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Abstract: We compute O(α′3) corrections to the AdS5 × S5 black hole metric. We

find that the radius of the S5 depends on the radial AdS5 coordinate. This completes

the computation of Gubser, Klebanov and Tseytlin (hep-th/9805156). The fact that

the metric no longer factorizes should modify the value of the Wilson line at finite

temperature and the glueball mass spectrum.
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Sparked by Maldacena’s conjecture [1] there has recently been a resurgence of in-

terest in supergravity in anti-de-Sitter space. In the simplest case the type IIB vacuum

is the direct product AdS5⊗S5 [2]. Many of the subsequent papers on various aspects

of Maldacena’s conjecture were based on the leading order supergravity actions. How-

ever, since the conjecture refers to the complete string theory, one should consider the

string corrections to the 10D supergravity action. The first corrections occur at order

(α′)3 and have been known for a long time [3]. Taking theses effects into account, as

shown by Banks and Green [4], does not change the metric in the extremal AdS5 ⊗ S5

case. This was subsequently verified to all orders in α′ in [5]. In the non-extremal

case this is however no longer true and one is faced with the task to compute the

corrections to the metric and the other background fields, such as the dilaton and the

anti-symmetric tensor field. This problem was addressed recently by Gubser, Klebanov

and Tseytlin [6]. Their analysis, which was restricted to the AdS5 part of the metric,

turns out to be sufficient for the computation of the corrections of the free energy.

However, the corrections to the full ten-dimensional metric has not been found in [6],

as has been erroneously assumed in several subsequent papers. Specifically, the dy-

namics of the conformal factor was not found. Here we reconsider the issue for the full

ten-dimensional metric and show that at O(α′3) it no longer factorizes.

The starting point for the analysis is the low-energy supergravity action in the

Einstein frame

S =
N2

16π7

∫
d10x
√
−g
{
R−

1

2
(∂φ)2 + γe−

3
2
φW −

1

4 · 5!

1

N2
F 2

5

}
, (1)

where we have defined

γ ≡
1

8
ζ(3)(gsN)−3/2 . (2)

In the Maldacena limit (gsN)1/2 ∼ α′. Note that the normalization is such that F5 ∼ N .

For details, in particular for a discussion on the form W ∼ C4 (C is the Weyl tensor)

of the eighth derivative term and the subtleties with the self-duality of F5 we refer to

[6] and references quoted therein.

We make the most general ansatz compatible with the symmetries of the problem:

ds2 = H2(r)
(
K2(r)dτ 2 + P 2(r)dr2 +

3∑
i=1

dx2
i

)
+ L2(r)dΩ2

5 . (3)

We first show that it is not possible to keep the radius of the S5 fixed to 1 (if H is

fixed), i.e. L(r) = 1 is not a solution to the equations of motion. We will then find

the correct solution of the equations of motion following from the ansatz (3). As the

authors of [4] and [6] we assume that the vielbein components of F5 do not change.

After rescaling ds2 → Λ2ds2 the part of the action containing Λ is

S ⊃
∫
d10x
√
gΛ10

{
Λ−2R − 18 Λ−3∇2Λ− 54 Λ−4(∇Λ)2 + γΛ−8W

}
=
∫
d10x
√
g
{
Λ8R+ 72 Λ6(∇Λ)2 + γΛ2W

}
.

(4)
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Here R is the curvature scalar of the metric ds2 = ds2
1 ⊕ dΩ

2
5, i.e. the metric (3) with

L(r) = 1. We have neglected terms O(γ2). They will not enter the argument. Due to

the direct sum structure we have R = R1 +R2 = R1 +20, the latter part coming from

S5 (RSn = n(n− 1)).

Consider now the equation of motion for Λ,

8 Λ7(R1 + 20)− 6 · 72 Λ5(∇Λ)2 − 2 · 72 Λ6∇2Λ + 2 γΛW = 0 . (5)

The solution for Λ will be of the form

Λ = Λ(0) + γΛ(1) + . . . , (6)

where Λ(0) and Λ(1) are both O(α′0). We likewise expand

R1 = R(0)
1 + γR(1)

1 + . . . (7)

and

W = W (0) + γW (1) + . . . (8)

If Λ ≡ 1 is a solution, the equation of motion for Λ will be satisfied if

R(0)
1 + 20 = 0 and 4R(1)

1 +W (0) = 0 (9)

hold. In fact R(0)
1 = −20 but the latter equation is not satisfied, because

W (0) = 180
r16

0

r16
and R(1)

1 = 180
r16

0

r16
(10)

for the metric given in [6]. This completes the proof that the ten-dimensional metric

is not of the form ds2
1 ⊕ dΩ

2
5.

Next we will solve the equations of motion following from the general ansatz (3)

which shows explicitly that a direct product geometry is not a solution. For ease

of comparison with [6] we choose the following parameterization for the functions

H(r), K(r), P (r), L(r):

H(r) = r , K(r) = ea(r)+4b(r) ,

P (r) = eb(r) , L(r) = ec(r) .
(11)

In terms of these functions the lowest, i.e. zeroth order in α′, contribution to the action

is (′ = ∂r)

S =
∫
dr
{
4r5

(
5− 2e−8c

)
ea+5b+3c

+
(
−2r(2 + ra′) + 10r3c′(a′ + 4b′ + 2c′)

)
ea+3b+5c

−2
(
r3(a′ + 4b′ + 5c′)ea+3b+5c

)′}
.

(12)

We have dropped an overall factor N2

π7 Vol(S5)Vol(R3,1) = N2

π4 Vol(R3,1). The expression

for the W term is too long to be reproduced here.
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Since we can consistently find solutions to O(γ) only, we write

a(r) = a(0)(r) + γa(1)(r) (13)

and likewise for b(r) and c(r), suppressing higher order terms in γ. Perturbation in γ

requires the zeroth order solutions. They are

a(0)(r) = − log(r2) +
5

2
log(r4 − r4

0)

b(0)(r) = −
1

2
log(r4 − r4

0)

c(0)(r) = 0 .

(14)

The equations of motion for the first order (in γ) corrections get contributions from

the term ∝ γW in the action eq.(1). They are, up to a factor γ,

540(19r4
0 − 16r4)

r12
0

r13
, 540(79r4

0 − 64r4)
r12

0

r13
, 900

r16
0

r13
(15)

for the equation for a(r), b(r) and c(r), respectively. The equations can now be easily

solved with the ansatz

a(1)(r) = a0 + a1
r4

0

r4
+ a2

r8
0

r8
+ a3

r12
0

r12
+ . . . (16)

and likewise for b(1)(r) and c(1)(r). It turns out that higher powers in r0
r

beyond the

ones displayed will not contribute. The results are

a(1)(r) = −
1625

8

r4
0

r4
− 175

r8
0

r8
+

10005

16

r12
0

r12

b(1)(r) =
325

8

r4
0

r4
+

1075

32

r8
0

r8
−

4835

32

r12
0

r12

c(1)(r) =
15

32

r8
0

r8
(1 +

r4
0

r4
) .

(17)

a0, which is undetermined and related to rescaling of time, has been set to zero [6].

The equation for the first correction of the dilaton φ = − log(gs) + γφ(1) + . . . is the

same as in [6] and leads to

φ(1)(r) = −
45

8

(r4
0

r4
+

1

2

r8
0

r8
+

1

3

r12
0

r12

)
. (18)

We can also give the necessary reparameterization that transforms the five-dimen-

sional AdS5 part of the metric as computed here to the one computed in [6]:

r → r
[
1− γ

25

32

(r8
0

r8
+
r12

0

r12

)]
, r0 → r0

(
1−

25

16
γ
)
. (19)
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The resulting metric is

ds2 = e−10/3ν(r)H2(r)
(
K2(r)dτ 2 + P 2(r)dr2 +

3∑
i=1

dx2
i

)
+ e2ν(r)dΩ2

5 , (20)

where H(r) = r, K(r) and P (r) are as in [6] and to O(γ)

ν(r) = γ
15

32

r8
0

r8
(1 +

r4
0

r4
) (21)

There are several applications of our result. First of all, we have reconsidered

the corrections of thermodynamic quantities, following ref.[6]. It turns out that the

correction to the free energy does not change. For comparison we give some results.

For the temperature we find

2πT = 2r0

(
1 +

265

16
γ
)
. (22)

The action is

I =
N2

4π2
βVol(R3)(r4

max − r
4
0)

(
1−

325

4
γ

[
r4

0

r4
max

+O(
r8

0

r8
max

)

])
. (23)

For the free energy we find

F = −
π2

8
N2V3T

4(1 + 15γ) , (24)

which agrees with the result in [6]. For an independent argument why the value of the

free energy does not change, see the note added in [6].

One can also see that the scalar glueball spectrum (without KK modes) [7] is un-

changed. The reason is that inclusion of the L2 factor in (3) does not influence the

relevant equations of motions. However there will be corrections to the other glue-ball

masses and to KK glueballs. Likewise, the coefficients of the O(γ) corrections to the

Wilson loop at finite temperature [8] will change.
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