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We find a number of complex solutions of the source-free Einstein equations in the so-called unimodular
version of general relativity, and we interpret them as saddle points yielding estimates of a gravitational path
integral taken over a space of almost everywhere Lorentzian metrics on a spacetime manifold with a topology
of the ‘‘no-boundary’’ type. Within this interpretation, we address the compatibility of the no-boundary initial
condition with the definability of thequantum measure, which reduces in this setting to the normalizability and
unitary evolution of the no-boundary wave functionc. We consider three spacetime topologies,R4, RP4#R4,
andR23T2. ~The corresponding truncated manifolds with boundary are respectively the closed 4-dimensional
disk or ball, the closed 4-dimensional cross cap, and the product of the two-torus with the closed two-
dimensional disk.! The first two topologies we investigate within a Taub minisuperspace model with a spatial
topologyS3, and the third within a Bianchi type I minisuperspace model with a spatial topologyT3. In each
of the three cases there exists exactly one complex solution of the classical Einstein equations~or combination
of solutions! that, to the accuracy of our saddle point estimate, yields a wave function compatible with
normalizability and unitary evolution. The existence of such solutions tends to bear out the suggestion that the
unimodular theory is less divergent than traditional Einstein gravity. In the Bianchi type I case, moreover, the
distinguished complex solution is approximately real and Lorentzian at late times, and appears to describe an
explosive expansion from zero size atT50. In this connection, we speculate that a fully normalizablec can
result only from the imposition of an explicit short distance cutoff.~In the Taub cases, in contrast, the only
complex solution with nearly Lorentzian late-time behavior yields a wave function that is normalizable but
evolves nonunitarily, with the total probability increasing exponentially in the unimodular ‘‘time’’ in a manner
that suggests a continuous creation of new universes at zero volume.! The issue of the stability of these results
upon the inclusion of more degrees of freedom is raised.@S0556-2821~98!08418-5#

PACS number~s!: 04.60.Gw, 04.20.Fy, 04.60.Kz, 98.80.Hw
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I. INTRODUCTION

In formulating the gravitational functional integral on
compact manifold with a boundary,

E Dg exp@ iS~g!#, ~1.1!

one may choose to limit the geometriesg that enter the sum
by specifying a fixed value for the total 4-volume@1–3#. If
S(g) is the Einstein-Hilbert action, this restriction produce
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0556-2821/98/58~8!/084008~17!/$15.00 58 0840
theory whose classical limit is equivalent to Einstein’s theo
with a cosmological constant, the only difference being t
the cosmological constant arises as a constant of integra
and not as a prescribed parameter in the action@1–16#. This
theory is often called unimodular gravity, owing to the fa
that one can alternatively derive it by imposing the coor
nate conditionA2g51 in the action prior to variation.

In our view, the motivation for a unimodular modificatio
of gravity is threefold@1,3#. First, it may help explain why
the cosmological constant can be so small. Second, it is
gested by analogy with the structure of nonrelativistic qu
tum mechanics. Third, based on this analogy, it can be
pected to improve the convergence of certain express
that arise in the computation of the quantum measure of a
of histories~i.e., of 4-geometries!. This third motivation is
the most relevant to the present paper.

In a histories framework for quantum theory~see Refs.@1,
3, 17–23# and references therein!, the quantum measurem
plays a role analogous to that played by the classical pr
© 1998 The American Physical Society08-1



n
s

c
4

r

t

s

on
d
ith

gy
tc
i
p
h
re
m
n
in
a

ity
or
ll

m
ds
th
im
ur
, i

d
fo

n
r
s
al
e
a
m

d
F

lar
its
rt

-

4-
ty
er

un-

ed
tly

m

at
th

ean-
a

we
in

will
lar
cal
res
m-

er-
real
ith

for

a
rily.

ge-

-

chi
nts

rse

ch
here
f
not
ea-
nc-
3-

ALAN DAUGHTON, JORMA LOUKO, AND RAFAEL D. SORKIN PHYSICAL REVIEW D58 084008
ability measure in a classically stochastic process such
diffusion. Within a histories framework, no wave functio
ever need be introduced, but it is often convenient to do
becausem can often be computed asici2 for a suitablec. In
unimodular quantum gravity in particular, one can introdu
a wave function on 3-geometries by summing over
geometries with a fixed 4-volume@1#, and the resultingc
will depend on the 4-volumeT of the spacetimes that ente
into the sum. Now, if the relation betweenc and the quan-
tum measurem in quantum gravity is like that in ordinary
quantum mechanics, then, in order thatm be well-defined, it
is necessary first of all thatici2 be finite, and secondly tha
it be independent of 4-volume, i.e., that the ‘‘evolution’’ ofc
with ‘‘time’’ T5V be unitary. These are the principal que
tions that we explore in the present paper.

In the present paper, our considerations will be based
Lagrangian formulation, both for its relative simplicity an
because it is the most suitable formulation for dealing w
the type of topology change that a ‘‘big bang’’ cosmolo
entails. Nevertheless, it may be of some interest to ske
here how the unimodular assumption manifests itself
Hamiltonian versions of gravity. To understand what ha
pens to the constraints, it is useful to think in terms of t
path integral: the condition of fixed spacetime volume
moves one degree of freedom from the permissible defor
tions of the final hypersurface, and this in turn eliminates o
of the infinity of Hamiltonian constraints that are present
the conventional formulation, or rather converts it into
Schrödinger equation expressing the dependence ofc on T.
In one particular Hamiltonian scheme for unimodular grav
with closed spatial hypersurfaces, this works out in m
detail as follows. The theory contains a pair of canonica
conjugate fields that are not present in the canonical for
lation of conventional Einstein gravity. One of the new fiel
specifies the value of the cosmological constant, while
conjugate field carries the information about the spacet
volume bounded by the initial and final spacelike hypers
faces. Dirac quantization of this Hamiltonian theory leads
addition to a set of constraint equations, to a Schro¨dinger-
type equation in which the ‘‘time’’ variable can be identifie
as the four-dimensional spacetime volume. One there
would expect to adopt a Schro¨dinger-type Hilbert space in
which the Hamiltonian would be a selfadjoint operator, a
the wave function would evolve unitarily in ‘‘unimodula
time.’’ This ‘‘unfreezing’’ of the wave function raised hope
that the interpretational issues of quantum gravity, especi
regarding time @24–26#, might be more easily tractabl
within the unimodular theory than in the convention
theory. However, from a histories standpoint, no ‘‘proble
of time’’ is evident, and the role of unimodularity woul
seem to be more technical than interpretational in nature.
some further discussion, see Refs.@15, 25#.

In this paper we explore the implications of unimodu
gravity for quantum cosmology. Specifically we explore
implications for no-boundary initial conditions of the so
proposed by Hartle and Hawking@27–29#, Linde @30–34#,
and Vilenkin @35–40#, and more generally, for the frame
work for topology change set out in Refs.@3, 41, 42#.
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The condition we impose is that spacetime be a
manifold M that is compact toward the past, with emp
initial boundary.1 When truncated toward the future in ord
to compute the quantum measure@1,19#, M will therefore
acquire a future boundaryM1 that isclosedin the technical
sense of being compact without boundary.2 A wave function
obtained from a unimodular path integral over such a tr
cated manifold will have as arguments the 4-volumeT and
the induced 3-geometry on the 3-manifoldM1 .

Precisely what kinds of metrics are to be integrat
over—or indeed, whether it is possible to define consisten
a gravitational functional integral at all in a continuu
theory—is a poorly understood issue@42,3,43–45# to which
we shall return in Sec. VII. For now, we mention only th
the point of view we adopt in the following is that the pa
integral is originally over~almost everywhere! Lorentzian
metrics, and any complex metrics one considers have m
ing only insofar as they yield approximations to such
Lorentzian path integral. In the main part of the paper,
will simply assume that the path integral can be analyzed
the crudest possible saddle-point approximation; and we
find the complex classical solutions for the unimodu
theory, without attempting to control even the semiclassi
prefactors. As the unimodular boundary condition requi
the Lorentzian 4-volume to be real, the saddle-point geo
etries are in generalnecessarily complex, although saddle-
points with Lorentzian signature will be seen to exist in c
tain special cases. We emphasize that this condition of
4-volume excludes from our framework any geometry w
purely Euclidean signature.

As explained above, the crucial consistency conditions
the quantum measure to be defined~and therefore for the
path integral to lead to meaningful predictions! are that the
path integral give a wave function that, with respect to
suitable measure, is square integrable and evolves unita
We investigate these features within two spatially homo
neous minisuperspace models: the Taub model@Bianchi type
IX plus an additional U~1! symmetry# with S3 spatial topol-
ogy, and Bianchi type I withT3 spatial topology and a cer
tain additional discrete symmetry. As the~truncated! no-
boundary 4-manifolds, we consider the closed 4-ballB̄4 and
the closed 4-dimensional cross-capRP4#B̄4 in the Taub
model, and the closed disk times the two-torus in Bian
type I. In all cases, finding the no-boundary saddle poi

1This condition can be made precise in the language of Mo
theory:M should admit a ‘‘height function’’h>0 with the property
that h21(@0,r #) is compact andh21(@0,r )) is boundary-free for all
real r .0.

2The manifoldsM we consider in the present paper are all su
thatM1 may be assumed to be a smooth 3-manifold. In cases w
topological transitions are not limited to the ‘‘moment of birth’’ o
the universe, the level surfaces of a Morse height function are
all manifolds. This suggests that, in computing the quantum m
sure for such spacetimes, one might want to consider wave fu
tions defined on some sort of correspondingly generalized
geometries.
8-2
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INSTANTONS AND UNITARITY IN QUANTUM . . . PHYSICAL REVIEW D 58 084008
reduces to solving a simple algebraic equation. Having fo
the saddle points, we first ask whether a saddle-point e
mate to the path integral is compatible with a normaliza
wave function, for any choice of saddle point~s!. If yes, we
then ask whether the corresponding wave function evo
unitarily, to the approximation in question. Also, we a
whether any of the saddle-point geometries are appr
mately Lorentzian at late times. Finally, we ask how t
saddle point wave function behaves atT50, and in particu-
lar, whether this behavior seems compatible with the pict
of a universe expanding from zero size that is implicit in t
no-boundary topology.

In the Taub model, for both of our 4-manifolds, we find
unique saddle point that, to the accuracy of our estimate
compatible with both normalizability and unitary evolutio
This bears out the suggestion@1–3# that the unimodular
theory is less divergent than traditional Einstein gravity, a
tells us in each case what the approximate behavior of
wave function must be if the quantum measure is indeed w
defined. Interestingly, this saddle point remains always in
quantum era, never making a spontaneous transition to c
sical behavior. In addition there is~for both 4-manifolds! a
unique saddle point that is compatible with normalizabil
and does make a transition to classical behavior. Howe
the wave function corresponding to this saddle point tu
out not to evolve unitarily: instead, probability is being in
jected into the configuration space at a rate that is expon
tially increasing in the unimodular time. This injection a
pears to take place at a boundary of the configuration sp
in a manner reminiscent of the tunneling boundary con
tions advocated by Linde@30–34# and Vilenkin @35–40#.
Physically, such an injection can perhaps be interpreted
continuous creation of new ‘‘branch universes,’’ all stem
ming from a single root.

In the Bianchi type I model, the unique saddle point th
is compatible with normalizability turns out to be compatib
also with unitary evolution. Further, the saddle-point geo
etries are, at late times, nearly Lorentzian, isotropically
panding universes. Thus, this saddle point exhibits many
tures normally regarded as desirable for quantum cosmol

The plan of the paper is as follows. In Sec. II we intr
duce the unimodular Taub minisuperspace model and
unimodular positive curvature Friedmann model, whi
arises as the isotropic specialization of the Taub model. S
tions III and IV discuss the Taub no-boundary saddle po
when the 4-manifold is respectively the closed 4-ball and
closed cross-cap, and Sec. V discusses the truncation of
no-boundary analyses to the Friedmann model. The Bian
type I model is analyzed in Sec. VI. Our results are summ
rized and discussed in Sec. VII.

We use throughout units such thatc5\51, but we keep
Newton’s constantG. A metric with signature~2111! is
called Lorentzian, and a metric with signature~1111! Rie-
mannian.

II. TAUB MINISUPERSPACE IN THE UNIMODULAR
THEORY

In this section we describe the Taub minisupersp
model in the unimodular theory. Section II A presents t
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general case, with two independent scale factors. The t
cation to the positive curvature Friedmann model is outlin
in Sec. II B. We assume throughout this section that
spacetime is everywhere Lorentzian and has topologyR
3S3. The boundary conditions needed to express the
boundary topologies we consider will be introduced in S
III.

A. The general Taub model

The Taub family of metrics can be written as@46,47#

ds25s2$2N2dt21 1
4 a2~v1!21 1

4 b2@~v2!21~v3!2#%,
~2.1!

where a, b, and N are functions oft, and thev i are the
usual left-invariant one-forms on SU~2!, satisfying

dv i52
1

2
e i

jkv j∧vk. ~2.2!

We use conventions in which the exterior derivative and
wedge product are (dv)ab5]avb2]bva and
(v∧f)ab5 1

2 (vafb2vbfa), and we have extracted in Eq
~2.1! the overall factors2

ª2G/3p for numerical conve-
nience. Ass has the dimension of length, we can takea, b,
N, t, andv i to be dimensionless. In the special casea5b,
the spatial sections are round 3-spheres with radius of cu
ture sa.

The spacetime topology isR3SU(2).R3S3, and the
spacetime isometry group is that of the constantt hypersur-
faces, U~2!.SU(2)L3U(1)R /Z2 . The SU~2! factor comes
from the invariance of Eq.~2.1! under the left action of
SU~2! on itself, and the further U~1! isometry~acting on the
right! expresses the equality of the coefficients of (v2)2 and
(v3)2.

Inserting the metric~2.1! into the gravitational action in-
tegral,

S5
1

8pG F E ~ 1
2 R2L!dV1 R tr K G , ~2.3!

with ~bare! cosmological constantL, yields the minisuper-
space action integral

S5 1
6 E dtF2aS db

dt D 2

22b
da

dt

db

dt
14a2a3b2223lab2G ,

~2.4!

where we have introduced the dimensionless proper time
rameter t by dtªNdt and written lª 1

3 s2L. The true
proper time isst.

Given the action integral, it is easy to derive the classi
equations of motion in both the unimodular and no
unimodular theories. In the non-unimodular theory, the cl
sical equations of motion result from making arbitrary var
tions of S that fix the metric on the boundary. Because t
ansatz~2.1! expresses invariance under a compact symm
group, it suffices to consider variations of the parametersa,
8-3
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b, and t. The condition of fixed boundary metric is the
equivalent to fixinga andb ~but nott! at the end points.3

The general solution to the variational equations can
written in the gaugeNa51 as

b25A21t2/A2, ~2.5a!

a2b25A2$4~A22t2/A2!

13l@ t4/~3A4!12t22A4#%1ABt, ~2.5b!

N51/a, ~2.5c!

whereA.0 andBPR are the two constants of integratio
This metric covers the spatially homogeneous region of
Taub–NUT~Newman-Unti-Tamburino–!–de Sitter solution
@48#. In the notation of Ref.@48#, the Taub-NUT ‘‘charge’’l
and ‘‘mass-parameter’’m are given by l 5 1

2 sA and m
51/4sB.

For the purposes of the unimodular theory, it is conv
nient to write the action integral in a slightly different form
First of all, we may setL to zero in Eq.~2.3! without loss of
generality, because it influences neither the classical s
tions nor the quantum measure.~We obtain the classica
equations of motion by varyingS subject to the condition
that the total 4-volume is fixed.! Second, because of the sp
cial role played by the spacetime 4-volume, it is useful
adopt it as our time coordinate~see for example Ref.@1#!.
For numerical convenience, we may use the dimension
4-volume parameterT defined bydT5ab2dt: the 4-volume
bounded by the hypersurfacesT5T1 and T5T2 , with T1
,T2 , is then 2p2s4(T22T1). Writing Eq. ~2.4! in terms of
T ~with l set to zero! we obtain the action-integral in th
form

S5 1
6 E dT~2a2b2b8222ab3a8b814b222a2b24!,

~2.6!

where the prime denotes derivative with respect toT. In the
variation of Eq.~2.6!, fixing the total spacetime volume i
equivalent to fixing the difference between the initial a
final values ofT, and as the integrand does not involveT
explicitly, this is further equivalent to fixing individually the
initial and final values ofT. The general solution to the
resulting variational equations is precisely Eq.~2.5!, but l
emerges now as an integration constant proportional to
‘‘unimodular energy,’’ and the general solution contains th
three constants of integration.

It is convenient to replacea andb by the coordinates~cf.
@1,49#!

uªa2b,

3In an action that retainst andN, the values oft at the end points
can be fixed, and the equation that results from variation with
spect toN is equivalent to the equation obtained by varying E
~2.4! with respect tot at the end points.
08400
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which represent spatial volumes rather than lengths. In th
coordinates, the action integral~2.6! simplifies to

S5E dT~2 1
18 u8v82 1

6 uv25/31 2
3 v22/3!. ~2.8!

The configuration space of the theory is therefore the fut
quadrant of a (111)-dimensional Minkowski space, an
(u,v) forms a pair of positive-valued null coordinates.~No-
tice that in this system, the ‘‘radial coordinate’’Auv repre-
sents the spatial volume.! The Hamiltonian operator corre
sponding to Eq.~2.8! is

Ĥª18
]2

]u]v
1 1

6 uv25/32 2
3 v22/3, ~2.9!

where we have chosen to factor-order the kinetic part of
Hamiltonian as the D’Alembertian~or ‘‘Laplace-Beltrami
operator’’! of the metric associated to the kinetic terms in t
Lagrangian withT used as time-parameter. Notice that
change of time-parameter would change this metric and c
sequently change what we would call the D’Alembertia
Conversely, the combination of 4-volume time with Laplac
Beltrami ordering with respect to that time provides a u
versal factor-ordering for all spatially homogeneous cosm
logical models@50#. The Hilbert space inner product tha
goes naturally with a metric is theL2 integral with respect to
the metric’s volume element, and the Laplace-Beltrami o
erator is formally selfadjoint with respect to this inner pro
uct, as is easily seen in general. In the present case this i
product is

~c1 ,c2!ªEu.0
v.0

dudvc1c2 . ~2.10!

As Ĥ is real, it has self-adjoint extensions by von Neuman
theorem~Ref. @51#, Theorem X.3!. Choosing one such exten
sion specifies a unitary evolution in the Hilbert space
square integrable functionsc.

B. Friedmann truncation

The Taub model can be truncated to its isotropic spe
case by settinga5b. The metric ~2.1! becomes then the
metric of the positive curvature Friedmann model,

ds25s2@2N2dt21a2dV3
2#, ~2.11!

wheredV3
2 is the metric of the unit 3-sphere.4 The isometry

group of the constantt hypersurfaces is O~4!. The action Eq.
~2.6! becomes

-
.

4Our conventions in the Taub model were chosen so as to m
the Friedmann metric~2.11! agree with the conventions of Refs
@28, 29#.
8-4
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S5 1
2 E dT~2a4a821a22!. ~2.12!

The Hamiltonian operator corresponding to Eq.~2.12! is

Ĥª

1

2 F9S d2

dx2D2x22/3G , ~2.13!

wherexªa3 and we have again chosen the Laplace-Beltra
factor ordering belonging toT as time parameter. The match
ing inner product is

~c1 ,c2!ªE
0

`

dxc1c2 . ~2.14!

and Ĥ is formally self-adjoint with respect to it. The sel
adjoint extensions ofĤ are specified by the boundary cond
tion cos(u)c2sin(u)dc/dx50 atx50, where the parameteru
satisfies 0<u,p ~Ref. @51#, Theorems X.8 and X.10!.
Choosing the value ofu specifies a unitary quantum evolu
tion.

III. TAUB NO-BOUNDARY SADDLE POINTS
FOR B̄4 TOPOLOGY

In this section we discuss the Taub no-boundary sad
points and wave functions when the 4-manifold is the clo
4-dimensional ballB̄4 ~often called diskD4!. In Sec. III A we
find the saddle-point geometries, and in Sec. III B we disc
the saddle-point estimates to the wave function.

As discussed in the Introduction, we introduce a wa
function via the~formal! no-boundary path integral

CNB~a,b;T!5E Dg exp~ iS!. ~3.1!

where the domain of integration is some appropriate clas
Lorentzian, or almost Lorentzian, 4-geometries, possi
with a short-distance cutoff. In the histories entering the
tegral, the ‘‘final’’ values of the scale factors and the to
elapsed volume parameterT are required to coincide with th
arguments of the wave functionCNB ; in particular, T in
CNB is assumed always positive.

In this paper we only considerCNB in the saddle-point
estimate:

CNB'(
k

Pkexp~ iSk!, ~3.2!

where theSk(a,b;T) are the actions of some subset of t
complex classical solutions on the no-boundary 4-manif
in question. The prefactorsPk are assumed to be slowl
varying compared with the exponential factors but otherw
are left unspecified. Which~if any! of the saddle point met
rics actually contribute to Eq.~3.2!, given a proper definition
of the integral in Eq.~3.1!, will be left a subject for future
work ~see the comments on this issue in Ref.@3#!.
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A. Saddle-point geometries

To find the actionsSk(a,b;T) that enter the saddle-poin
estimate~3.2!, we need onB̄4 the Taub solutions with pre
scribed values of the boundary scale factors and tota
volume. The boundary data for the solutions is Lorentzi
but the saddle-point geometries are allowed to be compl

As a first step, we need the general complex Taub so
tion to the unimodular field equations. It is clear that o
class of complex Taub solutions is obtained from the Lore
zian solution~2.5! by extending the parametersA, B, andl
to complex values, withAÞ0, and makingt a complex-
valued functiont(s) of a new, real-valued time coordinates.
We may assumedt/dsÞ0. It can be shown that the onl
complex Taub solutions not obtained in this way are o
tained in the same way from the metrics given by

b2562i t , ~3.3a!

a252lt262i t 6 iDt 21,
~3.3b!

N51/a, ~3.3c!

whereD andl are complex parameters. The family~3.3! can
be formally recovered from Eq.~2.5! by setting B5
68iA(12lA2)62iDA23, adding 6 iA2 to t, and taking
the limit A→`.

Now, the condition that the solution be defined onB̄4

means thats must be interpretable as the radial coordinate
hyperspherical coordinates onB̄4. Without loss of generality
we can takesP@0,1#, such thats50 occurs at the coordinat
singularity at the origin of the hyperspherical coordinat
and s51 occurs on the boundary. It is then necessary t
both a andb vanish ats50.

Let us first concentrate on the family~2.5!. Writing t(0)
5:t0 , the condition thata andb vanish ats50 implies

t05 ihA2, ~3.4a!

B58ihA~12lA2!, ~3.4b!

whereh is a parameter that may take the values61. When
Eqs. ~3.4a,b! hold, it is straightforward to verify that the
metric is indeed extendible tos50 so that it defines a solu
tion on B̄4. Thus the smoothness required of the n
boundary metric is automatic in this case, and does not
ther restrict the solution.

To find the action, we recall that when deriving Eq.~2.6!
from Eq. ~2.3! ~with L50!, we assumed the spacetime t
pology R3S3, for which the boundary term in Eq.~2.3!
consists of components both at the initial and final bou
aries. In the action for the topologyB̄4, Eq. ~2.3! contains a
boundary term only at a ‘‘final’’ boundary, and we therefo
need to add to Eq.~2.6! at s50 the appropriate boundar
term, 2 1

6 N21d(ab2)/dt. This boundary term however van
ishes by virtue of Eqs.~3.4a,b!. ~As earlier with smoothness
of the metric, assuming a no-boundary topology thus tu
8-5
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out to be indistinguishable, in this case, from simply assu
ing that the universe expands from zero diameter.! Evaluat-
ing Eq. ~2.6! yields then

S5 ihFlA4r
*
2 ~r* 11!~r* 14!

6~r* 12!
1

2A2r* ~2r* 13!

3~r* 12!
G ,
~3.5!

where we have parametrized the value oft at s51 as t0(1
1r* ).

In terms ofA andr* , the boundary scale factors and th
total elapsedT are given by

a252
A2r* @41lA2r* ~r* 14!#

r* 12
, ~3.6a!

b252A2r* ~r* 12!, ~3.6b!

T52 ihA4r
*
2 ~ 1

3 r* 11!. ~3.6c!

Solving the algebraic equations~3.6a,c! for A2, r* , andl
yields

A25
b2~eV21!2

eV22
, ~3.7a!

r* 5221
2

eV21
, ~3.7b!

l5
4

eVb2 F12
a2

b2~eV21!2G , ~3.7c!

wheree is a parameter that may take the values61,

VªA1112ihT/b4, ~3.8!

and we choose the branch of the square root in Eq.~3.8! so
that the real part ofV is positive.

It is clear from Eqs.~3.7a,b,c! and ~3.8! that all the four
sign combinations forh ande yield complex geometries tha
satisfy our boundary conditions. In terms of the bound
data, the actions of these geometries read

Se
h~a,b;T!5

ih

3 Fa2

2 S 12
2

eV21D2b2~eV21!G .
~3.9!

Following the same strategy starting from the exceptio
family ~3.3a,b,c! yields no solutions: regularity ats50 im-
plies t050 andD50, and positivity of the total elapsedT is
then incompatible with the positivity ofb2 at the boundary.

None of the solution geometries we have found in t
section is Lorentzian, or indeed real with any signatu
Rather all are genuinely complex. Although Euclidean s
nature metrics have played no role in their derivation, it m
nevertheless be of interest to see what happens when
metrics are continued to purely imaginary values of the u
modular timeT. ~In particular, this may bear on the impo
tant question of whether one can reach our saddle point m
ric from a Lorentzian metric without leaving the kind o
08400
-

y

l

s
.
-
y
ese
i-

t-

domain defined in Sec. 5 of Ref.@52#.! When T is analyti-
cally continued to imaginary values asT52 ihTR with TR
.0, it can be verified that the geometries withe51 continue
to Riemannian geometries that satisfy the unimodular bou
ary data onB̄4, with TR proportional to the total Riemannia
4-volume; conversely, it can be verified that these are
only Riemannian Taub solutions onB̄4 with the unimodular
boundary data.5 The continuation sendsiS1

h to 2hI , whereI
is the Riemannian unimodular action. Therefore, our co
plex solutions withe51 are related to solutions of the Rie
mannian theory by an analytic continuation in the unimod
lar time: the Wick rotation is in the usual direction forh
51 and in the unusual direction forh521. When the same
continuation is done to our solutions withe521, one ob-
tains geometries onB̄4 that satisfy the Riemannian unimodu
lar data, in particular with positive Riemannian volume, a
iS21

h again continues to real values. These geometries
however not Riemannian but complex.

B. Saddle-point-estimate wave functions

We turn now to the saddle-point estimate~3.2! to the
no-boundary wave functionCNB , with the classical actions
Se

h of Eq. ~3.9!. We assume throughout the pre-exponen
factors to be so slowly varying that the dominant behavior
each term in Eq.~3.2! arises from the exponentials. We a
sume also that the set of saddle points contributing toCNB
@i.e., the range of the indexk in Eq. ~3.2!# does not depend
on the values of the parametersT, a, andb.6

It can be verified thatSe
h satisfies the time-dependen

Hamilton-Jacobi equation with the Hamiltonian~2.9!, as by
construction it must. Consequently, the estimate~3.2! satis-
fies the Schro¨dinger equation

i
]c

]T
5Ĥc ~3.10!

in the approximation to which we are working. We as
which, if any, of the terms in Eq.~3.2! are compatible with
CNB being a wave function in the Hilbert spaceH defined in
Sec. II A, evolving unitarily by some self-adjoint extensio
of the Hamiltonian~2.9!?

Consider first the caseh521. As the first term inSe
21

has a negative imaginary part for either sign ofe, the terms
in Eq. ~3.2! with h521 diverge exponentially asa→`
with fixed b ~or, in the coordinates (u,v) of Sec. II A, asu
→` with fixed v!. These saddle points are therefore n
compatible withCNB having finiteL2 norm.

5The singularity in Eqs.~3.7a! at V52 is a coordinate effect. A
manifestly regular Riemannian form for the metric withV52 can
be found as a Riemannian section of the exceptional fam
~3.3a,b,c!.

6In Sec. IV we will have to generalize this assumption slightly
cover the case where two saddle points degenerate for certain
ues ofa, b andT.
8-6
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Consider then the caseh51. For fixedT, the imaginary
part of Se

1 is bounded below. Without further knowledge
the pre-exponential factor, one cannot therefore exclude
wave functionsC1 ªP1 exp(iS1

1) and C2 ªP2 exp(iS21
1 )

from being normalizable. WhenT/b4!1, we have

S1
152

a2b4

18T
1¯ , ~3.11a!

S21
1 5

i ~a212b2!

3
1¯ . ~3.11b!

In this limit, the wave functionC1 is therefore rapidly os-
cillating, whileC2 , on the other hand, is exponentially su
pressed for largea or b. One can also see that in this limi
the saddle point metric withe515h is ~except nears50!
close to a Lorentzian Taub-NUT-de Sitter universe withm
50. We note that a similar conclusion was reached wit
the conventional Einstein theory in Ref.@53#.

To address the unitarity of the evolution, we note that
fixed a andb, Se

1 has the largeT expansion

Se
152ee2 ip/4AT/31 1

6 i ~a212b2!1O~T21/2!. ~3.12!

The contribution to the inner product (C1 ,C1) from any
compact region in the configuration space is therefore ex
nentially increasing inT. This means thatC1 cannot evolve
by any selfadjoint extension of the Hamiltonian~2.9!: prob-
ability is being injected into the configuration space eith
from the finite boundaries or from infinity. As we do no
have an estimate for the saddle-point prefactor, we shall
attempt to discuss exactly where the probability is enter
the configuration space. However, if the saddle-point form
good for T/b4@1, Eq. ~3.12! shows that the probability is
flowing in the direction of isotropicexpansion, as measured
by Imag(C* ¹C); and for T/b4!1, Eq. ~3.11a! exhibits a
similar direction of flow. This suggests that the flux is com
ing from somewhere on the finite boundary. The emerg
picture is perhaps compatible with the tunneling propos
advocated by Linde@30–34# and Vilenkin @35–40#. Notice,
however, that the latter proposals are couched in terms o
non-unimodular theory, where the relevant boundary is~for
the Taub model! only one-dimensional. For us, it is two
dimensional~the extra dimension being parameterized byT!,
and there can be no simple correspondence between bo
ary conditions formulated in the two frameworks.

In this connection notice that, precisely because the u
modular c depends on a parameter timeT, the early-time
behavior of the universe shows up much more directly inc
than it would in a non-unimodular formulation, and one c
ask whetherc is concentrated forT50 at universes of zero
size, as the no-boundary picture would seem to require.
the wave functionC1 , Eq.~3.11a! does appear to describe
state for which the probability is concentrated near confi
rations of small 3-volume~in the sense that the rapid osc
lations causeC1 to vanish uniformly in the distributiona
sense asT→0, in any region of compact support disjoin
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from the boundaryuv50!.7 For the wave functionC2 , Eq.
~3.11b! describes a universe that at birth is of Planckian
mensions in all directions, which for quantum gravitation
purposes is probably as close as one would care to ge
strictly zero size.

With e521, we see from Eq.~3.12! that the contribution
to the inner product (C2 ,C2) from any compact region in
the configuration space is exponentially decreasing inT. One
might see this as evidence for a different type of non-unit
evolution of C2 , with probability now flowing out of the
configuration space. Perhaps, however, one cannot exc
that C2 might still approximate a unitarily evolving wav
function in some relevant sense: the probability would j
be spreading out sufficiently fast to give an exponential s
pression at late times in any fixed compact region of
configuration space. Resolving this question would seem
require, at a minimum, a better understanding of the pre
tor in our saddle-point estimate.

In summary, the wave functions withh521 cannot rep-
resent states in the Hilbert spaceH. The wave function with
h5e51 may represent a state inH, but it has an exponen
tially growing norm and thus cannot evolve unitarily. Th
wave function withh51 ande521 may represent a stat
in the Hilbert space, and, at the level of our semiclass
estimate, this state may evolve unitarily. It is therefore
only one that might be compatible, in a Lorentzian histor
framework, with a universe consisting of a single mac
scopic component with a single moment of birth.

IV. TAUB NO-BOUNDARY SADDLE POINTS
FOR CROSS-CAP TOPOLOGY

In this section we discuss the Taub saddle points
wave functions when the~truncated! 4-manifold is the closed
4-dimensional cross-cap,M̄ ^ ªRP42B4.RP4#B̄4, where
B4 is the open 4-dimensional ball.8 In Sec. IV A we find the
saddle-point geometries, and in Sec. IV B we discuss
saddle-point estimates to the wave function.

A. Saddle-point geometries

It is useful to viewM̄ ^ as a quotient space. To this en
let M̃ª@21,1#3S3. M̃ is a compact orientable manifol
with boundary S3øS3. Consider the mapJ:M̃→M̃ ;
(s,x)°(2s,Px), whereP:x°Px is the antipodal map on
S3. J is an involution with a free and properly discontinuo
action, and the quotient spaceM̃ /J is diffeomorphic toM̄ ^ .
One can also visualizeM̄ ^ as built by closing off the uppe
half s.0 of M̃ by attachings50 to anRP3. Clearly,M̄ ^ is
a nonorientable compact manifold with boundaryS3.

7More precisely,C1 seems to describe a violent explosion sta
ing from zero volume, analogously to how a nonrelativistic parti
initially at the origin at t50 is at any later moment uniformly
distributed throughout space with a wave function}exp(ix2/t).

8This manifold was suggested to us by John Friedman.
8-7
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We need first the general complex Taub geometry
M̄ ^ . To begin, we recall from Sec. III that the comple
Taub geometries onM̃ are obtained from Eqs.~2.5a,b,c! or
~3.3a,b,c! by letting the parameters take complex values a
writing the coordinatet as a complex-valued functiont(s),
with dt/dsÞ0. We take the boundaries ofM̃ to be ats5
61. On these geometries, we realizeJ as the map
(s,x)°(2s,Px), whereP acts on SU(2).S3 as multipli-
cation by diag(21,21) in the defining matrix representation
In order thatJ be an isometry, it is necessary thatdb/ds and
da/ds vanish ats50. This excludes Eqs.~3.3a,b,c!, and
shows that Eqs.~2.5a,b,c! is only possible witht(0)50 and
B50. The condition thatJ be an isometry implies, finally
t(s)52t(2s). Quotienting this geometry onM̃ with re-
spect toJ now gives the desired general complex geome
on M̄ ^ .

Next, we need to match the complex geometry onM̄ ^ to
the unimodular boundary data. Fromt(1)52t(21)5:t* ,
we have

T5E
0

t
* Nab2dt5t* S A21

t
*
2

3A2D , ~4.1!

and the action is evaluated from Eq.~2.6! to be

S5
lt*
6 S 25A22

t
*
2

A2 1
8A6

A41t
*
2 D 1

4t
*
3

3~A41t
*
2 !

. ~4.2!

The values ofl, A2, andt* can now be found in terms ofT
and the final scale factors from Eqs.~2.5a!, ~2.5b!, and~4.1!.
The general solution to this system of algebraic equation

t* 5yb2/z, ~4.3a!

A25b2/z, ~4.3b!

l5
z@~a2/b2!z214z28#

b2~z214z28!
, ~4.3c!

where

z511y2, ~4.4a!

andy is any solution to

3T

b4 5
y~31y2!

~11y2!2 . ~4.4b!

Every root of Eq.~4.4b! does, with one exception, yield
saddle-point geometry onM̄ ^ with our boundary conditions
The exception occurs whenz52()21), in which case the
denominator of Eq.~4.3c! vanishes.

With Eqs.~4.3a,b,c! and ~4.4a,b!, the action~4.2! can be
written as

S5
Tz

2b2~21z! S 42
a2z

b2 D . ~4.5!
08400
n

d

y

is

As Eq. ~4.5! depends ony only through z, the distinct
saddle-point values of the action are obtained by finding
distinct values ofz from Eqs.~4.4a,b!. This is equivalent to
solving for z the quartic

S 3T

b4 D 2

5
~z21!~z12!2

z4 . ~4.6!

It is easily verified that the action~4.5!, with z given by any
root of Eq.~4.6! that is a smooth function ofT/b4, satisfies
the Hamilton-Jacobi equation.

The roots of Eq.~4.6! depend on the quantityaª3T/b4

.0. Let

acª225/233/4~)11!, ~4.7a!

zcª2~)21!. ~4.7b!

For a,ac , there are two distinct real roots, denoted byz1

and z2 , satisfying 1,z2,zc,z1 . For a5ac , these two
roots merge atzc : this is the special case in which Eq.~4.3c!
becomes singular. Fora.ac , these two roots become
complex conjugate pair, denoted by (z1 ,z2), wherez1 is in
the first quadrant andz25 z̄1 . The two remaining roots are
always a complex conjugate pair, denoted by (z3 ,z4), where
z3 is in the second quadrant andz45 z̄3 . The only instance in
which a root is not a smooth function ofa occurs in the
transition of the pair (z1 ,z2) into the pair (z1 ,z2) at a
5ac .

The rootsz1 andz2 of Eq. ~4.6! give Lorentzian saddle-
point geometries onM̄ ^ . These geometries have the pec
liarity that they are not time-orientable, and they therefo
would fall into the framework of time-nonorientable cobo
disms@54#, if they were regarded as being in the domain
the Lorentzian path integral.9 All the other saddle-point ge
ometries are complex.

We denote the action~4.5! evaluated at the respectiv
roots byS1, S2, S1, S2, S3, andS4. For later use, we note
that the roots have fora!1 anda@1 the respective expan
sions

z15a22131O~a2! ~4.8a!

z2511 1
9 a21O~a4! ~4.8b!

z35 z̄45221
4ia

)

F12
10ia

3)
1O~a2!G , ~4.8c!

and

9For a discussion of quantum field theory on time-nonorienta
spacetimes, see Ref.@55#. Because of their time-non-orientability
we suspect that these metrics are not valid saddle points for a
integral that is originally taken over almost everywhere Lorentz
metrics with a well-defined causal structure. See Sec. VII for so
further thoughts on how one might in principle recognize the va
saddle points.
8-8
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z15 z̄25eip/4A2/a@11O~a21!#, ~4.9a!

z35 z̄45e3ip/4A2/a@11O~a21!#. ~4.9b!

B. Saddle-point-estimate wave functions

We are now ready to consider the saddle-point estim
~3.2! to the no-boundary wave function. As in Sec. III, w
assume throughout that the pre-exponential factors are
important, and that the set of saddle points contributing toC
does not change in ranges of (T,a,b) where the correspond
ing saddle point geometries vary continuously. As before,
write C1 ,C2 ,C1 , and so on, for the saddle point wav
functions corresponding toS1,S2,S1, etc. Notice, however
that while C3 and C4 are defined on all of configuratio
space, the pairC6 ~respectivelyC1 ,C2! is defined only for
a,ac ~respectivelya.ac!.

It can be shown that the second term inS1 andS4 has a
negative imaginary part. From the limita→` with fixed b
andT, it is therefore seen thatC1 andC4 are not normal-
izable.

The imaginary part ofS3, on the other hand, is positive
and the corresponding termC3 in Eq. ~3.2! may represent a
state inH. For a!1 with a'b, we have

S35
i ~a212b2!

2)
1¯ . ~4.10!

This again describes a Planck sized universe atT50. The
contribution to the inner product (C3 ,C3) from any com-
pact region in the configuration space is exponentially
creasing inT @see Eq.~4.12b! below#. As in Sec. III, we
regard this as consistent with unitary evolution, although
also might signify a loss of probability through the fini
boundary.

The only remaining possibility in Eq.~3.2! is a wave
function that coincides withC25P2 exp(iS2) for a.ac ,
and with some combination ofC1 andC2 for a,ac . We
denote this wave function byC0 . The curvea5ac in the
configuration space is analogous to a turning point in
constant-energy WKB approximation, and a saddle-point
timate to C0 would not be expected to be good near th
curve. However, beginning asC2 for a.ac , C0 presum-
ably resumes a saddle-point form fora,ac , now as a linear
combination ofC1 andC2 . Since the imaginary part ofS2

can be shown to be bounded below, andS6 are purely real,
C0 may thus be normalizable.

Whena,ac , the two terms inC0 have each an imme
diate semiclassical interpretation, as they each come fro
Lorentzian universe~2.5a,b,c! with B50. The two param-
eters in this family areA and l. The reason whytwo such
solutions exist is that there are two choices forA and l,
obtained from~4.3b! and ~4.3c! with respectivelyz5z6 ,
that make a spacetime in this family pass through a p
scribed point in the configuration space at a prescribed v
of T. For a53T/b4!1 with a'b, we have
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S152
a2b4

18T
1¯ , ~4.11a!

S25
T

6b2 S 42
a2

b2D1¯ .

~4.11b!

From Eqs.~4.11a,b! we also see that atT50, C1 behaves
similarly to C1 in the previous section, as if the univers
had exploded from zero size. On the other hand,C2 is quite
different from its earlier namesake, looking like a zero m
mentum state spread out over all of configuration space.

Consider, finally, whether the norms ofC0 andC3 can be
independent ofT. For fixeda andb, Eqs.~4.9a,b! gives the
largeT expansion

S25e2 ip/4A2T/31
i ~a212b2!

6
1O~T21/2!, ~4.12a!

S35e3ip/4A2T/31
i ~a212b2!

6
1O~T21/2!. ~4.12b!

It follows that C3 dies out with time at any fixeda,b,
whence its evolution can be unitary. On the other hand,
contribution to the inner product (C0 ,C0) from any com-
pact region in the configuration space is seen to be expo
tially increasing inT, andC0 cannot evolve unitarily. As in
Sec. III, it is difficult to ascertain where the probability
entering the configuration space, but the semiclassical
cussion given above fora!1 suggests that the flux may b
coming from somewhere on the finite boundary, as befor

In summary, the qualitative results with the 4-manifo
M̄ ^ are very similar to those obtained with the 4-manifo
B̄4 in Sec. III. Of the four saddle points, two lead to no
square-integrable wave functions, analogously to the cash
521 earlier. The normalizable cases here are those ofC3
and C0 . The wave functionC3 here is analogous toC2

there: it may be normalizable, it evolves consistently w
unitarity, it is nowhere rapidly oscillating, and it describes
universe that has Planckian size atT50. Similarly, the wave
function C0 here is analogous toC1 there: it may be nor-
malizable, it has a WKB form expressing a classically evo
ing universe in a suitable limit, but its norm cannot be ind
pendent ofT. Its behavior atT50 differs from that of the
earlierC1 , however, in a way related to the degeneracy
z1 andz2 at a5ac .

V. FRIEDMANN TRUNCATION OF THE TAUB SADDLE
POINTS AND WAVE FUNCTIONS

The Taub saddle-point metrics found in Secs. III and
clearly specialize to saddle-points of the Friedmann mo
by settinga5b, and the corresponding actions are the
strictions toa5b of those found earlier.

For most of the saddle points, the discussion within
Friedmann model proceeds in parallel with that in the Ta
8-9
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model.10 In particular, with the 4-manifoldB̄4, the saddle
point with h5e51 yields an exponentially growing prob
ability flux, and this flux must now enter the configuratio
space at the boundarya50. With the 4-manifoldM̄ ^ , a
similar argument can be made for the wave functionC0 .

The only qualitative difference between the Taub analy
and the Friedmann analysis occurs for the saddle point w
h521 ande51 on B̄4, and for the saddle point withz1 on
M̄ ^ . In the two Taub models, the corresponding wave fu
tions ~call themC1

2 andC1
2! were seen not to be normaliz

able. In the Friedmann situation, however, the imaginary p
of the action turns out to be bounded below and thea5b
restrictions of these wave functions are in fact square in
grable.~With M̄ ^ , C1

2 covers only part of the configuratio
space. However, whena,ac , it becomes a linear combina
tion of terms arising fromS6, so the full wave functionC0

2

is also normalizable.! In the Friedmann restriction, therefor
these saddle points are both compatible with normalizabi
Moreover, for fixeda, these wave functions are expone
tially decreasing inT, and are even compatible with unitar
evolution.

The drastic qualitative change in these two saddle-p
contributions upon passing from the Friedmann model to
Taub model suggests that the ‘‘good’’ behavior of the
saddle points in the Friedmann model should be seen a
artifact of the isotropic truncation. We shall return to th
question in Sec. VII.

VI. BIANCHI TYPE I

In this section we discuss the unimodular no-bound
saddle points and wave functions in a Bianchi type I mini
perspace model. We take the spatial topology to beT3, and
the ~truncated! no-boundary 4-manifold to beD23T2, where
D2 is the closed disk. We set up the unimodular quant
theory in Sec. VI A. The no-boundary saddle points a
wave functions are analyzed in Sec. VI B.

A. Unimodular quantization of Bianchi type I

The local spatial homogeneity of Bianchi type I is com
patible with ten distinct closed spatial topologies@57#. The
number of minisuperspace degrees of freedom depend
the spatial topology@58–65#, and the spatial topology als
determines the group of large spatial diffeomorphisms t
can be incorporated as gauge invariances of the m
@59,60#. The topology also determines the possible ways
compactifying the manifold toward the past to obtain a ma
fold of no boundary type@59,60#.

We shall here focus on a Bianchi type I model with
additional discrete symmetry group reminiscent of the ad
tional U~1! symmetry that distinguishes the Taub class
metrics within Bianchi type IX. The results obtained for th

10The results reported for the Friedmann model with the

manifold B̄4 in Ref. @56# only considered the saddle points withe
51, inadvertently excluding the saddle points withe521.
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conventional Einstein theory in Refs.@59, 60# suggest that
this specialized model should faithfully reflect the gene
Bianchi type I situation regarding the normalizability an
unitary evolution of the wave function.

The metric of our Bianchi type I model reads

ds25r2@2N2dt21a2dx21b2~dy21dz2!#, ~6.1!

wherea, b, andN are functions oft, and the overall factor
r2
ªG/(2p2) has been introduced for numerical conv

nience. In this subsection we takea2, b2, and N2 to be
positive, so that the metric is Lorentzian. The identificatio
made on the spatial coordinates are (x,y,z);(x12p,y,z)
;(x,y12p,z);(x,y,z12p), and the spatial topology is
thusT3. The metric~6.1! is obtained from the most genera
Bianchi type I metric withT3 spatial topology by imposing
the extra symmetryZ23D8 where the 8-element dihedra
group D8 is the symmetry group of the square. This
equivalent to demanding that the spatial metric have th
orthogonalclosed geodesics, and that two of these geode
have equal length.

To derive the solutions of the conventional Einste
theory and the unimodular theory, we proceed as in Sec
Inserting the metric~6.1! into the action integral~2.3! with
bare cosmological constantL, and introducing the prope
time parametert by dt5Ndt, we obtain the minisuperspac
action

S5 1
2 E dtF2aS db

dt D 2

22b
da

dt

db

dt
2lab2G , ~6.2!

wherelªr2L. This action reproduces the full Bianchi typ
I Einstein equations with a cosmological constant un
variations that fix the initial and final values of the sca
factors but not those oft. For lÞ0, the general Lorentzian
solution can be written in the gaugeNa51 as

b5At, ~6.3a!

a2b5 1
3 lAt31E, ~6.3b!

N51/a, ~6.3c!

whereAÞ0 andE are constants. Forl50, the solutions not
obtained from Eqs.~6.3a,b,c! with l50 can be put in the
form

b5B, ~6.4a!

a2b5Dt1E, ~6.4b!

N51/a, ~6.4c!

whereBÞ0, D, andE are constants,D andE not both equal
to zero.

In order to put the action-integral in a form convenient f
the unimodular theory, we introduce the parameter timeT by
dT5ab2dt. As before, we also simplify the action, withou
loss of generality in the unimodular theory, by setting t
bare cosmological constant to zero. The integral~6.2! then
takes the form

-

8-10
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S52 1
2 E dTab2~ab8212ba8b8!, ~6.5!

where the prime denotes derivative with respect toT. The
4-volume bounded by the hypersurfacesT5T1 andT5T2 ,
with T1,T2 , is 8p3r4(T22T1), and fixing the 4-volume in
the variation of Eq.~6.5! is therefore equivalent to fixing th
initial and final values ofT. The unimodular variationa
equations clearly reproduce the Einstein equations, with
cosmological constant now emerging as the integration c
stant proportional to the unimodular energy.

From Eq.~6.5!, the unimodular Hamiltonian operator is

Ĥª6
]2

]u]v
, ~6.6!

where the coordinates (u,v) are defined by Eq.~2.7!, and we
have adopted the Laplace-Beltrami factor ordering, as in S
II. The matching inner product is again~2.10!. As Ĥ is sym-
metric and real, it has self-adjoint extensions by von N
mann’s theorem.

B. No-boundary saddle points and wave functions

The general complex solution with our Bianchi I symm
tries is obtained from the Lorentzian solutions~6.3a,b,c! and
~6.4a,b,c! by extending the parameters to complex values
making t a complex-valued functiont(s) of a real-valued
time coordinates. We may assumedt/dsÞ0. The condition
that the solution be defined onD23T2 means thats must be
interpretable as the radial coordinate of polar coordinates
D2. TakingsP@0,1# as in Sec. III A, withs50 occurring at
the coordinate singularity, it is then necessary thata vanish
at s50 but b remain nonzero there. It is straightforward
show from Eqs.~6.3a,b,c! and ~6.4a,b,c! that the genera
complex solution with this property can be written as

b5B~11lÃt !, ~6.7a!

a2b5t~B/Ã!~11lÃt1 1
3 l2Ã2t2!, ~6.7b!

N51/a, ~6.7c!

whereB andÃ are nonvanishing complex constants, and
have chosent(0)50. The absence of a conical singularity
s50 requiresN21da/dt→ ih ass→0, whereh is a param-
eter that takes the values61: this impliesÃ52 1

2 ih. The
metric then defines a solution onD23T2 in the sense we
seek.

The total elapsedT is
08400
e
n-

c.

-

d

n

e

T5E
0

t
* Nab2dt5t* B2~12 1

2 ihlt* 2 1
12 l2t

*
2 !, ~6.8!

where we have writtent(1)5:t* . Solving forB, l, andt*
in terms ofT and the boundary values of the scale facto
we obtain

B5
2ihT

a2b
, ~6.9a!

l5
8T

3a4b2 F S a2b2

2T D 3

1 ih G , ~6.9b!

t* 5
3a4b2

4TF S a2b2

2T D 2

1
iha2b2

2T
21G . ~6.9c!

As discussed in Sec. III A, the action contains the integ
term ~2.6! as well as a boundary term froms50, and for the
metric ~6.1! the boundary term reads11 2 1

2 N21d(ab2)/dt
@45,66–68#. The value of the integral term is2 1

2 lT, and
that of the boundary term is2 1

2 ihB2. In terms of the bound-
ary data, the action reads

Sh~a,b;T!52
a2b4

6T
1

2ihT2

3a4b2 . ~6.10!

It is easily verified that this action satisfies the Hamilto
Jacobi equation.

The solution geometries are genuinely complex, ana
gously to those found for the Taub model withR4 ~untrun-
cated! topology. As before, we have not tried to analy
directly which, if any, of the saddle points can be reach
from an almost Lorentzian metric on the same manifold
an admissible deformation. We can, however, glean so
indirect evidence on this by considering the Wick rotation
the Riemanniancase. WhenT is analytically continued to
imaginary values asT52 ihTR with TR.0, the geometries
continue to Riemannian geometries that satisfy the unimo
lar boundary data onD23T2, with TR proportional to the
total Riemannian 4-volume; conversely, these are the o
Riemannian solutions of our Bianchi type I model onD2

11The boundary term contributes here because we are essen
in a 2-dimensional situation. Its presence marks a genuine dif
ence between the point of view that the spacetime manifold
cobordism with empty initial boundary, and the point of view that
has an initial boundary of zero spatial volume. In the Taub mod
we considered, this distinction was effectively moot because
analogous boundary term did not contribute. Similarly, the assu
tion that the saddle point metric must be smooth is also playing
important role here, in contrast to the Taub case. The boundary
is somewhat reminiscent of the pure imaginary topological con
bution to theLorentzianaction-integral found in Ref.@52#.
8-11
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ALAN DAUGHTON, JORMA LOUKO, AND RAFAEL D. SORKIN PHYSICAL REVIEW D58 084008
3T2 with the unimodular boundary data. The continuati
sendsiSh to 2hI , where I is the Riemannian unimodula
action. The situation is thus as fore51 in Sec. III: the com-
plex spacetimes with the Lorentzian boundary conditions
related to solutions of the Riemannian theory by an anal
continuation in the unimodular time, with a Wick rotation
the usual direction forh51 and in the unusual direction fo
h521.

We can now turn to the saddle-point estimate~3.2!. For
fixed T, the wave function withh521 diverges exponen
tially as a2b→0, and consequently cannot be squa
integrable.12 The wave function withh511, on the other
hand, is compatible with normalizability. Moreover, th
wave function decays exponentially asT→` at fixeda and
b.

As explained in Sec. II, we officially regard such behav
as consistent with unitary evolution. In this case, moreov
it appears plausible that probability actually is flowing t
ward infinity, rather than escaping through the finite boun
ary. Indeed, if we limit ourselves to values ofa,b>1 ~mean-
ing that none of the dimensions of 3-space has sub-Planc
scale!, then it is easy to see that the estimateC5O(1)eiS

implies that the probability for the 3-volumeV5ab2 to be
less thanAT is exponentially small inT2/V4. Here it is help-
ful to rewrite Sh in the form

iSh~a,b;T!52
iuv
6T

2
2hT2

3u2 , ~6.11!

whereu5a2b and v5b3 are the ‘‘light cone coordinates’
introduced earlier, for whichV5Auv. Thus, the universe
inevitably expands asT increases.

Moreover, if the universe expands enough so thata2b2

becomes@T, then it enters a regime in which~for both h
511 and h521! C oscillates rapidly, with the corre
sponding WKB trajectories forming@as Eq.~6.11! shows# a
two-parameter family of classical Lorentzian solutions th
are locally isometric to de Sitter, expanding exponentially
the cosmological time, with the ratio of the scale facto
remaining constant.~One parameter of the family is the co
mological constant, and the other one is the ratio of the s
factors.! Indeed, the saddle point metric~6.7a,b,c!, ~6.9a,b,c!
in this regime is itself~with our choice of ‘‘complex gauge’’
for it! very close to being Lorentzian at late times, and the
fore close to some specific Lorentzian solutionĝ of the clas-
sical Einstein equations. This indicates that the major con

12Unlike for the unnormalizable wave functions in the Taub cas
the divergence here is for small universes rather than large one
that sense, the argument for dismissing this saddle point is per
less compelling than before, because an ultraviolet cutoff ona and
b would render theh521 wave function compatible with normal
izability.
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bution to Eq.~3.1! for a2b2@T comes from 4-geometrie
that at late times are close toĝ, and therefore are behavin
essentially classically.

The behavior of our saddle point estimate forT→0 is also
suggestive. In this limit, Eq.~6.11! shows, as before, that th
distributional support ofC shrinks down onuv50, describ-
ing the explosive birth of a universe at zero 3-volumeab2

~althougha andb need not vanish separately!.
In summary, only the saddle point withh51 yields a

square integrable wave function. This wave function is a
compatible with unitary evolution at the level of our sadd
point estimate, and it can be construed as describing a
verse that begins at 0 volume and ultimately enters a reg
of classical isotropic expansion at late times.

In concluding this section, we mention that it would b
straightforward to analyze also the Bianchi type I analog
the cross-cap manifold we considered in Sec. IV, namely
4-manifold that is the product ofT2 and the closed two-
dimensional cross-cap. One could proceed as in Sec.
quotienting@2t* ,t* #3T3 by the mapJ:(t,x,y,z)°(2t,x
1p,y,z). The only saddle points are then flat, and t
saddle-point action vanishes. This could be interpreted a
classical birth of a universe, if one were happy with the la
of time orientability of this metric~and the concomitant im-
plication that the universe could die classically, in a tim
reversal of its birth!.

VII. SUMMARY AND DISCUSSION

In this paper we have discussed the no-boundary p
integral within unimodular Einstein gravity in the Tau
minisuperspace model withS3 spatial topology and in a Bi-
anchi type I minisuperspace model withT3 spatial topology.
The ~future-truncated! 4-manifolds considered in the Tau
model were the closed 4-dimensional ball and the clo
4-dimensional cross-cap, while in the Bianchi type I mod
we only considered the closed disk timesT2. In all three
cases we found a saddle point~or combination of them! for
which the resulting estimate to the wave functionC is com-
patible with normalizability and unitary evolution. In the B
anchi type I model the estimate was rapidly oscillating
a2b2@T, and it corresponded there to a family of isotrop
cally expanding Lorentzian universes. In the Taub model,
the other hand, the estimate did not appear to have su
WKB region with either choice for the 4-manifold.

In the Taub model, with either 4-manifold, we also foun
a saddle point for which the resulting estimate to the wa
function is compatible with normalizability and correspon
at late times to a family of exponentially expanding Loren
zian universes. However, both these wave functions evo
nonunitarily, with probability~in the sense ofuCu2! being
injected into the configuration space at an exponentially
creasing rate with respect to the unimodular time.

It should be emphasized that we did not attempt to de
the path integral beyond the saddle-point approximation
particular, we did not attempt to discuss how good o
saddle-point estimate ofC should be expected to be.
would be possible to make some estimates on the
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exponential factor~assuming our choice of factor ordering
the Hamiltonian operator!, but this would seem to contai
little information beyond what we already have. In partic
lar, for the saddle points compatible with unitary evolutio
the saddle-point estimate does not seem to contain eno
information to single out a particular self-adjoint extensi
of the Hamiltonian.

When specializing the saddle points of the Taub mode
those of the Friedmann model, we found, for each of the
4-manifold topologies we considered, one saddle point
which an unnormalizable Taub wave function become
Friedmann wave function that is compatible with normal
ability, and even compatible with unitary evolution. Whi
these saddle points would thus have seemed highly appe
in the Friedmann model, the properties of interest disapp
upon generalization to the Taub anisotropy. This should a
one to the need to understand whether our results in the T
model and the Bianchi type I model would remain quali
tively unchanged upon the addition of still more degrees
freedom.

One avenue towards investigating this would be to
clude some inhomogeneous perturbations in the path inte
as linearized ‘‘test’’ fields@44,45#. For example, if one add
to the Friedmann model a massless scalar test field, and t
for background theB̄4 saddle point metric withe51 and
h521, then one does not obtain a normalizable saddle p
wave function for the scalar field. In this case, therefore,
criterion of a normalizable scalar field perturbation wa
function around the Friedmann saddle point metric agr
with the criterion of a normalizable Taub wave function.

The underlying question here is how one can actually r
ognize which saddle points, if any, yield a good approxim
tion to the original path integral~3.1!. In principle this re-
duces to the question whether a given saddle point metrg
can be reached by deforming the gravitational path inte
from an originally Lorentzian ‘‘contour’’ to a complex con
tour passing through the saddle point in question. For su
deformation to be valid, the path integral would, at a mi
mum, have to be convergent for all intermediate values
the contour, and one might, in a preliminary formulatio
reduce this to the question whether the complex metricg can
be reached by a curve of metricsg(s) all of which admit a
convergent path integral for a test scalar field~a type of
perturbation that has much in common with perturbations
the metric itself!. In Ref. @52# a criterion of this type was
used to fix the sign of the imaginary part of a complex reg
lator that was there added to the metric.

Unfortunately, the issues raised in the previous two pa
graphs are both clouded by the fact that each of our sa
points actually belongs to an entire family of saddle poi
~all with the same actionS! whose members are related
each other via ‘‘complex diffeomorphisms,’’ or in othe
words deformations of the complex patht(s) that was used
to parameterize the general complex solution of the Eins
equations in Secs. III and IV. AlthoughS itself does not
depend on the choice oft(s), the criteria of normalizable
perturbation wave functions and convergent perturba
path integrals apparently do. We leave more systematic
vestigation of these questions to the future.
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The results we have just summarized cannot be claime
be realistic, of course, if only because they omit all oth
fields than gravity, and because they represent situation
artificially imposed symmetry. Nevertheless, the sad
points we have found, and the associated wave functio
contain enough interesting features to warrant some fur
comments of an interpretive nature.

In order to be convincing, an interpretation of our resu
would have to draw on a more general interpretive fram
work for quantum gravity itself, in terms of which we coul
understand the significance of the saddle point metrics
wave functions we have been computing. From a histo
point of view, a quantum wave function has no direct mea
ing at all. Rather, it is seen as an intermediary in the co
putation of thequantum measure, m(C)5icCi2, of the set
C of Lorentzian manifolds~or more general histories! whose
path integralc is.13 It is in terms of this quantum measur
m(C) @not to be confused with the ‘‘measure-factor’’ dn(g)
that occurs in expressions like*dn(g)eiS(g)# that predictions
must be made. In special situationsm reduces to a probabil
ity, and more generally it seems to represent a kind of p
pensity for the actual history to belong toC. In particular,
one could probably interpretuc(a,b;T)u2 in the present case
as the probability density for the universe to find itself wi
the scale parametersa and b when the accumulated 4
volume reaches T. ~For more details see Refs
@1,3,19,21,23#.!

Now, in nonrelativistic quantum mechanics,cC depends
parametrically on ordinary timet, and its squared norm
icCi2 must be independent oft in order thatm(C) be de-
fined consistently. This independence is guaranteed by
tarity. For gravity withT54V playing the role of paramete
time, an analogous unitarity would seem to be required
order that the quantum gravitational measurem be well de-
fined. In our minisuperspace truncation of general relativ
one can certainly impose a unitary evolution onc if one
neglects topology change, because the unimodular Ha
tonian operator is real in the Schro¨dinger representation, a
pointed out earlier. However, it is not so clear how topolo
change affects the possibility of unitarity, nor is it clear wh
is the proper class of spacetimes over which the gravitatio
path integral should be taken in a cosmological setting.
believe that our results can shed some light on both th
questions.

One natural idea, suggested by what we know of the
bang, is that the universe should expand from zero ini
size. In a discrete setting this idea can perhaps be expre
by positing a single initial element or ‘‘origin,’’ in a continu
ous setting it must translate into conditions on the topolo
and the metric of the spacetime manifold. Let us assume
the birth of a universe at zero size corresponds topologic
to a cobordism with empty initial boundary~it is thus a spe-
cial case of topology change!. References@41,42,52# delin-

13In addition to its technical role as ‘‘square root of the quantu
measure,’’c can serve as a summary of the past, useful for co
puting the measuresm(C) of setsC defined in the future.
8-13
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eate a class of symmetric tensor fields that exist on any
bordism, that determine a well defined causal order, and
are globally smooth with Minkowskian signature almost e
erywhere. If we specialize them to the case of a manif
appropriate to a big bang cosmology—one without init
boundary and compact toward the past—then we arrive
Lorentzianversion of the so called no-boundary proposal
quantum cosmology@27–29,44#, with a definite choice for
the metrics to be integrated over.14

In a cosmology of this sort, the path integral is a sum o
certain almost Lorentzian metrics on manifolds without i
tial boundary. More fundamentally, one might expect t
sum to be over an underlying discrete structure@3#, a possi-
bility that could manifest itself in the continuum in mor
than one way. For example, it might yield an amplitude
the universe to ‘‘bounce’’~collapse and then re-expand! or to
develop into a ‘‘bush-like,’’ multicomponent structure
emerging from a single ‘‘stem.’’ In fact, some appeal to d
creteness might be required just for consistency: in order
the ~approximate! continuum wave function be truly squar
integrable~see below!.

Now suppose for a moment that the only topology chan
that need be considered is the initial expansion we have
been considering, and that only a single macroscopic ‘‘co
ponent’’ of the universe comes into being thereby. If w
further fix the 4-manifold topology, then we are left with
sum over almost Lorentzian 4-geometries on a given m
fold, and if the quantum measurem(C) is to be formed in the
way suggested in@1#, then for consistency, we needicCi2 to
be independent ofT ~for T sufficiently large!, where in par-
ticular, C can be the set ofall 4-geometries withV5T. We
also need, of course, thatici2,` in order thatm be defined
at all. To make contact with the analysis in this paper,
need one further assumption, which is that the Lorentz
functional integral definingc can be analytically continued
to complex metrics and then approximated by deforming
‘‘integration contour’’ to pass through a saddle point of t
analytically continued integrand. This would justify~within a
minisuperspace truncation! the kind of approximate wave
function we have studied herein. What is more, an anal
of the conditions of validity for the contour deformatio
would tell us, in principle, which saddle points~if any! ac-
tually contribute to Eq.~3.2!, and with what signs. In par
ticular, it would tell us whether our conditions of a smoo
complex metric on a smooth manifold without boundary c
rectly describe the saddle points of the analytically continu
functional integral.

The two key questions then are whetherc is L2 ~so thatm
can be defined! and if so, whether~c,c! is independent ofT
~so that the definition can be consistent!. If the answer is yes
then the picture painted above is at least internally coher
Lacking the deeper analysis that would tell us which sad

14Notice that the no-boundary condition, regarded in this man
is a condition on the histories themselves; it need make no men
of any wave function. From a histories perspective, such a cond
is more natural than any boundary condition couched in term
the wave functionC.
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point~s! we must use, the best we can say is that, for eac
the 4-manifold topologies we have studied in this pap
there is at least one saddle point consistent with these
key features at the level of approximation to which we a
working. In fact, there is precisely one such saddle point
each manifold~actually a linear combination of saddle poin
in the Taub cross-cap case!, so we get in effect a unique
prediction of the no-boundary wave function in each cas

A further formal requirement, which would seem valid
the extent that post-natal topology changes can be igno
or at least localized at the boundaries of configuration spa
is thatc obey the unimodular Schro¨dinger equation~3.10!.15

We have seen that this demand is also met by all of
saddle points~or appropriate combinations of them in th
Taub-cross-cap case!, because, to the accuracy of our a
proximation, the Schro¨dinger equation reduces to th
Hamilton-Jacobi equation, which all of our saddle point a
tions satisfied. Conversely, the requirement would not be
if we arbitrarily employed different saddle points for diffe
ent values ofT, a, andb.

Another formal issue on which we might have hoped
guidance from our minisuperspace models is that of bou
ary conditions at the ‘‘edge’’ of configuration space. If un
tarity is to obtain then the only freedom in the bounda
conditions is that of a choice of selfadjoint extension forĤ.
But that ignores the possibility of actual recollapse or, co
versely, of a universe that remains ‘‘pre-geometric’’ for
long time T and only then begins to expand.~For a causal
set, the unimodular timeT would be identified with the tota
number of elements@3,70#. Even in a pre-geometric phas
therefore,T retains its meaning.! A self-adjoint Ĥ also al-
lows for recollapse, of course, but it demands then an imm
diate ‘‘bounce,’’ with no possibility of disappearance or of
~temporary or permanent! transition to a disordered, non
geometric phase. Unfortunately, it is unlikely that our sad
point estimates contain enough information to distingu
among these multiple possibilities.

Among our saddle points, there were ones exhibiting
exponential decay ofucu2 with time in every compact region
of configuration space. This occurred, in particular, for eve
one of our ‘‘unitary’’ saddle points. We chose to associa
such decay with ‘‘an escape of probability toward`,’’ but it
might equally well signify an escape through the fin
boundary—i.e., a recollapse. Although these two alternati
do not seem to be conclusively resolvable at our level
approximation, the evidence points to a recollapse in
Taub cases and an unbounded expansion in the Bianchi
I case. If this is correct, then the evolution in the Taub ca
is not actually unitary.

The wave functionsC2 in the first Taub case andC3 in
the second Taub case both look atT50 qualitatively like
bound state wave functions localized nearuv50, except that
they die out exponentially asT increases. The most direc
interpretation of such behavior would seem to be a unive

r,
on
n

of 15See, however, the doubts raised in Ref.@69# about satisfaction of
the Hamiltonian constraints in a path-integral formulation.
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INSTANTONS AND UNITARITY IN QUANTUM . . . PHYSICAL REVIEW D 58 084008
expanding to Planckian size and then rapidly shrinking
zero volume, at which point the saddle point approximat
is helpless to tell us what happens next.~Beyond the possi-
bilities mentioned earlier for what happens next, anothe
that probability escapes to inhomogeneous metrics—i.e.,
minisuperspace approximation breaks down.!16

In the Bianchi type I universe of Sec. VI, the ‘‘unitary
wave function, called thereC1 , behaves very differently
For small T ~6.11! strongly resembles the action of a fre
nonrelativistic point particle~albeit with an indefinite mass
tensor! released fromu5v50 atT50, and we have noted in
this connection that probability appears to flow toward infi
ity. This suggests that*dudvucu2, which here diverges mar
ginally, would continue to be infinite in a better approxim
tion. One might attribute this divergence either to a failure
the no-boundary prescription, or to the idealization of spa
time as a continuum, for which the saddle point approxim
tion is, disappointingly, not providing an effective cutoff.
this is correct, then to compensate, we might need to inv
discreteness explicitly, by smearingc out by hand from a
delta-function to Planckian size atT50. This in turn would
be expected to modify its behavior foruv@T2.

We also found saddle points~and with many attractive
features! that manifested an exponentialgrowthof norm. For
them, probability seems to be flowinginward from the finite
boundary at an increasing rate. The nearest we can come
picture of what this type of unitarity breakdown might me
would be a pre-geometric universe continually sending
branches that develop into continuum spacetimes. Suc
‘‘bush-like’’ universe could not really correspond to a on
configuration-space wave function at all, though, and it is
really clear whether any plausible interpretation can acco
modate such saddle points.

A question often raised in connection with a quantu
cosmological model is whether it predicts that the unive
will, at late times, expand along an approximately class
trajectory. In effect, one is asking whether the universe, h
ing once arrived at certain values ofT, a, and b, can be
expected to continue its expansion along some partic
classical trajectory through these values. In the affirma
case, we may say that it makes a spontaneous transitio
classical behavior, possibly after some initial era of no
classical expansion.17 One can argue that such behavior
correlated with rapid, WKB-like oscillations ofc in the re-
gion in question. Another familiar criterion for classical ev
lution is the validity of a stationary phase approximation

16If the universe really can die out entirely, then the rule given
@21# for forming the quantum measurem(C) needs to be general
ized in a way that allows paths to ‘‘exit’’ the configuration space
its boundary, without reappearing elsewhere. This does appear
possible, but only if one requires both halves of the ‘‘Schwing
history’’ to exit at the same place and at the same value ofT, which
then serves as a premature ‘‘truncation time’’ for the exiting his
ries.

17By saying that a history~Lorentzian geometry! evolves ‘‘non-
classically’’ we merely mean that it fails to satisfy the classic
Einstein equations.
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the path integral, meaning that most of the contribution to
quantum measure comes from nearly classical histories,
this in turn can be related to the saddle point metric’s be
~up to ‘‘complex diffeomorphism’’! nearly Lorentzian at late
times. To us, it seems unclear whether any of these feat
is really necessary or whether decoherence effects assoc
with gravitons or other matter could by themselves bri
about a transition to a nearly classical universe like the
we inhabit. At any rate, it would seem helpful at least for t
universe to attain a large size with high probability, and t
happens~together with a spontaneous transition to classi
expansion ifT!a2b2! in at least one of our normalizabl
and unitary cases, namely for theh511 saddle point in our
Bianchi type I model.

As pointed out earlier, it is meaningful in the unimodul
theory to ask what the wave function looks like atT50, the
‘‘moment of birth,’’ and consistency would seem to requi
that the no-boundary prescription yield a universe which
of zero or Planckian size. This was the case for all of o
‘‘unitary’’ saddle points, so to that extent, the desired co
sistency seems to be present.~In contrast, the non-unitary bu
normalizable wave functionC0 in the Taub cross-cap cas
seems to look atT50 like a combination of a delta-function
with a ‘‘zero momentum’’ state spread out over all of co
figuration space. We recall that thisC resulted fora,ac

from a time-non-orientable, purely Lorentzian solutio
which one suspects is not a valid saddle point at all.!

In concluding, it seems fitting to remark on the rath
lifelike nature of some of our models. In contrast to no
unimodular versions of quantum cosmology, where the w
function is typically non-normalizable and otherwise ve
hard to interpret, we have found here many saddle po
yielding c’s which are eitherL2 or marginally so, and which
evolve consistently with unitarity at our degree of appro
mation. This seems encouraging for the account of topol
change sketched above.

Among all of our saddle points, there is precisely one t
is consistent with normalizability and unitarity and that spo
taneously makes a transition to classical expansion. Inter
ingly, it belongs to spatial topologyT3 and not toS3. In this
way, we might imagine predicting something about the la
scale topology of the universe, if it turned out that this d
tinction betweenT3 andS3 persisted in more realistic mod
els.
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