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We describe a grid generation procedure designed to construct new classes of orthogonal coordinate systems
for binary black hole spacetimes. The computed coordinates offer an alternative approach to current methods,
in addition to providing a framework for potentially more stable and accurate evolutions of colliding black
holes. As a particular example, we apply our procedure to generate appropriate numerical grids to evolve
Misner’s axisymmetric initial data set representing two equal mass black holes colliding head-on. These new
results are compared with previously published calculations, and we find generally good agreement in both the
waveform profiles and total radiated energies over the allowable range of separation parameters. Furthermore,
because no specialized treatment of the coordinate singularities is required, these new grids are more easily
extendible to unequal mass and spinning black hole collisi@®556-282(98)05010-3

PACS numbeg(s): 04.25.Dm, 04.70-s, 95.30.5f

I. INTRODUCTION lutions approach at late time@®) simplification of waveform
extraction calculations in the wave zone, ddglexponential
The collision of two black holes is likely to be one of the stretching of the grid in the radial direction which covers
most prominent sources of gravitational waves for detectorenough of the spacetime that asymptotic flatness can be ap-
which are expected to come on line over the next yghks plied to the conformal metric components at the outer grid
However, the computational framework for extracting tem-edges. However, these conveniences are offset somewhat by
plate waveforms from colliding black hole spacetimes con-the singular saddle point introduced by the coordinate trans-
tinues to be a difficult task for numerical relativists, despiteformation at the origin midway between the two black holes.
many years of effort. After the first attempt in 1964 by HahnDCSE attempted to deal with the saddle point by evolving
and Lindquist[2] to solve the problem of colliding black the cylindrical (not Cade2 metric components everywhere
holes, a long-term and relatively successful program was inien the Gidezgrid and performing discretizations using chain
tiated in the late 1960s by DeWitt al.[see DeWitt, @dez  rule derivatives. Also, because black hole spacetimes can
Smarr, and Epple}3-6], we henceforth collectively refer to generate pathologically steep delta-function-like peaks in the
as (DCSB]. Their efforts were concentrated on simulating metric components(assuming singularity avoiding time
the axisymmetric head-on collision of two equal mass blacksliceg, numerical evolutions can quickly become unstable
holes using the time symmetric Misner ddfg for initial even if the inherent symmetries are exploited in choosing the
conditions. This data set possesses the “double Einsteirappropriate numerical grid and the evolved variables. Addi-
Rosen bridge’{8] topology in which two asymptotically flat tionally, it is well known[4,5] that an axis instability can be
sheets are joined by two throats representing non-rotatintfiggered in numerical evolutions of axisymmetric space-
black holes. The throats are two-spheres that are invariatiimes. For all of these reasons, the computations of DCSE
under an isometry operation identifying both sheets andremained uncertain with error bars of order 1008h
from a numerical standpoint, serve as a boundary across Recently, Anninoset al. [10—12 (henceforth referred to
which a particular form of Neumann boundary conditionas papers |, Il and Il respectivelymproved upon the DCSE
must be imposed on the evolved quantities to preserve thealculations by introducing a shift vector to diagonalize the
isometry. . Cadezmetric and to evolve these components on tlael€z
DCSE developed the 2Dadlez[3] coordinate system to grid, thus suppressing the axis instability which is especially
numerically integrate and evolve the axisymmetric Einsteinsensitive to the off-diagonal elements. The problem with the
equations. The &dezcoordinates are curvilinear body-fitting coordinate singularity at the origin was treated by construct-
coordinates that conform to the two black hole throats andng a cylindrical coordinate “patch” to cover regions near
become spherical at asymptotic infinity. The advantages athe saddle point. The results of Anninessal. are accurate to
this coordinate systenfand any other appropriate body- a few percent in the dominant wave signal for black holes
fitting system include (1) simplified boundary conditions at which are initially placed at close to moderate separation
the black hole throatg2) natural spherical-like grids which distances. For larger initial separatiofgreater than about
mimic the background Schwarzschild geometry that the so10M, whereM is the single black hole masghe evolutions
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become increasingly more inaccurate due in part to the factatisfy the following elliptic partial differential equations
that the saddle point remains within the causally connectefi13]:

regions of spacetime for longer periods of time as the black

holes take longer to collide at the origin. If the black holes Ixx&+ dyyé=P(n,8), (1a
are initially separated by even greater distangeere than

about 20M), the evolutions become unstable and break down dxxn+ dyyn=Q(7,8), (1b)
altogether.

In short, the goal of long-term stable and accurate comWhereP(¢,7) andQ(¢,») are generating functions that can
putations of highly separated colliding black holes has yet tcPe used to.adjust thg behavior of the curvilin(_aar coordiljates
be achieved. Here we propose two new classes of orthogon#l the physical domain. Because the boundaries are typically
body-fitting coordinate systems that are well suited to thé_rregular in Cartesian coordinatésr cyllndrlc_al coordlnates
axisymmetric geometry of two colliding black holes, and thatl? 0ur black hole work and the ¢,¢) coordinates are uni-

appear promising to improve upon current calculations. ThéOrm n th_e trapsformed plane, it is deswabl_e to carry out the
new coordinates remove the singular saddle point from ité:omputatlons in the transformed plane, switching the depen-

obtrusive position at the origin and thus offer a potentiallydent and |'ndependent variables. Equatigiis can be in-
cleaner and more stable method of solution. Because we ré(_erted to yield
quire spherical coordinate lines at the throats and in the far
field, singular points are unavoidable. However, the saddle
point singularities can be relocated along thaxis to either >
the south or north pole of the top haland thus the north or gy =20 ey + v,y +I(Pdy+Qa,y)=0, (2b)
south pole of the bottom hole, respectivelassuming the o ) _ L
two holes are aligned vertically along theaxis. We refer to Where2 =9, X"+ 0yy%,  B=IXI X I,Y08, =X

the former system where the singularities face the oppositd 7Y andJ=d:xd,y—d,xd.y. The problem of grid gen-
black hole as the class | system: class Il refers to the lattefration then reduces to solving a coupled set of nonlinear

case with the singularities facing away from the OppOSingelliptic partial differential equations subject to the appropri-
throats. ate boundary conditions, which can themselves be intrinsi-

We are thus able to construct two new classes of coordic@lly coupled in a complicated manner. Although the elliptic

nate systems, replacing the single singularity at the origir§olution approach is a general and_straightforwfard one, other
with a pair of saddle singularities on the throats. An advan/N€thods such as conformal mapping, algebraic transforma-

tage of transplanting the coordinate singularities to thdionS, and hyperbolic solutions of partial differential equa-
throats prevents the black holes from “crashing” into a ONS have also been developesee[13] for a review of grid

saddle point during the numerical evolutions. Instead, wel€neration techniques _
implement a singularity avoiding lapse function that is zero . N this paper, we present an altogether different and much

on the throat, so that the evolution along the throat freezes ifiMPlified procedure that does not require one to solve
time. In addition, thémaxima) time slicing used in the evo- coupled nonlinear elliptic equations. The idea rests on the

lutions will rapidly absorb coordinate lines into the eventn°tion that the grid generation process is greatly simplified if
horizon and the saddle points will fall farther inside the causo"n€ of the coordinates can be specified analytically. Taking

ally disconnected portion of the evolved spacetime where thi1iS coordinate as the one aligned asymptotically with either
lapse collapses exponentially to zero, providing an additiona{l]he radial or the angular direction, we show in this section
ow to construct a natural “specified” coordinate for three

stabilizing element. ) ) . .
The following sections describe our hybrid analytic angdifferent classes of grids as characterized by the location of
the singularity: class (II) with two singular saddle points,

numerical procedure to generate discrete grids for axisym= -
P I J Y ne on each of the throats on the axjs closes(fasthest

metric binary black hole systems. Section Il introduces grid® - ) - .
generating techniques in general and describes the particul§PM the origin, and class Il which areadezlike coordi-

analytic prescriptions that we developed for specifying onda€s With a single singular point at the origirrz=0. We
of the coordinates. Section Il describes the numerical calcuf©te that the function one chooses for the specified coordi-
lation of the second coordinate orthogonal to the first, as welf!@€ must solve the necessary boundary conditions, but is not
as the techniques used to compute the Jacobian matrix rEgstricted to satisfy any particular elliptic equation. ,
quired for the coordinate transformations, and the tests which Before we continue, a few notational comments are in
can be used to monitor the accuracy in which the coordinat8'der- Four axisymmetric coordinate systems are utilized in
systems and Jacobians are constructed. Results from actd8iS Paper: the combinatiorp(z) refers to standard cylindri-
numerical evolutions are presented in Sec. IV and compareg@! coordinates, r(,¢) denotes standard polar coordinates,

with previously published calculations. We summarize oul¢,§) are the radial- and angular-like body fitting coordi-
results in Sec. V. nates, and %,£) represent the logarithmic radial- and

angular-like body fitting coordinategote that the twoé
coordinates are identigalFinally we characterize the loca-
tion of the two black holes by their radiwg (a,) and ver-
tical distance from the origin along tteaxisz; (z,), where
z, (z,) represents thabsolutedistance of the throat center

A general and common method of constructing body-from the origin, and the uppdtower) black hole is denoted
fitting coordinates is to let the curvilinear coordinates €) by the subscript 12).

a0z X—2B3 yeX+ yd ) X+ I3(PIx+Qd,x)=0, (2a)

Il. GENERATING BODY-FITTING COORDINATES:
THE SPECIFIED COORDINATE
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P domain in relation to the throat, axis, and equator. The cross indi-
FIG. 1. Class | coordinates for the=2.2 Misner data. cates the location of the coordinate singularity at the intersection of
the throat and axis closest to the equator.
A. Class | system
) y . d1: \/p2+(Z—Zl)2—al, (3)
The class | coordinate system has a coordirfaseldle-
type) singularity where each of the throats meet the axis dy=Vp?+(z+2)%—ay, (4)

closest to the origilisee Fig. 1 A singularity is generated at ) )
these points by requiring that a radial-like coordingtee  and a third distance measure
zero on both of the throats and the entire section of the axis

. : : 1
connecting the throats. Lines of constanwill then trans- dy==[Vp?+(z—z,+a,)?
form from “peanut’-like surfaces near the throats to radial 2
circles at infinity. The two throats and the axis between the PP+ (24 2= ay) % — (24 + Zp—a;—a,)], ()

throats in this case make up the lime=0. The axis above

(below) the top(bottom hole is the angular coordinate value defining an “elliptic” radial coordinate that is zero on the

&=0 (m). In the equal mass case, the equator is the §ine segment along the-axis extending frome=z, to z= —z,.

= 6= /2. The boundary conditions are shown in Fig. 2 and(We note that the square root radicals implicitly refer to the

Fig. 3 in the p,z) and (¢,§) planes respectively. absolute or positive rogt.The actual curvilinear “radial”
An exponentially stretched radial coordinate satisfying thecoordinates/ and », are then constructed from these dis-

appropriate boundary conditions can be generated by firsance components by

defining two radial distances from the two throats,

_ (2K1+1)d1d2d3 6
£ 0,0, y(dyd5+ dydy) ©
and
. 4
—sinh- =
n=sinh Kz). (7

Both are zero on the “spectacle” boundary of Fig. 2 by
construction. Equations) and (7) also have the proper be-
havior in the asymptotic limit where both and z tend to
infinity, i.e., {—r and n—log(r/k,). The parameterg; and
K, are introduced so the coordinate systems can be “tuned”
to improve the stability of evolutions. In particulat; con-
trols the relative importance between the “elliptic” radius
(d3) and the two distance-from-throat radd,(andd,), and
affects the shape of the grid close to the axis between the
holes. By adjustinge;, the grid can be pushed away from or
drawn closer to the axis in this region, effectively increasing
or decreasing the resolution between the holes inptlu-

FIG. 2. The “radial” (¢) boundary conditions for the class | rection. k, controls the asymptotic behavior of the coordi-
coordinate system. nates in the far zone. Typical values for evolutions depend
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FIG. 5. The “angular” () boundary conditions for the class Il
FIG. 4. Class Il coordinates for the=2.2 Misner data. coordinates.

on the geometry of the system, and range froRy,kz)  axis above it @), and a function that is zero on the bottom
=(1,2) for theu=1.2 case, td0.7, 2 for theu=2.7 case, pqle's throat and along the axis below d):
where u is the Misner parameter defined in Sec. IV A.

dladlb

B. Class Il system = @70 (12)
i : Y24 (2—29)?
The class Il coordinate system has a saddle point where p 1
each of the throats meet the axis farthest from the ofigge
Fig. 4). A singularity is generated at these points by requir- dyadap
ing that an angular-like coordinatebe zero ) along the dy=—7—""""— (13

°= .
throat of the top(bottom) black hole and along the axis pP+(z+29)?

above(below) the top(bottom) throat. The coordinaté also

asymptotes to the polar angular coordinate The north  The two functionsd; andd, are in turn combined to create a
(south throat in this case is a line of constaét0 () common functionf that approaches-« as d;—0, and
between/=0 and some finitg’ value. The axis abovébe- — asd,—O0:

low) the north(south throat is on the same constanline as

the corresponding throats. The axis between the two throats 1

is the line{=0. In the equal mass case, the equator is the f=(a;+a,+z,+ Zz)(d—— d_)' (14
line é=m/2. The boundary conditions and mapping are oz

shown in Fig. 5 and Fig. 6 in thep(z) and (£,£) planes

respectively.
The class Il system can be generated by first defining two

radial distances similar to the class | case,

dia=p%+(z—27;)?—a?, (8)

d2a:P2+ (z+ 22)2_a§, 9) ‘ Axis abovethroat Equator
and two “hyperbolic” radial coordinates )( ----- e S

dip=—p*+(z+ 2+ 8) "+ Vp*+(z—2,-2a)°
+(z+ 2z +a+ay), (10 Throat | |
Axis belaw throa

dop=+p?+(z+2,+a)°— p*+(z—2,—a)?

+(zy+ 2z +as+ay), (11
FIG. 6. The class Il schematic mapping of the rectangujag)(
which go to zero along the axis above and below the holegomain in relation to the throat, axis, and equator. The cross indi-
respectively. These coordinates can be combined to construgites the location of the coordinate singularity at the intersection of
a function that is zero on the top hole’s throat and along thehe throat and axis farthest from the equator.
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25 potential lines of two equally charged metallic cylinders lo-
cated at the centers of the two throats. Hence the lines of
i constant » are spherical along the throats and in the
2.0 asymptotic far field, and a singular saddle point is introduced
midway between the two black holes at the originz=0.

The coefficientsC,, are determined numerically by a least

15 squares procedure to set the thropdefined bypfh+(zth
+z,)2=a?, wherea=a,;=a, is the throat radiulsto lie on
N an n= no=const coordinate line. _
Lol It is relatively easy to generate aadezlike system using
el our grid generation prescription. A radial coordinate is re-
quired which vanishes on the throatand only on the
throat3 and asymptotes to as p and z tend to infinity.
0.5 ] Clearly, this can be satisfied with
[ d1d2
0.0 Pt e R A P N S P Y gzd +d [l_klexq_kZPZ_kSZz)]y (18)
0.0 0.5 1.0 15 2.0 2.5 1re2
P
B where
FIG. 7. Cadezcoordinates for the Misner data with separation
parameteu=2.2. di=Vp?+(z—2z)%—ay, (19
g;g::g,bye functionf is converted to an angular-like coor- d,= m_ a,, (20)

sgn(f) and the p_arameterlsl, kz_ andk; are intr_oduced to control
= arcco( V14 m) ) (15) the_ behavior ar_wd_ resolution of the_ coordinates near the saddle
\/5 point at the origin. In contrast with theadezcoordinates,
we note that the Cauchy-Riemann relations are not satisfied
The angular coordinate in E¢L5) has the desired properties for this coordinate system.
of being zero on the throat of the top hole and along the axis
above |t,’7T on the bottom hole and f.ilong the aXlS below |t, IIl. GENERATING THE SECOND COORDINATE
and approaches the normal spherical coordirata the AND OTHER NUMERICAL ISSUES
asymptotic limitr — oo,

In the class | system, the value of the second coordigiate ~We have developed two different methods for computing
is specified on the outer grid edge to be the angular polaihe secondunspecifiegl coordinate and to establish the po-
coordinated. There is slightly more freedom in class Il for sitions of the {7,£) grid points in the cylindrical coordinate
specifying the second coordinateat smallr, since we only  (p,z) space. In addition to evaluating the grid node posi-

require thatr =e” near the outer edge of the grid. We there-tions, it is also necessary to compute the Jacobian matrix
fore define elements(i.e., the coordinate derivativesaiccurately. The

Jacobian matrix and its inverse are needed to transform met-
r=2 sinhnp+kyzn (16 ric functions between thep(z) and (,£) spaces and to

) ) ) ) perform chain rule differentiations of the cylindrical metric
to be the radial coordinate. Because the throat is described Bynctions on the curvilinear grids in the coordinate “patch”

the first severaly zones(see Fig. 4, k; effectively controls  egions described in Sec. IV. We turn first to the computa-

the resolution along and near the throat boundary. tion of the Jacobian, and then to the generation of the second
. coordinate.
C. Class Il system: Cadezlike coordinates
Cadezcoordinates(see Fig. 7 are related to cylindrical A. Computing the Jacobian
frc;?]g‘g]rﬁ(;?io;hmugh the following semi-analytic complex In orde_r to effgct_ively use the curvilinear grids in_numeri-_
: cal evolutions, it is important to generate the Jacobian matrix
1 and its inverse as accurately as possible, since the gravita-
ntié= E[In(z+ Zotip)tIn(z—zp+ip)] tional waves emitted from the collisions are expected to be
very weak in relation to the background geometry. Knowing
% 1 1 the matrix components amounts to knowing, at each point on
+ E Cn — + _ , the grids, the coordinate derivativeg/dn, dpld&, dzldn
n=1 (z+20+ip)"  (zp—2—ip)" and dz/9¢. A naive approach would be to simply evaluate

(17) these derivatives numerically at each point, after the grid has

been calculated, using a second or higher order discretization

where z= * z, are the locations of the throat centers. Thestencil. Instead, we adopt a more accurate procedure and take
constant radial and angular lines lie along the field and equiadvantage of the fact that the derivatives of the specified
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coordinate are known analytically. In this way, only two of dient of the specified coordinate function. In other words,
the elements need to be computed numerically. given a functional form for one of the coordinates, the sec-

The Jacobian matrix and its inverse can be written as ond orthogonal coordinate; in the class | case, is deter-
mined by integrating the following equations:

dpp 9,2 1 9E  —d,é
=3 ) (21 dp a,m
degp  I¢Z —dm 9pm —| =2 ) (253
_ _ _ dr . |V 7|
whereJ=d,7d,£—d,1d,§ is the Jacobian determinant. One
can s_how from the ort_hogonal_ity _of thep,@) and (,&) dz 9,
coordinates that the first derivatives obey the Cauchy- al T (25b)
Riemann-like conditions £ V]
d,m=0d,¢, (223 along lines of constang. Here\ is an arbitrary integration
parameter, and the normalization fadt®ry| is introduced to
d,m=— 0, (22b keep the step sizes regular at points wherkas large gra-

dients. This procedure also follows for the class Il coordi-
whereo =g /g,,, andg;; is the metric in curvilinear co- nates, except that the integratetifferentiated coordinate is
ordinates. In the class | case, two components of the inverse (£). These linegthe second coordingtare thus guaran-
Jacobiang,n andd,», are known analytically. Thus, using teed to be orthogonal to the specified coordinate lines.
the relationship$21) and(22), the following class | elements Because the first coordinate is known exactly, we can

are determined exactly from the analytic expressions: form the spatial gradients analytically, and the problem re-
duces conveniently to a straightforward ordinary differential

a,m equation(ODE) integration. In practice, Eq$25) are solved
92 (233 using a 4th order Runge-Kutta integration with a small fixed

= 2 2’
(9pm)"+(d7) step size. The only difficulty with this method comes with

finding the (p,z) values at a particulars, ¢) position, since

_ 9p7 (23b) the ODE integrations may overshoot the destination grid
(apﬂ)2+(az77)2' nodes. However, the step size is chosen small engiyght

cally about 1% of the width of a single grid zonthat we
The remaining two elements,z andd,p, are approximated can interpolate linearly between the staggered points without
by finite differencing the grid data using a centered fourthsacrificing accuracy. Once these integrations are completed,
order stencil. In the class Il case, the corresponding derivahe coordinate derivatives are evaluated using the techniques
tives of the coordinat& are known, and expressions analo- described in Sec. Il A.
gous to Eqs(23) are derived simply by replacing with &.
Additionally, in order to carry out the coordinate patch evo- C. Line integration in the (#,£) plane
lutions described in Sec. IV A, it is also necessary to know An al df ffici h
the second derivatives of the coordinates. These are com. /1 &térnate, and far more efficient, approach to con-

puted in the same manner as the Jacobian: the specified cgyructing the numerical grids involves integrating the grid

ordinate derivatives are evaluated analytically, and deriva?quat'ons(ze’) or their class Il equivalents

tives of the second coordinate are approximated numerically

9P

using fourth order stencils. Jez= a;g (269
We note that the orthogonality condition of the angular (ap§)2+(az§)2
and radial coordinates,
9z dz  dp dp dep= %t (26b)
_ _ = § - 2 2
Tr it Tap " (24 (3,6)*+(9,)

can be imposed here to eliminate a third unknown derivativén the (77|'§) planle. That s, rather than sup'plying a starting
component from the Jacobian matrix, and reduce the numbép2) value, evaluatingy (or £) and its gradients, and then

of numerical discretization operations to one. However,facingé (or ) along orthogonal lines in they(z) plane, we

rather than taking this approach, we defer the use of th@€-SUPPOSe a regulan(¢) grid. For class | coordinates, we
orthogonality relationship to test the accuracy in computingsUPPly the p,2) values along the outer boundarny= 7max
the coordinate systems and the Jacobian, and we have coffhich are consistent with a constantsurface in spherical
firmed that Eq.(24) converges to zero with the order of the coordinates, i.e.,

integration method. p=eXP Fmax)SiN 6, (279

B. Line integration in the (p,z) plane 2= eXP 77512, COS 0 (27b)
ma 1

One method to generate the second coordinate is to treat
the lines of constant values as field lines of the known orand &= 6 which is evenly discretized along= 7,,,x. Equa-
specified coordinate. These field lines are computed by intetions (23) are then integrated inwards towards the throats.
grating along the normals to the iso-lines, e.g. along the graFor the class Il coordinates with equal mass black holes, we
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supply the p,z) values along the equator and integrate Egs.

(26) towards the axis and throats. In this case, we use di2=W¢| Jp2+22)dn’+ T pi+z5)dé
p=2 sinhp+k;7, (283 2
p .
+ J sirted¢? |, 31
z=0, (28b) sin2§> ¢dé (31

where 7 is evenly discretized fromy=0 10 7max. Because where¥ =¥/ 74 7is a regularization variable that can be

the derivatives of the specified coordinates are known ang;qeq to simplify the metric components and to provide a
lytically, this integration scheme reduces to a set of ODES;4yijizing element in the numerical evolutions;, £) are the

that we solve using a second order Runge-Kutta scheme wij garithmic radial-like and angular-like curvilinear coordi-
nates, and the siéiterm is explicitly factored out of thg

a step size smaller or equal in size to thgd) grid spacing
used in the evolutions. As a check on the accuracy of SOI“(':omponent partly for historical conventions and partly to

tions, the resulting cylindrical coordinate values can be SUbheIp regularize the numerical evolutions: We evolve the con-
stituted into the analytic expression fal(p,z) (class ) Of  ¢5ma) metric and extrinsic curvature components as de-
¢(p.2) (class 1) to evaluate the accuracy of the numerical goiipe in paper II. However, thet® was defined to be the
integrations..We fin_d that they converge to the truncationJacobian determinant of the coordinate transformatign (
order of the integration method. =J) so thatg,,=g.=1 initially. Here we simply set7
=1 since there is no obvious advantage to renormalize one
IV. APPLICATIONS of the components when the Cauchy-Riemann conditions are

- . . . not satisfied. The partial coordinate derivatives in E{)
In this final section we apply the class | grids to numeri- . X . .

) . . : . are computed as described in Sec. Il A, completing the ini-
cally solve the Einstein equations for the axisymmetric col- ial data. The data are then evolved according to the same
lision of two equal mass black holes, using the conformalt ' ; ; ; . gt .
Misner solution for initial data. Although we have shown procedures described in paper Il, i.e., using the maximal slic-

. . ing condition for the lapse function with antisymmetric
how to construct three different grid classes, we focus her . L
) ; oundary conditions at the throat surfaces and an elliptic
only on the class | type: the class Il evolutions have proven o : . )
A condition for the shift vector to preserve the metric in curvi-
to be less stable than class |, and class Il is similar to th . ) !
S e near coordinates to be diagonal throughout the evolution.
Cadezcase. To demonstrate the applicability and accuracy o

. . - To provide more stable evolutions, especially for the
the new class | grids to actual evolutions, we repeat the dif- . o .
widely separated black hole cases, we utilize a coordinate

ferent parameter eV(_)Iut|ons N papers I=Ill and compare Ounpatch” as described in paper Il. Evolutions in this patched
results with the published calculations. . X . ;
domain, which covers the saddle points and portions of the
N _ axis, are performed using the cylindrical coordinate based
A. Initial data and evolutions metric components and chain rule derivatives to compute
The Misner data set is an axisymmetric and time-spatial gradients across the curvilinear grid nodes. The solu-

SymmetriC, Sing|e parameter fam||y of solutions with thetions are then transformed USing the general tensor relations

conformally flat spatial 3-metric to reconstruct the curvilinear metric and extrinsic curvature
components, and then linearly blending the results into the

dIZ=v4dp?+dZ2+ p2dp?], (290  rest of the spacetime, which is evolved in a normal manner

using the curvilinear metric components on the curvilinear

wherep andz are the cylindrical coordinates, and grid. The coordinate patch used in papers I-lll, although
only several zones deep in the angular direction, extends

w1 i 1 [ 1 from the throat all the way out to the outer boundary in the

=1+ : radial direction. For comparisofsee Fig. 8 the domain in

=t smr(n,u){ Vp?+(z+cothn)® the class | coordinates which requires a patch is localized to

1 just the first few zones in the radial direction. As a result,

+ . (30) when the black holes merge to form a common event hori-
Vp®+(z—cothnu)? zon, the patched coordinates and the associated numerical

evolutions become irrelevant as the lapse collapses to zero

The conformal factor” solves the Hamiltonian constraint over this region before the metric shear grows enough to
with the proper isometry imposed between the upper andisrupt the solutions. The evolutions with class | coordinates
lower sheets and represents two equal mass, non-rotatinge therefore more robust and less sensitive to patch param-
black holes aligned along the axis of symmetilye z-axis), eters than previous calculations.
and centered &= = cothu with radiusa= 1/sinhu. The free
parameteru defines the total or Arnowitt-Deser-Misner
(ADM) mass of the spacetime and the proper distance along
the spacelike geodesic connecting the two throats. Increasing We first consider three different cases with Misner param-
u decreases the total mass of the system and sets the tveterspu=1.6, 2.2, and 3.0, and compare the class | gravita-
holes further away from one another. tional waveforms with previous results using thad@zgrid.

For general axisymmetric transformed coordinates, the 3Each calculation is performed at the same grid resolution
metric (29) can be written as using 200 35 radiak angular zones. The Misner parameters

B. Results
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FIG. 8. Locations, shapes and sizes of the coordinate patche  oef TN
used in the Misnep = 2.7 grids for the @dez(horizontally hatched . \ _ u=1.6ClassI

domain and class [diagonally hatched domairtases. The shaded U T 1u=1.8 Cadez

region labeled “radiation zone” represents the domain into which e[ . . ‘

most of the gravitational radiation is emitted. That this zone is ’ ” “Lime o )‘io " -
adm’

concentrated along the equator is attributed to the axisymmetric
nature of the collision. Despite the representative shape of the ra- F|G. 9. Gravitational waveforms emitted from the head-on col-
diation zone, the actual radiation extraction is performed on 24ision of two black holes evolved with thea@ézand class | grids
spheres starting at a radius oflQ(=15M 5py) from the origin.  for the x=1.6, 2.2 and 3.0 Misner data. The waveforms are ex-
tracted at a radius of 30 from the origin, whereM =M p/2 is
are chosen so that the smaller value represents a data settiia approximate single black hole mass. The evolutions in each case
which the two black holes are already merged within a singleyre performed at a grid resolution of 2085 (radialx angulay
event horizon, and the subsequent evolution is that of aells.
single distorted black hole ringing down to the Schwarzs-
child solution as it emits gravitational waves. The data fromter than 3%, for separation parametgrs 2.2 corresponding
the larger Misner parameter cases correspond to two distintd initial physical separations &f<8.92M, and improve sig-
black holes separated by proper distancet ©8.92M (u nificantly at smallerw values. However, deviations between
=2.2) andL=15.8M (u«=3.0) between the two throats, the class | and @dezresults become greater for black holes
whereM is half the ADM mass of the spacetinier approxi-  with further initial separations, reflecting the difficulty in
mately the mass of a single black hpl€omparison plots of evolving highly separated black holes for long periods of
the dominant =2 Zerilli waveforms, extracted at a distance time.
of 30M from the origin, are shown in Fig. 9 for the three  To assert a measure of uncertainty in our results, we per-
different Misner cases. We finthaximumrelative differ- form several different calculations of the=2.7 and 3.0
ences less than about 10% in amplitude and 4% in phase felata, varying the grid resolution, patch width, and coordinate
the u=1.6 and 2.2 casdsvith absolute deviations:10 2 in parameters as defined in Sec. Il A to manipulate the shape of
amplitudg, and up to about 200% and 4% differences in

amplitude and phase for the more difficult=3.0 case in 1.0000¢

which the black holes are initially highly separated. i
To emphasize thdin)stability of the solutions at late Tg 0.1000

times when the signal crossing the detector becomes weaker, £ g

we plot in Fig. 10 the logarithm of the absolute value of the g 0.0100 L

Zerilli function for the relatively uncertaim = 3.0 case. No- ‘_5 -

tice the class | grid solution maintains a more regular oscil- g i

latory behavior and consistent damping rate throughout the & 0.0010;

wave signal and for longer periods of time than thad€z - — ClassI

case, which begins to break down at abouMz@y . 00001 C8dez . .
Next, we reproduce in Fig. 11 the equivalent of Fig. 14 in 0 20 10 60 80 100

paper Ill. The totall=2 radiated energyin units of the Time M,,,,)

ADM mass,M npy=2M) emitted during the black hole col- - rig 15 e absolute value of the Zerilli function is shown for
I|S|ons_ is p[otted as a function of the initial separgtlon d's'the,u:S.O case using the class | aﬁa@“zgrids. The logarithmic
tance(in units of M) between the two throats. Also included s¢5je highlights the oscillations in the waveform and the exponen-
in the figure are results from paper Ill, the Davies-Ruffini- i gamping of the wave amplitude. Although the waveforms com-
Press-Price (DRPP [14] point particle calculation &  pare favorably at smaller values pf there is a significant differ-
=0.0104n%/M, plotted for m=M=Mupu/2), and its re- ence and improvement in the regularity of oscillations in the class |
duced mass correctidm—mM/(m+ M)]. Results from the system compared with the less stablad€zcase for this large
class | and @dezgrid evolutions match extremely well, bet- initial separation data.
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FIG. 11. Total gravitational wave energin units of the ADM F
mas$ emitted from the head-on collision of two equal mass black '4f )
holes as a function of the separation distance between the two
throats(in units of M = M spu/2). The class | and &iezgrid results Bl
are plotted together for comparison, along with the DRPA cal- 6 4 2 0 2 4 6
culation of a particle falling into a more massive black hole, and its P

reduced mass correction. The error bars represent the uncertainties ) . .
estimated by performing the evolutions for different computational G- Iizh Emlbeddmg cl)f the ev;:nt horizon forfth:}:Z.IZ Misner
parameters as described in the text. The uncertainties in both trfg’lta with the class | evo gtlon. The geometry o t e c_as'_s | coordi-
class | and @dézevolutions are comparable to differences betweenNates allows the separation between the holes in this figure to be

the two different grid results, ranging frori3% for separations physical, not artificial as in pr@viogs two black hole collision em-
L<10M. 30% forL ~13M  and 100% for. ~16M. bedding diagrams derived froma@ezcoordinates. Also, the regu-

larity of the class | grid at the origin allows for more accurate

. . . examinations of the caustic line at the coalescence point.
the coordinate lines. For the more problematad€zevolu-

tions, additional parameters include the patch length, duragith the class I coordinates. The embedding of the horizon is
tion and diffusion, as well as varied treatments of the COOrsmooth(except at the cusps on tizeaxis), as were previous
dinate singularity(for example, shift vector specifications, embeddings of the horizon in this spacetifa€]. However,
discretization stencils, and regularization of certain metriGhe null surfaces on the class | grid contain not only the
and curvature componeftJhe symbols in Fig. 11 represent porizon (in the domainy>0), but also naturally contain the
the median results and the error bars indicate the varianqgcys of generators waiting to find the horizon, as discussed
with computational parameters. The variances are similar tg, [18]. More precisely, to generate Fig. 11[df8] a coordi-
the q|ﬁerences o(l)aserved begwgen thed€zand class | re-  pate transformation from aziez to (p,z) coordinates was
sults: roughly 30% and 100% in the=2.7 and 3.0 cases required. This coordinate transformation is not needed to
respectively, with a trend for better agreement with increasegyojve the locus in class | coordinates. This is more than a
resolution (though the resolution studies are limited by the convenience, however. Since the null surface consisting of
axis instability. For theu=2.2 cases the variances are t00the horizon plus locus is naturally represented as a smooth
small to plot, but are consistent with the observed agreemenfontinuous surface in class | coordinates, the entire null sur-
in the evolutions. Considering the sensitivity of the results tofgce can be unambiguously embedded in 3-space, which was
grid and patch parameters, and the difficulties in evolving,ot possible with the @dezgrid. This allows us to determine
these systems using maximal slicing conditions and in axithe separation between the horizons in embedded space us-
symmetry, the overall results agree fairly well. Furthermore,irlg some relevant physical measure. While ad€zcoordi-
the numerical calculations are in reasonable agreement WitQates the horizon separation was determined to keep the
the reduced mass approximation and the semi-analytical calter surface of the “pair of pants” figure smooth, here we
culation of Arayo and Oliveira[15] in the large separation determine the separation by embedding the entire null sur-
limit. face. This gives a natural separation between the horizons
Figure 11 also demonstrates an added advantage of thgm the embedding of the locus and determines the geom-
new grid generation procedure to construct numerical gridgtry py the horizon. We use this separation to place the holes
in the very low Misner parameter cases. Because of conveip, the “wristwatch” (or “pair of pants from above), Fig.
gence problems in the Newton-Raphson iterative inversiony The class | coordinates also allow for more detailed ex-

of Eq. (17) when the black hole throats are placed too closeyminations of the caustic line at the coalescence point, which
to the saddle point, previous calculations were limited toy| pe discussed elsewhere.

©=0.7 [16]. The closest separation data shown in Fig. 11
correspond tou=0.5 (or L=2.51M), although grids for
even smaller values gf can be easily generated.

An additional benefit from these new coordinates is their Computing the radiation emitted by the head-on collision
regularity at the origin, which makes calculations of theof two black holes is an important step in determining gen-
event horizon and null generators more accurate as the blaekal template waveforms to compliment the anticipated ob-
holes merge. In Fig. 12 we show the evolution of the embedserved data from gravitational wave detectors. However, in
ding of the event horizon found in the=2.2 case evolved many ways the axisymmetric evolution of two colliding

V. CONCLUSIONS
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black holes has been stalled due to the lack of a coordinatinese new coordinateét) they achieve better zone coverage
system without pathological instabilities or grid singularities.in the strong field interaction region near the origin—
By developing new techniques to generate alternative grids;austics, photon generators and embeddings of the event ho-
and by creating body-fitting grid geometries with singulari-rizon are better resolved?) the coordinate patch extends
ties on the throats of the two black holes, we are able t@ver a much smaller domain in the class | system—just a few
achieve more stable long time evolutions of black hole syszones radially, and localized to theaxis—so it is not an
tems and more accurately extract the gravitational radiatiorunstabilizing element at late time&) the resulting gravita-
We have demonstrated the applicability of these new grids itional waveforms from evolutions are not as sensitive to the
actual numerical evolutions of Misner’s initial data set for patch parameters, such as its width, length, duration and dif-
the head-on collision of two equal mass black holes. Thdusion parameterg4) because of its robustness and lack of a
calculations presented here confirm the existing results taeed for specialized treatments of the saddle points, the new
fairly good accuracy in the restricted stable parameter rangeode is more simplified and easily generalizable to include
with maximum relative deviations less than 3% in the radi-non-equal mass black holes and spinning black hole colli-
ated energies for the<2.2 cases corresponding to initial sions; and(5) the new coordinates allow a larger range of
proper separation distanceslo&8.92M (with significantly  initial data in the Misner parameter to be evolved, including
smaller deviations for the lowen cases The differences evolutions of black holes that are farther separdtadugh
increase to about 30% far=2.7 (L=12.7M) and 100% for the accuracy is questionable for=3.0) and more closely
n=23.0 (L=15.8M), which are comparable to the uncertain- spacedfor smaller order perturbationshan in previous cal-
ties in the evolutions as defined in Sec. IV B for both theculations. In addition, the new coordinates offer all the same
Cadezand class | systems. These differences reflect the difadvantages as thea@ezcoordinates: They are logarithmic in
ficulty in evolving black holes for long periods of time with the radial direction, and spherical on the throats and in the
maximal slicing conditions and the sensitivity of the evolu- asymptotic wave zone, thus allowing for the same simplified
tions to treatments of the axis instability and coordinate sinireatment of boundary conditions and waveform extraction.
gularities. .
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