
f the
ce of
lps in
retion

esics.
eld
died in
ble,
pace the

first
s

desic

ed. It
occupy
of all

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 11 NOVEMBER 1998

Downloaded 2
Timelike geodesic motions within the general relativistic
gravitational field of the rigidly rotating disk of dust
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Friedrich-Schiller-Universita¨t Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1,
D-07743 Jena, Germany

~Received 15 June 1998; accepted for publication 3 August 1998!

The general relativistic motion of a test particle near a rigidly rotating disk of dust
is investigated. Circular orbits within the plane of the disk~centered on the rota-
tion axis! are special cases of the geodesic motion. One finds that there is always a
~stable or unstable! circular orbit for positive angular momentum and a given ra-
dius. However, for sufficiently relativistic disks there are regions within the plane
of the disk in which a particle with negative angular momentum cannot follow a
circular path. If the disk is still more strongly relativistic, then one finds circular
orbits with negative energies of arbitrary magnitude. Within the theoretical con-
struction of the Penrose effect, this property can be used to produce arbitrarily high
amounts of energy. The study of Hamiltonian mechanics forms another topic of this
article. It turns out that the stochastic behavior of the geodesics is related to the
position of the region containing all the crossing points of the particle through the
plane of the disk. If this region contains points lying inside the disk as well as
points outside, the geodesic motion shows highly stochastic behavior. However, if
the crossing region is completely inside or outside the disk, the motion proves to be
nearly integrable. In these cases the corresponding Hamiltonian system is close to
an integrable system of the so-called Liouville class. ©1998 American Institute
of Physics.@S0022-2488~98!03711-6#

I. INTRODUCTION

Einstein’s general theory of relativity describes gravitation as a geometric property o
four-dimensional manifold of space and time. Particles moving merely under the influen
gravitation follow the so-called timelike geodesic paths. The investigation of these curves he
the understanding of the geometrical structure of the manifold in question. Furthermore, acc
processes in which matter is drawn into a central object~e.g., a black hole or a disklike formation!
may be approximated by the assumption that the inflowing matter follows the timelike geod

The famous Kerr black hole was the first rotating object for which the relativistic fi
equations were solved. The timelike geodesic motions near a Kerr black hole have been stu
detail ~see, e.g., Ref. 1!. For them the corresponding Hamiltonian–Jacobi equation is separa2

and the equations of motions are integrable by quadratures. As a consequence, in phase s
trajectories lie within surfaces diffeomorphic to tori.

The general relativistic gravitational field created by a rigidly rotating disk of dust was
studied numerically in 1971 by Bardeen and Wagoner.3 The global analytic solution of Einstein’
field equations for this object was found in 1995 by Neugebauer and Meinel.4 Their explicit
expressions for the metric coefficients allow a direct numerical implementation of the geo
equations.

In this paper the bounded motions around a rigidly rotating disk of dust are investigat
turned out that these motions are not integrable by quadratures. In phase space they
regions of more complicated structure. However, for a considerable fraction of the set
bounded timelike geodesic motions, particular properties can be found.

a!Electronic mail: Ansorg@hpfs1.tpi.uni-jena.de
59840022-2488/98/39(11)/5984/17/$15.00 © 1998 American Institute of Physics
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A. The metric

Einstein’s field equations for a rigidly rotating disk of dust can be reduced to a single
linear complex partial differential equation—the so-called Ernst equation—for which a boun
value problem has to be solved.5,6 Neugebauer and Meinel succeeded in solving this problem
means of the inverse scattering method which is a technique from the soliton theory.

Writing the metric in Weyl–Papapetrou coordinates (r,z,w,t) in the form ~a comma in an
index represents a partial derivative, a semicolon stands for a covariant derivative!

~gi j !5S e2~k2U ! 0 0 0

0 e2~k2U ! 0 0

0 0 2a2e2U1r2e22U 2ae2U

0 0 2ae2U 2e2U

D with gi j ,w505gi j ,t ,

the field equations turn out to be equivalent to the Ernst equation

Rf S f ,rr1 f ,zz1
f ,r

r D5 f ,r
2 1 f ,z

2

for the Ernst potentialf which is defined by

f 5e2U1 ib with b,z5
e4U

r
a,r , b,r52

e4U

r
a,z .

The remaining metric functionk can be calculated from the functionsU anda by quadratures.
Neugebauer and Meinel found the Ernst potential for the rigidly rotating disk of dust in t

of ultraelliptic functions.4 In their expressions, the Ernst potential depends on a parametm,
which is related to the angular velocityV and the radiusr0 of the disk by

m52V2r0
2e22V0 with V0~m!5U~r50,z50;m!.

The parameterm lies within the interval (0,m0) with m054.629 66... . Form!1, one obtains the
Newtonian limit of the Maclaurin disk;m→m0 andr0→0 yield the extreme Kerr solution. Th
disk creates an ergosphere@i.e., a region within which the metric function (2e2U) is positive# for
m.me'1.69.

In what follows, units are used where the radiusr0 as well as the velocity of lightc are equal
to 1.

B. The Hamiltonian system of the geodesic equations

For axisymmetric stationary space–times the general Hamiltonian system

H5
1

2
gi j pipj with pi5gi j ẋ

i , S 5
d

dt
, t:proper timeD

for the timelike geodesic equations

ẍi1Gkl
i ẋkẋl50, ẋkẋ

k521

can be reduced to a conservative Hamiltonian of two degrees of freedom of the following

H5
1

2
e2~U2k!~pr

21pz
2!1

1

2 F12
1

r2 ~L2gtt12LEgwt1E2gww!G . ~1!

Here,L5pw5const is called the~z component of the! angular momentum of the particle andE
52pt5const its energy.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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The above Hamiltonian is invariant under a simultaneous change of the signs ofL and E.
Now, these signs are fixed by the conditionṫ.0 and this condition is then satisfied along t
whole trajectory.

The Hamiltonian~1! is arranged such thatH50 holds along the trajectory of the consider
test particle. Therefore a restricting condition for the region in which the motion takes pla
given by

0<e2~U2k!~pr
21pz

2!5F 1

r2 ~L2gtt12LEgwt1E2gww!21G . ~2!

This region of motion has the following properties:

~1! The region is bounded forE2,1. ForE2>1 there are unbounded areas allowing an escap
the test particle to infinity. But also, in the case ofE2>1, there may be additional bounde
regions which force the particle to stay inside.

~2! Particles withLÞ0 may not cross the rotation axis.
~3! The momentapr andpz as well as the velocitiesṙ and ż vanish at the rim of the considere

region. Furthermore, at the boundary of the region the acceleration vector (r̈,z̈) is perpen-
dicular to the curve of the boundary and points inwards.

~4! Because of the propertygi j (r,2z)5gi j (r,z), the regions of motion are symmetric wit
respect to reflection in the plane of the disk.

Illustrative examples for bounded regions of motion can be seen in Figs. 9, 10, 18, and 20

II. CIRCULAR ORBITS

Motions within the plane of the disk are described by a Hamiltonian with merely one de
of freedom. By the conditionsṙ505 r̈, circular orbits with centers on the rotation axis are fixe
The following numerical results about circular orbits contain in particular Meinel’s
Kleinwächter’s analytic results about circular orbits at the rim of the disk.7 The above conditions
ṙ505 r̈ lead to the equations

L2gtt~r,0!12LEgwt~r,0!1E2gww~r,0!5r2,
~3!

L2gtt,r~r,0!12LEgwt,r~r,0!1E2gww,r~r,0!52r,

which serve to determine the parameter functionsL65L6(r) andE65E6(r). These functions
yield for a circular orbit of given radiusr, the associated pairs of angular momentum and ene
In general, there are two such pairs, denoted by (L1(r),E1(r)) and (L2(r),E2(r)) where
(L1 ,E1) refers to an orbit of positive angular momentum and similarly (L2 ,E2) to an orbit with
negative angular momentum. It turns out that the functionsL1(r) andE1(r) exist for arbitrary
choice ofr>0. However, for sufficiently large values of the parameterm there are no correspond
ing (L2 ,E2) pairs forr values within a certain interval (r̃1 ,r̃2).

In Figs. 1–5, the functionsL65L6(r) andE65E6(r) can be seen for different values o
the parameterm. A discussion of these pictures follows.

~1! The pictures for (L1 ,E1) are similar for all values ofm ~see Fig. 1!. There is a monoto-
nous growth of the functionsL1 andE1 for r,1. At r51 ~hereE151! both functions turn back
and decrease monotonously until they reach another turning point atr5r8. For still greater values
of the parameterr, the functionsL1 and E1 grow monotonously again. The turning points a
characterized by the conditionsdL1 /dr505dE1 /dr. As the radiusr→`, E1 tends to 1 and
L1 to 1`.

Circular orbits with a radiusrP(1,r8) are unstable. Stable circular orbits are those wit
radiusrP@0,1) or rP(r8,`); the remaining circular orbits with radius 1 orr8 are marginally
unstable.

For circular orbits, the condition

ẇ5
dE

dL
ṫ ~4!
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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holds. In all sections of the graphs of the functionsL1 andE1 , the functionE15E1(L1) grows
monotonously. Hence, all circular orbits with positive angular momenta possess positive a
velocity. Furthermore, circular orbits with radiir,1 are just those paths along which the du
particles of the disk move. Their four velocity (ui) is given by (ui)5(0,0,ẇ, ṫ)5e2V0(0,0,V,1)
~see Ref. 8! from whichdE/dL5V5const follows. Thus, the graphE1(L1) is a straight line for
rP@0,1#.

The regionA contains all~L,E! pairs for which no motion of a particle is possible, i.e., eith
the restricting condition~2! cannot be satisfied or the motion possesses a negativeṫ. If one
chooses for a~not necessarily circular! motion, an~L,E! pair inside the small regionB, then there
exist two separate compact regions in which bounded motions are possible. At the inters
point of the stable and unstable parts of the (L1 ,E1) graphs these regions degenerate into t

FIG. 1. The functionsL1(r) andE1(r) for m51.61.

FIG. 2. The functionsL2(r) andE2(r) for m50.01.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ii

s

ll as
ergies

ular

Fig.

5988 J. Math. Phys., Vol. 39, No. 11, November 1998 M. Ansorg

Downloaded 2
separate stable circular orbits with radiir1* ,1 andr2* .1. In Fig. 6, it can be seen how the rad
r1* , r2* , andr8 depend on the parameterm.

~2! In Figs. 2–5, the parameter functionsL2(r) andE2(r) are displayed for different value
of the parameterm. For 0,m,1/2, the pictures are similar to the graphs of the functionsL1 and
E1 . The regionB extends now toE2-values greater than 1. Thus, there are stable as we
unstable circular orbits, and furthermore, extended compact regions of motions with en
greater than 1 and corresponding negative angular momenta. From Eq.~4! and the slopes of the
functionsE25E2(L2) in Figs. 2 and 3, one concludes that all particles moving along circ
orbits with negative angular momenta have negative angular velocity.

~3! As m approaches the value12, the regionB grows and is unbounded form>1/2. For radii
rP( r̃1 ,r̃2) there are no circular orbits with negative angular momentum. As can be seen in
4, for sufficiently large values ofm (m.mẇ'0.7088) there are small intervals@0,rẇ) in which the
functionsE2(L2) grow monotonously. Hence, circular orbits with radiir,rẇ possess positive

FIG. 3. The functionsL2(r) andE2(r) for m50.4.

FIG. 4. The functionsL2(r) andE2(r) for m51.21.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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angular velocities in spite of having negative angular momenta. At the radiusrẇ a particle may
remain at rest~in the chosen coordinate system!. Such a particle has the smallest energy poss
of all motions around the disk.

~4! Finally, in the rangeme,m,m0 ~see Fig. 5!, there are stable circular orbits with negativ
energies. As the slope ofE2(L2) is positive forr, r̃1 , circular orbits with radii in this range
have positive angular velocities. Them dependencies of the radii$r1* ,r2* ,r8,r̃1 ,r̃2 ,rẇ% as well as
those of the radiir1

(E) and r2
(E) , at which the functionE25E2(r) reaches the value

E2(r i
(E))51, are displayed in Fig. 7.

~5! As m→0, the curvesL6(r) andE6(r) tend to the corresponding graphs for the Maclau
disk ~the Newtonian limit of the relativistic disk!. Since negative and positive angular mome
are equivalent in Newtonian theory, these graphs possess a reflectional symmetry with res
the axisL50.

Circular orbits around a Kerr black hole are characterized by the functions~see, e.g., Ref. 1!

FIG. 5. The functionsL2(r) andE2(r) for m53.5.

FIG. 6. Them dependency of the radiir1* , r2* , andr8 for the functionsL1 andE1 .
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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E65
r 3/222mr1/26am1/2

r 3/4~r 3/223mr1/262am1/2!1/2, L656
m1/2@r 272a~mr!1/21a2#

r 3/4~r 3/223mr1/262am1/2!1/2,

wherer5Ar 222mr1a2, m denotes the mass, anda the specific angular momentum of the bla
hole. For vanishing denominator in the above expressions~this may happen asr reaches the value
r̃!, L6→6` and E6→1`. Circular orbits with radii less thanr̃ do not exist. Forr. r̃, the
(L6 ,E6) curves are similar to those of Fig. 5 forr. r̃2 . Again there is ar8 which separates
unstable~for r,r8! and stable orbits~for r.r8!. Furthermore, for circular orbits within the Ker
metric, the signs of angular momentum and velocity always coincide.

Generally one finds that the qualitative behavior of circular motions at sufficiently large
is similar for the Kerr black hole and the disk. However, circular motions at small radii are
different.

III. THE PENROSE EFFECT

The Penrose effect is a theoretical construction to produce energy. A test particle~with
angular momentumL0 and energyE0! is allowed to fall from infinity ~henceE0.1! into the
ergosphere of the disk. There, it splits into two particles with angular momentaL1 ,L2 and energies
E1 ,E2 . The total angular momentum and energy are preserved, i.e.,

L05L11L2 , E01E11E2 .

If one of the created particles possesses negative energy~sayE1,0!, then the other one has a
energyE2.E0 . The latter particle escapes to infinity where its higher energy can be utilize

If a large amount of energy were to be drawn from the disk by this method, the par
remaining within the ergosphere would have a considerable repercussion on the disk. Hence
following considerations, when one speaks about arbitrarily high energies, one still mean
these energies are negligible compared to the energy of the disk.

A simple way to produce energy would seem to be the following. A particle with an en
E0 which is slightly larger than 1 falls from infinity into the ergosphere to the point (r̃1,0) ~see
Figs. 5 and 7!, where it separates into two particles. After the separation, one of the cr
particles follows the stable circular orbit atr̃1 and has the energyE15E2( r̃1)52`. Hence, the
escaping particle possesses an energyE25`. But this does not work since the outgoing partic
cannot satisfy the condition~2! at (r̃1,0), i.e., it never reaches this point. However, it turns out t

FIG. 7. Them dependency of the radii$r1* ,r2* ,r8,r̃1 ,r̃2 ,rẇ ,r1
(E) ,r2

(E)% for the functionsL2 andE2 . Additionally, the
radii r1

(e) andr2
(e) , at which the ergosphere intersects the plane of the disk, are plotted.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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an arbitrary profit of energy can be obtained by giving the infalling particle a high energE0

.1. In the following example, the pair (L0 ,E0) should be chosen above the curve of unsta
circular orbits with negative angular momenta~see Fig. 5!.

~1! It turns out that it is possible for a particle with an angular momentumL0 to fall inward
toward (rC,0), at which point the corresponding circular orbit has angular momentumL2(rC)
5L0 . If the infalling particle remains within the plane of the disk, it suffices to check that~2!
holds at (rC,0). In the diagram~E,h!, the graph of the function

h~E!5
1

2 S 12
1

rC
2 @L0

2gtt~rC,0!12L0Egwt~rC,0!1E2gww~rC,0!# D
shows a parabola with negative curvature~sincegww.0!. Furthermore,h@E2(rC)#50 since this
just represents the first of the conditions~3! for the circular orbit atrC with negative angular
momentum. Another conclusion is

dh

dE
@E2~rC!#52

1

rC
2 @L0gwt~rC,0!1E2~rC!gww~rC,0!#52 ṫC,0,

whereṫC denotes the fourth component of the four velocity of the circular orbit atrC . Thus,h is
negative forE.E2(rC) and hence in particular forE5E0 . The infalling particle reaches th
point (rC,0).

~2! At the point (rC,0) the particle splits. One of the created particles follows the circular p
at rC with negative angular momentum. Hence, it possesses the energyE15E2(rK). The angular
momentum of the escaping particle vanishes, whereas its energyE25E02E1 is greater thanE0 if
E2(rC) is negative. Again, it can be shown that the escaping particle indeed reaches the
(rC,0).

If one goes along the curve of unstable circular orbits~Fig. 5! to higher and higher energies
the correspondingE2(rC) will be of higher and higher magnitude. Hence, an arbitrary h
amount of energy can be obtained if the infalling particle carries a high energy~and a correspond
ing angular momentumL0!. An example of the described Penrose effect is displayed in Fig.

FIG. 8. The Penrose effect. At a valuem52.2, the parametersE051.1 andrC50.7 have been chosen. The energy of t
escaping particle is 0.16 greater than the energy of the infalling particle. The curves of the particles can be see
particles move within the plane of the disk~the disk is represented by a circle!.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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IV. HAMILTONIAN MECHANICS FOR THE GEODESICS

In this section the dynamical properties of bounded geodesics in phase space are inves
Section IV A treats integrable motions. The regions in phase space occupied by the trajecto
discussed. Furthermore, a class of integrable Hamiltonians—the so-called Liouville class~see,
e.g., Ref. 9!—is introduced. In Sec. IV B, this class will turn out to be relevant for the discus
of the nearly integrable geodesics and their properties. Finally, Sec. IV C treats the rem
geodesics which show highly stochastic behavior.

A. Integrable Hamiltonian systems

A famous theorem by Liouville states that in phase space, the bounded trajectories
integrable Hamiltonian run on geometrical objects diffeomorphic to tori~for a proof see, e.g., Ref
10!. By means of a canonical transformation, it is possible to introduce angle and action var
(f j ,I j ) in which the Hamiltonian merely depends on the action variablesI j . The corresponding
Hamiltonian equations

dIi

dt
52

]H~ I j !

]f i
50,

df i

dt
5

]H~ I j !

]I i
5const

are easily integrated; one getsI j5const andf j5v jt1f j 0 , wherev j andf j 0 are constants.
For an integrable Hamiltonian with two degrees of freedom, one can describe the situat

follows. In the four-dimensional phase space, the action variablesI j ( j 51,2) determine a set o
surfaces diffeomorphic to two-dimensional tori. Each bounded motion of the considered inte
Hamiltonian runs on one of these surfaces. The angle variables yield a coordinate net o
surface, and the motion within this net proceeds linearly in time. If the ratiov1 /v2 is chosen to
be rational, the motion is periodic on the surface; for a ratiov1 /v25m/n ~m,nPN; relatively
prime!, the path returns to its initial point after a time period oft52pm/v1 . Since the rational
numbers are dense in the set of real numbers, the surfacesI j5const on which the motion is
periodic form a dense subset in the set of all surfacesI j5const. For the nonperiodic motions wit
an irrational ratio of the frequenciesv1 andv2 , the trajectory fills uniquely the whole surface

Trajectories in phase space are studied by means of the so-called Poincare´ surfaces of section
One chooses a two-dimensional surface in the phase space and labels its two sides~say left and
right!. Then, the set of crossing points of the trajectory through this surface is investigated.
intersections are considered for which the trajectory runs through the surface in a particula
~say from left to right!. For integrable Hamiltonians, one gets a closed curve if the ratio of
frequencies is irrational. Otherwise, the Poincare´ surfaces of section contain a finite number

FIG. 9. Example of a geodesic motion in the~r,z! space with the valuesm51, L521.32,E50.8, r152, r2510.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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intersection points. For continuously chosen initial conditions of the action variablesI j , the
resulting picture consists of closed curves lying inside one another. Lying densely between
are the finitely many intersection points corresponding to periodic motions.

An important family of integrable Hamiltonian is the so-called Liouville class. In Sec. IV
will turn out to be the class to which the Hamiltonians for the geodesics are close.

~1! A conformal coordinate transformationr85r8(r,z) andz85z8(r,z) is defined such tha
the complex functionz85z8(r,z)5r8(r,z)1 i z8(r,z) can be expressed only in terms of th
variablez5r1 i z, i.e.,z85z8(z). In these coordinates, Hamiltonian systems of the form~1!, i.e.,

H5 1
2e

a~r,z!~pr
21pz

2!1h~r,z;L,E!, ~5!

assume the form

FIG. 10. Example of a geodesic motion in the~r,z! space with the valuesm53, L52.78, E50.77, r150.81, r2

50.986.

FIG. 11. Boundaries of regions that are filled by Newtonian geodesics in the conformal coordinates (r8,z8) introduced by
z8510z/(101z2) ~the valuesr150.2, r250.75 have been taken!.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



al

5994 J. Math. Phys., Vol. 39, No. 11, November 1998 M. Ansorg

Downloaded 2
H5 1
2e

a8~r8,z8!~pr8
2

1pz8
2

!1h8~r8,z8;L,E!

with

ea85eaUdz8

dzU
2

, h8~r8,z8;L,E!5h@r~r8,z8!,z~r8,z8!;L,E#.

~2! A Hamiltonian system of the form~5! turns out to be integrable if there are conform
coordinatesz85z8(z) in which the functionsa8 andh8 read

ea8~r8,z8!5
1

R1~r8!1Z1~z8!
,

FIG. 12. Poincare´ section of surface withr151.0001,r2520 ~Maclaurin disk!.

FIG. 13. Magnified extract from Fig. 12.
2 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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h8~r8,z8!5
1

2
ea8~r8,z8!@R2~r8!1Z2~z8!#5

1

2
•

R2~r8!1Z2~z8!

R1~r8!1Z1~z8!
,

where the functionsRi only depend onr8 and the functionsZi only onz8. Hamiltonians possess
ing this property belong to the Liouville class of integrable systems. From their first integrals
concludes

ṙ82

ż82
5

n12lR12R2

2n12lZ12Z2

5
R3~r8;l,n!

Z3~z8;l,n!
.

If the constants of integration,l and n, are fixed by the conditionsR3(r18 ;l,n)50
5R3(r28 ;l,n), then ṙ8 vanishes whenever the coordinater8 reaches the valuesr18 or r28 . Simi-

FIG. 14. Still more strongly magnified extract from Fig. 12.

FIG. 15. Trajectory whose intersection points on the Poincare´ surface of section fall into the regions of islands display
in Fig. 13. The curve is presented in spherical polar coordinates~r5r sinu; z5r cosu!.
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larly, ż8 vanishes whenever the coordinatez8 assumes the value of a zero of the functi
Z3(z8;l,n), of which there are at least two for bounded motions. Thus, any bounded nonpe
motion will gradually fill a region which is spanned by the coordinate axesr85const andz8
5const.

It can be shown that the geodesics within the Kerr metric~the integrability of which was
proved by Carter10! belong to this class. One gets another important special case by introd
the conformal coordinatesz85z8(z)5 ln z, which are closely connected with spherical polar c
ordinates. Thus, there is a class of integrable Hamiltonians whose~nonperiodic! trajectories in the
~r,z! space densely fill circular segments.

FIG. 16. Poincare´ section of surface withr150.2, r250.8 ~Maclaurin disk!.

FIG. 17. Poincare´ section of surface withm53.5, r151.01,r2520 ~relativistic disk!. The planer5
1
2(r11r2) and the

crossing directionṙ.0 have been taken.
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B. Nearly integrable Hamiltonian systems

Figures 9 and 10 show examples of bounded geodesic motions. In the~r,z! space, the paths
remain within a certain region determined by the formula~2!. In Fig. 9, both intersection points
~with r coordinatesr1 and r2! of this region with the disk of the plane are outside the di
whereas in Fig. 10 both of them are placed inside.

One notices a high regularity of the resulting geodesics. From Fig. 9, one gets the impr
that the corresponding Hamiltonian possesses, in spherical polar coordinates, the separatio
erty discussed in Sec. IV A. Also the geodesic shown in Fig. 10 seems to belong to an inte
system of the Liouville class. In Fig. 11, the boundaries of the regions that are gradually fill
the geodesics can be seen in conformal coordinates which are introduced by the transfor
z8510z/(101z2).

However, these systems turned out to be clearly nonintegrable. But their deviations

FIG. 18. Example of clearly irregular relativistic geodesic~m51, r150.205,r250.99!.

FIG. 19. Poincare´ section of surface withr150.5, r251.5 ~Maclaurin disk!.
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integrable systems of the Liouville class are so small that the so-called KAM~Kolmogorov,
Arnold, Moser! theorem~see, e.g., Ref. 11! for nearly integrable systems applies.

According to this theorem, the qualitative characteristics of the trajectories of a weakly
turbed integrable Hamiltonian do not change drastically. Most of the curves are still regula
they are associated with first integrals of motion. Some of the trajectories still lie on tori w
now are slightly deformed compared to the integrable case. However, the most regular m
occur on more complicated surfaces. Insight into the topological structure of these surfa
given by the Poincare´ sections of surface. The remaining geodesics show irregular behavio
are not associated with first integrals of motion.

The situation is illustrated by the Poincare´ sections of surface displayed in Figs. 12–14. T
trajectories are considered in the three-dimensional hypersurfaceH50. A coordinate net in this
space is given by the coordinatesr, z, andc where the anglec is defined by tanc5ż/ṙ. For the
Poincare´ sections of surface, the intersection planez50 and the crossing directionż.0 have

FIG. 20. Example of a geodesic motion in the~r,z! space with the valuesm51, L520.57,E50.89,r150.25,r252.

FIG. 21. Poincare´ section of surface withr150.1, r250.85 ~Maclaurin disk!.
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been taken.@The sections of surfaces were created by taking fixed valuesr1 andr2 and varying
the initial conditions~r~0!,z~0!! of the trajectories continuously along the boundary of the reg
described by formula~2!.#

At first glance, one sees as depicted in Fig. 12, what seems to simply be a series of
lying inside one another, as described in Sec. IV A for integrable motions. But if one enlarg
extract, a more complicated structure becomes evident~Fig. 13!. The periodic motions are en
circled by islands which lie inside one another. Furthermore, there are so-called separ
encircling different groups of these islands. In the vicinity of an apex between two of these g
of islands, one recognizes a still more complicated structure~Fig. 14!. New groups of islands can
be found, and at every new level of magnification, the same qualitative picture emerges
separatrices represent irregular motions. However, each of the islands belongs to a regu

FIG. 22. Poincare´ section of surface withr150.1, r250.95 ~Maclaurin disk!. The distances between the KAM tori hav
clearly enlarged. The irregular trajectories fill a considerable part of the phase space.

FIG. 23. Poincare´ section of surface withr150.1, r251.05 ~Maclaurin disk!. The characteristical KAM tori have disap
peared. Now, there are islands of regular motions within a region of globally stochastic motions.
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~with a complicated topological structure of the surface on which the trajectory is trapped!. An
example for a such a geodesic motion is to be seen in Fig. 15.

Also the geodesics, for which the corresponding region of motion given by formula~2!
intersects the plane of the disk at ther valuesr1,r2,1, prove to be nearly integrable. As to b
seen in Fig. 16, they are not as close to integrable systems as those for the case 1,r1,r2 . But
one gets the same qualitative pictures.

The qualitative properties discussed above can be found for the Maclaurin disk~i.e., the
Newtonian limit! as well as for the relativistic disk. In general, the relativistic motions sho
somewhat stronger deviation from integrable systems, but they still can be regarded as
integrable motions. A Poincare´ section of surface for the relativistic disk can be seen in Fig. 17
clearly irregular motion is displayed in Fig. 18.

From these investigations one concludes that the regions in the~r,z! space that are graduall
filled by the nonperiodic geodesics are not spanned by the coordinate axisr85const andz8
5const of a conformal coordinate system. Rather one finds that the trajectories are trap
neighboring regions of this form. The distance between these neighboring regions is dete
by the deviation of the geodesic in question from an integrable motion.

C. Global stochastic motions

As the departures from an integrable Hamiltonian grow, the distances between the r
curves in phase space become larger and larger. If the disturbance is large enough, then t
no longer any KAM tori, which previously encircled the irregular trajectories. In a global stoc
tic region, smaller subregions occur, containing groups of islands similar to those described
IV B. Again, these islands correspond to regular motions.

The remaining bounded geodesic motions, for which the boundary of the region describ
formula ~2! intersects the plane of the disk at ther coordinatesr1,1,r2 , show just this sto-
chastic behavior~as can be seen in Figs. 19 and 20!.

The transition from nearly integrable systems to the global stochastic ones is indicated in
21–23. Here, while keeping the valuer1,1 fixed, the coordinater2 is gradually enlarged, which
eventually leads to the global stochastic picture in which the KAM tori have disappeared.

Global stochastic motions possess a rather unpredictable behavior. In general, the traje
are not necessarily trapped into a subregion of the region described by~2! ~as was the case fo
nearly integrable motions!. However, if one restricts oneself to motions which lie in a region
islands, one has again nearly integrable motions with particular properties.~For a detailed intro-
duction into the theory of regular and stochastic motions, see, e.g., Ref. 12.!
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