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Abstract

We find a number of complex solutions of the source-free Einstein equations in

the so-called unimodular version of general relativity, and we interpret them

as saddle points yielding estimates of a gravitational path integral taken over

a space of almost everywhere Lorentzian metrics on a spacetime manifold with

topology of the “no-boundary” type. Within this interpretation, we address

the compatibility of the no-boundary initial condition with the definability

of the quantum measure, which reduces in this setting to the normalizability

and unitary evolution of the no-boundary wave function ψ. We consider

three spacetime topologies, R
4, RP

4#R
4, and R

2×T 2. (The corresponding

truncated manifolds-with-boundary are respectively the closed 4-dimensional

disk or ball, the closed 4-dimensional cross-cap, and the product of the two-

torus with the closed two-dimensional disk.) The first two topologies we

investigate within a Taub minisuperspace model with spatial topology S3,

and the third within a Bianchi type I minisuperspace model with spatial

topology T 3. In each of the three cases there exists exactly one complex

solution of the classical Einstein equations (or combination of solutions) that,

to the accuracy of our saddle point estimate, yields a wave function compatible

with normalizability and unitary evolution. The existence of such solutions

tends to bear out the suggestion that the unimodular theory is less divergent

than traditional Einstein gravity. In the Bianchi type I case, moreover, the

distinguished complex solution is approximately real and Lorentzian at late

times, and appears to describe an explosive expansion from zero size at T = 0.

In this connection, we speculate that a fully normalizable ψ can result only

from the imposition of an explicit short distance cutoff. (In the Taub cases, in

contrast, the only complex solution with nearly Lorentzian late-time behavior

yields a wave function that is normalizable but evolves nonunitarily, with

the total probability increasing exponentially in the unimodular “time” in a

manner that suggests a continuous creation of new universes at zero volume.)

The issue of the stability of these results upon the inclusion of more degrees

of freedom is raised.

Pacs: 04.60.Gw, 04.20.Fy, 04.60.Kz, 98.80.Hw
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I. INTRODUCTION

In formulating the gravitational functional integral on a compact manifold with bound-
ary,

∫
Dg exp [iS(g)] , (1.1)

one may choose to limit the geometries g that enter the sum by specifying a fixed value for the
total 4-volume [1–3]. If S(g) is the Einstein-Hilbert action, this restriction produces a theory
whose classical limit is equivalent to Einstein’s theory with a cosmological constant, the only
difference being that the cosmological constant arises as a constant of integration and not as
a prescribed parameter in the action [1–16]. This theory is often called unimodular gravity,
owing to the fact that one can alternatively derive it by imposing the coordinate condition√−g = 1 in the action prior to variation.

In our view, the motivation for a unimodular modification of gravity is threefold [1,3].
First, it may help explain why the cosmological constant can be so small. Second, it is
suggested by analogy with the structure of nonrelativistic quantum mechanics. Third, based
on this analogy, it can be expected to improve the convergence of certain expressions that
arise in the computation of the quantum measure of a set of histories (i.e., of 4-geometries).
This third motivation is the most relevant to the present paper.

In a histories framework for quantum theory (see Refs. [1,3,17–23] and references therein),
the quantum measure µ plays a role analogous to that played by the classical probability-
measure in a classically stochastic process such as diffusion. Within a histories framework,
no wave function ever need be introduced, but it is often convenient to do so, because µ can
often be computed as ||ψ||2 for a suitable ψ. In unimodular quantum gravity in particular,
one can introduce a wave function on 3-geometries by summing over 4-geometries with fixed
4-volume [1], and the resulting ψ will depend on the 4-volume T of the spacetimes that
enter into the sum. Now, if the relation between ψ and the quantum measure µ in quantum
gravity is like that in ordinary quantum mechanics, then, in order that µ be well-defined, it
is necessary first of all that ||ψ||2 be finite, and secondly that it be independent of 4-volume,
i.e., that the “evolution” of ψ with “time” T = V be unitary. These are the principal
questions that we explore in the present paper.

In the present paper, our considerations will be based on a Lagrangian formulation, both
for its relative simplicity and because it is the most suitable formulation for dealing with
the type of topology change that a “big bang” cosmology entails. Nevertheless, it may be of
some interest to sketch here how the unimodular assumption manifests itself in Hamiltonian
versions of gravity. To understand what happens to the constraints, it is useful to think
in terms of the path integral: the condition of fixed spacetime volume removes one degree
of freedom from the permissible deformations of the final hypersurface, and this in turn
eliminates one of the infinity of Hamiltonian constraints that are present in the conventional
formulation, or rather converts it into a Schrödinger equation expressing the dependence of
ψ on T . In one particular Hamiltonian scheme for unimodular gravity with closed spatial
hypersurfaces, this works out in more detail as follows. The theory contains a pair of
canonically conjugate fields that are not present in the canonical formulation of conventional
Einstein gravity. One of the new fields specifies the value of the cosmological constant,
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while the conjugate field carries the information about the spacetime volume bounded by
the initial and final spacelike hypersurfaces. Dirac quantization of this Hamiltonian theory
leads, in addition to a set of constraint equations, to a Schrödinger-type equation in which the
“time” variable can be identified as the four-dimensional spacetime volume. One therefore
would expect to adopt a Schrödinger-type Hilbert space in which the Hamiltonian would
be a selfadjoint operator, and the wave function would evolve unitarily in “unimodular
time.” This “unfreezing” of the wave function raised hopes that the interpretational issues of
quantum gravity, especially regarding time [24–26], might be more easily tractable within the
unimodular theory than in the conventional theory. However, from a histories standpoint,
no “problem of time” is evident, and the role of unimodularity would seem to be more
technical than interpretational in nature. For some further discussion, see Refs. [15,25].

In this paper we explore the implications of unimodular gravity for quantum cosmology.
Specifically we explore its implications for no-boundary initial conditions of the sort proposed
by Hartle and Hawking [27–29], Linde [30–34], and Vilenkin [35–40], and more generally, for
the framework for topology change set out in Refs. [3,41,42].

The condition we impose is that spacetime be a 4-manifoldM that is compact toward the
past, with empty initial boundary.1 When truncated toward the future in order to compute
the quantum measure [1,19], M will therefore acquire a future boundary M1 that is closed
in the technical sense of being compact without boundary.2 A wave function obtained from
a unimodular path integral over such a truncated manifold will have as arguments the 4-
volume T and the induced 3-geometry on the 3-manifold M1.

Precisely what kinds of metrics are to be integrated over — or indeed, whether it is pos-
sible to define consistently a gravitational functional integral at all in a continuum theory
— is a poorly understood issue [42,3,43–45] to which we shall return in section VII. For
now, we mention only that the point of view we adopt in the following is that the path
integral is originally over (almost everywhere) Lorentzian metrics, and any complex metrics
one considers have meaning only insofar as they yield approximations to such a Lorentzian
path integral. In the main part of the paper, we will simply assume that the path inte-
gral can analyzed in the crudest possible saddle-point approximation; and we will find the
complex classical solutions for the unimodular theory, without attempting to control even
the semiclassical prefactors. As the unimodular boundary condition requires the Lorentzian
4-volume to be real, the saddle-point geometries are in general necessarily complex , although
saddle-points with Lorentzian signature will be seen to exist in certain special cases. We

1This condition can be made precise in the language of Morse theory: M should admit a “height

function” h ≥ 0 with the property that h−1([0, r]) is compact and h−1([0, r)) is boundary-free for

all real r > 0.

2The manifolds M we consider in the present paper are all such that M1 may be assumed to be a

smooth 3-manifold. In cases where topological transitions are not limited to the “moment of birth”

of the universe, the level surfaces of a Morse height function are not all manifolds. This suggests

that, in computing the quantum measure for such spacetimes, one might want to consider wave

functions defined on some sort of correspondingly generalized 3-geometries.
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emphasize that this condition of real 4-volume excludes from our framework any geometry
with purely Euclidean signature.

As explained above, the crucial consistency conditions for the quantum measure to be
defined (and therefore for the path integral to lead to meaningful predictions) are that the
path integral give a wave function that, with respect to a suitable measure, is square inte-
grable and evolves unitarily. We investigate these features within two spatially homogeneous
minisuperspace models: the Taub model (Bianchi type IX plus an additional U(1) symme-
try) with S3 spatial topology, and Bianchi type I with T 3 spatial topology and a certain
additional discrete symmetry. As the (truncated) no-boundary 4-manifolds, we consider the

closed 4-ball B
4

and the closed 4-dimensional cross-cap RP
4#B

4
in the Taub model, and

the closed disk times the two-torus in Bianchi type I. In all cases, finding the no-boundary
saddle points reduces to solving a simple algebraic equation. Having found the saddle points,
we first ask whether a saddle-point estimate to the path integral is compatible with a nor-
malizable wave function, for any choice of saddle point(s). If yes, we then ask whether the
corresponding wave function evolves unitarily, to the approximation in question. Also, we
ask whether any of the saddle-point geometries are approximately Lorentzian at late times.
Finally, we ask how the saddle point wave function behaves at T = 0, and in particular,
whether this behavior seems compatible with the picture of a universe expanding from zero
size that is implicit in the no-boundary topology.

In the Taub model, for both of our 4-manifolds, we find a unique saddle point that, to
the accuracy of our estimate, is compatible with both normalizability and unitary evolu-
tion. This bears out the suggestion [1–3] that the unimodular theory is less divergent than
traditional Einstein gravity, and tells us in each case what the approximate behavior of the
wave function must be if the quantum measure is indeed well defined. Interestingly, this
saddle point remains always in the quantum era, never making a spontaneous transition to
classical behavior. In addition there is (for both 4-manifolds) a unique saddle point that
is compatible with normalizability and does make a transition to classical behavior. How-
ever, the wave function corresponding to this saddle point turns out not to evolve unitarily:
instead, probability is being injected into the configuration space at a rate that is exponen-
tially increasing in the unimodular time. This injection appears to take place at a boundary
of the configuration space, in a manner reminiscent of the tunneling boundary conditions
advocated by Linde [30–34] and Vilenkin [35–40]. Physically, such an injection can perhaps
be interpreted as a continuous creation of new “branch universes,” all stemming from a
single root.

In the Bianchi type I model, the unique saddle point that is compatible with normal-
izability turns out to be compatible also with unitary evolution. Further, the saddle-point
geometries are, at late times, nearly Lorentzian, isotropically expanding universes. Thus,
this saddle point exhibits many features normally regarded as desirable for quantum cos-
mology.

The plan of the paper is as follows. In section II we introduce the unimodular Taub
minisuperspace model and the unimodular positive curvature Friedmann model, which arises
as the isotropic specialization of the Taub model. Sections III and IV discuss the Taub
no-boundary saddle points when the 4-manifold is respectively the closed 4-ball and the
closed cross-cap, and section V discusses the truncation of these no-boundary analyses to
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the Friedmann model. The Bianchi type I model is analyzed in section VI. Our results are
summarized and discussed in section VII.

We use throughout units such that c = ~ = 1, but we keep Newton’s constant G.
A metric with signature (−+++) is called Lorentzian, and a metric with signature (++++)
Riemannian.

II. TAUB MINISUPERSPACE IN THE UNIMODULAR THEORY

In this section we describe the Taub minisuperspace model in the unimodular theory.
Subsection IIA presents the general case, with two independent scale factors. The trunca-
tion to the positive curvature Friedmann model is outlined in subsection IIB. We assume
throughout this section that the spacetime is everywhere Lorentzian and has topology R×S3.
The boundary conditions needed to express the no-boundary topologies we consider will be
introduced in section III.

A. The general Taub model

The Taub family of metrics can be written as [46,47]

ds2 = σ2
{
−N2dt2 + 1

4
a2(ω1)

2
+ 1

4
b2

[
(ω2)

2
+ (ω3)

2
]}

, (2.1)

where a, b, and N are functions of t, and the ωi are the usual left-invariant one-forms on
SU(2), satisfying

dωi = −1

2
ǫijkω

j ∧ ωk . (2.2)

We use conventions in which the exterior derivative and the wedge product are (dω)ab =
∂aωb − ∂bωa and (ω ∧ φ)ab = 1

2
(ωaφb − ωbφa), and we have extracted in (2.1) the overall

factor σ2 := 2G/3π for numerical convenience. As σ has the dimension of length, we can
take a, b, N , t, and ωi to be dimensionless. In the special case a = b, the spatial sections
are round 3-spheres with radius of curvature σa.

The spacetime topology is R × SU(2) ≃ R × S3, and the spacetime isometry group is
that of the constant t hypersurfaces, U(2) ≃ SU(2)L × U(1)R/Z2. The SU(2) factor comes
from the invariance of (2.1) under the left action of SU(2) on itself, and the further U(1)
isometry (acting on the right) expresses the equality of the coefficients of (ω2)

2
and (ω3)

2
.

Inserting the metric (2.1) into the gravitational action-integral,

S =
1

8πG

[∫
(1

2
R− Λ)dV +

∮
trK

]
, (2.3)

with (bare) cosmological constant Λ, yields the minisuperspace action-integral

S = 1
6

∫
dτ

[
−a

(
db

dτ

)2

− 2b
da

dτ

db

dτ
+ 4a− a3b−2 − 3λab2

]
, (2.4)
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where we have introduced the dimensionless proper time parameter τ by dτ := Ndt and
written λ := 1

3
σ2Λ. The true proper time is στ .

Given the action-integral, it is easy to derive the classical equations of motion in both
the unimodular and non-unimodular theories. In the non-unimodular theory, the classical
equations of motion result from making arbitrary variations of S that fix the metric on
the boundary. Because the ansatz (2.1) expresses invariance under a compact symmetry
group, it suffices to consider variations of the parameters a, b, and τ . The condition of fixed
boundary metric is then equivalent to fixing a and b (but not τ) at the endpoints.3

The general solution to the variational equations can be written in the gauge Na = 1 as

b2 = A2 + t2/A2 , (2.5a)

a2b2 = A2
{
4
(
A2 − t2/A2

)
+ 3λ

[
t4/(3A4) + 2t2 − A4

]}
+ ABt , (2.5b)

N = 1/a , (2.5c)

where A > 0 and B ∈ R are the two constants of integration. This metric covers the spatially
homogeneous region of the Taub-NUT-de Sitter solution [48]. In the notation of Ref. [48],
the Taub-NUT “charge” l and “mass-parameter” m are given by l = 1

2
σA and m = 1

4
σB.

For the purposes of the unimodular theory, it is convenient to write the action-integral in
a slightly different form. First of all, we may set Λ to zero in (2.3) without loss of generality,
because it influences neither the classical solutions nor the quantum measure. (We obtain the
classical equations of motion by varying S subject to the condition that the total 4-volume
is fixed.) Second, because of the special role played by the spacetime 4-volume, it is useful
to adopt it as our time coordinate (see for example Ref. [1]). For numerical convenience,
we may use the dimensionless 4-volume parameter T defined by dT = ab2dτ : the 4-volume
bounded by the hypersurfaces T = T1 and T = T2, with T1 < T2, is then 2π2σ4(T2 − T1).
Writing (2.4) in terms of T (with λ set to zero) we obtain the action-integral in the form

S = 1
6

∫
dT

(
−a2b2b′2 − 2ab3a′b′ + 4b−2 − a2b−4

)
, (2.6)

where the prime denotes derivative with respect to T . In the variation of (2.6), fixing the
total spacetime volume is equivalent to fixing the difference between the initial and final
values of T , and as the integrand does not involve T explicitly, this is further equivalent to
fixing individually the initial and final values of T . The general solution to the resulting
variational equations is precisely (2.5), but λ emerges now as an integration constant pro-
portional to the “unimodular energy,” and the general solution contains thus three constants
of integration.

It is convenient to replace a and b by the coordinates (cf. [1,49])

3In an action that retains t and N , the values of t at the endpoints can be fixed, and the equation

that results from variation with respect to N is equivalent to the equation obtained by varying

(2.4) with respect to τ at the endpoints.
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u := a2b ,
v := b3 ,

(2.7)

which represent spatial volumes rather than lengths. In these coordinates, the action-integral
(2.6) simplifies to

S =

∫
dT

(
− 1

18
u′v′ − 1

6
uv−5/3 + 2

3
v−2/3

)
. (2.8)

The configuration space of the theory is therefore the future quadrant of a (1+1)-dimensional
Minkowski space, and (u, v) forms a pair of positive-valued null coordinates. (Notice that in
this system, the “radial coordinate”

√
uv represents the spatial volume.) The Hamiltonian

operator corresponding to (2.8) is

Ĥ := 18
∂2

∂u∂v
+ 1

6
uv−5/3 − 2

3
v−2/3 , (2.9)

where we have chosen to factor-order the kinetic part of the Hamiltonian as the D’Alem-
bertian (or “Laplace-Beltrami operator”) of the metric associated to the kinetic terms in
the Lagrangian with T used as time-parameter. Notice that a change of time-parameter
would change this metric and consequently change what we would call the D’Alembertian.
Conversely, the combination of 4-volume time with Laplace-Beltrami ordering with respect
to that time provides a universal factor-ordering for all spatially homogeneous cosmological
models [50]. The Hilbert space inner product that goes naturally with a metric is the L2

integral with respect to the metric’s volume element, and the Laplace-Beltrami operator is
formally selfadjoint with respect to this inner product, as is easily seen in general. In the
present case this inner product is

(ψ1, ψ2) :=

∫

u>0

v>0

du dv ψ1ψ2 . (2.10)

As Ĥ is real, it has selfadjoint extensions by von Neumann’s theorem (Ref. [51], Theo-
rem X.3). Choosing one such extension specifies a unitary evolution in the Hilbert space of
square integrable functions ψ.

B. Friedmann truncation

The Taub model can be truncated to its isotropic special case by setting a = b. The
metric (2.1) becomes then the metric of the positive curvature Friedmann model,

ds2 = σ2
[
−N2dt2 + a2dΩ2

3

]
, (2.11)

where dΩ2
3 is the metric of the unit 3-sphere.4 The isometry group of the constant t hyper-

surfaces is O(4). The action (2.6) becomes

4Our conventions in the Taub model were chosen so as to make the Friedmann metric (2.11) agree

with the conventions of Refs. [28,29].
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S = 1
2

∫
dT

(
−a4a′2 + a−2

)
. (2.12)

The Hamiltonian operator corresponding to (2.12) is

Ĥ :=
1

2

[
9

(
d2

dx2

)
− x−2/3

]
, (2.13)

where x := a3 and we have again chosen the Laplace-Beltrami factor ordering belonging to
T as time parameter. The matching inner product is

(ψ1, ψ2) :=

∫ ∞

0

dxψ1ψ2 . (2.14)

and Ĥ is formally selfadjoint with respect to it. The selfadjoint extensions of Ĥ are specified
by the boundary condition cos(θ)ψ − sin(θ)dψ/dx = 0 at x = 0, where the parameter θ
satisfies 0 ≤ θ < π (Ref. [51], Theorems X.8 and X.10). Choosing the value of θ specifies a
unitary quantum evolution.

III. TAUB NO-BOUNDARY SADDLE POINTS FOR B
4

TOPOLOGY

In this section we discuss the Taub no-boundary saddle points and wave functions when

the 4-manifold is the closed 4-dimensional ball B
4

(often called disk D
4). In subsection IIIA

we find the saddle-point geometries, and in subsection IIIB we discuss the saddle-point
estimates to the wave function.

As discussed in the Introduction, we introduce a wave function via the (formal) no-
boundary path integral

ΨNB(a, b;T ) =

∫
Dg exp (iS) . (3.1)

where the domain of integration is some appropriate class of Lorentzian, or almost
Lorentzian, 4-geometries, possibly with a short-distance cutoff. In the histories entering
the integral, the “final” values of the scale factors and the total elapsed volume parameter
T are required to coincide with the arguments of the wave function ΨNB; in particular, T in
ΨNB is assumed always positive.

In this paper we only consider ΨNB in the saddle-point estimate:

ΨNB ≈
∑

k

Pk exp
(
iSk

)
, (3.2)

where the Sk(a, b;T ) are the actions of some subset of the complex classical solutions on the
no-boundary 4-manifold in question. The prefactors Pk are assumed to be slowly varying
compared with the exponential factors but otherwise are left unspecified. Which (if any) of
the saddle point metrics actually contribute to (3.2), given a proper definition of the integral
in (3.1), will be left a subject for future work (see the comments on this issue in Ref. [3]).
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A. Saddle-point geometries

To find the actions Sk(a, b;T ) that enter the saddle-point estimate (3.2), we need on

B
4

the Taub solutions with prescribed values of the boundary scale factors and total 4-
volume. The boundary data for the solutions is Lorentzian, but the saddle-point geometries
are allowed to be complex.

As a first step, we need the general complex Taub solution to the unimodular field
equations. It is clear that one class of complex Taub solutions is obtained from the Lorentzian
solution (2.5) by extending the parameters A, B, and λ to complex values, with A 6= 0, and
making t a complex-valued function t(s) of a new, real-valued time coordinate s. We may
assume dt/ds 6= 0. It can be shown that the only complex Taub solutions not obtained in
this way are obtained in the same way from the metrics given by

b2 = ±2it , (3.3a)

a2 = 2λt2 ± 2it± iDt−1 , (3.3b)

N = 1/a , (3.3c)

where D and λ are complex parameters. The family (3.3) can be formally recovered from
(2.5) by setting B = ±8iA (1 − λA2) ± 2iDA−3, adding ±iA2 to t, and taking the limit
A→ ∞.

Now, the condition that the solution be defined on B
4
means that s must be interpretable

as the radial coordinate of hyperspherical coordinates on B
4
. Without loss of generality we

can take s ∈ [0, 1], such that s = 0 occurs at the coordinate singularity at the origin of the
hyperspherical coordinates, and s = 1 occurs on the boundary. It is then necessary that
both a and b vanish at s = 0.

Let us first concentrate on the family (2.5). Writing t(0) =: t0, the condition that a and
b vanish at s = 0 implies

t0 = iηA2 , (3.4a)

B = 8iηA
(
1 − λA2

)
, (3.4b)

where η is a parameter that may take the values ±1. When equations (3.4) hold, it is
straightforward to verify that the metric is indeed extendible to s = 0 so that it defines a

solution on B
4
. Thus the smoothness required of the no-boundary metric is automatic in

this case, and does not further restrict the solution.
To find the action, we recall that when deriving (2.6) from (2.3) (with Λ = 0), we assumed

the spacetime topology R×S3, for which the boundary term in (2.3) consists of components

both at the initial and final boundaries. In the action for the topology B
4
, (2.3) contains a

boundary term only at a “final” boundary, and we therefore need to add to (2.6) at s = 0
the appropriate boundary term, −1

6
N−1d(ab2)/dt. This boundary term however vanishes by

virtue of (3.4). (As earlier with smoothness of the metric, assuming a no-boundary topology
thus turns out to be indistinguishable, in this case, from simply assuming that the universe
expands from zero diameter.) Evaluating (2.6) yields then

S = iη

[
λA4ρ2

∗(ρ∗ + 1)(ρ∗ + 4)

6(ρ∗ + 2)
+

2A2ρ∗(2ρ∗ + 3)

3(ρ∗ + 2)

]
, (3.5)
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where we have parametrized the value of t at s = 1 as t0(1 + ρ∗).
In terms of A and ρ∗, the boundary scale factors and the total elapsed T are given by

a2 = −A
2ρ∗ [4 + λA2ρ∗(ρ∗ + 4)]

ρ∗ + 2
, (3.6a)

b2 = −A2ρ∗(ρ∗ + 2) , (3.6b)

T = −iηA4ρ2
∗

(
1
3
ρ∗ + 1

)
. (3.6c)

Solving the algebraic equations (3.6) for A2, ρ∗, and λ yields

A2 =
b2(ǫV − 1)2

ǫV − 2
, (3.7a)

ρ∗ = −2 +
2

ǫV − 1
, (3.7b)

λ =
4

ǫV b2

[
1 − a2

b2(ǫV − 1)2

]
, (3.7c)

where ǫ is a parameter that may take the values ±1,

V :=
√

1 + 12iηT/b4 , (3.8)

and we choose the branch of the square root in (3.8) so that the real part of V is positive.
It is clear from (3.7) and (3.8) that all the four sign combinations for η and ǫ yield

complex geometries that satisfy our boundary conditions. In terms of the boundary data,
the actions of these geometries read

Sη
ǫ (a, b;T ) =

iη

3

[
a2

2

(
1 − 2

ǫV − 1

)
− b2(ǫV − 1)

]
. (3.9)

Following the same strategy starting from the exceptional family (3.3) yields no solutions:
regularity at s = 0 implies t0 = 0 and D = 0, and positivity of the total elapsed T is then
incompatible with the positivity of b2 at the boundary.

None of the solution geometries we have found in this section is Lorentzian, or indeed real
with any signature. Rather all are genuinely complex. Although Euclidean signature metrics
have played no role in their derivation, it may nevertheless be of interest to see what happens
when these metrics are continued to purely imaginary values of the unimodular time T . (In
particular, this may bear on the important question of whether one can reach our saddle point
metric from a Lorentzian metric without leaving the kind of domain defined in Section 5 of
Ref. [52].) When T is analytically continued to imaginary values as T = −iηTR with TR > 0,
it can be verified that the geometries with ǫ = 1 continue to Riemannian geometries that

satisfy the unimodular boundary data on B
4
, with TR proportional to the total Riemannian

4-volume; conversely, it can be verified that these are the only Riemannian Taub solutions

on B
4

with the unimodular boundary data.5 The continuation sends iSη
1 to −ηI, where

5The singularity in (3.7a) at V = 2 is a coordinate effect. A manifestly regular Riemannian form

for the metric with V = 2 can be found as a Riemannian section of the exceptional family (3.3).
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I is the Riemannian unimodular action. Therefore, our complex solutions with ǫ = 1 are
related to solutions of the Riemannian theory by an analytic continuation in the unimodular
time: the Wick rotation is in the usual direction for η = 1 and in the unusual direction for
η = −1. When the same continuation is done to our solutions with ǫ = −1, one obtains

geometries on B
4

that satisfy the Riemannian unimodular data, in particular with positive
Riemannian volume, and iSη

−1 again continues to real values. These geometries are however
not Riemannian but complex.

B. Saddle-point-estimate wave functions

We turn now to the saddle-point estimate (3.2) to the no-boundary wave function ΨNB,
with the classical actions Sη

ǫ of (3.9). We assume throughout the pre-exponential factors
to be so slowly varying that the dominant behavior of each term in (3.2) arises from the
exponentials. We assume also that the set of saddle points contributing to ΨNB (i.e., the
range of the index k in (3.2)) does not depend on the values of the parameters T , a, and b.6

It can be verified that Sη
ǫ satisfies the time-dependent Hamilton-Jacobi equation with

the Hamiltonian (2.9), as by construction it must. Consequently, the estimate (3.2) satisfies
the Schrödinger equation

i
∂ψ

∂T
= Ĥψ (3.10)

in the approximation to which we are working. We ask: which, if any, of the terms in
(3.2) are compatible with ΨNB being a wave function in the Hilbert space H defined in
subsection IIA, evolving unitarily by some selfadjoint extension of the Hamiltonian (2.9)?

Consider first the case η = −1. As the first term in S−1
ǫ has a negative imaginary part

for either sign of ǫ, the terms in (3.2) with η = −1 diverge exponentially as a → ∞ with
fixed b (or, in the coordinates (u, v) of subsection IIA, as u → ∞ with fixed v). These
saddle points are therefore not compatible with ΨNB having finite L2 norm.

Consider then the case η = 1. For fixed T , the imaginary part of S1
ǫ is bounded below.

Without further knowledge of the pre-exponential factor, one cannot therefore exclude the
wave functions Ψ+ := P+ exp(iS1

1) and Ψ− := P− exp(iS1
−1) from being normalizable. When

T/b4 ≪ 1, we have

S1
1 = −a

2b4

18T
+ · · · , (3.11a)

S1
−1 =

i(a2 + 2b2)

3
+ · · · . (3.11b)

In this limit, the wave function Ψ+ is therefore rapidly oscillating, while Ψ−, on the other
hand, is exponentially suppressed for large a or b. One can also see that in this limit, the

6In section IV we will have to generalize this assumption slightly to cover the case where two

saddle points degenerate for certain values of a, b and T .
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saddle point metric with ǫ = 1 = η is (except near s = 0) close to a Lorentzian Taub-NUT-
de Sitter universe with m = 0. We note that a similar conclusion was reached within the
conventional Einstein theory in Ref. [53].

To address the unitarity of the evolution, we note that for fixed a and b, S1
ǫ has the large

T expansion

S1
ǫ = 2ǫe−iπ/4

√
T/3 + 1

6
i(a2 + 2b2) +O

(
T−1/2

)
. (3.12)

The contribution to the inner product (Ψ+,Ψ+) from any compact region in the configuration
space is therefore exponentially increasing in T . This means that Ψ+ cannot evolve by
any selfadjoint extension of the Hamiltonian (2.9): probability is being injected into the
configuration space either from the finite boundaries or from infinity. As we do not have an
estimate for the saddle-point prefactor, we shall not attempt to discuss exactly where the
probability is entering the configuration space. However, if the saddle-point form is good for
T/b4 ≫ 1, equation (3.12) shows that the probability is flowing in the direction of isotropic
expansion, as measured by Imag(Ψ∗∇Ψ); and for T/b4 ≪ 1, equation (3.11a) exhibits a
similar direction of flow. This suggests that the flux is coming from somewhere on the
finite boundary. The emerging picture is perhaps compatible with the tunneling proposals
advocated by Linde [30–34] and Vilenkin [35–40]. Notice, however, that the latter proposals
are couched in terms of the non-unimodular theory, where the relevant boundary is (for
the Taub model) only one-dimensional. For us, it is two-dimensional (the extra dimension
being parameterized by T ), and there can be no simple correspondence between boundary
conditions formulated in the two frameworks.

In this connection notice that, precisely because the unimodular ψ depends on a param-
eter time T , the early-time behavior of the universe shows up much more directly in ψ than
it would in a non-unimodular formulation, and one can ask whether ψ is concentrated for
T = 0 at universes of zero size, as the no-boundary picture would seem to require. For the
wave function Ψ+, equation (3.11a) does appear to describe a state for which the probability
is concentrated near configurations of small 3-volume (in the sense that the rapid oscilla-
tions cause Ψ+ to vanish uniformly in the distributional sense as T → 0, in any region of
compact support disjoint from the boundary uv = 0).7 For the wave function Ψ−, equation
(3.11b) describes a universe that at birth is of Planckian dimensions in all directions, which
for quantum gravitational purposes is probably as close as one would care to get to strictly
zero size.

With ǫ = −1, we see from (3.12) that the contribution to the inner product (Ψ−,Ψ−) from
any compact region in the configuration space is exponentially decreasing in T . One might
see this as evidence for a different type of non-unitary evolution of Ψ−, with probability now
flowing out of the configuration space. Perhaps, however, one cannot exclude that Ψ− might
still approximate a unitarily evolving wave function in some relevant sense: the probability
would just be spreading out sufficiently fast to give an exponential suppression at late times

7More precisely, Ψ+ seems to describe a violent explosion starting from zero volume, analogously

to how a nonrelativistic particle initially at the origin at t = 0 is at any later moment uniformly

distributed throughout space with a wave function ∝ exp(ix2/t).
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in any fixed compact region of the configuration space. Resolving this question would seem to
require, at a minimum, a better understanding of the prefactor in our saddle-point estimate.

In summary, the wave functions with η = −1 cannot represent states in the Hilbert
space H. The wave function with η = ǫ = 1 may represent a state in H, but it has an
exponentially growing norm and thus cannot evolve unitarily. The wave function with
η = 1 and ǫ = −1 may represent a state in the Hilbert space, and, at the level of our
semiclassical estimate, this state may evolve unitarily. It is therefore the only one that
might be compatible, in a Lorentzian histories framework, with a universe consisting of a
single macroscopic component with a single moment of birth.

IV. TAUB NO-BOUNDARY SADDLE POINTS FOR CROSS-CAP TOPOLOGY

In this section we discuss the Taub saddle points and wave functions when the (truncated)

4-manifold is the closed 4-dimensional cross-cap, M⊗ := RP
4 \B4 ≃ RP

4#B
4
, where B4 is

the open 4-dimensional ball.8 In subsection IVA we find the saddle-point geometries, and
in subsection IVB we discuss the saddle-point estimates to the wave function.

A. Saddle-point geometries

It is useful to view M⊗ as a quotient space. To this end, let M̃ := [−1, 1] × S3. M̃ is

a compact orientable manifold with boundary S3 ∪ S3. Consider the map J : M̃ → M̃ ;
(s,x) 7→ (−s, Px), where P : x 7→ Px is the antipodal map on S3. J is an involution with a

free and properly discontinuous action, and the quotient space M̃/J is diffeomorphic to M⊗.

One can also visualize M⊗ as built by closing off the upper half s > 0 of M̃ by attaching
s = 0 to an RP

3. Clearly, M⊗ is a nonorientable compact manifold with boundary S3.
We need first the general complex Taub geometry on M⊗. To begin, we recall from

section III that the complex Taub geometries on M̃ are obtained from (2.5) or (3.3) by
letting the parameters take complex values and writing the coordinate t as a complex-
valued function t(s), with dt/ds 6= 0. We take the boundaries of M̃ to be at s = ±1. On
these geometries, we realize J as the map (s,x) 7→ (−s, Px), where P acts on SU(2) ≃ S3

as multiplication by diag(−1,−1) in the defining matrix representation. In order that J be
an isometry, it is necessary that db/ds and da/ds vanish at s = 0. This excludes (3.3), and
shows that (2.5) is only possible with t(0) = 0 and B = 0. The condition that J be an

isometry implies, finally, t(s) = −t(−s). Quotienting this geometry on M̃ with respect to J
now gives the desired general complex geometry on M⊗.

Next, we need to match the complex geometry on M⊗ to the unimodular boundary data.
From t(1) = −t(−1) =: t∗, we have

T =

∫ t∗

0

Nab2 dt = t∗

(
A2 +

t2∗
3A2

)
, (4.1)

8This manifold was suggested to us by John Friedman.
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and the action is evaluated from (2.6) to be

S =
λt∗
6

(
−5A2 − t2∗

A2
+

8A6

A4 + t2∗

)
+

4t3∗
3(A4 + t2∗)

. (4.2)

The values of λ, A2, and t∗ can now be found in terms of T and the final scale factors
from (2.5a), (2.5b), and (4.1). The general solution to this system of algebraic equations is

t∗ = yb2/z , (4.3a)

A2 = b2/z , (4.3b)

λ =
z [(a2/b2)z2 + 4z − 8]

b2 (z2 + 4z − 8)
, (4.3c)

where

z = 1 + y2 , (4.4a)

and y is any solution to

3T

b4
=
y(3 + y2)

(1 + y2)2 . (4.4b)

Every root of (4.4b) does, with one exception, yield a saddle-point geometry on M⊗ with
our boundary conditions. The exception occurs when z = 2

(√
3 − 1

)
, in which case the

denominator of (4.3c) vanishes.
With (4.3) and (4.4), the action (4.2) can be written as

S =
Tz

2b2(2 + z)

(
4 − a2z

b2

)
. (4.5)

As (4.5) depends on y only through z, the distinct saddle-point values of the action are
obtained by finding the distinct values of z from (4.4). This is equivalent to solving for z
the quartic

(
3T

b4

)2

=
(z − 1)(z + 2)2

z4
. (4.6)

It is easily verified that the action (4.5), with z given by any root of (4.6) that is a smooth
function of T/b4, satisfies the Hamilton-Jacobi equation.

The roots of (4.6) depend on the quantity α := 3T/b4 > 0. Let

αc := 2−5/233/4
(√

3 + 1
)

, (4.7a)

zc := 2
(√

3 − 1
)

. (4.7b)

For α < αc, there are two distinct real roots, denoted by z+ and z−, satisfying 1 < z− <
zc < z+. For α = αc, these two roots merge at zc: this is the special case in which (4.3c)
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becomes singular. For α > αc, these two roots become a complex conjugate pair, denoted by
(z1, z2), where z1 is in the first quadrant and z2 = z1. The two remaining roots are always a
complex conjugate pair, denoted by (z3, z4), where z3 is in the second quadrant and z4 = z3.
The only instance in which a root is not a smooth function of α occurs in the transition of
the pair (z+, z−) into the pair (z1, z2) at α = αc.

The roots z+ and z− of (4.6) give Lorentzian saddle-point geometries on M⊗. These
geometries have the peculiarity that they are not time-orientable, and they therefore would
fall into the framework of time-nonorientable cobordisms [54], if they were regarded as being
in the domain of the Lorentzian path integral.9 All the other saddle-point geometries are
complex.

We denote the action (4.5) evaluated at the respective roots by S+, S−, S1, S2, S3,
and S4. For later use, we note that the roots have for α ≪ 1 and α ≫ 1 the respective
expansions

z+ = α−2 + 3 +O(α2) (4.8a)

z− = 1 + 1
9
α2 +O(α4) (4.8b)

z3 = z4 = −2 +
4iα√

3

[
1 − 10iα

3
√

3
+O(α2)

]
, (4.8c)

and

z1 = z2 = eiπ/4
√

2/α
[
1 +O(α−1)

]
, (4.9a)

z3 = z4 = e3iπ/4
√

2/α
[
1 +O(α−1)

]
. (4.9b)

B. Saddle-point-estimate wave functions

We are now ready to consider the saddle-point estimate (3.2) to the no-boundary wave
function. As in section III, we assume throughout that the pre-exponential factors are not
important, and that the set of saddle points contributing to Ψ does not change in ranges of
(T, a, b) where the corresponding saddle point geometries vary continuously. As before, we
write Ψ+, Ψ−, Ψ1, and so on, for the saddle point wave functions corresponding to S+, S−,
S1, etc. Notice, however, that while Ψ3 and Ψ4 are defined on all of configuration space, the
pair Ψ± (respectively Ψ1, Ψ2) is defined only for α < αc (respectively α > αc).

It can be shown that the second term in S1 and S4 has a negative imaginary part. From
the limit a→ ∞ with fixed b and T , it is therefore seen that Ψ1 and Ψ4 are not normalizable.

9For a discussion of quantum field theory on time-nonorientable spacetimes, see Ref. [55]. Because

of their time-non-orientability, we suspect that these metrics are not valid saddle points for a path

integral that is originally taken over almost everywhere Lorentzian metrics with a well-defined

causal structure. See section VII for some further thoughts on how one might in principle recognize

the valid saddle points.
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The imaginary part of S3, on the other hand, is positive, and the corresponding term Ψ3

in (3.2) may represent a state in H. For α ≪ 1 with a ≈ b, we have

S3 =
i(a2 + 2b2)

2
√

3
+ · · · . (4.10)

This again describes a Planck sized universe at T = 0. The contribution to the inner product
(Ψ3,Ψ3) from any compact region in the configuration space is exponentially decreasing in T
(see equation (4.12b) below). As in section III, we regard this as consistent with unitary
evolution, although it also might signify a loss of probability through the finite boundary.

The only remaining possibility in (3.2) is a wave function that coincides with Ψ2 =
P2 exp(iS2) for α > αc, and with some combination of Ψ+ and Ψ− for α < αc. We denote
this wave function by Ψ0. The curve α = αc in the configuration space is analogous to a
turning point in a constant-energy WKB approximation, and a saddle-point estimate to Ψ0

would not be expected to be good near this curve. However, beginning as Ψ2 for α > αc, Ψ0

presumably resumes a saddle-point form for α < αc, now as a linear combination of Ψ+ and
Ψ−. Since the imaginary part of S2 can be shown to be bounded below, and S± are purely
real, Ψ0 may thus be normalizable.

When α < αc, the two terms in Ψ0 have each an immediate semiclassical interpretation,
as they each come from a Lorentzian universe (2.5) with B = 0. The two parameters in
this family are A and λ. The reason why two such solutions exist is that there are two
choices for A and λ, obtained from (4.3b) and (4.3c) with respectively z = z±, that make
a spacetime in this family pass through a prescribed point in the configuration space at a
prescribed value of T . For α = 3T/b4 ≪ 1 with a ≈ b, we have

S+ = −a
2b4

18T
+ · · · , (4.11a)

S− =
T

6b2

(
4 − a2

b2

)
+ · · · . (4.11b)

From (4.11) we also see that at T = 0, Ψ+ behaves similarly to Ψ+ in the previous section,
as if the universe had exploded from zero size. On the other hand, Ψ− is quite different from
its earlier namesake, looking like a zero momentum state spread out over all of configuration
space.

Consider, finally, whether the norms of Ψ0 and Ψ3 can be independent of T . For fixed a
and b, (4.9) gives the large T expansion

S2 = e−iπ/4
√

2T/3 +
i(a2 + 2b2)

6
+O

(
T−1/2

)
, (4.12a)

S3 = e3iπ/4
√

2T/3 +
i(a2 + 2b2)

6
+O

(
T−1/2

)
. (4.12b)

It follows that Ψ3 dies out with time at any fixed a, b, whence its evolution can be unitary.
On the other hand, the contribution to the inner product (Ψ0,Ψ0) from any compact region
in the configuration space is seen to be exponentially increasing in T , and Ψ0 cannot evolve
unitarily. As in section III, it is difficult to ascertain where the probability is entering the
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configuration space, but the semiclassical discussion given above for α ≪ 1 suggests that
the flux may be coming from somewhere on the finite boundary, as before.

In summary, the qualitative results with the 4-manifold M⊗ are very similar to those

obtained with the 4-manifold B
4

in section III. Of the four saddle points, two lead to non-
square-integrable wave functions, analogously to the case η = −1 earlier. The normalizable
cases here are those of Ψ3 and Ψ0. The wave function Ψ3 here is analogous to Ψ− there: it
may be normalizable, it evolves consistently with unitarity, it is nowhere rapidly oscillating,
and it describes a universe that has Planckian size at T = 0. Similarly, the wave function
Ψ0 here is analogous to Ψ+ there: it may be normalizable, it has a WKB form expressing
a classically evolving universe in a suitable limit, but its norm cannot be independent of T .
Its behavior at T = 0 differs from that of the earlier Ψ+, however, in a way related to the
degeneracy of z1 and z2 at α = αc.

V. FRIEDMANN TRUNCATION OF THE TAUB SADDLE POINTS AND WAVE

FUNCTIONS

The Taub saddle-point metrics found in sections III and IV clearly specialize to saddle-
points of the Friedmann model by setting a = b, and the corresponding actions are the
restrictions to a = b of those found earlier.

For most of the saddle points, the discussion within the Friedmann model proceeds in

parallel with that in the Taub model.10 In particular, with the 4-manifold B
4
, the saddle

point with η = ǫ = 1 yields an exponentially growing probability flux, and this flux must
now enter the configuration space at the boundary a = 0. With the 4-manifold M⊗, a
similar argument can be made for the wave function Ψ0.

The only qualitative difference between the Taub analysis and the Friedmann analysis

occurs for the saddle point with η = −1 and ǫ = 1 on B
4
, and for the saddle point with

z1 on M⊗. In the two Taub models, the corresponding wave functions (call them Ψ−
+ and

Ψ−
1 ) were seen not to be normalizable. In the Friedmann situation, however, the imaginary

part of the action turns out to be bounded below and the a = b restrictions of these wave
functions are in fact square integrable. (With M⊗, Ψ−

1 covers only part of the configuration
space. However, when α < αc, it becomes a linear combination of terms arising from S± ,
so the full wave function Ψ−

0 is also normalizable.) In the Friedmann restriction, therefore,
these saddle points are both compatible with normalizability. Moreover, for fixed a, these
wave functions are exponentially decreasing in T , and are even compatible with unitary
evolution.

The drastic qualitative change in these two saddle-point contributions upon passing from
the Friedmann model to the Taub model suggests that the “good” behavior of these saddle
points in the Friedmann model should be seen as an artifact of the isotropic truncation. We
shall return to this question in section VII.

10The results reported for the Friedmann model with the 4-manifold B
4
in Ref. [56] only considered

the saddle points with ǫ = 1, inadvertently excluding the saddle points with ǫ = −1.
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VI. BIANCHI TYPE I

In this section we discuss the unimodular no-boundary saddle points and wave functions
in a Bianchi type I minisuperspace model. We take the spatial topology to be T 3, and the
(truncated) no-boundary 4-manifold to be D

2 × T 2, where D
2 is the closed disk. We set up

the unimodular quantum theory in subsection VIA. The no-boundary saddle points and
wave functions are analyzed in subsection VIB.

A. Unimodular quantization of Bianchi type I

The local spatial homogeneity of Bianchi type I is compatible with ten distinct closed
spatial topologies [57]. The number of minisuperspace degrees of freedom depends on the
spatial topology [58–65], and the spatial topology also determines the group of large spatial
diffeomorphisms that can be incorporated as gauge invariances of the model [59,60]. The
topology also determines the possible ways of compactifying the manifold toward the past
to obtain a manifold of no boundary type [59,60].

We shall here focus on a Bianchi type I model with an additional discrete symmetry group
reminiscent of the additional U(1) symmetry that distinguishes the Taub class of metrics
within Bianchi type IX. The results obtained for the conventional Einstein theory in Refs.
[59,60] suggest that this specialized model should faithfully reflect the general Bianchi type
I situation regarding the normalizability and unitary evolution of the wave function.

The metric of our Bianchi type I model reads

ds2 = ρ2
[
−N2dt2 + a2dx2 + b2

(
dy2 + dz2

)]
, (6.1)

where a, b, andN are functions of t, and the overall factor ρ2 := G/(2π2) has been introduced
for numerical convenience. In this subsection we take a2, b2, and N2 to be positive, so
that the metric is Lorentzian. The identifications made on the spatial coordinates are
(x, y, z) ∼ (x+2π, y, z) ∼ (x, y+2π, z) ∼ (x, y, z+2π), and the spatial topology is thus T 3.
The metric (6.1) is obtained from the most general Bianchi type I metric with T 3 spatial
topology by imposing the extra symmetry Z2×D8 where the 8-element dihedral group D8 is
the symmetry group of the square. This is equivalent to demanding that the spatial metric
have three orthogonal closed geodesics, and that two of these geodesics have equal length.

To derive the solutions of the conventional Einstein theory and the unimodular theory,
we proceed as in section II. Inserting the metric (6.1) into the action-integral (2.3) with
bare cosmological constant Λ, and introducing the proper time parameter τ by dτ = Ndt,
we obtain the minisuperspace action

S = 1
2

∫
dτ

[
−a

(
db

dτ

)2

− 2b
da

dτ

db

dτ
− λab2

]
, (6.2)

where λ := ρ2Λ. This action reproduces the full Bianchi type I Einstein equations with a
cosmological constant under variations that fix the initial and final values of the scale factors
but not those of τ . For λ 6= 0, the general Lorentzian solution can be written in the gauge
Na = 1 as
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b = At , (6.3a)

a2b = 1
3
λAt3 + E , (6.3b)

N = 1/a , (6.3c)

where A 6= 0 and E are constants. For λ = 0, the solutions not obtained from (6.3) with
λ = 0 can be put in the form

b = B , (6.4a)

a2b = Dt+ E , (6.4b)

N = 1/a , (6.4c)

where B 6= 0, D, and E are constants, D and E not both equal to zero.
In order to put the action-integral in a form convenient for the unimodular theory, we

introduce the parameter time T by dT = ab2dτ . As before, we also simplify the action,
without loss of generality in the unimodular theory, by setting the bare cosmological constant
to zero. The integral (6.2) then takes the form

S = −1
2

∫
dT ab2(ab′2 + 2ba′b′) , (6.5)

where the prime denotes derivative with respect to T . The 4-volume bounded by the hy-
persurfaces T = T1 and T = T2, with T1 < T2, is 8π3ρ4(T2 − T1), and fixing the 4-volume in
the variation of (6.5) is therefore equivalent to fixing the initial and final values of T . The
unimodular variational equations clearly reproduce the Einstein equations, with the cosmo-
logical constant now emerging as the integration constant proportional to the unimodular
energy.

From (6.5), the unimodular Hamiltonian operator is

Ĥ := 6
∂2

∂u∂v
, (6.6)

where the coordinates (u, v) are defined by (2.7), and we have adopted the Laplace-Beltrami

factor ordering, as in section II. The matching inner product is again (2.10). As Ĥ is
symmetric and real, it has selfadjoint extensions by von Neumann’s theorem.

B. No-boundary saddle points and wave functions

The general complex solution with our Bianchi I symmetries is obtained from the
Lorentzian solutions (6.3) and (6.4) by extending the parameters to complex values and
making t a complex-valued function t(s) of a real-valued time coordinate s. We may assume
dt/ds 6= 0. The condition that the solution be defined on D

2 × T 2 means that s must be
interpretable as the radial coordinate of polar coordinates on D

2. Taking s ∈ [0, 1] as in
subsection IIIA, with s = 0 occurring at the coordinate singularity, it is then necessary that
a vanish at s = 0 but b remain nonzero there. It is straightforward to show from (6.3) and
(6.4) that the general complex solution with this property can be written as
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b = B
(
1 + λÃt

)
, (6.7a)

a2b = t(B/Ã)
(
1 + λÃt+ 1

3
λ2Ã2t2

)
, (6.7b)

N = 1/a , (6.7c)

where B and Ã are nonvanishing complex constants, and we have chosen t(0) = 0. The
absence of a conical singularity at s = 0 requires N−1da/dt → iη as s → 0, where η is
a parameter that takes the values ±1: this implies Ã = −1

2
iη. The metric then defines a

solution on D
2 × T 2 in the sense we seek.

The total elapsed T is

T =

∫ t∗

0

Nab2 dt = t∗B
2
(
1 − 1

2
iηλt∗ − 1

12
λ2t2∗

)
, (6.8)

where we have written t(1) =: t∗. Solving for B, λ, and t∗ in terms of T and the boundary
values of the scale factors, we obtain

B =
2iηT

a2b
, (6.9a)

λ =
8T

3a4b2

[(
a2b2

2T

)3

+ iη

]
, (6.9b)

t∗ =
3a4b2

4T

[(
a2b2

2T

)2

+
iηa2b2

2T
− 1

] . (6.9c)

As discussed in subsection IIIA, the action contains the integral term (2.6) as well as
a boundary term from s = 0, and for the metric (6.1) the boundary term reads11

−1
2
N−1d(ab2)/dt [45,66–68]. The value of the integral term is −1

2
λT , and that of the bound-

ary term is −1
2
iηB2. In terms of the boundary data, the action reads

Sη(a, b;T ) = −a
2b4

6T
+

2iηT 2

3a4b2
. (6.10)

It is easily verified that this action satisfies the Hamilton-Jacobi equation.

11The boundary term contributes here because we are essentially in a 2-dimensional situation.

Its presence marks a genuine difference between the point of view that the spacetime manifold is

a cobordism with empty initial boundary, and the point of view that it has an initial boundary

of zero spatial volume. In the Taub models we considered, this distinction was effectively moot

because the analogous boundary term did not contribute. Similarly, the assumption that the saddle

point metric must be smooth is also playing an important role here, in contrast to the Taub case.

The boundary term is somewhat reminiscent of the pure imaginary topological contribution to the

Lorentzian action-integral found in Ref. [52].

21



The solution geometries are genuinely complex, analogously to those found for the Taub
model with R

4 (untruncated) topology. As before, we have not tried to analyze directly
which, if any, of the saddle points can be reached from an almost Lorentzian metric on the
same manifold by an admissible deformation. We can, however, glean some indirect evidence
on this by considering the Wick rotation to the Riemannian case. When T is analytically
continued to imaginary values as T = −iηTR with TR > 0, the geometries continue to
Riemannian geometries that satisfy the unimodular boundary data on D

2 × T 2, with TR

proportional to the total Riemannian 4-volume; conversely, these are the only Riemannian
solutions of our Bianchi type I model on D

2 × T 2 with the unimodular boundary data. The
continuation sends iSη to −ηI, where I is the Riemannian unimodular action. The situation
is thus as for ǫ = 1 in section III: the complex spacetimes with the Lorentzian boundary
conditions are related to solutions of the Riemannian theory by an analytic continuation
in the unimodular time, with a Wick rotation in the usual direction for η = 1 and in the
unusual direction for η = −1.

We can now turn to the saddle-point estimate (3.2). For fixed T , the wave function with
η = −1 diverges exponentially as a2b→ 0, and consequently cannot be square integrable.12

The wave function with η = +1, on the other hand, is compatible with normalizability.
Moreover, this wave function decays exponentially as T → ∞ at fixed a and b.

As explained in section II, we officially regard such behavior as consistent with unitary
evolution. In this case, moreover, it appears plausible that probability actually is flowing
toward infinity, rather than escaping through the finite boundary. Indeed, if we limit our-
selves to values of a,b ≥ 1 (meaning that none of the dimensions of 3-space has sub-Planckian
scale), then it is easy to see that the estimate Ψ = O(1)eiS implies that the probability for
the 3-volume V = ab2 to be less than

√
T is exponentially small in T 2/V 4. Here it is helpful

to rewrite Sη in the form

iSη(a, b;T ) = −iuv
6T

− 2ηT 2

3u2
, (6.11)

where u = a2b and v = b3 are the “light cone coordinates” introduced earlier, for which
V =

√
uv. Thus, the universe inevitably expands as T increases.

Moreover, if the universe expands enough so that a2b2 becomes ≫ T , then it enters a
regime in which (for both η = +1 and η = −1) Ψ oscillates rapidly, with the corresponding
WKB trajectories forming (as (6.11) shows) a two-parameter family of classical Lorentzian
solutions that are locally isometric to de Sitter, expanding exponentially in the cosmological
time, with the ratio of the scale factors remaining constant. (One parameter of the family
is the cosmological constant, and the other one is the ratio of the scale factors.) Indeed, the
saddle point metric (6.7), (6.9) in this regime is itself (with our choice of “complex gauge” for
it) very close to being Lorentzian at late times, and therfore close to some specific Lorentzian

12Unlike for the unnormalizable wave functions in the Taub cases, the divergence here is for small

universes rather than large ones. In that sense, the argument for dismissing this saddle point is

perhaps less compelling than before, because an ultraviolet cutoff on a and b would render the

η = −1 wave function compatible with normalizability.
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solution ĝ of the classical Einstein equations. This indicates that the major contribution to
(3.1) for a2b2 ≫ T comes from 4-geometries that at late times are close to ĝ, and therefore
are behaving essentially classically.

The behavior of our saddle point estimate for T → 0 is also suggestive. In this limit,
(6.11) shows, as before, that the distributional support of Ψ shrinks down on uv = 0,
describing the explosive birth of a universe at zero 3-volume ab2 (although a and b need not
vanish separately).

In summary, only the saddle point with η = 1 yields a square integrable wave function.
This wave function is also compatible with unitary evolution at the level of our saddle-point
estimate, and it can be construed as describing a universe that begins at 0 volume and
ultimately enters a regime of classical isotropic expansion at late times.

In concluding this section, we mention that it would be straightforward to analyze also
the Bianchi type I analog of the cross-cap manifold we considered in section IV, namely
the 4-manifold that is the product of T 2 and the closed two-dimensional cross-cap. One
could proceed as in section IV, quotienting [−t∗, t∗] × T 3 by the map J : (t, x, y, z) 7→
(−t, x+ π, y, z). The only saddle points are then flat, and the saddle-point action vanishes.
This could be interpreted as a classical birth of a universe, if one were happy with the lack
of time orientability of this metric (and the concomitant implication that the universe could
die classically, in a time reversal of its birth).

VII. SUMMARY AND DISCUSSION

In this paper we have discussed the no-boundary path integral within unimodular Ein-
stein gravity in the Taub minisuperspace model with S3 spatial topology and in a Bianchi
type I minisuperspace model with T 3 spatial topology. The (future-truncated) 4-manifolds
considered in the Taub model were the closed 4-dimensional ball and the closed 4-dimensional
cross-cap, while in the Bianchi type I model we only considered the closed disk times T 2.
In all three cases we found a saddle point (or combination of them) for which the resulting
estimate to the wave function Ψ is compatible with normalizability and unitary evolution.
In the Bianchi type I model the estimate was rapidly oscillating for a2b2 ≫ T , and it cor-
responded there to a family of isotropically expanding Lorentzian universes. In the Taub
model, on the other hand, the estimate did not appear to have such a WKB region with
either choice for the 4-manifold.

In the Taub model, with either 4-manifold, we also found a saddle point for which the
resulting estimate to the wave function is compatible with normalizability and corresponds at
late times to a family of exponentially expanding Lorentzian universes. However, both these
wave functions evolve nonunitarily, with probability (in the sense of |Ψ|2) being injected into
the configuration space at an exponentially increasing rate with respect to the unimodular
time.

It should be emphasized that we did not attempt to define the path integral beyond
the saddle-point approximation. In particular, we did not attempt to discuss how good
our saddle-point estimate of Ψ should be expected to be. It would be possible to make
some estimates on the pre-exponential factor (assuming our choice of factor ordering in
the Hamiltonian operator), but this would seem to contain little information beyond what

23



we already have. In particular, for the saddle points compatible with unitary evolution, the
saddle-point estimate does not seem to contain enough information to single out a particular
selfadjoint extension of the Hamiltonian.

When specializing the saddle points of the Taub model to those of the Friedmann model,
we found, for each of the two 4-manifold topologies we considered, one saddle point for
which an unnormalizable Taub wave function becomes a Friedmann wave function that
is compatible with normalizability, and even compatible with unitary evolution. While
these saddle points would thus have seemed highly appealing in the Friedmann model, the
properties of interest disappear upon generalization to the Taub anisotropy. This should
alert one to the need to understand whether our results in the Taub model and the Bianchi
type I model would remain qualitatively unchanged upon the addition of still more degrees
of freedom.

One avenue towards investigating this would be to include some inhomogeneous pertur-
bations in the path integral as linearized “test” fields [44,45]. For example, if one adds to the

Friedmann model a massless scalar test field, and takes for background the B
4

saddle point
metric with ǫ = 1 and η = −1, then one does not obtain a normalizable saddle point wave
function for the scalar field. In this case, therefore, the criterion of a normalizable scalar
field perturbation wave function around the Friedmann saddle point metric agrees with the
criterion of a normalizable Taub wave function.

The underlying question here is how one can actually recognize which saddle points, if
any, yield a good approximation to the original path integral (3.1). In principle this reduces
to the question whether a given saddle point metric g can be reached by deforming the
gravitational path integral from an originally Lorentzian “contour” to a complex contour
passing through the saddle point in question. For such a deformation to be valid, the
path integral would, at a minimum, have to be convergent for all intermediate values of the
contour, and one might, in a preliminary formulation, reduce this to the question whether the
complex metric g can be reached by a curve of metrics g(s) all of which admit a convergent
path integral for a test scalar field (a type of perturbation that has much in common with
perturbations of the metric itself). In Ref. [52] a criterion of this type was used to fix the
sign of the imaginary part of a complex regulator that was there added to the metric.

Unfortunately, the issues raised in the previous two paragraphs are both clouded by the
fact that each of our saddle points actually belongs to an entire family of saddle points
(all with the same action S) whose members are related to each other via “complex dif-
feomorphisms”, or in other words deformations of the complex path t(s) that was used to
parameterize the general complex solution of the Einstein equations in sections III and IV.
Although S itself does not depend on the choice of t(s), the criteria of normalizable pertur-
bation wave functions and convergent perturbation path integrals apparently do. We leave
more systematic investigation of these questions to the future.

The results we have just summarized cannot be claimed to be realistic, of course, if only
because they omit all other fields than gravity, and because they represent situations of artifi-
cially imposed symmetry. Nevertheless, the saddle points we have found, and the associated
wave functions, contain enough interesting features to warrant some further comments of an
interpretive nature.

In order to be convincing, an interpretation of our results would have to draw on a
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more general interpretive framework for quantum gravity itself, in terms of which we could
understand the significance of the saddle point metrics and wave functions we have been
computing. From a histories point of view, a quantum wave function has no direct meaning
at all. Rather, it is seen as an intermediary in the computation of the quantum measure,
µ(C) = ||ψC ||2, of the set C of Lorentzian manifolds (or more general histories) whose path
integral ψ is.13 It is in terms of this quantum measure µ(C) [not to be confused with the
“measure-factor” dν(g) that occurs in expressions like

∫
dν(g)eiS(g)] that predictions must

be made. In special situations µ reduces to a probability, and more generally it seems to
represent a kind of propensity for the actual history to belong to C. In particular, one could
probably interpret |ψ(a, b;T )|2 in the present case as the probability density for the universe
to find itself with the scale parameters a and b when the accumulated 4-volume reaches T .
(For more details see Refs. [1,3,19,21,23].)

Now, in nonrelativistic quantum mechanics, ψC depends parametrically on ordinary time
t, and its squared norm ||ψC ||2 must be independent of t in order that µ(C) be defined
consistently. This independence is guaranteed by unitarity. For gravity with T = 4V playing
the role of parameter time, an analogous unitarity would seem to be required in order that
the quantum gravitational measure µ be well defined. In our minisuperspace truncation
of general relativity, one can certainly impose a unitary evolution on ψ if one neglects
topology change, because the unimodular Hamiltonian operator is real in the Schrödinger
representation, as pointed out earlier. However, it is not so clear how topology change affects
the possibility of unitarity, nor is it clear what is the proper class of spacetimes over which
the gravitational path integral should be taken in a cosmological setting. We believe that
our results can shed some light on both these questions.

One natural idea, suggested by what we know of the big bang, is that the universe should
expand from zero initial size. In a discrete setting this idea can perhaps be expressed by
positing a single initial element or “origin”, in a continuous setting it must translate into
conditions on the topology and the metric of the spacetime manifold. Let us assume that the
birth of a universe at zero size corresponds topologically to a cobordism with empty initial
boundary (it is thus a special case of topology change). References [41,42,52] delineate a
class of symmetric tensor fields that exist on any cobordism, that determine a well defined
causal order, and that are globally smooth with Minkowskian signature almost everywhere.
If we specialize them to the case of a manifold appropriate to a big bang cosmology — one
without initial boundary and compact toward the past — then we arrive at a Lorentzian
version of the so called no-boundary proposal for quantum cosmology [27–29,44], with a
definite choice for the metrics to be integrated over.14

In a cosmology of this sort, the path integral is a sum over certain almost Lorentzian

13In addition to its technical role as “square root of the quantum measure”, ψ can serve as a

summary of the past, useful for computing the measures µ(C) of sets C defined in the future.

14Notice that the no-boundary condition, regarded in this manner, is a condition on the histories

themselves; it need make no mention of any wave function. From a histories perspective, such a

condition is more natural than any boundary condition couched in terms of the wave function Ψ.
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metrics on manifolds without initial boundary. More fundamentally, one might expect the
sum to be over an underlying discrete structure [3], a possibility that could manifest itself
in the continuum in more than one way. For example, it might yield an amplitude for the
universe to “bounce” (collapse and then re-expand) or to develop into a “bush-like”, multi-
component structure, emerging from a single “stem”. In fact, some appeal to discreteness
might be required just for consistency: in order that the (approximate) continuum wave
function be truly square integrable (see below).

Now suppose for a moment that the only topology change that need be considered is the
initial expansion we have just been considering, and that only a single macroscopic “com-
ponent” of the universe comes into being thereby. If we further fix the 4-manifold topology,
then we are left with a sum over almost Lorentzian 4-geometries on a given manifold, and if
the quantum measure µ(C) is to be formed in the way suggested in [1], then for consistency,
we need ||ψC ||2 to be independent of T (for T sufficiently large), where in particular, C can
be the set of all 4-geometries with V = T . We also need, of course, that ||ψ||2 < ∞ in
order that µ be defined at all. To make contact with the analysis in this paper, we need
one further assumption, which is that the Lorentzian functional integral defining ψ can be
analytically continued to complex metrics and then approximated by deforming the “in-
tegration contour” to pass through a saddle point of the analytically continued integrand.
This would justify (within a minisuperspace truncation) the kind of approximate wave func-
tion we have studied herein. What is more, an analysis of the conditions of validity for the
contour deformation would tell us, in principle, which saddle points (if any) actually con-
tribute to (3.2), and with what signs. In particular, it would tell us whether our conditions
of a smooth complex metric on a smooth manifold without boundary correctly describe the
saddle points of the analytically continued functional integral.

The two key questions then are whether ψ is L2 (so that µ can be defined) and if so,
whether (ψ, ψ) is independent of T (so that the definition can be consistent). If the answer
is yes, then the picture painted above is at least internally coherent. Lacking the deeper
analysis that would tell us which saddle point(s) we must use, the best we can say is that,
for each of the 4-manifold topologies we have studied in this paper, there is at least one
saddle point consistent with these two key features at the level of approximation to which
we are working. In fact, there is precisely one such saddle point for each manifold (actually a
linear combination of saddle points in the Taub cross-cap case), so we get in effect a unique
prediction of the no-boundary wave function in each case.

A further formal requirement, which would seem valid to the extent that post-natal
topology changes can be ignored, or at least localized at the boundaries of configuration
space, is that ψ obey the unimodular Schrödinger equation (3.10).15 We have seen that
this demand is also met by all of our saddle points (or appropriate combinations of them in
the Taub-cross-cap case), because, to the accuracy of our approximation, the Schrödinger
equation reduces to the Hamilton-Jacobi equation, which all of our saddle point actions
satisfied. Conversely, the requirement would not be met if we arbitrarily employed different

15See, however, the doubts raised in Ref. [69] about satisfaction of the Hamiltonian constraints in

a path-integral formulation.
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saddle points for different values of T , a, and b.
Another formal issue on which we might have hoped for guidance from our minisuper-

space models is that of boundary conditions at the “edge” of configuration space. If unitarity
is to obtain then the only freedom in the boundary conditions is that of a choice of selfad-
joint extension for Ĥ. But that ignores the possibility of actual recollapse or, conversely, of
a universe that remains “pre-geometric” for a long time T and only then begins to expand.
(For a causal set, the unimodular time T would be identified with the total number of ele-
ments [3,70]. Even in a pre-geometric phase, therefore, T retains its meaning.) A selfadjoint

Ĥ also allows for recollapse, of course, but it demands then an immediate “bounce”, with
no possibility of disappearance or of a (temporary or permanent) transition to a disordered,
non-geometric phase. Unfortunately, it is unlikely that our saddle point estimates contain
enough information to distinguish among these multiple possibilities.

Among our saddle points, there were ones exhibiting an exponential decay of |ψ|2 with
time in every compact region of configuration space. This occurred, in particular, for every
one of our “unitary” saddle points. We chose to associate such decay with “an escape
of probability toward ∞”, but it might equally well signify an escape through the finite
boundary — i.e., a recollapse. Although these two alternatives do not seem to be conclusively
resolvable at our level of approximation, the evidence points to a recollapse in the Taub cases
and an unbounded expansion in the Bianchi type I case. If this is correct, then the evolution
in the Taub cases is not actually unitary.

The wave functions Ψ− in the first Taub case and Ψ3 in the second Taub case both look
at T = 0 qualitatively like bound state wave functions localized near uv = 0, except that
they die out exponentially as T increases. The most direct interpretation of such behavior
would seem to be a universe expanding to Planckian size and then rapidly shrinking to zero
volume, at which point the saddle point approximation is helpless to tell us what happens
next. (Beyond the possibilities mentioned earlier for what happens next, another is that
probability escapes to inhomogeneous metrics — i.e., the minisuperspace approximation
breaks down.)16

In the Bianchi type I universe of section VI, the “unitary” wave function, called there
Ψ+, behaves very differently. For small T (6.11) strongly resembles the action of a free
nonrelativistic point particle (albeit with an indefinite mass tensor) released from u = v = 0
at T = 0, and we have noted in this connection that probability appears to flow toward
infinity. This suggests that

∫
dudv|ψ|2, which here diverges marginally, would continue to

be infinite in a better approximation. One might attribute this divergence either to a failure
of the no-boundary prescription, or to the idealization of spacetime as a continuum, for
which the saddle point approximation is, disappointingly, not providing an effective cutoff.
If this is correct, then to compensate, we might need to invoke discreteness explicitly, by

16If the universe really can die out entirely, then the rule given in [21] for forming the quantum

measure µ(C) needs to be generalized in a way that allows paths to “exit” the configuration space

at its boundary, without reappearing elsewhere. This does appear to be possible, but only if one

requires both halves of the “Schwinger history” to exit at the same place and at the same value

of T , which then serves as a premature “truncation time” for the exiting histories.
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smearing ψ out by hand from a delta-function to Planckian size at T = 0. This in turn
would be expected to modify its behavior for uv ≫ T 2.

We also found saddle points (and with many attractive features) that manifested an
exponential growth of norm. For them, probability seems to be flowing inward from the
finite boundary at an increasing rate. The nearest we can come to a picture of what this
type of unitarity breakdown might mean would be a pre-geometric universe continually
sending out branches that develop into continuum spacetimes. Such a “bush-like” universe
could not really correspond to a one-configuration-space wave function at all, though, and it
is not really clear whether any plausible interpretation can accommodate such saddle points.

A question often raised in connection with a quantum cosmological model is whether
it predicts that the universe will, at late times, expand along an approximately classical
trajectory. In effect, one is asking whether the universe, having once arrived at certain
values of T , a, and b, can be expected to continue its expansion along some particular clas-
sical trajectory through these values. In the affirmative case, we may say that it makes a
spontaneous transition to classical behavior, possibly after some initial era of non-classical
expansion.17 One can argue that such behavior is correlated with rapid, WKB-like oscilla-
tions of ψ in the region in question. Another familiar criterion for classical evolution is the
validity of a stationary phase approximation to the path integral, meaning that most of the
contribution to the quantum measure comes from nearly classical histories, and this in turn
can be related to the saddle point metric’s being (up to “complex diffeomorphism”) nearly
Lorentzian at late times. To us, it seems unclear whether any of these features is really
necessary or whether decoherence effects associated with gravitons or other matter could by
themselves bring about a transition to a nearly classical universe like the one we inhabit.
At any rate, it would seem helpful at least for the universe to attain a large size with high
probability, and this happens (together with a spontaneous transition to classical expansion
if T ≪ a2b2) in at least one of our normalizable and unitary cases, namely for the η = +1
saddle point in our Bianchi type I model.

As pointed out earlier, it is meaningful in the unimodular theory to ask what the wave
function looks like at T = 0, the “moment of birth”, and consistency would seem to require
that the no-boundary prescription yield a universe which is of zero or Planckian size. This
was the case for all of our “unitary” saddle points, so to that extent, the desired consistency
seems to be present. (In contrast, the non-unitary but normalizable wave function Ψ0 in
the Taub cross-cap case seems to look at T = 0 like a combination of a delta-function with
a “zero momentum” state spread out over all of configuration space. We recall that this
Ψ resulted for α < αc from a time-non-orientable, purely Lorentzian solution, which one
suspects is not a valid saddle point at all.)

In concluding, it seems fitting to remark on the rather lifelike nature of some of our
models. In contrast to non-unimodular versions of quantum cosmology, where the wave
function is typically non-normalizable and otherwise very hard to interpret, we have found
here many saddle points yielding ψ’s which are either L2 or marginally so, and which evolve

17By saying that a history (Lorentzian geometry) evolves “non-classically” we merely mean that

it fails to satisfy the classical Einstein equations.
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consistently with unitarity at our degree of approximation. This seems encouraging for the
account of topology change sketched above.

Among all of our saddle points, there is precisely one that is consistent with normal-
izability and unitarity and that spontaneously makes a transition to classical expansion.
Interestingly, it belongs to spatial topology T 3 and not to S3. In this way, we might imagine
predicting something about the large scale topology of the universe, if it turned out that
this distinction between T 3 and S3 persisted in more realistic models.
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