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Instantons and unitarity in quantum cosmology with fixed four-volume
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We find a number of complex solutions of the source-free Einstein equations in the so-called unimodular
version of general relativity, and we interpret them as saddle points yielding estimates of a gravitational path
integral taken over a space of almost everywhere Lorentzian metrics on a spacetime manifold with a topology
of the “no-boundary” type. Within this interpretation, we address the compatibility of the no-boundary initial
condition with the definability of thguantum measuravhich reduces in this setting to the normalizability and
unitary evolution of the no-boundary wave functignWe consider three spacetime topologig$, RP*#R*,
andR?X T2. (The corresponding truncated manifolds with boundary are respectively the closed 4-dimensional
disk or ball, the closed 4-dimensional cross cap, and the product of the two-torus with the closed two-
dimensional disk. The first two topologies we investigate within a Taub minisuperspace model with a spatial
topology S®, and the third within a Bianchi type | minisuperspace model with a spatial topdldgyn each
of the three cases there exists exactly one complex solution of the classical Einstein eqoationsbination
of solutiong that, to the accuracy of our saddle point estimate, yields a wave function compatible with
normalizability and unitary evolution. The existence of such solutions tends to bear out the suggestion that the
unimodular theory is less divergent than traditional Einstein gravity. In the Bianchi type | case, moreover, the
distinguished complex solution is approximately real and Lorentzian at late times, and appears to describe an
explosive expansion from zero sizeTt 0. In this connection, we speculate that a fully normalizablean
result only from the imposition of an explicit short distance cutdiff. the Taub cases, in contrast, the only
complex solution with nearly Lorentzian late-time behavior yields a wave function that is normalizable but
evolves nonunitarily, with the total probability increasing exponentially in the unimodular “time” in a manner
that suggests a continuous creation of new universes at zero volliheeissue of the stability of these results
upon the inclusion of more degrees of freedom is raif88556-282(98)08418-5

PACS numbse(s): 04.60.Gw, 04.20.Fy, 04.60.Kz, 98.80.Hw

I. INTRODUCTION theory whose classical limit is equivalent to Einstein’s theory
with a cosmological constant, the only difference being that
In formulating the gravitational functional integral on a the cosmological constant arises as a constant of integration
compact manifold with a boundary, and not as a prescribed parameter in the adtierlg. This
theory is often called unimodular gravity, owing to the fact
that one can alternatively derive it by imposing the coordi-
nate conditiony/—g=1 in the action prior to variation.
In our view, the motivation for a unimodular modification
one may choose to limit the geometrigghat enter the sum of gravity is threefold[1,3]. First, it may help explain why
by specifying a fixed value for the total 4-volum&-3|. If the cosmological constant can be so small. Second, it is sug-
S(9) is the Einstein-Hilbert action, this restriction produces agested by analogy with the structure of nonrelativistic quan-
tum mechanics. Third, based on this analogy, it can be ex-
pected to improve the convergence of certain expressions

f Dg exdiS(g)], (1.2

*Electronic address: daughton@nuclecu.unam.mx that arise in the computation of the quantum measure of a set
TPresent address. of histories(i.e., of 4-geometrigs This third motivation is
*Electronic address: louko@aei-potsdam.mpg.de the most relevant to the present paper.

SPresent address. In a histories framework for quantum thedgee Refs[1,
IElectronic address: sorkin@suhep.phy.syr.edu 3, 17-23 and references therginthe quantum measure
TPermanent address. plays a role analogous to that played by the classical prob-
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ability measure in a classically stochastic process such as The condition we impose is that spacetime be a 4-
diffusion. Within a histories framework, no wave function manifold M that is compact toward the past, with empty
ever need be introduced, but it is often convenient to do sdnitial boundary* When truncated toward the future in order
becausg: can often be computed 4] for a suitabley. In  to compute the quantum measutg19], M will therefore
unimodular quantum gravity in particular, one can introduceacquire a future boundary; that isclosedin the technical
a wave function on 3-geometries by summing over 4-sense of being compact without boundar.wave function
geometries with a fixed 4-volumil], and the resultingy  obtained from a unimodular path integral over such a trun-
will depend on the 4-volum@& of the spacetimes that enter cated manifold will have as arguments the 4-voluimand
into the sum. Now, if the relation betweefand the quan- the induced 3-geometry on the 3-manifdit}, .
tum measureu in quantum gravity is like that in ordinary Precisely what kinds of metrics are to be integrated
quantum mechanics, then, in order thabe well-defined, it over—or indeed, whether it is possible to define consistently
is necessary first of all thdlt||> be finite, and secondly that a gravitational functional integral at all in a continuum
it be independent of 4-volume, i.e., that the “evolution” #f theory—is a poorly understood iss{#2,3,43—4%to which
with “time” T=V be unitary. These are the principal ques-we shall return in Sec. VII. For now, we mention only that
tions that we explore in the present paper. the point of view we adopt in the following is that the path
In the present paper, our considerations will be based on itegral is originally over(almost everywhepelLorentzian
Lagrangian formulation, both for its relative simplicity and metrics, and any complex metrics one considers have mean-
because it is the most suitable formulation for dealing withing only insofar as they yield approximations to such a
the type of topology change that a “big bang” cosmology Lorentzian path integral. In the main part of the paper, we
entails. Nevertheless, it may be of some interest to sketcWill simply assume that the path integral can be analyzed in
here how the unimodular assumption manifests itself infhe crudest possible saddle-point approximation; and we will
Hamiltonian versions of gravity. To understand what hap-f'nd the complex classical solutions for the unimodular

pens to the constraints, it is useful to think in terms of thetheory, without attempting to control even the semiclassical

path integral: the condition of fixed spacetime volume re_prefactors. As the unimodular boundary condition requires

moves one degree of freedom from the permissible deformz%rlselgoggtgr']an eét]-\e/(r)altlijg(;sfa?ia rgg#] tTe);;}dodle-hpzlgédglg?m-
tions of the final hypersurface, and this in turn eliminates one ! ng 1y P& ug

of the infinity of Hamiltonian constraints that are present inpOintS with Lorentzian signature will be seen to exist in cer-
Y . pres tain special cases. We emphasize that this condition of real
the conventional formulation, or rather converts it into a

b . ; 4-volume excludes from our framework any geometry with
Schralinger equation expressing the dependence oh T. purely Euclidean signature.

In one particular Hamiltonian scheme for unimodular gravity”  ag explained above, the crucial consistency conditions for
with closed spatial hypersurfaces, this works out in morgy,q quantum measure to be defin@hd therefore for the
detail as follows. The theory contains a pair of canonicallypath integral to lead to meaningful predictiprase that the
conjugate fields that are not present in the canonical formupath integral give a wave function that, with respect to a
lation of conventional Einstein gravity. One of the new fields g iiaple measure, is square integrable and evolves unitarily.
specifies the value of the cosmological constant, while they investigate these features within two spatially homoge-

conjugate field carries the information about the spacetimeg ;s minisuperspace models: the Taub mEgieinchi type
volume bounded by the initial and final spacelike hypersurqy plus an additional 01) symmetry with S° spatial topol-
faces. Dirac quantization of this Hamiltonian theory leads, in

> : , ogy, and Bianchi type | witil® spatial topology and a cer-
addition to' a §et Of. constramt equat!ons, to a th@e.r'. tain additional discrete symmetry. As tHguncated no-
type equation in which the “time” variable can be identified ) . Bland
as the four-dimensional spacetime volume. One therefor@oundary 4-mar.1|folds., we consider the gosgd 4- n
would expect to adopt a Schdinger-type Hilbert space in the closed 4-dimensional cross-c&i*#B* in the Taub
which the Hamiltonian would be a selfadjoint operator, andmodel, and the closed disk times the two-torus in Bianchi
the wave function would evolve unitarily in “unimodular type I. In all cases, finding the no-boundary saddle points
time.” This “unfreezing” of the wave function raised hopes
that the interpretational issues of quantum gravity, especially
regarding time[24-26, might be more easily tractable This condition can be made precise in the language of Morse
within the unimodular theory than in the conventional theory:M should admit a “height function’h=0 with the property
theory. However, from a histories standpoint, no “problemthath=%([0]) is compact andh~*([0yr)) is boundary-free for all
of time” is evident, and the role of unimodularity would realr>0.
seem to be more technical than interpretational in nature. For?The manifoldsM we consider in the present paper are all such
some further discussion, see R4fE5, 25. thatM; may be assumed to be a smooth 3-manifold. In cases where
In this paper we explore the implications of unimodular topological transitions are not limited to the “moment of birth” of
gravity for quantum cosmology. Specifically we explore itsthe universe, the level surfaces of a Morse height function are not
implications for no-boundary initial conditions of the sort all manifolds. This suggests that, in computing the quantum mea-
proposed by Hartle and Hawkil@7-29, Linde [30-34], sure for such spacetimes, one might want to consider wave func-
and Vilenkin[35-40, and more generally, for the frame- tions defined on some sort of correspondingly generalized 3-
work for topology change set out in Ref8&, 41, 43. geometries.
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reduces to solving a simple algebraic equation. Having foundeneral case, with two independent scale factors. The trun-
the saddle points, we first ask whether a saddle-point esteation to the positive curvature Friedmann model is outlined
mate to the path integral is compatible with a normalizablein Sec. 1l B. We assume throughout this section that the
wave function, for any choice of saddle pdst If yes, we  spacetime is everywhere Lorentzian and has topolBgy

then ask whether the corresponding wave function evolvex S, The boundary conditions needed to express the no-

unitarily, to the approximation in question. Also, we ask boundary topologies we consider will be introduced in Sec.
whether any of the saddle-point geometries are approxi|.

mately Lorentzian at late times. Finally, we ask how the
saddle point wave function behavesTat 0, and in particu-
lar, whether this behavior seems compatible with the picture
of a universe expanding from zero size that is implicit in the ~ The Taub family of metrics can be written 6,47
no-boundary topology. 1 1

In the Taub model, for both of our 4-manifolds, we find a ds*= o~ N*dt*+3a%(01)*+3b(0?)*+ (0?7},

. ; ; . 2.1
unique saddle point that, to the accuracy of our estimate, is
compatible with both normalizability and unitary evolution.
This bears out the suggestiqd—3] that the unimodular
theory is less divergent than traditional Einstein gravity, an
tells us in each case what the approximate behavior of the 1
wave function must be if the quantum measure is indeed well do'=—= eijkwj OwX. (2.2)
defined. Interestingly, this saddle point remains always in the 2
guantum era, never making a spontaneous transition to clas- ] . ) . o
sical behavior. In addition there {$or both 4-manifolds a We use conventions in which the exterior derivative and the
unique saddle point that is compatible with normalizabilityWwedge  product — are  dw)ap=dawp—dpw,  and
and does make a transition to classical behavior. Howevef®%)ap=3(wahp— wpdy), and we have extracted in Eq.
the wave function corresponding to this saddle point turng2.1) the overall factoro®:=2G/3w for numerical conve-
out not to evolve unitarily: instead, probability is being in- nience. Aso has the dimension of length, we can takeb,
jected into the configuration space at a rate that is exponef, t, andw' to be dimensionless. In the special caseb,
tially increasing in the unimodular time. This injection ap- the spatial sections are round 3-spheres with radius of curva-
pears to take place at a boundary of the configuration spactire oa.
in a manner reminiscent of the tunneling boundary condi- The spacetime topology i&x SU(2)=RxS?, and the
tions advocated by Lind¢30—34 and Vilenkin [35-40.  spacetime isometry group is that of the constahypersur-
Physically, such an injection can perhaps be interpreted asfaces, W2)=SU(2).XU(1)r/Z,. The SU?2) factor comes
continuous creation of new “branch universes,” all stem-from the invariance of Eq(2.1) under the left action of
ming from a single root. SU(2) on itself, and the further (1) isometry(acting on the

In the Bianchi type | model, the unique saddle point thatright) expresses the equality of the coefficients of? and
is compatible with normalizability turns out to be compatible (032
also with unitary evolution. Further, the saddle-point geom- Inserting the metri¢2.1) into the gravitational action in-
etries are, at late times, nearly Lorentzian, isotropically extegral,
panding universes. Thus, this saddle point exhibits many fea-
tures normally regarded as desirable for quantum cosmology. 1 1

The plan of the paper is as follows. In Sec. Il we intro- S= 87G J (zR=A)dV+ % K, 2.3
duce the unimodular Taub minisuperspace model and the
unimodular positive curvature Friedmann model, whichwjith (bare cosmological constand, yields the minisuper-
arises as the isotropic specialization of the Taub model. Segpace action integral
tions Il and IV discuss the Taub no-boundary saddle points
when the 4-manifold is respectively the closed 4-ball and the J

dr

A. The general Taub model

wherea, b, andN are functions oft, and theo' are the
cI.Jsual left-invariant one-forms on %), satisfying

2 dadb 3 2 )
—2b— —+4a—a°b " “—3\ab
dr d7

db

closed cross-cap, and Sec. V discusses the truncation of thess=3 ar

no-boundary analyses to the Friedmann model. The Bianchi
type | model is analyzed in Sec. VI. Our results are summa-
rized and discussed in Sec. VII.

We use throughout units such that# =1, but we keep
Newton’s constanG. A metric with signaturg—+++) is
called Lorentzian, and a metric with signatyre+ ++) Rie-
mannian.

—a

(2.9

where we have introduced the dimensionless proper time pa-
rameter by dr:=Ndt and written A\:=10?A. The true
proper time isor.

Given the action integral, it is easy to derive the classical
equations of motion in both the unimodular and non-
unimodular theories. In the non-unimodular theory, the clas-
sical equations of motion result from making arbitrary varia-
tions of S that fix the metric on the boundary. Because the

In this section we describe the Taub minisuperspac@nsatz(2.1) expresses invariance under a compact symmetry
model in the unimodular theory. Section Il A presents thegroup, it suffices to consider variations of the paramegers

II. TAUB MINISUPERSPACE IN THE UNIMODULAR
THEORY
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b, and =. The condition of fixed boundary metric is then v:=h?, 2.7
equivalent to fixinga andb (but not7) at the end point3.

The general solution to the variational equations can bgvhich represent spatial volumes rather than lengths. In these
written in the gaugéNa=1 as coordinates, the action integrd.6) simplifies to

2_ A24 12/ A2 _
DIEATHEIAG (259 S=f dT(—Hu'v' —tuv 53+ 2y 2B), (2.9
a’h?=A*{4(A*—t?/A%)

The configuration space of the theory is therefore the future
guadrant of a (% 1)-dimensional Minkowski space, and
(u,v) forms a pair of positive-valued null coordinatéblo-

tice that in this system, the “radial coordinate/uv repre-

. . sents the spatial volumeThe Hamiltonian operator corre-
whereA>0 andBeR are the two constants of integration. sponding to Eq(2.8) is

This metric covers the spatially homogeneous region of the

+3\[t%(3A%) + 2t2— A*]} + ABt, (2.5b

N=1/a, (2.50

Taub—NUT (Newman-Unti-Tamburino)—de Sitter solution 2

[48]. In the notation of Ref[48], the Taub-NUT “charge”l H:=18 7t Tup B2y 728 (2.9
and “mass-parameter'm are given byl=3cA and m uov

=1/40B.

For the purposes of the unimodular theory, it is conve-Where we have chosen to factor-order the kinetic part of the
nient to write the action integral in a slightly different form, Hamiltonian as the D'Alembertiarior “Laplace-Beltrami
First of all, we may sef\ to zero in Eq(2.3) without loss of operatorl’) of the metric assoc!ated to the kinetic tgrms in the
generality, because it influences neither the classical sol=2grangian withT used as time-parameter. Notice that a
tions nor the quantum measur@e obtain the classical change of time-parameter would change this metric and_con—
equations of motion by varying subject to the condition S€duently change what we would call the D’Alembertian.
that the total 4-volume is fixelSecond, because of the spe- CONVversely, the combination of 4-volume time with Laplace-
cial role played by the spacetime 4-volume, it is useful toBeltrami ordering ywth respect to that time provides a uni-
adopt it as our time coordinatesee for example Ref1]). ver;al factor-ordering for a_II spatially ho_mogeneous cosmo-
For numerical convenience, we may use the dimensionled@9ical models[50]. The Hilbert space inner product that
4-volume parameteF defined byd T=ab?d7: the 4-volume ~ 90€S naturally with a metric is tHe? integral with respect to
bounded by the hypersurfacd@s=T, and T=T,, with T the metric’'s volume element, and the Laplace-Beltrami op-
<T,, is then 2r2¢4(T,—T,). Writir%g Eq. (2.4 2|n terms cl)f erator is formally selfadjoint with respect to this inner prod-

T (with \ set to zerp we obtain the action-integral in the uct, as is_ easily seen in general. In the present case this inner
form product is

s=éf dT(—a%?'2—2ab%a’b’+4b~2—a% %), (41, 4h2) = ﬁwdudvEdfz- (2.10
v>0
(2.6

] o _ As H is real, it has self-adjoint extensions by von Neumann'’s
where the prime denotes derivative with respecttdn the  theorem(Ref.[51], Theorem X.3. Choosing one such exten-
variation of Eq.(2.6), fixing the total spacetime volume is sjon specifies a unitary evolution in the Hilbert space of
equivalent to fixing the difference between the initial a”dsquare integrable functiong
final values ofT, and as the integrand does not involve
explicitly, this is further equivalent to fixing individually the
initial and final values ofT. The general solution to the
resulting variational equations is precisely Eg.5), but A The Taub model can be truncated to its isotropic special
emerges now as an integration constant proportional to thease by settingg=b. The metric(2.1) becomes then the
“unimodular energy,” and the general solution contains thusmetric of the positive curvature Friedmann model,
three constants of integration. 5 iy o2

It is convenient to replaca andb by the coordinatetcf. ds’=o?[ —Ndt?+a’dQs], (2.1
[1,49)

B. Friedmann truncation

whered(3 is the metric of the unit 3-sphefeThe isometry
u:=a’b, group of the constartthypersurfaces is @). The action Eq.
(2.6) becomes

3In an action that retainsandN, the values of at the end points
can be fixed, and the equation that results from variation with re- 4Our conventions in the Taub model were chosen so as to make
spect toN is equivalent to the equation obtained by varying Eg. the Friedmann metri¢2.11) agree with the conventions of Refs.
(2.4) with respect tor at the end points. [28, 29.
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. T A. Saddle-point geometries

S= EJ dT(-a’a™+a™. 212 To find the actionsS“(a,b;T) that enter the saddle-point

o ) ] estimate(3.2), we need orB* the Taub solutions with pre-
The Hamiltonian operator corresponding to E12) is scribed values of the boundary scale factors and total 4-
) volume. The boundary data for the solutions is Lorentzian,
a ,_E d_ 23 but the saddle-point geometries are allowed to be complex.

H:==|9| | —X , (2.13 ;

2 dx As a first step, we need the general complex Taub solu-

tion to the unimodular field equations. It is clear that one
wherex:=a® and we have again chosen the Laplace-Beltramtlass of complex Taub solutions is obtained from the Lorent-
factor ordering belonging td as time parameter. The match- zian solution(2.5) by extending the parametefs B, and\
ing inner product is to complex values, withA#0, and makingt a complex-
valued functiort(s) of a new, real-valued time coordinate
© o — We may assum@t/ds#0. It can be shown that the only
(Y1.92):= fo dxyp . (2.14 complex Taub solutions not obtained in this way are ob-
tained in the same way from the metrics given by

and A is formally self-adjoint with respect to it. The self- b?=+2it, (3.33
adjoint extensions ofl are specified by the boundary condi-
tion cos@) y—sin(A)d/dx=0 atx= 0, where the parameter a?=2\t2+2it+iDt 1,
satisfies G<0<m (Ref. [61], Theorems X.8 and X.10 (3.3b
Choosing the value of specifies a unitary quantum evolu-
tion. N=1/a, (3.30
IIl. TAUB NO-BOUNDARY SADDLE POINTS whereD and\ are complex parameters. The fam(i8;3) can
FOR B* TOPOLOGY be formally recovered from Eq(2.5 by setting B=
+8iA(1—NA%)*2iDA 3, adding +iA? to t, and taking

In this section we discuss the Taub no-boundary saddl
points and wave functions when the 4-manifold is the close

4-dimensional balB* (often called diskD*). In Sec. 1l A we

e limit A— oo,
Now, the condition that the solution be defined Bf
means thas must be interpretable as the radial coordinate of

find th le-poi i i .IB i —
ind the saddle-point geometries, and in Sec we OIISCUSlgﬁyperspherical coordinates &*%. Without loss of generality

the saddle-point estimates to the wave function. )
As discussed in the Introduction, we introduce a wave'Ve can takese[0,1], such thas=0 occurs at the coordinate

function via the(formal) no-boundary path integral singularity at the origin of the hyperspherical coordinates,
ands=1 occurs on the boundary. It is then necessary that

botha andb vanish ats=0.
\IINB(a,b;T)=J Dg expiS). (3.1 Let us first concentrate on the fami(g.5). Writing t(0)
=1y, the condition thatt andb vanish ats=0 implies

where the domain of integration is some appropriate class of
Lorentzian, or almost Lorentzian, 4-geometries, possibly
with a short-distance cutoff. In the histories entering the in-
tegral, the “final” values of the scale factors and the total B=8i 7A(1-\A?), (3.4b
elapsed volume paramefErare required to coincide with the

arguments of the wave functioW g; in particular, T in  where  is a parameter that may take the value$. When

to=inA?, (3.43

Vg IS assumed always positive. Egs. (3.4a,b hold, it is straightforward to verify that the
In this paper we only considel\g in the saddle-point metric is indeed extendible =0 so that it defines a solu-
estimate: tion on B* Thus the smoothness required of the no-

boundary metric is automatic in this case, and does not fur-
ther restrict the solution.

To find the action, we recall that when deriving Eg.6)
from Eq. (2.3 (with A=0), we assumed the spacetime to-

where theS(a,b;T) are the actions of some subset of thePology Ex %, for which the boundary term in Eq2.3)
complex classical solutions on the no-boundary 4-manifolcfOnsists of components both at the initial and final bound-
in question. The prefactor®, are assumed to be slowly aries. In the action for the topolodd*, Eg. (2.3 contains a
varying compared with the exponential factors but otherwisdoundary term only at a “final” boundary, and we therefore
are left unspecified. Whiclif any) of the saddle point met- need to add to E¢(2.6) at s=0 the appropriate boundary
rics actually contribute to Eq3.2), given a proper definition term, — tN~1d(ab?)/dt. This boundary term however van-
of the integral in Eq(3.1), will be left a subject for future ishes by virtue of Eqs3.4a,h. (As earlier with smoothness
work (see the comments on this issue in H&f). of the metric, assuming a no-boundary topology thus turns

WNB~§k‘, Pexp(iSh), (3.2)
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out to be indistinguishable, in this case, from simply assumdomain defined in Sec. 5 of Rd52].) WhenT is analyti-
ing that the universe expands from zero diamgtévaluat-  cally continued to imaginary values ds= —i nTg with Tg
ing EqQ.(2.6) yields then >0, it can be verified that the geometries wétl 1 continue
42 5 to Riemann_ian geometries that satisfy the unimodular bound-
AApL(pe +1)(pe +4) 2A%, (2p,+3) ary data orB*, with T proportional to the total Riemannian
6(pst2) 3(pt+2) [ 4-volume; conversely, it can be verified that these are the
3.9 only Riemannian Taub solutions @f with the unimodular

where we have parametrized the valuetaft s=1 ast,(1  boundary datd The continuation send§7 to — 5!, wherel

+p,). is the Riemannian unimodular action. Therefore, our com-
In terms ofA andp, , the boundary scale factors and the Plex solutions withe=1 are related to solutions of the Rie-
total elapsedr are given by mannian theory by an analytic continuation in the unimodu-
lar time: the Wick rotation is in the usual direction far
, A%p[4+NA%p, (p, +4)] =1 and in the unusual direction fay= — 1. When the same
a=- Py +2 ' (368 continuation is done to our solutions wit=—1, one ob-
tains geometries oB* that satisfy the Riemannian unimodu-
b2=—A%p, (p, +2), (3.6b lar data, in particular with positive Riemannian volume, and
iS”, again continues to real values. These geometries are
T=—i nA4pi(%p* +1). (3.60 however not Riemannian but complex.
Solving the algebraic equatiori8.6a,¢ for A%, p, , and\
yields B. Saddle-point-estimate wave functions
2 2 We turn now to the saddle-point estimatg.2) to the
2 DHeV—1) “bound functiof ys, with the classical acti
Al=— (3.7a  no-boundary wave functio¥ yg, wi e classical actions
evV—-2 S? of Eq. (3.9. We assume throughout the pre-exponential
factors to be so slowly varying that the dominant behavior of
—_24 (3.7h each term in Eq(3.2) arises from the exponentials. We as-
P+ ) . . W
evV—-1 sume also that the set of saddle points contributing’ g
5 [i.e., the range of the indelk in Eq. (3.2)] does not depend
N= 4 _ a @79 On the values of the parametéfs a, andb.®
eVb? b%(evV—1)?)’ ' It can be verified thatS? satisfies the time-dependent
) Hamilton-Jacobi equation with the Hamiltonié®.9), as by
wheree is a parameter that may take the values, construction it must. Consequently, the estim@®) satis-
Ve 1412 77757, 3.8 fies the Schidinger equation
and we choose the branch of the square root in(B@® so i Z—l_l’[fz Hy (3.10

that the real part o¥ is positive.

It is clear from Eqs(3.7a,b,¢ and (3.8 that all the four
sign combinations for and e yield complex geometries that
satisfy our boundary conditions. In terms of the bounda
data, the actions of these geometries read

in the approximation to which we are working. We ask:
NYwhich, if any, of the terms in Eq3.2) are compatible with
Vg being a wave function in the Hilbert spakedefined in
i [ a2 2 Sec. Il A, evolving unitarily by some self-adjoint extension
S/(a,b;T)= 3 [? ( 1- W) —b?(eV— 1)} of the Hamiltonian(2.9)?
€ Consider first the casg=—1. As the first term inS_ *
(3.9 L . . )
has a negative imaginary part for either signepthe terms

Following the same strategy starting from the exceptionain EQ. (3.2) with »=—1 diverge exponentially as—
family (3.3a,b,¢ yields no solutions: regularity &=0 im-  With fixed b (or, in the coordinatesu(v) of Sec. Il A, asu
pliest,=0 andD =0, and positivity of the total elaps&dlis ~ — with fixed v). These saddle points are therefore not
then incompatible with the positivity di? at the boundary. ~compatible withWyg having finiteL.* norm.

None of the solution geometries we have found in this
section is Lorentzian, or indeed real with any signature.

Rather all are genuinely complex. Although Euclidean sig- stne singularity in Eqs(3.7a at V=2 is a coordinate effect. A
nature metrics have played no role in their derivation, it maymanifestly regular Riemannian form for the metric with=2 can

nevertheless be of interest to see what happens when thege found as a Riemannian section of the exceptional family
metrics are continued to purely imaginary values of the uni<3.3a,b,s.

modular timeT. (In particular, this may bear on the impor-  ®In Sec. IV we will have to generalize this assumption slightly to
tant question of whether one can reach our saddle point metover the case where two saddle points degenerate for certain val-
ric from a Lorentzian metric without leaving the kind of ues ofa, b andT.
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Consider then the case=1. For fixedT, the imaginary from the boundaryiv =0).” For the wave function?' _ , Eq.
part of Si is bounded below. Without further knowledge of (3.110 describes a universe that at birth is of Planckian di-
the pre-exponential factor, one cannot therefore exclude thaensions in all directions, which for quantum gravitational
wave functions¥ , =P, equs]l) and¥_ :=P_ exp@Sl_l) purposes is probably as close as one would care to get to

from being normalizable. Whefh/b*<1, we have strictly zero size.
With e=—1, we see from Eq.3.12) that the contribution

to the inner product¥ _ ,¥_) from any compact region in
aZp?* the configuration space is exponentially decreasing i@ne
Si=-— st (3113  might see this as evidence for a different type of non-unitary
evolution of W _, with probability now flowing out of the
o 2 configuration space. Perhaps, however, one cannot exclude
, _1(@7+2b% that ¥_ might stil i itarily evolvi
L= (3.11b at'W_ might still approximate a unitarily evolving wave
3 function in some relevant sense: the probability would just
be spreading out sufficiently fast to give an exponential sup-
In this limit, the wave functiortt’, is therefore rapidly 0s- pression at late times in any fixed compact region of the
cillating, while'¥"_, on the other hand, is exponentially sup- configuration space. Resolving this question would seem to
pressed for large or b. One can also see that in this limit, require, at a minimum, a better understanding of the prefac-
the saddle point metric wite=1= 7 is (except neas=0)  tor in our saddle-point estimate.
close to a Lorentzian Taub-NUT-de Sitter universe with In summary, the wave functions with= — 1 cannot rep-
=0. We note that a similar conclusion was reached withinresent states in the Hilbert spaide The wave function with
the conventional Einstein theory in R¢&3]. »=e€=1 may represent a state H but it has an exponen-
To address the unitarity of the evolution, we note that fOI’tia"y growing norm and thus cannot evolve unitarily. The
fixed a andb, S; has the largdl expansion wave function withy=1 ande=—1 may represent a state
in the Hilbert space, and, at the level of our semiclassical
St=2ee ' ™*T/3+ ti(a?+2b%)+O(T ). (3.12  estimate, this state may evolve unitarily. It is therefore the
only one that might be compatible, in a Lorentzian histories
The contribution to the inner product¥(. ,¥,) from any framework, with a universe consisting of a single macro-
compact region in the configuration space is therefore expascopic component with a single moment of birth.
nentially increasing iff. This means tha¥’, cannot evolve
by any selfadjoint extension of the Hamiltonié&9): prob-
ability is being injected into the configuration space either IV. TAUB NO-BOUNDARY SADDLE POINTS
from the finite boundaries or from infinity. As we do not FOR CROSS-CAP TOPOLOGY
have an estimate for the saddle-point prefactor, we shall not In this section we discuss the Taub saddle points and
attempt to discuss exactly where the probability is enteringN(,lee functions when th@runcated 4-manifold is the closed
the configuration space. However, if the saddle-point formis . . — 4 oa =
good for T/b*>1, Eq.(3.12 shows that the probability is 4-4d_|men3|onal cross-capd =RP"~B ~RI"#B", _where
flowing in the direction of isotropiexpansionas measured B"Is the open 4-d|me_nS|onaI bﬁlln Sec. IV A we f'.nd the
by Imag(¥* V¥): and for T/b*<1, Eq.(3.113 exhibits a saddle-po!nt geometries, and in Sec. I\(B we discuss the
similar direction of flow. This suggests that the flux is com- saddle-point estimates to the wave function.
ing from somewhere on the finite boundary. The emerging
picture is perhaps compatible with the tunneling proposals
advocated by Lind¢30-34 and Vilenkin[35—40. Notice, .
however, that the latter proposals are couched in terms of the It is useful to viewM, as a quotient space. To this end,
non-unimodular theory, where the relevant boundarffds  |et M:=[—1,1]xS®. M is a compact orientable manifold
the Taub modelonly one-dimensional. For us, it is two- with boundary SPUS®. Consider the mapJ:M—M;

din;er;]siona(thebextra Qim(alnsion being garam%terizedrbg ng'x)ﬁ(_s’ Px), whereP:x—Px is the antipodal map on
and there can be no simple correspondence between boungs j i5 an involution with a free and properly discontinuous

ary conditions formulated in the two frameworks. _ dth . 83 is diff hic toM
In this connection notice that, precisely because the unidction, and the quotient spa Is diffeomorphic toM, .

modular ¢ depends on a parameter tirfie the early-time One can also visualizkl;, as built by closing off the upper
behavior of the universe shows up much more directlysin half s>0 of M by attachings=0 to anRI’°. Clearly,M, is
than it would in a non-unimodular formulation, and one cana nonorientable compact manifold with bound&?y

ask whetherny is concentrated fof =0 at universes of zero

size, as the no-boundary picture would seem to require. For —

the wave functionV’ . , Eq.(3.113 does appear to describe a “More precisely ¥, seems to describe a violent explosion start-
state for which the probability is concentrated near configuing from zero volume, analogously to how a nonrelativistic particle
rations of small 3-voluméin the sense that the rapid oscil- initially at the origin att=0 is at any later moment uniformly
lations cause¥ , to vanish uniformly in the distributional distributed throughout space with a wave functioexp(x?/t).

sense asT—0, in any region of compact support disjoint 8This manifold was suggested to us by John Friedman.

A. Saddle-point geometries
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We need first the general complex Taub geometry orAs Eq. (4.5 depends ony only throughz, the distinct
M, . To begin, we recall from Sec. Il that the complex Saddle-point values of the action are obtained by finding the

Taub geometries o are obtained from Eqg2.5a,b,¢ or

(3.3a,b,¢ by letting the parameters take complex values and®

writing the coordinatéd as a complex-valued functiarfs),

with dt/ds#0. We take the boundaries & to be ats=
+1. On these geometries, we realizk as the map
(s,X)—(—s,Px), whereP acts on SU(23S® as multipli-
cation by diag{-1,—1) in the defining matrix representation.
In order that] be an isometry, it is necessary thidi/ds and
da/ds vanish ats=0. This excludes Eqs(3.3a,b,¢, and
shows that Eqg(2.5a,b,¢ is only possible witht(0)=0 and

distinct values ofz from Egs.(4.4a,h. This is equivalent to
olving for z the quartic

3T\?2 (z—1)(z+2)?
( (mEar, @9

b*

It is easily verified that the actiof.5), with z given by any
root of Eq.(4.6) that is a smooth function 6f/b*, satisfies
the Hamilton-Jacobi equation.

The roots of Eq(4.6) depend on the quantity:=3T/b*
>0. Let

B=0. The condition thatl be an isometry implies, finally,

t(s)=—t(—s). Quotienting this geometry oM with re- ap=2"523%(v3+1), (4.79
spect toJ now gives the desired general complex geometry
onMyg . z.:=2(V3-1). (4.7b

Next, we need to match the complex geometryl\TbQ to
the unimodular boundary data. Frarfil)=—t(—1)=:t, ,
we have

For a<a., there are two distinct real roots, denoteddy
andz_, satisfying I<z_<z.<z,. For a=«a., these two
roots merge at. : this is the special case in which B¢4..30

t, t2 becomes singular. Fott>«a., these two roots become a
T= J'o Nab’dt=t, | A%+ 3—;2) (4.1)  complex conjugate pair, denoted by, (z,), wherez, is in
the first quadrant and,=z;. The two remaining roots are
and the action is evaluated from E@.6) to be always a complex conjugate pair, denoted by,£,), where
Z5 is in the second quadrant amg=z5. The only instance in
At, ) ti 8A® 4tfr Which.a root is not_a smooth. function of occurs in the
S=—5 | ATt R + A1) (42 transition of the pair £, ,z_) into the pair ¢;,2,) at a
=a;.

The values ok, A2, andt, can now be found in terms & The rootsz, andz_ of Eqg. (4.6) give Lorentzian saddle-

and the final scale factors from Edq8.5a, (2.5b), and(4.1).  point geometries oM ;, . These geometries have the pecu-

The general solution to this system of algebraic equations iiarity that they are not time-orientable, and they therefore
would fall into the framework of time-nonorientable cobor-

t, =yb%z, (4.39  disms[54], if they were regarded as being in the domain of
the Lorentzian path integralAll the other saddle-point ge-
A?=pb?/z, (4.3p  ometries are complex.
We denote the actioii4.5 evaluated at the respective
Z[(a%/b?)Z%+ 4z 8] roots byS*, S™, St, §?, S, andS*. For later use, we note
= T b+ 4z=8) (4.39 that the roots have far<1 anda>1 the respective expan-
sions
h
where Z,=a"?+3+0(a?) (4.89
z=1+y? 4.4
Y (4.43 z_=1+5a’+0(a% (4.8
andy is any solution to
2 PR il PR LI (4.80
4 Z3=24=—2+—|1-—— a)|, .
iy fease) (4.4D R R
b (1+y9)
and

Every root of Eq.(4.4b @es, with one exception, yield a

saddle-point geometry oMl ;, with our boundary conditions.
The exception occurs wher=2(v3—1), in which case the
denominator of Eq(4.39 vanishes.

With Egs.(4.3a,b,¢ and (4.4a,h, the action(4.2) can be

%For a discussion of quantum field theory on time-nonorientable
spacetimes, see Rdb5]. Because of their time-non-orientability,
we suspect that these metrics are not valid saddle points for a path

written as integral that is originally taken over almost everywhere Lorentzian
T 22 metrics with a well-defined causal structure. See Sec. VIl for some
_ further thoughts on how one might in principle recognize the valid
S=sm—|4——=]. 4. .
2b%(2+2z) b 4.5 saddle points.
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2,=2,=€"""\2/a[1+O(a V)], (4.99
23=2,=3 ™ 2/a[1+O(a™1)]. (4.9p

B. Saddle-point-estimate wave functions

We are now ready to consider the saddle-point estimate

(3.2 to the no-boundary wave function. As in Sec. Ill, we
assume throughout that the pre-exponential factors are n
important, and that the set of saddle points contributing to

PHYSICAL REVIEW D 58 084008

a’p*
S+:_ﬁ+”" (4113
T a2
STt
(4.11b

From Egs.(4.11a,h we also see that at=0, ¥, behaves
%‘milarly to ¥, in the previous section, as if the universe
had exploded from zero size. On the other hahd, is quite

does not change in ranges df,@,b) where the correspond- ttarent from its earlier namesake, looking like a zero mo-
ing saddle point geometries vary continuously. As before, Wenentm state spread out over all of configuration space.

write ¥, ,W_ ,¥,, and so on, for the saddle point wave
functions corresponding t8"7,S™,S!, etc. Notice, however,
that while ¥; and ¥, are defined on all of configuration
space, the paiv .. (respectivelyW,,¥,) is defined only for
a<a, (respectivelya> a.).

It can be shown that the second termShandS* has a
negative imaginary part. From the limat—o with fixed b
andT, it is therefore seen that, and¥, are not normal-
izable.

The imaginary part o8%, on the other hand, is positive,
and the corresponding tert#i; in Eq. (3.2) may represent a
state inH. For <1 with a~b, we have

i(a?+2b?)
:—+...
2V3

S3

(4.10

This again describes a Planck sized univers&a0. The
contribution to the inner producti(z,¥3) from any com-
pact region in the configuration space is exponentially de
creasing inT [see Eq.(4.12h below]. As in Sec. Ill, we

Consider, finally, whether the norms ¥f, and¥ 5 can be
independent of. For fixeda andb, Egs.(4.9a,b gives the
large T expansion

_ i(a+2b?
S g-imi a7/ 22 5 )+O(T’1’2), (4.123
o i(a®+2b?) o
SB=e874\2T/3+ T+0(T 12y, (4.12b

It follows that ¥ dies out with time at any fixed,b,
whence its evolution can be unitary. On the other hand, the
contribution to the inner product¥(,,¥,) from any com-
pact region in the configuration space is seen to be exponen-
tially increasing inT, andW¥ cannot evolve unitarily. As in
Sec. lll, it is difficult to ascertain where the probability is
entering the configuration space, but the semiclassical dis-
cussion given above fok<1 suggests that the flux may be
coming from somewhere on the finite boundary, as before.
In summary, the qualitative results with the 4-manifold

regard this as consistent with unitary evolution, although itM are very similar to those obtained with the 4-manifold

also might signify a loss of probability through the finite
boundary.

The only remaining possibility in Eq(3.2) is a wave
function that coincides with,=P, exp(S?) for a>a,
and with some combination oF , and¥ _ for a<a.. We
denote this wave function by,. The curvea= a. in the

B* in Sec. Ill. Of the four saddle points, two lead to non-
square-integrable wave functions, analogously to the gase
= —1 earlier. The normalizable cases here are thos# pf
and ¥,. The wave function¥5 here is analogous t& _
there: it may be normalizable, it evolves consistently with
unitarity, it is nowhere rapidly oscillating, and it describes a

configuration space is analogous to a turning point in auniverse that has Planckian sizeTat 0. Similarly, the wave
constant-energy WKB approximation, and a saddle-point esfunction ¥, here is analogous t¥ . there: it may be nor-

timate toW, would not be expected to be good near this
curve. However, beginning a¥, for a>a., ¥, presum-
ably resumes a saddle-point form f@ «;, now as a linear
combination of# | andW¥ _ . Since the imaginary part &
can be shown to be bounded below, &@idare purely real,
V¥, may thus be normalizable.

When a<«a., the two terms iy have each an imme-
diate semiclassical interpretation, as they each come from
Lorentzian universd€2.5a,b,¢ with B=0. The two param-
eters in this family areA and\. The reason whywo such
solutions exist is that there are two choices forand \,
obtained from(4.3b and (4.3¢9 with respectivelyz=z.. ,

malizable, it has a WKB form expressing a classically evolv-
ing universe in a suitable limit, but its norm cannot be inde-
pendent ofT. Its behavior afT=0 differs from that of the
earlierw , , however, in a way related to the degeneracy of
z, andz, ata=a..

V. FRIEDMANN TRUNCATION OF THE TAUB SADDLE
a POINTS AND WAVE FUNCTIONS

The Taub saddle-point metrics found in Secs. Il and IV
clearly specialize to saddle-points of the Friedmann model
by settinga=b, and the corresponding actions are the re-

that make a spacetime in this family pass through a prestrictions toa=b of those found earlier.
scribed point in the configuration space at a prescribed value For most of the saddle points, the discussion within the

of T. For a=3T/b*<1 with a~b, we have

Friedmann model proceeds in parallel with that in the Taub
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model®® In particular, with the 4-manifoldB?, the saddle conventional Einstein theory in Reff9, 60 suggest that
point with »=e=1 yields an exponentially growing prob- this specialized model should faithfully reflect the general
ability flux, and this flux must now enter the configuration Bianchi type I situation regarding the normalizability and

_ : Py itary evolution of the wave function.
space at the boundarg=0. With the 4-manifoldM,, a uni X . )
similar argument can be made for the wave functibg. The metric of our Bianchi type | model reads
The only qualitative difference between the Taub analysis d?=p? — N2d 2+ a2dx2+ b2(dy?+ d )] 6.1)
and the Friedmann analysis occurs for the saddle point with ’

n=—1 ande=1 onB*, and for the saddle point with, on ~ wherea, b, andN are functions ot, and the overall factor

2. 2 : )
M. . In the two Taub models, the corresponding wave func”*=G/(27%) has been |ntroducelzj§ for numerical conve-
tions (call themW; andW¥;) were seen not to be normaliz- Mence. In this subsection we take, b“, and N to be
able. In the Friedmann situation, however, the imaginary parPOS'“VG’ so that the metric is Lorentzian. The identifications
of the action turns out to be bounded below and aheb ~ Made on the spatial coordinates asey(z)~(x+2m.y,2)
restrictions of these wave functions are in fact square inte=" (x,y3+27-r,z)~(x_,y,z+_27r), and the spatial topology is

rable.(With M. W covers onlv part of the confiquration thusT°. The metric(6.1) is obtained from the most general
9 ' H @ hl - i by P i 9 bi Bianchi type | metric withT® spatial topology by imposing
space. However, whem %e It becomes a inear combina- g oyirg symmetryZ, X Dg where the 8-element dihedral
tion of terms arising frons~, so the full wave functionV,

) . . ey group Dg is the symmetry group of the square. This is
is also normalizabléIn the Friedmann restriction, therefore, equivalent to demanding that the spatial metric have three

these saddle points are both compatible with norma'iZabi"tyorthogonalclosed geodesics, and that two of these geodesics
Moreover, for fixeda, these wave functions are exponen- 5. equal length.

tially decreasing ifT, and are even compatible with unitary

evolution. o _ _theory and the unimodular theory, we proceed as in Sec. II.
The drastic qualitative change in these two saddle-poinfhgerting the metrig6.1) into the action integra(2.3) with
contributions upon passing from the Friedmann model to thg .« cosmological constark, and introducing the proper

Taub model suggests that the "good” behavior of these;ime parameter by d=Ndt, we obtain the minisuperspace
saddle points in the Friedmann model should be seen as ap

artifact of the isotropic truncation. We shall return to this
guestion in Sec. VII.
S= %f dr

To derive the solutions of the conventional Einstein

2 dadb

Cop—— 2
2bd7' ar Nab|, (6.2

db

-a dr

VI. BIANCHI TYPE |
where\ :=p?A. This action reproduces the full Bianchi type

In this section we discuss the unimodular no-boundary ginstein equations with a cosmological constant under
saddle points and wave functions in a Bianchi type | minisU ariations that fix the initial and final values of the scale

perspace model. We take the spatial topolc;gy tg’ﬁeand factors but not those of. For A #0, the general Lorentzian
the (truncated no-boundary 4-manifold to bB“X T, where | tion can be written in the gaudea=1 as

D? is the closed disk. We set up the unimodular quantum
theory in Sec. VI A. The no-boundary saddle points and b=At, (6.39
wave functions are analyzed in Sec. VI B.
a’b=1\At+E, (6.3b
A. Unimodular quantization of Bianchi type | N=1/a, 6.30
The local spatial homogeneity of Bianchi type | is com-

patible with ten distinct closed spatial topologié&]. The  whereA+# 0 andE are constants. For=0, the solutions not
number of minisuperspace degrees of freedom depends abtained from Eqs(6.3a,b,¢ with A=0 can be put in the
the spatial topology58-69, and the spatial topology also form

determines the group of large spatial diffeomorphisms that

can be incorporated as gauge invariances of the model b=B, (6.43
[59,60. The topology also determines the possible ways of )
compactifying the manifold toward the past to obtain a mani- a‘b=Dt+E, (6.4b

fold of no boundary typ¢59,6Q.
We shall here focus on a Bianchi type | model with an
additional discrete symmetry group reminiscent of the addi-

. A whereB+ 0, D, andE are constantd) andE not both equal
tional U(1) symmetry that distinguishes the Taub class ofto zero D g

metrics within Bianchi type 1X. The results obtained for the In order to put the action-integral in a form convenient for

the unimodular theory, we introduce the parameter {insy
dT=ab’dr. As before, we also simplify the action, without
°The results reported for the Friedmann model with the 4-loss of generality in the unimodular theory, by setting the
manifold B4 in Ref.[56] only considered the saddle points wi¢th ~ bare cosmological constant to zero. The integfa®) then
=1, inadvertently excluding the saddle points wétls — 1. takes the form

N=1/a, (6.40
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S=

_%f dTabk?(ab’?+2ba’b’), (6.5

where the prime denotes derivative with respecftoThe
4-volume bounded by the hypersurfaes T, and T=T,,
with T,<T,, is 87°p*(T,—T,), and fixing the 4-volume in
the variation of Eq(6.5) is therefore equivalent to fixing the
initial and final values ofT. The unimodular variational

equations clearly reproduce the Einstein equations, with the
cosmological constant now emerging as the integration con-

stant proportional to the unimodular energy.
From Eq.(6.5), the unimodular Hamiltonian operator is

(92
dudv’

H:=6 (6.6)

where the coordinatesi(v) are defined by Eq2.7), and we

PHYSICAL REVIEW D 58 084008

T

t*
f Nab’dt=t, B%(1— i p\t, — 5A\%t2), (6.9
0

where we have writtem(1)=:t, . Solving forB, \, andt,
in terms of T and the boundary values of the scale factors,
we obtain

2inT
B= W’ (6.93
8T [[a’b?\®
“3a®z|\ 21 ') (6.9
o 3a*h? 6.9
* AT a2b2 2 i7]a2b2 ( . C)
2T 2T

have adopted the Laplace-Beltrami factor ordering, as in S€Gs discussed in Sec. Il A, the action contains the integral

Il. The matching inner product is agai@.10. As H is sym-

term (2.6) as well as a boundary term frog* 0, and for the

metric and real, it has self-adjoint extensions by von Neumetric (6.1) the boundary term reatls — 1N~1d(ab?)/dt

mann’s theorem.

B. No-boundary saddle points and wave functions

The general complex solution with our Bianchi | symme-

tries is obtained from the Lorentzian solutioi@s3a,b,¢ and

[45,66—68. The value of the integral term is AT, and
that of the boundary term is 3i »B2. In terms of the bound-
ary data, the action reads

a’b* 2igyT?

S"(a,b;T)=—6—T+ W

(6.10

(6.4a,b,¢ by extending the parameters to complex values and

makingt a complex-valued functiom(s) of a real-valued
time coordinates. We may assumdt/ds+ 0. The condition
that the solution be defined ddPx T? means thas must be

It is easily verified that this action satisfies the Hamilton-
Jacobi equation.
The solution geometries are genuinely complex, analo-

interpretable as the radial coordinate of polar coordinates Ofously to those found for the Taub model wit# (untrun-

D?. Takingse[0,1] as in Sec. lll A, withs=0 occurring at
the coordinate singularity, it is then necessary thatanish
at s=0 butb remain nonzero there. It is straightforward to
show from Egs.(6.3a,b,¢ and (6.4a,b,¢ that the general
complex solution with this property can be written as

b=B(1+\At), (6.79
a’b=t(B/A)(1+NAt+ IN2A%?), (6.7
N=1/a, (6.70

whereB andA are nonvanishing complex constants, and we'

have chosem(0)=0. The absence of a conical singularity at
s=0 requiresN *da/dt—i#n ass—0, wherey is a param-
eter that takes the values1: this impliesA=—%i7. The
metric then defines a solution di*x T2 in the sense we
seek.

The total elapsed is

cated topology. As before, we have not tried to analyze
directly which, if any, of the saddle points can be reached
from an almost Lorentzian metric on the same manifold by
an admissible deformation. We can, however, glean some
indirect evidence on this by considering the Wick rotation to
the Riemanniancase. Wherr is analytically continued to
imaginary values a3 = —i7Tg with Tg>0, the geometries
continue to Riemannian geometries that satisfy the unimodu-
lar boundary data om?x T2, with Ty proportional to the
total Riemannian 4-volume; conversely, these are the only
Riemannian solutions of our Bianchi type | model 4

The boundary term contributes here because we are essentially
in a 2-dimensional situation. Its presence marks a genuine differ-
ence between the point of view that the spacetime manifold is a
cobordism with empty initial boundary, and the point of view that it
has an initial boundary of zero spatial volume. In the Taub models
we considered, this distinction was effectively moot because the
analogous boundary term did not contribute. Similarly, the assump-
tion that the saddle point metric must be smooth is also playing an
important role here, in contrast to the Taub case. The boundary term
is somewhat reminiscent of the pure imaginary topological contri-
bution to theLorentzianaction-integral found in Ref52].
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X T? with the unimodular boundary data. The continuationbution to Eq.(3.1) for a’b?>T comes from 4-geometries
sendsiS” to — I, wherel is the Riemannian unimodular that at late times are close &n and therefore are behaving

action. The situation is thus as fer=1 in Sec. Ill: the com-

essentially classically.

plex spacetimes with the Lorentzian boundary conditions are The behavior of our saddle point estimate Tor- 0 is also
related to solutions of the Riemannian theory by an analytigyggestive. In this limit, Eq6.11) shows, as before, that the
continuation in the unimodular time, with a Wick rotation in gjstributional support of¢’ shrinks down oruv =0, describ-
the usual direction fo;y=1 and in the unusual direction for jng the explosive birth of a universe at zero 3-volumig?

n=-—1
We can now turn to the saddle-point estiméde?). For
fixed T, the wave function withp=—1 diverges exponen-

(althougha andb need not vanish separatgly
In summary, only the saddle point with=1 yields a
square integrable wave function. This wave function is also

tially as a’h—0, and consequently cannot be squarecompatible with unitary evolution at the level of our saddle-

integrable'? The wave function withy=+1, on the other

point estimate, and it can be construed as describing a uni-

hand, is compatible with normalizability. Moreover, this yerse that begins at 0 volume and ultimately enters a regime

wave function decays exponentially &s-» at fixeda and
b

of classical isotropic expansion at late times.
In concluding this section, we mention that it would be

As explained in Sec. II, we officially regard such behavior straightforward to analyze also the Bianchi type | analog of
as consistent with unitary evolution. In this case, moreoverthe cross-cap manifold we considered in Sec. IV, namely the
it appears plausible that probability actually is flowing to- 4-manifold that is the product of? and the closed two-
ward infinity, rather than escaping through the finite bound-dimensional cross-cap. One could proceed as in Sec. IV,

ary. Indeed, if we limit ourselves to valuesafb=1 (mean-

quotienting[ —t, ,t, ]X T2 by the mapJ:(t,x,y,z)—(—t,x

ing that none of the dimensions of 3-space has sub-Planckiaf 7r y 7). The only saddle points are then flat, and the

scalg, then it is easy to see that the estimate=0O(1)e'S
implies that the probability for the 3-volumé=ab? to be
less than\/T is exponentially small iT?/V*. Here it is help-
ful to rewrite S” in the form

27T?
3u?’

iuv

IS(a,b;T)=— = (6.11)

whereu=ab andv="b? are the “light cone coordinates”
introduced earlier, for which/=\Juv. Thus, the universe
inevitably expands a$ increases.

Moreover, if the universe expands enough so tri?
becomes>T, then it enters a regime in whidfior both 7
=+1 and n=-1) ¥ oscillates rapidly, with the corre-
sponding WKB trajectories formingas Eq.(6.11) showd a

saddle-point action vanishes. This could be interpreted as a
classical birth of a universe, if one were happy with the lack
of time orientability of this metridand the concomitant im-
plication that the universe could die classically, in a time
reversal of its birth

VIl. SUMMARY AND DISCUSSION

In this paper we have discussed the no-boundary path
integral within unimodular Einstein gravity in the Taub
minisuperspace model witg® spatial topology and in a Bi-
anchi type | minisuperspace model willi spatial topology.
The (future-truncated 4-manifolds considered in the Taub
model were the closed 4-dimensional ball and the closed
4-dimensional cross-cap, while in the Bianchi type | model
we only considered the closed disk tim&8. In all three
cases we found a saddle poiotr combination of themfor
which the resulting estimate to the wave functiénis com-
patible with normalizability and unitary evolution. In the Bi-

two-parameter family of classical Lorentzian solutions thatanchij type | model the estimate was rapidly oscillating for
are locally isometric to de Sitter, expanding exponentially ing2p2s T, and it corresponded there to a family of isotropi-
the cosmological time, with the ratio of the scale factorsca|ly expanding Lorentzian universes. In the Taub model, on
remaining constantOne parameter of the family is the cos- the other hand, the estimate did not appear to have such a
mological constant, and the other one is the ratio of the scalgykpg region with either choice for the 4-manifold.
factors) Indeed, the saddle point metri6.7a,b,¢, (6.9a,b,¢ In the Taub model, with either 4-manifold, we also found
in this regime is itselfwith our choice of “complex gauge” 5 saddle point for which the resulting estimate to the wave
for it) very close to being Lorentzian at late times, and therefynction is compatible with normalizability and corresponds
fore close to some specific Lorentzian solutpof the clas-  at late times to a family of exponentially expanding Lorent-
sical Einstein equations. This indicates that the major contrizian universes. However, both these wave functions evolve
nonunitarily, with probability(in the sense of¥|?) being
injected into the configuration space at an exponentially in-
2Unlike for the unnormalizable wave functions in the Taub casesgreasing rate with respect to the unimodular time.
the divergence here is for small universes rather than large ones. In It should be emphasized that we did not attempt to define
that sense, the argument for dismissing this saddle point is perhapbe path integral beyond the saddle-point approximation. In
less compelling than before, because an ultraviolet cutofi@amd ~ particular, we did not attempt to discuss how good our
b would render they= — 1 wave function compatible with normal- saddle-point estimate o should be expected to be. It
izability. would be possible to make some estimates on the pre-
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exponential factofassuming our choice of factor ordering in ~ The results we have just summarized cannot be claimed to
the Hamiltonian operatgr but this would seem to contain be realistic, of course, if only because they omit all other
little information beyond what we already have. In particu-fields than gravity, and because they represent situations of
lar, for the saddle points compatible with unitary evolution, artificially imposed symmetry. Nevertheless, the saddle
the saddle-point estimate does not seem to contain enougbints we have found, and the associated wave functions,
information to single out a particular self-adjoint extensioncontain enough interesting features to warrant some further

of the Hamiltonian. _ comments of an interpretive nature.
When specializing the saddle points of the Taub model to | order to be convincing, an interpretation of our results

those ‘?ff }he Frizaldmann model, we found, for eacf|1 of the t¥VQIVOU|d have to draw on a more general interpretive frame-
4}:'_1‘1”' old topo oglﬁs \(Jvle (_:I_onsl;dered, ?ne ﬁaddbe poINnt 104, for quantum gravity itself, in terms of which we could

which an unnormalizable faub wave unclion DECOMES q,,qq siang the significance of the saddle point metrics and
Friedmann wave function that is compatible with normallz—WaVe functions we have been computing. From a histories

ability, and even compatible with unitary evolution. While int of view. a quantum wave function has no direct mean-
these saddle points would thus have seemed highly appealir? » aguan . : .
g at all. Rather, it is seen as an intermediary in the com-

in the Friedmann model, the properties of interest disappe : f th - 2 of th
upon generalization to the Taub anisotropy. This should alefUtation of thequantum measurgu(C) =|[c|®, of the set

one to the need to understand whether our results in the Tadp Of Lorentzian '“ggn'f_f"({'$0f more general historigsvhose
model and the Bianchi type | model would remain qualita-path integraly is.” It is in terms of this quantum measure
tively unchanged upon the addition of still more degrees of+(C) [not to be confused with the “measufaetor’ dv(g)
freedom. that occurs in expressions lifalv(g)e'S(9] that predictions
One avenue towards investigating this would be to in-must be made. In special situatiopsreduces to a probabil-
clude some inhomogeneous perturbations in the path integrdly, and more generally it seems to represent a kind of pro-
as linearized “test” field§44,45. For example, if one adds pensity for the actual history to belong @. In particular,
to the Friedmann model a massless scalar test field, and takese could probably interpréts(a,b;T)|? in the present case
for background theB* saddle point metric wite=1 and S the probability density for the universe to find itself with
n=—1, then one does not obtain a normalizable saddle poirff’® scale parameters and b when the accumulated 4-
wave function for the scalar field. In this case, therefore, the/0lume reaches T.  (For more details see Refs.
criterion of a normalizable scalar field perturbation wavell.3,19,21.28) _
function around the Friedmann saddle point metric agrees NOW, in nonrelativistic quantum mechaniage depends
with the criterion of a normalizable Taub wave function. ~ parametrically on ordinary time, and its squared norm
The underlying question here is how one can actually recll#cl|> must be independent dfin order thatu(C) be de-
ognize which saddle points, if any, yield a good approxima-ﬁned consistently. This independence is guaranteed by uni-
tion to the original path integral3.1). In principle this re- tarity. For gravity withT="V playing the role of parameter
duces to the question whether a given saddle point mgtric time, an analogous unitarity would seem to be required in
can be reached by deforming the gravitational path integraprder that the quantum gravitational measprée well de-
from an Origina”y Lorentzian “contour” to a Comp|ex con- fined. In our miniSUperSpace truncation of general relatiVity,
tour passing through the saddle point in question. For such @€ can certainly impose a unitary evolution ¢nif one
deformation to be valid, the path integral would, at a mini-neglects topology change, because the unimodular Hamil-
mum, have to be convergent for all intermediate values ofonian operator is real in the Schiinger representation, as
the contour, and one might, in a preliminary formulation, Pointed out earlier. However, it is not so clear how topology
reduce this to the question whether the complex metdan  change affects the possibility of unitarity, nor is it clear what
be reached by a curve of metrig¢s) all of which admita S the_proper class of spacetimes over which f[he grav_ltauonal
convergent path integral for a test scalar figkd type of path integral should be taken in a cosmol_oglcal setting. We
perturbation that has much in common with perturbations oP€lieve that our results can shed some light on both these
the metric itself. In Ref.[52] a criterion of this type was duestions. . _
used to fix the sign of the imaginary part of a complex requ- One natural idea, suggested by what we know of the big
lator that was there added to the metric. bang, is that the universe should expand from zero initial
Unfortunately, the issues raised in the previous two paraSiZe€. In & discrete setting this idea can perhaps be expressed
graphs are both clouded by the fact that each of our saddl@y Positing a single initial element or “origin,” in a continu-
points actually belongs to an entire family of saddle pointsCUS Setting it must translate into conditions on the topology
(all with the same actior8) whose members are related to @nd the metric o_f the spacetime manifold. Let us assume that
each other via “complex diffeomorphisms,” or in other the birth of a universe at zero size corresponds topologically
words deformations of the complex pais) that was used & cobordism with empty initial boundafit is thus a spe-
to parameterize the general complex solution of the Einsteifial case of topology changeReference$41,42,57 delin-
equations in Secs. Ill and IV. Althoug8 itself does not
depend on the choice dfs), the criteria of normalizable
perturbation wave functions and convergent perturbation 13 addition to its technical role as “square root of the quantum
path integrals apparently do. We leave more systematic inmeasure,”s can serve as a summary of the past, useful for com-
vestigation of these questions to the future. puting the measureg(C) of setsC defined in the future.
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eate a class of symmetric tensor fields that exist on any cqaoint(s) we must use, the best we can say is that, for each of
bordism, that determine a well defined causal order, and thahe 4-manifold topologies we have studied in this paper,
are globally smooth with Minkowskian signature almost ev-there is at least one saddle point consistent with these two
erywhere. If we specialize them to the case of a manifolckey features at the level of approximation to which we are
appropriate to a big bang cosmology—one without initialorking. In fact, there is precisely one such saddle point for
boundary and compact toward the past—then we arrive at @ach manifoldactually a linear combination of saddle points
Lorentzianversion of the so called_ no—bouryd_ary pro_posal forin the Taub cross-cap caseso we get in effect a unique
quantum cosmology27-29,44, with a definite choice for  hregiction of the no-boundary wave function in each case.

the metrics to be mtegrated oV, . ) A further formal requirement, which would seem valid to
In a cosmology of th.'s sort, the path mte_gral IS '@ SUM OVELpo extent that post-natal topology changes can be ignored,

certain almost Lorentzian metrics on manlfo_lds without ini- or at least localized at the boundaries of configuration space,

tial boundary. More fundamentally, one might expect theis that  obey the unimodular Schdinger equatior(3.10.®

sum to be over an underlying discrete Structi8f a possi- We have seen that this demand is also met by.all'of our

bility that could manifest itself in the continuum in more saddle pointsior appropriate combinations of them in the

than one way. For example, it might yield an amplitude forTaub-cross-cap cagebecause, to the accuracy of our ap-

the universe to “bounce’(collapse and then re-exparat to proximation, the Schidinger equation reduces to the

develop into a “bush-like,” multicomponent structure, Hamilton-Jacobi equation, which all of our saddle point ac-

emerging frqm a single stem. In fact, some aPPea' to dIS't'ons satisfied. Conversely, the requirement would not be met
creteness might be required just for consistency: in order th we arbitrarily employed different saddle points for differ-

the (approximate continuum wave function be truly square ent values ofl, a, andb.

mtilgrable(see beflow. t that th v topol h Another formal issue on which we might have hoped for
ow suppose for a moment that the only topology chang&, ;iyance from our minisuperspace models is that of bound-

that need be considered is the initial expansion we have ju y conditions at the “edge” of configuration space. If uni-

been 09n3|der|ng, gnd that only a.smgle macroscopic Comfarity is to obtain then the only freedom in the boundary
ponent” of the universe comes into being thereby. If we

further fix the 4-manifold topology, then we are left with a conditions is that of a choice of selfadjoint extension far

sum over almost Lorentzian 4-geometries on a given maniBUt that ignores the possibility of actual recollapse or, con-

fold, and if the quantum measugC) is to be formed in the versely, of a universe that remains “pre-geometric” for a

way suggested ifiL], then for consistency, we neég|? to long time T and only then begins to expan@:or a causal
be independent oF (for T sufficiently large, where in par- set, the unimodular tim& would be identified with the total

ticular, C can be the set adll 4-geometries with/=T. we  number of element§3,70]. Even in a pre-geometric phase,

also need, of course, thiy||>< in order thatu be defined therefore, T retains its meaning.A self-adjoint H also al-

at all. To make contact with the analysis in this paper, welows for recollapse, of course, but it demands then an imme-
need one further assumption, which is that the Lorentziafliate “bounce,” with no possibility of disappearance or of a
functional integral definingy can be analytically continued (temporary or permanentransition to a disordered, non-
to Comp|ex metrics and then approximated by deforming thgeometric phase. Unfortunately, itis unlikely that our saddle
“integration contour” to pass through a saddle point of thePoint estimates contain enough information to distinguish
analytically continued integrand. This would justifyithina ~ among these multiple possibilities.

minisuperspace truncatiprthe kind of approximate wave  Among our saddle points, there were ones exhibiting an
function we have studied herein. What is more, an analysigxponential decay dfy|* with time in every compact region

of the conditions of validity for the contour deformation Of configuration space. This occurred, in particular, for every
would tell us, in principle, which saddle point$ any) ac- ©one of our “unitary” saddle points. We chose to associate
tually contribute to Eq(3.2), and with what signs. In par- such decay with “an escape of probability toward’ but it
ticular, it would tell us whether our conditions of a smooth might equally well signify an escape through the finite
complex metric on a smooth manifold without boundary cor-boundary—i.e., a recollapse. Although these two alternatives
rectly describe the saddle points of the analytically continuedlo not seem to be conclusively resolvable at our level of

functional integral. approximation, the evidence points to a recollapse in the
The two key questions then are whetfgeis L2 (so thaty ~ Taub cases and an unbounded expansion in the Bianchi type
can be definedand if so, whethet,) is independent oT | case. If this is correct, then the evolution in the Taub cases

(so that the definition can be consistetfitthe answer is yes, IS not actually unitary.

then the picture painted above is at least internally coherent. The wave functionsl _ in the first Taub case andf; in

Lacking the deeper analysis that would tell us which saddléhe second Taub case both look 't 0 qualitatively like
bound state wave functions localized naar=0, except that
they die out exponentially a$ increases. The most direct

s o o N interpretation of such behavior would seem to be a universe
Notice that the no-boundary condition, regarded in this manner,

is a condition on the histories themselves; it need make no mention

of any wave function. From a histories perspective, such a condition

is more natural than any boundary condition couched in terms of 155ee, however, the doubts raised in R68] about satisfaction of
the wave functionb. the Hamiltonian constraints in a path-integral formulation.
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expanding to Planckian size and then rapidly shrinking tahe path integral, meaning that most of the contribution to the
zero volume, at which point the saddle point approximationquantum measure comes from nearly classical histories, and
is helpless to tell us what happens ngeyond the possi- this in turn can be related to the saddle point metric's being
bilities mentioned earlier for what happens next, another igup to “complex diffeomorphism) nearly Lorentzian at late
that probability escapes to inhomogeneous metrics—i.e., thémes. To us, it seems unclear whether any of these features
minisuperspace approximation breaks dowh. is really necessary or whether decoherence effects associated
In the Bianchi type I universe of Sec. VI, the “unitary” with gravitons or other matter could by themselves bring
wave function, called therd, , behaves very differently. about a transition to a nearly classical universe like the one
For smallT (6.11) strongly resembles the action of a free we inhabit. At any rate, it would seem helpful at least for the
nonrelativistic point particlgalbeit with an indefinite mass niverse to attain a large size with high probability, and this
tensoj released fronu=v =0 atT=0, and we have noted in happengtogether with a spontaneous transition to classical
this connection that probability appears to flow toward i”ﬁ”'expansion ifT<a?b?) in at least one of our normalizable

ity. This suggests thatdudv|y|?, which here diverges mar- 5nq unitary cases, namely for the= + 1 saddle point in our
ginally, would continue to be infinite in a better approxima- gianchi type | model.

tion. One might attribute this divergence either to a failure of As pointed out earlier, it is meaningful in the unimodular

the no-boundary prescription, or to the idealization of Spacefheory to ask what the wave function looks likeTat 0, the

time as a continuum, for which the saddle point approximaz, o of birth,” and consistency would seem to require

t|qn s, disappointingly, not providing an effective cutoff. I gwat the no-boundary prescription yield a universe which is

of zero or Planckian size. This was the case for all of our

delta-function to Planckian size &t=0. This in turn would  Unitary” saddle points, so to that extent, the desired con-
be expected to modify its behavior fap>T2. S|stenc_y seems to be pre;e(m. c_ontrast, the non-unitary but
We also found saddle pointgnd with many attractive normalizable wave fu_nctlor*[fo m_the_ Taub cross-cap case
feature that manifested an exponentgdowthof norm. For ~ Seems to look at =0 like a combination of a delta-function
them, probability seems to be flowirigward from the finite ~ With a “zero momentum” state spread out over all of con-
boundary at an increasing rate. The nearest we can come tdiguration space. We recall that thi resulted fora<a.
picture of what this type of unitarity breakdown might meanfrom a time-non-orientable, purely Lorentzian solution,
would be a pre-geometric universe continually sending outvhich one suspects is not a valid saddle point aj all.
branches that develop into continuum spacetimes. Such a In concluding, it seems fitting to remark on the rather
“bush-like” universe could not really correspond to a one- lifelike nature of some of our models. In contrast to non-
configuration-space wave function at all, though, and it is nounimodular versions of quantum cosmology, where the wave
really clear whether any plausible interpretation can accomfunction is typically non-normalizable and otherwise very
modate such saddle points. hard to interpret, we have found here many saddle points
A question often raised in connection with a quantumyielding y/s which are eithet.2 or marginally so, and which
cosmological model is whether it predicts that the UniVGrSngoh/e Consistenﬂy with unitarity at our degree of approxi-
will, at late times, expand along an approximately classicaimation. This seems encouraging for the account of topology
trajectory. In effect, one is asking whether the universe, havchange sketched above.
ing once arrived at certain values @f a, andb, can be Among all of our saddle points, there is precisely one that
expected to continue its expansion along some particula consistent with normalizability and unitarity and that spon-
classical trajectory through these values. In the affirmativeaneously makes a transition to classical expansion. Interest-
case, we may say that it makes a spontaneous transition ifgly, it belongs to spatial topology® and not toS®. In this
classical behavior, possibly after some initial era of non-ay, we might imagine predicting something about the large
classical expansiot. One can argue that such behavior is scale topology of the universe, if it turned out that this dis-

correlated with rapid, WKB-like oscillations af in the re-  tinction betweenl® and S® persisted in more realistic mod-
gion in question. Another familiar criterion for classical evo- g|g.

lution is the validity of a stationary phase approximation to

discreteness explicitly, by smearingout by hand from a

18f the universe really can die out entirely, then the rule given in
_[21] for forming the quantum measu;z_e(C) need_s to b_e general- ACKNOWLEDGMENTS
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