 file[100];

double �generation power1, �generation power2;
double �analysis power1, �analysis power2;
double �whiten1, �whiten2;
double �gamma12;
float �out1, �out2;
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float �stats;

=� ALLOCATE MEMORY �=
generation power1=(double �)malloc((N =2) �sizeof(double));
generation power2=(double �)malloc((N =2) �sizeof(double));
analysis power1=(double �)malloc((N =2) �sizeof(double));
analysis power2=(double �)malloc((N =2) �sizeof(double));
whiten1=(double �)malloc(N �sizeof(double));
whiten2=(double �)malloc(N �sizeof(double));
gamma12=(double �)malloc((N =2) �sizeof(double));
out1=(float �)malloc(N �sizeof(float));
out2=(float �)malloc(N �sizeof(float));
stats=(float �)malloc(NUM RUNS�sizeof(float));

=� INITIALIZE OUTPUT ARRAYS TO ZERO�=
for (i=0;i <N;i++) out1[i]=out2[i]=0.0;

=� CALL DETECTOR SITE() TO GET SITE PARAMETER INFORMATION�=
detector site(DETECTORS FILE,SITE1 CHOICE,site1 parameters,site1 name,

noise1 file,whiten1 file);
detector site(DETECTORS FILE,SITE2 CHOICE,site2 parameters,site2 name,

noise2 file,whiten2 file);

=� DISPLAY STOCHASTIC BACKGROUND SIMULATION PARAMETERS�=
printf("\n");
printf("STOCHASTIC GRAVITATIONAL WAVE BACKGROUND SIMULATION\n");
printf("\n");
printf("PARAMETERS:\n");
printf("Simulated stochastic background (0=no,1=yes): %d\n",FAKE SB);
printf("Simulated detector noise at site 1 (0=no,1=yes): %d\n",FAKE NOISE1);
printf("Simulated detector noise at site 2 (0=no,1=yes): %d\n",FAKE NOISE2);
printf("Real-time noise at site 1 (0=no,1=yes): %d\n", REAL TIME NOISE1);
printf("Real-time noise at site 2 (0=no,1=yes): %d\n", REAL TIME NOISE2);
printf("Detector site 1 = %s\n",site1 name);
printf("Detector site 2 = %s\n",site2 name);
printf("Sampling period = %e seconds\n",DELTA T);
printf("Number of data points = %d\n",N);
printf("Omega_0 = %e\n",OMEGA 0);
printf("f_low = %e Hz\n",F LOW);
printf("f_high = %e Hz\n",F HIGH);
printf("Number of runs (for simulation) = %d\n",NUM RUNS);
printf("Number of bins (for statistics) = %d\n",NUM BINS);
printf("\n");

=� CONSTRUCT NOISE POWER (FOR SIGNAL GENERATION), WHITENING FILTER�=
=� AND THE OVERLAP REDUCTION FUNCTION�=
delta f=(float)(1.0 =(N�DELTA T));
noise power(noise1 file,N =2,delta f,generation power1);
noise power(noise2 file,N =2,delta f,generation power2);
whiten(whiten1 file,N =2,delta f,whiten1);
whiten(whiten2 file,N =2,delta f,whiten2);
overlap(site1 parameters,site2 parameters,N =2,delta f,gamma12);

=� CONSTRUCT NOISEPOWER (FOR SIGNAL ANALYSIS) IF REAL-TIME NOISE�=
=� IS NOT DESIRED�=
if (REAL TIME NOISE1!=1) f

for (i=0;i <N=2;i++) analysis power1[i]=generation power1[i];
g
if (REAL TIME NOISE2!=1) f
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for (i=0;i <N=2;i++) analysis power2[i]=generation power2[i];
g

=� PERFORM THE SIMULATION�=
for (i=1;i <=NUMRUNS;i++) f

=� SIMULATE STOCHASTIC BACKGROUND AND=OR DETECTOR NOISE, IF DESIRED�=
if (FAKE SB==1 j j FAKE NOISE1==1 j j FAKE NOISE2==1) f

monte carlo(FAKE SB,FAKE NOISE1,FAKE NOISE2,N,DELTA T,OMEGA0,
F LOW,F HIGH,gamma12,
generation power1,generation power2,
whiten1,whiten2,out1,out2, &seed);

g

=� TEST DATA TO SEE IF GAUSSIAN�=
previous test=pass test;
pass test=test data12(N,out1,out2);

if (pass test==1) f

=� ANALYZE DATA �=
analyze(previous test,out1,out2,N,DELTA T,OMEGA0,F LOW,F HIGH,

gamma12,whiten1,whiten2,
REAL TIME NOISE1,REAL TIME NOISE2,
analysis power1,analysis power2, &signal, &variance);

=� DISPLAY PRELIMINARY STATISTICS�=
prelim stats(OMEGA 0,N �DELTA T,signal,variance);

=� UPDATE RUNS COMPLETED AND STATS ARRAY FOR FINAL STATISTICS�=
runs completed++;
stats[runs completed �1]=signal;

g

g =� end for (i=1;i<+NUM RUNS;i++)�=

=� FINAL STATISTICS�=
printf("\n");
statistics(stats,runs completed,NUM BINS);

return 0;
g
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11.27 Some output from thesimulation program

Below is a sample of the output that is produced during the execution of the stochastic background simulation
program described in Sec. 11.26. Also shown, in Fig. 81, is a plot of the histogram and best-fit Gaussian
probability distribution that were stored in data files by the functionstatistics() . For this particular
simulation, the total number of runs was equal to 1271 and the number of bins for the histogram was equal
to 200.

total number of runs completed=815
total observation time =2.670592e+03 seconds
signal value=2.659629e �03
experimental mean=3.360998e �03
experimental stddev=1.214569e �02
experimental SNR=7.899961e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.405551e+00
relative error in SNR=6 percent
experimental omega 0=1.025695e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.962989e �04

total number of runs completed=816
total observation time =2.673869e+03 seconds
signal value= �3.592409e �03
experimental mean=3.352476e �03
experimental stddev=1.214068e �02
experimental SNR=7.888017e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.410706e+00
relative error in SNR=6 percent
experimental omega 0=1.023095e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.961785e �04

total number of runs completed=817
total observation time =2.677146e+03 seconds
signal value= �7.967954e �03
experimental mean=3.338620e �03
experimental stddev=1.213970e �02
experimental SNR=7.860860e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.415858e+00
relative error in SNR=6 percent
experimental omega 0=1.018866e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.960585e �04

Data segment 1 failed Gaussian test!

total number of runs completed=818
total observation time =2.680422e+03 seconds
signal value=1.447747e �02
experimental mean=3.352238e �03
experimental stddev=1.213852e �02
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experimental SNR=7.898519e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.421007e+00
relative error in SNR=6 percent
experimental omega 0=1.023022e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.959386e �04

total number of runs completed=819
total observation time =2.683699e+03 seconds
signal value=3.647211e �03
experimental mean=3.352598e �03
experimental stddev=1.213111e �02
experimental SNR=7.909022e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.426153e+00
relative error in SNR=6 percent
experimental omega 0=1.023132e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.958189e �04

total number of runs completed=820
total observation time =2.686976e+03 seconds
signal value= �5.958459e �03
experimental mean=3.341243e �03
experimental stddev=1.212807e �02
experimental SNR=7.889026e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.431295e+00
relative error in SNR=6 percent
experimental omega 0=1.019666e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.956995e �04

total number of runs completed=821
total observation time =2.690253e+03 seconds
signal value=1.057661e �02
experimental mean=3.350056e �03
experimental stddev=1.212331e �02
experimental SNR=7.917764e+00
theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.436435e+00
relative error in SNR=6 percent
experimental omega 0=1.022356e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.955803e �04

Data segment 2 failed Gaussian test!

total number of runs completed=822
total observation time =2.693530e+03 seconds
signal value=6.683305e �03
experimental mean=3.354111e �03
experimental stddev=1.211649e �02
experimental SNR=7.936639e+00
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theoretical mean=3.276800e �03
theoretical stddev=1.112916e �02
theoretical SNR=8.441571e+00
relative error in SNR=5 percent
experimental omega 0=1.023593e �03
theoretical omega 0=1.000000e �03
theoretical omega 0 for detection with 95 percent confidence=1.954613e �04

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

Histogram and Gaussian Probability Distribution
(for the initial LIGO detectors simulation)

Figure 81: Histogram of the measured cross-correlation signal vaues, and the corresponding best-fit Gaus-
sian probability distribution for the stochastic background simulation.
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12 Galactic Modelling

Large parts of GRASP were developed using data from the Caltech 40-meter prototype detector. This
detector is typically sensitive to distances of tens of kiloparsecs, roughly the length scale of our galaxy. It
was therefore useful to develop a model of the galactic distributions of expected sources, for example, of
the galactic distribution of binary star systems. This section contains a package of routines which can be
used to simulate the expected distribution of binary inspiral sources in our galaxy. Because of the earth’s
motion about its axis and about the sun, the distribution of expected sources (direction, distance, orientation)
changes as a function of time, with roughly a 24-hour period. This section constains routines which model
the distribution of these parameters as a function of the earth’s motion.
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12.1 Function: local sidereal time()

float local_sidereal_time(time_t time, float longitude)

Returns the local sidereal time, in decimal hours, for a given calendar time and detector longitude. The
arguments are:

time : Input. The time as an integer number of seconds since 0h 1 January 1970. This number is returned
by the time routines in<time.h> .

longitude : Input. The longitude of the detector in degrees West.

The local sidereal time is calculated as follows. Let JD be the Julian date of 0h on the desired calendar
day. (This is computed using the Numerical Recipes routinejulday() , but a value of 0.5 must be sub-
tracted from this routine to give the JD at 0h rather than at 12h.) The Universal Time, UT, is computed using
thegmtime() function. The Greenwich Sidereal Time, GST, is

GST= T0 + 1:002 737 909 � UT

(modulo 24 hours) where

T0 = 6:697 374 558 + 2 400:051 336 � T + 0:000 025 862 � T 2

and

T =
JD� 2 451 545

36 525
:

The local sidereal time is obtained by subtracting the longitude of the detector expressed as decimal hours
West of Greenwich.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: This routine is adapted from the method given in: Peter Duffet-SmithPractical Astronomy
with Your Calculator,3rd edition, (Cambridge University Press, 1988).
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12.2 Example:caltech lst program

This program is an example of how to use the functionlocal sidereal time() to compute the local
sidereal time at the Caltech 40-meter laboratory. The program determines the present sidereal time at Caltech
if it receives no arguments. Instead, the program can receive a single long integer specifying the number of
seconds since 0h UTC 1 Jan 1970, and it returns the Caltech sidereal time at that time. Also returned are the
number of seconds since 0h UTC 1 Jan 1970, the local and coordinated universal times, and the Greenwitch
sidereal time. Some examples:

1. caltech_lst

881889773 seconds since 0h UTC 1 Jan 1970
17:22:53 PST Thu 11 Dec 1997
01:22:53 UTC Fri 12 Dec 1997
22:53:30 (22.891788 h) Local Sidereal Time
06:46:02 (06.767323 h) Greenwitch Sidereal Time

(guess when I wrote this example!)

2. caltech_lst 0

0 seconds since 0h UTC 1 Jan 1970
16:00:00 PST Wed 31 Dec 1969
00:00:00 UTC Thu 01 Jan 1970
22:48:23 (22.806442 h) Local Sidereal Time
06:40:55 (06.681976 h) Greenwitch Sidereal Time

The program can be simply modified to correspond toyour local sidereal time by changing the#define LON-
GITUDEcommand to your local longitude (in degrees West of Greenwitch).

author: Jolien Creighton, jolien@tapir.caltech.edu
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

#define LONGITUDE 118.133 =� degrees West: Caltech�=

int main(int argc, char �argv[ ])
f

time t now;
double lst h,lst m,lst s;
double gst h,gst m,gst s;
float lst,gst,longitude=LONGITUDE;
char loc[128],utc[128];

if (argc==2) now = (time t)atoi(argv[1]);
else time( &now);

strftime(loc,128,"%H:%M:%S %Z %a %d %b %Y",localtime( &now));
strftime(utc,128,"%H:%M:%S UTC %a %d %b %Y",gmtime( &now));
lst = local sidereal time(now,longitude);
gst = local sidereal time(now,0);
lst s = 60 �modf(60 �modf(lst, &lst h), &lst m);
gst s = 60 �modf(60 �modf(gst, &gst h), &gst m);

printf("%ld seconds since 0h UTC 1 Jan 1970\n%s\n%s\n",(long)now,loc,utc);
printf("%02u:%02u:%02u (%09.6f h) Local Sidereal Time\n",

(char)lst h,(char)lst m,(char)lst s,lst);
printf("%02u:%02u:%02u (%09.6f h) Greenwitch Sidereal Time\n",

(char)gst h,(char)gst m,(char)gst s,gst);

return 0;
g
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12.3 Function: galactic to equatorial()

void galactic_to_equatorial(float l, float b, float *alpha, float *delta)

This routine converts the coordinates of an object from the Galactic system—Galactic longitude` and
latitudeb—to the equatorial system—right ascension� and declinationÆ. The arguments are:

l : Input. The Galactic longitudè(radians).

b: Input. The Galactic latitudeb (radians).

alpha : Output. The right ascension�1950 (radians).

delta : Output. The declinationÆ1950 (radians).

The transformation is the following:

Æ = arcsin[cos b cos ÆNGP sin(`� `ascend) + sin b sin ÆNGP] (12.3.1)

and

� = arctan

�
cos b cos(`� `ascend)

sin b cos ÆNGP � cos b sin ÆNGP sin(`� `ascend)

�
+ �NGP (12.3.2)

where

�NGP = 192Æ.25 is the right ascension (1950) of the North Galactic Pole
ÆNGP = 27Æ.4 is the declination (1950) of the North Galactic Pole
`ascend = 33Æ is the ascending node of the Galactic plane on the equator.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: This routine is adapted from the method given in: Peter Duffet-SmithPractical Astronomy
with Your Calculator,3rd edition, (Cambridge University Press, 1988). The values used in this routine
should be updated to epoch 2000 coordinates.
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12.4 Example:galactic2equatorial program

This is a simple implementation of the functiongalactic to equatorial() that converts a specified
Galactic longitude and latitude to right ascension and declination (epoch 1950). The Galactic coordinates
are entered in decimal degrees as command line arguments. Some examples:

1. The North Galactic pole isb = 90Æ, or �1950 = 12h49m andÆ1950 = +27Æ240. The output of the
commandgalactic2equatorial 0 90 is

l (deg): 0.00
b (deg): +90.00
RA (hms): 12 48 59
Dec (dms): +27 23 59

2. The Galactic center is̀= b = 0, or �1950 = 17h42m24s andÆ1950 = �28Æ550. The output of the
commandgalactic2equatorial 0 0 is

l (deg): 0.00
b (deg): +0.00
RA (hms): 17 42 26
Dec (dms): -28 55 00

3. The Large Magellanic Cloud is̀= 280Æ.5 andb = �32Æ.9, or �2000 = 05h23m34s.598 andÆ2000 =
�69Æ4502200.33. The output of the commandgalactic2equatorial 280.5 -32.9 is

l (deg): 280.50
b (deg): -32.90
RA (hms): 05 23 48
Dec (dms): -69 49 36

These examples show that the output is correct to the accuracy of the input coordinates.

author: Jolien Creighton, jolien@tapir.caltech.edu
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#define DEG TO RAD ((float)(M PI =180))
#define RAD TO DEG ((float)180 =M PI)
#define RAD TO HOUR ((float)12 =M PI)

int main(int argc, char �argv[ ])
f

float l,b,alpha,delta;
double hra,mra,sra,ddec,mdec,sdec;

if (argc==3) f
l = atof(argv[1]);
b = atof(argv[2]);

g else f
fprintf(stderr,"usage: %s l b\n",argv[0]);
fprintf(stderr," l: Galactic longitude (degrees)\n");
fprintf(stderr," b: Galactic latitude (degrees)\n");
return 1;

g

printf("l (deg): %6.2f\n",l);
printf("b (deg): %+6.2f\n",b);

l �= DEGTO RAD;
b �= DEGTO RAD;

galactic to equatorial(l,b, &alpha, &delta);

alpha �= RAD TO HOUR;
delta �= RAD TO DEG;

sra = 60 �modf(60 �modf(alpha, &hra), &mra);
sdec = 60 �modf(fabs(60 �modf(delta, &ddec)), &mdec);

printf("RA (hms): %02u %02u %02u\n",(char)hra,(char)mra,(char)sra);
printf("Dec (dms): %+02d %02u %02u\n",(int)ddec,(char)mdec,(char)sdec);

return 0;
g
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12.5 Function: equatorial to horizon()

void equatorial_to_horizon(float alpha, float delta, float time, float lat,
float *azi, float *alt)

This routine converts the coordinates of an object from the equatorial system—right ascension� and
declinationÆ—to the horizon system—azimuthA and altitudea—for a given time and latitude. The argu-
ments are:

alpha : Input. The right ascension� (radians).

delta : Input. The declinationÆ (radians).

time : Input. The time of day (sidereal seconds).

lat : Input. The latitude� North (radians).

azi : Output. The azimuthA (radians clockwise from North).

alt : Output. The altitudea (radians up from the horizon).

The transformation is the following:

a = arcsin[sin Æ sin�+ cos Æ cos � cos h] (12.5.1)

and

A = arctan

�� cos Æ cos � sinh

sin Æ � sin� sina

�
(12.5.2)

where� is the latitude andh = (local sidereal time)� � is the hour angle.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: This routine is adapted from the method given in: Peter Duffet-SmithPractical Astronomy
with Your Calculator,3rd edition, (Cambridge University Press, 1988). I have assumed that the user
either (a) has correctly precessed the equatorial coordinates, or (b) doesn’t care.
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12.6 Function: beam pattern()

void beam_pattern(float theta, float phi, float psi, float *plus, float *cross)

This routine computes the beam pattern functions,F+ andF�, for some specified angles�, �, and .
The arguments are:

theta : Input. The polar angle� (radians from zenith).

phi : Input. The azimuthal angle� (radians counter-clockwise from the first arm).

psi : Input. The polarization angle (radians).

plus : Output. The detector response functionF+.

cross : Output. The detector response functionF�.

The beam pattern functions are calculated according to the following formulae:

F+ = 1
2(1 + cos2 �) cos 2� cos 2 � cos � sin 2� sin 2 (12.6.1)

and
F� = 1

2(1 + cos2 �) cos 2� sin 2 + cos � sin 2� cos 2 : (12.6.2)

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: The beam pattern formulae, as well as a precise definition of the angles can be found in: Kip
Thorne in300 Years of Gravitation, S. Hawking and W. Israel editors (Cambridge University Press,
1987). The formulae are suitable for detectors in which the arms are perpendicular; they are not
suitable for the GEO-600 site because the opening angle is approximately94Æ.
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12.7 Function: mc chirp()

void mc_chirp(float time, float latitude, float orientation, long *seed,
float *invMpc, float *c0, float *c1)

This routine makes a random chirp from a hypothetical distribution of Galactic binary neutron stars. The
arguments are:

time : Input. The time of arrival of the chirp in sidereal seconds.

latitude : Input. The latitude of the detector in radians North.

orientation : Input. The orientation of the arm of the detector in radians counter clockwise from North.

seed : Input/Output. A random number seed for use in the Numerical Recipes random number generator
ran1() .

invMpc : Output. The effective distance of the chirp, i.e., the distance of the binary system if it were
optimally oriented.

c0 : Output. The cosine of the random phase of the chirp.

c1 : Output. The sine of the random phase of the chirp.

The resulting chirp waveform ish(t) = invMpc �[c0�hc(t)+c1�hs(t)] wherehc(t) is the cosine-phase
chirp waveform andhs(t) is the sine-phase chirp waveform normalized to one megaparsec.

The hypothetical number of Galactic binary neutron star systems between the Galactocentric radiiR
andR+ dR, and between disk heightsz andz + dz, is taken to be

dN / RdRdz e�R
2=2R2

0 e�jzj=hz (12.7.1)

with R0 = 4:8 kpc andhz = 1 kpc. Only the disk population is considered in this calculation. The
Galactocentric radius of the Sun is taken to beR� = 8:5 kpc.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: The hypothetical distribution was adapted from the distribution used by S. J. Curran and D.
R. Lorimer, Mon. Not. R. Astron. Soc.276347 (1995). The scale height is a guestimate. Very little
is known about the actual distribution of Galactic neutron star binaries! The routine assumes that the
arms of the detector are perpendicular; it is not suitable for the GEO-600 site because the opening
angle is approximately94Æ.
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12.8 Example:inject program

This program produces a list of random Galactic neutron star-neutron star binary inspiral parameters for
injection into the interferometer data to test the data analysis software.

The inspiral waveforms correspond to two neutron star companions, each with a mass distribution that
is uniform between two cutoffs given by the parametersMLOandMHI [for example see L S Finn, Phys Rev
Lett 73 1878 (1994)].

The amplitude distribution corresponds to the (time dependent) model described for the GRASP routine
mc chirp() . The initial phase is uniformly distributed. The parametersLAT, LON, andARMcorrespond
to the latitude, longitude, and arm orientation of the detector, and are required for the model.

The injection time is either at a fixed intervals given by parameterINV RATE(when parameterFIXED=1),
or at random intervals corresponding to a Poisson process with inverse rateINV RATE(whenFIXED=0).
Injection times are between the start and the end of the data run specified by the environment variable
GRASPDATAPATH. The start and end times of this data run are obtained from code resembling that in
programlocklist . If two chirps potentially occur within the same data segment (with length given by
parameterNPOINT), a warning message is printed.

The results are output to stdout in a list containing the arrival time (double), the two masses (floats), the
amplitude—inverse Mpc distance (float), and the initial phase (float), separated by spaces. This is the same
format as required for the fileinsert.ascii which is read by thebinary get data() routine in the
binary search code.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� Program inject.c

Produces a list of random Galactic NS-NS binary inspiral parameters for
injection into the interferometer data to test the data analysis software.

The inspiral waveforms correspond to two NS companions, each with a mass
distribution that is uniform between two cutoffs MLO and MHI
[for example see L S Finn, Phys Rev Lett 73 1878 (1994)].

The amplitude distribution corresponds to the (time dependent) model
described for the GRASP routine mcchirp(). The initial phase is uniformly
distributed. The variables LAT, LON, and ARM correspond to the latitude,
longitude, and arm orientation of the detector, and are required for the
model.

The injection time is either at a fixed intervals INVRATE (FIXED=1),
or at random intervals corresponding to a Poisson process with
inverse rate INVRATE (FIXED=0).
Injection times are between the start and the end of the data run specified
by the environment variable GRASPDATAPATH. The start and end times of this
data run are obtained from code resembling that in program locklist.c.
If two chirps potentially occur within the same data segment (of length
NPOINT points), a warning message is printed.

The results are output to stdout in a list containing the arrival time
(double), the two masses (floats), the amplitude—inverse Mpc distance
(float), and the initial phase (float), separated by spaces. This is the
same format as required for the file insert.ascii which is read by the
binary get data() routine in the binary search code.

�=
#include "grasp.h"

#define OFFSET 15.0 =� offset in secs of injected chirps arrival times�=
#define SEED �101 =� initial seed value for random#, <0 �=
#define LAT 34.1667 =� detector latitude in degrees North�=
#define LON 118.133 =� detector longitude in degrees West�=
#define ARM 180.0 =� detector arm orientation in degrees CCW from North�=
#define MLO 1.29 =� low NS mass limit in solar masses�=
#define MHI 1.45 =� high NS mass limit in solar masses�=
#define INV RATE 30.0 =� inverse of event rate in seconds�=
#define FIXED 1 =� 0: Events occur in Poisson-distributed intervals

1: Events occur at the fixed rate RATE�=
#define NPOINT 262144 =� number of points in each data segment (used to warn

when two events may exist in the same segment)�=
#define KNOWN START END 1 =� use the starting times below rather than from data�=
#define TSTART 784880277
#define TEND 785388428
float ran1(long �);

int known time(double �time,long �seed) f
static int first=1;
if (first) f

�time=TSTART+OFFSET;
first=0;

g
else f

if (FIXED)
�time+=INV RATE;
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else
�time+=INV RATE�log(ran1(seed));

g
return ( �time <TEND);

g

int main()
f

float local sidereal time(time t, float);
void mc chirp(float, float, float, long �, float �, float �, float �);
int next time(double �, long �);
double time;
long seed=SEED;

#if (KNOWN START END)
while (known time( &time, &seed))

#else
while (next time( &time, &seed))

#endif
f

float lst,m1,m2,c0,c1,phase,invMpc;

=� compute the local sidereal time in seconds�=
lst = 3600 �local sidereal time((time t)time,LON);

=� obtain the random chirp parameters�=
mc chirp(lst,LAT,ARM, &seed, &invMpc, &c0, &c1);

=� the random phase in radians�=
phase = atan2(c1,c0);

=� the mass of the first and second NSs�=
m1 = MLO + (MHI � MLO)�ran1( &seed);
m2 = MLO + (MHI � MLO)�ran1( &seed);

=� print the parameters�=
printf("%f %f %f %f %f\n",time,m1,m2,invMpc,phase);

g
return 0;

g

=�
Calculates the next time of a binary inspiral and returns 1 if this time
occurs before the end of the data run or 0 if it does not.
�=

int next time(double �time, long �seed)
f

float ran1(long �);

static int first=1;
static double end;
static float srate;
float dt;

if (first) f =� obtain the start and the end of the data run on first call�=

time t begin;
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float st,et,slowrate;
int soff,sblk,eoff,eblk;
FILE �fplock;

first = 0;

=� read ld mainheader to get begin time�=
f

struct ld mainheader mh;
struct ld binheader bh;
short �datas=NULL;
FILE �fpifo;
int alloc=0,n=0;
fpifo = grasp open("GRASP_DATAPATH","channel.0","r");
read block(fpifo, &datas, &n, &st, &srate,1, &alloc,1, &bh, &mh);
fclose(fpifo);
begin = (time t)mh.epoch time sec;

g
=� start of the first locked segment�=
fplock = grasp open("GRASP_DATAPATH","channel.10","r");
find locked(fplock, &soff, &sblk, &eoff, &eblk, &st, &et, &slowrate);
�time = (double)(begin) + (double)(soff =srate) + OFFSET;

=� end of the last locked segment�=
while (find locked(fplock, &soff, &sblk, &eoff, &eblk, &st, &et, &slowrate));
fclose(fplock);
end = (double)(begin) + (double)(et + eoff =srate);

=� print the start and end times and the duration of the run�=
fprintf(stderr,"start: %f, end: %f, duration: %f\n", �time,end,end � �time);

g
if (FIXED) =� fixed rate intervals�=

dt = INV RATE;
else =� intervals for a Poisson process�=

dt = �INV RATE�log(ran1(seed));

if (dt �srate <NPOINT) =� print warning message when chirps too close�=
fprintf(stderr,"Warning: potentially two chirps in same segment\n");

=� increment the time�=
�time += dt;

if ( �time <end) return 1;
else return 0;

g
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13 Binary Inspiral Search on November 1994 Data

This section includes and documents the code that was used to perform a binary inspiral search of the Caltech
40-meter data from November 1994. The goal of this work was to place an upper limit on the event rate for
binary inspiral in our galaxy. This section includes the following items:

� Source code for the search.

� Source code for generating simulated signals with “galactic” distribution.

� Scripts for running the code on a Beowulf-type system (see
www.lsc-group/phys.uwm.edu/ �www/docs/beowulf
for an example).

� Other related materials.

The results of this search are described in the paper,Observational limit on gravitational waves from binary
neutron stars in the Galaxy[48], which may be obtained from the following web site:
http://xxx.lanl.gov/abs/gr-qc/9903108 .
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13.1 The Statistical Theory of Reception

The reception process is simply the construction of some statistic of the data followed by some test of the
hypotheses “there is a signal present in the data” and “there is no signal present in the data.” When these
hypotheses are considered to be exclusive, the reception process reduces to the comparison of the statistic
with some pre-assigned threshold. Thus, there are two issues: first, what is theoptimalstatistic to construct,
and second, how is the threshold to be determined.

13.1.1 Maximum Likelihood Receiver

Suppose that the detector output,h, contains either noise alone,h = n, or both a signal and noise,h = s+n.
The maximum likelihood receiver returns the quantity

� =
P (h j s)
P (h j :s) (13.1.1)

whereP (h j s) is the probability of obtaining the output given that there is a signal present andP (h j :s)
is the probability of obtaining the output given that there is no signal present. The likelihood ratio� can
be viewed as the factor which relates thea priori probability of a signal being present with thea posteriori
probability of a signal being present given the detector output:

P (s j h)
P (:s j h) = �

P (s)

P (:s) : (13.1.2)

In general, there is no universal way of deciding on thea priori probabilitiesP (s) andP (:s) = 1� P (s),
so one is limited to the construction of the likelihood ratio�. However, as� grows larger, the probability of
a signal increases, so we can use it to test our hypotheses as follows:

� If � � �� then decide that there is a signal present.

� If � < �� then decide that there is no signal present.

Here,�� is some threshold. Lacking anya priori information about whether there is a signal present, the
threshold�� should be determined by setting a desired probability for a false alarm and/or false dismissal.

13.1.2 A Receiver for a Known Signal

Consider the case in which the signal has an exactly known form,s(t). In general, signals can occur
with a variety of amplitudes; we lets(t) be the known signal with some fiducial normalization and we
write the actual signal (if present) asAs(t) whereA is the amplitude of the signal. Further, we assume
that the noise samples are drawn from a stationary Normal distribution, though there may be correlations
amongst the noise events (colored noise). The noise correlations may be expressed in terms of the one-
sided noise power spectrum,12Sh(jf j)Æ(f � f 0) = h~n(f)~n�(f 0)i, where~n(f) is the Fourier transform of
the noisen(t), and� denotes complex conjugation. The probability of obtaining an instant of noise,n(t),
is p(n) / exp[�1

2 (n j n)], where the inner product(� j �) is given by

(a j b) =
Z 1

�1
df

~a�(f)~b(f) + ~a(f)~b�(f)
Sh(jf j) : (13.1.3)

The likelihood ratio is the ratio of the probabilitiesP (h j s) = p(h�As) (sinceh(t) = As(t) +n(t) given
the signal is present) andP (h j :s) = p(h):

� = eAx�A
2�2=2 (13.1.4)
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wherex = (h j s) and�2 = (s j s). Since the likelihood ratio is a monotonically increasing function ofx,
and since the outputh appears only in the construction ofx, we can set a threshold on the value ofx rather
than on�.

It is straightforward to compute the false alarm and true detection probabilities for any choice of thresh-
old x�. Under the assumption that there is no signal present, the false alarm probability is the probability
that jxj > x�:

P (false alarm) = P (jxj > x� j :s) = erfc[x�=
p
(2�2)]: (13.1.5)

Notice that we have used the absolute value ofx since the actual signal may have either positive or negative
amplitude. Similarly, the true detection probability (the converse of the false dismissal probability) is the
probability thatjxj > x� when a signal is present:

P (true detection) = P (jxj > x� j s)
= 1

2 erfc[(x� �A�2)=
p
(2�2)] + 1

2 erfc[(x� +A�2)=
p
(2�2)]: (13.1.6)

Here, the complementary error function is defined byerfc(x) = (2=
p
�)
R1
x e�t

2
dt. Using these equations,

the threshold can be set for any desired false alarm probability, and then the probability of a true detection
can be computed.

13.1.3 A Receiver for a Signal of Unknown Phase

Suppose that the signal is known up to an arbitrary phase,As(t) = A cos �� s0(t) +A sin �� s1(t) where
s0(t) and s1(t) are known waveforms and� is the unknown phase. For simplicity, suppose further that
(s0 j s0) = (s1 j s1) = �2 and (s0 j s1) = 0, i.e., the waveforms are orthogonal. Again assume that
the noise is a stationary (but colored) normal process. Then the likelihood ratio, averaged over a uniform
distribution of the unknown phase, is

�� = e�A
2�2=2I0(Az) (13.1.7)

wherez2 = x2+y2 with x = (h j s0) andy = (h j s1). Here,I0(x) = (2�)�1
R 2�
0 ex sin �d� is the modified

Bessel function of the first kind of order zero. Since this function is monotonic, a threshold level can be set
on the value of the statisticz rather than��.

When there is no signal present, the statisticz assumes the Rayleigh distribution

p(z j :s) = z

�2
exp[�z2=2�2] (13.1.8)

and, in the presence of a signal, the statistic assumes a Rice distribution

p(z j s) = z

�2
exp[�(z2=�2 +A2�2)=2] I0(Az): (13.1.9)

Thus, the false alarm probability for a threshold ofz� is

P (false alarm) = P (z > z� j :s) = exp(�z2�=2�2) (13.1.10)

and the true detection probability is

P (true detection) = P (z > z� j s) = Q(A�; z�=�): (13.1.11)

TheQ-function, which is defined by the integral

Q(�; �) =

Z 1

�
dxxe�(x

2+�2)=2I0(�x); (13.1.12)
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has the propertiesQ(�; 0) = 1,Q(0; �) = e��
2=2, and the asymptotic forms

Q(�; �) � 1� 1
���

q
�

2�� e
�(���)2=2 �� � � 1;

Q(�; �) � 1
���

q
�

2�� e
�(���)2=2 � � �� 1:

(13.1.13)

For any desired value of the false alarm probability, we can calculate the thresholdz� =
p
[�2� logP (false alarm)].

Then the probability of true detection can be evaluated for that threshold using theQ-function.

13.1.4 Reception of a Signal with Unknown Arrival Time

In general, the expected signals will be much shorter than the observation time, and we do not know when
the signal will occur. We wish not only to detect these signals but also to measure their arrival time. To do
this, we construct the time series

x(t) =

Z 1

�1
df e�2�ift

~h�(f)~s0(f) + ~h(f)~s�0(f)
Sh(jf j) (13.1.14)

and

y(t) =

Z 1

�1
df e�2�ift

~h�(f)~s1(f) + ~h(f)~s�1(f)
Sh(jf j) (13.1.15)

for the case of an unknown phase, or just the quantityx(t) with s0(t) = s(t) if the signal is known com-
pletely (up to the arrival time). For each observation period, we compute the mode statistic,

� = ��1max
t

8<: jx(t)j known phase

z(t) =
p
x2(t) + y2(t) unknown phase;

(13.1.16)

and set some threshold�� for this statistic.
In general, it is difficult to compute the false alarm probability for a given threshold because the values

of x(t) andy(t) are correlated. However, in the limit of large thresholds (small false alarm probability for
a large observation time), each samplex(ti) andy(ti) becomes effectively independent in the sense that if
the threshold is exceeded at a timeti, then it is unlikely that it will be exceeded again at any time within the
correlation timescale of timeti. The false alarm probability is then the probability computed for a single
time receiver (above) multiplied by the total number of samples in the observation time. Stated another way,
therate of false alarms is

�(false alarm) ' ��1
(

erfc(��=
p
2) known phase

exp(��2�=2) unknown phase
(�� � 1) (13.1.17)

where��1 is the sampling rate. The probability of a false alarm in the observation timeT isP (false alarm) =
T � �(false alarm). Although this false alarm rate is good only in the limit of high thresholds, it provides
an overestimate for more modest thresholds.

The true detection probability is even more difficult to compute than the false alarm probability. How-
ever, a quick estimate would be to assume that the detection will always be made at the correct time, and
then the correct detection probability will be the same as was computed in the previous two sections. This
will provide an underestimate of the correct detection probability.
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13.1.5 Reception of a Signal with Additional Unknown Parameters

In the case that the signal waveform possesses parameters, other than the time of arrival that we wish to
measure, then we must consider abankof filters, fxi(t;�i)g (andfyi(t;�i)g if there is also an unknown
phase), corresponding to a correlation of the outputh(t) with all of the possible signalss(t;�i). Here, the
set ofN� parameters isf�ig. A set of statisticsf�ig is then created according to the methods given in
the previous section. The largest of these statistics is compared to the threshold to determine if a signal is
present or not. If it is decided that a signal is present, then the estimate of the parameters of the signal are
those parameters�i corresponding to the largest statistic�i.

The filters in the filter bank will typically be densely packed into the parameter space in order to ac-
curately match any expected signal. Thus, these filters will likely be highly correlated with one another.
To estimate the rate of false alarms, we appeal to the high threshold limit in which each filter is effectively
independent. Then, the rate of false alarms is

�(false alarm) ' N��
�1
(

erfc(��=
p
2) known phase

exp(��2�=2) unknown phase
(�� � 1): (13.1.18)

Similarly, we assume that if a signal is detected, then it will be detected with the correct parameters. The
probability of true detection under this assumption is

P (true detection) '
( 1

2 erfc[(�� �A�)=
p
2] + 1

2 erfc[(�� +A�)=
p
2] known phase

Q(A�; �) unknown phase:
(13.1.19)

These expressions provide an overestimate of the false alarm rate and an underestimate of the probability of
true detection; thus, they may be used to set a threshold for an upper limit to the desired false alarm rate,
and the false dismissal probability should be no greater than the value computed from that threshold.
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13.2 Details of Normalization

The Fourier transform convensions of Numerical Recipes are used here. In particular, suppose that the time
seriesa(t) is sampled at intervals of�t = 1=srate and these samples are stored in the arrayarray[0..n-
1] wheren is the number of samples taken (thus, the total observation time isT = n�t. Then, the Fourier
transform~a(f) =

R
dt e2�ifta(t) is related to the FFT ofarray by

~a(fj) = �t� (atilde[2j] + iatilde[2j+1] ) (13.2.1)

whereatilde[0..n-1] is produced fromarray[0..n-1] by realft(...,1) . Note that the
frequencyfj = j�f where�f = (n�t)�1 = srate =n. Define the one-sided mean power spectrum of
a(t) by

Sa(jf j) = 2

T
hj~a(f)j2i (13.2.2)

and similarly define

power[j] = 2h(atilde[2j] )2 + (atilde[2j+1] )2i: (13.2.3)

Notice thatSa(jf j) has dimensions of time whilepower[j] is, of course, dimensionless. These two power
spectra are related by

Sa(fj) =
1

n � srate
power[j] : (13.2.4)

A well known “feature” of the inverse FFT produced byrealft(...,-1) is that

realft(atilde,n,-1) ) n

2
� array[0..n-1] : (13.2.5)

We can express the correlation between two time series,a(t) andb(t), weighted by twice the inverse power
spectrum, as

c(tk) =
1

2

Z 1

�1
df e�2�iftk~a(f)~b�(f)

2

S(jf j)

' 1

2

srate

n

�n=2�1X
j =0

e�2�ijk =n

�atilde[2j] + iatilde[2j+1]

srate

�btilde[2j] � ibtilde[2j+1]

srate

�2� n � srate

power[j]

�
+ cc

( correlate(c,atilde,btilde,weight,n) (13.2.6)

[cf. equation (6.16.1)] whereweight[j] = 2=power[j] andc(tk) = c[k] . Notice that all the factors
of 2, n, andsrate are accounted for. However, the correlation defined in the first line is one half of the
correlation defined in equation (13.1.14).

GRASP RELEASE 1.9.8 Page 447 May 19, 2000



Section
13.3

Binary Inspiral Search on November 1994 Data
Function: strain spec()

Page
448

13.3 Function: strain spec()

void strain_spec(float flo, float srate, int n, float *adc_spec,
float *response, float *mean_pow_spec, float *twice_inv_noise)

This routine computes the strain spectrum�Sh(f) and twice the inverse noise2=(�Sh(f)) from the
ADC spectrumSADC(f) and the strain response functionR(f)=`. The arguments are:

flo : Input. The low frequency cutoff (Hz) for computing the strain spectrum and twice inverse noise.
These are set to zero for frequencies belowflo .

srate : Input. The sampling rate in Hertz.

n: Input. Sets the size of the following arrays.

adc spec : Input. The vectoradc spec[0..n/2] of the ADC power spectrumSADC(f).

response : Input. The vectorresponse[0..n+1] of the detectorstrain response functionR(f)=`.
Here,` is the armlength of the detector, so thatresponse[] has dimensions of (ADC counts)�1.

mean pow spec : Output. The vectormean pow spec[0..n/2] containing the strain power spec-
trum�Sh(f).

twice inv noise : Output. The vectortwice inv noise[0..n/2] containing twice the inverse
strain noise power spectrum2=(�Sh(f)).

The strain power spectrum isSh(f) = jR(f)=`j2�SADC(f), and the normalization factor� = n�srate
is present for agreement with the output of the routineavg inv spec() .

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: Note that the strain power spectrum differs fromSh(f) by the low frequency cutoff, and by
the factor�.
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13.4 Function: corr coef()

void corr_coef(float *a0, float *a1, float *r, int n,
float *r00, float *r11, float *r01)

This routine computes the correlation coefficients,r00, r11, andr01, of two vectors of data,a0 anda1:

rij =

"
(a0; a0) (a1; a0)

(a0; a1) (a1; a1)

#
: (13.4.1)

The arguments are:

a0 : Input. The vector~a0(f).

a1 : Input. The vector~a1(f).

r : Input. Twice the inverse noise2=(�Sh(f)), as returned by, e.g.,strain spec() .

n: Input. The length of the arraysa0[1..n-1] , a1[1..n-1] , andr[0..n/2] .

r00 : Output. The correlation coefficientr00 = (a0; a0).

r00 : Output. The correlation coefficientr11 = (a1; a1).

r00 : Output. The correlation coefficientr01 = (a0; a1).

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: The inner product(a0; a1) is equal to the valuec[0] of the output ofcorrelate(c,a0,a1,r,n) ;
thus, it differs by a factor of two from the Cutler and Flanagan inner product. The constant� =
n � srate is explained in section 13.3.
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13.5 Function: receiver1()

int receiver1(float *input, float *filter, float *twice_inv_noise, float var,
float *output, int n, int presafe, int postsafe, float threshold,
float *snr, int *ind)

This function computes the maximum signal-to-noise ratio� for a matched filter of known form (in-
cluding phase), but unknown arrival time, and returns the number of times in the data segment that the
signal-to-noise ratio exceeded some specified threshold��. The arguments are:

input : Input. The vectorinput[0..n-1] containing the input data~h(f), in frequency domain, to be
filtered.

signal : Input. The vectorsignal[0..n-1] containing the expected waveform~s(f), in frequency
domain.

twice inv noise : Input. The vectortwice inv noise[0..n/2] , containing twice the inverse
power spectrum2=(�Sh(f)) of the noise.

var : Input. The “variance,”(s; s), of the expected waveform.

output : Output. The vectoroutput[0..n-1] corresponding to the result of correlating the input with
the expected waveform. This quantity is computed by the call:
correlate(output,input,signal,twice inv noise,n) .

n: Input. The integer that defines the lengths of the previous arrays.

presafe : Input. The number of points to skip at the beginning of the correlation in order to avoid
wrap-around errors.

postsafe : Input. The number of points to skip at the end of the correlation in order to avoid wrap-around
errors. This should be longer than the length of the signals(t) in the time domain.

threshold : Input. The signal-to-noise ratio threshold�� used in counting the number of times that the
filter output exceeded��.

snr : Output. The vectorsnr[0..n-1] corresponding to the signal-to-noise ratios

snr[i] = joutput[i] j � p(2=var ):

ind : Output. A table of indicesind[0..n-presafe-postsafe-1] giving the offsets between
presafe and n � postsafe of the signal-to-noise ratios sorted into decreasing order. Thus,
snr[ind[0]] is the largest signal-to-noise ratio (between the pre- and post-safety margins),snr[ind[1]]
is the second largest, etc.

The number of threshold crossings returned is the number of times that the threshold signal-to-noise ratio is
exceeded between the pre- and post-safety margins.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: The constant� = n � srate is explained in section 13.3. The extra factor of
p
2 in the

signal-to-noise ratio arises from the factor of two difference between the inner product of Cutler and
Flanagan and the value ofoutput[0] .
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13.6 Function: receiver2()

int receiver2(float *input, float *filter0, float *filter1,
float *twice_inv_noise, float var,
float *output0, float *output1, int n, int presafe, int postsafe,
float threshold, float *snrsq, int *ind)

This function computes the maximum signal-to-noise ratio� for a matched filter of known form but
unknown phase and arrival time, and returns the number of times in the data segment that the signal-to-noise
ratio exceeded some specified threshold��. The arguments are:

input : Input. The vectorinput[0..n-1] containing the input data~h(f), in frequency domain, to be
filtered.

signal0 : Input. The vectorsignal0[0..n-1] containing the expected waveform~s0(f), in fre-
quency domain.

signal1 : Input. The vectorsignal1[0..n-1] containing the expected waveform~s1(f), in fre-
quency domain.

twice inv noise : Input. The vectortwice inv noise[0..n/2] , containing twice the inverse
power spectrum2=(�Sh(f)) of the noise.

var : Input. The “variance,”12(r00 + r11) =
1
2 [(s0; s0) + (s1; s1)], of the expected waveform.

output0 : Output. The vectoroutput0[0..n-1] corresponding to the result of correlating the input
with the expected waveforms0(t). This quantity is computed by the call:
correlate(output0,input,signal0,twice inv noise,n) .

output1 : Output. The vectoroutput1[0..n-1] corresponding to the result of correlating the input
with the expected waveforms1(t). This quantity is computed by the call:
correlate(output1,input,signal1,twice inv noise,n) .

n: Input. The integer that defines the lengths of the previous arrays.

presafe : Input. The number of points to skip at the beginning of the correlation in order to avoid
wrap-around errors.

postsafe : Input. The number of points to skip at the end of the correlation in order to avoid wrap-around
errors. This should be longer than the length of the signals(t) in the time domain.

threshold : Input. The signal-to-noise ratio threshold�� used in counting the number of times that the
filter output exceeded��.

snrsq : Output. The vectorsnrsq[0..n-1] corresponding to the squared signal-to-noise ratios

snrsq[i] = 2� (output0[i] )2 + (output1[i] )2

var
:

ind : Output. A table of indicesind[0..n-presafe-postsafe-1] giving the offsets between
presafe and n � postsafe of the signal-to-noise ratios sorted into decreasing order. Thus,
snrsq[ind[0]] is the largest squared signal-to-noise ratio (between the pre- and post-safety mar-
gins),snr[ind[1]] is the second largest, etc.
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The peak signal-to-noise ratio,
p

snrsq[ind[0]] , is the signal-to-noise ratio of the maximum output of
a matched filter corresponing to the measured signalŝ(t) = c0s0(t) + c1s1(t) where

c0 =
r11 � output0[ind[0]] � r01 � output1[ind[0]]

r00r11 � r01r01

c1 =
r00 � output1[ind[0]] � r01 � output0[ind[0]]

r00r11 � r01r01

(13.6.1)

The number of threshold crossings returned is the number of times that the threshold signal-to-noise ratio is
exceeded between the pre- and post-safety margins.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: The constant� = n � srate is explained in section 13.3. The extra factor of
p
2 in the

signal-to-noise ratio arises from the factor of two difference between the inner product of Cutler and
Flanagan and the value of, e.g.,output0[0] .
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13.7 Example:binary search program

This program was used to filter the November 1994 Caltech 40-meter data run in search of binary neutron
star inspirals.

The program is a modified version of themultifilter program. The template bank used is stored in
the file templates.ascii , which must be generated prior to running the program. Each line oftem-
plates.ascii contains the masses (separated by a space) of a template. (The filetemplates.ascii
generated bymake mesh, section 9.39, may be used for this purpose.) The program also reads a file
insert.ascii if binary inspirals are to be injected. (This file and the injection procedure is described
below.) If injection occurs, the program logs the injections in the fileinsert.log . The output of the
program is written in binary files in the directory set by the environment variableGRASPMFOUT. The file
signal.header contains a header file which describes the format of the binary files (including itself), the
number of filters used and the filter parameters, the low frequency cutoff used in the filters, and the sampling
rate of the IFO. The other files,signal.00000 , signal.00001 , etc., contain the output signals for
each filter for the segments processed. (The number in the filename indicates the segment.) These files are
read using the programbinary reader , described in Section 13.9.

At present, there are eight signals generated for each filter. These are:

1. The distance, in Mpc, at which an optimally oriented inspiral would produce a signal-to-noise ratio of
one. This describes the sensitivity of the instrument at that given time, and allows one to estimate the
distance of a potential signal given its signal-to-noise ratio. An optimally-oriented inspiral is one for
which the orbital plane of the inspiral is parallel to the orbital plane defined by the two arms of the
detector.

2. The maximum signal-to-noise ratio output by the filter for the data segment. The maximization is
made over all possible filter-output offsets in the data segment, but a number of pointsPRESAFETY
are omitted from the beginning of the segment and a numberPOSTSAFETYfrom the end.

3. The maximum signal-to-noise ratio renormalized by a power correction factor. If the estimated power
spectrum were wrong by some overall normalization constant, this corrected signal-to-noise ratio
represents what would have been obtained if the “correct” power spectrum had been used.

4. The maximum signal-to-noise ratio renormalized by a median correction factor. This factor is the
ratio of the expected median of the signal-to-noise ratio distribution (for stationary Gaussian noise) to
the median of the observed distribution (which is obtained from every fourth time offset in the time
series within the pre- and post-safety margins).

5. The “impulse offset”: the offset at which the filter would peak if it were triggered by an impulse. For
an inspiral waveform, this is roughly the offset of the waveform end (modulo the length of the data
segment). Thus:

impulse offset= (filter peak offset+ filter length)mod (segment length): (13.7.1)

Alternatively with the macro COMPARE set to one, the filter peak offset can be recorded. The dif-
ference between the peak and impulse offsets is discussed in Section 6.19. Filter peak offsets are
recorded as negative integers so that the reader program can identify the offset as either the impulse
offset or as the filter peak offset.

6. The estimated initial phase of the potential inspiral waveform. The phase is

phase= arctan(�=2-phase coefficient;0-phase coefficient):
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7. The value of ther2 discriminant described above. This test is only applied if the signal-to-noise ratio
exceeds a value ofTHRESHOLD; otherwise, the value of this signal is zero.

8. The number of offsets in which the filter signal-to-noise ratio exceeded the thresholdTHRESHOLD.

In addition to these signals (which are given for each filter), each signal file also contains the time of the start
of the data segment (in seconds since 0h 1 January 1970 UTC), and an integer which indicates whether the
segment contains significant numbers of outliers. Note that (as described in Section 4.1) these time-stamps
have only a few minutes of accuracy. This is good enough to determine the relative orientation of the galaxy
and the detector, in order to determine the expected rates of inspiral from galactic source distributions, but
may not be good enough for pulsar searches.

The program is divided into the following files:

binary params.h : a header file containing the parameter definitions

binary string.h : a header file containing declarations for the strings*comment and*descrip-
tion

binary search.c : the main code for analyzing the data and outputing an event list

binary get data.c : the routines used for data aquisition

binary routines.c : extra miscellaneous routines (which will eventually be documented in the GRASP
manual)

binary params.ascii : the filebinary params.h , converted into strings, to be included into the
string*description

Some of these files are described below.

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu), Patrick Brady (patrick@tapir.caltech.edu), Jolien Creighton
(jolien@tapir.caltech.edu)
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13.7.1 Environment variables used bybinary search

Thebinary search program reads and uses the following environment variables:

� GRASPDATAPATH The directory path in which to search for “old-format” data.

� GRASPMFPATH The directory path in which to writesignal.* output files and other output.

� GRASPINSERT The directory path in which to search for aninsert.ascii file, and in which
to write aninsert.log file. Documentation about how to create the fileinsert.ascii and the
details of its format may be found in Section 12.8.

� GRASPSTARTSEGMENTThe segment number at which to start analyzing the data set. Set to� 0 to
analyze all data. This environment variable is particularly useful if a run has not terminated properly.
It can be used to re-start the analysis run at the point where it previously finished.

� GRASPTEMPLATE The directory in which to search for atemplates.ascii file containing the
template list. To find the code which can be used to generate this file, and documentation about its
format, please see Section 9.39.

� GRASPKILLSCRIPT The directory in which to write the filekillscript . This file contains a
csh script which will terminate all thebinary search processes on a multiprocessor machine or
network. It’s useful for “cleaning up the damage” when a job does not terminate correctly and leaves
hanging processes.
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13.7.2 File:binary params.h

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� Parameters that describe the size of the segments of data analyzed�=
#define NPOINT 262144 =� The size of our segments of data (˜26 seconds)�=
#define CHIRPLEN 24000 =� length of longest allowed chirp 23293 points�=
#define PRESAFETY 65536 =� ignore PRESAFETY points at beginning of correlation�=
#define POSTSAFETY (PRESAFETY + CHIRPLEN) =� ignore POSTSAFETY at end of correlation�=
#define SPEC TRUNC PRESAFETY
=� #define SPECTRUNC 0�=

=� Parameters that describe the data aquisition�=
#define MIN INTO LOCK 3.0 =� Number of minutes to skip into each locked section�=
#define DATA SEGMENTS 16384 =� largest number of data segments to process�=

=� Parameter that defines format of data being used�=
=� 0: old format data�=
=� 1: new (frame) format data�=
=� 2: simulated data�=
#define DATA FORMAT 1
#define RANDOMIZE 0 =� Randomizes the phases�=

=� Parameters that describe the interferometer�=
#define FLO 120.0 =� The low frequency cutoff for filtering (Hz)�=
#define HSCALE 1.e21 =� A convenient scaling factor; results independent of it�=
#define SRATE 9868.4208984375 =� sample rate in HZ of IFODMRO channel�=

=� Parameters that describe the filter bank and the filter signals�=
#define NUM TEMPLATES 687 =� number of templates read from an ascii file�=
#define STORE TEMPLATES 0 =� 0: slaves recompute templates. 1: slaves save templates.�=
#define NSIGNALS 8 =� number of signal values computed for each template�=
#define THRESHOLD 5.0 =� threshold above which a splitup veto test is done�=
#define PBINS 20 =� Number of frequency bands for the rˆ 2 discriminator�=

=� Parameters controlling optional MPI and MPE code�=
#define DEBUG COMM 0 =� print lots of statements to help debug communication�=
#define DBX 0 =� start up dbx windows for each process�=
#define ISMPE 0 =� 0: no mpe calls. 1: mpe calls�=
#define SMALL MPELOG 1 =� 0: detailed MPE logging. 1: minimal MPE logging�=
#define RENICE 1 =� Priority. 1: processes run NICED 0: not NICED�=
#define NPERSLAVE 15 =� The number of segments analyzed in parallel by slave�=

=� Parameters for analysing a particular segment and a particular template�=
#define PART TEMPLATE�1 =� template to be investigated (numbered 0,1,. . .)�=
#define COMPARE 0 =� 0: records impulse offset. 1: records peak offset�=

=� parameters for type of filtering�=
#define INSERT CHIRP 0 =� 0: don’t insert a chirp. 1: insert chirp into data�=
#define REMOVE LINE BINS 0 =� implement Whitcomb’s idea of dropping bins near lines�=
#define INJECT TIME REVERSE 0=� inject time-reversed chirps�=
#define REVERSE FILTERS 0 =� analyze data with time-reversed filters�=
#define WINDOW 2 =� power spectrum: 0=rectangular 1=Hann 2=Welch 3=Bartlett�=
#define NORM CF 1 =� 0: GRASP snr=distance norm 1: Cutler=Flanagan norms�=
#define TWO PHASER2 1 =� 1: Use two-phase rˆ 2 test, 0: use single-phase test�=

=� Utility parameters�=
#define HEADER COMMENTSIZE 16384 =� bytes in the comment part of signal.header file�=
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These parameters are defined by comment text within the file itself. However a few additional comments
about these parameters may be helpful.

� NPOINTThis is a power of two, used to define the segment lengths used in the filtering process.

� CHIRPLENThe length of the longest chirp, in samples

� PRESAFETYandPOSTSAFETYshould both be set reasonably large. Although the impulse response
of the instrument only lasts a few milliseconds (see Section 3.15) the convolution with (the time-
domain version of) 1

Sh(f)
in the optimal filter can stretch this out considerably. When convolved

with the wraparound discontinuity at the ends of the segment, this can produce large spurious signals
near the beginning and end of a segment. For this reason, we ignore the firstPRESAFETYpoints
and the finalPOSTSAFETYpoints at the output of each filter. This eliminates end effects from the
wraparound point (the start/end of each segment) arising from the impulse response of the filters.

� SPECTRUNCThis truncates the time-domain version of1=Sh(f) to a pre-determined length, guar-
anteeing that the impulse response in the time domain is finite and not as long as the data segments.
The impulse response is2� SPEC TRUNC points long (where our counting includes both positive and
negative lags).

� MIN INTO LOCKof about three minutes seems to be enough to allow the different pendulum and
violin modes to quiet down after coming into lock.

� DATASEGMENTSThe maximum number of segments of data to filter.

� DefiningDATAFORMATto be either 0, 1 or 2 permits one to use this code with either old-format (0)
as described in Section 3 or FRAME-format data (1) as described in Section 4 or simulated data (2).

� DefiningRANDOMIZEto be either 0 or 1 determines if the data set (not including an injected signal)
has its phase in the frequency domain set to a random value between0 and2�, independently in each
frequency bin. For 0, no randomization is done. For 1, each bin is randomized in phase. This creates
a signal with pseudo-stationary characteristics but the same spectrum as the true signal.

� FLO is the gravity wave frequency at which the inspiral chirps begin, and also serves as the low-
frequency cutoff for filtering. It should be set well below the most sensitive frequency of the detector,
in the seismic- or thermal-noise dominated region.

� HSCALEis a constant used to rescale the strain internally in the code to make quantities of interest be
of order unity. All results of the code are (and should be) independent of its value.

� SRATEThe sample rate, in Hz, of the gravitational-wave signal.

� NUMTEMPLATESis the maximum number of templates that can be used in filtering. The tem-
plates are defined by pairs of masses which are read from a file defined by the environment variable
GRASPTEMPLATE.

� STORETEMPLATESshould be set to 1 to instruct the slave processes to save their templates; it
should be set to 0 to instruct them to re-compute the templates each time they are used. The first
option saves time but uses memory and can cause significant swapping. The second option increases
the CPU usage by a factor of

1 +
1

NPERSLAVE
(13.7.2)
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but reduces the memory requirements enough to prevent swapping on any reasonable-sized machine.
Note that ifNPERSLAVE = 1 then the factor above is two, so that storing templates halves the execution
time.

� PBINS is the number of frequency bins used in the time/frequency�2 test defined in Section 6.24.
The choice of single or two-phase test is made by settingTWOPHASER2 to 1 for a two-phase test,
and to zero otherwise.

� One can instrument the MPI code with the Message Passing Extension (MPE) library by setting
ISMPE to 1. The amount of detail in the log files is then controlled by theSMALLMPELOGmacro.

� RENICEIf this is set to 1, the master and slave processes are “reniced” to run at low priority. This is
useful if you are doing processing on a shared workstation network and don’t want to slow down the
other users.

� NPERSLAVEThe processing is done in parallel on the slaves: each slave aquires then analyzesNPER-
SLAVEsegments of data, by computing a filter, FFTing it, then correlating allNPERSLAVEsegments
with it. This is beneficial if the filter FFT’s are not being stored on the slaves, since by makingNPER-
SLAVEsufficiently large, the time spent computing and FFTing a template can be made vanishingly
small. This may be seem from equation (13.7.2).

� PARTTEMPLATEcan be used to anlayse the correlated output of one template in detail. The rec-
tified output of the template is recorded in a file called template(PART TEMPLATE).(myid) where
(XX) denotes the numerical value of XX. The variable myid refers to the process id when the pro-
gram is run in a multiprocessor environment. The file contains two columns namely the offset and
the SNR at that offset. Moreover the signal.* files contain an entry only for the particular template
PART TEMPLATE. This macro is to be set to -1 if one wants the entire template bank to be used.

� COMPAREshould be set to 1 to record the filter peak offsets and 0 to record the impulse offsets.
Please refer to equation 13.7.1 for a definition of these quantities. Note: to recover the behavior of
binary search before this macro was added, set it to 0.

� REMOVELINE BINS should be set to 1 to remove certain frequency bins that appear to be strongly
contaminated with line-like resonances, else to 0.

� INJECT TIME REVERSEshoud be set to 1 to inject time-reversed chirps, 0 otherwise

� DEBUGCOMMshould be set to 1 to print statements that are helpful in debugging MPI communication
problems.

� DBXShould be set to 1 to start up debuggers on each different process, 0 otherwise.

� REVERSEFILTERS Should be set to 1 to time-reverse the filter bank, 0 otherwise.
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13.7.3 File:binary search.c (MPI multiprocessor code)

This is the slightly-ugly production code used in the binary inspiral search on the November 1994 data.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=� binary search.c
� (based on multifilter.c)
� JC: 25 July 1997, PRB: 19 August 1997, JC: 27 October 1997, 29 November 1997
� BA: 11-13 April 1998
�=

#include <stdlib.h >
#include "binary_params.h"
#include "binary_string.h"
#include "mpi.h"
#include "grasp.h"
#include "assert.h"
#include <unistd.h >
#if(ISMPE)
#include "mpe.h"
#endif
static char �rcsid="$Id: binary_search.c,v 1.23 1999/07/07 18:04:43 ballen Exp $\n$Name: RELEASE_1_9 _

#ifndef M LN2
#define M LN2 0.69314718055994530942 =� log e2�=
#endif

=� global variables for passing data from getcalibrateddata()�=
double datastart;
float �n inv noise, �htilde, �pow renorm,srate=9868.4208984375;
int num templates,npoint=NPOINT,new lock,gauss test,insert chirp=INSERT CHIRP;

=� global variables for passing between master and slave in non mpi mode�=
float �template list, �sig buffer;

=� MPI global variables�=
int numprocs,myid,namelen;
char processor name[MPI MAXPROCESSORNAME],logfile name[256], �cmd name;
void export environment(int,const char �);
pid t process id;
#if (RENICE)
char commandstring[256];
int nicevalue;
#endif

=� define prototypes�=
void realft(float �,unsigned long ,int);
void corr coef(float �, float �, float �, int, float �, float �, float �);
=� the following routine is the Numerical Recipes routine select().

However its name has been changed to NRselect. See section 2.5.2 of the GRASP
manual for details!
�=

float NRselect(unsigned long, unsigned long, float [ ]);
int get calibrated data();

=� time-reversed filters�=
void make retlifs(float m1, float m2, float �ch1, float �ch2, float fstart,

int n, float srate, int �filled, float �t coal,
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int err cd sprs, int order);

=� information to save about segments of data�=
struct Saved f

double tstart;
int gauss;
int segmentno;

g;

int main(int argc,char �argv[ ]) f
=� prototypes�=
void master();
void slave();

=� Get the name of this program�=
cmd name = argv[0];
=� start MPI, find number of processes, find process number�=
MPI Init( &argc, &argv);
MPI Commsize(MPI COMMWORLD,&numprocs);
MPI Commrank(MPI COMMWORLD,&myid);
MPI Get processor name(processor name, &namelen);

=� export any environment variables from master to slaves (repeat as many times as needed)�=
export environment(myid,"GRASP_MFPATH");
export environment(myid,"GRASP_TEMPLATE");
export environment(myid,"GRASP_KILLSCRIPT");

#if (DBX)
export environment(myid,"DISPLAY");

#endif =� DBX �=
process id=getpid();

#if (RENICE)
=� set priority to 19 for slaves, 17 for master�=
if (myid)

nicevalue=19;
else

nicevalue=17;
#if (!DBX)

sprintf(commandstring,"renice %d -p %d",nicevalue,process id);
system(commandstring);
printf("Processor %s (number %d) process number %d set NICE to %d\n",

processor name,myid,process id,nicevalue);
fflush(stdout);

#endif =� !DBX �=
#endif =� (RENICE)�=

=� create a file containing a kill script for this job�=
f

int i;
FILE �fpkill;
char filemode[2];
filemode[1]='\0';
for (i=0;i <numprocs;i++) f

MPI Barrier(MPI COMMWORLD);
if (i==myid) f

filemode[0]=(myid==0)?'w':'a';
fpkill=grasp open("GRASP_KILLSCRIPT","killscript",filemode);
if (myid==0) fprintf(fpkill,"#\n");
fprintf(fpkill,"rsh %s kill -9 %d\n",processor name,process id);

fflush(fpkill);
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fclose(fpkill);
g

g
g

=� if desired, pause to attach debugger�=
=� if (myid==0) sleep(30);�=

#if (DBX)
sprintf(commandstring,"xterm -sb -e gdb %s %d &",cmd name,process id);
if (myid==0) system(commandstring);
sleep(15);
MPI Barrier(MPI COMMWORLD);

#endif

#if(ISMPE)
MPEInit log();

#endif =� (ISMPE)�=

=� Gravity wave signal (frequency domain),
twice inverse noise power,
and power renormalization factor�=

f
int factor=1;
factor=(myid==0)?1:NPERSLAVE;
htilde = (float �)malloc(factor �(sizeof(float) �npoint

+sizeof(float) �(npoint =2+1)+sizeof(float)));
g
n inv noise = htilde + npoint;
pow renorm = n inv noise + npoint =2 + 1;

=� In the MPI version of the code, call the master or slave�=
if (myid==0)

master();
else

slave();

=� shutdown process�=
printf("%s preparing to shut down (process %d)\n",processor name,myid);
fflush(stdout);

#if(ISMPE)
sprintf(logfile name,"%s.%d.%d.log",cmd name,numprocs,DATA SEGMENTS);
MPEFinish log(logfile name);

#endif
printf("%s waiting at MPI_Barrier. . . (process %d)\n",processor name,myid);
MPI Barrier(MPI COMMWORLD);
MPI Finalize();
printf("%s shutting down (process %d)\n",processor name,myid);
fflush(stdout);
return 0;

g

=� Function executed by the master node�=
void master()
f

MPI Status status;
struct Saved �saveme;
int i,islave,num sent=0,num recv=0, �tot per slave,nperslave, �slave shutdown;
int startsegment=0;
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char �startsegenv;

startsegenv=getenv("GRASP_STARTSEGMENT");
if (startsegenv==NULL)

startsegment=0;
else f

printf("Environment variable GRASP_STARTSEGMENT set to %s\n",startsegenv);
startsegment=atoi(startsegenv);
if (startsegment <0 j j startsegment > 2048) startsegment=0;
printf("Master starting with segment # %d\n",startsegment);

g

#if(ISMPE)
MPEDescribe state(1,2,"Templates->Slaves","red:vlines3");
MPEDescribe state(3,4,"Data->Slaves","blue:gray3");
MPEDescribe state(5,6,"Master Receive","brown:light_gray");
MPEDescribe state(7,8,"Data->Master","yellow:dark_gray");
MPEDescribe state(9,10,"Slave Receive","orange:white");
MPEDescribe state(13,14,"Slaves<-templates","gray:black");
MPEDescribe state(15,16,"compute template","lavender:black");
MPEDescribe state(17,18,"real fft","lawn green:black");
MPEDescribe state(19,20,"correlate","purple:black");
MPEDescribe state(21,22,"correlation coefficients","wheat:black");
MPEDescribe state(23,24,"likelihood test","light sky blue:black");

#endif

f =� read in template list�=

float m1,m2;
FILE �fptemplates;

num templates = NUM TEMPLATES;
template list = (float �)malloc(sizeof(float) �2�num templates);
fptemplates=grasp open("GRASP_TEMPLATE","templates.ascii","r");

for (i=0;i <num templates;i++) f
if (EOF==fscanf(fptemplates,"%f %f\n", &m1,&m2)) f

fprintf(stderr,"Warning: template file ended at template number %d\n%s\n",i,rcsid);
fflush(stderr);
num templates = i;
break;

g
template list[2 �i] = m1;
template list[2 �i+1] = m2;

g
fclose(fptemplates);

g

=� print out the header�=
f

time t translate time;
float flo=FLO;
int bytes=0,one=1;
FILE �fpheader;

fpheader = grasp open("GRASP_MFPATH","signal.header","w");
bytes += fprintf(fpheader,

"%d\n",HEADER COMMENTSIZE);
bytes += fprintf(fpheader,
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"This is output from a first pass filtering of the Nov 1994 data set.\n");
time( &translate time);
bytes += fprintf(fpheader,"%s\n",ctime( &translate time));
bytes += fprintf(fpheader,"%s",comment);
bytes += fprintf(fpheader,"%s",description);
if (bytes >HEADERCOMMENTSIZE) f

fprintf(stderr,"HEADER_COMMENT_SIZE = %d must be increased to >= %d\n",HEADER COMMENTSIZE,byt e
fflush(stderr);
MPI Abort(MPI COMMWORLD,1);

g
while (bytes <HEADERCOMMENTSIZE) bytes += fprintf(fpheader,"\n");
fwrite( &one,4,1,fpheader);
fwrite( &num templates,4,1,fpheader);
fwrite( &flo,4,1,fpheader);
fwrite( &srate,4,1,fpheader);
for (i=0;i <2�num templates;i++) fwrite(template list+i,4,1,fpheader);
fclose(fpheader);

g

=� storage for returned signals (NSIGNALS per template)�=
sig buffer = (float �)malloc(sizeof(float) �num templates �NSIGNALS�NPERSLAVE);

=� Structure for saving information about data sent to slaves�=
saveme = (struct Saved �)malloc(sizeof(struct Saved) �numprocs �NPERSLAVE);
tot per slave=(int �)malloc(sizeof(int) �numprocs);
slave shutdown=(int �)malloc(sizeof(int) �numprocs);
f

int k;
for (k=0;k <numprocs;k++) tot per slave[k]=slave shutdown[k]=0;

g

=� broadcast templates�=
#if(ISMPE)

MPELog event(1,myid,"send");
#endif

MPI Bcast( &num templates,1,MPI INT,0,MPI COMMWORLD);
MPI Bcast(template list,2 �num templates,MPI FLOAT,0,MPI COMMWORLD);

#if(ISMPE)
MPELog event(2,myid,"sent");

#endif

=� Skip segments 0 to startsegment-1�=
f

int i;
i=startsegment;
while( ��i >=0) get calibrated data();
num sent=num recv=startsegment;

g

=� while not finished, loop over slaves�=
for (islave=1;islave <numprocs;islave++)

for (nperslave=0;(nperslave <NPERSLAVE) && (!slave shutdown[islave]);nperslave++)
if (get calibrated data()) f =� if new data exists, then send it (nonblocking?)�=

num sent++;
printf("Master broadcasting data segment %d to slave %d\n",num sent,islave);
fflush(stdout);

#if(ISMPE)
MPELog event(3,myid,"send");

#endif =� ISMPE�=
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MPI Send(htilde,NPOINT+NPOINT =2+1+1,MPI FLOAT,islave,num sent,MPI COMMWORLD);
#if(ISMPE)

MPELog event(4,myid,"sent");
#endif =� ISMPE�=

saveme[NPERSLAVE�(islave �1)+nperslave].gauss = gauss test;
saveme[NPERSLAVE�(islave �1)+nperslave].tstart = datastart;
saveme[NPERSLAVE�(islave �1)+nperslave].segmentno = num sent;
tot per slave[islave]++;

g else f =� tell remaining processes to exit�=
printf("Failed to get data segment %d\n",num sent+1);
fflush(stdout);

#if(ISMPE)
MPELog event(3,myid,"send");

#endif
printf("Master - sent shutdown message to process %d\n",islave);
fflush(stdout);
MPI Send(htilde,NPOINT+NPOINT =2+1+1,MPI FLOAT,islave,0,MPI COMMWORLD);
saveme[NPERSLAVE�(islave �1)+nperslave].segmentno=0;
slave shutdown[islave]=1;

#if(ISMPE)
MPELog event(4,myid,"sent");

#endif
g

=� now loop, gathering answers, sending out more data�=
printf("Entering loop to gather answers\n");
fflush(stdout);
while (num sent!=num recv) f

FILE �fpout;
char fname[256];
int more data;

=� listen for answer�=
#if(ISMPE)

MPELog event(5,myid,"receiving. . .");
#endif

=� This next block retrieves signals from the slaves�=
f

int flag=0;
while (flag==0) f

=� check to see if a signal is waiting for pickup�=
MPI Iprobe(MPI ANY SOURCE,MPIANY TAG,MPI COMMWORLD,&flag, &status);
if (flag) f

=� if it is, then get it and exit�=
MPI Recv(sig buffer,NSIGNALS �num templates �NPERSLAVE,MPI FLOAT,

MPI ANY SOURCE,MPIANY TAG,MPI COMMWORLD,&status);
g
else

sleep(1);
g

#if (DEBUG COMM)
printf("Master just got a response from slave %d (should be %d segments)\n",

status.MPI SOURCE,tot per slave[status.MPI SOURCE]);
fflush(stdout);

#endif
if (status.MPI TAG != tot per slave[status.MPI SOURCE]) f

fprintf(stderr,"SERIOUS PROBLEM: slave node %d returned data for: %d data segments\n",
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status.MPI SOURCE,status.MPI TAG);
fprintf(stderr,"BUT the master recorded that it was only sent: %d data segments\n",

tot per slave[status.MPI SOURCE]);
fflush(stderr);

g
g

#if(ISMPE)
MPELog event(6,myid,"received");

#endif =� ISMPE�=
num recv+=tot per slave[status.MPI SOURCE];

=� Determine the correct file name�=
for (nperslave=0;nperslave <tot per slave[status.MPI SOURCE];nperslave++) f

sprintf(fname,"signal.%05d",
(saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].segmentno) �1);

=� open signal file for output�=
fpout=grasp open("GRASP_MFPATH",fname,"w");

=� Print the output data to a file�=
fwrite( &(saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].tstart),8,1,fpout);
fwrite( &(saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].gauss), 4,1,fpout);
fwrite(sig buffer+nperslave �NSIGNALS�num templates,NSIGNALS �4,num templates,fpout);
fclose(fpout);

g =� end of loop over nperslave�=
tot per slave[status.MPI SOURCE]=0;

for (nperslave=0;nperslave <NPERSLAVE;nperslave++) f
more data = get calibrated data();

#if (DEBUG COMM)
printf("\t\t\t\t\t\t\tMORE DATA RETURNED %d\n",more data);
fflush(stdout);

#endif =� DEBUG COMM�=
if (more data) f =� if there is more data, send it off�=

num sent++;
printf("Master broadcasting data segment %d to slave %d\n",num sent,status.MPI SOURCE);
fflush(stdout);

#if(ISMPE)
MPELog event(3,myid,"send");

#endif =� ISMPE�=
MPI Send(htilde,NPOINT+NPOINT =2+1+1,MPI FLOAT,status.MPI SOURCE,numsent,MPI COMMWORLD);

#if(ISMPE)
MPELog event(4,myid,"sent");

#endif =� ISMPE�=
tot per slave[status.MPI SOURCE]++;
saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].gauss = gauss test;
saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].tstart = datastart;
saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].segmentno = num sent;

g else if (!slave shutdown[status.MPI SOURCE]) f
#if(ISMPE)

MPELog event(3,myid,"send");
#endif =� ISMPE�=

MPI Send(htilde,NPOINT+NPOINT =2+1+1,MPI FLOAT,status.MPI SOURCE,0,MPI COMMWORLD);
saveme[NPERSLAVE�(status.MPI SOURCE�1)+nperslave].segmentno=0;
slave shutdown[status.MPI SOURCE]=1;
printf("Master - sent shutdown message to process %d\n",status.MPI SOURCE);
fflush(stdout);

#if(ISMPE)
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MPELog event(4,myid,"sent");
#endif =� ISMPE�=

g
g

g =� end of while (numsent!=numrecv) loop�=

=� when all the answers are in, print results�=
printf("This is the master - all answers are in!\n");
fflush(stdout);

=� shut down any remaining slaves�=
for (islave=1;islave <numprocs;islave++)

if (slave shutdown[islave]==0) f
MPI Send(htilde,NPOINT+NPOINT =2+1+1,MPI FLOAT,islave,0,MPI COMMWORLD);
printf("Master - sent shutdown message to process %d (don't know why still running!)\n",

islave);
fflush(stdout);

g
free(saveme);
return;

g

void slave()
f

void realft(float �, unsigned long, int);
static float �output0=NULL, �output90=NULL, �snrdata=NULL;
static float �ltc=NULL, �lch0tilde=NULL, �lch90tilde=NULL;
static int �lchirppoints,completed=0;
int i,num stored,temp no,nskip=4,validdata=0,nperslave,location;
float �htildel, �n inv noisel, �pow renorml;
MPI Status status;
int segno[NPERSLAVE];

#if(PART TEMPLATE>�1)
char templatefile[256];
FILE �fp pt[NPERSLAVE];

#endif

printf("Slave %d (%s) just got started. . .\n",myid,processor name);
fflush(stdout);

=� allocate storage space�=
=� Ouput of matched filters for phase0 and phase pi=2, in time domain, and temp storage�=
snrdata = (float �)realloc(snrdata,sizeof(float) �npoint =nskip);
output0 = (float �)realloc(output0,sizeof(float) �npoint);
output90 = (float �)realloc(output90,sizeof(float) �npoint);

=� get the list of templates to use�=
#if(ISMPE)

MPELog event(13,myid,"receiving. . .");
#endif

MPI Bcast( &num templates,1,MPI INT,0,MPI COMMWORLD);
sig buffer = (float �)malloc(sizeof(float) �num templates �NSIGNALS�NPERSLAVE);
template list = (float �)malloc(sizeof(float) �2�num templates);
MPI Bcast(template list,2 �num templates,MPI FLOAT,0,MPI COMMWORLD);

#if(ISMPE)
MPELog event(14,myid,"received");

#endif
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printf("Slave %d (%s) just got template list. . .\n",myid,processor name);
fflush(stdout);

=� Phase 0 and phase pi=2 chirps, in frequency domain�=
num stored = STORE TEMPLATES�(num templates � 1) + 1;
lch0tilde = (float �)realloc(lch0tilde,sizeof(float) �npoint �num stored);
lch90tilde = (float �)realloc(lch90tilde,sizeof(float) �npoint �num stored);
lchirppoints = (int �)realloc(lchirppoints,sizeof(float) �num stored);
ltc = (float �)realloc(ltc,sizeof(float) �num stored);

if (lch0tilde==NULL j j lch90tilde==NULL j j lchirppoints==NULL j j ltc==NULL) f
fprintf(stderr,"Node %d on machine %s: could not malloc() memory!\n%s\n",

myid,processor name,rcsid);
fflush(stderr);
MPI Abort(MPI COMMWORLD,5);

g

=� now enter an infinite loop, waiting for new inputs�=
while (1) f

=� listen for data, parameters from master�=
#if(ISMPE)

MPELog event(9,myid,"receiving. . .");
#endif

validdata=0;
for (nperslave=0;nperslave <NPERSLAVE;nperslave++) f

MPI Recv(htilde+nperslave �(NPOINT+NPOINT=2+1+1),NPOINT+NPOINT =2+1+1,MPI FLOAT,0,MPI ANY TAG,
MPI COMMWORLD,&status);

segno[nperslave]=status.MPI TAG;
#if (DEBUG COMM)

printf("Slave %s node %d loop: message tag is %d\n",processor name,myid,status.MPI TAG);
fflush(stdout);

#endif =� DEBUG COMM�=
if (segno[nperslave]!=0)

validdata++;
else

break;
g

#if(ISMPE)
MPELog event(10,myid,"received");

#endif
=� if this is a termination message, we are done!�=
if (validdata==0)

break;

printf("Slave %d (%s) got htilde (and noise spectrum) for %d segments: %d to %d\n",
myid,processor name,validdata,segno[0],segno[validdata �1]);

fflush(stdout);

=� compute signals�=
for (temp no=0;temp no<num templates;temp no++) f

float �ch0tilde, �ch90tilde, �tc,r00,r11,r01,sigma2,distance;
float snr max,c0,c90,varsplit,stats[2 �PBINS],med renorm;
int �chirppoints,num crossing,maxi,impulseoff,indices[PBINS];

=� To skip all templates except a particular one�=
#if(PART TEMPLATE>�1)

for (nperslave=0;nperslave <validdata;nperslave++) f
snr max=0.0;
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varsplit=0.0;
num crossing=0;

if((temp no)!=PART TEMPLATE) f
sig buffer[nperslave �num templates �NSIGNALS+temp no�NSIGNALS] = 0.0;
sig buffer[nperslave �num templates �NSIGNALS+temp no�NSIGNALS+1] = 0.0;
sig buffer[nperslave �num templates �NSIGNALS+temp no�NSIGNALS+2] = 0.0;
sig buffer[nperslave �num templates �NSIGNALS+temp no�NSIGNALS+3] = 0.0;
((int �)sig buffer)[nperslave �num templates �NSIGNALS+temp no�NSIGNALS+4] = 0.0;
sig buffer[nperslave �num templates �NSIGNALS+temp no�NSIGNALS+5] = 0.0;
continue; =� THIS IS NO LONGER RIGHT??�=

g
else f

sprintf(templatefile,"template_%d.%d",PART TEMPLATE,segno[nperslave]);
fp pt[nperslave] = grasp open("GRASP_MFPATH",templatefile,"w");

g
g

#endif

ch0tilde = lch0tilde + npoint �temp no�STORETEMPLATES;
ch90tilde = lch90tilde + npoint �temp no�STORETEMPLATES;
chirppoints = lchirppoints + temp no�STORETEMPLATES;
tc = ltc + temp no�STORETEMPLATES;

=� Compute the template, and store it internally, if desired�=
if (completed!=num templates) f

float m1,m2;
int longest template=0;

=� manufacture two chirps (dimensionless strain at 1 Mpc distance)�=
m1 = template list[2 �temp no];
m2 = template list[2 �temp no+1];

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(15,myid,"computing");

#endif
#if (REVERSE FILTERS)

make retlifs(m1,m2,ch0tilde,ch90tilde,FLO,npoint,srate,chirppoints,tc,4000,4);
#else

make filters(m1,m2,ch0tilde,ch90tilde,FLO,npoint,srate,chirppoints,tc,4000,4);
#endif

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(16,myid,"computed");

#endif
if ( �chirppoints >longest template) longest template = �chirppoints;

if ( �chirppoints >CHIRPLEN) f
fprintf(stderr,"Chirp m1=%f m2=%f length %d too long!\n",m1,m2,

�chirppoints);
fprintf(stderr,"Maximum allowed length is %d\n",CHIRPLEN);
fprintf(stderr,"Please recompile with larger CHIRPLEN value\n");
fprintf(stderr,"%s\n",rcsid);
fflush(stderr);
MPI Abort(MPI COMMWORLD,6);

g

=� normalize the chirp template�=
=� normalization of next line comes from GRASP (5.6.3) and (5.6.4)�=
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f
float inverse distance scale=2.0 �HSCALE�(TSOLAR�C LIGHT=MPC);
for (i=0;i <�chirppoints;i++) f

ch0tilde[i] �= inverse distance scale;
ch90tilde[i] �= inverse distance scale;

g
g

=� zero out the unused elements of the tilde arrays�=
for (i=( �chirppoints);i <npoint;i++)

ch0tilde[i]=ch90tilde[i]=0.0;

=� and FFT the chirps�=
#if(ISMPE)

if (!SMALL MPELOG) MPELog event(17,myid,"starting fft");
#endif

realft(ch0tilde �1,npoint,1);
#if(ISMPE)

if (!SMALL MPELOG) MPELog event(18,myid,"ending fft");
if (!SMALL MPELOG) MPELog event(17,myid,"starting fft");

#endif
realft(ch90tilde �1,npoint,1);

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(18,myid,"ending fft");

#endif
if (STORE TEMPLATES) completed++;

=� print out the length of the longest template�=
if (completed==num templates)

fprintf(stderr,"Slave %d: templates completed. Longest is %d points\n",
myid,longest template);

fflush(stdout);
g =� done computing the template�=

=� correlation coefficients�=
for (nperslave=0;nperslave <validdata;nperslave++) f

n inv noisel=n inv noise+nperslave �(NPOINT+NPOINT=2+1+1);
htildel=htilde+nperslave �(NPOINT+NPOINT=2+1+1);
pow renorml=pow renorm+nperslave �(NPOINT+NPOINT=2+1+1);

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(21,myid,"starting");

#endif
corr coef(ch0tilde,ch90tilde,n inv noisel,npoint, &r00, &r11, &r01);

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(22,myid,"done");

#endif
=� sigma squared and optimal distance scale Mpc for SNR=1�=
sigma2 = 0.5 �(r00 + r11);
distance = sqrt(sigma2);

=� find the moment at which SNR is a maximum�=
#if(ISMPE)

if (!SMALL MPELOG) MPELog event(19,myid,"searching");
#endif

f
int count=0;
float x,y,amp,medsnr,expect=sqrt(M LN2);
float x2py2,x2py2max,x2py2 thresh;
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correlate(output0,htildel,ch0tilde,n inv noisel,npoint);
correlate(output90,htildel,ch90tilde,n inv noisel,npoint);

x2py2max=0.0;
num crossing=0;
x2py2 thresh=THRESHOLD�THRESHOLD�sigma2;
maxi= �1;
for (i=PRESAFETY;i <NPOINT�POSTSAFETY;i++) f

x = output0[i];
y = output90[i];
x2py2 = x �x + y �y;

#if(PART TEMPLATE>�1)
fprintf(fp pt[nperslave],"%d %f\n",i,sqrt(x2py2 =sigma2));

#endif
if (x2py2 >x2py2max) f

x2py2max = x2py2;
maxi = i;

g
if (x2py2 >x2py2 thresh) num crossing++;
if (!(i%nskip)) snrdata[count++] = x2py2;

g
snr max=sqrt(x2py2max =sigma2);

#if(PART TEMPLATE>�1)
fclose(fp pt[nperslave]);

#endif

=� check that we did correctly find a maximum offset�=
assert(PRESAFETY <= maxi && maxi <= NPOINT�POSTSAFETY);

c0 = (r11 �output0[maxi] � r01 �output90[maxi]);
c90 = (r00 �output90[maxi] � r01 �output0[maxi]);
amp = sqrt(c0 �c0 + c90 �c90);

c0 == amp;
c90 == amp;
=� the following routine is the Numerical Recipes routine select().

However its name has been changed to NRselect. See section 2.5.2 of the GRASP
manual for details!
�=

medsnr = NRselect(count =2,count,snrdata �1);
med renorm = expect =sqrt(medsnr =sigma2);

g

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(20,myid,"done");

#endif
=� identify when an impulse would have caused observed filter output�=
impulseoff = (maxi + �chirppoints)%npoint;

=� collect interesting signals to return�=
location=NSIGNALS �num templates �nperslave+temp no�NSIGNALS;
sig buffer[location] = distance;
sig buffer[location+1] = snr max;
sig buffer[location+2] = snr max�( �pow renorml);
sig buffer[location+3] = snr max�med renorm;

#if(COMPARE)
((int �)sig buffer)[location+4] = �maxi;

#else
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((int �)sig buffer)[location+4] = impulseoff;
#endif

sig buffer[location+5] = atan2(c90,c0);

varsplit=0.0;
if (snr max>THRESHOLD)f

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(23,myid,"testing");

#endif
#if (TWO PHASER2)

=� two-phase r̂2 test�=
varsplit = splitup freq5(sqrt(0.5),sqrt(0.5),ch0tilde,ch90tilde,r00,

n inv noisel,npoint,
maxi,PBINS,indices,stats,output0,htildel);

#else
=� Single phase rˆ 2 test:�=
varsplit = splitup freq2(c0,c90,ch0tilde,ch90tilde,r00,

n inv noisel,npoint,
maxi,PBINS,indices,stats,output0,htildel);

#endif
varsplit == sigma2;

#if(ISMPE)
if (!SMALL MPELOG) MPELog event(24,myid,"done");

#endif
g
sig buffer[location+6] = varsplit;
((int �)sig buffer)[location+7] = num crossing;

g =� end of loop over the templates�=
g =� end of loop over nperslave�=

=� return signals to master�=
#if(ISMPE)

MPELog event(7,myid,"send");
#endif
#if (DEBUG COMM)

printf("Slave %s node %d sending message to master: tag is %d\n",processor name,myid,
validdata);

fflush(stdout);
#endif =� DEBUG COMM �=

MPI Send(sig buffer,NSIGNALS �num templates �NPERSLAVE,MPI FLOAT,0,validdata,MPI COMMWORLD);
#if(ISMPE)

MPELog event(8,myid,"sent");
#endif

if (validdata <NPERSLAVE) break;
g =� end of loop over the data�=

printf("Node %d on machine %s: received a shutdown message\n",
myid,processor name);

fflush(stdout);
return;

g

=� This routine exports environment variables to the nodes�=
void export environment(int node number,const char �name) f

char �environment, �var=NULL;
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int length;

=� if this is the master, get enviroment variable�=
if (node number==0) f

if (name==NULL) f
fprintf(stderr,"Argument to export_environment() can't be null!\n");
fflush(stderr);
MPI Abort(MPI COMMWORLD,2);

g
var=getenv(name);
if (var==NULL) f

fprintf(stderr,"Environment variable %s MUST be set!\n",name);
fflush(stderr);
MPI Abort(MPI COMMWORLD,3);

g
=� calculate the length of the string to pass�=
length=strlen(name)+strlen(var)+2;

g

=� broadcast the length of the string�=
MPI Bcast( &length,1,MPI INT,0,MPI COMMWORLD);

=� allocate storage for the string�=
if (NULL==(environment=(char �)malloc(length))) f

fprintf(stderr,"Export_environment() node %d couldn't allocate memory!\n",
node number);

fflush(stderr);
MPI Abort(MPI COMMWORLD,4);

g

=� print environment variable into string�=
if (node number==0) f

sprintf(environment,"%s=%s",name,var);
fprintf(stderr,"Exporting environment variable %s\n",environment);
fflush(stderr);

g

=� then broadcast it to the other processes�=
MPI Bcast(environment,length,MPI CHAR,0,MPI COMMWORLD);

=� and put it into the local environment�=
if (node number) f

putenv(environment);
fprintf(stderr,"Node %d receiving environment variable %s\n",

node number,environment);
fflush(stderr);

g
return;

g

GRASP RELEASE 1.9.8 Page 472 May 19, 2000



Section
13.7

Binary Inspiral Search on November 1994 Data
Example: binary search program

Page
473

13.7.4 File:binary get data.c

#include <string.h >
#include "grasp.h"
#include "binary_params.h"

#define SIM VARIANCE 16384.0
#define SIM SITE 8

char �rcsid="$id";

static int count chunks,count locked,count segments;
static double count tinlock,lastlock,discarded,lastdiscard=0;
static FILE �fp statistics;

struct Chunk f
double time;
short �data;
float �spec;
int cont;
int is gaussian;
int counter;
int used in spectrum;

g;

void make retlifs(float m1, float m2, float �ch1, float �ch2, float fstart,
int n, float srate, int �filled, float �t coal,
int err cd sprs, int order);

int get calibrated data();
#if (RANDOMIZE)
float ran2(long �);
long randomize= �12345;
#endif

void nullout(float freqmin,float freqmax,int npoint,float srate,float � n inv noise) f
int imin,imax,i;

imin=freqmin �npoint =srate;
imax=freqmax �npoint =srate;
=� set to zero in those bins�=
if (imin <npoint =2)

for (i=imin;((i <imax) && (i <npoint =2));i++)
n inv noise[i]=0.0;

return;
g

=� Routine to compute window function for some specified window type.
�
� Input is the window type:
� type = 0: rectangular (no) window,
� type = 1: Hann window,
� type = 2: Welch window,
� type = 3: Bartlett window.
�
� Output are�wss (sum of window function values squared) and the window
� function values window[0. .n-1].�=

void compute window(float �wss, float window[ ], int n, int type)
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f
int i;
float fac=2.0 =n;

�wss = 0;
for (i=0;i <n;i++) f

float win;
switch (type) f
case 0: =� rectangular (no) window�=

win = 1;
break;

case 1: =� Hann window�=
win = 0.5 �(1 � cos(i �fac �M PI));
break;

case 2: =� Welch window�=
win = i �fac � 1;
win = 1 � win �win;
break;

case 3: =� Bartlett window�=
win= 1 � fabs(i �fac � 1);
break;

default: =� unrecognized window type�=
GR start error("avg_spec()",rcsid, FILE , LINE );
GR report error("don't recognize windowtype=%d\n",type);
GR end error();
abort();
break;

g
�wss += win �win;
window[i] = win;

g
return;

g

=� Routine to calculate the response function using the old-style
� data acquisition routines�=

void recalibrate old(float �response, int npoint)
f

int i;
FILE �fpss;
fpss = grasp open("GRASP_DATAPATH","swept-sine.ascii","r");
normalize gw(fpss,npoint,SRATE,response);
fclose(fpss);
for (i=0;i <npoint;i++) response[i] �= HSCALE=ARMLENGTH1994;
return;

g

=� Are we building a frame-compatible version?�=
#if (DATA FORMAT == 1)

=� Global frame variables�=
struct fgetoutput fgetoutput= f0g;
struct fgetinput fgetinput= f0g;
int frame init=0;
int time last calibrated= �1;

=� Routine to initialize global frame variables and to allocate memory�=
void initialize frame()
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f
frame init = 1;
fgetinput.nchan = 1;
fgetinput.files = framefiles;
fgetinput.calibrate = 1;
fgetinput.chnames = (char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations = (short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetinput.chnames[0] = "IFO_DMRO";
fgetinput.inlock = 1;
fgetoutput.npoint = (int �)malloc(fgetinput.nchan �sizeof(int));
fgetoutput.ratios = (int �)malloc(fgetinput.nchan �sizeof(int));
return;

g

=� Routine to calculate the response function using the frame
� data acquisition routines. This routine should only be called
� after some data has been read, so that the frame output variables
� have been set.�=

void recalibrate frame(float �response, int npoint)
f

float srate=SRATE;
int i;

if (!frame init) f
GR start error("recalibrate_frame()",rcsid, FILE , LINE );
GR report error("must get some data before calling this routine!\n");
GR end error();
abort();

g

=� print message�=
GR start error("recalibrate_frame()",rcsid, FILE , LINE );
GR report error("Note: data calibration carried out at time %d.\n",

fgetoutput.tcalibrate);
GR report error(" previous frame calibration was from time %d.\n",

time last calibrated);
GR end error();

=� do the calibration�=
GRnormalize(fgetoutput.fri,fgetoutput.frinum,npoint,srate,response);
for (i=0;i <npoint;i++) response[i] �= HSCALE=ARMLENGTH1994;

=� record time that we did calibration�=
time last calibrated=fgetoutput.tcalibrate;

return;
g
#endif =� end of frame-compatible version�=

=� Routine to calculate the response function for simulated data�=
void recalibrate sim(float �response, int npoint)
f

double �power, �tmp;
float parameters[9],srate=SRATE;
float fac=HSCALE �sqrt(0.5 �srate =SIM VARIANCE);
char site name[256],noise file[256],whiten file[256];
int m=npoint =2;
tmp = power = (double �)malloc(m �sizeof(double));
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if (power == NULL) f
GR start error("recalibrate_sim()",rcsid, FILE , LINE );
GR report error("failed to allocate %d doubles\n",m);
GR end error();
abort();

g
detector site("detectors.dat",SIM SITE,parameters,

site name,noise file,whiten file);
noise power(noise file,m,srate =npoint,power);
while (m �� > 0) f

�response++ = fac �sqrt( �tmp++);
�response++ = 0;

g
free(power);

g

=� Routine to calculate the response function. The response function
� is only updated if needed — otherwise, it is unchanged.
�
� Input is the number of points in the response function, npoint.
�
� Output is the response function array response[0. .npoint-1].�=

void recalibrate(float �response, int npoint)
f
# if (DATA FORMAT == 0)

static int first = 1;
=� old format data�=
if (first) f

first = 0;
recalibrate old(response,npoint);

g
# elif (DATA FORMAT == 1)

=� frame format data�=
if (time last calibrated != fgetoutput.tcalibrate)

recalibrate frame(response,npoint);
# elif (DATA FORMAT == 2)

static int first = 1;
=� simulated data�=
if (first) f

first = 0;
recalibrate sim(response,npoint);

g
# else

=� not a recognized format!�=
GR start error("recalibrate()",rcsid, FILE , LINE );
GR report error("unrecognized DATA_FORMAT %d\n",DATA FORMAT);
GR end error();
abort();

# endif
return;

g

=� open the IFO output file and read the mainheader to get runstart time�=
double get runstart old()
f

struct ld mainheader mh;
struct ld binheader bh;
float tstart,srate;
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int zero=0,npt=NPOINT;
FILE �fpifo;
short �here;
fpifo = grasp open("GRASP_DATAPATH","channel.0","r");
read block(fpifo, &here, &zero, &tstart, &srate,0, &npt,1, &bh, &mh);
fclose(fpifo);
return (double)mh.epoch time sec + (double)mh.epoch time msec�0.001;

g

=� Routine to get a chunk of data using the old data acquisition routines.
�
� Input is the number of points in the chunk, npoint.
�
� Output is the data in the array here[0. .npoint-1]
� and the time,�time, of the start of the data.
�
� Returned is the code:
� code = 0: no more data;
� code = 1: beginning of a locked section
� (no data acquired, but we have skipped MININTO LOCK
� minutes into the locked segment);
� code = 2: continuing a locked section (data acquired).�=

int get chunk data old(short �here, int npoint, double �time)
f

static FILE �fpifo, �fplock;
static int remain=0,first=1;
static float srate=SRATE;
static double runstart;
float tstart;
int code;

if (first) f =� initialization�=
first = 0;
runstart = get runstart old();
=� open the IFO output file, lock file, and swept-sine file�=
fpifo = grasp open("GRASP_DATAPATH","channel.0","r");
fplock = grasp open("GRASP_DATAPATH","channel.10","r");

g

if (remain < npoint) f =� if new locked section�=
int nskip=(int)(60 �MIN INTO LOCK�SRATE);
=� skip forward MIN INTO LOCK minutes�=
code = get data(fpifo,fplock, &tstart,nskip,here, &remain, &srate,1);
if (code == 0) return 0;
else return 1;

g

=� get the needed data�=
code = get data(fpifo,fplock, &tstart,npoint,here, &remain, &srate,0);

=� compute the start time�=
�time = runstart + tstart;

return code;
g

=� are we building a frame compatible version?�=
#if (DATA FORMAT == 1)
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=� Routine to get a chunk of data using the frame data acquisition routines.
�
� Input is the number of points in the chunk.
�
� Output is the data in the array here[0. .npoint-1]
� and the time,�time, of the start of the data.
�
� Returned is the code:
� code = 0: no more data;
� code = 1: beginning of a locked section
� (no data acquired, but we have skipped MININTO LOCK
� minutes into the locked segment—WARNING. . . the data
� array here will be filled with junk, which should be
� ignored!)
� code = 2: continuing a locked section (data acquired).�=

int get chunk data frame(short �here, int npoint, double �time, int �counter)
f

static float srate=SRATE;
int code, retcode;
static int private count=0;

private count++;
fprintf(fp statistics,"get_chunk_data_frame: getting chunk %d\n",private count);

if (!frame init) initialize frame();

=� we want. . .�=
fgetinput.npoint = npoint; =� . . .npoints of data. . .�=
fgetinput.locations[0] = here; =� . . .in array here[ ]. . .�=
fgetinput.seek = 0; =� . . .no seek. . .�=
fgetinput.inlock = 1; =� . . .only when in lock�=

=� get npoints of data�=
retcode = code = fget ch( &fgetoutput, &fgetinput);
fprintf(fp statistics,"Current frame file: %s\n",fgetoutput.filename);

while (code == 1) f
=� seek to a total of MININTO LOCK minutes into locked section . . .�=
fgetinput.seek = 1;
=� . . . we have already gone npoint, so we need to subtract this off . . .�=
fgetinput.npoint = MIN INTO LOCK�60�srate � npoint;
=� . . . subtracting npoint is an inconvenience!�=
if (fgetinput.npoint < 1) f

GR start error("get_chunk_data_frame()",rcsid, FILE , LINE );
GR report error("set MIN_INTO_LOCK to a larger value\n");
GR end error();
abort();

g
code = fget ch( &fgetoutput, &fgetinput);

fprintf(fp statistics,"Current frame file: %s\n",fgetoutput.filename);

if (code == 0) return 0; =� no more data�=
if (code == 1) f =� oops. . . skiped into yet another locked section . . .�=

=� . . . so we need to skip forward the npoint offset we subtracted above�=
fgetinput.npoint = npoint;
code = fget ch( &fgetoutput, &fgetinput);

fprintf(fp statistics,"Current frame file: %s\n",fgetoutput.filename);
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if (code == 0) return 0;
g

g

lastlock=fgetoutput.lastlock;
discarded=(double)fgetoutput.discarded =srate;
�time = fgetoutput.tstart;
�counter=private count;
return retcode;

g
#endif

=� Routine to generate a chunk of simulated white noise.
�
� Input is the number of points in the chunk, npoint.
�
� Output is the data in the array here[0. .npoint-1]
� and the time,�time, of the start of the data.
�
� Returned is the code:
� code = 0: no more data;
� code = 1: beginning of a locked section
� (no data acquired, but we have skipped MININTO LOCK
� minutes into the locked segment);
� code = 2: continuing a locked section (data acquired).�=

int get chunk data sim(short �here, int npoint, double �time)
f

float ran2(long �);
static double local time=0,srate=SRATE;
static long seed= �100;
int m=npoint =2;

if (seed < 0) f
ran2( &seed);
return 1;

g
local time += (double)npoint =srate;
�time = local time;
while (m �� > 0) f

float x,y,rr,fac;
do f

x = 2 �ran2( &seed) � 1;
y = 2 �ran2( &seed) � 1;
rr = x �x + y �y;

g while (rr > 1 j j rr == 0);
fac = sqrt( �2�SIM VARIANCE�log(rr) =rr);
�here++ = floor(fac �x);
�here++ = floor(fac �y);

g
return 2;

g

=� Routine to compute the spectrum of a chunk of data.
�
� Input is the number of points of data, npoint,
� and the array of data, data[0. .npoint-1].
�
� Output is spectrum, spec[0. .npoint=2]. �=
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void get spectrum(short �data, float �spec, int npoint)
f

void realft(float [ ], unsigned long, int);
static float �work=NULL, �win=NULL,fac;
static int nkeep= �1;
int i,n=npoint,m=npoint =2;

if (npoint != nkeep) f
float wss;
nkeep = npoint;
work = realloc(work,npoint �sizeof(float));
if (work == NULL) f

GR start error("get_spectrum()",rcsid, FILE , LINE );
GR report error("failed to allocate %d floats\n",npoint);
GR end error();
abort();

g
win = realloc(win,npoint �sizeof(float));
if (win == NULL) f

GR start error("get_spectrum()",rcsid, FILE , LINE );
GR report error("failed to allocate %d floats\n",npoint);
GR end error();
abort();

g
compute window( &wss,win,npoint,WINDOW);
fac = 2 =(wss �SRATE);

g
=� copy data to workspace and apply window�=
for (i=0;i <n;i++) work[i] = win[i] �data[i];

=� FFT workspace�=
realft(work �1,npoint,1);

=� DC and Nyquist terms�=
spec[0] = fac �work[0];
spec[m] = fac �work[1];

=� other terms�=
for (i=1;i <m;i++) f

int ir=i+i,ii=ir+1;
float re=work[ir],im=work[ii];
spec[i] = fac �(re �re + im �im);

g
return;

g

=� === Patrick Brady === Modified: 4 December 1998 ===
�
� Routine to fill a chunk with data.
�
� Input is the number of points, npoint, in the chunk of data.
�
� Output is the struct chunk with
� chunk.data[0. .npoint-1]: the data
� chunk.spec[0. .npoint=2]: the power spectrum of the data
� chunk.time: the time of the start of the data in the chunk
� chunk.cont: a flag indicating if the data is continuous from the
� last chunk filled (1) or not (0).
� chunk.is gaussian: a flag to indicate if the data has outliers (0) or not (1)
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�
� Returned is the code:
� code = 0: no more data;
� code = 1: beginning of a locked section
� (no data acquired, but we have skipped MININTO LOCK
� minutes into the locked segment);
� code = 2: continuing a locked section (data acquired).�=

int fill chunk(struct Chunk �chunk, int npoint)
f

int code;

#if (DATA FORMAT == 0)
=� old format data�=
code = get chunk data old(chunk �>data,npoint, &chunk �>time);

#elif (DATA FORMAT == 1)
=� frame format data�=
code = get chunk data frame(chunk �>data,npoint, &chunk �>time, &chunk �>counter);

#elif (DATA FORMAT == 2)
=� simulated data�=
code = get chunk data sim(chunk �>data,npoint, &chunk �>time);

#else
=� not a recognized request!�=
GR start error("fill_chunk()",rcsid, FILE , LINE );
GR report error("unrecognized DATA_FORMAT %d\n",DATA FORMAT);
GR end error();
abort();

#endif

switch (code) f
case 0: =� no more data�=

return code;
case 1: =� starting a new locked section�=

chunk �>cont = 0;
break;

case 2: =� continuing a locked section�=
chunk �>cont = 1;
break;

default:
GR start error("fill_chunk()",rcsid, FILE , LINE );
GR report error("unrecognized code %d\n",code);
GR end error();
abort();

g

chunk �>is gaussian=is gaussian(chunk �>data,npoint, �2048,2047,0);
chunk �>used in spectrum=0;
get spectrum(chunk �>data,chunk �>spec,npoint);

return code;
g

=� Bruce Allen, Modified Jan 18, 1998
The new algorithm works as follows:
(1) go through all the kk current chunks
(2) Count the number which are outlier free
(3) replace the oldest of the kk saved spectra with these ones
(4) compute the average spectrum
(5) return
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Comment: the only place this routine might “misbehave” is at the start of
a newly-calibrated section of data (if the calibration curve has significantly
changed), or if the first kk segments of data all have
outliers.

�=
void average spectrum(struct Chunk �chunk, int kk, int npoint, float �spec, int new lock)
f

static int num stored=0,oldest=0;
static float �stored spectras=NULL;
static int �stored chunks=NULL;

float factor;
int i,j,m=npoint =2;

=� allocate memory if first time�=
if (!stored spectras)

f
stored spectras=(float �)malloc(kk �m�sizeof(float));
stored chunks=(int �)malloc(kk �sizeof(int));
g

=� loop over outlier-free chunks not already used in spectrum�=
for (i=0;i <kk;i++)

if (chunk[i].is gaussian && !chunk[i].used in spectrum)
f

float �oldest spec;
=� mark this spectrum as used�=

chunk[i].used in spectrum=1;
=� keep track of chunk being used to produce spectrum�=

stored chunks[oldest]=chunk[i].counter;
=� copy outlier-free spectra to oldest saved spectra�=

oldest spec=stored spectras+oldest �m;
memcpy((void �)(oldest spec),(const void �)(chunk[i].spec),(size t)m �sizeof(float));

=� make circular buffer point back if needed�=
oldest=(oldest+1)%kk;

=� increment number of stored spectra�=
if (num stored <kk) num stored++;

=� print some useful diagnostic information�=
fprintf(fp statistics,"Incorporating chunk %d into power spectra",chunk[i].counter);
for (j=0;j <num stored �1;j++)

fprintf(fp statistics," %d",stored chunks[j]);
fprintf(fp statistics," %d\n",stored chunks[num stored �1]);

g

=� check that we have SOMETHING stored!�=
if (!num stored)

f
fprintf(stderr,"average_spectrum: no outlier free data to compute spectrum with!\n");
fflush(stderr);
abort();

g

=� Now compute the sum of the stored spectra�=
clear(spec,m,1);
for (j=0;j <num stored;j++)

f
float �current spec;
current spec=stored spectras+j �m;
for (i=0;i <m;i++)
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spec[i]+=current spec[i];
g

=� Normalize to get average spectrum�=
factor=1.0 =num stored;
for (i=0;i <m;i++)

spec[i] �=factor;

=� print out some information about which chunks are used�=

return;
g

=� === Patrick Brady === Modified: 4 December 1998 ===

Routine to average the spectra of several chunks of data.

chunk: Input. The array of chunks

kk: Input. The number of chunks

npoint: Input. The number of points of data in each chunk

spec: Ouput. Pointer to the array of (npoint=2 +1) floats

new lock: Input. Flag to indicate if all the chunks are continuous (newlock=0)
or if we have new locked data in the buffer (newlock=1).

Authors: Jolien Creighton

�=
void average spectrum brady(struct Chunk �chunk, int kk, int npoint, float �spec, int new lock)
f

static float �stored spec;
static int first=1;
float fac=1 =(float)kk,norm=0;
int i,j,m=npoint =2;

if (first) f =� Allocate memory the first time in�=
stored spec=(float �)malloc((npoint =2 + 1) �sizeof(float));
clear(stored spec,m,1);
first=0;

g
=� Note: ignore the Nyquist component for some reason. . . .�=
=� If the data is continuous . . .�=

if (new lock==0) f
clear(spec,m,1);
for (j=0;j <kk;j++) f

=� If data is outlier free . . .�=
if (chunk[j].is gaussian) f

=� . . . . . add in spectrum from this chunk�=
norm+=1;
for (i=0;i <m;i++)

spec[i] += chunk[j].spec[i];
g

g
=� If all spectra have outliers . . .�=

if (!norm) f
GR start error("average_spectrum()",rcsid, FILE , LINE );
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GR report error("%i contiguous chunks with outliers\n",kk);
GR end error();

=� return the spectrum computed previously�=
for (i=0;i <m;i++) spec[i] = stored spec[i];

g
=� otherwise . . .�=

else f
fac= (1 =norm);
for (i=0;i <m;i++) f

spec[i] �= fac; =� normalize the spectrum�=
stored spec[i]= spec[i]; =� keep this spectrum for when we encounter new locked data�=

g
g

g
=� otherwise the data is not continuous�=

else
for (i=0;i <m;i++)

spec[i] = stored spec[i]; =� return the spectrum computed previously�=
return;

g

=� === Patrick Brady === 4 December 1998 ===

This function initialises the array of chunks, and returns an
integer code:

code = 0: no more data;
code = 2: continuing a locked section.

If it returns code = 1 something is wrong.

The arguments are:

chunk: Output. The array of chunks.

npoint: Input. The number of points in chunk.data[0. .npoint-1]

chunks filled: Input. Number of chunks that are already filled.

start filled: Input. First chunk with good data

kk: Input: total number of chunks

�=

int initialise chunks(struct Chunk �chunk, int npoint, int chunks filled, int start filled, int kk) f
int i=0,code=2;
float srate=SRATE;

while (i < chunks filled) f
=� copy the data�=
memcpy((void �)chunk[i].data,(void �)chunk[start filled+i].data,(size t)npoint �sizeof(short))
=� copy the spectrum�=
memcpy((void �)chunk[i].spec,(void �)chunk[start filled+i].spec,(size t)(npoint =2+1) �sizeof(f l
=� and the time, and continuity flag�=
chunk[i].time=chunk[start filled+i].time;
chunk[i].cont=chunk[start filled+i].cont;

chunk[i].counter=chunk[start filled+i].counter;
chunk[i].is gaussian=chunk[start filled+i].is gaussian;
chunk[i].used in spectrum=chunk[start filled+i].used in spectrum;
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=� increment the counter�=
i++;

g

while (i < kk) f
code = fill chunk(chunk + i,npoint);
switch (code) f
case 0: =� no more data�=

return 0;
case 1: =� entering new locked set�=

fprintf(fp statistics,"Message from initialise_chunks():\n");
fprintf(fp statistics," Locked section was too short to get %i chunks\n",kk);
fflush(fp statistics);
i= �1;
break;

case 2: =� continuing a locked set�=
break;

default: =� unrecognized code�=
GR start error("initialise_chunks()",rcsid, FILE , LINE );
GR report error("unrecognized code %d\n",code);
GR end error();
abort();

g
=� increment the counter�=
i++;

g

=� If we have a locked section> MIN INTO LOCK + kk�npoint=srate�=
if(code==2) f

fprintf(fp statistics,"Message from initialise_chunks():\n");
fprintf(fp statistics," Last locked section had %f secs of data, ",MIN INTO LOCK�60.0 +

(float)(count chunks) �npoint =srate);
fprintf(fp statistics," and %f secs discarded\n",discarded �lastdiscard);
lastdiscard=discarded;
count locked++;
count chunks=kk;
count tinlock+=(MIN INTO LOCK�60.0 + (double)(kk �npoint) =srate);
fprintf(fp statistics," Starting locked section %i at time %f with segment %d\n",count lock e
fflush(fp statistics);

g

return code;
g

=� === Patrick Brady === Modified: 4 December 1998 ===

This function gets more data for the binarysearch code. It returns an
integer code:

code = 0: no more data;
code = 1: beginning of (well. . . MININTO LOCK minutes into)

a locked section of data
code = 2: continuing a locked section.

The arguments are:

need: Input. The number of points to skip ahead between calls.

data: Ouput. The IFODMRO is returned in this array
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spec: Output. The average spectrum is returned in spec[0. .npoint=2]

�time: Output. Time at the start of the data

Authors: Jolien Creighton.

�=

int get more data(int need, short data[ ], float spec[ ], float response[ ],
double �time)

f
static short �buffer; =� pointer to the beginning of the buffered data�=
static short �end buffer; =� pointer to the end of the buffered data�=
static short �here; =� pointer to the position of the data to return next�=
static struct Chunk �chunk; =� buffered data also stored in chunks�=
static int lastfill chunkNumber= �1; =� last chunk that was filled with data�=
static int first=1,npoint=NPOINT,chunk needed=0,here position=0,new lock=0;
const int kk=8,k=4; =� kk is the (even) number of chunks; k is half of kk�=
int here chunkNumber=0,out code=2; =� chunk that here points to, and the return code�=

if (first) f=� on first call�=
int i;
first = 0;
=� Open the file to record the statistics of the run�=
fp statistics = grasp open("GRASP_MFPATH","run.stats","w");
count chunks=count locked=count segments=0;
count tinlock=0.0;
=� allocate memory to the buffer: extra npoints is to insure continuity in the data�=
here = buffer = (short �)malloc((kk + 1) �npoint �sizeof(short));
=� end buffer points to the beginning of the duplicated data at the end of the buffer�=
end buffer = buffer + kk �npoint;
=� allocate memory for the chunks of data�=
chunk = (struct Chunk �)malloc(kk �sizeof(struct Chunk));
for (i=0;i <kk;i++) f =� partition the buffered data into chunks�=

chunk[i].data = buffer + i �npoint;
chunk[i].spec = (float �)malloc((npoint =2 + 1) �sizeof(float));

g
=� fill the chunks with data�=
if(!(initialise chunks(chunk,npoint,0,0,kk))) return 0;

g
else f=� on other calls�=

here += need; =� advance here by the needed amount of data�=
chunk needed += need; =� increment flag for getting another chunk�=
here position += need; =� increment counter to position of here in buffer�=
here chunkNumber = (here position =npoint)%kk; =� chunk that here points to�=

g

=� If here is in duplicated data, move to equivalent place at start of buffer�=
if ( (here position =npoint) == kk ) f

here position = here position%npoint;
here = buffer + here position;

g

=� Does next chunk contain continuous data?�=
if(here position%npoint > 0) f

int next chunk=(here chunkNumber + 1)%kk;
=� If not . . . . . �=
if (chunk[next chunk].cont == 0 && new lock == 1) f

int code;
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code = initialise chunks(chunk,npoint,0,0,kk);
switch (code) f
case 0: =� no more data�=

return 0;
case 2: =� continuing a locked set�=

break;
default: =� unrecognized code�=

GR start error("get_more_data()",rcsid, FILE , LINE );
GR report error("Should never get code %d here\n",code);
GR end error();
abort();

g
=� PATRICK: check this with Jolien and Bruce. Does the calling routine need

to know about this? Or should it be told code=2?
�=
out code=1; =� let calling routine know this is new locked data�=
here=buffer; =� point here to start of buffer�=
chunk needed=here position=here chunkNumber=new lock=0; =� Reset all counters�=
lastfill chunkNumber= �1; =� fill buffer from the beginning�=

g
g

=� If we need more data, and the last call did not return a new locked chunk�=
if( chunk needed > k�npoint && new lock == 0) f

int code;
chunk needed �= npoint;
=� advance lastfillchunkNumber (modulo kk). . .�=
lastfill chunkNumber = (lastfill chunkNumber + 1) % kk;
=� . . .and fill the data in the chunk�=
code = fill chunk(chunk + lastfill chunkNumber,npoint);
switch (code) f
case 0: =� no more data�=

return 0;
case 1: =� entering new locked set�=

new lock = 1;
break;

case 2: =� continuing a locked set�=
count chunks++;
count tinlock+=((double)npoint =SRATE);
break;

default: =� unrecognized code�=
GR start error("get_more_data()",rcsid, FILE , LINE );
GR report error("unrecognized code %d\n",code);
GR end error();
abort();

g
=� If data was put at beginning of buffer�=
if (lastfill chunkNumber == 0)

=� place a copy of it at the end to maintain continuity�=
memcpy((void �)end buffer,(void �)buffer,(size t)npoint �sizeof(short));

g

=� compute the average spectrum for the kk chunks of buffered data�=
average spectrum(chunk,kk,npoint,spec,new lock);

=� recalibrate (response only modified if needed)�=
recalibrate(response,npoint);

=� the time of the returned data�=
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�time = chunk[here chunkNumber].time + (double)(here position%npoint) =SRATE;

=� copy the data to the returned array.�=
memcpy((void �)data,(void �)here,(size t)npoint �sizeof(short));

count segments++;
fprintf(fp statistics,"Returning segment %d, based on chunks",count segments);
f int i;
for (i=0;i <kk�1;i++)

fprintf(fp statistics," %d",chunk[i].counter);
g
fprintf(fp statistics," %d\n",chunk[kk �1].counter);

return out code;
g

=� global variables for passing data from getcalibrateddata()�=
extern double datastart;
extern float �n inv noise, �htilde, �pow renorm,srate;
extern int npoint,new lock,gauss test;

int get calibrated data()
f

void realft(float [ ], unsigned long, int);
#if(INSERT CHIRP)

void ins chirp(int);
#endif

static float �work, �spec, �response, �ave spec;
static short �data;
static int first=1,npoint=NPOINT,num sent=0;
double fac=(double)npoint �SRATE;
int i,cut,code,need=npoint �(POSTSAFETY+PRESAFETY);
static int nomoredata=0;

if (first) f
first = 0;
data = (short �)malloc(npoint �sizeof(short));
work = (float �)malloc(npoint �sizeof(float));
spec = (float �)malloc((npoint =2 + 1) �sizeof(float));
ave spec = (float �)malloc((npoint =2 + 1) �sizeof(float));
response = (float �)malloc((npoint+2) �sizeof(float));
if (data == NULL j j work == NULL j j spec == NULL

j j ave spec == NULL j j response == NULL ) f
GR start error("get_calibrated_data()",rcsid, FILE , LINE );
GR report error("could not allocate memory\n");
GR end error();
abort();

g
g

=� return 0 if the required number of segments (or more!) have been sent�=
=� fprintf(stderr,“Just sent segment number %dnn”,num sent);�=
if ((num sent++) >=DATA SEGMENTS) return 0;
if (nomoredata) return 0;

code = get more data(need,data,ave spec,response, &datastart);
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switch (code) f
case 0:

fprintf(fp statistics,"Message from get_calibrated_data():\n");
fprintf(fp statistics," Last locked section had %f secs of data, ",MIN INTO LOCK�60.0 +

(float)(count chunks) �npoint =srate);
fprintf(fp statistics," and %f secs discarded\n",discarded �lastdiscard);
fprintf(fp statistics,"No more data\n");
fprintf(fp statistics," Total locked data = %f secs, acquired lock %i times, ",

count tinlock,count locked);
fprintf(fp statistics," and analyzed %i segments\n",count segments);
fflush(fp statistics);
nomoredata=1;
return 0;

case 1:
new lock = 1;
break;

case 2:
new lock = 0;
break;

default:
GR start error("get_calibrated_data()",rcsid, FILE , LINE );
GR report error("unrecognized code %d\n",code);
GR end error();
abort();

g

for (i=0;i <npoint;i++) work[i] = data[i];
realft(work �1,npoint,1);

#if (RANDOMIZE)
=� do everything BUT DC and Nyquist�=
for (i=1;i <npoint =2;i++) f

int ir=i+i,ii=ir+1;
double mag=sqrt(work[ir] �work[ir]+work[ii] �work[ii]);
float phase=2.0 �M PI �ran2( &randomize);
work[ir]=mag �cos(phase);
work[ii]=mag �sin(phase);

g
#endif

product(htilde,work,response,npoint =2);
#if(INSERT CHIRP)

=� insert a chirrp if desired�=
ins chirp(num sent);

#endif

=� lower cutoff frequency�=
cut = npoint �FLO=SRATE;
if (cut <1) cut = 1;

=� set n inv noise to zero at low frequencies and Nyquist�=
n inv noise[0] = 0;
n inv noise[npoint =2] = 0;
for (i=1;i <cut;i++) n inv noise[i] = 0;

=� compute remaining ninv noise elements�=
for (i=cut;i <npoint =2;i++) f

int ir=i+i,ii=ir+1;
double re=response[ir],im=response[ii],tmp=ave spec[i];

#if (NORM CF)
n inv noise[i] = 4.0 =(fac �tmp�(re �re + im �im));
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#else
n inv noise[i] = 2.0 =(fac �tmp�(re �re + im �im));

#endif
g

# if (SPEC TRUNC> 0) =� truncate time-domain version of ninv noise[ ]�=
f

float out0,norm = 2 =(float)npoint; =� normalization factor for iFFT�=
int spec zero=(SPEC TRUNC=2); =� where to start zeroing�=
for(i=0;i <npoint;i++) work[i]=0; =� clear out work array�=
for(i=0;i <npoint =2;i++) work[i+i]=sqrt(n inv noise[i]); =� fill the array�=
realft(work �1,npoint, �1); =� iFFT it �=
for(i=spec zero;i <npoint �spec zero;i++) work[i]=0; =� truncate work[ ]�=
realft(work �1,npoint,1); =� FFT to freq domain�=
for(i=0;i <npoint =2;i++) f

out0=norm �work[i+i]; =� reconstruct ninv noise[ ]�=
n inv noise[i]=out0 �out0;

g
if ((cut = npoint �FLO=SRATE) < 1) cut = 1; =� low-frequency cutoff�=
for (i=0;i <cut;i++) n inv noise[i]=0.0; =� clear low-frequency components�=
n inv noise[npoint =2] = 0; =� make absolutely sure Nyquist is zero�=

g
# endif

#if (REMOVE LINE BINS)
f

int harmonic;
float freq;
=� step through all frequency harmonics of 60 Hz. Note: freq=(srate�i)=npoint�=
for (harmonic=1;harmonic <85;harmonic++) f

float freqmin,freqmax;
=� find the freq bins +- 0.5 N Hz above=below center�=
freqmin=harmonic �59.5;
freqmax=harmonic �60.5;
nullout(freqmin,freqmax,npoint,srate,n inv noise);

g
=� Now do the same for the violin resonances& other lines:�=
=� Bruce’s list�=
nullout( 79.0, 81.0,npoint,srate,n inv noise);
nullout( 109.0, 110.0,npoint,srate,n inv noise);
nullout( 139.0, 140.0,npoint,srate,n inv noise);
nullout( 245.0, 246.0,npoint,srate,n inv noise);
nullout( 487.0, 490.0,npoint,srate,n inv noise);
nullout( 499.0, 501.0,npoint,srate,n inv noise);
nullout( 571.0, 572.0,npoint,srate,n inv noise);
nullout( 576.0, 585.0,npoint,srate,n inv noise);
nullout( 592.0, 602.0,npoint,srate,n inv noise);
nullout( 603.0, 607.0,npoint,srate,n inv noise);
nullout( 998.0, 1001.0,npoint,srate,n inv noise);
nullout(1155.0, 1159.0,npoint,srate,n inv noise);
nullout(1208.0, 1214.0,npoint,srate,n inv noise);
nullout(1740.0, 1750.0,npoint,srate,n inv noise);
nullout(3500.0, 3520.0,npoint,srate,n inv noise);

=� Stan’s list�=
nullout( 77.0, 83.0,npoint,srate,n inv noise);
nullout( 105.0, 115.0,npoint,srate,n inv noise);
nullout( 569.0, 607.0,npoint,srate,n inv noise);
nullout(1138.0, 1214.0,npoint,srate,n inv noise);
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nullout(1707.0, 1821.0,npoint,srate,n inv noise);
nullout(3500.0, 3520.0,npoint,srate,n inv noise);

g
#endif =� (REMOVE LINE BINS) �=

=� compute outlier statistic�=
gauss test = is gaussian(data,npoint, �2048,2047,0);

=� compute power statistic—don’t include DC term�=
get spectrum(data,spec,npoint);
�pow renorm = 0;
for (i=1;i <npoint =2;i++) �pow renorm += spec[i] =ave spec[i];
�pow renorm �= 2.0 =npoint;
return 1;

g

#if(INSERT CHIRP)
=� routine to determine if a chirp is to be inserted, and to insert it�=
void ins chirp(int segment)
f

void realft(float �, unsigned long, int);
static FILE �fpinsert, �fpinslog;
static double instime=0;
static float �chirp0, �chirp1,m1,m2,invMpc,c0,c1,phase;
static int first=1,end=0,npoint=NPOINT;
int offset;

=� no more chirps to insert�=
if (end) return;
if (first) f

first = 0;

=� open the insert.ascii file for input�=
fpinsert = grasp open("GRASP_INSERT","insert.ascii","r");

=� open the insert.log file for output�=
fpinslog = grasp open("GRASP_INSERT","insert.log","w");

=� allocate memory to chirp arrays�=
chirp0 = (float �)malloc(npoint �sizeof(float));
chirp1 = (float �)malloc(npoint �sizeof(float));

g

=� scan through the file until the next chirp is found�=
=� note: assume that only one chirp will be present in any data segment!�=
while (instime <datastart) f

float tc,scale=2 �HSCALE�M SOLAR=MPC;
int i,code,chpts;

=� read the next injected chirp time�=
code = fscanf(fpinsert,"%lf %f %f %f %f\n",

&instime, &m1,&m2,&invMpc, &phase);
=� if we have reached the end of the file�=
if (code==EOF) f

end = 1;
fclose(fpinsert);
fclose(fpinslog);
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free(chirp0);
free(chirp1);
return;

g

=� If injection is well before the segment start, try again�=
if (instime <(datastart �2�npoint =srate)) continue;

=� coefficients of the injected chirp�=
c0 = cos(phase);
c1 = sin(phase);

=� construct the chirp to be injected�=
#if (INJECT TIME REVERSE)

make retlifs(m1,m2,chirp0,chirp1,FLO,npoint,srate, &chpts, &tc,4000,4);
#else

make filters(m1,m2,chirp0,chirp1,FLO,npoint,srate, &chpts, &tc,4000,4);
#endif

for (i=0;i <chpts;i++) f
chirp0[i] �= scale;
chirp1[i] �= scale;

g
for (i=chpts;i <npoint;i++) chirp0[i] = chirp1[i] = 0;
realft(chirp0 �1,npoint,1);
realft(chirp1 �1,npoint,1);

g
=� compute offset; return if after the end of the data segment�=
if (instime >(datastart+npoint =srate)) return;
offset = srate �(instime � datastart);

=� inject the chirp�=
freq inject chirp(c0,c1,offset,invMpc,chirp0,chirp1,htilde,npoint);

=� write an entry into the log file�=
fprintf(fpinslog,"%d %d %f %f %f %f %f\n",

segment,offset,instime,m1,m2,invMpc,phase);
fflush(fpinslog);
return;

g
#endif
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13.8 Scripts for running binary search

In order to analyze the November 1994 data, in Frame format, we used a pair of scripts. The scriptmain-
script.noinject analyzes the data, andmainscript.inject analyzes the data with simulated
signals added in. We normally run the scripts like this:
beowulf> mainscript.noinject >&! mainscript.out &
to redirect the output to a file and run in the background. The number of processors used is set in the scripts.
The mainscript.noinject script:

#! =bin =tcsh

unsetenv GRASP DATAPATH
setenv GRASP FRAMEPATH=data =frames
set rundir=‘pwd‘ =frameoutput
if ( ! �d $rundir ) then

mkdir $rundir
endif

setenv GRASP MFPATH $rundir
touch $GRASP MFPATH=run output
setenv GRASP INSERT $rundir
setenv GRASP STARTSEGMENT 0

setenv GRASP TEMPLATE ‘pwd‘
setenv GRASP KILLSCRIPT $rundir
touch $rundir =environment values
setenv j grep GRASP >! $rundir =environment values
echo Starting Frame Run at time ‘date‘ j mail ballen@dirac.phys.uwm.edu
mpirun �np 48 �machinefile . =machines . =examples binary �search =binary search >&! $rundir =run output

The mainscript.inject script:

#! =bin =tcsh �v

unsetenv GRASP DATAPATH
setenv GRASP FRAMEPATH=data =frames
set rundir=‘pwd‘ =frameoutput �inject
if ( ! �d $rundir ) then

mkdir $rundir
endif

setenv GRASP MFPATH $rundir
touch $GRASP MFPATH=run output
setenv GRASP INSERT $rundir
setenv GRASP STARTSEGMENT 6000
if (! �f $GRASP INSERT=insert.ascii) then

cp �f =home=ballen =insert.ascii �midmass.2 $GRASP INSERT=insert.ascii
endif

setenv GRASP TEMPLATE ‘pwd‘
setenv GRASP KILLSCRIPT $rundir
touch $rundir =environment values
setenv j grep GRASP >! $rundir =environment values
echo Starting Frame Run at time ‘date‘ j mail ballen@dirac.phys.uwm.edu
mpirun �np 48 �machinefile . =machines . =examples binary �search =binary search >&! $rundir =run output
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13.9 Example:binary reader program

This function reads the output of thebinary search program as implimented to analyse the 40m data
taken in November 1994. The data was broken into segments of approximately 20 seconds in length (plus
approximately 6 seconds to avoid wrap-around problems in the discrete corellations). This program, with no
options implimented, prints out the maximum signal to noise achieved over the bank of filters for each seg-
ment. The function requires the environment variableGRASPMFPATHto point to the directory containing
the output files written bybinary reader . You can set this with a command such as

setenv GRASP_MFPATH /usr/local/GRASP/data/mfout/

The binary reader program does not assume that the data files which it is reading were written on
a machine with the same byte-order as the machine that it is running one. This is helpful if one does
production runs on a little-endian machine (say a DEC alpha machine) but subsequently analyzes the data
on a big-endian machine (for example a SUN sparcstation). Thebinary reader program does any
byte-swapping that is needed.

The program has several optional flags, some of which require a numerical value to be supplied. The
flags are:

-h : prints a summary of the command options

-m : prints the list of templates to standard out. The output format istemplatem1 m2

-f fmt : specifies that the formatfmt should be used in output (see below)

-l : specifies that field lables should be included in output

-o : only print segments without outliers

-r rmax : reject filters withr2 less thanrmax in maximization over template bank

-t threshold : only print segments with maximum SNR greater thanthreshold

-L lower : only maximize over templates numbers greater thanlower

-T tempno : consider only template numbertempno—do not maximize over template bank

-M : maximize over the template bank using the median-renormalized signal-to-noise ratio.

-c : Print the filter peak offsets. These are defined in equation 13.7.1. The peak offsets are only stored in
the data files created bybinary search and used bybinary reader if the macroCOMPARE =
1 has been set in the filebinary params.h . If peak offsets are requested when the impulse offsets
have been recorded, an error message is printed and vice versa.

-s segno : print the results for all the templates for the segmentsegnoto the filesegment.segno.

The format specifierfmt is a string of upto 16 characters which are replaced by the corresponding output
field:

t : segment start time

s : segment number
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o : segment outlier test result (1: outliers / 0: no outliers)

T : number of maximum template

M : masses of maximum template

D : distance of SNR=1 for maximum template

S : max SNR of maximum template

X : max SNR of maximum template with power renormalization

Y : max SNR of maximum template with median renormalization

O : offset of maximum template

P : phase of maximum template

R : r2 test statistic value of maximum template

N : number of threshold crossings of maximum template

Examples

1. To print the SNR and segment number of each segment, simply type

binary_reader

2. To print the segment start time and offset for every data segment that passes an outlier test and has a
maximum SNR greater than 10 where the maximization is over all templates that haver2 less than
2.5:

binary_reader -o -t 10.0 -r 2.5 -f tO

3. To produce a sorted list of signal-to-noise ratio—maximized over templates that haver2 less than
2.5—and rank for data segments that pass an outlier test:

binary_reader -o -r 2.5 - f S | sort -n | awk ’ { print $1"\t"NR } ’

4. To print the information about all the templates for a particular segment (for example segment number
10) to a file segment.10:

binary_reader -s 10

5. To interpret the stored offsets as filter peak offsets and not as impulse offsets:

binary_reader -c -f O
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Authors: Patrick Brady (patrick@tapir.caltech.edu), Jolien Creighton (jolien@tapir.caltech.edu), R. Bala-
subramanian (bala@chandra.phys.uwm.edu) and Bruce Allen (ballen@dirac.phys.uwm.edu).

Comments: The routine could be modified to keep the SNR in an internal array, and then to provide both
the SNR and the fractional number of events exceeding that SNR in two columns. This is then directly
comparable to the false alarm probability.

GRASP RELEASE 1.9.8 Page 496 May 19, 2000



Section
13.10

Binary Inspiral Search on November 1994 Data
Identification of Spurious Events

Page
497

13.10 Identification of Spurious Events

The non-stationary and non-Gaussian noise in the detector leads to a large number of spurious detections,
where by a detection we mean that the Signal-to-Noise Ratio (SNR) maximized over the template bank has
crossed a certain preset threshold. In order to differentiate between a false alarm and a ‘correct’ detection,
we must make use of several independent discrimination techniques. Ther2 test is one such technique and
is described in the GRASP manual in section 6.24.

It is also useful to investigate whether the outputs of the templates in the template bank can be used
collectively as a discriminator between a false alarm and a correct detection. This would be different from
a discriminator constructed using only the template which maximises the correlation between the detector
output and the template or in other words the SNR. Such a technique might be a robust indicator of the
presence of a chirp signal in the detector output.

One possibility is to measure the times-of-arrival(ta) at each template. The time-of-arrival at each tem-
plate is the time when the correlated output reaches a maximum in that template. This maximization is
carried out after the phase parameter is maximised over. The basic expectation here is that theta measured
at templates in the neighbourhood of the template which maximises the SNR will follow a certain pattern
if the signal is actually present in the detector output. If the distribution of theta (as a function of the tem-
plate number) for a spurious detection can be shown to be very different from the case when a true signal is
actually present, then this can be quantified and used as a discriminator.

In order to test this idea, experiments were carried out. Chirp signals were artificially injected into the
40-m data and filtered through the bank of templates. High signal to noise ratio events were identified.
Some of these detections correctly corresponded with the injected signal. In particular, for these events the
estimated values of the masses and the time of arrival tallied well with those of the actual signal injected.

In Figure 82 we plot the measured value of the times-of-arrival at each template, contrasting the case
where a ‘real’ chirp signal is present (black points) and where no signal is injected but there is a large SNR
observed (red points). The black points are obtained for segment number 2 (in the 14nov94.1 data) where
by convention segment number 0 is the first segment of data. (Note: The length of the data segments were
taken to be 262144 and the parameters PRESAFETY and POSTSAFETY were set to be 16384 and 49152
respectively. Three minutes of the data was skipped at the beginning of each locked stretch of the data.)
The maximum signal to noise ratio is obtained for template number 383 with a SNR of 13.62. Here again
we use the index 0 to denote the first template. The masses corresponding to the template number 383 tally
well with the those of the injected signal (1.4,1.4 solar mass binary). We observe a well-defined pattern
for the ta across the template bank. The templates are roughly arranged in the order of decreasing masses
and consequently of larger chirp times. The red points are obtained for segment 33. The maximum SNR
obtained in this case is 8.48. In this segment no chirp signal had been injected. Again we plot theta obtained
at various templates. The behaviour is remarkably similar to the case where there is actually a signal present
in the detector output. The arrows point to the template which maximises the correlation.

A possible explanation for this phenomenon is as follows. Consider first the case where a signal has been
injected into the data (the black points on the graph). In this case the template and signal achieve a good
correlation if the large amplitudes parts of their waveforms are well aligned. In other words the template
matches well with the injected signal if the time of coalescence is the same for both the template and the
injected signal. The sum of the chirp timestchirp = �0 + �1 + �1:5 + �2 is almost equal to the length of the
chirp waveform and the time of coalescence is the sum,tC = ta+ tchirp. The templates are evenly placed in
the�0; �1 parameter space and consequently the total chirp time increases almost linearly with the template
number. SincetC is being held constant,ta must decrease linearly with the template number.

Consider now the case when there is no injected signal. Nevertheless, a large SNR (8.48) has been
obtained. We assume that the high SNR is caused by a short burst of noise in the data. The correlation
between any template and a noise burst will be maximised for a time-of-arrival for which the last few cycles
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of the template coincide with the noise burst. Now since the the chirp times increase roughly linearly as the
template number increases we again have the time of arrival decreasing linearly. Thus, we conclude that it
is difficult to distinguish between a correct detection and a false alarm using this test.

Another possible discriminator could be the variation of the maximum correlation (maximized over
the phase and the arrival times) as a function of template number. In Figure 83 we plot the maximum
SNR obtained for a template against the template number. The black curve represents segment number
2 corresponding to a true detection and the red curve represents segment number 33 corresponding to a
spurious detection. Again the variation of the SNR with template number in the two cases does not help in
distinguishing a true detection from a false alarm.
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Figure 82: Variation of time of arrival across template bank.
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Figure 83: Variation of SNR across the template bank
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14 GRASP Routines: Supernovae and other transient sources

In any classification scheme for natural phenomena, the boundaries between classifications run the risk of
becoming broad and blurry. While previous sections have avoided this by considering very narrowly defined
classes of gravitational wave sources, this section considers a much broader class of sources, and as such is
a kind of “catch all” for a variety of sources. These sources, however, all share in common two properties
which unite them in terms of practical detection strategies:

1. They produce gravitational radiation in the Ligo frequency and sensitivity band for a short time. The
definition of short time is, of course, relative. However, if the time scale over which a source is visible
to LIGO is of the order of days, as opposed to seconds, then it will likely be more suited to the analysis
tools for quasi-periodic and periodic sources in section 15.

2. Astrophysical models of these sources are somewhat crude. Those short lived sources from which the
gravitational radiation can be modelled accurately enough to permit matched filtering, may be dealt
with using the tools of earlier sections (cf. section 6).

At the time of this writing, the sources which have these properties are thought to be primarily related to
supernova events.
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14.1 Centrifugal Hang-up of Core Collapse Supernovae

Massive stars which have burnt their nuclear fuel will collapse under the pull of their gravitational self
attraction, sometimes triggering a supernova event. This collapse can lead to situations in which significant
gravitational radiation is produced. In particular, there are various scenarios in which the collapsing core
is thought to “hang-up” in a non-axisymmetric configuration and radiate this assymmetry away through
gravitational waves.

A promising scenario of this type was explored by Lai and Shapiro [42] and proceeds as follows:a stellar
core with some initial angular momentum collapses. As the collapse proceeds, the ratio� = T=W of the
rotational energy (T ) to the gravitational potential energy (W ) will vary inversely with the core radius. If
� becomes large enough, the evolution of non-axisymmetric modes of the core become unstable. Such
instabilities are well known, being first described by Chandrasekhar [43]. There are two possibilities. If�
lies in a critical band of values between� 0:17 and� 0:27, the non-axisymmetric bar mode (` = m = 2)
of the core will besecularlyunstable and grow due to either radiation reaction or viscosity. This long lasting
instability is expected to produce significant gravitational radiation. If� exceeds the upper limit of this band
(� > 0:27) then non-axisymmetric modes becomedynamicallyunstable. The transition through dynamical
instability is rapid and results in a nearly axisymmetric configuration with� < 0:27 but still much larger
than0:17. The core therefore again enters the regime of secular instability. In either scenario the onset of
the secular instability occurs at approximately neutron star densities. If� < 0:17 for the entire collapse,
then no significant gravitational radiation is expected from this mechanism.

Lai and Shapiro have calculated the waveform of the gravitational radiation emitted by a secularly un-
stable core based on crude Newtonian fluid ellipsoids models without viscosity. They find [44]:

h+(t) = A(fmax; r;M; d) u(t)2:1
p
1� u(t) (1 + cos2 i) cos �(t);

h�(t) = 2A(fmax; r;M; d) u(t)2:1
p
1� u(t) cos i sin�(t):

)
(14.1.1)

where:

fmax is the initial frequency of the gravitational wave (typically<� 800 Hz).

r is the radius of the core (typically� 10 km).

M is the mass of the core (typically� 1.4M�).

d is the distance from the core (source).

i inclination angle (see section 6).

A(fmax; r;M; d) is the amplitude function

A =
1

2

M2

rd

8>>><>>>:
�
fmax

1756

�2:7
; fmax � 415Hz;

�
fmax

1525

�3:0
; fmax > 415Hz:

(14.1.2)

fmax = fmax
q
r310=M1:4 wherer10 = r=10km andM1:4 =M=(1:4M�).

u(t)=f(t)=fmax is given by the frequency evolution equation

du

dt
=

�
M

r

�5=2 � A

0:16

�2sM1:4

r10
u5:2(u� 1): (14.1.3)
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�(t) is the phase, given implicitly by

f(t) =
1

2�

d�

dt
(t): (14.1.4)

This model is implemented below.
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14.2 Structure: LS physical constants

The physical parameters describing the hung-up core are passed in a structurestruct
LS physical constants . The fields are:
struct LS physical constants f
float mass : The mass of the stellar core in solar masses (typically� 1:4M�).

float radius : The radius of the stellar core in km (typically� 10km).

float distance : The distance from the stellar core to the detector in Megaparsecs.

float fmax : The maximum frequency of gravitational wave emitted by the stellar core (typically<� 800
Hz).

inclination angle : angle between spin axis of stellar core and line of sight to detector in radians.

Phi 0: the initial phase of the gravitational wave.

g
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14.3 Function: LS freq deriv()

void LS freq deriv(float t, float u[], float dudt[]) This function gives the deriva-
tive of frequency (actually,u which is the frequency divided by the maximum frequency) as a function of

time, (see (14.1.3)). The amplitude
�
M
r

�5=2 �
A
0:16

�2q
M1:4
r10

must be declared and assigned a value as an
external variable calledA.

The arguments are:

t : Input. The time at which the derivative is to be taken.

u[] : Input. An array of initial values (in this case, containing exactly one element) of the dependent
variables (in this case, onlyu).

dudt[] : Output. An array of derivatives (in this case, containing exactly one element) of derivates of the
dependent variables (in this case,@u=@t).

Authors: Warren G. Anderson, warren@ricci.phys.uwm.edu

Comments: This function is required by numerical recipes odeint. See the numerical recipes manual for
more information.

GRASP RELEASE 1.9.8 Page 504 May 19, 2000



Section
14.4

GRASP Routines: Supernovae and other transient sources
Function: LS phas and freq()

Page
505

14.4 Function: LS phas and freq()

void LS phas and freq(double Phi[], float u[], float A, float fmax, float
dt, int n samples)
This function integrates Lai and Shapiro’s frequency and phase evolution equations, (14.1.3) and (14.1.4),
for a hung-up collapsed core. We use numerical recipes odeint, an adaptive step size 4th order Runge-Kutta
integrator for the frequency integration and a simple trapezoidal integration for the phase.

The arguments are:

Phi[] : Output. An array which holds the phase of the gravitational wave in radians at equally spaced time
intervals.Phi[] must be allocated sufficient memory before being passed toLS phas and freq() .

u[] : Output. An array which holds the reduced frequency (frequency divided byfmax) of the gravitational
wave at equally spaced time intervals.u[] must be allocated sufficient memory before being passed
to LS phas and freq() .

A: Input. The AmplitudeA as calculated in (14.1.2)

fmax : Input. The maximum frequency,fmax. Usually taken from the appropriate field of a
LS physical constants structure.

dt : Input. The time interval (in seconds) at which the phase and frequency values should be output.

n samples : Input. The number of phase and frequency values to be output (i.e. the number of elements
in the arraysPhi[] andu[] ).

Authors: Warren G. Anderson, warren@ricci.phys.uwm.edu and Patrick Brady, patrick@tapir.caltech.edu
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14.5 Function: LS waveform()

void LS waveform(float h[], struct LS physical constants phys const, float
sky theta, float sky phi, float polarization, float dt, int n samples)
This function calculates the stress as measured by a LIGO like detector due to a hung-up collapsing core.
It uses the routinesLS phas and freq to obtain the wave phase and reduced frequency at regular time
intervals, calculatesh+ andh� at each interval according to (14.1.1), and then converts these into a single
detector stress at each interval using beam pattern factors calculated withbeam pattern . Note that the
external variableA is assigned a value here for use inLS freq deriv (see 14.3).

The arguments are:

h[] : Output. An array which holds the detector stress due the gravitational wave of the hung-up core
at equally spaced time intervals.h[] must be allocated sufficient memory before being passed to
LS waveform() .

phys const : Input. A structure of typeLS physical constants (see subsection 14.2) which con-
tains the physical parameters of the hung-up core.

sky theta : Input. The polar angle from zenith in radians.

sky phi : Input. The azimuthal angle (measured counter clockwise from first arm) in radians.

polarization : Input. The polarization angle in radians.

dt : Input. The time interval (in seconds) at which the detector stress values should be output.

n samples : Input. The number of detector stress values to be output (i.e. the number of elements in the
arrayh[] ).

Authors: Warren G. Anderson, warren@ricci.phys.uwm.edu and Patrick Brady, patrick@tapir.caltech.edu

Comments: This function currently calculates the stress at a user defined distance from the hung-up core.
For realistic distances, this leads to small values (of the order of 10e-22 at 10 MPc). If one wishes
to have numbers of the order of unity, simply set the distance in the structurephys const to be
10e-22.
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14.6 Example:LS filter program

This program usesLS waveform to generate a gravitational wave detector stress waveform from a hung-
up collapsing core and print it to the screen(stdout) . This is the same thing that one would generate
as a filter if one wanted to use matched filtering for such waves. Since this waveform is not expected to
be an accurate representation of an astrophysical gravitational wave, due to the crude model by which it is
generated, it is probably better to think of this as simply an illustration of the use of theLS waveform
function.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
=�
� This program is an example of how one uses the LSwaveform
� routine. It simply sets initial values, allocates memory for the wave
� form, and then allows LSwaveform to do the work!
�=

#include "grasp.h"

int main()
f

int i,n samps;
float �h,dt;
struct LS physical constants phys const;
float sky theta,sky phi,polarization;

=� Length and sample rate for filter waveform.�=
n samps = 1048576;
dt = 0.0001;

=� Beam pattern parameters.�=
sky theta = 0.0;
sky phi = 0.0;
polarization = 0.125 �M PI;

=� Physical parameters of system whose waveform is being modelled.�=
phys const.mass = 1.4; =� solar masses�=
phys const.radius = 10.0; =� kilometers�=
phys const.distance = 10.0; =� megaparsecs�=
phys const.fmax = 800.0; =� Hz �=
phys const.inclination = 0.0;
phys const.Phi 0 = 0.0;

=� Allocate waveform memory.�=
h=(float �)malloc(n samps�sizeof(float));

=� Produce waveform�=
LS waveform(h,phys const,sky theta,sky phi,polarization,dt,n samps);

=� Output waveform.�=
for(i=0;i <n samps;i++)
printf("%f\t%e\n",i �dt,h[i]);

return 0;
g

Author: Warren G. Anderson, warren@ricci.phys.uwm.edu

GRASP RELEASE 1.9.8 Page 507 May 19, 2000



Section
15.0

GRASP Routines: Periodic and quasi-periodic sources Page
508

15 GRASP Routines: Periodic and quasi-periodic sources
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16 GRASP Routines: General purpose utilities

This section includes general purpose utility functions for a variety of purposes. For example, these include
functions for error handling, to calculate time-averaged power spectra, and functions to graph data, listen to
data, etc.
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16.1 GRASP Error Handling

GR error is the GRASP error reporting module. It has two abstract interfaces which insulate the GRASP
library and the programs which use it from the details of how GRASP will report errors and how the program
will handle them. The internal interface provides GRASP itself with a standard method to report errors. The
external interface allows programs which use GRASP to specify exactly how error reports are to be handled.
In addition, a default set of handling routines is provided for printing error messages in a standard format to
stderr or a log file.

If you are writing a package for GRASP, here is an example of how to call the error handler. The
following sections contain more detailed information, but this example is a userful summary of “how to use
it”. Please note that youmustinclude “newline” charactersnn in your GRreport error() calls. If you
fail to do this the lines of error messages will all be strung together on a single line!

...
/* first call GR_start_error() to begin the error message */
GR_start_error("trouble()",rcsid,__FILE__,__LINE__);
/* then call GR_report_error() as many times as desired */
GR_report_error("The GR_report_error() function is like printf().\n");
GR_report_error("It can have no arguments.\n");
GR_report_error("It can have a float argument %f\n",x1);
GR_report_error("Or any mixture of valid types %d %d %%s\n",i1,i2,stringptr);
/* finally, call GR_end_error() to terminate the error message */
GR_end_error();
...

The use of these three routines as shown will print out, for example:

GRASP: Message from function trouble() at line number 123 of file "source.c".
The GR_report_error() function is like printf().
It can have no arguments.
It can have a float argument 5.43210
Or any mixture of valid types -2 17 the string pointed to by the pointer
$Id: man_utility.tex,v 1.38 1999/07/11 21:22:18 ballen Exp $
$Name: RELEASE_1_9_8 $

In particular, the line number, release number, and file name are all filled in automatically.

16.1.1 Reporting Errors In GRASP Code

Reporting errors from within GRASP code is simple: every legal GRASP error report consists of exactly
one call toGRstart error() , zero or more calls toGRreport error() , and exactly one call to
GRend error() . Failing to call the functions in exactly this order will cause an assert to fail and the
program to abort; this allows the code in the handler routines to safely assume that they will be called in the
correct order.

GRstart error() takes four arguments specifying the name of the function in which the error
occured, the RCS ID of the GRASP file which contains the function’s source, the name of that file, and
the line number on which the error report began. In practice providing this data is easy. Every GRASP
file should declare a static string ’rcsid’ containing the ID, and ANSI C defines the macrosFILE and

LINE which expand to the file name and line number, respectively. Within a given file only the function
name parameter will change from call to call.
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The arguments toGRreport error() are exactly the same as those to printf(): a familiar printf-style
format string followed by a variable number of arguments. There is no file pointer a’ la fprintf() because the
errors may not be printed to a file or the screen but handled in some completely different way determined
by the calling program. Repeated calls are a convenient way to build up the complete message just as with
printing to the screen with printf(). Finally, a call toGRend error() ends the report. It requires no
arguments.

The GRASP source code provides many examples of the use of these functions, and they are docu-
mented by example in Section 16.1. Because of the stereotyped calling sequence and arguments involved,
an efficient technique for GRASP library programmers is to paste in the calls from another location in the
source file or from a handy template kept in a scratch file so that only the function name and actual message
needs editing for each case.

16.1.2 How GRASP Error Reports Are Handled

Programs vary widely in how they notify the user of errors. A simple command-line program will probably
print the messages to the screen or a file, while a program with a graphical interface will likely send them to
an error log window or to a dialog window. GRASP allows arbitrary error handlers to be specified, but the
default provided will probably suffice for most GRASP application programmers.

Calling GRset errorsenabled() with an argument of false (zero) will suppress all GRASP error mes-
sages regardless of the actual handlers used, while a true argument will enable them again. GRerrorsenabled()
returns true if errors are currently enabled and false otherwise. Errors always start out enabled unless the
environment variable ’GRASPNODEBUG’ exists (its value is irrelevant), in which case they are disabled
by default. Errors may be disabled within a handler, but the change will not take place until the next
GRstart error() call.

By default, the default error handlers print errors to stderr. The function, file, and line number are re-
ported in a standard header format, followed by the message itself printed as though each call to GRreport error(format,
args) was a call to fprintf(stderr, format, args), and ending with the RCS ID of the file containing the func-
tion source. If the environment variable ’GRASPERRORFILE’ exists and its value is the pathname of
a file which can be opened for appending that filename is used instead of stderr. Finally, if in addition
’GRASP ERRORFILEOVERWRITE’ exists (its value is irrelevant) the file is overwritten rather than ap-
pended to.

16.1.3 Customizing The Default Handlers

GRASP error reports may be customized by modifying the behavior of the default handler functions or by
replacing them entirely. By default, whenGRstart error() is called it checks to see if there is a default
file name set; if so, that file is opened for appending. If not (that is, if the filename has been set to NULL),
or if the file cannot be opened, it then checks to see if an error FILE* has been set. If so, that file is used. If
not, then the handler fails since it has no way to report the error. The defaultGRreport error() prints
to whatever fileGRstart error() chose to use, andGRend error() prints the RCS ID. If the file
was opened by name inGRstart error() thenGRend error() also closes it.

The default FILE* can be set and examined with GRset error file() and GRget error file(), and the
default filename can be set and examined with GRset error file name() and GRget error file name(). The
default behavior can be restored with GRset error file(stderr) and/or GRset error file name(NULL). These
functions may be called at any time except during an error report (between the calls toGRstart error()
andGRend error() ), when an assert would fail. (This is a non-issue in practice because the file/filename
could only be changed during a report if the file or filename is set in GRASP code itself, if the error reporting
functions are called in user code as well as in GRASP, or if a custom handler changes the file/filename and

GRASP RELEASE 1.9.8 Page 511 May 19, 2000



Section
16.1

GRASP Routines: General purpose utilities
GRASP Error Handling

Page
512

then calls the default handler. The first possibility is strictly forbidden, and the others are discouraged
because they can lead to confusion and subtle bugs.)

The reason for this somewhat complex system is safety. If a specified file name cannot be opened errors
can still be reported to the FILE*, probably stderr. If an error file name has been set, the file is opened and
closed for each report so that if the program crashes as much of the error log as possible is preserved on
disk.

When using GRset error file(), the calling program is responsible for opening the file for writing before
the call and closing it (if necessary); GRASP will simply assume that the file is always available for output.
A NULL file pointer is allowed, in which case calls to the default error handler will cause an assert to fail
unless an error file name has been set.

When a file name is set with GRset error file name(), GRASP immediately attempts to open the file.
If the erasefile parameter is TRUE (nonzero) the file will be opened for writing, if it is false (zero) it will
be opened for appending. If the open succeeds, the name is copied and stored for future use (this means
that the function can be safely called with locally allocated storage), an identifying start-up message and the
time is written to the log file (even if error reporting is disabled), the file is closed, and the function returns
true. When appending to a non-empty file it also writes a separator line so that reports from different runs
are more easily distinguished. If the open fails, the filename is left unchanged (if a previous one existed),
an error is reported in the usual way (unless error messages are suppressed), and the function returns false.
Setting a NULL filename means that the FILE* should be used instead; the erasefile parameter is ignored in
this case and the call always succeeds. As with GRseterror file(), the filename may not be changed during
a report.

It is easy to see how the default behavior is obtained using these handlers. The default FILE* is stderr;
conceptually a call to GRseterror file(stderr) occurs before the program begins. Similarly, a conceptual
call to GRset error file name(filename, erase) occurs before program execution, with filename having the
value of the environment variable GRASPERRORFILE if it exists and NULL otherwise, and erase true if
the environment variable GRASPERRORFILEOVERWRITE exists and false otherwise.

16.1.4 Writing Custom Error Handlers

Internally, GRerror keeps three pointers of type GRstart error type, GRreport error type, and GRend error type
(defined in grasp.h) which point to the current starterror, reporterror, and enderror handlers, respectively.
When the three error handlersGRstart error() , GRreport error() , and GRend error()
are called, they in turn check to see that they are called in the proper order and then call the function
pointed to by the corresponding function pointer if (and only if) the function pointer is non-NULL (so
that for convenience if a particular handler is not neccessary a dummy routine is not required) and if er-
rors are currently enabled (so disabling errors works regardless of the handler). By default the handler
pointers simply reference GRdefault start error(), GRdefault report error(), and GRdefault end error(),
which actually implement the default behavior described above. For convenience they may be restored with
GR restoredefault handlers() as well as GRset error handlers().

The functions GRseterror handlers() and GRget error handlers() set and examine the handler’s cur-
rent values, so that by writing the proper functions GRASP’s error reports can be customized in any way
desired. The GR... error type typedef’s in grasp.h illustrate the proper function prototypes. Note that
GR report error type functions take a valist as their second argument rather than ’...’; for convenience
GRreport error() creates the list and calls vastart() beforehand and calls vaend() afterwards so the
handler need only deal with the list itself. In the common case where the message will simply be printed
to a file, the valist may be passed directly to one of the v...printf functions. The only restriction is that the
handlers may not be changed between calls toGRstart error() andGRend error() , but just as
when changing the default error files this should not be a problem in practice.
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The default handlers insrc/utility/GR error.c and their supporting routines are good exam-
ples of how GRASP error handlers are written. They are special only in that they are initialized and set
automatically; otherwise, they use only features available to any handler. Most of their code provides the
ability to switch files easily and safely; writing a custom handler that does not need this generality is quite
straightforward. GRis reporting() returns true if a report is in progress and is sometimes useful when writ-
ing custom handlers.
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16.1.5 Functions:GRstart error() , GRreport error() , GRend error()

These three functions are the GRASP error handlers. Their use is best illustrated by example. A typical
usage is shown below – a fragment taken from a fictitous routine called “trouble() ”.

...
GR_start_error("trouble()",rcsid,__FILE__,__LINE__);
GR_report_error("The GR_report_error() function is like printf().\n");
GR_report_error("It can have no arguments.\n");
GR_report_error("It can have a float argument %f\n",x1);
GR_report_error("Or any mixture of valid types %d %d %s\n",i1,i2,stringptr);
GR_end_error();
...

The use of these three routines as shown will print out, for example:

GRASP: Message from function trouble() at line number 123 of file "source.c".
The GR_report_error() function is like printf().
It can have no arguments.
It can have a float argument 5.43210
Or any mixture of valid types -2 17 the string pointed to by the pointer
$Id: man_utility.tex,v 1.38 1999/07/11 21:22:18 ballen Exp $
$Name: RELEASE_1_9_8 $

In particular, the line number, release number, and file name are all filled in automatically. The environment
variables that govern the behavior of the default error handler are shown in Table 10 below.

Environment variable. How to set, and effect obtained.
GRASPNODEBUG setenv GRASPNODEBUG

turns off error messages.
GRASPERRORFILE setenv GRASP ERRORFILE thisfile

sends errors to file “thisfile ”.
GRASPERRORFILEOVERWRITE setenv GRASPERRORFILEOVERWRITE

errors don’t accumulate in file.

Table 10: The behavior of the error handler is determined by three environment variables, which can be
set and un-set using the shell commandssetenv andunsetenv . These permit the error messages to be
turned off, saved in a file, and control the file name and its over-write properties.
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16.2 Function: grasp open()

FILE* grasp open(const char *environment variable,const char *shortpath,const
char *mode)

This routine provides a simple mechanism for obtaining the pointer to a data or parameter file. It
is called with two character strings. One of these is the name of an environment variable, for example
GRASPDATAPATHor GRASPPARAMETERS. The second argument is the “tail end” of a path name. The
routine then constructs a path name whose leading component is determined by the environment variable
and whose tail end is determined by the short path name.grasp open() opens the file (printing useful
error messages if this is problematic) and returns a pointer to the file.

The arguments are:

environment variable: Input. Pointer to a character string containing the name of the environment
variable.

shortpath: Input. Pointer to a character string containing the remainder of the path to the file.

mode: Input. File mode. Pointer to a character string containing ”r” if you want to read the file, ”w” if
you want to write to the file, and so on. A list of the possible modes is:

r or rb open file for reading
w or wb truncate to zero length or create file for

writing
a or ab append; open or create file for writing at

end-of-file
r+ or rb+ or r+b open file for update (reading and writing)
w+ or wb+ or w+b truncate to zero length or create file for

update
a+ or ab+ or a+b append; open or create file for update,

writing at end-of-file

As a simple example, if the environment variableGRASPPARAMETERSis set to
/usr/local/data/14nov94.2
and one calls
grasp open("GRASP PARAMETERS","channel.0","r")
then the routine opens the file
/usr/local/data/14nov94.2/channel.0
for reading and returns a pointer to it.
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16.3 Function: avg spec()

void avg spec(float *data,float *average,int npoint,int *reset,float srate,float
decaytime,int windowtype,int overlap)

This routine calculates the power spectrum of the (time-domain) input streamdata[ ] , averaged over
time with a user-set exponential decay, several possible choices of windowing and the possibility to overlap
data in subsequent calls.

The arguments are:

data: Input. The time domain input samples are contained indata[0..N-1] , with the data sample at
time t = n�t contained indata[n] .

average: Output. The one sided power spectrum is returned inaverage[0,..N/2-1] . The value
of average[m] is the average power spectrum at frequency

f =
m� srate

N
: (16.3.1)

We do not output the value of the average at the Nyquist frequency, which would be the (non-existent)
array elementaverage[N] . The units ofaverage[ ] aredata[]2=Hz. Note: the elements of
average[ ] must not be changed in between successive calls toavg spec() .

npoint: Input. The number of pointsnpoint = N input. This must be an integer power of two.

reset: Input. If set to zero, then any past contribution to the average power spectrum is initialized to
zero, and a new average is begun with the current input data.

srate: Input. The sample rate1=�t of the input data, in Hz.

decaytime: Input. The characteristic (positive) decay time� in seconds, to use for the moving (exponentially-
decaying) average described below. If no averaging over time is wanted, simply setdecaytime to
be small compared toN�t.

windowtype: Input. Sets the type of window used in power spectrum estimation. Rectangular win-
dowing (i.e., no windowing) iswindowtype=0 , Hann windowing iswindowtype=1 , Welch win-
dowing iswindowtype=2 and Bartlett windowing iswindowtype=3 . See [1] for a discussion of
windowing and the definitions of these window types.

overlap: Input. Must be either zero or unity. If set to unity, then the data is overlapped byN=2 points
with previous data (see below for a description of the overlapping procedure). When set to zero no
overlapping is performed.

The methods used in this routine are quite similar to those used in theNumerical Recipes[1] routine
spctrm() , and the reader interested in the details of this routine should first read the corresponding section
of [1]. Note that to reproduce (exactly) the procedure described inNumerical Recipes[1] one must have
npoint =2�M where M is the variable used in the procedurespctrm() , and the decay time must be very
large (so that the two successive spectra are equally weighted). If the data being passed is not continuous
from one call to the next, setoverlap=0.

One frequently wants to do a moving-time average of power spectra, for example to see how the noise
spectral properties of an interferometer are changing with time. This is accomplished inavg spec()
by averaging the spectrum with an exponentially-decaying average. LetAt(f) denote the average power
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spectrum as a function of frequencyf , at timet. Then the exponentially-decaying averagehA(f)it at time
t is defined by

hA(f)it =
R t
�1 dt0 At0(f)e�(t�t

0)=�R t
�1 dt0 e�(t�t0)=�

; (16.3.2)

where� is the characteristic decay time over which an impulse in the power spectrum would decay. In our
case, we wish to average the power spectra obtained in the nth pass through the averaging routine. The
discrete analog of the previous equation (16.3.2) is

hA(f)iN =

NX
n=0

An(f)e
��(N�n)

NX
n=0

e��(N�n)
: (16.3.3)

Here,

� =
npoint

srate� decaytime
(16.3.4)

is determined by the averaging time desired. The average defined by (16.3.3) can be easily determined by a
recursion relation. We denote the the normalization factor by

NN =
NX
n=0

e��(N�n): (16.3.5)

It obeys the (stable) recursion relationNN = 1 + e��NN�1 together with the initial conditionN�1 = 0.
The exponentially-decaying average then satisfies the (stable) recursion relation

hA(f)iN = e��
NN�1
NN

hA(f)iN�1 +
AN (f)

NN
for N = 0; 1; 2; � � � (16.3.6)

(no initial condition is needed). The routineavg spec() computes the exponentially decaying average by
implementing these recursion relations forhA(f)iN andNN .

The units of the output arrayaverage[ ] are the square of the units of the input arraydata[ ] per
Hz, i.e.

units (average[ ]) = (units (data[ ]))2 =Hz: (16.3.7)

The example programcalibrate described earlier makes use of the routineavg spec() .

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu and Patrick Brady patrick@tapir.caltech.edu

Comments: See comments forcalibrate . Warning: If overlap is turned on, and you passavg spec()
sets of points that are not continuous, you will introduce discontinous jumps between the data sets,
and add lots of peculiar high-frequency garbage to the spectrum.
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16.4 Function: binshort()

void binshort(short *input,int ninput,double *bins,int offset)
This function performs the “binning” which is needed to study the statistics of an array of short integers,
such as the output of a 12 or 16 bit analog-to-digitial converter. Its output is a histogram showing the
number of times that a particular value occurred in an input array. Note that this routineincrementsthe
output histogram, so that you can use it for accumulating statistics of a particular variable.

The arguments are:

input: Input. This routine makes a histogram of the valuesinput[0..ninput-1] .

ninput: Input. The number of elements in the previous array.

bins: Output. Upon return from the function, this array contains a histogram showing the probabil-
ity distribution of the valuesinput[0..ninput-1] . The array elementbins[offset] is
incremented by the number of elementsx of input[] that had valuex = 0. The array ele-
mentbins[offset+i] is incremented by the number of elementsx of input[] that had value
x = i. If the output of your 16 bit ADC ranges from -32,768 to +32,767 andnbins has value
216 = 65; 536 then you would wantoffset = 32; 768. For a 12-bit ADC you would probably
want nbins = 212 = 4096, and depending upon the sign conventions eitheroffset = 2047 or
offset = 2048.

offset: Input. The offset defined above.

Note that in the interests of speed and efficiency this routine doesnot check that your values lie within
range. So if you try to bin a value that lies outside of the range�offset;�offset+ 1; � � � ; offset� 1
you may end up over-writing another array! You’ll then spend unhappy hours trying to locate the source
of bizzare unpredictable behavior in your code, when you could be doing better things, like seeing if your
ADC has dynamic range problem (reaches the end-point values too often) or has a mean value of zero (even
with AC-coupled inputs the ADC may have substantial DC offset).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.5 Function: is gaussian()

int is gaussian(short *array,int n,int min,int max,int print)
This is a quick and robust test to see if a collection of values has a probability distribution that is consis-
tent with a Gaussian normal distribution (“normal IFO operation”), or if the collection of values contains
“outlier” points, indicating that the set of values contains “pulses”, “blips” and other “obvious” exceptional
events that “stick out above the noise” (caused by bad cabling, alignment problems, or other short-lived
transient events).

The arguments are:

array: Input. The values whose probability distribution is examined arearray[0..n-1] .

n: Input. The length of the previous array.

min: Input. The minimum value that the input valuesmightassume. For example, ifarray[] contains
the output of a 12-bit analog-to-digital converter, one might setmin=-2048 . Of course the minimum
value in the input array might be considerably larger than this (i.e., closer to zero!) as it should be if the
ADC is being operated well within its dynamic range limits. If you’re not sure of the smallest value
produced inarray[] , setmin smaller (i.e., more negative) than needed; the only cost is storage,
not computing time.

max: Input. The maximum value that the input valuesmightassume. For example, ifarray[] contains
the output of a 12-bit analog-to-digital converter, one might setmax=2047 . The previous comments
apply here as well: setmax larger than needed, if you are not sure about the largest value contained
in array[] .

print: Input. If this is non-zero, then the routine will print some statistical information about the
distribution of the points.

The value returned byis gaussian() is 1 if the distribution of points is consistent with a Gaussian
normal distribution with no outliers, and 0 if the distribution contains outliers.

The way this is determined is as follows (we usexi to denote the array elementarray[i] ):

� First, the mean value�x of the distribution is determined using the standard estimator:

�x =
1

n

n�1X
i=0

xi: (16.5.1)

� Next, the points are binned into a histogramN [v]. HereN [v] is the number of points in the array that
have valuev. The sum over the entire histogram is the total number of points:

P
iN [i] = n.

� Then the standard deviations is estimated in the following robust way. It is the smallest integers for
which

sX
i=�s

N [i+ �x] > n erf(1=
p
2) = n

1p
2�

Z 1

�1
e�x

2=2dx: (16.5.2)

This value ofs is a robust estimator of the standard deviation; the range of�s about the mean includes
68% of the samples. (Note that since the values ofxi are integers, we replace�x by the closest integer
to it, in the previous equation).
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� Next, the number of values in the range from one standard deviation to three standard deviations is
found, and the number of values in the range from three to five standard deviations is found. This is
compared to the expected number:

n(erfc(3=
p
2)� erfc(5=

p
2)): (16.5.3)

� If there are points more than five standard deviations away from the mean, or significantly more points
in the 3 to 5 standard deviation range than would be expected for a Gaussian normal distribution, then
is gaussian() returns 0. If the numbers of points in each range is consistent with a Gaussian
normal distribution, thenis gaussian() returns 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function should be generalized in the obvious way, to look at one sigma wide bins in a
more systematic way. It can eventually be replaced by a more rigorously characterized test to see if
the distribution of sample values is consistent with the normal IFO operation.

GRASP RELEASE 1.9.8 Page 520 May 19, 2000



Section
16.6

GRASP Routines: General purpose utilities
Function: clear()

Page
521

16.6 Function: clear()

void clear(float *array,int n,int spacing)
This routine clears (sets to zero) entries in an array.
The arguments are:

array: Ouput. This routine clears elementsarray[0] ,array[spacing] , � � �, array[(n-1)*spacing] .

n: Input. The number of array elements that are set to zero.

spacing: Input. The spacing in the array between succesive elements that are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.7 Function: product()

void product(float *c,float *a, float *b,int ncomplex) This routine takes as input
a pair of arraysa andb containing complex numbers. It multipliesa with b, placing the result inc, so that
c = a� b. The arguments are:

a: Input. An array ofN complex numbersa[0..2N-1] with a[2j] anda[2j+1] respectively con-
taining the real and imaginary parts.

b: Input. An array ofN complex numbersb[0..2N-1] with b[2j] andb[2j+1] respectively con-
taining the real and imaginary parts.

c : Output. The array ofN complex numbersc[0..2N-1] with c[2j] andc[2j+1] respectively
containing the real and imaginary parts ofa� b.

ncomplex : Input. The numberN of complex numbers in the arrays.

Note that the two input arraysa[ ] andb[ ] can be the same array; or the output arrayc[ ] can be the
same as either or both of the inputs. For example, the following are all valid:

product(c,a,a,n) , which performs the operationa2 ! c.
product(a,a,b,n) , which performs the operationa� b! a.
product(a,b,a,n) , which performs the operationa� b! a.
product(a,a,a,n) , which performs the operationa2 ! a.

Note also that this routine does not allocate any memory itself - your input and output arrays must be
allocated before callingproduct() .

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.8 Function: productc()

void productc(float *c,float *a, float *b,int ncomplex) This routine takes as in-
put a pair of arraysa andb containing complex numbers. It multipliesa with the complex-conjugate ofb,
placing the result inc, so thatc = a� b�. The arguments are:

a: Input. An array ofN complex numbersa[0..2N-1] with a[2j] anda[2j+1] respectively con-
taining the real and imaginary parts.

b: Input. An array ofN complex numbersb[0..2N-1] with b[2j] andb[2j+1] respectively con-
taining the real and imaginary parts.

c : Output. The array ofN complex numbersc[0..2N-1] with c[2j] andc[2j+1] respectively
containing the real and imaginary parts ofa� b�.

ncomplex : Input. The numberN of complex numbers in the arrays.

Note that the two input arraysa[ ] andb[ ] can be the same array; or the output arrayc[ ] can be the
same as either or both of the inputs. For example, the following are all valid:

productc(c,a,a,n) , which performs the operationjaj2 ! c.
productc(a,a,b,n) , which performs the operationa� b� ! a.
productc(a,b,a,n) , which performs the operationa� � b! a.
productc(a,a,a,n) , which performs the operationjaj2 ! a.

Note also that this routine does not allocate any memory itself - your input and output arrays must be
allocated before callingproductc() .

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.9 Function: ratio()

void ratio(float *c,float *a, float *b,int ncomplex) This routine takes as input a
pair of arraysa andb containing complex numbers. It dividesa by b, placing the result inc, so thatc = a=b.
The arguments are:

a: Input. An array ofN complex numbersa[0..2N-1] with a[2j] anda[2j+1] respectively con-
taining the real and imaginary parts.

b: Input. An array ofN complex numbersb[0..2N-1] with b[2j] andb[2j+1] respectively con-
taining the real and imaginary parts.

c : Output. The array ofN complex numbersc[0..2N-1] with c[2j] andc[2j+1] respectively
containing the real and imaginary parts ofa=b.

ncomplex : Input. The numberN of complex numbers in the arrays.

Note that the two input arraysa[ ] andb[ ] can be the same array; or the output arrayc[ ] can be the
same as either or both of the inputs. For example, the following are all valid:

ratio(c,a,a,n) , which (very inefficiently) sets every element ofc to 1 + 0i.
ratio(a,a,b,n) , which performs the operationa=b! a.
ratio(a,b,a,n) , which performs the operationb=a! a.
ratio(a,a,a,n) , which (very inefficiently) sets every element ofa to 1 + 0i.
This routine is particularly useful when you want to reconstruct the raw interferometer outputfC0(f) that

would have produced a particular interferometer displacementf�l(f) (see for examplenormalize gw()
in Section 3.12). This occurs for example if you are “injecting” chirps into the raw interferometer output;
they first need to be deconvolved with the response function of the instrument. One can invert this equation
usingratio() sincef�l(f) = R(f)fC0(f)) fC0(f) = f�l(f)=R(f).
Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.10 Function: reciprocal()

void reciprocal(float *b, float *a, int ncomplex)

This routine computes the arrayb = 1=a for an input arraya containing complex numbers. The argu-
ments are:

a: Input. The array ofN complex numbersa[0..2N-1] with a[2j] and a[2j+1] respectively
containing the real and imaginary parts.

b: Output. The array ofN complex numbersb[0..2N-1] with b[2j] andb[2j+1] respectively
containing the real and imaginary parts of1=a.

ncomplex : Input. The numberN of complex numbers in the arrays.

Note that the arraysa[] andb[] can be the same.
In order to reduce the potential for overflows (since floating point arithmetic was used), the reciprocals

of the complex numbers were computed according to the following formula:

b =
1

a
=

1

x+ iy
=

8>>><>>>:
1� i(y=x)

x+ y(y=x)
jxj > jyj

(x=y)� 1

x(x=y) + y
jxj � jyj:

(16.10.1)

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: None.
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16.11 Function:graph()

void graph(float *array,int n,int spacing)
This is a useful function for debugging. It pops up a graph on the computer screen (using the graphing

programxmgr ) showing a graph of some array which you happen to want to look at.
The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are
array[0] , array[spacing] , array[2*spacing] ,...,array[(n-1)*spacing] .

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts upxmgr , reading the input from the file. Thex values are evenly spaced
integers from0 to n-1 . They values are the (subset of) points inarray[ ] . If your array contains real
data, you might want to usespacing=1 . If your array contains complex data (with real and imaginary
parts interleaved) you will usespacing=2 , and make separate calls to see the real and imaginary parts.
For example ifcomplex[0..2047] contains 1024 complex numbers, then:
graph(complex,1024,2) (view 1024 real values)
graph(complex+1,1024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages from
xmgr are tossed into/dev/null !

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.12 Function:graph double()

void graph double(double *array,int n,int spacing)
This is a useful function for debugging, and exactly like the functiongraph() , except that it’s intended

for double precision floating point numbers. It pops up a graph on the computer screen (using the graphing
programxmgr ) showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are
array[0] , array[spacing] , array[2*spacing] ,...,array[(n-1)*spacing] .

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts upxmgr , reading the input from the file. Thex values are evenly spaced
integers from0 to n-1 . They values are the (subset of) points inarray[ ] . If your array contains real
data, you might want to usespacing=1 . If your array contains complex data (with real and imaginary
parts interleaved) you will usespacing=2 , and make separate calls to see the real and imaginary parts.
For example ifcomplex[0..2047] contains 1024 complex numbers, then:
graph(complex,1024,2) (view 1024 real values)
graph(complex+1,1024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages from
xmgr are tossed into/dev/null !

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.13 Function:graph short()

void graph short(short *array,int n)
This is a useful function for debugging, and exactly like the functiongraph() , except that it’s intended

for short integer values. It pops up a graph on the computer screen (using the graphing programxmgr )
showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph. The elements graphed arearray[0..n-
1] .

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts upxmgr , reading the input from the file. Thex values are evenly spaced
integers from0 to n-1 . They values are the points inarray[ ] .

Note that in order not to produce too much garbage on the screen, any output or error messages from
xmgr are tossed into/dev/null !

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.14 Function:sgraph()

sgraph(short *array,int n,char *name,int filenumber)
This routine writes the elements of a short array into a file so that they may be viewed later with a

graphing program likexmgr .
The arguments are:

array: Input. The array that you want to graph.

n: Input. The number of array elements that you want to graph. The elements used arearray[0..n-
1] .

name: Input. Used to construct the output file name.

filenumber: Input. The value ofy used to construct the output file name.

This function produces an output file with two columns, containing:
0 array[0]
1 array[1]
...
n-1 array[n-1]
The name of this file is:name. y wherey is the integer specified byfilenumber . Note that ify < 1000
theny is “expanded” or “padded” to three digits. For example, calling
sgraph(array,1024,"curious",9)
will produce the file
curious.009
containing1024 lines.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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16.15 Function:audio()

void audio(short *array,int n)
Makes a workstation play music! This is guaranteed to work on SUN machines, and may also work on

others.
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used arearray[0..n-1] .

It doesn’t take much experience before you find out that an interferometer can do funny things that you
can’t see in the data stream, if you just graph the numbers. However in many cases you canhearthe peculiar
events. This function works only on Sun workstations with a CD-sound quality chipset, that can handle 16
bit linear PCM audio. It creates a temporary file, then pipes it though the Sun utilityaudioplay . The
sample rate is assumed to be 9600 Hz.

Note thataudio() adjusts the volumeso that the loudest event (largest absolute value) in the data
stream has a (previously fixed, by us!) maximum amplitude. So the “background level” of the sound will
depend upon the amplitude of the most obnoxious pings, blips, bumps, scrapes or howlers in the data set.

On a machine not equiped with the correct sound chip (for example a SparcStation 2) you can listen
to the file, if you first convert it to a format that the chipset can handle. This can be done by taking the
output ofaudio() , which is a file calledtemp.au and converting it to “voice” format. To do this, use
the command:
audioconvert -f voice -o temp2.au temp.au
You can then listen to the sound using the command:
audioplay temp2.au

Warning: If you share your office with others, they will find the first few events that you listen to highly
entertaining. After the first day however they will stop asking what you’re listening to. After a few more
days, their suggestions that you buy headphones will become more pointed. Respect this request.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the
sample rate.

GRASP RELEASE 1.9.8 Page 530 May 19, 2000



Section
16.16

GRASP Routines: General purpose utilities
Example: makesounds program

Page
531

16.16 Example:makesounds program

The programmakesounds demonstrates thegraph short() function, which uses xmgr to create
graphs of an array of short integers, and theaudio() function, which plays a waveform, expressed as
an array of shorts, on a sound-capable workstation. This program generates three waveforms with which to
demonstrate these utilities:

� a constant frequency Cosine wave with a quadratically varying amplitude,t(T�t)cos(2�Pi�200�t),
whereT is the duration of the signal,

� a binary inspiral chirp for two 5.0 solar mass objects, starting from a frequency of 64 Hz and chirping
to coalesence,

� and a Lai-Shapiro waveform from the supernova hang-up with a1:4 solar mass core and rotating with
an initial frequency of 1000 Hz.

Each waveform is displayed withgraph short() and played on your workstation withaudio() .

=� Demonstrates the audio() and graphshort() with (1) 200 Hz Cosine wave
with a quadratically varying amplitude (2) 5.0-5.0 solar mass inspiral
chirp (3) Lai-Shapiro 1.4 solar mass: Displays graph and plays audio
for each.�=

#include "grasp.h"
#include <unistd.h >
#define S RATE 9600
#define NUM PTS 10000
int i,chirp pts;
float �wave, �dummy,wavemax,t coal;
short �snd;
struct LS physical constants phys const;

int main() f
=� Allocate arrays�=
wave=(float �)malloc(NUM PTS�sizeof(float));
dummy=(float �)malloc(NUM PTS�sizeof(float));
snd=(short �)malloc(NUM PTS�sizeof(float));

=� Generate a 200 Hz Cosine wave with quadratically varying amplitude�=
for (i=0;i <NUMPTS;i++) wave[i]=i �(NUM PTS�i) �cos(2.0 �M PI �200.0 �i =9600.0) =NUMPTS;
=� Convert wave to shorts, rescaling maximum amplitude to SHRTMAX-2 �=
wavemax=0;
for (i=0;i <NUMPTS;i++) if (fabs(wave[i]) >wavemax) wavemax=fabs(wave[i]);
for (i=0;i <NUMPTS;i++) snd[i]=(short)((SHRT MAX�2) �wave[i] =wavemax);
=� Graph and play waveform, then pause briefly�=
graph short(snd,NUM PTS);
audio(snd,NUM PTS);
sleep(2);

=� Same procedure for an inspiral chirp for a 5.0-5.0 solar mass system.�=
make filters(5.0,5.0,wave,dummy,64.0,NUM PTS,S RATE,&chirp pts, &t coal,4000,2);
wavemax=0;
for (i=0;i <NUMPTS;i++) if (fabs(wave[i]) >wavemax) wavemax=fabs(wave[i]);
for (i=0;i <NUMPTS;i++) snd[i]=(short)((SHRT MAX�2) �wave[i] =wavemax);
graph short(snd,NUM PTS);
audio(snd,NUM PTS);
sleep(2);
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=� Define parameters for Lai-Shapiro waveform�=
phys const.mass=1.4;
phys const.radius=10.0;
phys const.distance=1.0;
phys const.fmax=1000.0;
phys const.inclination=phys const.Phi 0=0;
=� Then generate, display and play the Lai-Shapiro waveform.�=
LS waveform(wave,phys const,0.0,0.0,0.125 �M PI,1.0 =S RATE,NUMPTS);
wavemax=0;
for (i=0;i <NUMPTS;i++) if (fabs(wave[i]) >wavemax) wavemax=fabs(wave[i]);
for (i=0;i <NUMPTS;i++) snd[i]=(short)((SHRT MAX�2) �wave[i] =wavemax);
graph short(snd,NUM PTS);
audio(snd,NUM PTS);

return 0;
g

Author: Warren Anderson, warren@ricci.phys.uwm.edu

Comments: If theaudio() function does not play sound on your workstation, replace it withsound()
below, and use that to create sound files which you should be able to listen to in some way.
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16.17 Function:sound()

sound(short *array,int n,char *name,int filenumber)
This is just like the functionaudio() except that it writes the sound data into a file of the form*.au .
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used arearray[0..n-1] .

name: Input. Used to construct the output file name.

filenumber: Input. The value ofy used to construct the output file name.

This function produces an output file with 16-bit PCM linear coding, containing sound data. The name
of the file is:name. y.au wherey is the integer specified byfilenumber . Note that ify < 1000 theny
is “expanded” or “padded” to three digits. For example, calling
sound(array,4800,"growl",9)
will produce the file
growl.009.au
containing1=2 second of sound.

Note: see theWarningthat goes withaudio() .

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the
sample rate.
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16.18 Example:translate

This example may be found in thesrc/examples/examples utility directory of GRASP, and
contains an example program which translates data from the “old 1994” Caltech 40-meter format described
earlier, to the new LIGO/VIRGO frame format. Because this code provides an example of how the data is
encoded in this new format, we have included the text of the translation code here. The frames produced by
this translation contain about 5 seconds of data each, and are about half a megabyte in length. The number
of frames in each data file is set by the
# define FRAMES PERFILE
at the top of the code. To run the utility, use the command
translate directory-name
wheredirectory-name is the name of the directory in which the fileschannel.0 to channel.15
may be found. The FRAME format files produced bytranslate are labelled uniquely by the time at
which the first data point in the first frame was taken. The choice of file names depends upon the version of
the Frame library.

� For Frame library versions� 3:30, the files are labeled by their time (in Coordinated Universal Time
or UTC). An example of such a file (produced bytranslate ) is:
C1-94 10 15 06 18 02 .
In the file name,94 denotes the year (we will use 01 for 2001, etc.) and10 denotes the month
(labelled from 1 to 12). The hour ranges from 0 to 23 and in this examples is06 . The minutes (18)
ranges from 0 to 59 and the seconds (02) ranges from 0 to 61 to include leap seconds but is normally
in the range from 0 to 59. This naming convention will be used for any data files containing one
second or more of data.

� For Frame library versions> 3:30, the files are labeled by their GPS time. The relationship between
different time coordinates is explained in Section 17. An example of the corresponding file (produced
by translate ) is:
C1-468915467.F
where the suffix means “frame”, and the integer is the number of seconds after Jan 6, 1980 00:00:00
UTC.

HereC1 denotes the Caltech 40-meter prototype. The names that will be used for the other sites are:H2
Hanford LIGO detectors (these will be stored in a single frame, together, with channel names to distinguish
the 2km and 4km detectors,L for the Livingston LIGO detectorV1 for the Virgo detector,G1 for the GEO
detector,T for the Tama detector,S for the Glasgow detector,Mfor the Max-Plank detector, andA for the
AIGO detector. In some cases (for example at Livingston and Hanford) additional frame files containing
trend data, with typically one sample per channel per second, and one minute of data per frame, will be
stored in files of the formH-609637094.T , with the suffix denoting “trend”.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include <math.h >
#include <stdio.h >
#include <stdlib.h >
#include <string.h >
#include "FrameL.h"
#include "grasp.h"
#define OLDNAMES 0 =� set to zero to use new channel names, 1 for old names�=
#define LOCKLO 1
#define LOCKHI 10
#define CORRECTTIMESTAMPS 1 =� set to 1 to correct loss of timestamp resolution�=
=� The compression method: None = 0; GZIP = 1; Diff = 2; Diff+GZIP = 3�=
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#define COMPRESSION 3
=� The Level of GZIP compression used; Values between 1 and 9 allowed�=
#define GZIP LEVEL 1
=� the latest version of the frame lib that this code has been tested with�=
#define FRAMELIB TESTED 3.85

=� Each block of old-format data contains 5.07 secs of data. This
parameter determines how many of these old-format blocks (now a frame)
end up in each FRAME file.�=
#define FRAMES PER FILE 32
=� earth’s equatorial radius, in meters�=
#define EQUATORIAL (6.37814e+06)
=� earth’s ellipticity or flattening due to rotation�=
#define FLAT (3.35281e �3)

=� the conversion from ADC counts to volts is:�=
static char units[ ]="Units are 10 volts per 2048 counts. Range -2048 to +2047";

#if (OLDNAMES)
=� channel assignments before Nov 15, 1994�=
static char �prenov15[ ]= f

"IFO output", "", "", "microphone", "dc strain", "mode cleaner pzt",
"seismometer", "", "", "", "TTL locked", "arm 1 visibility", "arm 2 visibility",
"mode cleaner visibility", "slow pzt", "arm 1 coil driver" g;

=� channel assignments after Nov 15, 1994�=
static char �postnov15[ ]= f

"IFO output", "magnetometer", "microphone", "", "dc strain", "mode cleaner pzt",
"seismometer", "slow pzt", "power stabilizer", "",
"TTL locked", "arm 1 visibility", "arm 2 visibility", "mode cleaner visibility",
"", "arm 1 coil driver" g;

#else
=� channel assignments before Nov 15, 1994�=
static char �prenov15[ ]= f

"IFO_DMRO", "", "", "IFO_Mike", "IFO_DCDM", "PSL_MC_V",
"IFO_Seis_1", "", "", "", "IFO_Lock", "IFO_EAT", "IFO_SAT",
"IFO_MCR", "IFO_SPZT", "SUS_EE_Coil_V" g;

=� channel assignments after Nov 15, 1994�=
static char �postnov15[ ]= f

"IFO_DMRO", "IFO_Mag_x", "IFO_Mike", "", "IFO_DCDM", "PSL_MC_V",
"IFO_Seis_1", "IFO_SPZT", "PSL_PSS", "",
"IFO_Lock", "IFO_EAT", "IFO_SAT", "IFO_MCR",
"", "SUS_EE_Coil_V" g;

#endif

=� Program’s only argument is the name of the directory containing old-format data�=
int main(int argc,char � argv[ ]) f

char filename[256],name[256],hist[1024], �histnew, �buff, ��chan name;
static char machinename[256]="";
int i,code=1,num,large=50000,small=5000,n,first=1,firsttime=0,nlines;
long buffSize;
float fastrate=9868.4208984375,tblock,slowrate=986.84208984375, �real, �imag, �freq;
double firstmsec=0.0,first estimate,second estimate,diff,dt,dtslow;
float starttime= �100.0,guesstime;
double currenttime= �200;
int blockcount=0,channelsopen=0,expected;
struct FrFile �outputfile=NULL;
struct FrameH �frame;
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struct FrAdcData �adc[16];
struct FrDetector �frdetect;
struct FrVect �framevec;
struct FrVect �framevecS;
struct FrStatData �staticdata;
struct FrStatData �staticdataS;
struct ld binheader bin header;
struct ld mainheader main header;
struct tm timetm, �gtime,gts;
time t translate time,calendartime;
FILE �fp[16], �fpsweptsine, �pipe;
void unhappyexit(int i);
int get run number(int firsttime);

=� print out some information about the library being used�=
fprintf(stderr,"translate compiled with Frame header file version: FRAMELIB_VERSION=%.2f\n",

FRAMELIB VERSION);
#if (FRAMELIB VERSION INT>=370)

fprintf(stderr,"translate linked with Frame library archive version: FrLibVersion=%.2f\n",
FrLibVersion(NULL));

if ((int)(1000 �(FRAMELIB VERSION�FrLibVersion(NULL))))
fprintf(stderr,

"WARNING: translate code linked to different run-time library than header file version!\n");
#endif

if (FRAMELIB VERSION INT!=100 �FRAMELIB VERSION)
fprintf(stderr,

"WARNING: in building this code FRAMELIB_VERSION_INT=%d != 100 x (FRAMELIB_VERSION=%.2f)\n",
FRAMELIB VERSION INT,FRAMELIB VERSION);

if (FRAMELIB VERSION>FRAMELIB TESTED)
fprintf(stderr,"Warning: translate has only been tested with FRAMELIB_VERSION <= %.2f\n",

FRAMELIB TESTED);

=� initialize the frame system�=
FrLibIni(NULL,NULL,2);
buffSize=1000000;
buff=malloc(buffSize);

=� create a frame�=
frame=FrameHNew("C1");

=� assign detector structure: site location and orientation information�=
#if (FRAMELIB VERSION INT<=237)

frame �>detectRec=FrDetectorNew("real");
frdetect=frame �>detectRec;
frdetect �>latitude=34.1667;
frdetect �>longitude=118.133;
frdetect �>arm1Angle=180.0;
frdetect �>arm2Angle=270.0;
frdetect �>arm1Length=38.5;
frdetect �>arm2Length=38.1;

#else
frame �>detectProc=FrDetectorNew("real");
frdetect=frame �>detectProc;
frdetect �>latitudeD=34;
frdetect �>latitudeM=10;
frdetect �>latitudeS=0;
frdetect �>longitudeD=118;
frdetect �>longitudeM=8;
frdetect �>longitudeS=0;
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frdetect �>armXazimuth=180.0;
frdetect �>armYazimuth=270.0;
frdetect �>armLength=38.3;

#endif

=� Correct for oblateness of earth, use reference spheriod with
flattening FLAT; EQUATORIAL is earth equatorial radius in meters.
Reference: eqns (4.13-14) in “Spacecraft attitude determination and
control”, Ed. James R. Wortz, D. Reidel Publishing Co., Boston, 1985.
Note: this SHOULD be corrected to add in the height of Caltech above
sea level.�=
=� angle measured down from the North pole�=

#if (FRAMELIB VERSION INT<=237)
f

float theta;
theta=(M PI =180.0) �(90.0 �frdetect �>latitude);
frdetect �>altitude=EQUATORIAL �(1.0 �FLAT�cos(theta) �cos(theta));

g
#else

frdetect �>elevation=0.0 =�FILL IN THE CORRECT VALUE�=;
#endif

=� now open files containing 40 meter data�=
if (!argv[1] j j argc!=2) unhappyexit(1);

=� step through all possible channels, seeing which channels have data�=
for (i=0;i <16;i++) f

sprintf(name,"%s/channel.%d",argv[1],i);
fp[i]=fopen(name,"r");
if (fp[i]==NULL)

fprintf(stderr,"File %s unavailable. Skipping it. . .\n",name);
else

channelsopen++;
g

=� if there are no open files, then please exit with a warning message�=
if (channelsopen==0) unhappyexit(1);

=� the sample times for the fast=slow channels�=
dt=1.0 =fastrate;
dtslow=1.0 =slowrate;

=� Define 4 fast, 12 slow ADC channels (long strings of blanks needed - see below)�=
for (i=0;i <16;i++)

if (fp[i]!=NULL)
if (i <4)

=� sample rates differ from fastrate, slowrate – see GRASP manual for details�=
adc[i]=FrAdcDataNew(frame," ",50000.0 �15.0 =76.0,large,16);

else
adc[i]=FrAdcDataNew(frame," ",5000.0 �15.0 =76.0,small,16);

=� now loop over the input data, creating blocks of output data�=
while (code >0) f

=� read a block of data�=
for (i=0;i <16;i++) f

=� set size of data block�=
n=(i <4)?large:small;
=� read data into frame short array�=
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if (i <4 && fp[i]!=NULL)
code=read block(fp[i], &(adc[i] �>data �>dataS), &num, &tblock, &fastrate,0, &n,0,

&bin header, &main header);
else if (fp[i]!=NULL)

code=read block(fp[i], &(adc[i] �>data �>dataS), &num, &tblock, &slowrate,0, &n,0,
&bin header, &main header);

g

=� if no data remains, we have found an error�=
if (code==0) f

fprintf(stderr,"Error in translation: unexpected end of data!\n");
abort();

g

=� check the various sample times�=
if (dt!=1.0 =fastrate) fprintf(stderr,"Fast sample rates don't match!\n");
if (dtslow!=1.0 =slowrate) fprintf(stderr,"Slow sample rates don't match!\n");

=� set time stamps for this block of data�=
=� Put the local California time-of-day into a structure for later use�=
timetm.tm sec=main header.tod second;
timetm.tm min=main header.tod minute;
timetm.tm hour=main header.tod hour;
timetm.tm mday=main header.date day;
timetm.tm mon=main header.date month;
timetm.tm year=main header.date year;
timetm.tm wday=main header.date dow;
timetm.tm yday= �1; =� info not available, but filled in by mktime�=
timetm.tm isdst= �1; =� info not available, but filled in by mktime�=

=� Now convert the stored Calendar time into the right data type�=
calendartime=main header.epoch time sec;

=� Put the UTC time-of-day into a structure for later use�=
gtime=gmtime( &calendartime);
gts= �gtime;

=� set the time stamp for the first data sample (more precise than header time)�=
if (first) f

firsttime=main header.epoch time sec;
firstmsec=0.001 �main header.epoch time msec;
printf("UTC (gmtime) start time: %s",asctime( &gts));
printf(" CA start time: %s\n",asctime( &timetm));

=� assign the run number from 1,. .,11 to the frame.�=
frame �>run=get run number(firsttime);
if (frame �>run <1 j j frame �>run >11) unhappyexit(2);

=� assign proper name to adc channel (to overwrite long blank space above)�=
if (frame �>run <=2) f

chan name=prenov15;
expected=11;

g
else f

chan name=postnov15;
expected=13;

g

if (channelsopen!=expected) f
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fprintf(stderr,"Only found %d channels. Expected %d\n",channelsopen,expected);
exit(1);

g

for (i=0;i <16;i++)
if (fp[i]!=NULL) f

=� verify that name is correct�=
if (strcmp(chan name[i],"")==0) f

fprintf(stderr,"Channel %d is not recognized and has no name!\n",i);
exit(1);

g

=� point to the correct channel name for this particular date, channel�=
strcpy(adc[i] �>name,chan name[i]);

=� put in the physical volts=counts conversion�=
#if (FRAMELIB VERSION INT<=237)

adc[i] �>data �>unit[0]=(char �)malloc((strlen(units)+1) �sizeof(char));
strcpy(adc[i] �>data �>unit[0],units);

#else
adc[i] �>data �>unitY=(char �)malloc((strlen(units)+1) �sizeof(char));
strcpy(adc[i] �>data �>unitY,units);

#endif

=� which ADC “crate” was this�=
adc[i] �>crate=i;

g
g

if (CORRECTTIMESTAMPS) f
guesstime=currenttime+76.0 =15.0;
if (fabs(guesstime �tblock) >1.0) f

starttime=tblock;
blockcount=0;

g
currenttime=(blockcount++) �((double)76.0 =15.0)+starttime;

=� put the time stamp into the frame structure�=
currenttime+=firstmsec;

#if (FRAMELIB VERSION INT<330)
frame �>UTimeS=firsttime+(int)currenttime;
frame �>UTimeN=(int)(1.e9 �(currenttime �(int)currenttime));
frame �>dt=76.0 =15.0;

#else
frame �>GTimeS=firsttime+(int)currenttime �UTCTOGPS;
frame �>GTimeN=(int)(1.e9 �(currenttime �(int)currenttime));

=�JKB: should be INT(TAI-UTC)�=
frame �>ULeapS=29; =� BA – for Nov 1994 – see GRASP manual on time defs�=
frame �>dt=(76.0 =15.0);

#endif

g
else f

=� put the time stamp into the frame structure�=
tblock+=firstmsec;

#if (FRAMELIB VERSION INT<330)
frame �>UTimeS=firsttime+(int)tblock;
frame �>UTimeN=(int)(1.e9 �(tblock �(int)tblock));
frame �>dt=num =slowrate;
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#else
frame �>GTimeS=firsttime+(int)tblock �UTCTOGPS;
frame �>GTimeN=(int)(1.e9 �(tblock �(int)tblock));

=�JKB: should be INT(TAI-UTC)�=
frame �>ULeapS=29; =� BA – for Nov 1995 – see GRASP manual on time defs�=
frame �>dt=(num =slowrate);

#endif

g

=� Localtime - UTC time in seconds�=
frame �>localTime= �8�3600;

=� frame->type[0]=0;�=

=� put in the history information (only once per translation)�=
if (first) f

first=0;
histnew=hist;
time( &translate time);

=� get the name of the local machine�=
pipe=popen("hostname","r");
if (pipe==NULL) f

=� if we can’t open the pipe, then list machine name as unknown�=
strcpy(machinename,"hostname undetermined");

g
else

fscanf(pipe,"%s",machinename);

histnew+=sprintf(histnew,"\nTranslation carried out by:\n");
histnew+=sprintf(histnew," login: %s\n",getenv("LOGNAME"));
histnew+=sprintf(histnew," user: %s\n",getenv("USER"));
histnew+=sprintf(histnew," translation machine name: %s\n",machinename);
histnew+=sprintf(histnew," directory: %s\n",getenv("PWD"));
histnew+=sprintf(histnew," datapath: %s\n",argv[1]);
histnew+=sprintf(histnew," translation program name: %s\n",argv[0]);
histnew+=sprintf(histnew," source code name: %s\n","translate.c");
histnew+=sprintf(histnew," Frame library header file (compile) version: %.2f\n",FRAMELI B

#if (FRAMELIB VERSION INT>=370)
histnew+=sprintf(histnew," Frame library archive (link) version: %.2f\n",FrLibVersion(N U

#endif
histnew+=sprintf(histnew," translation date: %s\n",ctime( &translate time));
FrHistoryAdd(frame,hist);

=� read the swept sine calibration files (only once per run)�=
sprintf(name,"%s/swept-sine.ascii",argv[1]);
fpsweptsine=fopen(name,"r");
read sweptsine(fpsweptsine, &nlines, &freq, &real, &imag);

=� copy swept sine calibration data into vector; see below for packing style�=
#if (FRAMELIB VERSION INT<=237)

framevec=FrVectNew(FR VECT F,1,3 �nlines,1.0,"Vifo/Vcoil");
#else

framevec=FrVectNew(FR VECT 4R,1,3 �nlines,1.0,"Vifo/Vcoil");
#endif

for (i=0;i <nlines;i++) f
framevec �>dataF[i]=freq[i];
framevec �>dataF[i+nlines]=real[i];
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framevec �>dataF[i+2 �nlines]=imag[i];
g

=� then link the calibration data into the history structure�=
#if (FRAMELIB VERSION INT<330)

staticdata=FrStatDataNew("sweptsine",
"swept sine calibration:\npacking: freq[i], real[i], imaginary[i]",
frame �>UTimeS,INT MAX,1,framevec);

#else
staticdata=FrStatDataNew("sweptsine",

"swept sine calibration:\npacking: freq[i], real[i], imaginary[i]",
frame �>GTimeS,INT MAX,1,framevec);

#endif

#if (FRAMELIB VERSION INT<=237)
FrStatDataAdd( &frame �>detectRec �>sData,staticdata);

#elif (FRAMELIB VERSION INT<=330)
FrStatDataAdd( &frame �>detectProc �>sData,staticdata);

#else
FrStatDataAdd(frame �>detectProc,staticdata);

#endif

=� put in lock range (INCLUSIVE low->high) Rolf: if 0=unlock and 1=lock
then you need LOCKLO=LOCKHI=1

�=

#if (FRAMELIB VERSION INT<=237)
framevecS=FrVectNew(FR VECT S,1,2,1.0,"adcCounts");

#else
framevecS=FrVectNew(FR VECT 2S,1,2,1.0,"adcCounts");

#endif

framevecS �>dataS[0]=LOCKLO; =� smallest value at which we are still in lock�=
framevecS �>dataS[1]=LOCKHI; =� largest value at which we are still in lock�=

=� then link the lockrange data into the history structure�=
#if (FRAMELIB VERSION INT<330)

staticdataS=FrStatDataNew("locklo/lockhi",
"lock range:\npacking: array[0]=locklo array[1]=lockhi",
frame �>UTimeS,INT MAX,1,framevecS);

#else
staticdataS=FrStatDataNew("locklo/lockhi",

"lock range:\npacking: array[0]=locklo array[1]=lockhi",
frame �>GTimeS,INT MAX,1,framevecS);

#endif

#if (FRAMELIB VERSION INT<=237)
FrStatDataAdd( &frame �>detectRec �>sData,staticdataS);

#elif (FRAMELIB VERSION INT<=330)
FrStatDataAdd( &frame �>detectProc �>sData,staticdata);

#else
FrStatDataAdd(frame �>detectProc,staticdataS);

#endif
g

=� is the time stamp for this data block consistent with start time+offset?�=
#if (FRAMELIB VERSION INT<330)

first estimate=frame �>UTimeS+1.e �9�frame �>UTimeN;
#else
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first estimate=frame �>GTimeS+UTCTOGPS+1.e�9�frame �>GTimeN;
#endif

second estimate=main header.epoch time sec+1.e �3�main header.epoch time msec;
diff=first estimate �second estimate;
if (fabs(diff) >0.002)

fprintf(stderr,"Time stamps have drifted by %f msec!\n",diff);

=� Increment frame counter (set to 1 for first frame of each run)�=
frame �>frame++;

=� Open Frame file (one file per FRAMESPER FILE frames)�=
if ((frame �>frame%FRAMESPER FILE)==1) f

=� set file name. Note than month=1 to 12 not 0 to 11!�=
=� Obsolete as of Aug 1998 – new file name is GPS time�=
#if (FRAMELIB VERSION INT<330)

sprintf(filename,"C1-%02d_%02d_%02d_%02d_%02d_%02d",gts.tm year,gts.tm mon+1,
gts.tm mday,gts.tm hour,gts.tm min,gts.tm sec);

#else
sprintf(filename,"C1-%d.F",frame �>GTimeS);

#endif

printf("Filename: %s\n",filename);
#if (FRAMELIB VERSION INT<330)

outputfile=FrFileONew(filename, NO, buff, buffSize);
#else

outputfile=FrFileONew(filename, COMPRESSION, buff, buffSize);
if (GZIP LEVEL>0)

f
printf("Building frames with compression gzip level = %d\n",GZIP LEVEL);

g
FrFileOSetGzipLevel(outputfile,GZIP LEVEL);

#endif
g

=� un-comment to print a short snippet of each Frame onto the screen�=
=� FrameDump(frame, stdout, 2);�=

=� Write frame to file,�=
FrameWrite(frame, outputfile);

=� Close file if finished with FRAMESPER FILE or no remaining data�=
if ((frame �>frame%FRAMESPER FILE)==0 j j code== �1)

FrFileOEnd(outputfile);
g

=� Free frame memory and return�=
FrameFree(frame);
return(0);

g

=� this routine is called if something is wrong�=
void unhappyexit(int i) f
switch (i) f

case 1:
fprintf(stderr,
"Syntax: \ntranslate directory\nwhere channel.* files may be found in directory\n");
exit(1);

case 2:
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fprintf(stderr,
"The UTC does not appear to lie in the range of any data set!\n");
exit(1);

default:
abort();

g
return;
g

=� number of secs after Jan 1 1970 UTC at which Nov 1994 runs began�=
static int stimes[ ]= f784880277,784894763,785217574,785233119,785250938,785271063,

785288073,785315747,785333880,785351969,785368428,785388248 g;

=� This routine looks at the epoch time (sec) and returns the run number (1-11)�=
int get run number(int firsttime) f

int i;

for (i=0;i <12;i++)
if (firsttime <stimes[i]) break;

return i;
g

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The technique used to time-stamp this data is an attempt to correct the poor resolution of
the original data – please see the remarks in 4.1 for additional detail. Also notice that because the
sample rates of the slow/fast channels differ by a ratio of 10, we can not easily reformat the frames
with sample sizes of length2n. We expect that the FRAME format will continue to evolve, so that
this translator (and the FRAME format data) may reqire periodic updates. Should the year have four
digits (eg, 1994) for easier sorting?
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16.19 Multi-taper methods for spectral analysis

Since the early 1980’s there has been a revolution in the spectral analysis, due largely to a seminal paper by
Thomson [39]. There is now a standard textbook on the subject, by Percival and Walden [40], to which we
will frequently refer.

Among the most useful of these techniques are the so-called “multitaper” methods. These make use of a
special set of windowing functions, called Slepian tapers. For discretely-sampled data sets, these are discrete
prolate spheroidal sequences, and are related to prolate spheroidal functions. The GRASP package contains
(a modified version of) a public domain package by Lees and Park, which is described in [41]. Further
details of this package may be found athttp://love.geology.yale.edu/mtm/ . Note however
that we have already included this package in GRASP; there is no need to hunt it down yourself.

For those who are unfamilar with these techniques, we suggest reading Chapter 7 of [40]. The sets of
tapered windows are defined by three parameters. These are, in the notation of Percival and Walden:

N : The length of the discretely-sampled data-set, typically denoted by the integernpoints in the GRASP
routines.

NW�t: The product of total observation timeN�t and the resolution bandwidthW . This dimensionless
(non-integer) quantity is denotednwdt in the GRASP routines. Note that for a conventional FFT, the
frequency resolution would beW = �f = 1=N�t. This corresponds to havingNW�t = 1. The
multitaper techniques are typically used with values ofW which are several times larger, for example
W = 3�f , which corresponds toNW�t = 3.

K: The number of Slepian tapers (or window functions) used, typically denotednwin in the GRASP
routines. Note that it is highly recommended (see page 334 of [40] and the final two figures on page
339) that the number of tapersK < 2NW�t.

In addition to providing better spectral estimation tools, the multi-taper methods also provide nice tech-
niques for spectral line parameter estimation and removal. When the sets of harmonic coefficients are gen-
erated for different choices of windows, one can perform a regression test to determine if the signal contains
a sinusoid of fixed amplitude and phase, consistent across the complete set of tapers. The GRASP package
uses this technique (the F-test described on page 499, and the worked-out example starting on page 504 of
[40]) to estimate and remove spectral lines from a data-set. This can be used both for diagnostic purposes
(i.e., track contamination of the data set by the 5th line harmonic at 300Hz) or to “clean up” the data (i.e.,
remove the pendulum resonance at 590 Hz).

As an aid in understanding these techniques, we have included with GRASP a section of the data-set
from the Willamette River appearing on pg 505 of Percival and Walden [40], and an example program which
repeats and reproduces the results in Section 10.13 of that textbook. This demonstrates the use of multi-taper
methods in removing “spectral lines” from a data set.
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16.20 Function:slepian tapers()

int slepian tapers(int num points, int nwin, double *lam, float nwdt, dou-
ble *tapers, double *tapsum)

This function computes and returns properly-normalized Slepian tapers. These tapers are normalized so
that

NX
t=1

h2t = N; (16.20.1)

which is theNumerical Recipesconvention for tapers (rather than the Percival and Walden convention for
which the rhs is 1). It uses the method described in Percival and Walden [40] pages 386-387, finding the
eigenvectors and eigenvalues of a tri-diagonal matrix. The arguments are:

num points: Input. The number of pointsN in the taper.

nwin: Input. The number of tapers computed.

lam: Output. Upon return,lam[0..nwin-1] contains the eigenvalues� of the tapers. Note that
0 < � < 1.

nwdt: Input. The (total sample time)� (frequency resolution bandwidth) product.

tapers: Output. Upon return:tapers[0..num points-1] contains the first taper,
tapers[num points..2*num points-1] contains the second taper, and so on.

tapsum: Output. On returntapsum[0] contains the sum of thenum points values of the first taper,
tapsum[1] contains the sum of the values of the second taper, and so on. Note that because the
odd-index Slepian taper functions are odd,tapsum[1,3,5,...] would vanish if it were not for
round-off and other numerical error.

This function will print a warning message if the conditionK < 2NW�t is not satisfied (see Sec-
tion 16.19).Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)

and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: There are a number of techniques for calculating the Slepian tapers. We have not extensively
tested these routines, but they appear to work well. They make use of the standard EISPACK routines,
translated from FORTRAN into C using f2c.

GRASP RELEASE 1.9.8 Page 545 May 19, 2000



Section
16.20

GRASP Routines: General purpose utilities
Function: slepian tapers()

Page
546

0.0 100.0 200.0 300.0 400.0
−2.0

−1.0

0.0

1.0

2.0

Slepian Taper Functions
N=npoints=395 NW∆t=nwdt=4 K=nwin=5 

k=0

1
2

3
4

Figure 84: Here are five Slepian tapers computed withslepian tapers() . The parameters are
npoints=395 , nwdt=4.0 andnwin=5 .
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16.21 Function:multitaper spectrum()

multitaper spectrum(float *data, int npoints,int kind, int nwin, float nwdt,
int inorm, float dt, float *ospec, float *dof, float *fvalues, int padded length,
float *cest, int dospec)

This function calculates the multi-taper estimate of the amplitude spectrum
p
S(f):

q
Ŝ(mt)(fj) :=

vuuut 1

K

K�1X
k=0

1

�k

�����
N�1X
m=0

xmhk;m e�i2�mj=Np

�����
2

: (16.21.1)

Herexm is themth element of the input data array,hk;m is themth element of thekth orderNW�t discrete
prolate spheroidal sequence data taper,�k is its associated eigenvalue, andfj is the discrete frequency
fj := j=Np�t, wherej = 0; 1; � � � ; Nf � 1 = Np=2. The above multi-taper estimate differs slightly from
Equation (333) in Percival and Walden: (i) there is the square root; (ii) the data tapers are normalized so thatPN�1
n=0 h

2
k;n = N ; (iii) there is no factor of�t; (iv) the individual estimates are weighted by1=�k. (But for

K < 2NW�t, 1=�k � 1).
For the sake of efficiency,multitaper spectrum() computes, and then stores internally, the

Slepian taper functions, so that if it is called a second time (and needs the same tapers) they do not need to
be re-computed. If called with different parameters it recomputes the Slepian tapers for the new parameters.

If you want to obtain the same normalization as that used in theavg spec() routine described by
equation (16.3.7), the output arrayospec[] should first be squared, and then multiplied by a factor of
2�t=N .

The arguments are:

data: Input. Pointer to the time-domain data array,data[0..npoints-1] .

npoints: Input. The total numberN of data points in thedata array.

kind: Input. If set to 1, compute the normal (i.e., “high resolution”) multi-taper estimate of the amplitude

spectrum. If set to 2, compute the “adaptive” multi-taper estimate
q
Ŝ(amt)(fj) of the amplitude

spectrum, defined by Percival and Walden Equation (370a).

nwin: Input. The number of tapers to use.

nwdt: Input. The (total sample time)� (frequency resolution bandwidth) product.

inorm: Input. Determines choice of normalization. Possible values are

1: Divide spectrum byN2.

2: Divide spectrum by�t2.

3: Divide spectrum byN .

4: Divide spectrum by1.

dt: Input. Sample interval (only used for normalization).

ospec: Output. The output spectrum, including both DC and Nyquist frequency bins. The array range
is ospec[0..padded length/2] . Warning -this is anodd number of entries. The user must
provide a pointer to sufficient storage space.
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dof: Output. The effective number of degrees of freedom of the spectral estimator at a given frequency,
defined by Percival and Walden eqn (370b). The number of degrees of freedom is the constant
nwin-1 for kind=1 above, and only useful in the adaptive case wherekind=2 . The array range is
dof[0..padded length/2] . Warning - this is anoddnumber of entries. The user must provide
a pointer to sufficient storage space.

fvalues: Output. The value of the F-statistic in each frequency bin spectrum, including both DC and
Nyquist. This is defined by Percival and Walden equation (499c), and roughly speaking is the ratio of
the energy explained by the hypothesis that one has a fixed-amplitude spectral line at that frequency to
the energy not explained by this hypothesis. The array range isfvalues[0..padded length/2] .
Warning -this is anoddnumber of entries. The user must provide a pointer to sufficient storage space.

padded length: Input. The padded lengthNp is an integer power of 2, greater than (or equal to)
npoints . The (tapered) data is zero-padded out to this length. You generally wantNp to be around
four to eight times larger than the length of your data set, to get decent frequency resolution. The
number of frequency bins (including DC and Nyquist) in the output spectrum isNf = 1 +Np=2.

cest: Output. The estimated Fourier coefficients of any spectral lines in the data. The real and imag-
inary parts at DC are contained incest[0],cest[1] . The next higher frequency bin has its
real/imaginary parts contained incest[2],cest[3] , and so on. This pattern continues up to and
including the Nyquist frequency. The length of the array iscest[0..padded length+1] . The
normalization/sign conventions are identical to Percival and Walden eqns (499a) and the example on
line 20 of page 513, except that the sign of the imaginary part is reversed, because the Percival and
Walden FFT conventions eqn (65ab) are opposite to Numerical Recipes. The user must provide a
pointer to sufficient storage space.

dospec: Input. If set non-zero, then the power spectrum (pointed to byospec ) is calculated. If set to
zero, then to save time in situations where all that is needed iscest , the power spectrumospec is
not calculated.

Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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16.22 Function:multitaper cross spectrum()

void multitaper cross spectrum(float *o1, float *o2, int npoints, int padded length,
float delta t, int nwin, float nwdt, double *ReImSpec12)

This function calculates the high resolution multitaper estimate of the (complex-valued) cross-correlation
spectrum~o�1(f)~o2(f) of the two input time-serieso1(t) ando2(t).

The arguments are:

o1: Input. o1[0..npoints-1] is an array of floating point variables containing the values of the input
time-serieso1(t). o1[i] contains the value ofo1(t) evaluated at the discrete timeti := i�t, where
i = 0; 1; � � � ; N � 1.

o2: Input. o2[0..npoints-1] is an array of floating point variables containing the values of the input
time-serieso2(t), in exactly the same format as the previous argument.

npoints: Input. The total numberN of data points contained in the two input time-series.

padded length: Input. The padded lengthNp is an integer power of 2, greater than (or equal to)
the total number of data points. The tapered data sets are zero-padded out to this length. The total
number of frequency bins (including DC and Nyquist) in the output cross-correlation spectrum is
Nf = 1 +Np=2.

delta t: Input. The sampling period�t (in sec).

nwin: Input. The total numberK of data tapers used when forming the multitaper spectral estimate.

nwdt: Input. The (total sample time)� (frequency resolution bandwidth) productN�t �W .

ReImSpec12: Output. ReImSpec12[0...padded length+1] is an array of double precision
variables containing the values of the high resolution multitaper spectral estimate of the (complex-
valued) cross-correlation spectrum~o�1(f)~o2(f). ReImSpec12[2*j] andReImSpec12[2*j+1]
contain, respectively, the values of the real and imaginary parts of

�t2
1

K

K�1X
k=0

1

�k

 
N�1X
m=0

o1(tm)hk;m e�i2�mj=Np

! 
N�1X
n=0

o2(tn)hk;n e
+i2�nj=Np

!
(16.22.1)

wherehk;n is thenth element of thekth orderNW�t discrete prolate spheroidal sequence data
taper, and�k is its associated eigenvalue. (Herej = 0; 1; � � � ; Nf � 1 = Np=2.) The data tapers are
normalized so that

PN�1
n=0 h

2
k;n = N .

If you want to obtain the same normalization as that used in theavg spec() routine described by
equation (16.3.7) for the case whereo1(t) = o2(t) then the output arrayReImSpec12 should be multiplied
by a factor of2=N�t.

Author:

Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu), Adrian
Ottewill (ottewill@relativity.ucd.ie), and Joseph Romano (romano@csd.uwm.edu).

Comments: None.
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16.23 Structure: struct removed lines

This is a structure used to keep track of spectral lines as they are removed. Its primary use is in the function
remove spectral lines() . The structure contains the following:

struct removed_lines{
int index;
float fvalue;
float re;
float im;

};

The different quantities are:

index: The subscript (frequency bin) occupied by the spectral line in an array of lengthNf (defined
in the previous section). Note that in typical use index runs over a range of2n + 1 possible values,
including DC and Nyquist.

fvalue The value of the F-statistic, defined by Percival and Walden eqn. (499c).

re: The real part of the line’s complex amplitude. The normalization/sign conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513.

im: The imaginary part of the line’s complex amplitude. The normalization conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513, but the sign is reversed,
because the Percival and Walden FFT conventions eqn (65ab) are opposite to Numerical Recipes.
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16.24 Function: fvalue cmp()

int fvalue cmp(const void *f1, const void *f2)
This is a function which may be used to compare the�fvalues of two different objects of typestruct

removed lines . It is used for example as an argument to the standard-C library routineqsort for
sorting lists of removed lines into decreasing order offvalue .

This function is supplied with pointers to two stuctures. It returns -1 if the first structure has the larger
fvalue , +1 if the first structure has the smallerfvalue , and 0 if thefvalue s are equal.

The arguments are:

f1: Input. Pointer to the first structure of typestruct removed lines (cast tovoid * so that your
compiler does not complain).

f2: Input. Pointer to the second structure of typestruct removed lines (cast tovoid * so that
your compiler does not complain).

As an example, ifline list[0..n-1] is an array ofstruct removed lines , then the function
call:
qsort(line list,n,sizeof(struct significant values),fvalue cmp)
will sort that array into decreasingfvalue order. (Note: you may have to cast the arguments to prevent
your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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16.25 Function: index cmp()

int index cmp(const void *f1, const void *f2)
This is a function which may be used to compare the�indexes of two different objects of typestruct
removed lines . It is used for example as an argument to the standard-C library routineqsort for
sorting lists of removed lines into increasing order in frequency.

This function is supplied with pointers to two stuctures. It returns -1 if the first structure has the smaller
index , +1 if the first structure has the largerindex , and 0 if theindex es are equal.

The arguments are:

f1: Input. Pointer to the first structure of typestruct removed lines (cast tovoid * so that your
compiler does not complain).

f2: Input. Pointer to the second structure of typestruct removed lines (cast tovoid * so that
your compiler does not complain).

As an example, ifline list[0..n-1] is an array ofstruct removed lines , then the function
call:
qsort(line list,n,sizeof(struct significant values),index cmp)
will sort that array into increasingindex (frequency!) order. (Note: you may have to cast the arguments to
prevent your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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16.26 Function: remove spectral lines()

void remove spectral lines(float *data, int npoints, int padded length, float
nwdt, int nwin, int max lines, int maxpass, int *num removed, struct removed lines
*line list,
float *mtap spec init, float *mtap spec final, int dospecs, int fimin, int
fimax)

This routine automatically identifies and removes “spectral lines” from a time series. The procedure
followed is described in Percival and Walden Chapter 10. A worked example may be found in Section 10.13
of that book, and the next subsection of the GRASP manual includes two example programs which use
remove spectral lines() . Upon return,remove spectral lines() provides both an “initial”
multi-taper amplitude spectrum, of the original data, and a “final” multi-taper amplitude spectrum, after line
removal. Upon return, the data set has the spectral lines subtracted. This routine also returns a list of the
lines removed. For each line it provides the frequency bin (for the padded data set) in which the line falls, the
value of the F-test for that line, and the complex coefficientĈi defined by Percival and Walden eqn (499a)
which defines the line.

The arguments are:

data: Input. A pointer to the time-series arraydata[0..npoints-1] .

npoints: Input. The number of points in the previous array.

padded length: Input. The number of pointsNp of zero-padded data that will be analyzed. Note that
Np must be an integer power of two greater than or equal tonpoints . We recommend that you use
at least a factor of four greater, to obtain sufficient frequency resolution to accurately identify/remove
spectral lines.

nwdt: Input. The (total sample time)� (frequency resolution bandwidth) product.

nwin: Input. Number of Slepian tapers. See previous sections.

max lines: Input. The maximum number of spectral lines that you want removed. The arrayline list[0..max li n
1] must have at least this length.

maxpass: Input. The maximum number of iterations or passes through the line-removal loop described
below. Set to a large number to make as many passes as needed to remove all the spectral lines.

num removed: Output. The actual number of spectral lines subtracted from the data.

line list: Ouput. A list of structuresline list[0..num removed-1] containing the frequency
bin, real and imaginary parts of the removed line, and the F-test significance value associated with the
first removal of the line. Upon return from this function, the elements ofline list[] are sorted
into increasing frequency-bin order.

mtap spec init: Output. The multi-taper estimate of the amplitude spectrum of theinitial data[] ar-
ray, including both DC and Nyquist frequency bins. The array range ismtap spec init[0..padded length/2
Warning -this is anoddnumber of entries. The user must provide a pointer to sufficient storage space.

mtap spec final: Output. The multi-taper estimate of the amplitude spectrum of thefinal data[]
array, with the spectral lines subtracted, including both DC and Nyquist frequency bins. The array
range ismtap spec final[0..padded length/2] . Warning -this is anodd number of en-
tries. The user must provide a pointer to sufficient storage space.
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dospecs: Input. If set non-zero, then the initial/final amplitude spectra (pointed to bymtap spec init
andmtap spec final ) are calculated. If set to zero, then to save time in situations where all that
is needed a list of spectral lines and their amplitudes and phases, then neither of the amplitude spectra
are calculated.

fimin: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, thenfimin defines the lower bound
of the range of (padded) frequency bins which are searched for spectral lines. The range offimin is
0..padded length/2 . Also,fimin < fimax.

fimax: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, thenfimax defines the upper bound
of the range of (padded) frequency bins which are searched for spectral lines. The range offimax is
0..padded length/2 . Also,fimin < fimax.

The algorithm used byremove spectral lines() is an automated version of the procedure illus-
trated in Percival and Walden Section 10.13. The steps followed are:

1. The mean value is subtracted from the data-set, and it is zero padded to the specified length.

2. The set of Fourier coefficients for the tapered data sets are determined.

3. ¿From these coefficients the F-statistic is determined for each frequency bin (Percival and Walden eqn
(499c)). If the confidence level (that the frequency bin contains a spectral line) exceeds1�1=npoints
(Percival and Walden pg 513), an estimator of the spectral line coefficients is constructed, and the line
is placed onto a working list. If no frequency bins exceed this level of confidence, we are finished.

4. The working list is now sorted into order of decreasing F-values.

5. To ensure that we do not remove the same line twice, the spectral line associated with each spectral
line on the working list is subtracted from the data-set, provided that it does not lie within a frequency
width of�W of a stronger (larger F-value) line.

6. We return to step 1 above, iterating this procedure, provided that the number of times that we have
passed by step 1 is less than or equal tomaxpass .

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: Ifmax lines is not large enough, then theline list[] array may not contain all of
the possible spectral lines, which exceed the confidence level above. This may even be the case if
num removed is less thanmax lines . We suggest that you makemax lines somewhat larger
thannum removed . One ought to be able to improve on this routine, by using the array of F-values
generated internally and interpolating to find the frequency of the lines more precisely. One might
also be able to fit to a model of two closely separated lines to better remove certain “split” features, or
to fit to an exponentially-decaying model to remove other broadened features.
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16.27 Example:river

This is an example program which uses the functionremove spectral lines() to repeat the analysis
of data from the Willamette River given by Percival and Walden in section 10.13 of their textbook.

It displays graphs of the river flow data (which is distributed with GRASP) and spectrum before and
after automatic removal of the two significant spectral lines (whose frequencies are 1/year and 2/year).
These graphs are also shown here. Before running this program, be sure to set the envionment variable
giving the path to the river data, for example:
setenv GRASP PARAMETERS /usr/local/GRASP/parameters
The text output of the program is as follows:

Total number of lines removed: 2
Removed line of amplitude -0.291175 + i 0.312209 at freq 1.005848 cycles/year
(F-test value 48.455242)
Removed line of amplitude 0.023220 + i 0.098357 at freq 2.000000 cycles/year
(F-test value 15.224311)

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"
#include <unistd.h > =� need the header for the sleep() function�=

int main() f
int i,num points,num win,num freq,padded length,max lines,num removed;
float nwdt, �data, �mtap spec init, �mtap spec final,freq,fnyquist;
struct removed lines �line list;
FILE �fpriver;

=� data length, padded length, num frequencies including DC, Nyquist�=
num points=395;
padded length=1024;
num freq=1+padded length =2;

=� number of taper windows to use, and time-freq bandwidth�=
num win=5;
nwdt=4.0;

=� maximum number of lines to remove�=
max lines=8;

=� allocate arrays�=
data= (float �)malloc(sizeof(float) �num points);
mtap spec init=(float �)malloc(sizeof(float) �num freq);
mtap spec final=(float �)malloc(sizeof(float) �num freq);
line list=(struct removed lines �)malloc(sizeof(struct removed lines) �max lines);

=� Read Willamette River data from Percival& Walden example, pg 505�=
fpriver=grasp open("GRASP_PARAMETERS","willamette_river.dat","r");
for (i=0;i <395;i++) fscanf(fpriver,"%f",data+i);
fclose(fpriver);

=� Since the data is sampled once per month, fnyquist = 6 cyles=year�=
fnyquist=0.5 �12;

=� pop up a graph of the original data�=
graph(data,num points,1); sleep(5);
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=� now remove the spectral lines from the data set�=
remove spectral lines(data,num points,padded length,nwdt,num win,

max lines,500, &num removed,line list,mtap spec init,mtap spec final,1,0,num freq);

=� pop up a graph of the original multitapered spectrum�=
graph(mtap spec init,num freq,1); sleep(5);

=� pop up a graph of the line-removed data and multitapered spectrum�=
graph(data,num points,1); sleep(5);
graph(mtap spec final,num freq,1); sleep(5);

=� print out a list of lines removed�=
printf("Total number of lines removed: %d\n",num removed);
for (i=0;i <num removed;i++) f

freq=line list[i].index �fnyquist =num freq;
printf("Removed line of amplitude %f + i %f at freq %f cycles/year\t",

line list[i].re,line list[i].im,freq);
printf("(F-test value %f)\n",line list[i].fvalue);

g
return 0;

g

GRASP RELEASE 1.9.8 Page 556 May 19, 2000



Section
16.27

GRASP Routines: General purpose utilities
Example: river

Page
557

0.0 100.0 200.0 300.0 400.0
months

−2.0

−1.0

0.0

1.0

2.0
flo

w

Willamette River Flow
(from Percval & Walden pg 505)

Green: original data (DC removed)
Red: after spectral line removal

0.0 2.0 4.0 6.0
cycles/year

1

10

100

po
w

er
 s

pe
ct

ru
m

Willamette River
multi−taper power spectrum

line removed
1 cycle/year

line removed
2 cycles/year

Figure 85: Output of the example programriver , making use ofremove spectral lines() to
automatically find and remove two “spectral line” features from a data set. This is the same example treated
by Percival and Walden in Section 10.13 of their textbook.
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16.28 Example:ifo clean

This example program usesremove spectral lines() to automatically identify and remove “spectral
lines” from the output of the 40-meter IFO. To run this program, be sure to set the data path environment
variable, for example:
setenv GRASP DATAPATH /usr/local/GRASP/data/19nov94.3
The program outputs graphs in a two files calledifo clean data.out and ifo clean spec.out ,
containing the before/after time series and spectra. These may be viewed withxmgr by typing:
xmgr -nxy ifo clean data.out
and
xmgr -nxy ifo clean spec.out
to start up thexmgr graphing program.

The output of this program is a list of lines removed:

Total number of lines removed: 39
Removed line frequency 30.717 Hz amplitude 0.78 phase 15.54 (F-test 68.6)
Removed line frequency 79.203 Hz amplitude 0.55 phase -157.41 (F-test 52.5)
Removed line frequency 80.257 Hz amplitude 0.12 phase -101.84 (F-test 39.3)
Removed line frequency 109.318 Hz amplitude 4.52 phase 10.21 (F-test 75.5)
Removed line frequency 120.009 Hz amplitude 0.46 phase 5.01 (F-test 537.9)
Removed line frequency 139.584 Hz amplitude 0.29 phase -163.57 (F-test 304.5)
Removed line frequency 179.938 Hz amplitude 21.91 phase -43.22 (F-test 3635.0)
Removed line frequency 239.867 Hz amplitude 0.45 phase 130.25 (F-test 42.2)
Removed line frequency 245.438 Hz amplitude 0.21 phase -116.94 (F-test 51.9)
Removed line frequency 279.167 Hz amplitude 0.31 phase 0.52 (F-test 47.2)
Removed line frequency 299.947 Hz amplitude 15.37 phase -135.82 (F-test 9712.5)
Removed line frequency 359.876 Hz amplitude 1.17 phase 61.64 (F-test 134.8)
Removed line frequency 419.955 Hz amplitude 4.48 phase -39.58 (F-test 356.1)
Removed line frequency 488.768 Hz amplitude 0.19 phase 165.56 (F-test 50.5)
Removed line frequency 500.212 Hz amplitude 0.64 phase 129.38 (F-test 34.5)
Removed line frequency 539.964 Hz amplitude 5.09 phase 119.38 (F-test 425.2)
Removed line frequency 571.585 Hz amplitude 4.01 phase 120.03 (F-test 50.6)
Removed line frequency 578.662 Hz amplitude 34.97 phase -149.12 (F-test 429.8)
Removed line frequency 582.426 Hz amplitude 107.36 phase 15.64 (F-test 1129.7)
Removed line frequency 597.936 Hz amplitude 58.72 phase 63.27 (F-test 558.6)
Removed line frequency 605.314 Hz amplitude 17.21 phase -140.57 (F-test 489.7)
Removed line frequency 659.822 Hz amplitude 2.20 phase -152.53 (F-test 121.0)
Removed line frequency 779.831 Hz amplitude 3.95 phase -39.18 (F-test 502.4)
Removed line frequency 839.760 Hz amplitude 2.75 phase -172.15 (F-test 468.2)
Removed line frequency 899.840 Hz amplitude 3.40 phase 113.05 (F-test 529.6)
Removed line frequency 959.919 Hz amplitude 0.80 phase 178.70 (F-test 43.2)
Removed line frequency 999.822 Hz amplitude 1.01 phase 67.74 (F-test 114.8)
Removed line frequency 1019.698 Hz amplitude 1.46 phase -156.72 (F-test 146.6)
Removed line frequency 1079.777 Hz amplitude 3.00 phase 51.82 (F-test 128.9)
Removed line frequency 1157.023 Hz amplitude 2.99 phase -76.14 (F-test 129.4)
Removed line frequency 1210.778 Hz amplitude 2.12 phase 128.39 (F-test 69.5)
Removed line frequency 1319.644 Hz amplitude 3.02 phase -105.29 (F-test 146.2)
Removed line frequency 1499.582 Hz amplitude 1.31 phase 141.94 (F-test 50.5)

GRASP RELEASE 1.9.8 Page 558 May 19, 2000



Section
16.28

GRASP Routines: General purpose utilities
Example: ifo clean

Page
559

Removed line frequency 1559.662 Hz amplitude 2.79 phase 107.12 (F-test 60.0)
Removed line frequency 1746.978 Hz amplitude 1.81 phase 50.38 (F-test 112.0)
Removed line frequency 2039.697 Hz amplitude 1.65 phase 165.82 (F-test 62.3)
Removed line frequency 2279.413 Hz amplitude 2.12 phase -25.06 (F-test 163.0)
Removed line frequency 3509.465 Hz amplitude 0.11 phase 43.89 (F-test 60.1)
Removed line frequency 4609.720 Hz amplitude 0.03 phase 24.61 (F-test 39.4)

Virtually all of these lines can be identified as either 60 Hz line harmonics, or as specific suspension and
pendulum modes. The removal of these lines makes a dramatic difference to the appearance (and sound of)
the signal, as shown in Figure 86. Note that the amplitudes of the lines above are properly normalized (in
ADC units). For example the 180 Hz line harmonic is well described byA(t) = 21:91 sin(360�t=sec). By
far the largest amplitude lines are the three violin modes at 578.662, 582.426, and 597.936 Hz, and the 180
and 300 Hz line harmonics. Most of the structure visible in Figure 86 is the result of these five harmonics.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

int main() f
short �datas;
int i,num points,num win,num freq,padded length,max lines,num removed,remain;
float nwdt, �data, �mtap spec init, �mtap spec final,freq,tstart,srate, �initial data,amp,phi;
struct removed lines �line list;
FILE �fpifo, �fplock, �fpout1, �fpout2;

=� open the IFO output file and lock file�=
fpifo =grasp open("GRASP_DATAPATH","channel.0","r");
fplock=grasp open("GRASP_DATAPATH","channel.10","r");

=� data length, padded length, num frequencies including DC, Nyquist�=
num points=8192;
padded length=65536;
num freq=1+padded length =2;

=� number of taper windows to use, and time-freq bandwidth�=
num win=5;
nwdt=3.0;

=� maximum number of lines to remove�=
max lines=100;

=� allocate arrays�=
datas=(short �)malloc(sizeof(short) �num points);
data=(float �)malloc(sizeof(float) �num points);
mtap spec init=(float �)malloc(sizeof(float) �num freq);
mtap spec final=(float �)malloc(sizeof(float) �num freq);
line list=(struct removed lines �)malloc(sizeof(struct removed lines) �max lines);
initial data=(float �)malloc(sizeof(float) �num points);

=� get a section of data. . .�=
get data(fpifo,fplock, &tstart,num points,datas, &remain, &srate,0);

=� copy short data to float data,and save initial data set�=
for (i=0;i <num points;i++) initial data[i]=data[i]=datas[i];

=� remove the spectral lines from the data set�=
remove spectral lines(data,num points,padded length,nwdt,num win,
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max lines,500, &num removed,line list,mtap spec init,mtap spec final,1,0,num freq);

=� print out a list of lines removed�=
printf("Total number of lines removed: %d\n",num removed);
for (i=0;i <num removed;i++) f
freq=0.5 �line list[i].index �srate =num freq;
amp=2.0 �sqrt(line list[i].re �line list[i].re+line list[i].im �line list[i].im);
phi=180 �atan2(line list[i].im,line list[i].re) =M PI;
printf("Removed line frequency %.3f Hz amplitude %.2f phase %.2f (F-test %.1f)\n",

freq,amp,phi,line list[i].fvalue);
g

=� now output a file containing the initial and final data. . .�=
fpout1=fopen("ifo_clean_data.out","w");
fprintf(fpout1,"# Three columns are:\n# Time (sec) Initial data Final Data\n");
for (i=0;i <num points;i++)

fprintf(fpout1,"%f\t%f\t%f\n",i =srate,initial data[i],data[i]);
fclose(fpout1);

=� . . . and the initial and final spectra, for graphing by xmgr�=
fpout2=fopen("ifo_clean_spec.out","w");
fprintf(fpout2,"# Three columns are:\n# Freq (Hz) Initial spectrum Final spectrum\n");
for (i=0;i <num freq;i++)

fprintf(fpout2,"%f\t%f\t%f\n",0.5 �i �srate =num freq,mtap spec init[i],mtap spec final[i]);
fclose(fpout2);

return 0;
g
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Figure 86: Output of the example programifo clean , making use ofremove spectral lines()
to automatically identify and remove “spectral line” features from the (whitened) output of the Caltech
40-meter interferometer. The black curve and the red curve show the before/after time series and spectra.
We have deliberately choosen a stretch of data immediately after the IFO locks, so that the suspension and
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16.29 Example:tracker

This program produces an animated display which tracks the amplitude and phase of selected line features
in the spectrum. It has a number of user-settable options which determine how the line is tracked. To run
this program, type
tracker | xmgr -pipe
and an animated display will start up. In normal use, the parameters should be set as follows:

num points : a power of two. A single phase/amplitude point is printed for each set ofnum points
samples.

padding factor : a power of two. This determines the amount of padding done on the data set, and
thus the ultimate frequency resolution of the line discrimination.

fpreset : your best guess for the frequency that you want to track. If the actual frequency of the spectral
line differs from this value, then the phase will slowly drift as a linear function of time. (Thetracker
program does a robust best linear fit to this slope, and uses it to report a best frequency estimate.)

estimate : if set to zero, then the phase of the line found is always compared with the frequency preset
above. If set non-zero, thentracker will make a “best estimate” of the true frequency, and compare
the phase of the line found with the phase appropriate to that sinusoid.

nbins : the number of (padded) frequency bins adjacent to the one of interest in which the line will be
searched for. The frequency range covered is thus given by

�f = � nbins

�t(num points� padding factor+ 2)
(16.29.1)

num display : the number of points displayed bytracker . The total amount of time covered by the
output isnum display � num points ��t where�t is the sample interval.

num win,nwdt : these parameters are described in the section on multi-taper methods.

maxpass : the number of passes to make withinremove spectral lines() . This number should
be set as small as possible, provided that you still “catch” the line of interest.

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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Figure 87: Output of the example programtracker , making use ofremove spectral lines() to
track the amplitude and phase of a selected “spectral line” features from the (whitened) output of the Caltech
40-meter interferometer. The upper two graphs show the approximately exponential decay of the 582.396
Hz violin mode; the lower two graphs show the amplitude and phase of the third harmonic of the 60Hz line
noise (note the remarkable amplitude stability).GRASP RELEASE 1.9.8 Page 563 May 19, 2000
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16.30 Example:trackerF

This example program is identical to thetracker program just described, which tracks spectral lines, but
with one crucial difference: it reads its data from FRAME files rather than from the old format data stream.
To run this program, type
setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1frame
trackerF | xmgr -pipe
and an animated display will start up.

To run this example in real-time on data coming out at the 40-meter lab, type
setenv GRASP REALTIME
trackerF | xmgr -pipe
and an animated display will start up.

=� GRASP: Copyright 1997,1998 Bruce Allen�=
#include "grasp.h"

=� macros to define the standard mathematical forms of mod�=
#define MOD(X) ((X) >=0?((X)%num display):(num display �1+((X+1)%num display)))
#define FMOD2PI(X) ((X) >=0.0?(fmod((X),2.0 �M PI)):(2.0 �M PI+fmod((X),2.0 �M PI)))

=� numerical recipes routine for robust linear fit�=
void medfit(float x[ ],float y[ ],int npoints,float �a ,float �b,float �dev);
void graphout(float,float,float,float);

int main() f
short �datas;
int npass=1,num points,num win,num freq,padded length,max lines,num removed,code;
int i,top=0,estimate,nbins,padding factor,num display,nprint,index,new=0,maxpass=1,minbin,maxbin;
float nwdt, �data, �mtap spec init, �mtap spec final,srate,creal,cimag;
float �phase,phase1=0.0,amp1,phase2, �times, �linfitx, �linfity,offset,binpreset;
float displaytime,t1, �amp,dbin,ffit,intercept,slope,deviation,maxamp,displayamp=1.0;
double time,fpreset;
struct removed lines �line list;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

=� ———————— USER DEFINABLE —————————-�=
=� data length, padded length (powers of 2!)�=
num points=2048;
padding factor=8;

=� your best guess for the line frequency you want to track�=
fpreset=582.395;

=� set non-zero if you want us to estimate the best-fit frequency�=
estimate=0;

=� number of (padded) frequency bins (either side) to search near fpreset�=
nbins=5;

=� the number of phase=amplitudes to display�=
num display=150;

=� number of taper windows to use, and time-freq bandwidth�=
num win=5;
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nwdt=3.0;

=� the number of passes to make within the line removal algorithm�=
maxpass=1;

=� num points=2048; paddingfactor=8;fpreset=582.395;�=
num points=4096; padding factor=4;fpreset=582.395;
num points=4096; padding factor=4;fpreset=180.0;
=� ——————— END OF USER DEFINABLE —————————-�=

=� number of channels�=
fgetinput.nchan=1;
fgetinput.inlock=0;
fgetinput.npoint=num points;

=� source of files�=
fgetinput.files=framefiles;

fgetinput.chnames=(char ��)malloc(fgetinput.nchan �sizeof(char �));
fgetinput.locations=(short ��)malloc(fgetinput.nchan �sizeof(short �));
fgetoutput.npoint=(int �)malloc(fgetinput.nchan �sizeof(int));

=� channel name�=
fgetinput.chnames[0]="IFO_DMRO";

=� number of points to get�=
fgetinput.seek=0;
fgetinput.calibrate=0;

padded length=padding factor �num points;

=� num frequencies including DC, Nyquist�=
num freq=1+padded length =2;

=� max number of lines to report on�=
max lines=64;

=� allocate storage�=
datas=(short �)malloc(sizeof(short) �num points);
data=(float �)malloc(sizeof(float) �num points);
mtap spec init=(float �)malloc(sizeof(float) �num freq);
mtap spec final=(float �)malloc(sizeof(float) �num freq);
line list=(struct removed lines �)malloc(sizeof(struct removed lines) �max lines);
amp=(float �)malloc(sizeof(float) �num display);
phase=(float �)malloc(sizeof(float) �num display);
times=(float �)malloc(sizeof(float) �num display);
linfitx=(float �)malloc(sizeof(float) �num display);
linfity=(float �)malloc(sizeof(float) �num display);

fgetinput.locations[0]=datas;

while (npass >0) f
=� get a section of data. . .�=
code=fget ch( &fgetoutput, &fgetinput);
time=fgetoutput.dt;

if (code==0) return 0;
new+=code;
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srate=fgetoutput.srate;
if (new==1) f

fprintf(stderr,"\aTracker: New Locked Segment at time %f\n",time);
ffit=fpreset;
npass=1;
top=0;
time=0.0;

g

binpreset=fpreset �2.0 �num freq =srate;
minbin=binpreset �nbins;
if (minbin <0) minbin=0;
maxbin=binpreset+nbins;
if (maxbin >num freq) maxbin=num freq;

=� copy short data to float data�=
for (i=0;i <num points;i++) data[i]=datas[i];

=� remove the spectral lines from the data set�=
remove spectral lines(data,num points,padded length,nwdt,num win,max lines,

maxpass, &num removed,line list,mtap spec init,mtap spec final,0,minbin,maxbin);

=� if we fail to remove a line, amplitude set to zero, phase RETAINS PRIOR VALUE�=
amp1=0.0;
=� look in the list of removed lines for the right one�=
for (i=0;i <num removed;i++) f

=� the closest bin to our estimated frequency�=
dbin=binpreset �line list[i].index;
if (fabs(dbin) <=nbins) f

creal=line list[i].re+dbin �line list[i].dcdbr+
0.5 �dbin �dbin �line list[i].d2cdb2r;

cimag=line list[i].im+dbin �line list[i].dcdbi+
0.5 �dbin �dbin �line list[i].d2cdb2i;

amp1=2.0 �sqrt(creal �creal+cimag �cimag);
phase1=atan2(cimag,creal)+2.0 �M PI �fmod(fpreset �time,1.0);
break;

g
g

=� save data in a circular buffers�[0. .num display-1]�=
amp[top]=amp1;
phase[top]=FMOD2PI(phase1);
times[top]=time;

=� how many values are we going to output to the graph?�=
nprint=(npass <num display)?npass:num display;

=� cut out a piece for the linear fit�=
if (npass >=2) f

=� adjust the phases to avoid boundary jumps�=
offset=0.0;
index=MOD(top �nprint+1);
linfitx[0]=times[index];
linfity[0]=phase[index];
for (i=1;i <nprint;i++) f

index=MOD(top+i �nprint+1);
linfitx[i]=times[index];
if (phase[index] �phase[MOD(index �1)] >M PI)
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offset �=2.0 �M PI;
else if (phase[index] �phase[MOD(index �1)] <�M PI)

offset+=2.0 �M PI;
linfity[i]=phase[index]+offset;

g

=� do a robust linear fit�=
medfit(linfitx �1,linfity �1,nprint, &intercept, &slope, &deviation);

=� now see what frequency the best fit corresponds to�=
ffit=fpreset �slope =(2.0 �M PI);

=� if we are assuming a fixed frequency (not adapting)�=
if (!estimate) f

slope=intercept=0.0;
g

=� print out amplitude if non-zero�=
maxamp=0.0;
for (i=0;i <nprint;i++) f

index=MOD(top+i �nprint+1);
if (amp[index] >0.0)

printf("%e\t%e\n",linfitx[i],amp[index]);
else

=� won’t appear on the graph - out of bounds�=
printf("%e\t%f\n",linfitx[i], �1.0);

if (amp[index] >maxamp) maxamp=amp[index];
g
=� separate data sets�=
printf(" &\n");
=� print out phase if non-zero amplitude�=
for (i=0;i <nprint;i++) f

phase2=linfity[i];
phase2=FMOD2PI((phase2 �slope �linfitx[i] �intercept));
if (phase2 >M PI)

phase2 �=2.0 �M PI;
phase2=(180.0 =M PI) �phase2;
index=MOD(top+i �nprint+1);
if (amp[index] >0.0)

printf("%.8e\t%.8f\n",linfitx[i],phase2);
else

=� won’t appear on the graph - out of bounds�=
printf("%.8e\t%f\n",linfitx[i], �500.0);

g
=� set up scale of the x-axis�=
t1=linfitx[0];
displaytime=num display �(num points =srate);
=� set up scale of the amplitude graph y-axis�=
if (maxamp >0.9 �displayamp) f

displayamp=1.3 �maxamp;
fprintf(stderr,"\aTracker: Line at %f Hz, amplitude just increased\n",fpreset);

g
else if (maxamp <0.4 �displayamp && maxamp>0.0)

displayamp=1.3 �maxamp;

graphout(t1,t1+displaytime,ffit,displayamp);
fflush(stdout);
g
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=� now display set, then kill set�=
npass++;
top=MOD(top+1);

g

return 0;
g

void graphout(float t1,float t2,float freq,float displayamp) f
static int count=0;
int xmaj,xmin;
float ymaj=0.0,ymin=1.0;
int amprec;

xmin=(t2 �t1) =10.0;
xmaj=5 �xmin;

if (ymin <=displayamp =10.0)
while (ymin <=displayamp =10.0) f

ymin �=2.0;
ymaj=4.0 �ymin;

g
else

while (ymin >displayamp =10.0) f
ymin ==10.0;
ymaj=5.0 �ymin;

g
amprec=(int)log10(ymaj);
if (amprec >1)

amprec=0;
else

amprec=1 �amprec;

=� end of set marker�=
printf(" &\n");

if (count==0) f
=� first time we draw the plot�=
printf("@doublebuffer true\n");
printf("@focus off\n");

g
printf("@with g0\n");
printf("@move g0.s1 to g1.s0\n");
printf("@title \"\\-Line Tracker\"\n");
printf("@subtitle \"best estimate f=%f Hz\"\n",freq);
printf("@s0 linestyle 0\n");
printf("@s0 symbol color 4\n");
printf("@s0 symbol 2\n");
printf("@s0 symbol size 0.28\n");
printf("@s0 symbol fill 1\n");
printf("@view 0.15, 0.53, 0.95, 0.90\n");
=� set up x-axis for amplitude�=
printf("@world xmin %e\n",t1);
printf("@world xmax %e\n",t2);
printf("@xaxis tick major %d\n",xmaj);
printf("@xaxis tick minor %d\n",xmin);
printf("@xaxis ticklabel prec 1\n");
printf("@xaxis ticklabel off\n");
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printf("@yaxis label \"\\-amplitude (ADC counts)\"\n");
printf("@world ymin %e\n",0.0);
printf("@world ymax %e\n",displayamp);
printf("@yaxis tick major %e\n",ymaj);
printf("@yaxis tick minor %e\n",ymin);
if (amprec <4)

printf("@yaxis ticklabel prec %d\n",amprec);
else f

printf("@yaxis ticklabel format general\n");
printf("@yaxis ticklabel prec %d\n",1);

g
=� now do phase plot�=
printf("@with g1\n");
printf("@s0 linestyle 0\n");
printf("@s0 linewidth 0\n");
printf("@s0 symbol color 2\n");
printf("@s0 symbol 2\n");
printf("@s0 symbol size 0.28\n");
printf("@s0 symbol fill 1\n");
printf("@view 0.15, 0.1, 0.95, 0.47\n");
=� set up x-axis for phase�=
printf("@world xmin %e\n",t1);
printf("@world xmax %e\n",t2);
printf("@xaxis tick major %d\n",xmaj);
printf("@xaxis tick minor %d\n",xmin);
printf("@xaxis ticklabel prec 1\n");
printf("@xaxis label \"\\-time (sec)\"\n");
=� set up y-axis for phase�=
printf("@world ymin %e\n", �180.0);
printf("@world ymax %e\n",180.0);
printf("@yaxis tick major 90\n");
printf("@yaxis tick minor 45\n");
printf("@yaxis ticklabel prec 0\n");
printf("@yaxis label \"\\-phase (degrees)\"\n");
printf("@xaxis label \"\\-time (sec)\"\n");
=� draw plot�=
printf("@redraw\n");
printf("@kill s0\n");
printf("@with g0\n");
printf("@kill s0\n");

count++;
return;

g

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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17 Time Standards: UTC, GPS, TAI, and Unix-C times.

The relationship between different time-standards and labels is somewhat complex. The following web sites
contains further information about these different time standards:
ftp://tycho.usno.navy.mil/pub/series/ser14.txt
ftp://maia.usno.navy.mil/ser7/tai-utc.dat
http://tycho.usno.navy.mil/time.html .
What is presented here is merely a summary for the perplexed. The situation is complicated slightly be-
cause on standard Unix machines (Solaris 2.6, Linux 2.0*, etc) the time functions in the “ANSI-standard C
library” do not behave according to the rather vaguely-defined ANSI/POSIX standards. (In particular, the
gmtime() function in the C standard library does not know about leap-seconds – although the documen-
tation generally suggests that it should!)

Let us begin by defining a physical timet, which is the time coordinate used in physics lectures. It
advances linearly, completing each unit step at the same instant that a perfect pendulum with a frequency of
1 Hz completes a new oscillation. Without loss of generality we will sett = 0 at the stroke of midnight,
January 1, 1970 UTC. This time is also denoted Jan 1 00:00:00 UTC. Note that we will not discusslocal
time in this section, which differs from UTC by a fixed number of hours that depend upon your time-zone
and upon whether or not daylight savings time is in effect. We will assume that once you know the UTC
time, you can do the necessary addition or subtraction yourself, to determine local time at any point of
interest on the earth.

Universal Coordinated Time (UTC), Global Positioning System (GPS) and International Atomic Time
(TAI) are all well-defined global standards. By Unix-C time we mean here the value oft. This is what is re-
turned by the Standard C-librarytime() function, which advances its output by one every second, starting
from Jan 1 00:00:00 UTC,provided that the computer is started at Jan 1 00:00:00 UTC and runs continu-
ously and without error after that. (See below for an explanation of why this qualification is required!)

UTC should be thought of as a system for attaching ”human readable” labels such as “March 11, 1983,
at 12:10” to particular moments in time. (We use “military” or 24-hour time to distinguish am and pm.) This
is done by advancing in the standard pattern of 1 hour every 3600 seconds, one day every 24 hours, and so
on, with two exceptions. These exceptions are necessary because if they were not made, eventually people
in the northern hemisphere would be suffering snowfalls in August.

The first of the two exceptions is easy. Once every four years, according to the pattern 1972, 1976, ...
there is a leap year, which is a year containing one extra day. In these years, February has 29 days not 28.
This affects the pattern by which UTC time followst, and is a minor nuisance. However, because it follows
a regular deterministic pattern, leap years with their extra day present no real problems.

The real complications arise because the earth is gradually slowing in its rotation about its axis, from the
effects of earth-moon and earth-sun tidal friction, and because the sunspot cycles affects the heating of the
earth and thus its mass distribution and moment of inertia. These effects are not easily predicted in advance,
and thus on a regular basis (between once every two years and twice a year) an extra second is inserted
into the UTC label. The decision about when to do this is made by the International Earth Rotation Service
(IERS)http://hpiers.obspm.fr/ . This one extra second is generally added right after what would
be the final second of a month (generally December or June). Thus, at these times, the normal pattern of ...,
23:59:58, 23:59:59, 00:00:00 ...is broken and replaced by ..., 23:59:58, 23:59:59, 23:59:60, 00:00:00, ... .
The next leap second will be inserted into UTC in this way at the end of December 1998. In principle, a
leap second can be either positive or negative, although there have not yet (as of September 1998) been any
negative leap seconds.

Unfortunately, there is one additional small complication. Until Jan 1, 1972 UTC, the duration of one
UTC second was not equal to the duration of one (physical, TAI=GPS=CTime) second. This can be seen
most easily fromftp://maia.usno.navy.mil/ser7/tai-utc.dat . Here is a small extract
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from that file.

...
1966 JAN 1 =JD 2439126.5 TAI-UTC= 4.3131700 S + (MJD - 39126.) X 0.002592 S
1968 FEB 1 =JD 2439887.5 TAI-UTC= 4.2131700 S + (MJD - 39126.) X 0.002592 S
1972 JAN 1 =JD 2441317.5 TAI-UTC= 10.0 S + (MJD - 41317.) X 0.0 S
1972 JUL 1 =JD 2441499.5 TAI-UTC= 11.0 S + (MJD - 41317.) X 0.0 S
1973 JAN 1 =JD 2441683.5 TAI-UTC= 12.0 S + (MJD - 41317.) X 0.0 S

...

Here, the Modified Julian Day (MJD) is defined as follows: MJD = JD - 2400000.5, where the Julian Day
increments by one at noon every day. Notice that these relationships imply that, before January 1, 1972
UTC, the difference between atomic time (TAI) and UTC time isnot an integer number of seconds!

The values of JD and MJD at some interesting times are given below

1968 Feb 1 00:00:00 UTC JD=2439887.5 MJD=39887
1969 Feb 1 00:00:00 UTC JD=2440253.5 MJD=40253
1970 Jan 1 00:00:00 UTC JD=2440587.5 MJD=40587
1970 Feb 1 00:00:00 UTC JD=2440618.5 MJD=40618
1971 Jan 1 00:00:00 UTC JD=2440952.5 MJD=40952
1972 Jan 1 00:00:00 UTC JD=2441317.5 MJD=41317

In particular, on Jan 1 00:00:00 1970 UTC, the formula above gives:

TAI-UTC = 4.2131700 sec + (40587 - 39126)� 0.002592 sec = 8.000082 sec. (17.0.1)

We will ignore the 82 microseconds in what follows.
Much of the complication arises because the standard Unix C-library functiongmtime() , which takes

as its argument the number of seconds after Jan 1, 1970 UTC, and should return the UTC time,does not
return the correct UTC time. The functiongmtime() fails to take account of leap seconds.The relationship
betweent, Unix-C time, and UTC time is demonstrated in the table below, which shows the effects of the
leap seconds and the erroneous behavior ofgmtime() . Note that in this table, the definition of “leap
second” is not made precise until on or after Jan 1, 1972 UTC. Until that time, the number of leap seconds
can be non-integer: here we have assumed that it is integer. (This is of no consequence provided that we
only study the relationship between our different time standards for times after Jan 1, 1972 UTC).

You can see that UTC time and the quantity returned bygmtime() move gradually out of synch with
one another. Currently (October 1998) the two quantities have drifted 23 seconds out of sync.

The most easily used time standard today is GPS time, because GPS receivers are cheap, accurate, and
available. GPS time is equal tot plus a constant. GPS was set to be zero on Jan 6 00:00:00 1980 UTC. Hence
t = GPS+ 315964811 sec. This is because, up to the 82 microseconds mentioned in equation (17.0.1), one
has

Jan 6 00:00:00 1980 UTC - Jan 1 00:00:00 1970 = 315964811 sec. (17.0.2)

This number of seconds is obtained from:

315964811 sec= 3600 sec/hour� 24 hours/day�
(365 days/year � 8 years + 366 days/year� 2 years + 5 days) + 11 leap seconds (17.0.3)

You can see that the relationship between GPS time and Unix-C time would be

Unix-C = GPS+ 315964811 sec for a computer started Jan 1; 1970 UTC: (17.0.4)
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t physical GPS Unix-C UTC time label gmtime() Leap sec
(sec) time (sec) time() function of time() TAI-UTC
0 -315964811 0 Jan 1 00:00:00 1970 UTC Jan 1 00:00:00 1970 8
1 -315964810 1 Jan 1 00:00:01 1970 UTC Jan 1 00:00:01 1970 8
� � �
33350399 -282614412 33350399 Jan 21 23:59:59 1971 UTC Jan 21 23:59:59 1971 8
33350400 -282614411 33350400 Jan 21 23:59:60 1971 UTC Jan 22 00:00:00 1971 8
33350401 -282614410 33350401 Jan 22 00:00:00 1972 UTC Jan 22 00:00:01 1971 9
� � �
63071999 -252892812 63071999 Dec 31 23:59:58 1971 UTC Dec 31 23:59:59 1971 9
63072000 -252892811 63072000 Dec 31 23:59:59 1971 UTC Jan 1 00:00:00 1972 9
63072001 -252892810 63072001 Dec 31 23:59:60 1971 UTC Jan 1 00:00:01 1972 9
63072002 -252892809 63072002 Jan 1 00:00:00 1972 UTC Jan 1 00:00:02 1972 10
� � �
78796800 -237168011 78796800 Jun 30 23:59:58 1972 UTC Jul 1 00:00:00 1972 10
78796801 -237168010 78796801 Jun 30 23:59:59 1972 UTC Jul 1 00:00:01 1972 10
78796802 -237168009 78796802 Jun 30 23:59:60 1972 UTC Jul 1 00:00:02 1972 10
78796803 -237168008 78796803 Jul 1 00:00:00 1972 UTC Jul 1 00:00:03 1972 11
� � �
315964810 -1 315964810 Jan 5 23:59:59 1980 UTC Jan 6 00:00:10 1980 19
315964811 0 315964811 Jan 6 00:00:00 1980 UTC Jan 6 00:00:11 1980 19
315964812 1 315964812 Jan 6 00:00:01 1980 UTC Jan 6 00:00:12 1980 19
� � �
784880276 468915465 784880276 Nov 15 06:17:35 1994 UTC Nov 15 06:17:56 1994 29
784880277 468915466 784880277 Nov 15 06:17:36 1994 UTC Nov 15 06:17:57 1994 29
784880278 468915467 784880278 Nov 15 06:17:37 1994 UTC Nov 15 06:17:58 1994 29
� � �
911110676 595145865 911110676 Nov 15 06:17:33 1998 UTC Nov 15 06:17:56 1998 31
911110677 595145866 911110677 Nov 15 06:17:34 1998 UTC Nov 15 06:17:57 1998 31
911110678 595145867 911110678 Nov 15 06:17:35 1998 UTC Nov 15 06:17:58 1998 31
� � �

Table 11: Relationship between different time coordinates. The UTC time should be thought of as a “human
readable” label that gets attached to the time quantities. The number of leap seconds is often denoted by
TAI-UTC: it is equal to the amount by which the Unix notion of UTC differs from the actual time: TAI-
UTC=gmtime(time()) -UTC+8 sec. The most severe problem with the Unix notion of time is that in
actually setting the time on an individual machine, one sets thetime() function to return the wrong value.
Thus, at physical timet = 63072002 if you correctly set the machine time to Jan 1 00:00:00 1972 UTC, and
then immediately call thetime() function, it will (incorrectly) return the value 63072000. (Note that this
table incorrectly treats TAI-UTC as an integer before Jan 1, 1972 UTC.)
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if you started a perfect computer with a perfect internal clock running on Jan 1, 1970 UTC and left it running
forever. On the other hand, if you started this computer off on Jan 1, 1980 its internal Unix-C time would be
set to 315964800 and the relationship would be instead

Unix-C = GPS+ 315964800 sec for a computer started Jan 1; 1980 UTC: (17.0.5)

For a computer started at some other time, some other relationship will hold.
The final time coordinate in general use is TAI = GPS + 19 sec. This obeys the relationship

t = 315964811 sec + TAI � 19 = 315964792 sec + TAI : (17.0.6)

The GRASP library contains a pair of utility functionsutctime() andgpstime() which are similar
to gmtime() , except that they correctly generate the UTC label for Unix-C time and GPS time (respec-
tively).

Because the number of leap seconds is not know in advance (we can not predict how the earth’s rotation
rate will change in the future) it is often useful to store in time records both a physical time label (for example
GPS time) and in addition the number of leap seconds, in the form (TAI-UTC).Becausethe Unix-C library
functiongmtime() is broken, we can use it to print the correct “human-readable” UTC timesalmostall of
the time, by using:

UTC = gmtime(�(Unix-C� (TAI-UTC) + 8))

= gmtime(�(GPS+ 315964811 � (TAI-UTC) + 8))

= gmtime(�(GPS+ 315964800 � (TAI-UTC) + 19)) (17.0.7)

where� means “pointer to”. This will work properly, except that it will return identical values for two
consecutive seconds, when one occurs directly before an additional leap second is added, and the second
occurs the first second of the new leap second. This is because thegmtime() function will never return a
time of the form XX:XX:60. The range of seconds returned by this function is0; � � � ; 59.
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17.1 Function: utctime()

struct tm *utctime(const time t *tp)
This is a “convenience” function which will will do what the standard Unix C library functiongm-

time() is supposed to do, but fails to do. That is, it prints out the UTC time. The arguments and value
returned by this function are exactly the same as for the Unix standard C library functiongmtime() .

tp: Input. Pointer to an object of typetime t which is the number of seconds after Jan 1, 1970 00:00:00
UTC.

The function returns a pointer to astruct tm structure. Thusasctime(utctime(*tp)) is an ascii
string showing the UTC timetp . This function will warn the user if thetp argument is before or after the
range of validity of the function.

Author: Bruce Allen (ballen@dirac.phys.uwm.edu).

Comments: This function contains a table of all known leap seconds. It will need to be revised when the
next leap second after Dec 31, 1998 is added. Note that if there is a negative leap second the coding
will need to be modified. If it is a positive leap second then one additional entry needs to be made to
an internal table.
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17.2 Function: gpstime()

struct tm *gpstime(const time t *tp)
This is a “convenience” function which returns the same quantity as the previous functionutctime()

but takes as its argument the GPS time, which is the number of seconds after Jan 6, 1980 00:00:00 UTC. The
value returned by this function are exactly the same as for the Unix standard C library functiongmtime() .
Thusasctime(utctime(*tp)) is an ascii string showing the UTC time.

tp: Input. Pointer to an object of typetime t which is the number of seconds after Jan 6, 1980 00:00:00
UTC.

The function returns a pointer to astruct tm structure. It will warn the user if thetp argument is before
or after the range of validity of the function.

Author: Bruce Allen (ballen@dirac.phys.uwm.edu).

Comments: This function callsutctime() , so please see the comments forutctime() .
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17.3 Example:testutctime

This example program demonstrates functionsutctime() andgpstime() , and shows the relationship
between the UTC time and the number of seconds after a given time. It was used to generate parts of the
Table 11, and shows exactly how the standard Unix C library functiongmtime() is broken.

Here is some output:

C-time: 0 GPS Time -315964811 UTC: Thu Jan 1 00:00:00 1970 GPS: Thu Jan 1 00:00:00 1970 gmtime: Thu Jan 1 00:00:00 1970
C-time: 1 GPS Time -315964810 UTC: Thu Jan 1 00:00:01 1970 GPS: Thu Jan 1 00:00:01 1970 gmtime: Thu Jan 1 00:00:01 1970
C-time: 2 GPS Time -315964809 UTC: Thu Jan 1 00:00:02 1970 GPS: Thu Jan 1 00:00:02 1970 gmtime: Thu Jan 1 00:00:02 1970

C-time: 33350399 GPS Time -282614412 UTC: Thu Jan 21 23:59:59 1971 GPS: Thu Jan 21 23:59:59 1971 gmtime: Thu Jan 21 23:59:59 1971
C-time: 33350400 GPS Time -282614411 UTC: Thu Jan 21 23:59:60 1971 GPS: Thu Jan 21 23:59:60 1971 gmtime: Fri Jan 22 00:00:00 1971
C-time: 33350401 GPS Time -282614410 UTC: Fri Jan 22 00:00:00 1971 GPS: Fri Jan 22 00:00:00 1971 gmtime: Fri Jan 22 00:00:01 1971

C-time: 63071999 GPS Time -252892812 UTC: Fri Dec 31 23:59:58 1971 GPS: Fri Dec 31 23:59:58 1971 gmtime: Fri Dec 31 23:59:59 1971
C-time: 63072000 GPS Time -252892811 UTC: Fri Dec 31 23:59:59 1971 GPS: Fri Dec 31 23:59:59 1971 gmtime: Sat Jan 1 00:00:00 1972
C-time: 63072001 GPS Time -252892810 UTC: Fri Dec 31 23:59:60 1971 GPS: Fri Dec 31 23:59:60 1971 gmtime: Sat Jan 1 00:00:01 1972

C-time: 78796800 GPS Time -237168011 UTC: Fri Jun 30 23:59:58 1972 GPS: Fri Jun 30 23:59:58 1972 gmtime: Sat Jul 1 00:00:00 1972
C-time: 78796801 GPS Time -237168010 UTC: Fri Jun 30 23:59:59 1972 GPS: Fri Jun 30 23:59:59 1972 gmtime: Sat Jul 1 00:00:01 1972
C-time: 78796802 GPS Time -237168009 UTC: Fri Jun 30 23:59:60 1972 GPS: Fri Jun 30 23:59:60 1972 gmtime: Sat Jul 1 00:00:02 1972

C-time: 94694401 GPS Time -221270410 UTC: Sun Dec 31 23:59:58 1972 GPS: Sun Dec 31 23:59:58 1972 gmtime: Mon Jan 1 00:00:01 1973
C-time: 94694402 GPS Time -221270409 UTC: Sun Dec 31 23:59:59 1972 GPS: Sun Dec 31 23:59:59 1972 gmtime: Mon Jan 1 00:00:02 1973
C-time: 94694403 GPS Time -221270408 UTC: Sun Dec 31 23:59:60 1972 GPS: Sun Dec 31 23:59:60 1972 gmtime: Mon Jan 1 00:00:03 1973

C-time: 126230402 GPS Time -189734409 UTC: Mon Dec 31 23:59:58 1973 GPS: Mon Dec 31 23:59:58 1973 gmtime: Tue Jan 1 00:00:02 1974
C-time: 126230403 GPS Time -189734408 UTC: Mon Dec 31 23:59:59 1973 GPS: Mon Dec 31 23:59:59 1973 gmtime: Tue Jan 1 00:00:03 1974
C-time: 126230404 GPS Time -189734407 UTC: Mon Dec 31 23:59:60 1973 GPS: Mon Dec 31 23:59:60 1973 gmtime: Tue Jan 1 00:00:04 1974

C-time: 315964810 GPS Time -1 UTC: Sat Jan 5 23:59:59 1980 GPS: Sat Jan 5 23:59:59 1980 gmtime: Sun Jan 6 00:00:10 1980
C-time: 315964811 GPS Time 0 UTC: Sun Jan 6 00:00:00 1980 GPS: Sun Jan 6 00:00:00 1980 gmtime: Sun Jan 6 00:00:11 1980
C-time: 315964812 GPS Time 1 UTC: Sun Jan 6 00:00:01 1980 GPS: Sun Jan 6 00:00:01 1980 gmtime: Sun Jan 6 00:00:12 1980

C-time: 784880276 GPS Time 468915465 UTC: Tue Nov 15 06:17:35 1994 GPS: Tue Nov 15 06:17:35 1994 gmtime: Tue Nov 15 06:17:56 1994
C-time: 784880277 GPS Time 468915466 UTC: Tue Nov 15 06:17:36 1994 GPS: Tue Nov 15 06:17:36 1994 gmtime: Tue Nov 15 06:17:57 1994
C-time: 784880278 GPS Time 468915467 UTC: Tue Nov 15 06:17:37 1994 GPS: Tue Nov 15 06:17:37 1994 gmtime: Tue Nov 15 06:17:58 1994

C-time: 911110676 GPS Time 595145865 UTC: Sun Nov 15 06:17:33 1998 GPS: Sun Nov 15 06:17:33 1998 gmtime: Sun Nov 15 06:17:56 1998
C-time: 911110677 GPS Time 595145866 UTC: Sun Nov 15 06:17:34 1998 GPS: Sun Nov 15 06:17:34 1998 gmtime: Sun Nov 15 06:17:57 1998
C-time: 911110678 GPS Time 595145867 UTC: Sun Nov 15 06:17:35 1998 GPS: Sun Nov 15 06:17:35 1998 gmtime: Sun Nov 15 06:17:58 1998

Author: Bruce Allen (ballen@dirac.phys.uwm.edu).

Comments: None.
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18 Matlab Interface: Gravitational Radiation Toolbox

The Gravitational Radiation Toolbox provides a Matlab interface to both GRASP and the Frame Library.
The toolbox consists of Matlab m-files and mex-files. The m-files are written in Matlab’s native language
and are interpreted. The mex-files are written in C and are compiled. The mex-files take input from the
user via Matlab and then format it and pass it to the corresponding GRASP routine. The GRASP output
is then formatted and passed back into Matlab. The function names and calling methods have been made
to resemble those of their corresponding GRASP functions with the main difference being that the Matlab
user need not be concerned with memory management and pointers. These functions can be used from the
command line, within other m-files, or via a GUI front end calledGRtool . Currently the toolbox addresses
only the detection and simulation of gravitational radiation from binary inspirals.

When installing GRASP you have the option of installing the Gravitational Radiation Toolbox as well.
If you have not done this see sections 2.6.8 and 2.6.9 for installation instructions.
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18.1 UsingGRtool

The easiest way to test out the toolbox is by using the GUIGRtool . Once you have successfully installed
the toolbox, typingGRtool at the Matlab prompt should produce the window shown in figure 88. At the
left of the figure are axes upon which time and frequency domain data can be displayed. At start-up the only
options are toRead or Simulate data.

Figure 88: TheGRtool start-up window

If you pressSimulate you will enter the simulation GUI from which you can simulate inspirals up to
second post-Newtonian order approximations as described in [7] and [8]. (Note: You can always run the sim-
ulation GUI alone by enteringGRtool(’simulate build’) at the Matlab prompt.) All simulations
are done via a functionmxMake filters which is a Matlab version of the functionmake filters . The
operation of the simulation GUI is straightforward. You can plot the time and frequency domain simulations,
play them as sound, or export them to either the Matlab workspace or*.au sound files.

If you pressRead you will be asked a series of questions. At first you will be asked if you would like to
read from local disks or from a URL. If you choose local disk, you will then be asked what file you want to
open. Only frame formatted data files with the LIGO gravity wave channel (IFO DMRO) can be read—this
goes for data read from a local disk or a URL. If you choose URL you will be prompted for a URL address.
After providing the URL you will be asked where you would like to write the contents of the URL. When
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the program has read the data you will be presented with more buttons on the panel to the right.
Figure 89 shows the results of a successful read of a frame file. The data plotted will only appear if

Figure 89: Viewing data in the time and frequency domain

you pressGraph and then enter a time-span for which you want to look at data. ThePlay Sound button
will playback the data from your speakers. TheExport button allows you to export time domain data to a
*.au sound file or the Matlab workspace. If you export the data to the workspace it will be preserved there
even if you closeGRtool . Then you can do with it what you like as it will behave as any other normal
Matlab variable.

PressingTemplate Space will change your view from time/frequency space to template space. Your
window will change to look like figure 90.

From template space you can observe the effect of the data set on a grid of matched filters. You
can always go back to see the data in time/frequency space by pressingt/f Space . Similarly from
time/frequency space, you can always go to template space by pressingTemplate Space .

When you enter template space you will also see the template space control panel shown in figure 91.
With this window you control the files and parameters used for any filtering you do. You can always

change a parameter or file by pressing it’s correspondingUpdate button. The calibration file must be a text
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Figure 90: The initial template space window

file with one column of numbers which are the swept sine calibration information contained in thefri array
returned by the functionfget ch or it’s Matlab counterpartmxFget ch . You can generate the calibration
files using thegetfri function as described in section 18.2.2. The templates file must be a two column
text file. The two columns are the(m1;m2) pairs that you wish to include in your grid of filters. There
is a very detailed discussion of what(m1;m2) pairs to use in section 13. There is a sample templates file
in $GRASP/src/examples/examples binary-search/templates.ascii where$GRASPis
your GRASP root directory. TheLow frequency cutoff is the lowest frequency at which the detector
you are interested in can operate. This value must be entered in Hz.

After you have specified the necessary files and low frequency cutoff you can filter your data by pressing
Filter Data . As the filters are being generated and compared against the data you will see lots of text
streaming by in the workspace. This text will say something similar to the following:

GRASP (page-173.caltech.edu): Message from function phase_frequency()
at line number 536 of file ’’pN_chirp.c’’.
Frequency evolution no longer monotonic.
Phase evolution terminated at frequency and step: 466.659027 4347
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Figure 91: The template space control panel

Terminating chirp. Termination code set to: 1201
Returning to calling routine.
$Id: man_GRtoolbox.tex,v 1.3 1999/09/06 17:37:17 ballen Exp $
$Name: RELEASE_1_9_8 $
max snr: 2.56 offset: 24659 variance: 0.95574
max snr: 2.56 offset: 2376 variance: 0.96000
max snr: 2.70 offset: 10504 variance: 0.95999
Done filtering 32768 data points through 20 filters

The final line will always tell you how many data points and how many filters were used.
After you filter the data you can visualize the response of the filters by pressingRaise Grid in the

main window. A typical response is shown in figure 92. The color of the plotted points is based on the time
at which that specific filter had the greatest SNR. The colors range from pure blue to pure black. The darker
the color the earlier the time.

Figure 93 shows the response of the filters when a simulated inspiral ofm1 = m2 = 1:4M� has been
injected into the data stream.

You can clearly see the filters responding. Notice also that the colors have a well defined pattern in this
image. If you pressExport in this window you will be able to export the arraysm1;m2; max(SNR) and
timestart to the workspace. Thetimestart array contains the time in seconds (relative to the first
time stamp) at which the corresponding filter had a maximum. A more detailed description of the array
timestart can be found in the description of the functionfind chirp in section 6.20.

18.2 Functions

Bellow is a list of the functions available to you for use within Matlab. The majority of the functions are ports
of other GRASP functions. These have names that are identical to their GRASP versions except their first
letter is capitalized and they are prefixed bymx. For example the Matlab version of the GRASP function
make filters is calledmxMake filters . These functions differ from their GRASP counterparts
only in their calling methods.Warning : you must be careful that you have set any environment variables
required by the GRASP functionsbeforestarting Matlab. If you have not, calling functions that require these
variables will abort Matlab and you will lose any data you had stored in the workspace! Use these functions
cautiously!
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Figure 92: Viewing the data in template space

18.2.1 Function:frextract

[a,t,f,t0,t0s,c,u,more]=frextract(file,channel,firstframe,nframes)
This function is part of the standard frame library distribution. Extracts data from a frame file. See

Section 6 of [47] for further documentation.

18.2.2 Function:getfri

getfri(’fri.ascii’ )Generates calibration files for use withGRtool . Will create a file calledfri.ascii .
This function requires that you have set the environment variableGRASPFRAMEPATHto point to the data
file from which you want calibration data. This function calls themxFget ch function once. See the
warning about its use in section 18.2.9.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.
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Figure 93: An artificial inspiral detection ofm1 = m2 = 1:4M�

18.2.3 Function: inspfilt

[snr max,timestart]=inspfilt(m1,m2,data,srate,flo,fri)
Filters data through a grid of matched filters.

m1 and m2: equal length vectors specifying the filters to use.

data: vector containing the data to be filtered.

srate: sampling frequency of the data in Hz.

flo: low frequency cutoff for the detector in Hz.

fri: vector containing the calibration data from the instrument.

snr max: vector with the same length asm1andm2. It contains the maximum value of the SNR for each
filter.
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timestart: vector with the same length assnr max which specifies the time in seconds (relative to
the first time stamp) at which the corresponding filter reached the value contained insnr max

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.4 Function:mxAvg inv spec

[mean pow spec,twice inv noise,norm] =mxAvg inv spec(flo,srate,n,decay,norm,htilde)
All variables are identical to their description in section 6.17.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.5 Function:mxChirp filters

[Max Freq Actual,h c,h s,steps filld,clscnc time]=mxChirp filters
(m1,m2,spin1,spin2,n phaseterms,phaseterms,Initial Freq,
Max Freq Rqst,Sample Time,steps alloc,err cd sprs)

All variables are identical to their description in section 6.5.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.6 Function:mxCompute match

[outvalue]=mxCompute match(m1,m2,ch0tilde,ch90tilde,
inverse discance scale,twice inv noise,flo,s n0,s n90,npoint,
srate,err cd sprs,order)

All variables are identical to their description in section 9.8.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.7 Function:mxCorrelate

[s]=mxCorrelate(h,c,r,n)
All variables are identical to their description in section 6.16.

18.2.8 Function:mxDetector site

[site parameters,site name,noise file,whiten file]=mxDetector site
(detectors file,site choice)

All variables are identical to their description in section 11.2.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.
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18.2.9 Function:mxFget ch

[fgetoutput]=mxFget ch(fgetinput)
This function does not behave properly. GRASP treats Matlab as the calling function so it has no way

of knowing when you want to reset your search. Beespeciallycautious if you use this function. Most of the
input and output structures are the same—however since there are slight difference the full descriptions are
given below.

fgetinput.npoint: the number of data points you want to get

fgetinput.inlock: 1 means get only locked data 0 means get both locked and unlocked data

fgetinput.seek: 1 means operate in seek mode (do not return data) 0 means return data

fgetinput.calibrate: 1 means return calibration data 0 means do not return calibration data

fgetinput.nchan: number of channels to read from

fgetinput.chnames: cell array whose elements are strings containing the channel names

fgetoutput.tstart: time stamp of the first point output in channelchnamesf1g
fgetoutput.srate ] sample rate at which data was recorded

fgetoutput.npoint: npoint(i) is the number of points returned for channelchnamesfi g
fgetoutput.ratios: ratios(i) is the sample rate of channelchnamesf1g divided by the sam-

ple rate of channelchnamesfi g
fgetoutput.discarded: number of points discarded from channelchnamesf1g
fgetoutput.tfirst: the time stamp of the first point returned in the first call tomxFget ch

fgetoutput.dt: tstart-tfirst

fgetoutput.lostlock: time at which we lost lock (if searching for locked segments only)

fgetoutput.lastlock: time at which we last regained lock (if searching for locked segments only)

fgetoutput.returnval: 0 if unable to satisfy the request, 1 if request is satisfied by beginning new
locked or continuous-in-time section, 2 if the data returned is part of an ongoing locked or continuous-
in-time sequence

fgetoutput.frinum: three times the number of frequency values for which re are returning static
calibration information.

fgetoutput.fri: calibration datafri(1) = f0; fri(2) = r0; fri(3) = i0; fri(4) = f1;
fri(5) = r1; fri(6) = i1 � � � (see section 4.7)

fgetoutput.tcalibrate: time at which current calibration data became valid

fgetoutput.locklow: minimum value (inclusive) for “in-lock” in the lock channel,
set only if fgetinput.inlock is nonzero

fgetoutput.lockhi: maximum value (inclusive) for “in-lock” in the lock channel,
set only if fgetinput.inlock is nonzero
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fgetoutput.data: a cell array.fgetoutput.data fi g is a vector containing the returned data for
channelchnamesfi g

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: A possible fix to this function would be to write a reset function forfget ch . The reset
function would tellfget ch that we are going to start a new data input run. Another possible fix
would be to add a fieldfgetinput.reset which could reset the function.

18.2.10 Function:mxFind chirp

[output0,output90,offset,snr max,c0,c90,var]=mxFind chirp(htilde,
ch0tilde,ch90tilde,twice inv noise,n0,n90,n,chirplen)

All variables are identical to their description in section 6.20.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.11 Function:mxFreq inject chirp

[htilde]=mxFreq inject chirp(c0,c90,offset,invMpc,ch0tilde, ch90tilde,n)
All variables are identical to their description in section 6.21.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.12 Function:mxGRcalibrate

[complex]=mxGRcalibrate(fri,frinum,num,srate,method,order)
All variables are identical to their description in section 4.8.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.13 Function:mxGRnormalize

[response]=mxGRnormalize(fri,frinum,npoint,srate)
All variables are identical to their description in section 4.10.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.14 Function:mxMand eta

[m,eta]=mxM and eta(tau0,tau1,Mmin,Mmax,pf)
All variables are identical to their description in section 9.4.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.
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18.2.15 Function:mxMake filters

[ch1,ch2,filled,t coal]=mxMake filters(m1,m2,fstart,length,srate,
err cd sprs,order)

All variables are identical to their description in section 6.10.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.16 Function:mxMatch cubic

[semimajor,semiminor,theta,mcoef,outval]=mxMatch cubic(m1ref,m2ref,
mathcont,order,srate,flo,ftau,noisefile)

All variables are identical to their description in section 9.10.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.17 Function:mxOrthonormalize

[n0,n90,ch90tilde]=mxOrthonormalize(ch0tilde,ch90tilde,
twice inv noise,n)

All variables are identical to their description in section 6.18.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.18 Function:mxPhase frequency

[Max Freq Actual,phase,frequency,steps filld,clscnc time]=mxPhase frequency
(m1,m2,spin1,spin2,n phaseterms,phaseterms,
Initial Freq,Max Freq Rqst,Sample Time,steps alloc,err cd sprs)

All variables are identical to their description in section 6.2.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.19 Function:mxSp filters

[ch1,ch2,f c]=mxSp filters(m1,m2,fstart,n,srate,t c,order)
All variables are identical to their description in section 6.12.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.
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18.2.20 Function:mxSplitup

[indices]=mxSplitup(working,template,r,n,total,p)
All variables are identical to their description in section 6.26.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.21 Function:mxSplitup freq

[indices,stats,working,htilde]=mxSplitup freq(c0,c90,chirp0,chirp90,
norm,twice inv noise,n,offset,p)

All variables are identical to their description in section 6.27.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.22 Function:mxSplitup freq2

[indices,stats,working,htilde]=mxSplitup freq2(c0,c90,chirp0,chirp90,
norm,twice inv noise,n,offset,p)

All variables are identical to their description in section 6.28.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.23 Function:mxTau of mass

[tau0,tau1]=mxTau of mass(m1,m2,pf)
All variables are identical to their description in section 9.3.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.

18.2.24 Function:mxTemplate area

[Grid,area]=mxTemplate area(Grid)
An empty scope structure can be made with the commandGrid=scope structure . All fields are

identical to their description in section 9.5.

18.2.25 Function:mxTime inject chirp

[data,work]=mxTime inject chirp(c0,c90,offset,invMpc,chirp0,chirp90,
response,data,n)

All variables are identical to their description in section 6.22.

Author: Steve Drasco, steve.drasco@cornell.edu

Comments: None.
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18.2.26 Function:mxUrlopen

mxUrlopen(’URL’,’filename’)
This function gets the file found atURLand writes it to a local filefilename .

Authors: Steve Drasco, steve.drasco@cornell.edu

Comments: This program is an adaptation of the programurlopen.c by Mark Niedengard, Roy Williams,
and George Kremenek.

18.3 Examples

The code for the following examples can be found in the directory
$GRASP/src/examples/examples GRtoolbox .

18.3.1 Example:print ssF

A Matlab version of theprint ssF example found in section 4.9.

function print_ssF();
% PRINT_SSF
% A Matlab version of the GRASP example: print_ssF.
% Example run: print_ssF
%
% Steve Drasco
% Summer 1998

% get some data
fgetinput.npoint = 256;
fgetinput.nchan = 1;
fgetinput.chnames = {’IFO_DMRO’};
fgetinput.inlock = 0;
fgetinput.seek = 1;
fgetinput.calibrate = 1;
fgetoutput = mxFget_ch(fgetinput);

% call mxGRcalibrate
srate = fgetoutput.srate;
npoint = 4096;
cplx=mxGRcalibrate(fgetoutput.fri,fgetoutput.frinum,npoint,srate,2,0);

% plot output
freq=1:npoint/2;
freq = freq*srate/npoint;
imaginary = cplx(2*(1:npoint/2));
real = cplx(2*(1:npoint/2)+1);
plot(freq, real, ’b’, freq, imaginary, ’r’);
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18.3.2 Example:power spectrumF

A Matlab version of thepower spectrumF example in section 4.11.

function [fgetoutput, response]=power_spectrumF()
% POWER_SPECTRUMF
% A Matlab version of the GRASP example: power_spectrumF.
% Example run: [fgetoutput, response]=power_spectrumF;
%
% Steve Drasco
% Summer 1998

npoint = 65536;
fgetinput.nchan = 1;
fgetinput.chnames = {’IFO_DMRO’};
fgetinput.inlock = 1;
fgetinput.npoint = npoint;
fgetinput.calibrate = 1;

% I won’t skip any data
fgetinput.seek = 0;
fgetoutput = mxFget_ch(fgetinput);
srate = fgetoutput.srate;
data = fft(fgetoutput.data{1});
response=mxGRnormalize(fgetoutput.fri,fgetoutput.frinum,npoint,srate);

% one-sided power-spectrum normalization, to get meters/rHz
factor = sqrt(2/(srate*npoint));

% frequency
freq = (1:(npoint/2)-1)*srate/npoint;

% real and imaginary parts of tilde c0
c0_real = real( data( 2:npoint/2 ) );
c0_imag = imag( data( 2:npoint/2 ) );

% real and imaginary parts of R
res_real = response( 1 + 2*( 2:npoint/2 ) );
res_imag = response( 2 + 2*( 2:npoint/2 ) );

% real and imaginary parts of tilde dl
dl_real = c0_real.*res_real - c0_imag.*res_imag;
dl_imag = c0_real.*res_imag + c0_imag.*res_real;
spectrum = factor * sqrt(dl_real.ˆ2 + dl_imag.ˆ2);

% plot the results
loglog(freq, spectrum);
xlabel(’frequency (Hz)’);
ylabel(’noise m/(Hzˆ1/2)’);
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18.3.3 Example:phase evoltn

A Matlab version of thephase evoltn example found in section 6.3.

function phase_evoltn()
% PHASE_EVOLUTION
% A Matlab version of the GRASP example: phase_evolution.
% Example run: phase_evolution
%
% Steve Drasco
% Summer 1998

m1 = 1.4;
m2 = 1.4;
spin1 = 0;
spin2 = 0;
n_phaseterms = 5;
Initial_Freq = 60;
Max_Freq_Rqst = 2000;
Sample_Time = 1/9868.4208984375;
err_cd_sprs = 0;
phaseterms = [ 1 0 1 1 1];

[Max_Freq_Actual,phase,frequency,steps_filld,...
clscnc_time]=mxPhase_frequency(m1,m2,spin1,spin2,n_phaseterms,phaseterms,...
Initial_Freq,Max_Freq_Rqst,Sample_Time,[],err_cd_sprs);

time = (1:steps_filld) * Sample_Time;

subplot(2,1,1)
plot(time, phase,’b’);
xlabel(’time (s)’);
ylabel(’phase’);
subplot(2,1,2)
plot(time, frequency,’r’);

xlabel(’time (s)’);
ylabel(’frequency (Hz)’);

18.3.4 Example:filters

A Matlab version of thefilters example found in section 6.7.

function filters()
% FILTERS
% A Matlab version of the GRASP example: filters.
% Example run: filters
%
% Steve Drasco
% Summer 1998
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m1 = 1.4;
m2 = 1.4;
spin1 = 0;
spin2 = 0;
n_phaseterms = 5;
Initial_Freq = 60;
Max_Freq_Rqst = 2000;
Sample_Time = 1/9868.4208984375;
err_cd_sprs = 0;
phaseterms = [ 1 0 1 1 1];

[Max_Freq_Actual,h_c,h_s,steps_filld,clscnc_time]=mxChirp_filters(m1,m2,...
spin1,spin2,n_phaseterms,phaseterms,Initial_Freq,Max_Freq_Rqst,Sample_Time,...
[],err_cd_sprs);

time = (1:steps_filld) * Sample_Time;

plot(time, h_c,’b’, time, h_s,’r’);
xlabel(’time (s)’);
ylabel(’h_c and h_s’);

18.3.5 Example:area

A Matlab version of thearea example found in section 9.5.

function [Gridout, out] = area()
% AREA
% A Matlab version of the example: area in GRASP.
% Example run: [Gridout, out] = area;
%
% Steve Drasco
% Summer 1998

Grid = scope_structure;

Grid.m_mn = 0.8;
Grid.m_mx = 50.0;
Grid.f_start = 140.0;

[Gridout, out] = mxTemplate_area(Grid);

18.3.6 Example:match fit

A Matlab version of thematch fit example found in section 9.11.

function [semimajor,semiminor,theta,mcoef,tstp]=match_fit(m1,m2,matchcont,...
order)
% MATCH_FIT
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% A Matlab version of the GRASP example: match_fit.
% Example run: [semimajor,semiminor,theta,mcoef,tstp]=match_fit(m1,m2,...
% matchcont,order)
%
% Steve Drasco
% Summer 1998

srate = 50000;
detector_num = 15;
flo = 120;
ftau = 140;

[site_parameters,site_name,noise_file,...
whiten_file]=mxDetector_site(’detectors.dat’,detector_num);

[semimajor,semiminor,theta,mcoef,tstp]=mxMatch_parab(m1,m2,matchcont,...
order,srate,flo,ftau,noise_file);
if tstp
semimajor
semiminor
theta
mcoef
elseif ˜tstp
[semimajor,semiminor,theta,mcoef,tstp]=mxMatch_parab(m1,m2,matchcont,order,...
srate,flo,ftau,noise_file);
semimajor

semiminor
theta
mcoef

end

18.3.7 Example:readfri

Reads the swept sine calibration information from a frame and returns it in anfgetoutput structure.

function fgetoutput=readfri()
% READFRI
% This program reads the calibaration data from a frame file.
% Example run: fgetoutput=readfri
%
% Steve Drasco
% Summer 1998

fgetinput.npoint=65536;
fgetinput.inlock=1;
fgetinput.seek=0;
fgetinput.calibrate=1;
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fgetinput.nchan=1;
fgetinput.chnames={’IFO_DMRO’};

%fgetinput.chnames={’IFO_DMRO’,’IFO_DCDM’};
%fgetinput.nchan=2;

fgetoutput=mxFget_ch(fgetinput);

18.3.8 Example:oneFget

Calls the GRASP functionfget ch once to read data from a file. You can edit the comments to retrieve
data from one or two channels.

function fgetoutput=oneFget()
% ONEFGET
% This Program uses the GRASP function fget_ch() once and returns the output
%
% Steve Drasco
% Summer 1998

fgetinput.npoint=296000;
fgetinput.inlock=1;
fgetinput.seek=0;
fgetinput.calibrate=1;

%fgetinput.nchan=1;
%fgetinput.chnames={’IFO_DMRO’}

fgetinput.chnames={’IFO_DMRO’,’IFO_DCDM’};
fgetinput.nchan=2;

fgetoutput=mxFget_ch(fgetinput);

18.3.9 Example:twoFget

This example works just likeoneFget except that it uses the GRASP functionfget ch twice.

function fgetoutput=twoFget()
% TWOFGET
% This program uses the GRASP function fget_ch() twice and returns the output.
%
% Steve Drasco
% Summer 1998

fgetinput.npoint = 296000;
fgetinput.inlock = 1;
fgetinput.seek = 0;
fgetinput.calibrate = 1;
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% uncomment these to get one channel
fgetinput.nchan=1;
fgetinput.chnames={’IFO_DMRO’}

% uncomment these to get two channels
%fgetinput.chnames={’IFO_DMRO’,’IFO_DCDM’};
%fgetinput.nchan=2;

for i = 1:2
fgetoutput = mxFget_ch(fgetinput);
end
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