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The general relativistic motion of a test particle near a rigidly rotating disk of dust
is investigated. Circular orbits within the plane of the di{skntered on the rota-

tion axig are special cases of the geodesic motion. One finds that there is always a
(stable or unstab)ecircular orbit for positive angular momentum and a given ra-
dius. However, for sufficiently relativistic disks there are regions within the plane
of the disk in which a particle with negative angular momentum cannot follow a
circular path. If the disk is still more strongly relativistic, then one finds circular
orbits with negative energies of arbitrary magnitude. Within the theoretical con-
struction of the Penrose effect, this property can be used to produce arbitrarily high
amounts of energy. The study of Hamiltonian mechanics forms another topic of this
article. It turns out that the stochastic behavior of the geodesics is related to the
position of the region containing all the crossing points of the particle through the
plane of the disk. If this region contains points lying inside the disk as well as
points outside, the geodesic motion shows highly stochastic behavior. However, if
the crossing region is completely inside or outside the disk, the motion proves to be
nearly integrable. In these cases the corresponding Hamiltonian system is close to
an integrable system of the so-called Liouville class. 1898 American Institute

of Physics[S0022-24888)03711-9

I. INTRODUCTION

Einstein’s general theory of relativity describes gravitation as a geometric property of the
four-dimensional manifold of space and time. Particles moving merely under the influence of
gravitation follow the so-called timelike geodesic paths. The investigation of these curves helps in
the understanding of the geometrical structure of the manifold in question. Furthermore, accretion
processes in which matter is drawn into a central olject., a black hole or a disklike formatipn
may be approximated by the assumption that the inflowing matter follows the timelike geodesics.

The famous Kerr black hole was the first rotating object for which the relativistic field
equations were solved. The timelike geodesic motions near a Kerr black hole have been studied in
detail (see, e.qg., Ref.)1 For them the corresponding Hamiltonian—Jacobi equation is sep&rable,
and the equations of motions are integrable by quadratures. As a consequence, in phase space the
trajectories lie within surfaces diffeomorphic to tori.

The general relativistic gravitational field created by a rigidly rotating disk of dust was first
studied numerically in 1971 by Bardeen and WagdtiEne global analytic solution of Einstein’s
field equations for this object was found in 1995 by Neugebauer and MeiRekir explicit
expressions for the metric coefficients allow a direct humerical implementation of the geodesic
equations.

In this paper the bounded motions around a rigidly rotating disk of dust are investigated. It
turned out that these motions are not integrable by quadratures. In phase space they occupy
regions of more complicated structure. However, for a considerable fraction of the set of all
bounded timelike geodesic motions, particular properties can be found.
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A. The metric

Einstein’s field equations for a rigidly rotating disk of dust can be reduced to a single non-
linear complex partial differential equation—the so-called Ernst equation—for which a boundary
value problem has to be solvei.Neugebauer and Meinel succeeded in solving this problem by
means of the inverse scattering method which is a technique from the soliton theory.

Writing the metric in Weyl—-Papapetrou coordinates ¢,t) in the form(a comma in an
index represents a partial derivative, a semicolon stands for a covariant depivative

eV 0 0 0
0 ey 0 0
@)=l 0 —a%etipteV _gev| W Gie=0=0i
0 0 —ae?V —e?

the field equations turn out to be equivalent to the Ernst equation

f
P _ g2 2
Rf f’pp+f’“+7 =f,+1%
for the Ernst potential which is defined by
4U e4U
f=e?V+ib with b'ng a,, bypz—Ta’g.

The remaining metric functiok can be calculated from the functiohkanda by quadratures.

Neugebauer and Meinel found the Ernst potential for the rigidly rotating disk of dust in terms
of ultraelliptic functions? In their expressions, the Ernst potential depends on a parameter
which is related to the angular velocify and the radiugg of the disk by

p=20%pge "o with Vo(u)=U(p=0¢=0;p).

The parametey lies within the interval (Qug) with ©y=4.629 66... . Fou<<1, one obtains the
Newtonian limit of the Maclaurin diskj.— pg and pg— 0 yield the extreme Kerr solution. The
disk creates an ergosphdie., a region within which the metric function-(e2") is positived for
m>pe~1.69.

In what follows, units are used where the radigysas well as the velocity of light are equal
to 1.

B. The Hamiltonian system of the geodesic equations
For axisymmetric stationary space—times the general Hamiltonian system

1 _ g d ,
,JA’:Eg”pipj with p;=g;;X', =g, T-Pproper t'm%

for the timelike geodesic equations
X+ =0, Xxk=-1
can be reduced to a conservative Hamiltonian of two degrees of freedom of the following form:
1 1 1
T=3 eV (p2+ p?) + > |1- p (L2gy+2LEg,+E?g,,) |. 1)

Here,L=p,=const is called th¢, component of theangular momentum of the particle aid
= —p;=const its energy.
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The above Hamiltonian is invariant under a simultaneous change of the signsud E.
Now, these signs are fixed by the conditibrO and this condition is then satisfied along the
whole trajectory.

The Hamiltonian(1) is arranged such tha#Z'=0 holds along the trajectory of the considered
test particle. Therefore a restricting condition for the region in which the motion takes place is
given by

1
0=V ]+ pY) =|  (LGu+2LEQ,+ E%G,,) — 1| (2

This region of motion has the following properties:

(1) The region is bounded fd2<1. ForE?=1 there are unbounded areas allowing an escape of
the test particle to infinity. But also, in the caseE#=1, there may be additional bounded
regions which force the particle to stay inside.

(2) Particles withL#0 may not cross the rotation axis.

(3) The momentg, andp, as well as the velocities and ¢ vanish at the rim of the considered
region. Furthermore, at the boundary of the region the acceleration vectr i perpen-
dicular to the curve of the boundary and points inwards.

(4) Because of the property;;(p,—{)=0ij(p.{), the regions of motion are symmetric with
respect to reflection in the plane of the disk.

lllustrative examples for bounded regions of motion can be seen in Figs. 9, 10, 18, and 20.

Il. CIRCULAR ORBITS

Motions within the plane of the disk are described by a Hamiltonian with merely one degree
of freedom. By the conditions=0=p, circular orbits with centers on the rotation axis are fixed.
The following numerical results about circular orbits contain in particular Meinel's and
Kleinwachter's analytic results about circular orbits at the rim of the di$ke above conditions
p=0=p lead to the equations

L?9u(p,0) +2LEG,(p,0) + E?G,e(p,0) = p?,

ngtt,p(Pio) + ZLquot,p(PiO) + E29<p<p,p(P,O) = Zp!

which serve to determine the parameter functibns=L . (p) andE.=E_(p). These functions
yield for a circular orbit of given radiupg, the associated pairs of angular momentum and energy.
In general, there are two such pairs, denoted by (p),E.(p)) and L_(p),E_(p)) where

(L, ,E;) refers to an orbit of positive angular momentum and similakly (E_) to an orbit with
negative angular momentum. It turns out that the functiongp) andE_ (p) exist for arbitrary
choice ofp=0. However, for sufficiently large values of the parametehere are no correspond-
ing (L_,E_) pairs forp values within a certain intervalpg ,p-).

In Figs. 1-5, the functionk . =L.(p) andE.=E.(p) can be seen for different values of
the parametep. A discussion of these pictures follows.

(1) The pictures for L, ,E ) are similar for all values of (see Fig. 1. There is a monoto-
nous growth of the functions, andE . for p<1. At p=1 (hereE, = 1) both functions turn back
and decrease monotonously until they reach another turning pgirt at. For still greater values
of the parametep, the functionsL . andE, grow monotonously again. The turning points are
characterized by the conditiond., /dp=0=dE, /dp. As the radiusp—, E, tends to 1 and
L, to +o.

Circular orbits with a radiup e (1,0') are unstable. Stable circular orbits are those with a
radiuspe[0,1) orpe(p’,»); the remaining circular orbits with radius 1 pf are marginally
unstable.

For circular orbits, the condition

©)

. dE. ,
o=t (4)
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FIG. 1. The functions , (p) andE, (p) for u=1.61.

holds. In all sections of the graphs of the functitnsandE_, , the functionE, =E, (L) grows
monotonously. Hence, all circular orbits with positive angular momenta possess positive angular
velocity. Furthermore, circular orbits with radii<1 are just those paths along which the dust
particles of the disk move. Their four velocity') is given by (i')=(0,04,t)=eV0(0,00,1)

(see Ref. Bfrom whichdE/dL = = const follows. Thus, the gragh, (L ) is a straight line for
pel0,1].

The regionA contains all(L,E) pairs for which no motion of a particle is possible, i.e., either
the restricting condition2) cannot be satisfied or the motion possesses a negatilfeone
chooses for d@not necessarily circulamotion, an(L,E) pair inside the small regioB, then there
exist two separate compact regions in which bounded motions are possible. At the intersection
point of the stable and unstable parts of the (E,) graphs these regions degenerate into two
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FIG. 2. The functions _(p) andE_(p) for «=0.01.
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FIG. 3. The functiond _(p) andE_(p) for n=0.4.

separate stable circular orbits with ragii<1 andp3 >1. In Fig. 6, it can be seen how the radii
pi . p>, andp’ depend on the parametgr

(2) In Figs. 2-5, the parameter functiobs (p) andE_(p) are displayed for different values
of the parameten. For 0<u<1/2, the pictures are similar to the graphs of the functionsand
E. . The regionB extends now tcE_-values greater than 1. Thus, there are stable as well as
unstable circular orbits, and furthermore, extended compact regions of motions with energies
greater than 1 and corresponding negative angular momenta. Frofd)Emd the slopes of the
functionsE_=E_(L_) in Figs. 2 and 3, one concludes that all particles moving along circular
orbits with negative angular momenta have negative angular velocity.

(3) As u approaches the valug the regionB grows and is unbounded fr=1/2. For radii
pe(p1,p,) there are no circular orbits with negative angular momentum. As can be seen in Fig.
4, for sufficiently large values gf (u> u,~0.7088) there are small intervdl8,p,,) in which the
functionsE_(L ) grow monotonously. Hence, circular orbits with ragi<p, possess positive

35 T T T T T T T

25 9

p
os | A (p1,P3) )

FIG. 4. The functiond _(p) andE_(p) for n=1.21.
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FIG. 5. The functiond _(p) andE_(p) for u=3.5.

angular velocities in spite of having negative angular momenta. At the ragdiasparticle may
remain at restin the chosen coordinate systerBuch a particle has the smallest energy possible
of all motions around the disk.

(4) Finally, in the rangeu.< u<uq (see Fig. %, there are stable circular orbits with negative
energies. As the slope &_(L_) is positive forp<p,, circular orbits with radii in this range
have positive angular velocities. Thedependencies of the radp ,p3 ,p’,p1,p2 P, as well as
those of the radiip(lE) and p(zE), at which the functionE_=E_(p) reaches the value
E_(p®)=1, are displayed in Fig. 7.

(5) As u—0, the curved - (p) andE.-(p) tend to the corresponding graphs for the Maclaurin
disk (the Newtonian limit of the relativistic digk Since negative and positive angular momenta
are equivalent in Newtonian theory, these graphs possess a reflectional symmetry with respect to
the axisL=0.

Circular orbits around a Kerr black hole are characterized by the fundfiaes e.g., Ref.)1

|
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FIG. 6. Theu dependency of the radji; , p5 , andp’ for the functionsL, andE, .
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FIG. 7. Thep dependency of the radip} ,p3 ,p,p1.p2.p, .0 .8} for the functionsL ~ andE_ . Additionally, the
radii p{® andp®, at which the ergosphere intersects the plane of the disk, are plotted.

32— 2mrl2+ gmt/2 . mYqr2x 2a(mr)¥?+a?]
L=

E = y )
+ r3/4(r3/2_ 3ml’l/21‘ 2aml/2)l/2 * r3/4(r3/2_ 3mr1/2i 2aml/2) 172

wherep=r?—2mr+a?, mdenotes the mass, aathe specific angular momentum of the black
hole. For vanishing denominator in the above expresdiihis may happen gsreaches the value
p), L.—+o andE.— +. Circular orbits with radii less thap do not exist. Fop>p, the
(L+,E.) curves are similar to those of Fig. 5 fpr>p,. Again there is g’ which separates
unstable(for p<p') and stable orbit¢for p>p’). Furthermore, for circular orbits within the Kerr
metric, the signs of angular momentum and velocity always coincide.

Generally one finds that the qualitative behavior of circular motions at sufficiently large radii
is similar for the Kerr black hole and the disk. However, circular motions at small radii are quite
different.

lll. THE PENROSE EFFECT

The Penrose effect is a theoretical construction to produce energy. A test panitie
angular momentunt, and energyE,) is allowed to fall from infinity (henceEy,>1) into the
ergosphere of the disk. There, it splits into two particles with angular monhgnts and energies
E,.E,. The total angular momentum and energy are preserved, i.e.,

LO:L1+L2, E0+E1+E2.

If one of the created particles possesses negative erisagy,<0), then the other one has an
energyE,>E,. The latter particle escapes to infinity where its higher energy can be utilized.

If a large amount of energy were to be drawn from the disk by this method, the particles
remaining within the ergosphere would have a considerable repercussion on the disk. Hence, in the
following considerations, when one speaks about arbitrarily high energies, one still means that
these energies are negligible compared to the energy of the disk.

A simple way to produce energy would seem to be the following. A particle with an energy
E, which is slightly larger than 1 falls from infinity into the ergosphere to the pgintQ) (see
Figs. 5 and ¥, where it separates into two particles. After the separation, one of the created
particles follows the stable circular orbit/at and has the enerdg, =E_(p;) = —. Hence, the
escaping particle possesses an ené&rgy . But this does not work since the outgoing particle
cannot satisfy the conditio(®) at (p4,0), i.e., it never reaches this point. However, it turns out that
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FIG. 8. The Penrose effect. At a valpe=2.2, the parameteS,=1.1 andp-=0.7 have been chosen. The energy of the
escaping particle is 0.16 greater than the energy of the infalling particle. The curves of the particles can be seen, as the
particles move within the plane of the digthe disk is represented by a cirgle

an arbitrary profit of energy can be obtained by giving the infalling particle a high erieygy
>1. In the following example, the paitLg,Eq) should be chosen above the curve of unstable
circular orbits with negative angular momerisee Fig. 5.

(2) It turns out that it is possible for a particle with an angular momenityno fall inward
toward (pc,0), at which point the corresponding circular orbit has angular momehtu(pc)
=Lg. If the infalling particle remains within the plane of the disk, it suffices to check (at
holds at p¢,0). In the diagram(E,h), the graph of the function

1 1
h(E)=5 |1~ 2 [L39u(pc.0)+2LoEet(pc.0) + E*Dyo(pc.0)]
c

shows a parabola with negative curvat(saceg,,>0). Furthermoreh[E_(pc)]=0 since this
just represents the first of the conditio(® for the circular orbit atpc with negative angular
momentum. Another conclusion is

1 .
JE [E_(pc)]=— =7 [Lo9ut(pc.0) + E_(pc)9pe(pc,0) 1= —tc<O,
Pc

wheret. denotes the fourth component of the four velocity of the circular orit:atThus,h is
negative forE>E _(pc) and hence in particular fdE=E,. The infalling particle reaches the
point (pc,0).

(2) At the point (p¢,0) the particle splits. One of the created patrticles follows the circular path
at pc with negative angular momentum. Hence, it possesses the elBergl_(pk). The angular
momentum of the escaping particle vanishes, whereas its eBgrg¥,— E, is greater thark if
E_(pc) is negative. Again, it can be shown that the escaping particle indeed reaches the point
(pc.0).

If one goes along the curve of unstable circular orfifig. 5) to higher and higher energies,
the correspondinde_(pc) will be of higher and higher magnitude. Hence, an arbitrary high
amount of energy can be obtained if the infalling particle carries a high erienglya correspond-
ing angular momenturhy). An example of the described Penrose effect is displayed in Fig. 8.
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FIG. 9. Example of a geodesic motion in thel) space with the valueg=1, L=—-1.32,E=0.8,p,=2, p,=10.

IV. HAMILTONIAN MECHANICS FOR THE GEODESICS

In this section the dynamical properties of bounded geodesics in phase space are investigated.
Section IV A treats integrable motions. The regions in phase space occupied by the trajectories are
discussed. Furthermore, a class of integrable Hamiltonians—the so-called Liouville(sd&ss
e.g., Ref. 9—is introduced. In Sec. IV B, this class will turn out to be relevant for the discussion
of the nearly integrable geodesics and their properties. Finally, Sec. IV C treats the remaining
geodesics which show highly stochastic behavior.

A. Integrable Hamiltonian systems

A famous theorem by Liouville states that in phase space, the bounded trajectories of an
integrable Hamiltonian run on geometrical objects diffeomorphic to(foria proof see, e.g., Ref.
10). By means of a canonical transformation, it is possible to introduce angle and action variables
(¢;,1;) in which the Hamiltonian merely depends on the action variahleIhe corresponding
Hamiltonian equations

diy o) d¢y a1y
dr gy, O dr T T a, const

are easily integrated; one géts=const andg; = w;7+ ¢;o, Wherew; and ¢;, are constants.

For an integrable Hamiltonian with two degrees of freedom, one can describe the situation as
follows. In the four-dimensional phase space, the action varidb{¢s-1,2) determine a set of
surfaces diffeomorphic to two-dimensional tori. Each bounded motion of the considered integrable
Hamiltonian runs on one of these surfaces. The angle variables yield a coordinate net on this
surface, and the motion within this net proceeds linearly in time. If the rafitw, is chosen to
be rational, the motion is periodic on the surface; for a ratidw,=m/n (m,neN; relatively
prime), the path returns to its initial point after a time periodef 27m/w,. Since the rational
numbers are dense in the set of real numbers, the surfaeeonst on which the motion is
periodic form a dense subset in the set of all surfageonst. For the nonperiodic motions with
an irrational ratio of the frequencies, and w,, the trajectory fills uniquely the whole surface.

Trajectories in phase space are studied by means of the so-called Psindaces of section.

One chooses a two-dimensional surface in the phase space and labels its tweaideft and

right). Then, the set of crossing points of the trajectory through this surface is investigated. Only
intersections are considered for which the trajectory runs through the surface in a particular sense
(say from left to right. For integrable Hamiltonians, one gets a closed curve if the ratio of the
frequencies is irrational. Otherwise, the Poincavefaces of section contain a finite number of
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FIG. 10. Example of a geodesic motion in theg{) space with the valuegp.=3, L=2.78, E=0.77, p;=0.81, p,
=0.986.

intersection points. For continuously chosen initial conditions of the action variaplethe
resulting picture consists of closed curves lying inside one another. Lying densely between them,
are the finitely many intersection points corresponding to periodic motions.

An important family of integrable Hamiltonian is the so-called Liouville class. In Sec. IV B it
will turn out to be the class to which the Hamiltonians for the geodesics are close.

(1) A conformal coordinate transformatigni =p’(p,¢) and{’'=¢'(p,{) is defined such that
the complex functiore’ =z'(p,{)=p'(p,{) +i¢'(p,{) can be expressed only in terms of the
variablez=p+i¢, i.e.,z’=2'(2). In these coordinates, Hamiltonian systems of the ftimni.e.,

=36 O(pp+pf) +h(p,LiLE), (5

assume the form

0.2 T T T T T T

0.15 ;
h

0.1

0.05

¢ o

-0.05

-0.1

-0.15

0.1 02 0.3 04 0.5 086 0.7 0.8

FIG. 11. Boundaries of regions that are filled by Newtonian geodesics in the conformal coordiriatéy itroduced by
7' =102/(10+Z%) (the valuesp;=0.2, p,=0.75 have been takgn
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22

FIG. 12. Poincaresection of surface witlp;=1.0001,p,=20 (Maclaurin disR.

H=5e" () +pp)+h (p' {SLLE)
with

2
.+ h'(p" I LE)=hlp(p".{").L(p",{");L,E]

!

dz

(2) A Hamiltonian system of the forni5) turns out to be integrable if there are conformal
coordinatez’ =z’ (2) in which the functionsoe’ andh’ read

’ ! ! 1
ea (p'.¢ ):f'
Ri(p")+Z41(L")

separatrix

o8t periodic .
motion

06 [

0.4

0.2 .
1.02 1.04 1.06 1.08 11 1.12 1.14

FIG. 13. Magnified extract from Fig. 12.
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FIG. 14. Still more strongly magnified extract from Fig. 12.

1 1 Ra(p")+Zy(L")
h’ /,r:_ea(Pv{)R "N+Z 4 =C S
where the function&; only depend o' and the function&; only on¢’. Hamiltonians possess-

ing this property belong to the Liouville class of integrable systems. From their first integrals, one
concludes

p'?  v+2\R—R, Rs(p’;\,v)

2 vt 2NZy—Z, Za(Nw)

If the constants of integrationn and v, are fixed by the conditionsR;(p1;\,v)=0
=R3(p5;\,v), thenp’ vanishes whenever the coordinatereaches the valugs, or p;. Simi-

1.66 T T T Y T ¥ T T T

FIG. 15. Trajectory whose intersection points on the Poinsaréace of section fall into the regions of islands displayed
in Fig. 13. The curve is presented in spherical polar coordin@tes sin 6; {=r cos6).
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FIG. 16. Poincaresection of surface witlp,;=0.2, p,=0.8 (Maclaurin disk.

larly, ¢’ vanishes whenever the coordinajé assumes the value of a zero of the function
Z3(¢'; N, v), of which there are at least two for bounded motions. Thus, any bounded nonperiodic
motion will gradually fill a region which is spanned by the coordinate gxesconst and{’
=const.

It can be shown that the geodesics within the Kerr mefhie integrability of which was
proved by Cartéf) belong to this class. One gets another important special case by introducing
the conformal coordinates =z’ (z) =In z, which are closely connected with spherical polar co-
ordinates. Thus, there is a class of integrable Hamiltonians wimosgeriodig trajectories in the
(p,{) space densely fill circular segments.

0.15 T T T T T T T

FIG. 17. Poincaresection of surface withu=3.5, p;=1.01, p,= 20 (relativistic disk. The planep= %(p1+ p») and the
crossing directiorp>0 have been taken.
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FIG. 18. Example of clearly irregular relativistic geode§ic=1, p,=0.205,p,=0.99.

B. Nearly integrable Hamiltonian systems

Figures 9 and 10 show examples of bounded geodesic motions. (p,thespace, the paths
remain within a certain region determined by the form{#@a In Fig. 9, both intersection points
(with p coordinatesp, and p,) of this region with the disk of the plane are outside the disk,
whereas in Fig. 10 both of them are placed inside.

One notices a high regularity of the resulting geodesics. From Fig. 9, one gets the impression
that the corresponding Hamiltonian possesses, in spherical polar coordinates, the separation prop-
erty discussed in Sec. IV A. Also the geodesic shown in Fig. 10 seems to belong to an integrable
system of the Liouville class. In Fig. 11, the boundaries of the regions that are gradually filled by
the geodesics can be seen in conformal coordinates which are introduced by the transformation

7' =102/(10+ 2%).
However, these systems turned out to be clearly nonintegrable. But their deviations from

0.5 0.6 0.7 0.8 09 1 11 1.2 1.3 1.4 1.5

p

FIG. 19. Poincareection of surface witlp;=0.5, p,=1.5 (Maclaurin disR.
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FIG. 20. Example of a geodesic motion in the!) space with the valueg=1, L=—0.57,E=0.89,p,;=0.25,p,=2.

integrable systems of the Liouville class are so small that the so-called KRdimogorov,
Arnold, Mosej theorem(see, e.g., Ref. Jifor nearly integrable systems applies.

According to this theorem, the qualitative characteristics of the trajectories of a weakly dis-
turbed integrable Hamiltonian do not change drastically. Most of the curves are still regular, i.e.,
they are associated with first integrals of motion. Some of the trajectories still lie on tori which
now are slightly deformed compared to the integrable case. However, the most regular motions
occur on more complicated surfaces. Insight into the topological structure of these surfaces is
given by the Poincarsections of surface. The remaining geodesics show irregular behavior and
are not associated with first integrals of motion.

The situation is illustrated by the Poincaections of surface displayed in Figs. 12—14. The
trajectories are considered in the three-dimensional hypersurtae®. A coordinate net in this
space is given by the coordinatgs?, and s where the angle) is defined by tarw=§(b. For the
Poincaresections of surface, the intersection plafre0 and the crossing directiofi>0 have

25 |

05

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 21. Poincareection of surface witlp;=0.1, p,=0.85(Maclaurin dish.

Downloaded 22 Jul 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 39, No. 11, November 1998 M. Ansorg 5999

25 |

05

0.1 0.2 0.3 0.4 05 0.8 0.7 08 0.9 1

FIG. 22. Poincaresection of surface wittp; =0.1, p,=0.95(Maclaurin disk. The distances between the KAM tori have
clearly enlarged. The irregular trajectories fill a considerable part of the phase space.

been taken[The sections of surfaces were created by taking fixed valyesdp, and varying
the initial conditions(p(0),£(0)) of the trajectories continuously along the boundary of the region
described by formuld2).]

At first glance, one sees as depicted in Fig. 12, what seems to simply be a series of curves
lying inside one another, as described in Sec. IV A for integrable motions. But if one enlarges an
extract, a more complicated structure becomes evieigt 13. The periodic motions are en-
circled by islands which lie inside one another. Furthermore, there are so-called separatrices
encircling different groups of these islands. In the vicinity of an apex between two of these groups
of islands, one recognizes a still more complicated strudttige 14). New groups of islands can
be found, and at every new level of magnification, the same qualitative picture emerges. The
separatrices represent irregular motions. However, each of the islands belongs to a regular one

25 F el T I B
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FIG. 23. Poincareection of surface witlp;=0.1, p,=1.05(Maclaurin disk. The characteristical KAM tori have disap-
peared. Now, there are islands of regular motions within a region of globally stochastic motions.
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(with a complicated topological structure of the surface on which the trajectory is trapped
example for a such a geodesic motion is to be seen in Fig. 15.

Also the geodesics, for which the corresponding region of motion given by forg2ila
intersects the plane of the disk at thevaluesp;<p,<1, prove to be nearly integrable. As to be
seen in Fig. 16, they are not as close to integrable systems as those for thesgased,. But
one gets the same qualitative pictures.

The qualitative properties discussed above can be found for the Maclaurin(idiskthe
Newtonian limi) as well as for the relativistic disk. In general, the relativistic motions show a
somewhat stronger deviation from integrable systems, but they still can be regarded as nearly
integrable motions. A Poincasection of surface for the relativistic disk can be seen in Fig. 17. A
clearly irregular motion is displayed in Fig. 18.

From these investigations one concludes that the regions i(pilespace that are gradually
filled by the nonperiodic geodesics are not spanned by the coordinate axisonst and(’
=const of a conformal coordinate system. Rather one finds that the trajectories are trapped by
neighboring regions of this form. The distance between these neighboring regions is determined
by the deviation of the geodesic in question from an integrable motion.

C. Global stochastic motions

As the departures from an integrable Hamiltonian grow, the distances between the regular
curves in phase space become larger and larger. If the disturbance is large enough, then there are
no longer any KAM tori, which previously encircled the irregular trajectories. In a global stochas-
tic region, smaller subregions occur, containing groups of islands similar to those described in Sec.
IV B. Again, these islands correspond to regular motions.

The remaining bounded geodesic motions, for which the boundary of the region described by
formula (2) intersects the plane of the disk at thecoordinatesp;<1<<p,, show just this sto-
chastic behaviofas can be seen in Figs. 19 and.20

The transition from nearly integrable systems to the global stochastic ones is indicated in Figs.
21-23. Here, while keeping the valpg<1 fixed, the coordinatg, is gradually enlarged, which
eventually leads to the global stochastic picture in which the KAM tori have disappeared.

Global stochastic motions possess a rather unpredictable behavior. In general, the trajectories
are not necessarily trapped into a subregion of the region describ€?) fgs was the case for
nearly integrable motionsHowever, if one restricts oneself to motions which lie in a region of
islands, one has again nearly integrable motions with particular propdfi@sa detailed intro-
duction into the theory of regular and stochastic motions, see, e.g., Ref. 12.
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