
Invent. math. 84, 463~480 (1986) Inventiones 
mathematicae 
�9 Springer-Verlag 1986 
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We study compact  hypersurfaces M", n > 2 ,  without  boundary,  which are 
smoothly immersed in a Riemannian manifold N "+1. Let M " = M  o be given 
locally by some diffeomorphism 

Fo: U c ] R " ~ F o ( U ) c M o ~ N  "+1 

We want  to move M o along its mean curvature vector, that  is, we want  to find 
a whole family F( . , t )  of diffeomorphisms corresponding to surfaces Mr, such 
that the evolution equat ion 

(1) ~ F ( 2 ,  t)=Is t) 2 E U  

F ( ' , 0 ) = F  o 

is satisfied. Here /4(2, t) is the mean  curvature vector of  the hypersurface M t at 
the point  F(2, t )  and we will see that (1) is a quasilinear parabolic system with 
a smooth  solution at least on some short time interval. If for example M o is a 
sphere of radius r(0) in ~"+~,  then M t is a family of  concentric spheres of  
radius 

r ( t )=  l//r2 (O) - 2n t 

which shrink towards the center of the initial sphere in finite time. It was 
shown in [3], that  this behaviour  is very typical: If the initial hypersurface M o 
o R , +  1 is uniformly convex, then the surfaces M t contract  smoothly  to a single 
point in finite time and the shape of the surfaces becomes spherical at the end 
of the contraction.  

If the ambient  space N is a general Riemannian manifold, the curvature  of  
N will interfere with the mot ion  of the surfaces M r We want  to show here that  
the contract ion - first to  a small sphere and then to a single point - is still 
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working in the general case, if we only assume that the initial surface is convex 
enough to overcome the obstructions imposed by the geometry of N. By 
'convex enough'  we mean that the principle curvatures of M 0, i.e. the eigenval- 
ues of the second fundamental form on M0, are bounded from below by a 
positive constant depending on N. Since we do not have to assume a priori 
that the initial surface M o is a sphere, we also obtain results concerning the 
question when a locally convex hypersurface is the immersion of a sphere and 
under what conditions a locally convex hypersurface bounds a region diffeo- 
morphic to a ball in N. 

1. The result 

In the following Latin indices range from 1 to n, Greek indices range from 0 to 
n and the summation convention is understood. We denote the induced 
metric and the second fundamental form on M by g = {gij} and A = {hij }. The 
mean curvature of M is the trace of the second fundamental form, H=giJhg~. 
We w r i t e / ~ m =  { / ~ }  and V/~m= {V~R~p~} for the curvature tensor of N and 
its covariant derivative. Let us denote by ax(P) the sectional curvature of a 2- 
plane P at x e N  and let ix(N ) be the injectivity radius of N at x. Let us also 
agree to write T~>0 if all eigenvalues of a symmetric tensor T={T/j} are 
nonnegative. 

1.1 Theorem. Let n>=2 and N "+x be a smooth complete Riemannian maniJold 
without boundary which satisfies uniform bounds 

- K I  <=ax(P)<=K2, K1,K2>-O 

IVRmIZ<L 2, L>=O 

i~(N)>i(N)>O. 

Let M o be a compact connected hypersurface without boundary which is smoothly 
immersed in N, and suppose that on M o we have 

n 2 

(2) H h~j > n K 1 g~ + ~-  L gij 

Then (1) has a smooth solution M t on a finite time interval 0 < t <  T and the Mt's 
converge uniformly to a single point O~N as t--+T. I f  we take for t ~ T  homo- 
thetic expansions of normal coordinates around 0 such that the total area of the 
expanded surfaces ]fi t is fixed, then the 571 t converge to a sphere of that area in 
the C~-topology. 

Remarks. (i) Inequality (2) does not depend on K 2, so positive sectional curva- 
ture in the ambient space helps toward mean curvature contraction, whereas 
negative sectional curvature slows it down. In particular, if N is locally sym- 
metric (VRm=0) ,  we have L = 0  and condition (2) is satisfied if all eigenvalues 
of A are bigger than KI/2. If in addition the sectional curvature in the ambient 
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space is non-negative,  Theo rem 1.1 takes exactly the same form as in Euclidean 
space: All locally convex hypersurfaces contract  to a single point. 

(ii) Condi t ion  (2) implies (for a suitable choice of no rma l  to M) 

(3) H>nK~/2. 

In w we show that  (2) and (3) remain valid on M t for all 0 < t < T .  In 
particular,  if N is locally symmetr ic  and the initial surface M o is total ly 

1 (i.e. h~j~Hglj), t h e n  th i s  r e m a i n s  so  a n d  we  h a v e  o n l y  to  a s s u m e  umbilic 

that (3) holds on M o. 

(iii) We will see in L e m m a  7.3 that  (2) and  (3) are just s t rong enough to 
force all eigenvalues of the intrinsic Ricci tensor  of M o to be positive. Thus  in 
the two dimensional  case it follows f rom the G a u g - B o n n e t  theorem that  M o is 
the immers ion  of a sphere. In the higher dimensional  case this is a consequence 
of T h e o r e m  1.1: Since M, is a sphere for t close to T, a l ready M o must  have 
been a sphere. We have 

1.2 Corollary. Any isometric immersion M " ~ N  "+1, with N and M satisfying 
the conditions in Theorem 1.1, is the immersion of  a sphere. 

If  M o is imbedded  in N, then it follows f rom the s t rong parabol ic  maxi-  
m u m  principle (see L e m m a  3.2) that  M, is imbedded  for all 0 <  t < T. Thus  we 
have 

1.3 Corollary.  I f  M " ~ N  "+1 is an isometric imbedding satisfying the assump- 
tions of  Theorem 1.1, then M bounds a region in N, and the region is diffeomor- 
phic to a ball. 

(iii) Since condi t ion (2) remains valid for all Mr, 0 < t <  T, we obtain  f rom 
the strong elliptic m a x i m u m  principle 

1.4 Corollary. I f  N "+ 1 is a manifold with boundary ON and the mean curvature 
of the boundary H(ON) with respect to the inner normal satisfies 

(4) i n f H ( 3 N ) >  - n g ~ ,  

then Mr, 0 < t <  T, cannot touch ~3N and all results stated above remain true. 

Corol la ry  1.4 can be used to obtain  results in manifolds  N wi thout  a lower 
bound on the injectivity radius. If for example  N admits  an exhaust ion B 1 c c  
B 2 c ~ B 3 . . .  by compac t  regions B z, l~N,  such that  each bounda ry  OB 1 
satisfies (4) with respect to the inner normal ,  then these boundar ies  act  as 
obstacles for the evolut ion of M o. Thus  we have an au tomat ic  lower bound  on 
the injectivity radius since the surfaces M t remain in one of the compac t  
regions BI and  T h e o r e m  1.1 applies. We illustrate this with an example  which 
also shows that  inequalities (2) and (4) are opt imal .  

Example. Let N = N  3 be as in ([7],  w a non-compac t  hyperbol ic  three- 
manifold with a finite number  of ends E 1 . . . . .  E k and assume tha t  each end is 
homeomorph ic  to T 2 • [0, ~ ) ,  where T 2 is the 2-torus. Suppose  that  each end 
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is isometric to the quotient of a region in IH 3 (hyperbolic three-space in the 
upper half-space representation) above an interior horizontal euclidean plane 
by a group which is generated by two parabolic transformations which leave 
the point at infinity fixed. Then L = 0 ,  K 1 = 1 and the injectivity radius tends to 
zero in each end. All tori T Z x  {s} are flat and all principal curvatures with 
respect to the inner normal are equal to - 1  such that relation (4) is satisfied 
with equality. Thus, choosing a sequence s ~ o 9  in each end, we can construct 
an exhaustion of N as mentioned above and all results quoted before are true 
in this manifold. 

The proof of Theorem 1.1 follows the proof in the euclidean case [3]. After 
proving in w that the assumptions (2), (3) are preserved as the evolution goes 
on, we show in w that the eigenvalues of the second fundamental form 
approach each other, an idea which was originally used by Hamilton, [1], for a 
different problem. Using this we can show that the diameter of the surfaces M t 
tends to zero at some stage and the result then follows from the assumption 
that the injectivity radius of N is bounded from below. 

2. Preliminaries 

Let v be the outer unit normal to M ,  i.e, we choose v such that inequalities (2) 
and (3) hold with respect to - v  and the surfaces are moving in direction - v .  
Then for a fixed time t we choose a local field of frames e o, e 1 . . . . .  e, in N such 

OF 
that restricted to M ,  we have e o = v, e i = - .  We use the same notation as in 
[3] and write in particular t3xi 

H = gii hi i = hi i 

[A[2 = gi j gkl hik h jl = h ik hik 

C = gij gkl gmn hi k ht,, h . j  = hik hkl h li 

Z = H - C - I A [  4. 

If we mean the metric or the connection on N, this will be indicated by a 
bar, for example g~p, / ~  and V. The Riemann curvature tensors of M and N 
will be denoted by R m =  {Ri~k~ } a n d / ~ m =  {/~,a~e}. The relation between A, R m  
and /~m is then given by the equations of Gaul3 and Codazzi: 

Rijkl  = Rijkl  + hik hjl -- hit hjk 

[7 k hi j _ [Tj hi k = Roi jk" 

These relations now imply Simons' identity, [6], for the Laplacian of the 
second fundamental form on M. See also [5] for a simple derivation. 

2.1 Lemma.  We have the identities 

(i) A h i j =  ~ 1 7 j H + H h l t h l j - l A I  2 h i j + H R o i o j  

__ hi t ROIO l -Ir hj I Rlmira + hi I Rlmjm __ 2 him Rlim j + Vj Roll  I + 17 l Ro i j  I. 
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(ii) �89 + Z 

+ H h ij Rolo~ - IA[  2 Rolo z + 2 h ij hjl Rtmim - 2 h iJ h TM Rtimj 

+ hiJ(•j Rotl t + ~ Roijl) �9 

We also need an extension of ([33, L e m m a  2.2) to hypersurfaces in general 
Riemannian  manifolds. Fo r  that  purpose  we denote  by w= {wi} the vector  with 
components  wi=Rou t, i.e., w is the project ion of ~.ic(v, .) on M. 

2.2 L emma .  For any ~1 >0 we have the inequality 

(i) IVA[ 2>_- n - ~ - ~ /  IVH - ~  ~ t l -  n-ln [w[2 

and in particular 

(ii) IVAI2--11VHI 2 n - 1  IVAI 2 2n 
n ~ 2 n + l  (n -1 ) (2n+l )  [w[2 

n - 1  
> IVAI2-C(n ,  KDK2).  
= 2 n + l  

Proof First note that  the second inequali ty follows f rom the first one with 
2 ( n - l )  

r /= To  prove  (i), we decompose  the tensor VA = { V ihjk } a s  follows: 
n (n+2)"  

where 
Vih~k=Eijk+Fijk 

1 
Ei I, = ~ ( V i H  gjk + V)H gik + VkH g, i) 

2 n 

(n + 2)(n - 1) wi gjk 4 (n + 2)(n - 1) (wj gig + Wk gi;)" 

Then  Eij k has the same traces as V~ hjk in view of the Codazzi  equat ions and 

(E~jk, F~jk) =0.  
Fur the rmore  

IEf 2 
3 2n 2 4 

= n +~[  VH[2 4 (n + 2)(n - 1) jwT - ~  (wi' [7iH) 

n 2 1 
1 +2 

which proves  the Lemma.  It is worth noting that  in case of an Einstein 
manifold N the vector  w vanishes identically and therefore ~/ can be chosen 
equal to zero. 

3. The evolution equations 

In a general  R iemannian  manifold N "+j the Gaul3-Weingarten relations take 
the form 
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(5) 

82 F~ k OF~ , ~ OFP OF~ 
F i j - - - r ~ ,  - -  = - h l i r  

d x i d x i  Ox k Ox i ~xj  

v ~ - c3FP z~SF~ 
Oxj ~xj  hj~g 

and evolution Eq. (1) becomes 

~-~ F~(Sc, t) 

(1) 
= / ~  (&, t) = - H ( 2 ,  t) v(~, t) 

3F ~ ?F" } 
= A , F ' ( ~ , t ) +  ~ 8x  i Ox i g'~ (So, t) 

where A, is the Laplace-Beltrami operator on M, and the indices ~, p, a refer 
to a local coordinate system y~ in N "+ 1. This is a quasi linear parabolic system 
and we obtain a smooth solution at least on some short time interval, cf. [1]. 

3.1 Lemma. I f  the initial surface M o is smooth, then (1) has a smooth solution 
on some maximal open time interval 0 <= t < T <= oo. 

Since (1) is parabolic, we can also show that two surfaces moving by their 
mean curvature cannot overtake each other: 

3.2 Lemma. (i) Let M1, t and MEa be two smooth closed surfaces moving by 
their mean curvature for O<_t<_t r I f  M 1 and M 2 are disjoint for t=0 ,  they stay 
disjoint on the whole interval 0 <- t <_ t r 

(ii) I f  MI ,  , is imbedded for t=0 ,  then this remains so for O<_t<_t r 

Proof  If the surfaces were intersecting at one stage, there was a first time 0 < t o 
such that Ml,to touches M2,to at  some point peN.  Let S be some fixed 
reference surface which is tangential to the surfaces Ml,,o and M2,,o at p and 
assume that we have Gaussian coordinates in a neighbourhood of S, i.e., yO(q) 
is the length of the geodesic arc perpendicular to S through q, and y~(q)=x~(q) 
are the coordinates of the basepoint of the geodesic in S. Then locally around 
p we can write M1, ~ and M2, t for t ~ ( t o - e ,  to+e) as graphs of functions ul( t  ) 
and UE(t ) on  S. The unit normal to M~, i = l, 2, is then given by 

~ , ; ( l+ lVu ,12 )  -~  1, - ~ u ,  . . . .  , -~x--~u, 

and u~, i = l, 2, satisfies the evolution equation 

0 
(6) ~ u ~ =  -(l+IVu~12)-~.H~ 

where H i is the mean curvature of M i. We have V u l =  Vu2=0 at (p, t0) and (6) 
becomes a uniformly parabolic equation in a small neighbourhood of (p, to). By 
assumption we have ul( t )>Uz(t  ) (say) for t < t  o and the contradiction follows 
from the strong parabolic maximum principle, see for example ([4], w167 3.7). 
The same argument applies for the second part of the Lemma. 
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Now we want to establish evolution equations for the induced metric and 
the second fundamental form on M,. It will be convenient to assume that at a 
fixed point 20 and a fixed time t o we have gij(Xo, to)=6q and that the coor- 
dinates y~, 0_<~_<n for N are normal coordinates at F(2o, to). We can also 

arrange that in these coordinates v ~ = - 5 ~  and 63F~=6. ~ ~xl , at F(2o, to). Then all 

Christoffel symbols of the connection/~ vanish at F(2 o, to) and we have only to 
take derivatives of the Christoffel symbols into account, which will lead to 
curvature terms eventually. Using the GauB-Weingarten relations (5) and the 

0 
fact that ~v~v~ g ~  vanishes at F(2o, to) for 0_<5_<n in our coordinates, we derive 

exactly as in ([-3], Lemma 3.2 and 3.3): 

3.3 Lemma.  The metric and the normal of  M t satisfy the evolution equations 

0 
(i) ~ gi~ = - 2 H h~j 

63 
(ii) ~ v = V H .  

Furthermore we have 

3.4 Theorem. The second fundamental form of  M t satisfies the evolution equa- 
tion 

hi j=  d h i j -  2 H hnhl i  + IA[ 2 hi j+  hij-Ro,o z 

- hi~ R~,~i m - h n R~mj m + 2 h~m ~t,~j 

-- Vj Roli  ! - -  ~Zl Roijl  , 

Proof. From (1) and (5) we derive 

L h i .  = 63 [ ~2F  \ (~ -~ oOV p o 
- - ,  Y - Y ~ - -  VP 

(632 ) (632F 63 ,63F, 
= ~ ( H v ) , v  -\63x~63xj, o x n g  ~ x ~ )  

63 _ ~ ~63F pv~ 

where we used the notation ( , )  for the inner product in N "+ 1. Using again (5) 
this is equal to 

632 k 63 63 -= ~ 3F v~ 
63 xi 63 x j H -- Fii ~-Xkxk H + H g-~ ~y ~ Fi~ v 63 x j 

6~2F v )  ~ -~ ~ F p  ~ 
-HG~- -C~v  v" + H (hjlgl'n63Xi63Xm, 6 3 X  i ~Xj 

= F i FjH - H h u h t j + H R o i o j  

and the conclusion follows from Lemma 2.1. 
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From this we derive as in [3] 

3.5 Corollary. We have the evolution equations 

(i) c~t AH+H(IAIZ+P' ic (v ' v ) ) '  

0 12 (ii) ~-IA = h l Z l Z - 2 1 1 7 a l 2  + 21a[2(Ial2 +p,  ic(v, v)) 

- 4 (h it hj"-R,.~i t - h ij h t" Rmltj) 

- 2hiJ(VjRoul + ~ Roij l) 

0 ( [ A I 2 _ ! H Z ) = A  ( , A I 2 _ ! H 2 ) _ 2  (,[TAI 2 1117H12 ) (iii) ~ - n  

- 4( hii hjm R, , I / - -  hij him Rmilj). 

where P, ic(v, v)=/~olo t. 

Let us also note that in view of Lemma 3.3(i) the time derivative of the 
measure d#t=l~tdx  on M t is the same as in the euclidean case: 

0 

and the area of the surfaces M, is decreasing very rapidly. 

4. A lower bound for the eigenvalues of A 

In this section we want to show that our convexity assumptions, i.e., inequali- 
ties (2) and (3) are preserved during the evolution of M t. In view of the strict 
inequality in (2) there are some el, e2 > 0  such that 

(7a) H 2 > n  2 K 1 +ne2 H2, 

(7b) 
n 2 

H hi~> n K l gi~ + ~  Lgij + Ex (H 2 - n z  K1) gij 

holds on M o. S i n c e  ] A I 2 > ! H  2 and Ric(v,v)=/~o~o/>-nK~, it follows from 
n 

Corollary3.5(i) and the maximum principle, that (7a) is preserved with the 
same e2>0  for all 0 < t < T .  Then we have 

ff[ H >  A H  +,~zH 3 
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and as in ([3], Lemma 5.8) we conclude that this inequality can have a 
bounded solution only on a finite time interval since minH=Hmi . (0 )>0 .  We 
have Mo 

4.1 Lemma. I f  (7a) holds on M o, then it remains true on M t for O<t < T and 
we have T <=�89 1Hmi~(0). 

Now we derive a lower bound for the eigenvalues of A. 

1 
4.2 Theorem. I f  for some 0 < e~ < the inequality 

n 

n 2 

H hij>=n K l gij + ~ Lgij + el (H 2 -n2  K O glj 

is valid on Mo, then it remains true on M,, 0 < t < T .  

Proof We are going to show that all eigenvalues of 

hia n(1 - -  n 2 

Mij=~- -e ' lg i j  ~nex) K1 g ~ - H  5Lg~j 

remain non-negative. First of all we need an evolution equation for M i j .  Using 
the evolution equation for hgj in Theorem3.4 and the fact that by 
Corollary 3.5 (i) 

0 1 

Ot H" 

- ~ ( I A I  2 + R.ic(v, v)) 
H" 

-- 0t(~ -- 1) H~I--~ I VHI 2 - ~  (IAI~ z + P-ic(v, v)), 

we derive as in ([3], w that 

where 

0 2 
Mij = A Mij + ~ ( V l H, V t Mij ) + Nij 

2 n ( 1 - h e  0 2n 2 
Nij= -2hnh~+2e lHh i jq  H K l h ~  H -yLh~ 

2n(1 - n e l )  6n 2 VHl2glj 
q H 4 KllVHI2gij+~H 3-LI 

1 - l  m 1 
+ ~ (2 ht, . R'i"j - h j l  R | m i  m - hit R mj )-- ~ (Vj Rou' + ~ Rol}) 

+ \ HE K ~ + ~ y L )  (Iat +P, dc(v,v))g,j. 
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In ([1], Theorem 9.1) a max imum principle for such an evolution equat ion 
was proved under  the assumption that the absolute term Gj  is a polynomial  of 
M o and g~j. S ince /~m is smooth,  it is easy to see that the argument  is valid in 
our  case as well. We have then only to consider the first time t o , where at some 
point  p6M,o a zero eigenvector v = { v  i} of Mgj occurs, and Theorem4.2  is 
proved if we can show that  N~v i v j is non-negative. For  that  purpose we choose 
an o r thonormal  basis (e a . . . . .  en) for TpMto such that h~ (and thus M 0 becomes 
diagonal.  Let us assume that v=e~ and that K a . . . .  ,x  n are the eigenvalues of h~j 
at p. Then  from M 11 = 0 it follows that  at p 

n(1 - n ~ )  n 2 
xx=eH+ ~ K I + ~ L  

and we obtain 

2 n -- 2n 
~ I ) - ~ - L +  2(1 Nijvi vJ= Nl l ~= ~ l~= 2R ltll(K l - -n~) K t 

3n L 2nZ(1-ne) Kg 3n 3 
-~ H-  H 2  1 - ~ - L K 1 .  

Here  we used I A I 2 ~ I H  2, R i c ( v , v ) > - n K 1 ,  and [V, R a ~ I < L .  Since ~c 1 is 
n 

the smallest eigenvalue of  hi~ it follows that 

2 " 

2n K n(1 - - H 2 K I ( H - n K x ) = - 2 K I + - H  1(  e lH+ H nel) Kl+nH ~ T L ) "  

Thus we obtain  
�9 n n 3 

NijvivJ~ ~ L - - ~  LK1 ~0  

by L e m m a  4.1 and the Theorem follows. 

5. The pinching estimate 

We will show that  the eigenvalues of  the second fundamental  form come close 
together  if the mean curvature  becomes very large. 

5.1 Theorem. There are constants 6 > 0 and C o < oo depending only on M o and 
the curvature bounds K 1, K 2, L and i(N) such that 

[A[2-1H2<=Co.H 2-~ 
n 

holds on 0 < t < T. 
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Proof. We want to bound the function 

[A] 2 --1H2 
n 

f . =  n 2 _ .  

for some small a>0.  Using the evolution equations in w we derive similar as 
in [33 

5.2 Lemma. Let ~ = 2 -  ~. Then for any a 

-~ f " A f . + ~ ( V~ H, V~ f o ) 

2 Vihkt. Hla_(2-~!(+cts 1)(IA] 2 1 ) H ~ + 2  I V i H ' h k t  - - - - H  2 IVH[ 2 
H n 

+(2 - ~)([AI 2 + P, ic(v, v))f, 

1 
4 ij --1 m ij lm -- i j  -- -- l H ~ [ (h hjzR,,~ - h  h Rujm)+h (Vjgou + ~/~o~jt)]. 

We now need the following consequences of inequality (7 b) and Theorem 4.2. 

5.3 Lemma. I f  H >0 and (7b) is valid with some e I >0, then 

(ii) IVih~l .H- 2 1 2H2 V,.Hhktl >=~e~ IVHl2-e~2c ,  max(K2, K2)H 2 

where c, here and in the following denotes a constant only depending on n. 

Proof. This is a generalization of the result in ([-3], Lemma 2.3). The proof of 
the first inequality carries over unchanged and to obtain the second inequality 
we estimate 

I V~hk~H -- V~Hhktl 2 >�88 I(V~hkz- Vkh.)H - ( ~ H h k , -  VkHh.)l 2 

= �88 H--(  ~ H hkz-- gkH hlt)l 2. 

Rotating now the coordinates as in [3] such that VH=el lVHI ,  we see that 
this is larger than 

I IK0221 H - I V H [  h2212 + I - ~ I R o 2 1 2 H  + I V H [ h 2 2 1 2  

1 ~2 rr2 ~ ~ t, 1 r /  [ V H [ 2  + 1 I42 /~2 . . . .  02x2+Hhz2lVH[/~o2x2 
1 ~2 rr2 > _ ~ l r l  ] V H I 2  _ - 2  r r 2 6 2  - -~1  /~  /x0212 
1 ~2 rr2 > ~ 1 ~  [VH[Z-c.e?2max(K~,KZ2)H2 

since h22 ~ el H by assumption. 
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Choosing now again coordinates such that at a fixed point we have h~ 
= ~c i6i~ we get (see also [5], 1.24) 

(8) hiJhjlRlmi m -hiJhtmRiljm = Z (Kl--K'm )2 glmlm 
l<m 

>=-Kx Z (~l--K..) 2-- -nK, (,AI2-1H2]. 
l < m  \ i t /  

Furthermore we have 

(9) hiJ(p'j Rou I + ~ Roi}) = l~iJ(vj Rou l+ ~ Ro~j t) 

t~ij=hij-! H gij is the traceless second fundamental form. We have I/~jI 2 where 

= I A I 2 - 1 H  2 and combining (8), (9) with Lemma5.3, we derive from Lem- 
n 

ma 5.2 

5.4 Corollary. We have the inequality 

1 2 1  
c~ A f ~ + ~ ( V ~ U , ~ f ~ ) _ ~ e  _i~g]VU] 2 

C 1 + alA]2f~+ ~g  + Cf~ 

where C only depends on n, el, K1, K2 and L. 

We want to exploit the negative term on the right hand side involving 
I VH] 2. First we conclude from Lemma 2.1 (ii) that 

�89 IAI2> ( h i j  , V i VjH> + Z + i VAJ 2 

- C H 2 - C  

where C =  C(n, K1,K2,L ). Then it follows that 

2 2 

2 ( a - l )  
H (~H,  V~f~) - H f ~ A H  

_ C H 2 - ~ _ C H - ~  

and we derive as in ([3], Lemma 5.4) for any p>2,  r/>0 

1 p 1 ng25ffH2dl~<(2~p+ 5 ) 5 ~ f ~  - [VHl2dtz 

+t l- l(p _ 1)Sff-2[Vf~[2d#+cSiVU [ l g f f - , d #  
1-1 

+ C5H~fs - '  d~ 
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where C depends on n, K1, K2, L and Hmil,(0). Using now Young's  inequali ty 

xy<=exP+e-q/Py q, e > 0 ,  - 1 + 1 = 1  
P q 

we obta in  

5.5 Lemma. 
estimate 

Let p>2. Then for any t / > 0  and any O<a<�89 we have the 

(lO) 

we have the estimate 

1 2 1 
~nea~ff H2 dp<(2qp  + 5)~ ~ f f  - ~ Ivgl2 dl~ 

+ r / -  a(p _ 1)~fp- 2 [Vf~[2 d# + C p 

where C depends on ~1, Mo, K1, K 2 and L. 

Now we can bound  LP-norms of J~. 

5.6 L e m m a .  There is a constant C 1 < oo depending only on Mo, K~, K 2 and L 
such that for all 

p => 200~;~ -2 

a < n 2 - S e ~ p - ~  

(~ffd~)l/P__< C,, 0<t<T.  
Mt 

Proof Using the same calculations as in ([3], L e m m a  5.5) we obtain  f rom 
Corol lary 5.4 and L e m m a  5.5 for a and p as in (10) 

(') ~ fpdl~<=p.C~fPdp+pCP 
(~ t Mt Mt 

where C depends on Mo, K1, K 2 and L. Thus 

sup ~ f f d # < ~ f f d # l , =  o +P CPTeCr 
[0, T) Mt 

and the conclusion follows f rom L e m m a  4.1. 
To  proceed further, we need a Sobolev inequality for submanifolds  of 

Riemannian manifolds,  which was derived in [2]. In our  case it takes the form 

5.7 Lemma .  Let v be a Lipschitz function on M. Then 

n n--1 

(~ I v P - - ' d ~ )  " <c.{~ lVv ld l~+[Hlv ld~ t}  
M M M 

provided 
2 2 

K~(1 - ~ )  " (~21  Isuppvl)" <1  
and 

2 Po <= i(N) 

where e), is the volume of the unit ball and 
1 1 

Po = K~- 1 arc sin {K2(1 - cr 1 ]supp v[)~}. 
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Here a is a free parameter, 0 < ~ < 1, and 
1 1 

- - -  n - -  

c .=7r2" -  1 :~- 1(1 - : 0  " n ~ O ,  ". 

Now let f , , k=max( f , - -k ,O)  for all k>=ko=supf ~ and denote  by A(k) the set 
Mo 

where f , > k .  If we set v - f  p/2 for p>_200e~ -2 then we derive as in [3] from - -  ~r,k 

Corol lary 5.4 

L ~ vZd[a+ ~ [VvlZdl.t 
t A ( k )  A ( k )  

1 1 <=op S H /Td#+ C. du+ C. f#du 
A ( k )  A ( k }  x z  A ( k )  

< C o ~ H 2 f f d #  
A(k) 

where C depends on Mo, K 1, K 2 and L. We have from L e m m a  5.6 

IA(k)l = ~ d # <  f~dl~=k C 
A(k) 

where C depends on C a and IMol. Thus we can choose k,>=k o so large that 
the condit ions in L e m m a  5.7 for tA(k)l=lsuppvl are satisfied. Then k 1 depends 
on k o, i(N), M o, Ka, K 2, L and we can now apply the Sobolev inequality as in 
[3]  to derive a bound  for f , ,  if a is small. 

6. The gradient bound 

The gradient estimate for the mean curvature in [-3] is also valid in the context 
of  Riemannian  manifolds. 

6.1 Theorem. For any r />0  there is a constant C,<oo depending on rl, Co, ~, 
Mo, n, KI,  K 2 and L such that 

I17H[Z <~H4 + Cn. 

Proof Proceeding as in ([3], Lemma 6.1) and observing that 

A (V k H) = V k (A H) + g'J ~ H (H hkj -- hkm g"" h,,j + Rkj), 

~(Ric(v, v)) = V//~olo I + 2/~,to I hml 
we obtain 

6.2 Lemma.  We have the evolution equation 

~[ I V HI 2 = A 117HI2 _ 21172 HI 2 + 2 IA IZ I V HI 2 

+ 2 ( V~Hhmj, Vjnh,, ,)  + 2 H (  ~H, ~ IA 12) 

+ 2 P-ic(v, v) l VHI2 _ 2~ij ViH VJH 

+ 2H ( ~  Ro,o' , ~ H> + 4H (R,,to ~ h",, V i H).  
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6.3 Corollary. We have the estimate 

0 
~-I VHI 2 < A I VHI 2 -21V2HI 2 + 6 IAIEIVH[ 2 

+ 2H (V~H, V~ [A[2) .~_ C IVHI2 + c n  2 

where C depends on K a, K 2 and L. 

6.4 Lemma. We have 

~ H 3 >= AH 3 - 6 H I V H I  2 + 3e2 H5 (i) 0t 

(ii) 
n_l. 

+C2[VAI2+C3H3+3IAI2.  H (IAI 2 - n  H1 2) 

where C 2 and C a depend on Mo, Co, K1, Kz, 6 and L. 

Proof (i) We have 

~ H  3 = A --6HI VH[ 2 + 3H3(IAI 2 + R.ic(v, v)) H 3 

1 
and in view of IAI  2 > - ~ H  2 the first inequality follows from Lemma 4.1. 

(ii) From Lemma (iii) we derive 

- 2 ( V ~ H , ~ ( I A [ 2 - ! H 2 ) ) + 3 I A I 2 " H ( [ A [ 2 - ! H 2 ) + C H  3 

where C depends on K 1, K 2, L and Hg, il.(0). Using Theorem 5.1 one estimates 

<2[VHI fR~IIVAI 

<=2n C~H 1-~/21val 2 

n - 1  
< - -  HI VAI E + C(n, Co, 6) 1 VAI E 
= 2 n + l  

and the second inequality follows then from Lemma 2.2(ii). 
Now proceeding exactly as in [3], we study the function 

[VH[ 2 
f -  H 

(,A,2 
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where P depending only on N is large and C 4 > 0  depends on K 1, K 2, L and 
C 2. Using Corollary 6.3, Lemma 6.4 and Corollary 3.5(ii), we obtain as in [33 

0 
~f<<_ A f +  C 

since all terms which do not already occur in the case N = N  "+~ are of lower 
order. Here C depends on q, M 0, C o, 6, K 1, K2,  L and e 2. This implies the 
estimate in Theorem 6.1. 

7. Contraction to a point 

Let again 0 < t < T <  oo be the maximal time interval where the smooth so- 
lution of (1) exists. 

7.1 Theorem. The quantity max lAL 2 becomes unbounded as t-~ T. 
Mt 

Proof If the Lemma is false, there is some C s < oo such that 

(11) m a x  IAI 2 ~ C 5 
Mt 

on 0 < t < T .  It follows that for ~ U ,  O < ~ < p < T  

P 
(12) dist (F (~, p), F (~, ~)) < ~ H (~, t) d t < C (p - ~r) 

and F( . , t )  converges uniformly to some continuous limit function F(-,  T). We 
want to show that F(. ,  T) actually represents a smooth limit surface M r. This 
is then a contradiction to the maximality of T in view of the local existence 
result in Lemma 3.1. In order to show that F( . ,  T) represents a smooth surface 
Mr ,  we have only to establish uniform bounds for all derivatives of the second 
fundamental form on Mr, 0 < t < T, (see [3], section 8). 

7.2 Lemma.  I f  (11) holds, then for each m > O there is Cm < ~ depending on m, 
Cs, M o and N such that max l V" A[2 < Cm for all 0_<_t< T. 

Mt 

Proof. Since M, stays in a compact region of N in view of (12), we have 
max ]V~Rml<C,, for fixed constants C,,. Now, starting from the evolution 

O~l<=m 
equation for A in Theorem 3.4, one derives as in [-3] and ([-1], w evolution 
equations for all iterated derivatives VmA and obtains 

8t  IrmA[ 2 < A [ VmA] 2 - 21Vm+ ' AI 2 

+C(n,m){  ~ ]V'A]IVJAIIVkA]IV"AI 
i + j + k = m  

+C, ,  ~ II7'AI IrmA[ + Cm+l I V"AI}. 
i__<m 
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The generalized H61der inequality and interpolation yields 

e [ 
dt ~ V"AIZdl3+2~[V"+lA[2d# 

< C(max IAL 2 + 1){~l V"~AIZd#+(~I V"AlZdp) ~} 
Mt 

where C depends on n, m and Cm+ r Then the assertion follows as in 1-3] from 
the Sobolev inequality, proving Theorem 7.1. 

To proceed further, we need a lower bound for the intrinsic Ricci curvature 
Rij of the surfaces M,. 

7.3 Lemma.  The intrinsic Ricci curvature Rij of M t satisfies 

Rij~ (n - 1 ) e  1 gz H2  gij. 

Proof The Ricci curvature on M is given by GauB' equation 

Ri j  : Ri t j  t ~- H hij -- hit htj. 

Let us suppose that Rij is diagonal at the point of consideration, then /~nl z 
is the sum of ( n -  1) sectional curvatures and therefore larger than - ( n -  1)Kv 

n - 1  
Any eigenvalue of Hhij-hnh~j is larger than - - H ~ c a ,  where ~c 1 is the 

n 

smallest eigenvalue of h~j. But from (2) and (7) we obtain 

H~r l >=el(nZK1 +ne2HZ)+nK1 -nEelK1 

and the conclusion follows. 
Combining now Theorem 6.1, Theorem 7.1 and Lemma 7.3 exactly as in 

[3], we derive 

7.4 Theorem. We have Hmax/Hmin--~l as t-,T. 

Once this is established it follows from Theorem 7.1 that both Hma x and 
Hmi n tend to infinity as t -~T and therefore the diameter of M t tends to zero. 
Since the injectivity radius of N is bounded from below, there is 0 <  T such 
that M o is contained in a ball Bp(p)={q~N[distu(p,q)<p} where p is small 
compared to i(N) and (K 1 +K2)  -1. It is well known that then Bp(p) is a convex 
region. In view of the elliptic maximum principle the Mt's will then stay in 
Bo(p ) for all O<t<T. As Hmin--+oO for t-*T, we see from Theorem 5.1 that all 
ratios of principal curvatures tend to one as t~T .  Thus for t close to T, M t is 
an imbedded sphere bounding a convex region, The region enclosed by M,2 is 
contained in the region enclosed by M,1 for tE>t 1>0 since the surfaces are 
shrinking and so the M,'s converge to a single point as t~T .  The last state- 
ment of Theorem 1.1 is proved in exactly the same way as in the euclidean case 
([3], w since for t close to T all quantities arising from the metric of N are 
negligible compared to the mean curvature H of the hypersurface. 
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