
L101

The Astrophysical Journal, 507:L101–L104, 1998 November 10
q 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

NON-GAUSSIAN FEATURES OF LINEAR COSMIC STRING MODELS

P. P. Avelino
Centro de Astrofisica, Universidade do Porto, Rua do Campo Alegre 823, 4150 Porto, Portugal

E. P. S. Shellard and J. H. P. Wu
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK

and
B. Allen

Department of Physics, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201
Received 1998 April 9; accepted 1998 August 21; published 1998 September 24

ABSTRACT

We investigate the non-Gaussian properties of cosmic string–seeded linear density perturbations with cold and
hot dark matter backgrounds using high-resolution numerical simulations. We compute the one-point probability
density function of the resulting density field and its skewness, kurtosis, and genus curves for different smoothing
scales. A semianalytic model is then invoked to provide a physical interpretation of our results. We conclude
that on scales smaller than 1.5(Qh2)21 Mpc, perturbations seeded by cosmic strings are very non-Gaussian. These
scales may still be in a linear or mildly nonlinear regime in an open or L universe with .G 5 Qh & 0.2

Subject headings: cosmic strings — dark matter — galaxies: clusters: general —
large-scale structure of universe

1. INTRODUCTION

At present, the two main candidates for the origin of cosmic
structure are inflation and topological defects (for a review, see
Vilenkin & Shellard 1994). Although both scenarios may pro-
duce a power spectrum of density perturbations that is consis-
tent with observations, they have very different predictions
regarding the statistical properties of the density field. While
most inflationary models produce Gaussian random-phase in-
itial conditions, defect models produce non-Gaussian pertur-
bations, particularly on small scales. New results from cosmic
string–seeded structure formation using high-resolution simu-
lations (Avelino et al. 1998a, 1998b) were encouraging for
models with –0.2 (see also Battye, Robinson, &G 5 Qh 5 0.1
Albrecht 1997); both the mass fluctuation amplitude at 8 h21

Mpc, j8, and the power spectrum shape of cosmic
string–induced cold dark matter fluctuations were con-P(k)
sistent within uncertainties with observational data (Peacock
& Dodds 1994; Viana & Liddle 1996). However, because cos-
mic strings induce non-Gaussian density perturbations on small
scales, the power spectrum alone is insufficient to describe all
of the statistical properties of such a density field. This is even
more important in open or L models because in those models
the characteristic scales of the density field are shifted to larger
scales relative to a flat model with .L 5 0

In this Letter, we investigate the non-Gaussian properties of
the linear density field induced by cosmic strings using higher
order statistics such as the skewness and the kurtosis of a one-
point probability density function (PDF), as well as genus sta-
tistics. The non-Gaussian properties we reveal provide a sig-
nificant observational signature for cosmic string–seeded
structure formation models on small length scales. We note that
previous analytic work has investigated the string-induced ve-
locity field on scales above several h21 Mpc, which was inferred
to be Gaussian (Vachaspati 1992; Moessner 1995) and that
some of the features we study here were also observed in global
topological defect models, notably for textures (Park, Spergel,
& Turok 1991). Past work on genus statistics in the context of
topological defects was made using toy models that incorpo-

rated some important features of the models in question (Bran-
denberger, Kaplan, & Ramsey 1993; Albrecht & Robinson
1995; Avelino 1997).

Our first step in the present analysis was to perform high-
resolution numerical simulations of cosmic string networks in
an expanding universe (Allen & Shellard 1990) from which
we subsequently computed the causally sourced density field
with either a cold (CDM) or hot dark matter (HDM) back-
ground. The cosmic string simulations had a dynamic range
extending from before the radiation-matter transition at 0.4heq

through to deep into the matter era 8.4heq, where heq is the
conformal time at radiation-matter density equality. The struc-
ture formation simulation boxes contained 2563 grid points and
their physical volume was in the range (4–100 h21 Mpc)3. A
much more detailed description of these methods is given by
Avelino et al. (1998a, 1998b).

2. NON-GAUSSIAN TEST STATISTICS

We first convolved the density field obtained above with a
top-hat window at different smoothing scales R and then cal-
culated the resulting PDF p(n), where n is the number of stan-
dard deviations from the mean. The chosen smoothing scales
were always at least 3 times larger than the grid spacing to
guarantee a sufficient resolution for the smoothing and at least
12 times smaller than the box size to reduce sample variance
effects. We then used the skewness and the kurtosis to test their
Gaussianity. The skewness is defined as , where Mi is3/2M /M3 2

the ith central moment of a PDF. Its sign indicates the skewed
direction against a normal distribution. The kurtosis is defined
as and measures the size of the side tails against2M /M 2 34 2

those of a normal distribution. Both statistics are zero for a
Gaussian distribution but will depart from zero when the dis-
tribution is non-Gaussian. We can therefore estimate a “non-
Gaussian scale” RNG, below which both the skewness and the
kurtosis depart significantly from zero.

Another useful statistic sensitive to the non-Gaussian features
of a density field is the genus, which is employed to measure
the topology of a continuous field. Conceptually, the genus of
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Fig. 1.—One-point PDF p(n) of the density field in the linear string 1 CDM
(left) and string 1 HDM (right) models for different R [in (Qh2)21 Mpc]. Here

. All simulation curves are av-j :j :j :j :j :j ≈ 1:5.2:8.9:0.69:1.2:1.34c 1c 0.5c 4h 1h 0.5h

eraged from six realizations, with standard deviation less then 5% of the
amplitudes throughout.

Fig. 2.—Skewness and kurtosis of p(n) induced by cosmic strings.

Fig. 3.—Genus curves in the CDM (left) and HDM (right) models. Here
Mpc, and the box size is (50 h21 Mpc)3. Error bars are taken2 21R 5 0.4(Qh )

from six realizations for each curve.

a given surface can be defined as g 5 number of holes 2
number of isolated regions 1 1. A more useful definition of
genus is given by the Gauss-Bonnet theorem, which relates the
integrated Gaussian curvature (a local property) of a surface
with the genus (a global property) of that surface:

KdA 5 4p(1 2 g), (1)(
where dA is a differential two-dimensional surface patch and

is the Gaussian curvature of the patch with a1 andK 5 1/a a1 2

a2 the two principal radii of curvature. We used the numerical
code developed by Avelino (1997) to calculate the genus of
these isodensity surfaces, applying methods proposed by Gott,
Mellot, & Dickinson (1986). Here we employed the commonly
used volume fraction parametrization of the genus curve, that
is, we define a new variable nf so that

`
1 22u /2f 5 e du, (2)E1/2(2p) nf

where f is a previously calculated volume fraction of the whole
simulation box within which the density is above a given
threshold. Having done this, the genus curve becomes less
sensitive to the PDF, which we studied separately.

3. RESULTS

In Figure 1 we plot the one-point PDF p(n) of the density
field in the linear string CDM and HDM models for different
smoothing scales R. The skewness and kurtosis of p(n) as func-
tions of R were plotted in Figure 2. Although on large scales
string perturbations are almost indistinguishable from Gaussian
random-phase perturbations, on scales smaller than 1.5(Qh2)21

Mpc the non-Gaussian character is remarkably distinct, espe-
cially in a CDM background.

In Figure 3 we plot the genus curves g(nf) for R 5
Mpc in both string 1 CDM and string 1 HDM2 210.4(Qh )

models, as well as those of Gaussian random fields with cor-
respondingly identical power spectra. These curves have been
smoothed using three-point boxcar smoothing (see, for ex-
ample, Vogeley et al. 1994) and were parametrized by the
volume fraction (eq. [2]). We can observe that on these small
scales, the genus curves of the cosmic string–seeded density
fields deviate in a significant way from Gaussian random fields.
As expected, the correlations among the phases of different
Fourier modes imply a smaller number of independent regions
in real space and therefore a smaller genus amplitude when

compared with that of a Gaussian random field. This is illus-
trated in Figure 4, where two different isodensity thresholds
for the CDM string model are directly compared with purely
Gaussian fluctuations for Mpc. However, we2 21R 5 0.4(Qh )
have also verified that when smoothed on larger scales

Mpc, cosmic string and Gaussian random-phase2 21R * 3(Qh )
genus curves are very close to each other in both amplitude
and shape. Finally, we note that the string 1 HDM model
departure from a Gaussian distribution is less apparent than for
string 1 CDM model throughout all of the analysis above.

4. DISCUSSION

In order to interpret our results, we invoked the semianalytic
model described in Avelino et al. (1998a, 1998b; see also Al-
brecht & Stebbins 1992). This model was shown to be very
accurate in reproducing the simulation power spectrum in both
matter-era and radiation-era scaling regimes, as well as during
the radiation-era–matter-era transition. The power spectrum of
string-induced density perturbations can be written as

hf

2 2 2 2˜P(k) 5 16p G m FG(k; h , h)F F(k, h)dh, (3)E 0
hi

where m is the string energy density per unit length,
is the Fourier transform of the appropriate Green’sG̃(k; h , h)0

functions, and is the structure function. At a given time,F(k, h)
has a turnover scale at , which reflects theF(k, h) k ≈ 20/hy

comoving correlation length of cosmic strings . At ay ≈ h/3
particular time, the perturbations induced on scales larger than
the string correlation length are generated by many string el-
ements and, therefore, they are nearly Gaussian according to
the central limit theorem. On the other hand, perturbations
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Fig. 4.—Isodensity surfaces with (a, b) and (c, d) for (a, c) a Gaussian field and (b, d) the string 1 CDM model. Here Mpc, and2 21n 5 0 n 5 2 R 5 0.4(Qh )f f

the box size is (25 h21 Mpc)3.

Fig. 5.—Estimated Gaussian and non-Gaussian contributions as a compar-
ison with the total power spectrum in the CDM (left) and HDM (right) models.

induced on smaller scales are very non-Gaussian because they
can be either very large within the string-induced wakes or
else very small in regions outside these wakes. In consequence,
we can roughly divide the power spectrum of cosmic
string–seeded density perturbations into two parts: a nearly
Gaussian part generated when the string correlation length was
smaller than the scale under consideration and a strongly
skewed non-Gaussian part generated when the string correla-
tion length was larger. We shall abuse strict definitions and call
these simply the “Gaussian” and “non-Gaussian” contributions,
respectively. In terms of the structure function in equation (3),
we can make the split for ( forF (k,h) 5 F(k,h) k ! k F 5 0G y G

) and, similarly, for . corre-k 1 k F (k,h) 5 F(k,h) k 1 k Fy NG y G

sponds to the left-hand side of the structure function from its
peak to the causal compensation cutoff, where for4F ∝ kG

. can be largely identified with the imprint of stringk K k Fy NG

wakes and behaves as for .22F ∝ k k 1 kNG y

Integrating equation (3) with this Gaussian/non-Gaussian
split, we can compare the relative contributions to the total
power spectrum in CDM and HDM models, as illustrated in
Figure 5. This plot demonstrates that these two contributions
become comparable at h Mpc21 for the CDM model andk ∼ 2

h Mpc21 for the HDM model, taking a Hubble param-k ∼ 0.5
eter km s21 Mpc21. We further calculated the varianceH 5 700

of the density fields from these non-Gaussian and Gaussian
contributions when smoothed with a top-hat window of
radius R:

`

2 2 2˜j 5 4p Fw(kR)F P(k)k dk, (4)R E
0

where is the Fourier transform of a top-hatw̃(x) 5 3j (x)/x1

window and j1(x) the spherical Bessel function of order 1.
Figure 6 plots the ratio between the standard deviations of the
non-Gaussian and Gaussian density perturbations j /jR(NG) R(G)

against R for both CDM and HDM models. The criterion
gives an estimate for the non-Gaussian scalej /j * 1R(NG) R(G)

RNG. In Figure 6, we also consider the effect of the limited
dynamic range of our simulations by comparing with the full
semianalytic integral (3). The simulations slightly enhance non-
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Fig. 6.—The ratio against R for both CDM (left) and HDM (right)j /jR(NG) R(G)

models. The solid lines have a full dynamic range going from to today,h 5 0
while the dashed lines have the same dynamic range of our simulations.

Gaussianity essentially because there is more Gaussian power
missing from early times . Nevertheless, we haveh ! 0.4heq

checked that the power lost on scales[j 2 j ] /j(full) (sim) (full)

Mpc is always ≤10% for the non-Gaussian con-2 21R ≥ 1(Qh )
tribution, ≤35% for the Gaussian contribution, and ≤25% for
the total power. This confirms the reliability of our non-Gaus-
sian analysis based on these simulations.

The consistency between Figure 2 and Figure 6 should be
evident, notably for the skewness. The physical reason for the
much stronger non-Gaussian features on small scales can now
be interpreted as the following. Before the radiation-matter
equality heq, the growth of density perturbations was sup-
pressed. This means that even on small scales the contribution
to the power spectrum from the matter era is very important.
Adding the fact that by the time of heq the string correlation
length had already grown to several (Qh2)21 Mpc, the pertur-
bations generated during the matter era on scales smaller than
this will add an important non-Gaussian contribution to the
total power spectrum. This also explains the peak in the PDF
on small scales (see Fig. 1). The limited dynamic range of our
simulations tends to produce a sharp peak on the PDF for small
smoothing scales because of the presence of voids, that is,
regions left largely unperturbed by the transition era strings.
However, even for the full dynamic range a similar peak, al-
though slightly smoother, should still emerge. This is the origin
of the non-Gaussianity on smaller scales, the existence of which
is not affected by the limited dynamic range, as we demonstrate
in Figure 6. The reason that the HDM model is more Gaussian
than the CDM model is that the neutrino free-streaming length
prevents small-scale perturbations from emerging until late
times. This significantly reduces the HDM power at large k,
precisely where the non-Gaussian contribution is dominant in
the CDM model (see Fig. 5). This also accounts for the smaller
genus amplitude for the HDM model (see Fig. 3).

We also note that our results were obtained in the linear

regime. When the density field evolves into the nonlinear re-
gime at later times, the skewness increases as a direct result
of the constraint that the density contrast . However,d ≥ 21
when compared with observations, the skewness of our linear
cosmic string–seeded result for any reasonable value of G is
well below that of the Queen Mary and Westfield–
Durham–Oxford–Toronto survey (Saunders et al. 1991). Our
results are also consistent with those of Canavezes et al. (1997),
since we find that cosmic string and Gaussian random-phase
genus curves are very similar in the scale range in which no
strong phase correlations were found by the genus analysis of
the Point-Source Catalog redshift survey. For Gaussian models,
it is well known that in the nonlinear regime the skewness is
equal to its initial value plus a contribution due to the nonlinear
collapse. This contribution scales proportionally to the rms den-
sity fluctuation j (Fry & Scherrer 1994). Similarly, the non-
linear contribution to the kurtosis also has a simple scaling
dependence on j, depending on whether or not the initial den-
sity field is Gaussian (Chodorowski & Bouchet 1995). This
indicates that nonlinear clustering preserves the non-Gaussian-
ity inherent in the linear evolution, but further investigation
using N-body simulations will be required to establish if the
non-Gaussian signature of cosmic string models is potentially
measurable.

5. CONCLUSION

We conclude that on length scales smaller than 1.5(Qh2)21

Mpc, perturbations seeded by cosmic strings are very non-
Gaussian, especially in the context of a CDM model. In an
open or L universe with , this scale will beG 5 Qh ∼ 0.15
shifted to 10 h21 Mpc, which may still be in the linear or mildly
nonlinear regime, thus potentially providing a strong empirical
test for cosmic string models. It has been suggested that such
non-Gaussianity may imply that it is difficult in string models
to deduce the parameter from observations of den-0.6b 5 Q /b0

sity and velocity fields (van de Bruck 1998). However, our
results indicate otherwise on large scales, since we find that
string perturbations are very similar to Gaussian-random phase
fluctuations when smoothed on sufficiently large scales.
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