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Dynamics of scalar fields in the background of rotating black holes. Il. A note on superradiance
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We analyze the amplification due to so-called superradiance from the scattering of pulses off rotating black
holes as a numerical time evolution problem. We consider the “worst possible case” of scalar field pulses for
which superradiance effects yield amplificationd %. We show that this small effect can be isolated by
numerically evolving quasi-monochromatic, modulated pulses with a recently developed Teukolsky code. The
results show that it is possible to study superradiance in the time domain, but only if the initial data is carefully
tuned. This illustrates the intrinsic difficulties of detecting superradiance in more general evolution scenarios.
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In the past few years, we have been involved in the descalar perturbations. The price to pay is that superradiant
velopment of a numerical code for the time evolution of effects in this case are:1% [7], thus requiring a highly
perturbations of rotating black holes based on the Teukolskgccurate evolution code.
equation[1,2]. There are several motivations for this work. ~ For scalar perturbations, the Teukolsky equation in
One is the desire to reexamine problems that have previouskoyer-Lindquist coordinates reads
only been approached in the frequency domain but now un-

der a “time-evolution” point of view. More importantly, our  [(r?+a%? 2 #?®  AiMamr od 9 [ oD
ultimate goal is to provide a framework that will be used to| ™~ A~ & S 4 e ey i el e R
extend the close-limit approximation of head-on black hole )

collisions to the case of inspiral black hole mergéss. 1 af 6@ a1 D=0 1
Head-on, close-limit collision§4] view the merger as per- sin 6 96 sin 960 m A sirf ol @

turbations of non-rotating black holes. In contrast, an inspiral
close-limit approximation requires perturbations about a ro,

tating black hole. bove, M is the mass of the black hole, is its angular

. . momentum per unit mass ani=r2—2Mr+a?. The two
Our Teukolsky code project took us first to study the dy'horizons of the black hole follow from =0, and correspond

namics of scalar fields in Kerr geometfit]. Th|§ work to r.=M=+ JM?—aZ Reference to the azimuthal angje
mainly concerned the late-time, power-law behavior of a sca; . im
has been removed by assumidge'™¢,

lar perturbation. The second installment concerned gravita- Traditionally. solutions to the Teukolsky equation have
tional perturbation$2] and discussed the full dynamical re- naty, X : y €q :
been obtained via separation of variables(hyassuming a

sponse of a black hole to an external perturbation, namel L ’ . .
. N .~ harmonic time-dependence afiid) using a suitable set of
the quasinormal mode ringing and the subsequent late-time

tails. In Ref.[2], we also dealt briefly with superradiance. %nrg;l:al;unecrttlgpt;sgit:;s_?rr]it?shemldal wave-functiop8]
However, although the results in R¢2] indicated the pres- P '

ence of superradiance, we feel that our previous analysis was

not completely satisfactory. Hence, the goal of this short q):f dwefith eMeR, (1, @)Sim( 6, @) )
paper is to return to the issue of superradiance in a setting fm it me

that yields unequivocal evidence for the superradiance phe-

nomenon. It is important to notice that the angular functions depend

. The dire.ct approach to measure querradiance from th@xplicitly on the frequencyn, namely time. Given the solu-
time evolution of perturbations of rotating black holes is 040n form (2), the problem reduces to a single ordinary dif-

compute the energy flux going “down the hole.” For pertur- ferential equatiofODE) for R.(r o)
bative fields that possess well-defined stress-energy tensors d "ODB) im(Fs@):

(e.g. scalar and electromagnetic figldsis possible to con-

2 2 2 2
struct such a conserved energy fli{. The case of gravita- d"Riy _ [K™+(2amo—a’w”™— E)A_ dG —G2|R.=0
tional perturbations is not that simplB,6]. For this reason, ~ dr2 (r’+a?)? dr, Im™= %
we will concentrate our analysis on the “simple” case of 3
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whereK=(r?+a?)w—am, G=rA/(r?+a??, and the tor-
toise coordinater, is defined fromdr, =(r2+a?)/Adr. 1
The variableE is the angular separation constant, real for
real frequencies. Whea— 0, it reduces td(I+1), and, for 0z |
nonzeroa, it can be obtained from a power seriesain [9].
The physical solution to Eq(3) is defined by the

0.99M

asymptotic behavior . O
a=(
Je He-mo e asr—r,, 04}
R~ . . 4
™| Rel“Ts+e 1 as r—+oo, @
0.2
wherew , =a/2Mr , is the angular velocity of the event ho-
rizon. 7 and R denote the transmission and reflection coef- o Lo { )
ficients, respectively, satisfying lmw . /w)7=1—"TR. Su- . 03 e 03 !
perradiance R>1) occurs then when o<mw, 1.002 T

=mal/(2Mr ). Alternatively, one can deduce that energy
can be extracted from the black hole immediately from  1oms}
the boundary condition(4). If w<mw,, the solution
cexd —i(w—mw,)r, ], which behaves as “ingoing” into the 1ooL |
horizon according to a local observer, will in fact correspond
to waves coming out of the hole according to an observer at_
infinity. That is, for superradiant frequencies, one would ex-
pect to find energy flowing out from the horizon, £10].

Figure 1 shows the reflection coefficient in the case when
| =m=2, obtained by a straightforward integration of E8).

0.99M

1.0005 -

and subsequent extractionBf The maximum amplification 0.9995 f
in this case is close to 0.2%, which agrees with the value of
0.3% obtained by Teukolsky and Pré&s7]. They also con- 09% ” v Y py 1

sidered electromagnetic waveéd.4% max. amplification WM
and gravitational perturbationd38% max. amplification ) . )
The ?esults in Figp. 1 agree with the standarg conclusiong G- 1. Reflection coefficien(R) for different values of the
regarding the apparent “size” of a rotating black hole asangular rnomen_tum parameter)(with |=m=2. Superradlanc_e is
seen by different observers. It is well-knowag.[11]) that present in the interval € wM <ma/2r . . The bottom panel is a

. . . lose- f thi di ime.
the black hole will appear larger to a particle moving around’ 05¢ P 0T HIS superradiance Tegime

it in a retrograde orbit than to a particle in a prograde orbitJie within the superradiant frequency window. To maximize
This is illustrated by the fact that the unstable circular photonthe effect, we need also to minimize the “frequency over-
orbit (at r=3M in the non-rotating cageis located atr  |ap” into the non-superradiant regime. This can be accom-
=4M for a retrograde photon, while it lies a&=M for a  plished by a suitably choice of the paramdieiFor instance,
prograde photon. In our case, we have prograde motion wheg non-superradiance frequency overlBfmw. )/Ppau=¢

w/m is positive and retrograde motion whenm is nega- requiresb=2\In(1/e)/(Mw , — ).

tive. The data in Fig. 1 correspond to=2, and the en- Our Teukolsky code was described in detail in Réfl,
hanced reflection for positive frequenciesas M has the  pyt there is one specific issue that is important for the present
effect that the black hole “looks smaller” to such waves. stydy that has not yet been discussed. To avoid numerical
Conversely, the slightly decreased reflection for negative fregjfficulties, we perform a coordinate transformation and re-
guencies leads to the black hole appearing “larger”aas place the azimuthal anglep with the “ingoing Kerr-
—M. coordinate” ¢ defined byde=d¢+ (a/A)dr. The replace-

To study superradiance in the time domain, we follow aNment ¢—¢ changes the symmetry of the equations. While
idea introduced in Refl2] and set up a pulse containing the original Teukolsky equatiofl) is symmetric under the
mainly frequencies in the interval<0w<mew. with m>0.  change ,¢)—(—m,—¢), the Teukolsky equation in
The analysis becomes easier and better suited to comparisogsms of o is not. That is, while evolutions for the same
with frequency domain calculations if the pulse is “almost gayssian pulsgunmodulatell should lead to the same
monochromatic.” This is achieved using as initial data aNemerging scalar waves farm in the original case, this will
ingoing Gaussian pulse modulated by a monochromatigot happen when we usg. To ensure that the anticipated
wave: ®eex—(r, —ro+t)/b*~io(r, —r,+1)], where ro  symmetries are present in our results and that the pulse is
>M and o the modulation frequency. The power spectruMcentered in the superradiance window, we construct the
of this pulse isP(w)=Pue @ 2% so we ought to be modulated pulse in Boyer-Lindquist coordinates and then
able to detect superradiance EK@r<mw . . Furthermore, it transform it to thep coordinate system.
is not enough for the peak of the power spectruo=(o’) to To unveil the amplification due to superradiance, we will
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FIG. 2. Integrated energy flux of a superradiant evolution of a a ) ]
modulated Gaussian pulseith o=0.8mw,, m=2, a=0.99 FIG. 3. An example of a non-superradiant evolution. The data

ande=0.01). Surface normals are chosen such that energy rowin?re similar to that described in Fig. 2, but here the modulation
inwards into-the-hole across the outer surface is positiver At Tréquency of the_mmal Gaussian is= —0.8mw ., and there is no
=20M (upper panel a total amplification of~0.14% is achieved. S9N of superradiance.

At r,=—20M (the lower pangl energy mainly flows out of the

horizon, approximately-0.11% of the total energy falling onto the :,/_9135 sin adAdedt=+/Ap sin 6dededt. Given dS and
hole. Tap above, it is not difficult to show that

focus on the energy flux through various surfaces surround- — —
ing the black hole. Given a spacetime with a time Kiling ~ dE=*7(d; ®4P+0; P9 P)(r°+a%)sin odedt. (6)
vectort?® and a perturbation with a well-defined stress-energy
tensorT,y, it is possible to defing5] a conserved energy e monitor the above energy flux through two surfaces
flux vectorT3,tP. The flux of energy across a 3-dimensional |gcated atr, = +20M. The outer surface is well away from
time-like hypersurface with unit normaf is then given by  the black hole while the inner one is reasonably close to the
dE=T,pt?rdS, wheredS is the 3-surface element of the event horizon. The scattering of waves by the curved space-
hypersurface. For a massless scalar field, time should be strongest in the region included between
. 1 these surfaces. Figures 2 and 3 show the results of the super-
_ e - e radiance “experiment.” The displayed data are for two
Tab_f(vaq)qu)+vaq)vb¢)_ Egabch)v e ® qualitatively dri)fferent situations. Blta)thydatasets correspond to
evolutions withm=2 and a black hole rotation parameter
with over-bars denoting complex conjugation. For simplic-a=0.99M. In both cases the pulse was initially centered
ity, we monitor the flux of energy through=const surfaces aroundr,=125M, and the angular distribution of the initial
in Boyer-Lindquist coordinates. This assumption togethedata was chosen to be the standard spherical harmonic
with rér,=1 yield r2= =+ (0,\/A/p,0,0), where as befora Y§(0,<p). The first casdsee Fig. 2 shows a situation where
=r2—2Mr+a? and p?=r2?+a? cog 6. Furthermore, the one would expect to see superradiance. We have chosen the
time Killing vector in this case read$=(1,0,0,0), and the modulation frequency of the impinging Gaussian such that
surface element is given explicitty by dS ¢=0.8mw, , and the width of the Gaussian corresponds to
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€=0.01. The second cagEig. J) corresponds to a Gaussian else this is direct evidence of the precision of our evolution
with the same width but now centered around code to solve the Teukolsky equatifih2].
=—0.8Mw, . Our numerical experiment shows that superradiance can

As is obvious from Fig. 1, the scattering of the two pulsesplay a role in evolutions when the scattered pulse has support
is quite different. In the superradiant case shown in Fig. 2, albnly in a restricted frequency domain. This is undoubtedly
the initial energy is reflected by the black hole. Superradian interesting illustration, but what about superradiance in
ance is distinguished in two ways. By monitoring the energymore general cases? It seems to us that the effect is easiest to
flowing across the surface af =20M, we see that the re- jso|ate if one monitors different frequencies separately, i.e.
flected energy is slightly amplified after scatterifd. the  \yorks in the frequency domain. The main reason for this is
upper panel of Fig. 2 In this specific case, the amplification 4t an amplification of a reflected signal with increasirig
corresponds to 0.14%. It should be compared to the maxizot in jtself an indication of superradiance. The results
mum single frequency amplification of 0.187% f@&@  ghown in Fig. 1 indicate that one would generally expect
=0.99m, deduced_from the data in Fig. 1. That we are seegphanced reflection of prograde moving wavesaasM.
ing superradiance is also clear from the fact that energy flow§p;s effect is likely to overwhelm the actual “amplification”
out through the surface af = —20M (cf. the lower panel of  of certain superradiant frequencies in an evolution of general
Fig. 2). The total energy flowing out through the inner sur- injtia| data. This conclusion should also hold for the case of
face corresponds to a superradiant amplification of 0.11%, iRjectromagnetic waves. However, the possibility that super-
reasonable agreement with the result deduced at the outg{yiance may play a distinctive role in an “astrophysical”
surface. _ _ evolution for gravitational waves cannot be ruled out. For

The non-superradiant results € —0.8mw ) are in clear  grayitational waves, the amplitude of certain frequencies
contrast to the superradiant ones. Figure 3 shows no sign @hould be amplified by more than a factor of ti@]. A
amplification. In fact, as it can be seen from the upper panejetailed study of that case could provide interesting results.
of Fig. 3, the infalling pulse is almost entirely swallowed by  Finally, we have learned that the initial data require care-
the black hole. That there would be very little reflection in | tyning in order that superradiance be observed. For gen-
this case could, of course, be anticipated by comparing ougg| initial data, absorption of the non-superradiant frequen-
chosen Gaussian pulse to the data in Fig. 1. ~ cies will typically make the amplification due to

In summary, we have designed a numerical experimendperradiance difficult to distinguish. Moreover, superradi-
that clearly exhibits the presence of superradiance phenomnce should not be confused with the competing effect that
enon when waves of a certain character are scattered byige “size” of the black hole changes with the rate of rota-
rotating black hole. One conclusion that can be drawn fromign As we have seen, this effect will generally lead to a
the present work is that superradiance is perhaps best agych enhanced reflection of prograde waves which may

proached in the frequency domain. True, we have manageghnfuse an attempt to distinguish superradiance.
to extract the amplification due to superradiance in the

“worst possible case” of scalar waves, but this was mainly ~We thank William Krivan for helpful discussions. This
due to having at our disposal a conserved flux and usingvork was partially supported by NSF grants PHY 96-01413,
“almost monochromatic” initial data. More than anything 93-57219(NYI) to P.L.
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