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Dynamics of scalar fields in the background of rotating black holes. II. A note on superradiance
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We analyze the amplification due to so-called superradiance from the scattering of pulses off rotating black
holes as a numerical time evolution problem. We consider the ‘‘worst possible case’’ of scalar field pulses for
which superradiance effects yield amplifications,1%. We show that this small effect can be isolated by
numerically evolving quasi-monochromatic, modulated pulses with a recently developed Teukolsky code. The
results show that it is possible to study superradiance in the time domain, but only if the initial data is carefully
tuned. This illustrates the intrinsic difficulties of detecting superradiance in more general evolution scenarios.
@S0556-2821~98!04418-X#

PACS number~s!: 04.25.Dm, 04.30.Nk
de
o
lsk
k.
us
u

r
to

ol

-
ira
ro

y

ca
it
-
e

tim
e.

w
o
ttin
h

t
to
r-
s

of

iant

in

ve

f

nd
-
if-
In the past few years, we have been involved in the
velopment of a numerical code for the time evolution
perturbations of rotating black holes based on the Teuko
equation@1,2#. There are several motivations for this wor
One is the desire to reexamine problems that have previo
only been approached in the frequency domain but now
der a ‘‘time-evolution’’ point of view. More importantly, ou
ultimate goal is to provide a framework that will be used
extend the close-limit approximation of head-on black h
collisions to the case of inspiral black hole mergers@3#.
Head-on, close-limit collisions@4# view the merger as per
turbations of non-rotating black holes. In contrast, an insp
close-limit approximation requires perturbations about a
tating black hole.

Our Teukolsky code project took us first to study the d
namics of scalar fields in Kerr geometry@1#. This work
mainly concerned the late-time, power-law behavior of a s
lar perturbation. The second installment concerned grav
tional perturbations@2# and discussed the full dynamical re
sponse of a black hole to an external perturbation, nam
the quasinormal mode ringing and the subsequent late-
tails. In Ref. @2#, we also dealt briefly with superradianc
However, although the results in Ref.@2# indicated the pres-
ence of superradiance, we feel that our previous analysis
not completely satisfactory. Hence, the goal of this sh
paper is to return to the issue of superradiance in a se
that yields unequivocal evidence for the superradiance p
nomenon.

The direct approach to measure superradiance from
time evolution of perturbations of rotating black holes is
compute the energy flux going ‘‘down the hole.’’ For pertu
bative fields that possess well-defined stress-energy ten
~e.g. scalar and electromagnetic fields!, it is possible to con-
struct such a conserved energy flux@5#. The case of gravita-
tional perturbations is not that simple@5,6#. For this reason,
we will concentrate our analysis on the ‘‘simple’’ case
0556-2821/98/58~8!/087503~4!/$15.00 58 0875
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scalar perturbations. The price to pay is that superrad
effects in this case are,1% @7#, thus requiring a highly
accurate evolution code.

For scalar perturbations, the Teukolsky equation
Boyer-Lindquist coordinates reads

F ~r 21a2!2
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]t
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D
2

1

sin2 uGF50. ~1!

Above, M is the mass of the black hole,a is its angular
momentum per unit mass andD[r 222Mr 1a2. The two
horizons of the black hole follow fromD50, and correspond
to r 65M6AM22a2. Reference to the azimuthal anglew
has been removed by assumingF}eimw.

Traditionally, solutions to the Teukolsky equation ha
been obtained via separation of variables by~i! assuming a
harmonic time-dependence and~ii ! using a suitable set o
angular functions~standard spheroidal wave-functions@8#
for scalar perturbations!. That is,

F5E dve2 ivt(
l ,m

eimwRlm~r ,v!Slm~u,v!. ~2!

It is important to notice that the angular functions depe
explicitly on the frequencyv, namely time. Given the solu
tion form ~2!, the problem reduces to a single ordinary d
ferential equation~ODE! for Rlm(r ,v):

d2Rlm

dr
*
2 1FK21~2amv2a2v22E!D

~r 21a2!2 2
dG

dr*
2G2GRlm50,

~3!
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whereK5(r 21a2)v2am, G5rD/(r 21a2)2, and the tor-
toise coordinater * is defined fromdr* 5(r 21a2)/Ddr.
The variableE is the angular separation constant, real
real frequencies. Whena→0, it reduces tol ( l 11), and, for
nonzeroa, it can be obtained from a power series inav @9#.

The physical solution to Eq.~3! is defined by the
asymptotic behavior

Rlm;H Te2 i ~v2mv1!r
* as r→r 1 ,

Reivr
* 1e2 ivr

* as r→1`,
~4!

wherev1[a/2Mr 1 is the angular velocity of the event ho
rizon. T andR denote the transmission and reflection co
ficients, respectively, satisfying (12mv1 /v)T512R. Su-
perradiance (R.1) occurs then when v,mv1

5ma/(2Mr 1). Alternatively, one can deduce that ener
can be extracted from the black hole immediately fro
the boundary condition~4!. If v,mv1 , the solution
}exp@2i(v2mv1)r* #, which behaves as ‘‘ingoing’’ into the
horizon according to a local observer, will in fact correspo
to waves coming out of the hole according to an observe
infinity. That is, for superradiant frequencies, one would e
pect to find energy flowing out from the horizon, cf.@10#.

Figure 1 shows the reflection coefficient in the case wh
l 5m52, obtained by a straightforward integration of Eq.~3!
and subsequent extraction ofR. The maximum amplification
in this case is close to 0.2%, which agrees with the value
0.3% obtained by Teukolsky and Press@5,7#. They also con-
sidered electromagnetic waves~4.4% max. amplification!
and gravitational perturbations~138% max. amplification!.
The results in Fig. 1 agree with the standard conclusi
regarding the apparent ‘‘size’’ of a rotating black hole
seen by different observers. It is well-known~e.g. @11#! that
the black hole will appear larger to a particle moving arou
it in a retrograde orbit than to a particle in a prograde or
This is illustrated by the fact that the unstable circular pho
orbit ~at r 53M in the non-rotating case! is located atr
54M for a retrograde photon, while it lies atr 5M for a
prograde photon. In our case, we have prograde motion w
v/m is positive and retrograde motion whenv/m is nega-
tive. The data in Fig. 1 correspond tom52, and the en-
hanced reflection for positive frequencies asa→M has the
effect that the black hole ‘‘looks smaller’’ to such wave
Conversely, the slightly decreased reflection for negative
quencies leads to the black hole appearing ‘‘larger’’ asa
→M .

To study superradiance in the time domain, we follow
idea introduced in Ref.@2# and set up a pulse containin
mainly frequencies in the interval 0,v,mv1 with m.0.
The analysis becomes easier and better suited to compar
with frequency domain calculations if the pulse is ‘‘almo
monochromatic.’’ This is achieved using as initial data
ingoing Gaussian pulse modulated by a monochrom
wave: F}exp@2(r*2ro1t)2/b22is(r*2ro1t)#, where r o
@M and s the modulation frequency. The power spectru
of this pulse isP(v)5Pmaxe

2(v2s)2b2/4, so we ought to be
able to detect superradiance if 0,s,mv1 . Furthermore, it
is not enough for the peak of the power spectrum (v5s) to
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lie within the superradiant frequency window. To maximi
the effect, we need also to minimize the ‘‘frequency ove
lap’’ into the non-superradiant regime. This can be acco
plished by a suitably choice of the parameterb. For instance,
a non-superradiance frequency overlapP(mv1)/Pmax5e,
requiresb52Aln(1/e)/(mv12s).

Our Teukolsky code was described in detail in Ref.@1#,
but there is one specific issue that is important for the pres
study that has not yet been discussed. To avoid nume
difficulties, we perform a coordinate transformation and
place the azimuthal anglew with the ‘‘ingoing Kerr-
coordinate’’ w̃ defined bydw̃5dw1(a/D)dr. The replace-
ment w→w̃ changes the symmetry of the equations. Wh
the original Teukolsky equation~1! is symmetric under the
change (m,w)→(2m,2w), the Teukolsky equation in
terms of w̃ is not. That is, while evolutions for the sam
Gaussian pulse~unmodulated! should lead to the sam
emerging scalar waves for6m in the original case, this will
not happen when we usew̃. To ensure that the anticipate
symmetries are present in our results and that the puls
centered in the superradiance window, we construct
modulated pulse in Boyer-Lindquist coordinates and th
transform it to thew̃ coordinate system.

To unveil the amplification due to superradiance, we w

FIG. 1. Reflection coefficient~R! for different values of the
angular momentum parameter (a) with l 5m52. Superradiance is
present in the interval 0,vM,ma/2r 1 . The bottom panel is a
close-up of this superradiance regime.
3-2



g
g

e

es

the
ce-
en
per-
o
to

er
ed
l
onic

n the
hat
to

in

ata
ion

BRIEF REPORTS PHYSICAL REVIEW D 58 087503
focus on the energy flux through various surfaces surroun
ing the black hole. Given a spacetime with a time Killin
vectorta and a perturbation with a well-defined stress-ener
tensorTab , it is possible to define@5# a conserved energy
flux vectorTa

btb. The flux of energy across a 3-dimensiona
time-like hypersurface with unit normalr a is then given by
dE5Tabt

ar bdS, wheredS is the 3-surface element of the
hypersurface. For a massless scalar field,

Tab5
1

2
~¹aF̄¹bF1¹aF¹bF̄!2

1

2
gab¹cF¹cF̄, ~5!

with over-bars denoting complex conjugation. For simplic
ity, we monitor the flux of energy throughr 5const surfaces
in Boyer-Lindquist coordinates. This assumption togeth
with r ar a51 yield r a56(0,AD/r,0,0), where as beforeD
5r 222Mr 1a2 and r25r 21a2 cos2 u. Furthermore, the
time Killing vector in this case readsta5(1,0,0,0), and the
surface element is given explicitly by dS

FIG. 2. Integrated energy flux of a superradiant evolution of a
modulated Gaussian pulse~with s50.8mv1 , m52, a50.99M
ande50.01). Surface normals are chosen such that energy flow
inwards into-the-hole across the outer surface is positive. Atr *
520M ~upper panel!, a total amplification of;0.14% is achieved.
At r * 5220M ~the lower panel!, energy mainly flows out of the
horizon, approximately;0.11% of the total energy falling onto the
hole.
08750
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5A2g(3) sinududwdt5ADr sinududwdt. Given dS and
Tab above, it is not difficult to show that

dE56p~] r
*
F̄] tF1] r

*
F] tF̄!~r 21a2!sin ududt. ~6!

We monitor the above energy flux through two surfac
located atr * 5620M . The outer surface is well away from
the black hole while the inner one is reasonably close to
event horizon. The scattering of waves by the curved spa
time should be strongest in the region included betwe
these surfaces. Figures 2 and 3 show the results of the su
radiance ‘‘experiment.’’ The displayed data are for tw
qualitatively different situations. Both datasets correspond
evolutions withm52 and a black hole rotation paramet
a50.99M . In both cases the pulse was initially center
aroundr o5125M , and the angular distribution of the initia
data was chosen to be the standard spherical harm
Y2

2(u,w). The first case~see Fig. 2! shows a situation where
one would expect to see superradiance. We have chose
modulation frequency of the impinging Gaussian such t
s50.8mv1 , and the width of the Gaussian corresponds

a

g

FIG. 3. An example of a non-superradiant evolution. The d
are similar to that described in Fig. 2, but here the modulat
frequency of the initial Gaussian iss520.8mv1 , and there is no
sign of superradiance.
3-3
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e50.01. The second case~Fig. 3! corresponds to a Gaussia
with the same width but now centered arounds
520.8mv1 .

As is obvious from Fig. 1, the scattering of the two puls
is quite different. In the superradiant case shown in Fig. 2
the initial energy is reflected by the black hole. Superra
ance is distinguished in two ways. By monitoring the ene
flowing across the surface atr * 520M , we see that the re
flected energy is slightly amplified after scattering~cf. the
upper panel of Fig. 2!. In this specific case, the amplificatio
corresponds to 0.14%. It should be compared to the m
mum single frequency amplification of 0.187% fora
50.99M , deduced from the data in Fig. 1. That we are s
ing superradiance is also clear from the fact that energy fl
out through the surface atr * 5220M ~cf. the lower panel of
Fig. 2!. The total energy flowing out through the inner su
face corresponds to a superradiant amplification of 0.11%
reasonable agreement with the result deduced at the o
surface.

The non-superradiant results (s520.8mv1) are in clear
contrast to the superradiant ones. Figure 3 shows no sig
amplification. In fact, as it can be seen from the upper pa
of Fig. 3, the infalling pulse is almost entirely swallowed b
the black hole. That there would be very little reflection
this case could, of course, be anticipated by comparing
chosen Gaussian pulse to the data in Fig. 1.

In summary, we have designed a numerical experim
that clearly exhibits the presence of superradiance phen
enon when waves of a certain character are scattered
rotating black hole. One conclusion that can be drawn fr
the present work is that superradiance is perhaps bes
proached in the frequency domain. True, we have mana
to extract the amplification due to superradiance in
‘‘worst possible case’’ of scalar waves, but this was main
due to having at our disposal a conserved flux and us
‘‘almost monochromatic’’ initial data. More than anythin
o
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else this is direct evidence of the precision of our evolut
code to solve the Teukolsky equation@1,2#.

Our numerical experiment shows that superradiance
play a role in evolutions when the scattered pulse has sup
only in a restricted frequency domain. This is undoubte
an interesting illustration, but what about superradiance
more general cases? It seems to us that the effect is easi
isolate if one monitors different frequencies separately,
works in the frequency domain. The main reason for this
that an amplification of a reflected signal with increasinga is
not in itself an indication of superradiance. The resu
shown in Fig. 1 indicate that one would generally expe
enhanced reflection of prograde moving waves asa→M .
This effect is likely to overwhelm the actual ‘‘amplification’
of certain superradiant frequencies in an evolution of gen
initial data. This conclusion should also hold for the case
electromagnetic waves. However, the possibility that sup
radiance may play a distinctive role in an ‘‘astrophysica
evolution for gravitational waves cannot be ruled out. F
gravitational waves, the amplitude of certain frequenc
should be amplified by more than a factor of two@5#. A
detailed study of that case could provide interesting resu

Finally, we have learned that the initial data require ca
ful tuning in order that superradiance be observed. For g
eral initial data, absorption of the non-superradiant frequ
cies will typically make the amplification due t
superradiance difficult to distinguish. Moreover, superra
ance should not be confused with the competing effect
the ‘‘size’’ of the black hole changes with the rate of rot
tion. As we have seen, this effect will generally lead to
much enhanced reflection of prograde waves which m
confuse an attempt to distinguish superradiance.
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