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New orthogonal body-fitting coordinates for colliding black hole spacetimes
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We describe a grid generation procedure designed to construct new classes of orthogonal coordinate systems
for binary black hole spacetimes. The computed coordinates offer an alternative approach to current methods,
in addition to providing a framework for potentially more stable and accurate evolutions of colliding black
holes. As a particular example, we apply our procedure to generate appropriate numerical grids to evolve
Misner’s axisymmetric initial data set representing two equal mass black holes colliding head-on. These new
results are compared with previously published calculations, and we find generally good agreement in both the
waveform profiles and total radiated energies over the allowable range of separation parameters. Furthermore,
because no specialized treatment of the coordinate singularities is required, these new grids are more easily
extendible to unequal mass and spinning black hole collisions.@S0556-2821~98!05010-3#

PACS number~s!: 04.25.Dm, 04.70.2s, 95.30.Sf
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I. INTRODUCTION

The collision of two black holes is likely to be one of th
most prominent sources of gravitational waves for detec
which are expected to come on line over the next years@1#.
However, the computational framework for extracting te
plate waveforms from colliding black hole spacetimes co
tinues to be a difficult task for numerical relativists, desp
many years of effort. After the first attempt in 1964 by Ha
and Lindquist@2# to solve the problem of colliding black
holes, a long-term and relatively successful program was
tiated in the late 1960s by DeWittet al. @see DeWitt, Cˇ adež,
Smarr, and Eppley@3–6#, we henceforth collectively refer to
as ~DCSE!#. Their efforts were concentrated on simulatin
the axisymmetric head-on collision of two equal mass bla
holes using the time symmetric Misner data@7# for initial
conditions. This data set possesses the ‘‘double Einst
Rosen bridge’’@8# topology in which two asymptotically fla
sheets are joined by two throats representing non-rota
black holes. The throats are two-spheres that are invar
under an isometry operation identifying both sheets a
from a numerical standpoint, serve as a boundary ac
which a particular form of Neumann boundary conditi
must be imposed on the evolved quantities to preserve
isometry.

DCSE developed the 2D Cˇ adež@3# coordinate system to
numerically integrate and evolve the axisymmetric Einst
equations. The Cˇ adežcoordinates are curvilinear body-fittin
coordinates that conform to the two black hole throats a
become spherical at asymptotic infinity. The advantages
this coordinate system~and any other appropriate body
fitting system! include ~1! simplified boundary conditions a
the black hole throats,~2! natural spherical-like grids which
mimic the background Schwarzschild geometry that the
570556-2821/98/57~10!/6158~10!/$15.00
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lutions approach at late times,~3! simplification of waveform
extraction calculations in the wave zone, and~4! exponential
stretching of the grid in the radial direction which cove
enough of the spacetime that asymptotic flatness can be
plied to the conformal metric components at the outer g
edges. However, these conveniences are offset somewh
the singular saddle point introduced by the coordinate tra
formation at the origin midway between the two black hole
DCSE attempted to deal with the saddle point by evolv
the cylindrical ~not Čadež! metric components everywher
on the Čadežgrid and performing discretizations using cha
rule derivatives. Also, because black hole spacetimes
generate pathologically steep delta-function-like peaks in
metric components~assuming singularity avoiding time
slices!, numerical evolutions can quickly become unstab
even if the inherent symmetries are exploited in choosing
appropriate numerical grid and the evolved variables. Ad
tionally, it is well known@4,5# that an axis instability can be
triggered in numerical evolutions of axisymmetric spac
times. For all of these reasons, the computations of DC
remained uncertain with error bars of order 100%@9#.

Recently, Anninoset al. @10–12# ~henceforth referred to
as papers I, II and III respectively! improved upon the DCSE
calculations by introducing a shift vector to diagonalize t
Čadežmetric and to evolve these components on the Cˇ adež
grid, thus suppressing the axis instability which is especia
sensitive to the off-diagonal elements. The problem with
coordinate singularity at the origin was treated by constru
ing a cylindrical coordinate ‘‘patch’’ to cover regions ne
the saddle point. The results of Anninoset al.are accurate to
a few percent in the dominant wave signal for black ho
which are initially placed at close to moderate separat
distances. For larger initial separations~greater than abou
10M , whereM is the single black hole mass!, the evolutions
6158 © 1998 The American Physical Society
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57 6159NEW ORTHOGONAL BODY-FITTING COORDINATES FOR . . .
become increasingly more inaccurate due in part to the
that the saddle point remains within the causally connec
regions of spacetime for longer periods of time as the bl
holes take longer to collide at the origin. If the black hol
are initially separated by even greater distances~more than
about 20M ), the evolutions become unstable and break do
altogether.

In short, the goal of long-term stable and accurate co
putations of highly separated colliding black holes has ye
be achieved. Here we propose two new classes of orthog
body-fitting coordinate systems that are well suited to
axisymmetric geometry of two colliding black holes, and th
appear promising to improve upon current calculations. T
new coordinates remove the singular saddle point from
obtrusive position at the origin and thus offer a potentia
cleaner and more stable method of solution. Because we
quire spherical coordinate lines at the throats and in the
field, singular points are unavoidable. However, the sad
point singularities can be relocated along thez-axis to either
the south or north pole of the top hole~and thus the north o
south pole of the bottom hole, respectively!, assuming the
two holes are aligned vertically along thez-axis. We refer to
the former system where the singularities face the oppo
black hole as the class I system: class II refers to the la
case with the singularities facing away from the oppos
throats.

We are thus able to construct two new classes of coo
nate systems, replacing the single singularity at the or
with a pair of saddle singularities on the throats. An adv
tage of transplanting the coordinate singularities to
throats prevents the black holes from ‘‘crashing’’ into
saddle point during the numerical evolutions. Instead,
implement a singularity avoiding lapse function that is ze
on the throat, so that the evolution along the throat freeze
time. In addition, the~maximal! time slicing used in the evo
lutions will rapidly absorb coordinate lines into the eve
horizon and the saddle points will fall farther inside the ca
ally disconnected portion of the evolved spacetime where
lapse collapses exponentially to zero, providing an additio
stabilizing element.

The following sections describe our hybrid analytic a
numerical procedure to generate discrete grids for axis
metric binary black hole systems. Section II introduces g
generating techniques in general and describes the parti
analytic prescriptions that we developed for specifying o
of the coordinates. Section III describes the numerical ca
lation of the second coordinate orthogonal to the first, as w
as the techniques used to compute the Jacobian matrix
quired for the coordinate transformations, and the tests wh
can be used to monitor the accuracy in which the coordin
systems and Jacobians are constructed. Results from a
numerical evolutions are presented in Sec. IV and compa
with previously published calculations. We summarize o
results in Sec. V.

II. GENERATING BODY-FITTING COORDINATES:
THE SPECIFIED COORDINATE

A general and common method of constructing bod
fitting coordinates is to let the curvilinear coordinates (h, j)
ct
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satisfy the following elliptic partial differential equation
@13#:

]xxj1]yyj5P~h,j!, ~1a!

]xxh1]yyh5Q~h,j!, ~1b!

whereP(j,h) andQ(j,h) are generating functions that ca
be used to adjust the behavior of the curvilinear coordina
in the physical domain. Because the boundaries are typic
irregular in Cartesian coordinates~or cylindrical coordinates
in our black hole work!, and the (h,j) coordinates are uni-
form in the transformed plane, it is desirable to carry out
computations in the transformed plane, switching the dep
dent and independent variables. Equations~1! can be in-
verted to yield

a]jjx22b]hjx1g]hhx1J2~P]jx1Q]hx!50, ~2a!

a]jjy22b]hjy1g]hhy1J2~P]jy1Q]hy!50, ~2b!

where a5]hx21]hy2, b5]jx]hx1]hy]jy, g5]jx
2

1]jy
2, andJ5]jx]hy2]hx]jy. The problem of grid gen-

eration then reduces to solving a coupled set of nonlin
elliptic partial differential equations subject to the approp
ate boundary conditions, which can themselves be intrin
cally coupled in a complicated manner. Although the ellip
solution approach is a general and straightforward one, o
methods such as conformal mapping, algebraic transfor
tions, and hyperbolic solutions of partial differential equ
tions have also been developed~see@13# for a review of grid
generation techniques!.

In this paper, we present an altogether different and m
simplified procedure that does not require one to so
coupled nonlinear elliptic equations. The idea rests on
notion that the grid generation process is greatly simplifie
one of the coordinates can be specified analytically. Tak
this coordinate as the one aligned asymptotically with eit
the radial or the angular direction, we show in this sect
how to construct a natural ‘‘specified’’ coordinate for thre
different classes of grids as characterized by the location
the singularity: class I~II ! with two singular saddle points
one on each of the throats on the axis closest to~farthest
from! the origin, and class III which are Cˇ adež-like coordi-
nates with a single singular point at the originr5z50. We
note that the function one chooses for the specified coo
nate must solve the necessary boundary conditions, but is
restricted to satisfy any particular elliptic equation.

Before we continue, a few notational comments are
order. Four axisymmetric coordinate systems are utilized
this paper: the combination (r,z) refers to standard cylindri-
cal coordinates, (r ,u) denotes standard polar coordinate
(z,j) are the radial- and angular-like body fitting coord
nates, and (h,j) represent the logarithmic radial- an
angular-like body fitting coordinates~note that the twoj
coordinates are identical!. Finally we characterize the loca
tion of the two black holes by their radiusa1 (a2) and ver-
tical distance from the origin along thez-axisz1 (z2), where
z1 (z2) represents theabsolutedistance of the throat cente
from the origin, and the upper~lower! black hole is denoted
by the subscript 1~2!.
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6160 57PETER ANNINOS, STEVEN BRANDT, AND PAUL WALKER
A. Class I system

The class I coordinate system has a coordinate~saddle-
type! singularity where each of the throats meet the a
closest to the origin~see Fig. 1!. A singularity is generated a
these points by requiring that a radial-like coordinatez be
zero on both of the throats and the entire section of the
connecting the throats. Lines of constantz will then trans-
form from ‘‘peanut’’-like surfaces near the throats to rad
circles at infinity. The two throats and the axis between
throats in this case make up the lineh50. The axis above
~below! the top~bottom! hole is the angular coordinate valu
j50 (p). In the equal mass case, the equator is the linj
5u5p/2. The boundary conditions are shown in Fig. 2 a
Fig. 3 in the (r,z) and (z,j) planes respectively.

An exponentially stretched radial coordinate satisfying
appropriate boundary conditions can be generated by
defining two radial distances from the two throats,

FIG. 1. Class I coordinates for them52.2 Misner data.

FIG. 2. The ‘‘radial’’ (z) boundary conditions for the class
coordinate system.
s

is

l
e

e
st

d15Ar21~z2z1!22a1 , ~3!

d25Ar21~z1z2!22a2 , ~4!

and a third distance measure

d35
1

2
@Ar21~z2z11a1!2

1Ar21~z1z22a2!22~z11z22a12a2!#, ~5!

defining an ‘‘elliptic’’ radial coordinate that is zero on th
segment along thez-axis extending fromz5z1 to z52z2.
~We note that the square root radicals implicitly refer to t
absolute or positive root.! The actual curvilinear ‘‘radial’’
coordinates,z and h, are then constructed from these di
tance components by

z5
~2k111!d1d2d3

d1d21k1~d1d31d2d3!
~6!

and

h5sinh21S z

k2
D . ~7!

Both are zero on the ‘‘spectacle’’ boundary of Fig. 2 b
construction. Equations~6! and ~7! also have the proper be
havior in the asymptotic limit where bothr and z tend to
infinity, i.e., z→r andh→ log(r/k2). The parametersk1 and
k2 are introduced so the coordinate systems can be ‘‘tun
to improve the stability of evolutions. In particular,k1 con-
trols the relative importance between the ‘‘elliptic’’ radiu
(d3) and the two distance-from-throat radii (d1 andd2), and
affects the shape of the grid close to the axis between
holes. By adjustingk1, the grid can be pushed away from o
drawn closer to the axis in this region, effectively increasi
or decreasing the resolution between the holes in ther di-
rection. k2 controls the asymptotic behavior of the coord
nates in the far zone. Typical values for evolutions depe

FIG. 3. The class I schematic mapping of the rectangular (z,j)
domain in relation to the throat, axis, and equator. The cross i
cates the location of the coordinate singularity at the intersectio
the throat and axis closest to the equator.
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57 6161NEW ORTHOGONAL BODY-FITTING COORDINATES FOR . . .
on the geometry of the system, and range from (k1 ,k2)
5(1,2) for them51.2 case, to~0.7, 2! for the m52.7 case,
wherem is the Misner parameter defined in Sec. IV A.

B. Class II system

The class II coordinate system has a saddle point wh
each of the throats meet the axis farthest from the origin~see
Fig. 4!. A singularity is generated at these points by requ
ing that an angular-like coordinatej be zero (p) along the
throat of the top~bottom! black hole and along the axi
above~below! the top~bottom! throat. The coordinatej also
asymptotes to the polar angular coordinateu. The north
~south! throat in this case is a line of constantj50 (p)
betweenz50 and some finitez value. The axis above~be-
low! the north~south! throat is on the same constantj line as
the corresponding throats. The axis between the two thr
is the linez50. In the equal mass case, the equator is
line j5p/2. The boundary conditions and mapping a
shown in Fig. 5 and Fig. 6 in the (r,z) and (z,j) planes
respectively.

The class II system can be generated by first defining
radial distances similar to the class I case,

d1a5r21~z2z1!22a1
2 , ~8!

d2a5r21~z1z2!22a2
2 , ~9!

and two ‘‘hyperbolic’’ radial coordinates

d1b52Ar21~z1z21a2!21Ar21~z2z12a1!2

1~z11z21a11a2!, ~10!

d2b51Ar21~z1z21a2!22Ar21~z2z12a1!2

1~z11z21a11a2!, ~11!

which go to zero along the axis above and below the ho
respectively. These coordinates can be combined to cons
a function that is zero on the top hole’s throat and along

FIG. 4. Class II coordinates for them52.2 Misner data.
re

-

ts
e

o

s
uct
e

axis above it (d1), and a function that is zero on the botto
hole’s throat and along the axis below it (d2):

d15
d1ad1b

r21~z2z1!2
, ~12!

d25
d2ad2b

r21~z1z2!2
. ~13!

The two functionsd1 andd2 are in turn combined to create
common functionf that approaches1` as d1→0, and
2` asd2→0:

f 5~a11a21z11z2!S 1

d1
2

1

d2
D . ~14!

FIG. 5. The ‘‘angular’’ (j) boundary conditions for the class I
coordinates.

FIG. 6. The class II schematic mapping of the rectangular (z,j)
domain in relation to the throat, axis, and equator. The cross i
cates the location of the coordinate singularity at the intersectio
the throat and axis farthest from the equator.
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6162 57PETER ANNINOS, STEVEN BRANDT, AND PAUL WALKER
Finally, the functionf is converted to an angular-like coo
dinate by

j5arccotS sgn~ f !

A2
A211A11 f 2D . ~15!

The angular coordinate in Eq.~15! has the desired propertie
of being zero on the throat of the top hole and along the a
above it,p on the bottom hole and along the axis below
and approaches the normal spherical coordinateu in the
asymptotic limitr→`.

In the class I system, the value of the second coordinaj
is specified on the outer grid edge to be the angular p
coordinateu. There is slightly more freedom in class II fo
specifying the second coordinateh at smallr , since we only
require thatr 5eh near the outer edge of the grid. We ther
fore define

r 52 sinhh1k1h ~16!

to be the radial coordinate. Because the throat is describe
the first severalh zones~see Fig. 4!, k1 effectively controls
the resolution along and near the throat boundary.

C. Class III system: Čadež-like coordinates

Čadežcoordinates~see Fig. 7! are related to cylindrica
coordinates through the following semi-analytic compl
transformation:

h1 i j5
1

2
@ ln~z1z01 ir!1 ln~z2z01 ir!#

1 (
n51

`

CnF 1

~z1z01 ir!n
1

1

~z02z2 ir!nG ,

~17!

where z56z0 are the locations of the throat centers. T
constant radial and angular lines lie along the field and e

FIG. 7. Čadežcoordinates for the Misner data with separati
parameterm52.2.
is
,

ar

-

by

i-

potential lines of two equally charged metallic cylinders l
cated at the centers of the two throats. Hence the line
constant h are spherical along the throats and in t
asymptotic far field, and a singular saddle point is introduc
midway between the two black holes at the originr5z50.
The coefficientsCn are determined numerically by a lea
squares procedure to set the throats@defined byr th

2 1(zth

6z0)25a2, wherea5a15a2 is the throat radius# to lie on
an h5h05const coordinate line.

It is relatively easy to generate a Cˇ adež-like system using
our grid generation prescription. A radial coordinate is
quired which vanishes on the throats~and only on the
throats! and asymptotes tor as r and z tend to infinity.
Clearly, this can be satisfied with

z5
d1d2

d11d2
@12k1exp~2k2r22k3z2!#, ~18!

where

d15Ar21~z2z1!22a1 , ~19!

d25Ar21~z1z2!22a2 , ~20!

and the parametersk1, k2 and k3 are introduced to contro
the behavior and resolution of the coordinates near the sa
point at the origin. In contrast with the Cˇ adežcoordinates,
we note that the Cauchy-Riemann relations are not satis
for this coordinate system.

III. GENERATING THE SECOND COORDINATE
AND OTHER NUMERICAL ISSUES

We have developed two different methods for comput
the second~unspecified! coordinate and to establish the p
sitions of the (h,j) grid points in the cylindrical coordinate
(r,z) space. In addition to evaluating the grid node po
tions, it is also necessary to compute the Jacobian ma
elements~i.e., the coordinate derivatives! accurately. The
Jacobian matrix and its inverse are needed to transform m
ric functions between the (r,z) and (h,j) spaces and to
perform chain rule differentiations of the cylindrical metr
functions on the curvilinear grids in the coordinate ‘‘patch
regions described in Sec. IV. We turn first to the compu
tion of the Jacobian, and then to the generation of the sec
coordinate.

A. Computing the Jacobian

In order to effectively use the curvilinear grids in nume
cal evolutions, it is important to generate the Jacobian ma
and its inverse as accurately as possible, since the gra
tional waves emitted from the collisions are expected to
very weak in relation to the background geometry. Knowi
the matrix components amounts to knowing, at each poin
the grids, the coordinate derivatives]r/]h, ]r/]j, ]z/]h
and ]z/]j. A naive approach would be to simply evalua
these derivatives numerically at each point, after the grid
been calculated, using a second or higher order discretiza
stencil. Instead, we adopt a more accurate procedure and
advantage of the fact that the derivatives of the speci
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57 6163NEW ORTHOGONAL BODY-FITTING COORDINATES FOR . . .
coordinate are known analytically. In this way, only two
the elements need to be computed numerically.

The Jacobian matrix and its inverse can be written as

F ]hr ]hz

]jr ]jz
G5

1

JF ]zj 2]rj

2]zh ]rh G , ~21!

whereJ5]rh]zj2]zh]rj is the Jacobian determinant. On
can show from the orthogonality of the (r,z) and (h,j)
coordinates that the first derivatives obey the Cauc
Riemann-like conditions

]zh5s]rj, ~22a!

]rh52s]zj, ~22b!

wheres5Agjj /ghh, andgi j is the metric in curvilinear co-
ordinates. In the class I case, two components of the inv
Jacobian,]rh and]zh, are known analytically. Thus, usin
the relationships~21! and~22!, the following class I elements
are determined exactly from the analytic expressions:

]hz5
]zh

~]rh!21~]zh!2
, ~23a!

]hr5
]rh

~]rh!21~]zh!2
. ~23b!

The remaining two elements,]jz and]jr, are approximated
by finite differencing the grid data using a centered fou
order stencil. In the class II case, the corresponding der
tives of the coordinatej are known, and expressions anal
gous to Eqs.~23! are derived simply by replacingh with j.
Additionally, in order to carry out the coordinate patch ev
lutions described in Sec. IV A, it is also necessary to kn
the second derivatives of the coordinates. These are c
puted in the same manner as the Jacobian: the specifie
ordinate derivatives are evaluated analytically, and der
tives of the second coordinate are approximated numeric
using fourth order stencils.

We note that the orthogonality condition of the angu
and radial coordinates,

]z

]h

]z

]j
1

]r

]h

]r

]j
50, ~24!

can be imposed here to eliminate a third unknown deriva
component from the Jacobian matrix, and reduce the num
of numerical discretization operations to one. Howev
rather than taking this approach, we defer the use of
orthogonality relationship to test the accuracy in comput
the coordinate systems and the Jacobian, and we have
firmed that Eq.~24! converges to zero with the order of th
integration method.

B. Line integration in the „r,z… plane

One method to generate the second coordinate is to
the lines of constant values as field lines of the known
specified coordinate. These field lines are computed by i
grating along the normals to the iso-lines, e.g. along the g
-

se
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r

e
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e
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e-
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dient of the specified coordinate function. In other word
given a functional form for one of the coordinates, the s
ond orthogonal coordinate,j in the class I case, is deter
mined by integrating the following equations:

dr

dl U
j

5
]rh

u¹hu
, ~25a!

dz

dl U
j

5
]zh

u¹hu
, ~25b!

along lines of constantj. Herel is an arbitrary integration
parameter, and the normalization factoru¹hu is introduced to
keep the step sizes regular at points whereh has large gra-
dients. This procedure also follows for the class II coor
nates, except that the integrated~differentiated! coordinate is
h (j). These lines~the second coordinate! are thus guaran-
teed to be orthogonal to the specified coordinate lines.

Because the first coordinate is known exactly, we c
form the spatial gradients analytically, and the problem
duces conveniently to a straightforward ordinary different
equation~ODE! integration. In practice, Eqs.~25! are solved
using a 4th order Runge-Kutta integration with a small fix
step size. The only difficulty with this method comes wi
finding the (r,z) values at a particular (h,j) position, since
the ODE integrations may overshoot the destination g
nodes. However, the step size is chosen small enough~typi-
cally about 1% of the width of a single grid zone! that we
can interpolate linearly between the staggered points with
sacrificing accuracy. Once these integrations are comple
the coordinate derivatives are evaluated using the techniq
described in Sec. III A.

C. Line integration in the „h,j… plane

An alternate, and far more efficient, approach to co
structing the numerical grids involves integrating the g
equations~23! or their class II equivalents

]jz5
]zj

~]rj!21~]zj!2
, ~26a!

]jr5
]rj

~]rj!21~]zj!2
, ~26b!

in the (h,j) plane. That is, rather than supplying a starti
(r,z) value, evaluatingh ~or j) and its gradients, and the
tracingj ~or h) along orthogonal lines in the (r,z) plane, we
pre-suppose a regular (h,j) grid. For class I coordinates, w
supply the (r,z) values along the outer boundaryh5hmax
which are consistent with a constantr surface in spherica
coordinates, i.e.,

r5exp~hmax!sin u, ~27a!

z5exp~hmax!cosu, ~27b!

andj5u which is evenly discretized alongh5hmax. Equa-
tions ~23! are then integrated inwards towards the throa
For the class II coordinates with equal mass black holes,
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supply the (r,z) values along the equator and integrate E
~26! towards the axis and throats. In this case, we use

r52 sinhh1k1h, ~28a!

z50, ~28b!

whereh is evenly discretized fromh50 to hmax. Because
the derivatives of the specified coordinates are known a
lytically, this integration scheme reduces to a set of OD
that we solve using a second order Runge-Kutta scheme
a step size smaller or equal in size to the (h,j) grid spacing
used in the evolutions. As a check on the accuracy of s
tions, the resulting cylindrical coordinate values can be s
stituted into the analytic expression forh(r,z) ~class I! or
j(r,z) ~class II! to evaluate the accuracy of the numeric
integrations. We find that they converge to the truncat
order of the integration method.

IV. APPLICATIONS

In this final section we apply the class I grids to nume
cally solve the Einstein equations for the axisymmetric c
lision of two equal mass black holes, using the conform
Misner solution for initial data. Although we have show
how to construct three different grid classes, we focus h
only on the class I type: the class II evolutions have prov
to be less stable than class I, and class III is similar to
Čadežcase. To demonstrate the applicability and accurac
the new class I grids to actual evolutions, we repeat the
ferent parameter evolutions in papers I–III and compare
results with the published calculations.

A. Initial data and evolutions

The Misner data set is an axisymmetric and tim
symmetric, single parameter family of solutions with t
conformally flat spatial 3-metric

dl25C4@dr21dz21r2df2#, ~29!

wherer andz are the cylindrical coordinates, and

C511 (
n51

`
1

sinh~nm!F 1

Ar21~z1coth nm!2

1
1

Ar21~z2coth nm!2G . ~30!

The conformal factorC solves the Hamiltonian constrain
with the proper isometry imposed between the upper
lower sheets and represents two equal mass, non-rota
black holes aligned along the axis of symmetry~the z-axis!,
and centered atz56cothm with radiusa51/sinhm. The free
parameterm defines the total or Arnowitt-Deser-Misne
~ADM ! mass of the spacetime and the proper distance a
the spacelike geodesic connecting the two throats. Increa
m decreases the total mass of the system and sets the
holes further away from one another.

For general axisymmetric transformed coordinates, the
metric ~29! can be written as
.
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-
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dl25CC
4 FJ~rh

21zh
2 !dh21J~rj

21zj
2!dj2

1S r2

sin2j
DJ sin2jdf2G , ~31!

whereCC5C/J1/4, J is a regularization variable that can b
used to simplify the metric components and to provide
stabilizing element in the numerical evolutions, (h,j) are the
logarithmic radial-like and angular-like curvilinear coord
nates, and the sin2j term is explicitly factored out of thegff
component partly for historical conventions and partly
help regularize the numerical evolutions: We evolve the c
formal metric and extrinsic curvature components as
scribed in paper II. However, thereJ was defined to be the
Jacobian determinant of the coordinate transformationJ
5J) so thatghh5gjj51 initially. Here we simply setJ
51 since there is no obvious advantage to renormalize
of the components when the Cauchy-Riemann conditions
not satisfied. The partial coordinate derivatives in Eq.~31!
are computed as described in Sec. III A, completing the
tial data. The data are then evolved according to the sa
procedures described in paper II, i.e., using the maximal s
ing condition for the lapse function with antisymmetr
boundary conditions at the throat surfaces and an elli
condition for the shift vector to preserve the metric in cur
linear coordinates to be diagonal throughout the evolutio

To provide more stable evolutions, especially for t
widely separated black hole cases, we utilize a coordin
‘‘patch’’ as described in paper II. Evolutions in this patche
domain, which covers the saddle points and portions of
axis, are performed using the cylindrical coordinate ba
metric components and chain rule derivatives to comp
spatial gradients across the curvilinear grid nodes. The s
tions are then transformed using the general tensor relat
to reconstruct the curvilinear metric and extrinsic curvatu
components, and then linearly blending the results into
rest of the spacetime, which is evolved in a normal man
using the curvilinear metric components on the curviline
grid. The coordinate patch used in papers I–III, althou
only several zones deep in the angular direction, exte
from the throat all the way out to the outer boundary in t
radial direction. For comparison~see Fig. 8!, the domain in
the class I coordinates which requires a patch is localize
just the first few zones in the radial direction. As a resu
when the black holes merge to form a common event h
zon, the patched coordinates and the associated nume
evolutions become irrelevant as the lapse collapses to
over this region before the metric shear grows enough
disrupt the solutions. The evolutions with class I coordina
are therefore more robust and less sensitive to patch pa
eters than previous calculations.

B. Results

We first consider three different cases with Misner para
etersm51.6, 2.2, and 3.0, and compare the class I grav
tional waveforms with previous results using the Cˇ adežgrid.
Each calculation is performed at the same grid resolut
using 200335 radial3angular zones. The Misner paramete
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are chosen so that the smaller value represents a data
which the two black holes are already merged within a sin
event horizon, and the subsequent evolution is that o
single distorted black hole ringing down to the Schwar
child solution as it emits gravitational waves. The data fro
the larger Misner parameter cases correspond to two dis
black holes separated by proper distances ofL58.92M (m
52.2) and L515.8M (m53.0) between the two throats
whereM is half the ADM mass of the spacetime~or approxi-
mately the mass of a single black hole!. Comparison plots of
the dominantl 52 Zerilli waveforms, extracted at a distanc
of 30M from the origin, are shown in Fig. 9 for the thre
different Misner cases. We findmaximumrelative differ-
ences less than about 10% in amplitude and 4% in phas
them51.6 and 2.2 cases~with absolute deviations,1022 in
amplitude!, and up to about 200% and 4% differences
amplitude and phase for the more difficultm53.0 case in
which the black holes are initially highly separated.

To emphasize the~in!stability of the solutions at late
times when the signal crossing the detector becomes wea
we plot in Fig. 10 the logarithm of the absolute value of t
Zerilli function for the relatively uncertainm53.0 case. No-
tice the class I grid solution maintains a more regular os
latory behavior and consistent damping rate throughout
wave signal and for longer periods of time than the Cˇ adež
case, which begins to break down at about 70MADM .

Next, we reproduce in Fig. 11 the equivalent of Fig. 14
paper III. The totall 52 radiated energy~in units of the
ADM mass,MADM52M ) emitted during the black hole col
lisions is plotted as a function of the initial separation d
tance~in units ofM ) between the two throats. Also include
in the figure are results from paper III, the Davies-Ruffin
Press-Price ~DRPP! @14# point particle calculation (E
50.0104m2/M , plotted for m5M5MADM/2), and its re-
duced mass correction@m→mM/(m1M )#. Results from the
class I and Cˇ adežgrid evolutions match extremely well, be

FIG. 8. Locations, shapes and sizes of the coordinate pat
used in the Misnerm52.7 grids for the Cˇ adež~horizontally hatched
domain! and class I~diagonally hatched domain! cases. The shade
region labeled ‘‘radiation zone’’ represents the domain into wh
most of the gravitational radiation is emitted. That this zone
concentrated along the equator is attributed to the axisymm
nature of the collision. Despite the representative shape of the
diation zone, the actual radiation extraction is performed on
spheres starting at a radius of 30M (515MADM) from the origin.
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ter than 3%, for separation parametersm<2.2 corresponding
to initial physical separations ofL<8.92M , and improve sig-
nificantly at smallerm values. However, deviations betwee
the class I and Cˇ adežresults become greater for black hol
with further initial separations, reflecting the difficulty i
evolving highly separated black holes for long periods
time.

To assert a measure of uncertainty in our results, we p
form several different calculations of them52.7 and 3.0
data, varying the grid resolution, patch width, and coordin
parameters as defined in Sec. II A to manipulate the shap

es

s
ic
a-
-

FIG. 9. Gravitational waveforms emitted from the head-on c
lision of two black holes evolved with the Cˇ adežand class I grids
for the m51.6, 2.2 and 3.0 Misner data. The waveforms are
tracted at a radius of 30M from the origin, whereM5MADM/2 is
the approximate single black hole mass. The evolutions in each
are performed at a grid resolution of 200335 ~radial3angular!
cells.

FIG. 10. The absolute value of the Zerilli function is shown f
the m53.0 case using the class I and Cˇ adežgrids. The logarithmic
scale highlights the oscillations in the waveform and the expon
tial damping of the wave amplitude. Although the waveforms co
pare favorably at smaller values ofm, there is a significant differ-
ence and improvement in the regularity of oscillations in the cla
system compared with the less stable Cˇ adež case for this large
initial separation data.
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the coordinate lines. For the more problematic Cˇ adeževolu-
tions, additional parameters include the patch length, d
tion and diffusion, as well as varied treatments of the co
dinate singularity~for example, shift vector specification
discretization stencils, and regularization of certain me
and curvature components!. The symbols in Fig. 11 represen
the median results and the error bars indicate the varia
with computational parameters. The variances are simila
the differences observed between the Cˇ adežand class I re-
sults: roughly 30% and 100% in them52.7 and 3.0 case
respectively, with a trend for better agreement with increa
resolution~though the resolution studies are limited by t
axis instability!. For them<2.2 cases the variances are t
small to plot, but are consistent with the observed agreem
in the evolutions. Considering the sensitivity of the results
grid and patch parameters, and the difficulties in evolv
these systems using maximal slicing conditions and in a
symmetry, the overall results agree fairly well. Furthermo
the numerical calculations are in reasonable agreement
the reduced mass approximation and the semi-analytical
culation of Araújo and Oliveira@15# in the large separation
limit.

Figure 11 also demonstrates an added advantage o
new grid generation procedure to construct numerical g
in the very low Misner parameter cases. Because of con
gence problems in the Newton-Raphson iterative invers
of Eq. ~17! when the black hole throats are placed too clo
to the saddle point, previous calculations were limited
m>0.7 @16#. The closest separation data shown in Fig.
correspond tom50.5 ~or L52.51M ), although grids for
even smaller values ofm can be easily generated.

An additional benefit from these new coordinates is th
regularity at the origin, which makes calculations of t
event horizon and null generators more accurate as the b
holes merge. In Fig. 12 we show the evolution of the emb
ding of the event horizon found in them52.2 case evolved

FIG. 11. Total gravitational wave energy~in units of the ADM
mass! emitted from the head-on collision of two equal mass bla
holes as a function of the separation distance between the
throats~in units ofM5MADM/2). The class I and Cˇ adežgrid results
are plotted together for comparison, along with the DRPP@14# cal-
culation of a particle falling into a more massive black hole, and
reduced mass correction. The error bars represent the uncerta
estimated by performing the evolutions for different computatio
parameters as described in the text. The uncertainties in both
class I and Cˇ adeževolutions are comparable to differences betwe
the two different grid results, ranging from,3% for separations
L,10M , 30% forL;13M , and 100% forL;16M .
a-
r-

c

ce
to

d

nt
o
g
i-
,
ith
al-

the
s
r-
n
e
o
1

ir

ck
-

with the class I coordinates. The embedding of the horizo
smooth~except at the cusps on thez-axis!, as were previous
embeddings of the horizon in this spacetime@17#. However,
the null surfaces on the class I grid contain not only t
horizon~in the domainh.0), but also naturally contain the
locus of generators waiting to find the horizon, as discus
in @18#. More precisely, to generate Fig. 11 of@18# a coordi-
nate transformation from Cˇ adež to (r,z) coordinates was
required. This coordinate transformation is not needed
evolve the locus in class I coordinates. This is more tha
convenience, however. Since the null surface consisting
the horizon plus locus is naturally represented as a smo
continuous surface in class I coordinates, the entire null s
face can be unambiguously embedded in 3-space, which
not possible with the Cˇ adežgrid. This allows us to determine
the separation between the horizons in embedded spac
ing some relevant physical measure. While in Cˇ adežcoordi-
nates the horizon separation was determined to keep
outer surface of the ‘‘pair of pants’’ figure smooth, here w
determine the separation by embedding the entire null
face. This gives a natural separation between the horiz
from the embedding of the locus and determines the ge
etry by the horizon. We use this separation to place the h
in the ‘‘wristwatch’’ ~or ‘‘pair of pants from above’’!, Fig.
12. The class I coordinates also allow for more detailed
aminations of the caustic line at the coalescence point, wh
will be discussed elsewhere.

V. CONCLUSIONS

Computing the radiation emitted by the head-on collisi
of two black holes is an important step in determining ge
eral template waveforms to compliment the anticipated
served data from gravitational wave detectors. However
many ways the axisymmetric evolution of two collidin
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FIG. 12. Embedding of the event horizon for them52.2 Misner
data with the class I evolution. The geometry of the class I coo
nates allows the separation between the holes in this figure t
physical, not artificial as in previous two black hole collision em
bedding diagrams derived from Cˇ adežcoordinates. Also, the regu
larity of the class I grid at the origin allows for more accura
examinations of the caustic line at the coalescence point.
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black holes has been stalled due to the lack of a coordi
system without pathological instabilities or grid singularitie
By developing new techniques to generate alternative gr
and by creating body-fitting grid geometries with singula
ties on the throats of the two black holes, we are able
achieve more stable long time evolutions of black hole s
tems and more accurately extract the gravitational radiat
We have demonstrated the applicability of these new grid
actual numerical evolutions of Misner’s initial data set f
the head-on collision of two equal mass black holes. T
calculations presented here confirm the existing results
fairly good accuracy in the restricted stable parameter ran
with maximum relative deviations less than 3% in the ra
ated energies for them<2.2 cases corresponding to initia
proper separation distances ofL<8.92M ~with significantly
smaller deviations for the lowerm cases!. The differences
increase to about 30% form52.7 (L512.7M ) and 100% for
m53.0 (L515.8M ), which are comparable to the uncertai
ties in the evolutions as defined in Sec. IV B for both t
Čadežand class I systems. These differences reflect the
ficulty in evolving black holes for long periods of time wit
maximal slicing conditions and the sensitivity of the evo
tions to treatments of the axis instability and coordinate s
gularities.

Basically the Cˇ adežand class I evolutions yield consiste
results, even at highm values, especially when considerin
the changes observed in waveforms and energies by var
the computational parameters. In addition to confirming p
vious results, and because no specialized treatment of
coordinate singularities is required, it seems promising t
we can evolve physical systems with these new coordin
which were not as easily addressable with previous co
using either the Cˇ adežor cylindrical coordinate systems. Fo
example, we are currently extending this work to evo
spinning black hole and unequal mass black hole collisio

To conclude, we emphasize the following advantages
el
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these new coordinates:~1! they achieve better zone coverag
in the strong field interaction region near the origin
caustics, photon generators and embeddings of the even
rizon are better resolved;~2! the coordinate patch extend
over a much smaller domain in the class I system—just a
zones radially, and localized to thez-axis—so it is not an
unstabilizing element at late times;~3! the resulting gravita-
tional waveforms from evolutions are not as sensitive to
patch parameters, such as its width, length, duration and
fusion parameters;~4! because of its robustness and lack o
need for specialized treatments of the saddle points, the
code is more simplified and easily generalizable to inclu
non-equal mass black holes and spinning black hole co
sions; and~5! the new coordinates allow a larger range
initial data in the Misner parameter to be evolved, includi
evolutions of black holes that are farther separated~though
the accuracy is questionable form>3.0) and more closely
spaced~for smaller order perturbations! than in previous cal-
culations. In addition, the new coordinates offer all the sa
advantages as the Cˇ adežcoordinates: They are logarithmic i
the radial direction, and spherical on the throats and in
asymptotic wave zone, thus allowing for the same simplifi
treatment of boundary conditions and waveform extractio
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