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Abstract: We study the embedding of Kac–Moody algebras into Borcherds (or gener-
alized Kac–Moody) algebras which can be explicitly realized as Lie algebras of physical
states of some completely compactified bosonic string. The extra “missing states” can
be decomposed into irreducible highest or lowest weight “missing modules” w.r.t. the
relevant Kac–Moody subalgebra; the corresponding lowest weights are associated with
imaginary simple roots whose multiplicities can be simply understood in terms of cer-
tain polarization states of the associated string. We analyse in detail two examples where
the momentum lattice of the string is given by the unique even unimodular Lorentzian
latticeII1,1 or II9,1, respectively. The former leads to the Borcherds algebragII1,1, which
we call “gnome Lie algebra”, with maximal Kac–Moody subalgebraA1. By the use of
the denominator formula a complete set of imaginary simple roots can be exhibited,
while the DDF construction provides an explicit Lie algebra basis in terms of purely
longitudinal states of the compactified string in two dimensions. The second example is
the Borcherds algebragII9,1, whose maximal Kac–Moody subalgebra is the hyperbolic
algebraE10. The imaginary simple roots at level 1, which give rise to irreducible low-
est weight modules forE10, can be completely characterized; furthermore, our explicit
analysis of two non-trivial level-2 root spaces leads us to conjecture that these are in fact
the only imaginary simple roots forgII9,1.
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1. Introduction

The main focus of this paper is the interplay between Borcherds algebras1 and their
maximal Kac–Moody subalgebras. The potential importance of these infinite dimen-
sional Lie algebras for string unification is widely recognized, but it is far from clear
at this time what their ultimate role will be in the scheme of things (see e.g. [20, 31]
for recent overviews and motivation). In addition to their uncertain status with regard to
physical applications, these algebras are very incompletely understood and present nu-
merous challenges from the purely mathematical point of view. Because recent advances
in string theory have greatly contributed to clarifying some of their mathematical intrica-
cies we believe that the best strategy for making progress is to exploit string technology
as far as it can take us. This is the path we will follow in this paper.

As is well known, Kac–Moody and Borcherds algebras can both be defined recur-
sively in terms of a Cartan matrixA (with matrix entriesaij) and a set of generating
elements{ei, fi, hi|i ∈ I} called Chevalley–Serre generators, which are subject to cer-
tain relations involvingaij (see e.g. [24, 28]). For Kac–Moody algebras, the matrixAhas
to satisfy the properties listed on page one of [24]; the resulting Lie algebra is designated
asg(A).2 For Borcherds algebras more general matricesA are possible [4]; in particular,
imaginary (i.e., lightlike or timelike) simple roots are allowed, corresponding to zero or
negative entries on the diagonal of the Cartan matrix, respectively. The root system of
a Kac–Moody algebra is simple to describe, yet for any other but positive or positive
semi-definite Cartan matrices (corresponding to finite and affine Lie algebras, resp.),
the structure of the algebra itself is exceedingly complicated and not completely known
even for a single example. By contrast, Borcherds algebras can sometimes be explicitly
realized as Lie algebras of physical states of some compactified bosonic string. Famous
examples are the fake monster Lie algebragII25,1 and the (true) monster Lie algebrag\,
arising as the Lie algebra of transversal states of a bosonic string in 26 dimensions fully
compactified on a torus or aZ2-orbifold thereof, respectively [5, 6]. Recently, such alge-
bras were also discovered in vertex operator algebras associated with the compactified
heterotic string [22]; likewise, the Borcherds superalgebras constructed in [21] may ad-
mit such explicit realizations. However, the root systems are now much more difficult to

1 In the literature, these algebras are also referred to as “generalized Kac–Moody algebras.”
2 We use the labelingi, j ∈ {1, . . . , d} for A > 0 andi, j ∈ {−1, 0, 1, . . . , d − 2} for LorentzianA

(which have Lorentzian signature), whered = rank(A). The affine case of positive semi-definiteA which has
a slightly different labeling will not concern us here.
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characterize, because one is confronted with an (generically) infinite tower of imaginary
simple roots; in fact, the full system of simple roots is known only in some special cases.

In this paper we exploit the complementarity of these difficulties. As shown some
time ago, both Lorentzian Kac–Moody algebras and Borcherds algebras can be conve-
niently and explicitly represented in terms of a DDF construction [11, 8] adapted to the
root lattice in question [17]. More precisely, any Lorentzian algebrag(A) can be em-
bedded into a possibly larger, but in some sense simpler Borcherds algebra of physical
statesg3 associated with the root lattice3 of g(A). The DDF construction then provides
a complete basisfor g3 and thereby also forg(A), although the actual determination
of the latter is very difficult. A distinctive feature of Lorentzian Kac–Moody algebras
of “subcritical” rank (i.e.,d < 26) is the occurrence of longitudinal states besides the
transversal ones. This result applies in particular to the maximally extended hyperbolic
algebraE10 which can be embedded intogII9,1, the Lie algebra of physical states of a
subcritical bosonic string fully compactified on the unique 10-dimensional even uni-
modular Lorentzian latticeII9,1. The problem of understandingE10 can thus be reduced
to the problem of characterizing the “missing states” (alias “decoupled states”), i.e. those
physical states ingII9,1 not belonging toE10. The problem of counting these states, in
turn, is equivalent to the one of identifying all the imaginary simple roots ofgII9,1 with
their multiplicities.

In general terms, our proposal is therefore to study the embedding

g(A) ⊂ g3,

and to group the missing states

M ≡ g3 	 g(A)

into an infinite direct sum of “missing modules”, that is, irreducible highest or lowest
weight representations of the subalgebrag(A). This idea of decomposing a Borcherds
algebra with respect to its maximal Kac–Moody subalgebra was already used by Kang
[26] for deriving formulas for the root multiplicites of Borcherds algebras and was treated
in the axiomatic setup in great detail by Jurisich [23]. We present here an alternative
approach exploiting special features of the string model. After exposing the general
structure of the embedding, we will work out two examples in great detail. The first is
gII1,1, the Lie algebra of physical states of a bosonic string compactified onII1,1; because
of its kinship with the monster Lie algebrag\ which has the same root lattice, we will
refer to it as the “gnome Lie algebra”. Its maximal Kac–Moody subalgebrag(A) ⊂ gII1,1

is just the finite Lie algebraA1 ≡ sl2. The other example which we will investigate is
gII9,1 with the maximal Kac–Moody subalgebraE10 ⊂ gII9,1. Very little is known about
this hyperbolic Lie algebra, and even less is known about its representation theory (see,
however, [13] for some recent results on the representations of hyperbolic Kac–Moody
algebras). Our main point is that by combining the ill-understood Lie algebra with its
representations into the Lie algebragII9,1, we arrive at a structure which can be handled
much more easily.

The gnome Lie algebra has not yet appeared in the literature so far, although it is
possibly the simplest non-trivial example of a Borcherds algebra for which not only one
has a satisfactory understanding of the imaginary simple roots, but also a completely
explicit realization of the algebra itself in terms of physical string states. (Readers should
keep in mind, that so far most investigations of such algebras are limited to counting
dimensions of root spaces and studying the modular properties of the associated partition
functions.) It is almost “purely Borcherds” since it has only two real roots (and hence
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only one real simple root), but infinitely many imaginary (in fact, timelike) simple roots.
From the generalized denominator formula we shall derive a generating function for
their multiplicities. Even better, the root spaces – and not just their dimensions – can
be analyzed in a completely explicit manner using the DDF construction. If the fake
monster Lie algebra is extremal in the sense that it contains only transversal, but no
longitudinal states, the gnome Lie algebragII1,1 is at the extreme opposite end of the
classification in that it has only longitudinal but no transversal states. This is of course
in accordance with expectations for ad = 2 subcritical string.

For the Borcherds algebragII9,1 the analysis is not so straightforward. It has to be
performed level by level where “level” refers to theZ-grading of the Lie algebra induced
by the eigenvalue of the central element of the affine subalgebraE9 (which makes
up the level-0 piece). At level 1, we exhibit a complete set of missing lowest weight
vectors for the hyperbolic Lie algebraE10 obtainable from the tachyonic groundstate
|r −1〉 (associated with the overextended real simple rootr −1) by repeated application
of the longitudinal DDF operators. To the best of our knowledge, the corresponding
E10-modules provide the first examples for explicit realizations of unitary irreducible
highest weight representations of a hyperbolic Kac–Moody algebra. We also examine
the non-trivial root spaces associated with the two level-2 roots (or fundamental weights
w.r.t. the affine subalgebra)37 and31, which were recently worked out explicitly in
[17, 1] and which exemplify the rapidly increasing complications at higher level. An
important result of this paper is the explicit demonstration that the missing states for37
and31 can be completely reproduced by commuting missing level-1 states either with
themselves or with other level-1E10 elements. This calculation not only furnishes a non-
trivial check on our previous results, which were obtained in a rather different manner;
even more importantly, it shows that the simple multiplicity (i.e., the multiplicity as a
simple root) of both37 and31 is zero. In view of this surprising conclusion and the
fact thatE10 is a “huge” subalgebra ofgII9,1, we conjecture thatall missing states ofE10
should be obtainable in this way. In other words, the “easy” imaginary simple roots of
gII9,1 at level-1 would in fact be the only ones. In spite of the formidable difficulties of
verifying (or falsifying) this conjecture at arbitrary levels, we believe that its elucidation
would take us a long way towards understandingE10 and what is so special about it.

2. The Lie Algebra of Physical States

We shall study one chiral sector of a closed bosonic string moving on a Minkowski
torus as spacetime, i.e., with all target space coordinates compactified. Uniqueness of
the quantum mechanical wave function then forces the center of mass momenta of the
string to form a latticeλwith Minkowskian signature. Upon “old” covariant quantization
this system turns out to realize a mathematical structure called vertex algebra [3]. In these
models the physical string states form an infinite-dimensional Lie algebrag3 which has
the structure of a so-called Borcherds algebra. It is possible to identify a maximal Kac–
Moody subalgebrag(A) insideg3 which is generically of Lorentzian indefinite type.
The physical states not belonging tog(A) are called missing states and can be grouped
into irreducible highest or lowest weight representations ofg(A). In principle, the DDF
construction allows us to identify the corresponding vacuum states.

2.1. The completely compactified bosonic string.For a detailed account of this topic the
reader may wish to consult the review [16]. Here, we will follow closely [17], omitting
most of the technical details.
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Let3 be an even Lorentzian lattice of rankd < ∞, representing the lattice of allowed
center-of-mass momenta for the string. To each lattice point we assign a groundstate|r 〉
which plays the role of a highest weight vector for ad-fold Heisenberg algebrâh of
string oscillatorsαµ

m (n ∈ Z, 0 ≤ µ ≤ d− 1),

αµ
0 |r 〉 = rµ|r 〉, αµ

m|r 〉 = 0 ∀m > 0,

where
[αµ

m, α
ν
n] = mηµνδm+n,0.

The Fock space is obtained by collecting the irreducibleĥ-modules built on all possible
groundstates, viz.

F :=
⊕
r∈3

F (r ),

where
F (r ) := span{αµ1

−m1
· · ·αµM

−mM
|r 〉 | 0 ≤ µi ≤ d− 1, mi > 0}.

To each stateψ ∈ F , one assigns a vertex operator

V(ψ, z) =
∑
n∈Z

ψnz
−n−1,

which is an operator-valued (ψn ∈ EndF ∀n) formal Laurent series. For notational
convenience we putξ(m) ≡ ξ ·αm for anyξ ∈ Rd−1,1, and we introduce the current

ξ(z) :=
∑
m∈Z

ξ(m)z−m−1.

The vertex operator associated with a single oscillator is defined as

V(
ξ(−m)|0〉, z) :=

1
(m− 1)!

(
d

dz

)m−1

ξ(z), (2.1)

whereas for a groundstate|r 〉 one puts

V(|r 〉, z) := e
∫

r −(z)dzeir ·qzr ·pe
∫

r +(z)dzcr , (2.2)

with cr denoting some cocycle factor,r ±(z) :=
∑

m>0 r (±m)z∓m−1, andqµ being the
position operators conjugate to the momentum operatorspµ ≡ αµ

0 ([qµ, pν ] = iηµν).
For a general homogeneous elementψ = ξ1(−m1) · · · ξM (−mM )|r 〉, say, the associated
vertex operator is then defined by the normal-ordered product

V(ψ, z) := :V(
ξ1(−m1)|0〉, z) · · · V(

ξM (−mM )|0〉, z)V(|r 〉, z) :. (2.3)

This definition can be extended by linearity to the whole ofF .
The above data indeed fulfill all the requirements of a vertex algebra [3, 15]. The

two preferred elements inF , namely the vacuum and the conformal vector, are given
here by1 := |0〉 andω := 1

2α−1 ·α−1|0〉, respectively. Note that the corresponding
vertex operators are respectively given by the identity idF and the stress–energy tensor
V(ω, z) =

∑
n∈Z Lnz

−n−2, where the latter provides the generatorsLn of the constraint
Virasoro algebra VirL (with central chargec = d), such that the grading ofF is obtained
by the eigenvalues ofL0 and the role of a translation generator is played byL−1 satisfying
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V(L−1ψ, z) = d
dz V(ψ, z). Finally, we mention that among the axioms of a vertex algebra

there is a crucial identity relating products and iterates of vertex operators called the
Cauchy–Jacobi identity.

We denote byPh the space of (conformal) highest weight vectors or primary states
of weighth ∈ Z, satisfying

L0ψ = hψ, (2.4)

Lnψ = 0 ∀n > 0. (2.5)

We shall call the vectors inP1 physical states from now on. The vertex operators associ-
ated with physical states enjoy rather simple commutation relations with the generators
of Vir L. In terms of the mode operators we have [Ln, ψm] = −mψm+n for ψ ∈ P1. In
particular, the zero modesψ0 of physical vertex operators commute with the Virasoro
constraints and consequently map physical states into physical states. This observation
leads to the following definition of a bilinear product on the space of physical states [3]:

[ψ,ϕ] := ψ0ϕ ≡ Resz [V(ψ, z)ϕ] , (2.6)

using an obvious formal residue notation. The Cauchy–Jacobi identity for the vertex
algebra immediately ensures that the Jacobi identity [ξ, [ψ,ϕ]]+[ψ, [ϕ, ξ]]+[ϕ, [ξ, ψ]] =
0 always holds (even onF ). But the antisymmetry property turns out to be satisfied only
moduloL−1 terms. Hence one is led to introduce the Lie algebra of observable physical
states by

g3 := P1
/
L−1P0, (2.7)

where “observable” refers to the fact that the subspaceL−1P0 consists of (unobserv-
able) null physical states, i.e., physical states orthogonal to all physical states including
themselves (w.r.t. the usual string scalar product). Indeed, ford 6= 26,L−1P0 accounts
for all null physical states.

2.2. The DDF construction.For a detailed analysis ofg3 one requires an explicit basis.
First, one observes that the naturalg3-gradation by momentum already provides a root
space decomposition forg3, viz.

g3 = h3 ⊕
⊕
r∈1

g3
(r ),

where the root spaceg3
(r ) consists of all observable physical states with momentumr :

g3
(r ) := {ψ ∈ g3 | pµψ = rµψ}.

The set of roots,1, is determined by the requirement that the roots should represent
physically allowed string momenta. Hence we have

1 ≡ 13 := {r ∈ 3 | r 2 ≤ 2, r 6= 0} = 1re ∪ 1im,

where we have also split the set of roots into two subsets of real and imaginary roots
which are respectively given by

1re := {r ∈ 1 | r 2 > 0}, 1im := {r ∈ 1 | r 2 ≤ 0}.
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Zero momentum is by definition not a root but is incorporated into thed-dimensional
Cartan subalgebra

h3 := {ξ(−1)|0〉 | ξ ∈ Rd−1,1}.
Thus the task is to find a basis for each root space. This is achieved by the so-called
DDF construction [11, 8] which we will sketch.

Given a rootr ∈ 1, it is always possible to find a DDF decomposition for it,

r = a − nk with n := 1− 1
2r 2,

wherea, k ∈ Rd−1,1 satisfya2 = 2, a·k = 1, andk2 = 0. Having fixeda andk we
choose a set of orthonormal polarization vectorsξi ∈ Rd−1,1 (1 ≤ i ≤ d− 2) obeying
ξi ·a = ξi ·k = 0. Then the transversal and longitudinal DDF operators are respectively
defined by

Ai
m = Ai

m(a, k) := Resz
[V (

ξi(−1)|mk〉, z)] , (2.8)

A−
m = A−

m(a, k) := Resz

[
−V(

a(−1)|mk〉, z) +
m

2
d

dz
log

(
k(z)

)V(|mk〉, z)]
−1

2

∑
n∈Z

×
×A

i
nA

i
m−n

×
× + 2δm0k ·p. (2.9)

We shall need to make use of the following important facts about the DDF operators
(see e.g. [17]).

Theorem 1. Let r ∈ 1. The DDF operators associated with the DDF decomposition
r = a − nk enjoy the following properties on the space of physical string states with
momentumr , P1,(r ):

1. (Physicality) [Lm, A
i
n] = [Lm, A

−
n ] = 0;

2. (Transversal Heisenberg algebra)[Ai
m, A

j
n] = mδijδm+n,0;

3. (Longitudinal Virasoro algebra)
[A−

m, A
−
n ] = (m− n)A−

m+n + 26−d
12 m(m2 − 1)δm+n,0;

4. (Null states) A−
−1|a〉 ∝ L−1|a − k〉;

5. (Orthogonality) [A−
m, A

i
n] = 0;

6. (Highest weight property) Ai
k|a〉 = A−

k |a〉 = 0 for all k ≥ 0;
7. (Spectrum generating)

P1,(r ) = span{Ai1−m1
· · ·AiM−mM

A−
−n1

· · ·A−
−nN

|a〉 |m1 + . . . + nN = 1− 1
2r 2};

for all m,n ∈ Z and1 ≤ i ≤ d− 2.

As a simple consequence, we have the following explicit formula for the multiplicity
of a rootr in g3:

multg3
(r ) ≡ dimg3

(r ) = πd−1(n) := pd−1(n) − pd−1(n− 1), (2.10)

wheren = 1− 1
2r 2 and

∑
n≥0 pd(n)qn = [φ(q)]−d ≡ ∏

n≥1(1 − qn)−d, so that

∞∑
n=0

πd−1(n)qn =
1 − q

[φ(q)]d−1
= 1 + (d− 2)q + 1

2(d− 1)dq2 + · · · . (2.11)

The above theorem is also useful for constructing a positive definite symmetric
bilinear form ong3 as follows:
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〈r |s〉 := δr ,s for r , s ∈ 3, (αµ
m)† := αµ

−m.

For the DDF operators this yields

(Ai
m)† = Ai

−m, (A−
m)† = A−

−m.

In view of the above commutation relations it is then clear that〈 | 〉 is positive definite
on any root spaceg3

(r ) if d < 26. For the critical dimension,d = 26, we redefineg3 by
dividing out the additional null states which correspond to the remaining longitudinal
DDF states. Thus we have to replaceπd−1 by p24 in the multiplicity formula. Note that
the scalar product has Minkowskian signature on the Cartan subalgebra.

For our purposes we shall also need an invariant symmetric bilinear form ong3

which is defined as
(ψ|ϕ) := −〈θ(ψ)|ϕ〉

for ψ,ϕ ∈ g3, where the Chevalley involution is given by

θ(|r 〉) := | − r 〉, θ ◦ αµ
m ◦ θ := −αµ

m.

Clearly, both bilinear forms are preserved by this involution and they enjoy the invariance
and contravariance properties, respectively, viz.

([ψ, χ]|ϕ) = (ψ|[χ, ϕ]), 〈[ψ, χ]|ϕ〉 = 〈ψ|[θ(χ), ϕ]〉 ∀ψ, χ, ϕ ∈ g3. (2.12)

2.3. Borcherds algebras and Kac–Moody algebras.We now have all ingredients at
hand to show thatg3 for anyd > 0 belongs to a certain class of infinite-dimensional
Lie algebras.

Definition 1. Let J be a countable index set (identified with some subset ofZ). Let
B = (bij)i,j∈J be a real matrix, satisfying the following conditions:

(C1) B is symmetric;
(C2) If i 6= j thenbij ≤ 0;

(C3) If bii > 0 then 2bij

bii
∈ Z for all j ∈ J .

Then the universal Borcherds algebrag(B) associated withB is defined as the Lie
algebra generated by elementsei, fi andhij for i, j ∈ J , with the following relations:

(R1) [hij , ek] = δijbikek, [hij , fk] = −δijbikfk;
(R2) [ei, fj ] = hij ;
(R3) If bii > 0 then(adei)1−2bij/biiej = (adfi)1−2bij/biifj = 0;
(R4) If bij = 0 then[ei, ej ] = [fi, fj ] = 0.

The elementshij span an abelian subalgebra ofg(B) called the Cartan subalgebra.
In fact, the elementshij with i 6= j lie in the center ofg(B). It is easy to see that
hij is zero unless theith andjth columns of the matrixB are equal.3 A Lie algebra is
called a Borcherds algebra, if it can be obtained from a universal Borcherds algebra by

3 Actually, the elementshij for i 6= j do not play any role and in fact cannot appear in the present context,
whereg(B) = g3 is based on a non-degenerate Lorenzian lattice3. Namely, for theith andjth columns ofB
to be equal the corresponding roots must be equal, and therefore suchhij are always of the formvij (−1)|0〉
with vij ∈ 3. Since furthermore thehij with i 6= j are central elements, the lattice vectorsvij must be
orthogonal to all (real and imaginary) roots. Because3 is non-degenerate, we conclude thatvij = 0, and
hencehij = 0 for i 6= j.
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dividing out a subspace of its center and adding an abelian algebra of outer derivations.
An important property of (universal) Borcherds algebras is the existence of a triangular
decomposition

g = n− ⊕ h ⊕ n+, (2.13)

wheren+ andn− denote the subalgebras generated by theei’s and thefi’s, respectively.
This can be established by the usual methods for Kac–Moody algebras (see [23] for a
careful proof).

Given the Lie algebra of physical string states,g3, it is extremely difficult to decide
whether it is a Borcherds algebra in the sense of the above definition. Luckily, however,
there are alternative characterizations of Borcherds algebras which can be readily applied
to the case ofg3. We start with the following one [4].

Theorem 2. A Lie algebrag is a Borcherds algebra if it has an almost positive definite
contravariant form〈 | 〉, which means thatg has the following properties:

1. (Grading) g =
⊕

n∈Z gn with dimgn < ∞ for n 6= 0;
2. (Involution) g has an involutionθ which acts as−1 ong0 and mapsgn to g−n;
3. (Invariance) g carries a symmetric invariant bilinear form( | ) preserved byθ and

such that(gm | gn) = 0 unlessm + n = 0;
4. (Positivity) The contravariant form〈x|y〉 := −(θ(x)|y) is positive definite ongn if
n 6= 0.

The converse is almost true, which means that, apart from some pathological cases,
a Borcherds algebra always satisfies the conditions in the above theorem (cf. [23]).

Henceg3 for d ≤ 26 is a Borcherds algebra if we can equip it with an appropriate
Z-grading. Note that the grading given by assigning degree 1− 1

2r 2 to a root space
g3

(r ) will not work since there are infinitely many lattice points lying on the hyperboloid
x2 = const∈ 2Z. The solution is to slice the forward (resp. backward) light cone by
a family of (d − 1)-dimensional parallel hyperplanes whose common normal vector is
timelike and has integer scalar product with all the roots ofg3( i.e., it is an element of
the weight lattice3∗). There is one subtlety here, however. It might well happen that for
a certain choice of the timelike normal vectort ∈ 3∗ there are some real rootsr ∈ 3

which are orthogonal tot so that the associated root spaces would have degree zero.4

But then we would run into trouble since the Chevalley involution does not act as−1
on a root spaceg3

(r ) but rather maps it intog3
(−r ). We call a timelike vectort ∈ 3∗

a grading vector if it is “in general position”, which means that it has nonzero scalar
product with all roots. So let us fix some grading vector5 and define

gn :=
⊕
r∈1
r ·t=n

g3
(r ), g0 := h3.

(The associated degree operator is justt·p.) Then this yields the grading necessary forg3

to be a Borcherds algebra. Note that the pairing property (gm | gn) ∝ δm+n,0 is fulfilled
sinceθ is induced from the reflection symmetry of the lattice. Observe also that if the
lattice admits a (timelike) Weyl vectorρ we can sett = ρ since this vector has all the
requisite properties. We conclude: if the lattice3 has a grading vector andd ≤ 26, then

4 By choosingt to be timelike it is also assured that it has nonzero scalar product with all imaginary roots.
5 Grading vectors always exist since the hyperplanes orthogonal to the real roots cannot exhaust all the

points of3∗ inside the lightcone.
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the Lie algebra of physical states,g3, is a Borcherds algebra. This result suggests that
above the critical dimension the Lie algebra of physical string states somehow changes
in type, as one would also naively expect from a string theoretical point of view. But this
impression is wrong. It is an artefact caused by the special choice of the string scalar
product. To see this, we recall another characterization of Borcherds algebras [7].

Theorem 3. A Lie algebrag satisfying the following conditions is a Borcherds algebra:

(B1) g has a nonsingular invariant symmetric bilinear form( | );
(B2) g has a self-centralizing subalgebrah such thatg is diagonalizable with respect

to h and all the eigenspaces are finite-dimensional;
(B3) h has a regular elementh×, i.e., the centralizer ofh× is h and there are only a

finite number of rootsr ∈ h∗ such that|r (h×)| < R for anyR ∈ R;
(B4) The norms of roots ofg are bounded above;
(B5) Any two imaginary roots which are both positive or negative have inner product

at most 0, and if they are orthogonal their root spaces commute.

Here, as usual, the nonzero eigenvalues ofh acting ong are elements of the dualh∗
and are called roots ofg. A root is called positive or negative depending on whether its
value on the regular element is positive or negative, respectively; and a root is called real
if its norm (naturally induced from (| ) ong) is positive, and imaginary otherwise. Note
that the regular element provides a triangular decomposition (2.13) by gathering all root
spaces associated with positive (resp. negative) roots into the subalgebran+ (resp.n−).

For our purposes we shall need a special case of this theorem. Suppose that the
bilinear form has Lorentzian signature onh (and consequently also onh∗). For the regular
elementh× we can take anyt(−1)|0〉 associated with a timelike vectort in general
position (cf. the above remark about grading vectors!). But the Lorentzian geometry
implies more; namely, that two vectors inside or on the forward (or backward) lightcone
have to have nonpositive inner product with each other, and they can be orthogonal only
if they are multiples of the same lightlike vector. Therefore we have [7]

Corollary 1. A Lie algebrag satisfying the following properties conditions is a Bor-
cherds algebra:

(B1’) g has a nonsingular invariant symmetric bilinear form( | );
(B2’) g has a self-centralizing subalgebrah such thatg is diagonalizable with respect

to h and all the eigenspaces are finite-dimensional;
(B3’) The bilinear form restricted toh is Lorentzian;
(B4’) The norms of roots ofg are bounded above;
(B5’) If two roots are positive multiples of the same norm 0 vector then their root spaces

commute.

Apparently,g3 for anyd fulfills the conditions(B1’)–(B4’). A straightforward ex-
ercise in oscillator algebra also verifies(B5’) (see formula (3.1) in [17]). We conclude
thatg3 is indeed always a Borcherds algebra.

Although we do not know the Cartan matrixB associated tog3 (and so the set of
simple roots) we can determine the maximal Kac–Moody subalgebra ofg3 given by the
submatrixA obtained fromB by deleting all rows and columnsj ∈ J such thatbjj ≤ 0.

A special role is played by the lattice vectors of length 2 which are called the real
roots of the lattice and which give rise to tachyonic physical string states. Lightlike or
timelike roots are referred to as imaginary roots. We associate with every real rootr ∈ 3

a reflection bywr (x) := x − (x · r )r for x ∈ Rd−1,1. The reflecting hyperplanes then
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divide the vector spaceRd−1,1 into regions called Weyl chambers. The reflections in
the real roots of3 generate a group called the Weyl groupW of 3, which acts simply
transitively on the Weyl chambers. Fixing one chamber to be the fundamental Weyl
chamberC once and for all, we call the real roots perpendicular to the faces ofC and
with inner product at most 0 with elements ofC, the simple roots. We denote such a set
of real simple roots byΠ re = Π re(C) = {r i|i ∈ I} for a countable index setI.6 Note that
a priori there is no relation between the rankd of the lattice and the number of simple
roots,|I|.7

The main new feature of Borcherds algebras in comparison with ordinary Kac–
Moody algebras is the appearance ofimaginary simple roots. An important property of
Borcherds algebras is the existence of a character formula which generalizes the Weyl–
Kac character formula for ordinary Kac–Moody algebras and which leads as a special
case to the following Weyl–Kac–Borcherds denominator formula.

Theorem 4. Letg be a Borcherds algebra with Weyl vectorρ (i.e.,ρ·r = − 1
2r 2 for all

simple roots) and Weyl groupW (generated by the reflections in the real simple roots).
Then ∏

r∈1+

(1 − er )mult(r ) =
∑

w∈W

(−1)wew(ρ)−ρ
∑

s

ε(s)ew(s), (2.14)

whereε(s) is (−1)n if s is a sum ofn distinct pairwise orthogonal imaginary simple
roots and zero otherwise.

Note that the Weyl vector may be replaced by any other vector having inner product
− 1

2r 2 with all real simple roots since ew(ρ)−ρ involves only inner products ofρ with
real simple roots. This will be important for the gnome Lie algebra below where there is
no true Weyl vector but the denominator formula nevertheless can be used to determine
the multiplicities of the imaginary simple roots.

The physical states

ei := |r i〉, fi := −| − r i〉, hi := r i(−1)|0〉, (2.15)

for i ∈ I, obey the following commutation relations (see [3]):

[hi, hj ] = 0,
[ei, fj ] = δijhi,
[hi, ej ] = aijej , [hi, fj ] = −aijfj ,

(adei)1−aijej = 0, (adfi)1−aijfj = 0 ∀i 6= j,
(2.16)

which means that they generate via multiple commutators the Kac–Moody algebrag(A)
associated with the Cartan matrixA = (aij)i,j∈I , aij := r i ·r j . As usual, we have the
triangular decomposition

g(A) = n−(A) ⊕ h(A) ⊕ n+(A), (2.17)

6 I may be identified with a subset ofJ . Note, however, that apart from some special examples, the matrix
B for g3 as a Borcherds algebra is not known.

7 The extremal case occurs for the latticeII25,1 whered = 26 but|I| = ∞ [9]. We should mention here
that in order to get the set of imaginary roots “well-behaved”, one assumes that the semidirect product of the
Weyl group with the group of graph automorphisms associated with the Coxeter–Dynkin diagram ofΠ re has
finite index in the automorphism group of the lattice3 (see e.g. [29]).
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wheren+(A) (resp.n−(A)) denotes the subalgebra generated by theei’s (resp.fi’s) for
i ∈ I. This corresponds to a choice of the grading vectort (and the regular element
h× := t(−1)|0〉) satisfyingt·r i > 0 ∀i ∈ I. The Lie algebrag(A) is a proper subalgebra
of the Lie algebra of physical statesg3,

g(A) ⊂ g3.

If we finally introduce the Kac–Moody root lattice

Q(A) :=
∑
i∈I

Zr i,

then obviouslyQ(A) ⊆ 3 and in particular rankQ(A) ≤ d, even though|I| might be
larger thand.

2.4. Missing modules.Having found the Kac–Moody algebrag(A), the idea is now to
analyze the “rest” ofg3 from the point of view ofg(A). It is clear that, via the adjoint
action,g3 is a representation ofg(A). Since the contravariant bilinear form is positive
definite on the root spacesg3

(r ), r ∈ 1, it is sensible to consider the direct sum of
orthogonal complements ofg(A) ∩ g3

(r ) in g3
(r ) with respect to〈 | 〉 and explore its

properties under the action ofg(A). We shall see that the resulting space of so-called
missing states is a completely reducibleg(A)-module, decomposable into irreducible
highest or lowest weight representations. The issue of zero momentum, however, requires
some care. IfQ(A) 6= 3, then there must be a set ofd− rankQ(A) linearly independent
imaginary simple roots,{r j |j ∈ H ⊂ J \ I}, linearly independent of the set of real
simple roots, such thath3 = h(A) ⊕ h′ with h′ := span{hj |j ∈ H}. The latter subspace
of the Cartan subalgebra is in general not ag(A)-module but rather an abelian algebra of
outer derivations forg(A) in view of the commutation relations(R1). This observation
suggests to consider an extension ofg(A) by these derivations. There is also another
argument that this is a natural thing to do. Namely, extendingh(A) to h3 ensures that
any rootr is a nonzero weight for the extended Lie algebra, while this is not guaranteed
for g(A) because there might exist roots in1 orthogonal to all real simple roots. This
procedure is in spirit the same for the general theory of affine Lie algebras where one
extends the algebra by adjoining outer derivations to the Cartan subalgebra such that the
standard invariant form becomes nondegenerate.

Definition 2. The Lie algebrâg(A) := g(A) + h3 = n−(A) ⊕ h3 ⊕ n+(A) is called the
extended Kac–Moody algebra associated with3. The orthogonal complement ofĝ(A)
in g3 with respect to the contravariant bilinear form〈 | 〉 is called the space of missing
(or decoupled) states,M.

It is clear that̂g(A) has the same root system and root space decomposition asg(A).
Note thatM is the same as the orthogonal complement ofĝ(A) in g3 with respect to
the invariant form (| ). Obviously,M has zero intersection with the Cartan subalgebra
h3 and with all the tachyonic root spacesg3

(r ), r ∈ 1re = 1re(A). Hence we can write

M = M− ⊕ M+, M± :=
⊕

r∈1im
±

M(r ), (2.18)
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where1im
± denotes the set of imaginary roots inside the forward or the backward light-

cone, respectively,8 andM(r ) is given as the orthogonal complement of the root space
for g(A) in g3, viz.

g3
(r ) = g(A)(r ) ⊕ M(r ) ∀r ∈ 1im. (2.19)

Note that it might (and in some examples does) happen thatg(A)(r ) is empty for some
r ∈ 1im, namely whenr is not a root forg(A).

Generically,g(A) is a (infinite-dimensional) Lorentzian Kac–Moody algebra about
which not much is known. On the other hand we are in the lucky situation of having a
root space decomposition with known multiplicities forg3. So the main problem in this
string realization ofg(A) is to understand the space of missing states. The starting point
for the analysis presented below is the following theorem [23].

Theorem 5. 1. M is completely reducible under the adjoint action ofg(A). It decom-
poses into an orthogonal (w.r.t.〈 | 〉) direct sum of irreducible lowest or highest
weight modules forg(A):

M± =
⊕
r∈B

mrL(∓r ), (2.20)

whereB ⊂ 3 ∩ (−C) denotes some appropriate set of dominant integral weights
for h(A), L(r ) (resp.L(−r )) denotes an irreducible highest (resp. lowest) weight
module forg(A) with highest weightr (resp. lowest weight−r ), which occurs with
multiplicitymr (= m−r ) insideM− (resp.M+).

2. Let H± ⊂ M± denote the space of missing lowest and highest weight vectors,
respectively. Equipped with the bracket ing3, H+ and H− are (isomorphic) Lie
algebras. If there are no pairwise orthogonal imaginary simple roots ing3, then
they are free Lie algebras.

Proof. Letx ∈ ĝ(A),m ∈ M. Then we can write [x,m] = x′ +m′ for somex′ ∈ ĝ(A),
m′ ∈ M. It follows that (y|x′) = (y|[x,m]) = ([y, x]|m) = 0 for all y ∈ ĝ(A) using
invariance. Since the radical of the invariant form has been divided out we conclude that
x′ = 0. Thus [̂g(A),M] ⊆ M and the homomorphism property ofρ : g(A) → EndM,
ρ(x)m := [x,m], follows from the Jacobi identity ing3. But M± are alreadŷg(A)-
modules by themselves. To see this, we exploit theZ-grading ofg3 induced by the
grading vectort . An element ofg3 with momentumr is said to have heightr ·t . Then
M+ andM− consist of elements of positive and negative height, respectively. Going
from positive to negative weight with the action ofĝ(A) requires missing states of height
zero, which cannot exist sinceh3 ⊂ ĝ(A).

By applying the Chevalley involutionθ, it is sufficient to considerM−. Let N ⊂
M− be aĝ(A)-submodule. Then

N =
⊕

r∈1im
−

N (r ), N (r ) := M(r )
− ∩ N .

Since dimM(r )
− ≤ dimg3

(r )
− < ∞ and〈 | 〉 is positive definite onM(r )

− for all r ∈ 1, it
follows that we have the decomposition

M(r )
− = N (r ) ⊕ N (r )⊥ ∀r ∈ 1im

− .

8 This means that we choose the grading vector to lie inside the backward lightcone.
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If we define
N ⊥ :=

⊕
r∈1im

−

N (r )⊥,

then
M− = N ⊕ N ⊥,

and
〈N |x(m)〉 = 〈θ(x)(N )|m〉 = 0

for all x ∈ ĝ(A), m ∈ N ⊥, sinceN is a submodule by assumption. HenceN ⊥ is also
a ĝ(A)-submodule andM− is indeed completely reducible.

Finally, it is easy to see that each irreducibleĝ(A)-submoduleN ⊂ M− is of
highest-weight type. Indeed,N inherits the grading ofM− by height which is bounded
from above by zero, whereas the Chevalley generatorsei (i ∈ I) associated with real
simple roots increase the height when applied to elements ofN .

Now we want to show that each irreducibleĝ(A)-moduleN ⊂ M− is also irre-
ducible under the action ofg(A). We shall use an argument similar to the proof of Prop.
11.8 in [24]. Recall that we have the decompositionh3 = h(A)⊕h′, whereh′ is spanned
by suitable elementshi = r i(−1)|0〉 (i ∈ H) associated with imaginary simple rootsr i.
Obviously, any imaginary simple rootr i satisfiesr i·r ≥ 0 for all r ∈ 1im

− andr i·r j ≤ 0
for all r j ∈ Π re. Let us introduce a restricted grading vector byt ′ :=

∑
i∈H r i. We

shall call the inner product oft ′ with any rootr the restricted height of that root. The
subspaces ofN of constant restricted height are then given by

Nh :=
⊕
r∈1im

−
t′·r =h

N (r ).

Sincet ′ ·r ≥ 0 for all r ∈ 1im
− , there exists some minimalhmin such thatNhmin 6= 0 and

Nh = 0 forh < hmin. We have a decomposition ofg(A) w.r.t. to the restricted height as
well, viz.

g(A) = g− ⊕ g0 ⊕ g+, g± :=
⊕
h≷0

g(A)h.

Note that this triangular decomposition is different from the previous one encountered
in (2.17). In general, they are related byn±(A) ⊆ g± ⊕ g0 and h(A) ⊆ g0. Now,
apparently eachNh is ag0 module. In particular,Nhmin must be irreducible, since anyg0-
invariant proper subspace would generate a properĝ(A) submodule ofN contradicting
its irreducibility. By the same argument,{v ∈ Nh|g−(v) = 0} = 0 for h > hmin. Hence

N = U(g+)Nvac,

where
Nvac := {v ∈ N|g−(v) = 0} = Nhmin

is an irreducibleg0 module. From this we conclude thatN is indeed an irreducibleg(A)
module.

SoM− decomposes into an othogonal direct sum

M− =
⊕
α∈B

mαLα,
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whereB denotes some appropriate index set and eachLα is an irreducibleg(A)-module
occurring with multiplicitymα > 0. Finally, it is easy to see that each irreducibleg(A)-
submoduleLα ⊂ M− is of highest-weight type. Indeed,Lα inherits the grading of
M− by height which is bounded from above by zero, whereas the Chevalley generators
ei (i ∈ I) associated with real simple roots increase the height when applied to vectors
in Lα. So there exists an elementvr ∈ Lα associated with a dominant integral weight
r ∈ 3 ∩ (−C) such thatei(vr ) = 0 for all i ∈ I andLα ≡ L(r ) = U

(
n−(A)

)
vr .

To prove the second part of the theorem, letv1, v2 ∈ H−. It follows thatx
(
[v1, v2]

)
:=

[x, [v1, v2]] = [x(v1), v2] + [v1, x(v2)]. If we choosex = ei or x = hi, respectively,
it is clear that [v1, v2] is again a highest weight vector. To see that it is missing we
note that〈x|[v1, v2]〉 = 〈x(θ(v1)

)|v2〉 for all x ∈ g(A) by contravariance. But since
x
(
θ(v1)

) ∈ M+ andv2 ∈ M− ⊥ M+ we see that indeed [v1, v2] ∈ H−. Finally, since
g3 is a Borcherds algebra we know that extra Lie algebra relations (in addition to those
for g(A)) can occur only if there are pairwise orthogonal imaginary simple roots ing3.
If this is not the caseH± must be free. �

So the space of missing states decomposes into an orthogonal direct sum of irre-
ducibleg(A)-multiplets each of which is obtained by repeated application of the raising
operatorsei (resp.fi) to some lowest (resp. highest) weight vector. This beautiful struc-
ture, however, looks rather messy from the point of view of a single missing root space,
M(r ), say. Generically, it decomposes into an orthogonal direct sum of three subspaces
with special properties, viz.

M(r ) = R(r ) ⊕ H(r ) ⊕ J (r ), for r ∈ 1im
+ , (2.21)

whereR(r ) consists of states belonging to lower-heightg(A)-multiplets andH(r ) :=
[H+,H+] ∩ M(r ) is spanned by multiple commutators of appropriate lower-height
vacuum vectors. What can we say about the remaining piece,J (r )? Its states are vacuum
vectors forg(A), which cannot be reached by multiple commutators inside the space
of missing lowest weight vectors,H+. So a basis forJ (r ) is part of a basis forH+. At
the level of the Borcherds algebrag3, this just means that the rootr is an imaginary
simple root of multiplicity dimJ (r ). For this reason we introduce the so-called simple
multiplicity µ(r ) of a rootr in the fundamental Weyl chamber as

µ(r ) := dimJ (r ). (2.22)

Obviously we haveµ(r ) ≤ mult(r ). Once we know the simple multiplicity of a fun-
damental root, it is clear how to proceed. Recursively by height, we adjoin tog(A) for
each fundamental rootr a set ofµ(r ) generators{ej , fj , hj}. This also explains why it is
sufficient to concentrate on fundamental roots. Indeed, by the action of the Weyl group
we conclude that the simple multiplicity of any non-fundamental positive imaginary root
is zero, while the Chevalley involution tells us thatµ(r ) = µ(−r ) – this just reflects that
the fact that we adjoin the Chevalley generatorsej andfj always in pairs.

Let us point out that for ordinary (i.e. not generalized in the sense of Borcherds)
Kac–Moody algebras, for whichall elements of any root space are obtained as multiple
commutators of the Chevalley–Serre generators (by the very definition of a Kac–Moody
algebra!), we haveµ(r ) = 0, and therefore the notion of simple multiplicity is superflu-
ous.
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3. The Gnome Lie Algebra

The gnome Lie algebragII1,1, which we will investigate in this section, is the simplest
example of a Borcherds algebra that can be explicitly described as the Lie algebra of
physical states of a compactified string. It is based on the latticeII1,1 as the momentum
lattice of a fully compactified bosonic string in two space-time dimensions. Since there
are no transversal degrees of freedom ind = 2 and only longitudinal string excitations
occur, the Lie algebra of physical states may be regarded as the precise opposite of the
fake monster Lie algebra in 26 dimensions which has only transversal and no longitudinal
physical states. It constitutes an example of a generalized Kac–Moody algebra which is
almost “purely Borcherds” in that with one exception, all its simple roots are imaginary
(timelike). The gnome Lie algebra is also a cousin of the true monster Lie algebra because
they both have the same root lattice,II1,1. In fact, we shall see that the gnome Lie algebra
is a Borcherds subalgebra not only of the fake monster Lie algebra but also of any Lie
algebra of physical states associated with a momentum lattice that can be decomposed
in such a way that it containsII1,1 as a sublattice.

3.1. The latticeII1,1. We start by summarizing some properties of the unique two-
dimensional even unimodular Lorentzian latticeII1,1. It can be realized as

II1,1 := Z( 1
2; 1

2) ⊕ Z(−1; 1) ={(`/2 − n; `/2 +n) | `, n ∈ Z},
where for the (Minkowskian) product of two vectors our convention is

(x1;x0) · (y1; y0) := x1y1 − x0y0.

Alternatively, we will represent the elements ofII1,1 in a light cone basis, i.e., in terms
of pairs〈`, n〉 ∈ Z ⊕ Z with inner product matrix

( 0 −1
−1 0

)
, so that〈`, n〉2 = −2`n. The

lattice points are shown in Fig. 1 below. The main importance of this lattice for us derives
from the fact that it is the root lattice of the Lie algebragII1,1 we are about to construct.
As already explained in the last section, allowed physical string momenta have norm
squared at most two and consequently any root3 for gII1,1 must obey32 ≤ 2. There are
no lightlike roots here: the corresponding root spaces are empty owing to the absence
of transversal polarizations in two dimensions. Therefore, imaginary roots forgII1,1 are
all lattice vectors lying in the interior of the lightcone. Real roots satisfy32 = 2, and
the latticeII1,1 possesses only two such roots3 = ±r −1, where

r −1 := (3
2; − 1

2) = 〈1,−1〉.
Our notation has been chosen so as to make explicit the analogy withE10, wherer −1 is
the over-extended root. In addition we need the lightlike vector

δ := (−1; 1) = 〈0, 1〉,
obeyingr −1 ·δ = −1. Hence it serves as a lightlike Weyl vector forgII1,1.

9 It is analogous
to the null root of the affine subalgebraE9 ⊂ E10, but the crucial difference is that for

9 It is, however, only a “real” Weyl vector since it has scalar product -1 with all real simple roots, whereas
it will not have the correct scalar products with all imaginary simple roots. In fact, there is no true Weyl vector
for gΠ 1,1.
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x1

x0
`n

r−1

δ

Fig. 1.The Lorentzian latticeII1,1

II1,1 it is not a root (see the above remark). Nonetheless, we can useδ to introduce the
notion of level (again by analogy withE10), namely, by assigning to a root3 the integer

` := −δ ·3.
This gives us aZ-grading of the set of roots. The reflection symmetry of the lattice,
which gives rise to the Chevalley involution ofgII1,1 and which introduces the splitting
of the set of roots into positive and negative roots, apparently changes the level into its
negative. Consequently, the sign of the level of a root determines whether it is positive
or negative, and for an analysis ofgII1,1 it is sufficient to consider positive roots only.
We conclude that the set of positive roots forgII1,1 consists of the level-1 rootr −1 and
the infinitely many lattice vectors lying inside the forward lightcone.

The Weyl group ofII1,1 is very simple: since we can only reflect with respect to
the single rootr −1, it has only two elements and is thus isomorphic toZ2 just like
the Weyl group of the monster Lie algebra [5]. On any vectorx ∈ R1,1 it acts as
w−1(x) := x − (x·r −1)r −1; in light cone coordinates we have the simple formula

w−1
(〈`, n〉) = 〈n, `〉.

Hence the forward lightcone is the union of only two Weyl chambers; the fundamental
Weyl chamber leading to our choice of the real simple root has been shaded in Fig. 2. It
is given by
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C = {x ∈ R1,1 | x2 ≤ 0, x·r −1 ≤ 0, x·δ ≤ 0}.
The imaginary positive roots insideC will be called fundamental roots. Combining the
action of the Weyl group with the reflection symmetry of the lattice, the whole analysis
of gII1,1 is thereby reduced to understanding the root spaces associated with fundamental
roots.

Obviously,r −1 andδ spanII1,1, and thus any positive level-` root can be written as

3 = `r −1 + nδ = 〈`, n− `〉,
wheren > ` > 0 because of32 = 2`(`− n).

As explained in [17], the DDF construction necessitates the introduction of fractional
momenta which do not belong to the lattice. We define

a` := `r −1 +

(
`− 1

`

)
δ, k` := −1

`
δ,

such that we can write down the so-called DDF decomposition

3 = a` −
(

1 − 1
2
32

)
k` (3.1)

for any positive level-̀ root3. The tachyonic momentaa` lie on a mass shell hyperbola
a2

` = 2 which has been depicted in Fig. 2 below. This figure also displays the intermediate
points (as small circles) “between the lattice” required by the DDF construction, and
allows us to visualize how the lattice becomes more and more “fractionalized” with
increasing level. We call vectorsa` − mk`, 0 ≤ m ≤ − 1

232, which are not lattice
points fractional roots. Note that fractional roots can only occur for` > 1. We stress
that the physical states associated with these intermediate points arenotelements of the
Lie algebragII1,1, as their operator product expansions will contain fractional powers.

3.2. Basic structure of the gnome Lie algebra.The gnome Lie algebra is by definition
the Borcherds algebragII1,1 of physical states of a bosonic string fully compactified on
the latticeII1,1. We would first like to describe its root space decomposition. To do so, we
assign the grading〈`, n〉 to any string state with momentum〈`, n〉 = `r −1 + (n− `)δ ∈
II1,1. The no-ghost theorem in the guise of Thm. 1 then implies that the contravariant form
〈 | 〉 is positive definite on the piece of nonzero degree of the gnome Lie algebragII1,1.
The degree〈0, 0〉 piece ofgII1,1 is isomorphic toR2, while the tachyonic states| ± r −1〉
yield two one-dimensional subspaces of degrees〈−1, 1〉 and〈1,−1〉, respectively. With
these conventions, the gnome Lie algebra looks schematically like the monster Lie
algebra (see Fig. 3 and [6]). Here we have indexed the subspace associated with the root
3 = 〈`, n〉 by [`n] because the dimension of this root space depends only on the product
`n. Indeed, since 1− 1

2〈`, n〉2 = 1 + `n we have, according to (2.10),

multgII1,1
(3) ≡ dimgII1,1

(3) = π1(1 + `n),

where the partition functionπ1(n) was already defined in (2.11).
While this description ofgII1,1 is rather abstract, we can give a much more concrete

realization of this Lie algebra by means of the discrete DDF construction developed in
[17]. In fact, the DDF construction provides us with acomplete basisfor the gnome Lie
algebra.
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x1

x0

`n

Fig. 2.Fundamental Weyl chamber, positive and fractional roots forgΠ 1,1

The single real simple rootr −1 of II1,1 gives rise to Lie algebra elements (cf. Eq.
(2.15))

h−1 := r −1(−1)|0〉, e−1 := |r −1〉, f−1 := −| − r −1〉, (3.2)

which generate the finite Kac–Moody subalgebrag(A) = sl2 ≡ A1 ⊂ gII1,1. On the
other hand, there are infinitely many imaginary (timelike) roots inside the lightcone. We
shall see that out of these all fundamental roots (except for one) will be simple roots as
well.

We notice that the one-dimensional Cartan subalgebrah(A) spanned byh−1 does not
coincide with the two-dimensional Cartan subalgebrahII1,1. Hence we need to introduce
the Lie algebra

ĝ(A) := sl2 + hII1,1 = sl2 ⊕ R30

by adjoining tosl2 the element

30 := (r −1 + 2δ)(−1)|0〉,
which commutes withsl2 and therefore behaves like a central charge (but notice that
the affine extension ofsl2 is nota subalgebra ofgII1,1). It may be regarded as a remnant
of the Cartan subalgebra of the hyperbolic extension of a zero-dimensional (virtual) Lie
algebra.

We see that in this example the Lie algebrag(A) is too small to yield a lot of
information (the “smallness” ofg(A) is due to the absence of transversal physical string
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Fig. 3.Root space decomposition of the gnome Lie algebra

states in two dimensions). Nonetheless, there are infinitely many purely longitudinal
physical states present which are of the form

A−
−n1

(a`) · · ·A−
−nN

(a`)|a`〉, (3.3)

wheren1 ≥ n2 ≥ . . . ≥ nN ≥ 2 and the longitudinal DDF operatorsA−
−na

are
associated with a tachyon momentuma` and a lightlike vectork` satisfyinga` ·k` = 1.
Of course, not all of these string states belong togII1,1; in addition, we must require that
(cf. Eq. (3.1))

3 := a` −Mk`

is a root, i.e.3 ∈ II1,1 with 32 ≤ 2, so that

M :=
N∑
j=1

nj = 1− 1
232 ≥ 0.

In other words, given a root3 = `r −1 +nδ, a basis of the associated root spacegII1,1
(3)

is provided by longitudinal DDF states of the above form with total excitation number
M = `(n− `) + 1. For momenta of the forma` −mk`, 0 ≤ m < M , such thatm− 1 is
not a multiple of̀ , i.e., for fractional roots “between the lattice points” (cf. Fig. 2), we
obtain “intermediate (physical) states” which are not elements of the Lie algebragII1,1.
In fact, they are not full-fledged states of the string model under consideration but rather
states of the uncompactified string model.
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It is clear that, apart from the subalgebraĝ(A), all elements of the gnome Lie algebra
are associated with imaginary roots. And since none of the longitudinal states can be
obtained by multiple commutation of elements ofsl2, all of them are missing states.
Thus

M(3)
+ =gII1,1

(3)

=span{A−
−n1

(a`) · · ·A−
−nN

(a`)|a`〉 |nj > 1, n1 + . . . + nN = 1− 1
232}, (3.4)

for all 3 ∈ 1im
+ and similarly forM−. From the point of view ofsl2, all these states

must be added “by hand” to fill upsl2 to gII1,1. Having a complete basis for the space
of missing states the task is now to determine the complete set of imaginary simple
roots. In principle, this can be achieved in two steps. First, we have to identify all the
missing lowest weight vectors inM+. Then we have to determine a basis for the Lie
algebra of lowest weight vectors. This provides us with the complete information about
the imaginary simple roots and their multiplicities. In the next subsection, this strategy
is discussed in more detail and is illustrated by some examples.

For the gnome Lie algebra, the information about the imaginary simple roots and their
multiplicities can be determined by means of the Weyl–Kac–Borcherds denominator
formula. One reason for this is the simplicity of the Weyl group ofsl2 which simplifies
the denominator formula enormously. It reads(

x−1 − y−1
) ∏

`,n>0(1 − x`yn)π1(1+`n)

=
(
x−1 − y−1

)
+

∑
n≥`>0 µ`,n

(
xny`−1 − x`−1yn

)
,

(3.5)

where we writex ≡ e〈1,0〉 andy ≡ e〈0,1〉 for the generators of the group algebra of
II1,1 and we putµ`,n ≡ µ

(〈`, n〉). Recall that the action of the Weyl group simply
interchangesx andy. Also note that the fundamental roots have nonzero inner product
with each other so that there is no extra contribution of pairwise orthogonal imaginary
simple roots on the right-hand side. Therefore we are in the fortunate situation that the
sum on the right-hand side runs only once over the imaginary simple roots and that the
relevant coefficients are just the simple multiplicities. Furthermore, the associated Lie
algebra of lowest weight vectors,H+, is a free Lie algebra, which follows from Thm. 5
due to the fact that there are no lightlike roots (cf. [23]).

We summarize: a set of imaginary simple roots for the gnome Lie algebragII1,1 is
given by the vectors{〈`, n〉 |n ≥ ` ≥ 1}, each with multiplicityµ`,n which is the
coefficent ofxny`−1 in the left-hand side of Eq. (3.5) as generating function.

Expanding the latter, one readily obtains the results (see Fig. 4)

µ1,n = π1(1 +n) for n ≥ 1,

µ2,n = π1(1 + 2n) − π1(2 +n) − 1
2π1(1 + n

2 )
[
π1(1 + n

2 ) − 1
]

(3.6)

−

[
n−1

2

]∑
k=1

π1(1 +k)π1(1 +n− k) for n ≥ 2,

where we have definedπ1(1+n
2 ) := 0 for any odd integern. The first formula tells us that

all level-1 longitudinal states are missing states associated with imaginary simple roots;
from the second we learn that this is no longer true at higher level sinceµ2,n < π1(1+2n)
and consequently some of the associated states can be generated by commutation of level-
1 states. In fact, one easily sees that not only doesµ(3) not vanish in general, and hence all
higher-level roots are simple with a certain multiplicity, but also thatµ(3) < mult(3) at



50 O. B̈arwald, R. W. Gebert, M. G̈unaydin, H. Nicolai

µ`,n

`\n 1 2 3 4 5 6
1 1 1 2 2 4 4
2 0 1 2 6 10
3 3 6 20 40
4 5 36 101
5 63 239
6 331

mult
(〈`, n〉)

`\n 1 2 3 4 5 6
1 1 1 2 2 4 4
2 1 2 4 8 14 24
3 2 4 12 24 55 105
4 2 8 24 66 165 383
5 4 14 55 165 478 1238
6 4 24 105 383 1238 3660

Fig. 4.Multiplicity of imaginary simple roots vs. dimension of root spaces

higher level. This illustrates the point we have already made in the introduction and in the
past [17]: while generalized Kac–Moody algebras such as the gnome may have a rather
simple structure in terms of the DDF construction, they are usually quite complicated
to analyze from the point of view of their root space decompositions. For hyperbolic
Kac–Moody algebras, the situation is precisely the reverse: the simple roots can be read
off from the Coxeter–Dynkin diagram, but the detailed structure of the root spaces is
exceedingly complicated.

Due to the complicated pattern of the imaginary simple roots and their multiplicities,
the approach of decomposinggII1,1 into multiplets ofsl2 seems to be not very fruitful.
One reason for this is thatsl2 is just “too small” to yield non-trivial information about the
full Lie algebra – in stark contrast to the algebragII9,1 whose corresponding subalgebra
g(A) = E10 is much bigger. Another reason, which is not so obvious, comes from the
observation that for increasing level the dimensions of the root spaces grow much faster
than the simple multiplicities. This explains why additional imaginary simple roots are
needed at every level. There is a beautiful example where this situation is rectified.
The true monster Lie algebra [6] is a Borcherds algebra which is based on the same
lattice II1,1 as the root lattice; but the multiplicity of a root〈`, n〉 is given byc(`n)
(replacingπ1(1 + `n)) which is the coefficient ofq`n in the elliptic modular function
j(q) − 744 =

∑
n≥−1 cnq

n = q−1 + 196884q + . . .. In [6], Borcherds was able to
determine a set of imaginary simple roots and their simple multiplicities by establishing
an identity for the elliptic modular function which turned out to be precisely the above
denominator formula. In that example, the imaginary simple roots are all level-1 vectors
〈1, n〉 (n ≥ 1), each with multiplicityc(n). Thus the simple multiplicities are large
enough so that the level-1sl2 vacuum vectors can generate by multiple commutators
the full Lie algebra of missing lowest weight vectors.

Even though the infinite Cartan matrix looks rather messy, the gnome Lie algebra
gII1,1 has now been cast into the form of a Borcherds algebra in the sense of Def. 1. The
next step in the analysis would be the calculation of the structure constants. Since we
have exhibited an explicit basis of the algebra in terms of the DDF states, this can be
done in principle. Practically, however, the calculations still have to be performed by use
of the humble oscillator basis{αµ

m}, whereas we would prefer to be able to calculate
the commutators of DDF states in a manifestly physical way, i.e., in a formalism based
on the DDF operators only. For the transversal DDF operators this problem was solved
recently [18]. However, since we are dealing with purely longitudinal excitations here,
one would certainly have to consider exponentials of longitudinal DDF operators. This
is technically much more delicate, since the operators do not form a Heisenberg algebra
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but a Virasoro algebra. Let us also point out the evident relation between the gnome Lie
algebra and Liouville theory, which remains to be understood in more detail.

3.3. DDF states and examples.We will now perform some explicit checks and for
some examples exhibit the split of the root spaces into parts that can be generated by
commutation of low-level elements and the remaining states which must be adjoined by
hand, and whose number equals the simple multiplicity of the root in question. Since
the actual calculations are quite cumbersome it is helpful to use a computer. We would
like to emphasize that these examples not only provide completely explicit realizations
of the Lie algebra elements, but also enable us to determine the “structure constants”,
whereas for other Borcherds algebras (such as the true or the fake monster Lie algebra),
investigations so far have been limited to the determination of root space multiplicities
and the modular properties of the associated partition functions.

It is natural to investigate the subspaceM+ of missing states of the gnome Lie
algebra recursively level by level:

M+ =
⊕
`>0

M[`] , M[`] :=
⊕

3∈1im
+

3·δ=−`

M(3)
+ . (3.7)

We observe that, already at level 1, we have an infinite tower of missing states; indeed,
the states

A−
−n1

(r −1) · · ·A−
−nN

(r −1)|r −1〉 (3.8)

spanM[1] . Adjoining these states to the algebra is therefore tantamount to adjoining
infinitely many imaginary simple level-1 rootsr −1 + nδ = 〈1, n− 1〉 (n > 1) with
multiplicity π1(n).10 Although this statement is evident, we would like to demonstrate
explicitly that these states are indeed lowest weight vectors for irreduciblesl2-modules.
So let us consider the statev3 := A−

−n1
(r −1) · · ·A−

−nN
(r −1)|r −1〉, where3 := r −1+nδ,

n :=
∑N

j=1nj > 1. Using the adjoint action ingII1,1 and the formulas forsl2 given in
(3.2), we infer that

h−1(v3) = (2− n)v3,

f−1(v3) ∝ L−1|nδ〉 ≡ 0,

(e−1)1−r −1·3(v3) ∝ L−1|n(r −1 + δ)〉 ≡ 0.

Note that the last two relations (the lowest weight and the null vector condition, respec-
tively) follow from momentum conservation (cf. Eq. (2.2)) and the fact that physical
string states in two dimensions are bound to be null states. Hencev3 is indeed a vacuum
vector for an irreduciblesl2-module with spin1

2(n − 2). These multiplets can be con-
structed by repeated application of the raising operatore−1 which each time increases
the level by one. Clearly, the higher-level states belong to irreduciblesl2-multiplets, but
the structure quickly becomes rather messy. As already mentioned, we have to decom-
pose each missing root spaceM(3)

+ into an orthogonal direct sum of three subspaces
with special properties: one consists of states belonging to lower-levelsl2-multiplets, the
other is made up of appropriate multiple commutators of lower-level vacuum vectors,

10 As already mentioned, there are no proper physical states on the lightcone, i.e., with momenta proportional
to the lightlike vectorsδ = 〈0, 1〉 andr −1 + δ = 〈1, 0〉, since these would require transversal polarizations.
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and the rest comes from states corresponding to imaginary simple roots. We will now
illustrate this pattern by a few examples.

So the question is which of the higher-level states can be generated by multiple
commutators of the missing level-1 states. As it turns out we will have to add new states
at each higher-level root, apart from an exceptional level-2 root which we will exhibit
below.

We have calculated the following commutators (by means ofMAPLE V)[|r −1〉, A−
−3|r −1〉

]
= A−

−3|a2〉, (3.9)[|r −1〉, A−
−4|r −1〉

]
=

(
− 3

8A
−
−3A

−
−2 − 5

8A
−
−5

)
|a2〉, (3.10)[|r −1〉, A−

−2A
−
−2|r −1〉

]
=

(
−A−

−3A
−
−2 +A−

−5

)
|a2〉, (3.11)[|r −1〉, A−

−5|r −1〉
]

=
(

35
64A

−
−7 + 7

32A
−
−5A

−
−2 + 5

64A
−
−3A

−
−2A

−
−2

)
|a2〉, (3.12)[|r −1〉, A−

−3A
−
−2|r −1〉

]
=

(
− 61

128A
−
−7 + 1

4A
−
−4A

−
−3 + 7

64A
−
−5A

−
−2

+ 37
128A

−
−3A

−
−2A

−
−2

)
|a2〉, (3.13)[

A−
−2|r −1〉, A−

−3|r −1〉
]

=
(

− 83
128A

−
−7 + 1

4A
−
−4A

−
−3 + 41

64A
−
−5A

−
−2

− 21
128A

−
−3A

−
−2A

−
−2

)
|a2〉, (3.14)

wherea2 = 2r −1 + 3
2δ is the tachyonic level-2 root. Furthermore, we have adopted the

convention from [17] according to which the DDF operators are always understood to
be the ones appropriate for the states on which they act (i.e.A−

m(r −1) on the l.h.s. and
A−

m(a2) on the r.h.s.).
The first commutator generates an element of the root space associated with3 =

2r −1 + 3δ. But since this space is one-dimensional, mult(2r −1 + 3δ) = π1(3) = 1,
we infer that we do not need an additional imaginary simple root here (recall that
mult(2r −1 + nδ) = mult〈2, n − 2〉 = π1(2n − 3)). This is, of course, a rather trivial
observation because〈2, 1〉 is not a fundamental root anyhow.

The next two commutators leading to states in the root space associated with3 =
2r −1 + 4δ are already more involved. By taking suitable linear combinations we obtain
A−

−3A
−
−2|a2〉 andA−

−5|a2〉, which, as one can easily convince oneself, already span the
full two-dimensional root space, mult(2r −1 + 4δ) = π1(5) = 2. Consequently, this root
space can be entirely generated by commutators of level-1 missing states, which means
thatµ2,2 = 0. This is the only root in the fundamental Weyl chamber which is not simple.

Let us finally consider a generic example. The commutators (3.12)–(3.14) give states
with momentum3 = 2r −1 + 5δ. Note that the commutators (3.12) and (3.13) are
states of spin 3/2sl2-modules built on the vacuum vectorsA−

−5|r −1〉 andA−
−3A

−
−2|r −1〉,

respectively. In the notations of the last section (see Eq. (2.21)), they span the two-
dimensional spaceR(3), whereasH(3) is one-dimensional with basis element given
by the commutator (3.14) of two level-1 vacuum vectors. By building suitable linear
combinations these states can be simplified somewhat; in this way, we get the three
linearly independent states (

A−
−7 + 3

5A
−
−5A

−
−2

) |a2〉 , (3.15)(
A−

−3A
−
−2A

−
−2 − 7

5A
−
−5A

−
−2

) |a2〉 , (3.16)(
A−

−4A
−
−3 + 16

5 A
−
−5A

−
−2

) |a2〉 . (3.17)
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However, we know that the full root space has dimensionπ1(7) = 4, generated by the
longitudinal DDF operatorsA−

−3A
−
−2A

−
−2, A

−
−4A

−
−3, A

−
−5A

−
−2, A

−
−7. HenceJ (3) must

be one-dimensional. Indeed, the physical state(−2457413A−
−7 + 1354090A−

−5A
−
−2 − 1613422A−

−4A
−
−3 + 157593A−

−3A
−
−2A

−
−2

) |a2〉
is orthogonal to the above three states and cannot be generated by commutation. Hence
it is a missing state which must be added by hand to arrive at the total count of four. We
conclude that 2r −1 + 5δ is an imaginary simple root with simple multiplicityµ2,3 = 1.

Of course, these explicit results are in complete agreement with the Weyl–Kac–
Borcherds formula predictingµ2,2 = 0 andµ2,3 = 1 (cf. Fig. 4).

3.4. Direct sums of lattices.We conclude this section with a remark about direct sums
of lattices and how this translates into the associated Lie algebras of physical states.

Suppose we have two lattices31 and32. Then the direct sum

3 := 31 ⊕ 32

enjoys the following properties (see e.g. [28]):

(i) rank3 = rank31 + rank32;
(ii) sgn3 = sgn31 + sgn32;
(iii) det 3 = (det31)(det32);
(iv) 3 is even iff both31 and32 are even ;

where sgn denotes the signature of a lattice. For3 to be even Lorentzian we shall
therefore assume that31 is even Lorentzian and32 is even Euclidean. For example,
the root lattice ofE10 can be decomposed into a direct sum of the unique even selfdual
Lorentzian latticeII1,1 in two dimensions and theE8 root lattice. More generally, we
have

II8n+1,1 = II1,1 ⊕ 08n,

where08n denotes an even selfdual Euclidean lattice of rank 8n.11

We would like to answer the question how the Lie algebra of physical states in
F3 := F31 ⊗ F32 is built up from the states inF31 andF32. This amounts to rewriting
bothP1

3 andL−1P0
3 as direct sums of tensor products of subspaces ofF3i

. Using the
facts about tensor products of vertex algebras [14] and thatFh

32
= 0 for h < 0, we

deduce that any state inψ ∈ P1
3 is a finite linear combination of the form

ψ =
H∑

h=0

ψ1−h
1 ⊗ ψh

2 ,

with ψh
i ∈ Fh

3i
and satisfying

11 As is well known (see e.g. [10]), there exists only one such lattice forn = 1 (associated withE8), two for
n = 2 (associated withE8 ⊕ E8 and Spin(32)/Z2, resp.), and 24 forn = 3 (the 24 Niemeier lattices with the
famous Leech lattice as one of them). For higher rank, an explicit classification seems impossible. This is due
to the explosive growth of the number of even selfdual Euclidean lattices according to the Minkowski–Siegel
mass formula which, for example, gives us 8× 107 as a lower limit on the number of such lattices with rank
32.
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ψ1−h
1 ⊗ L2,nψ

h
2 = 0 for 0≤ h < n,

L1,nψ
1−h
1 ⊗ ψh

2 + ψ1−h−n
1 ⊗ L2,nψ

h+n
2 = 0 for 0≤ h ≤ H − n,

L1,nψ
1−h
1 ⊗ ψh

2 = 0 forH − n < h ≤ H,

(3.18)

for all n > 0. We immediately see thatψ0
2 ∈ P0

32
= R|0〉2 andψ1−H

1 ∈ P1−H
31

, but it
is difficult to extract from the above relations similar information about the other states.
Nonetheless, the last two observations are sufficient to pinpoint the gnome Lie algebra
insideg3. Namely, by considering the special caseψ = ψ1

1 ⊗ |0〉2, we can immediately
infer thatgII1,1

∼= gII1,1 ⊗|0〉2 ⊂ g3. So the gnome Lie algebra is a Borcherds subalgebra
of any Lie algebra of physical states for which the root lattice can be decomposed into a
direct sum in such a way thatII1,1 arises as a sublattice. This in particular holds for the
Lie algebras based on the latticesII9,1, II17,1, andII25,1, respectively, the latter being
the celebrated fake monster Lie algebra [5].

We can explore the decomposition ofP1
3 further by the use of the DDF construction.

Let us suppose that31 is the latticeII1,1 and that32 has rankd−2 (> 0). We shall write
vectors in3 as (r , v), wherer ∈ II1,1 andv ∈ 32, respectively, so that (r , v)2 = r 2 + v2.
We wish to find a tensor product decomposition of the subspace ofP1

31
which has fixed

momentum componentr ∈ 31, i.e., of the space

P1,r
3 := P1

3 ∩
⊕
v∈32

F (r ,v)
3 .

The idea is to perform the DDF construction in a clever way such that thed−2 transversal
directions all belong to the Euclidean lattice32 and thus the transversal DDF operators
can be identified with the string oscillators inF32. We start from the DDF decomposition
r = a` − (

1 − 1
2r 2

)
k` (see Eq. (3.1)), which gives rise to the decomposition

(r , v) =
(
a` − 1

2v2k`, v
) − (

1 − 1
2(r , v)2

)
(k`, 0)

within 3. A suitable set of polarization vectors is obtained from any orthonormal basis
{ξi|1 ≤ i ≤ d− 2} of R ⊗Z 32 by puttingξi ≡ (0, ξi). From Thm. 1 it follows that

P1,r
3 = span{Ai1−m1

· · ·AiM−mM
A−

−n1
· · ·A−

−nN
|a` − 1

2v2k`, v〉
|v ∈ 32,m1 + . . . + nN = 1− 1

2(r , v)2}.
For fixedh := 1

2v2 +
∑

ama, we may identify

Ai1−m1
· · ·AiM−mM

|a` − hk`, v〉 ∼= |a` − hk`〉1 ⊗ αi1−m1
· · ·αiM−mM

|v〉2,

or
span{Ai1−m1

· · ·AiM−mM
|a` − hk`, v〉} ∼= |a` − hk`〉1 ⊗ Fh

32
.

If we finally use the fact thatPh
31

for any integerh is generated by longitudinal operators
we conclude that

P1,r
3

∼=
1− 1

2 r 2⊕
h=0

P1−h,(r )
31

⊗ Fh
32

for anyr ∈ 31. There is one subtlety here concerning the central charge. The longitudinal
Virasoro algebra occurring on the right-hand side as spectrum-generating algebra for
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anyPh
31

does not have the naive central chargec = 24 (like for the gnome Lie algebra)
but ratherc = 26−d, the extra contribution coming from the transversal space32. So for
d = 26 we get modulo null states the trivial representation of the longitudinal Virasoro

algebra and henceg3
r ∼= F1− 1

2 r 2

32
in agreement with the literature [6].

4. Missing Modules forE10

We now turn to the hyperbolic Kac–Moody algebrag(A) = E10, which arises as the
maximal Kac–Moody subalgebra of the Borcherds algebragII9,1 of physical states as-
sociated with a subcritical open bosonic string moving in 10-dimensional space-time
fully compactified on a torus, so that the momenta lie on the latticeII9,1. As such, it
plays the same role forgII9,1 assl2 did for the gnome Lie algebra, but is incomparably
more complicated. Again, the central idea to split the larger algebragII9,1 intoE10 and
its orthogonal complement which can be decomposed into a direct sum ofE10 lowest
and highest weight modules, respectively. Since the root lattice ofE10 is identical with
the momentum latticeII9,1, there is no need to extendE10 by outer derivations. Thus
we start from

gII9,1 = E10 ⊕ M,

where the space of missing statesM decomposes as

M = M+ ⊕ M−, M± =
⊕

v∈H±

U(E10)v;

each of the (irreducible)E10 modulesU(E10)v is referred to as a “missing module”. To
be sure, this decomposition still does not provide us with an explicit realization of the
E10 algebra since we know as little about theE10 modules as about theE10 itself (see
[13] for some recent progress). On the other hand, we do gain insight by combining
the unknown algebra and its unknown modules into something which we understand
very well, namely the Lie algebra of physical statesgII9,1 for which a basis is explicitly
given in terms of the DDF construction. Moreover, we will formulate a conjecture
according to which all higher-level missing states can be obtained by commuting the
missing states at level 1 whose structure is completely known. Our explicit tests of
this conjecture for the root spaces of37 and31 constitute highly non-trivial checks,
but of course major new insights are required to settle the question for higher levels.
We should mention that the results of the previous section immediately show that the
conjecture fails for the gnome Lie algebragII1,1. As we have already pointed out, the
sl2 module structure of the missing states forgII1,1 is not especially enlightening due to
the “smallness” ofsl2. Here the situation is completely different, becauseE10 and its
representations are “huge” (even in comparison with irreducible representations of the
affineE9 subalgebra!). If our conjecture were true it would not only take us a long way
towards a complete understanding ofE10 but also provide another hint thatE10 is very
special indeed. Conversely, it would also allow us to understand the Borcherds algebra
gII9,1 by exhibiting its complete set of imaginary simple roots. In addition to the fake
monster, the true monster, and the gnome Lie algebra, this would be the fourth example
of an explicit realization of a Borcherds algebra.
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4.1. Basics ofE10. As the momentum lattice for the completely compactified string we
shall take the unique 10-dimensional even unimodular Lorentzian latticeII9,1. It can be
defined as the lattice of all pointsx = (x1, . . . , x9|x0) for which thexµ’s are all inZ or all
in Z+ 1

2 and which have integer inner product with the vectorl = (1
2 , . . . ,

1
2 | 1

2), all norms
and inner products being evaluated in the Minkowskian metricx2 = x2

1 + . . . + x2
9 − x2

0
(cf. [32]).

To identify the maximal Kac–Moody subalgebra of the Borcherds algebragII9,1 of
physical string states we have to determine a set of real simple roots for the lattice.
According to [9], such a set is given by the ten vectorsr −1, r 0, r 1, . . . , r 8 in II9,1 for
which r 2

i = 2 andr i ·ρ = −1, where the Weyl vector isρ = (0, 1, 2, . . . , 8|38) with
r 2 = −1240.12 Explicitly,

r −1 = ( 0, 0, 0, 0, 0, 0, 0, 1,−1 | 0),
r 0 = ( 0, 0, 0, 0, 0, 0, 1,−1, 0 | 0),
r 1 = ( 0, 0, 0, 0, 0, 1,−1, 0, 0 | 0),
r 2 = ( 0, 0, 0, 0, 1,−1, 0, 0, 0 | 0),
r 3 = ( 0, 0, 0, 1,−1, 0, 0, 0, 0 | 0),
r 4 = ( 0, 0, 1,−1, 0, 0, 0, 0, 0 | 0),
r 5 = ( 0, 1,−1, 0, 0, 0, 0, 0, 0 | 0),
r 6 = (−1,−1, 0, 0, 0, 0, 0, 0, 0 | 0),
r 7 = ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 | 1

2),
r 8 = ( 1,−1, 0, 0, 0, 0, 0, 0, 0 | 0).

These simple roots indeed generate the reflection group ofII9,1. The corresponding
Coxeter–Dynkin diagram associated with the Cartan matrixaij := r i·r j looks as follows:

u u u u u u u u u
u

The algebrag(A) is the hyperbolic Kac–Moody algebraE10, defined in terms of gen-
erators and relations (2.16). Moreover, from| detA| = 1 we infer that the root lattice
Q(E10) indeed coincides withII9,1, and hencêg(A) ≡ g(A) here.

TheE9 null root is

δ =
8∑

i=0

nir i = (0, 0, 0, 0, 0, 0, 0, 0, 1 | 1),

where the marksni can be read off from[
3

0 1 2 3 4 5 6 4 2

]
.

The fundamental Weyl chamberC ofE10 is the convex cone generated by the fundamental
weights3i,13

3i = −
8∑

j=−1

(A−1)ijr j for i = −1, 0, 1, . . . 8,

12 Note thatρ fulfills all the requirements of a grading vector forgΠ 9,1.
13 Notice that our convention is opposite to the one adopted in [25]. The fundamental weights here are

positiveand satisfy3i ·r j = −δij .
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whereA−1 is the inverse Cartan matrix. Thus,

3 ∈ C ⇐⇒ 3 =
8∑

i=−1

ki3i,

for ki ∈ Z+. A special feature ofE10 is that we need not distinguish between root and
weight lattice, since these are the same for self-dual root lattices.14 Note also that the
null root plays a special role: the first fundamental weight is just3−1 = δ, and all
null-vectors inC must be multiples of3−1 since32

i < 0 for all other fundamental
weights.

We can employ the affine null root to introduce aZ-grading ofE10. If we introduce
the so-called level̀ of a root3 ∈ 1(E10) by

` := −3·δ,
then we may decompose the algebra into a direct sum of subspaces of fixed level, viz.

E10 =
⊕
`∈Z

E10
[`] ,

where
E10

[0] ∼= E9, E10
[`] :=

⊕
3∈1(E10)
−3·δ=`

E10
(3) for ` 6= 0.

Besides the obvious fact that` counts the number ofe−1 (resp.f−1) generators in
multiple commutators, the level derives its importance from the fact that it grades the
algebraE10 with respect to its affine subalgebraE9 [12]. The subspaces belonging to
a fixed level can be decomposed into irreducible representations ofE9, the level being
equal to the eigenvalue of the central term of theE9 algebra on this representation (hence
the fullE10 algebra containsE9 representations ofall integer levels!). Let us emphasize
that for general hyperbolic algebras there would be a separate grading associated with
every regular affine subalgebra, and therefore the graded structure would no longer be
unique.

Using the Jacobi identity it is possible to represent any subspace of fixed level in the
form

E10
[`] =

[
E10

[1] ,
[
E10

[1] , . . .
[
E10

[1] , E10
[1]︸ ︷︷ ︸

` times

]]
. . .

]
,

for ` > 0, and in an analogous form for` < 0. This simple fact turns out to be extremely
useful in connection with the DDF construction, as soon as one wishes to effectively
construct higher-level elements ofE10.

Little is known about the general structure of this algebra. Partial progress has been
made in determining the multiplicity of certain roots. Although the general form of the
multiplicity formulas for arbitrary levels appears to be beyond reach for the moment,
the following results for levels̀ ≤ 2 have been established. For` = 0 and` = 1, we
have multE10(3) = p8(1 − 1

232) (see [24]), i.e., the multiplicities are just given by the
number of transversal states; as was demonstrated in [17] the corresponding states are
indeed transversal. For` = 2, it was shown in [25] that multE10(3) = ξ(3− 1

232), where∑
n ξ(n)qn =

[
1 − φ(q2)

/
φ(q4)

]/
φ(q)8, φ(q) denoting the Euler function as before.

14 In the remainder, we will consequently denote arbitrary roots by3 and reserve the letterr for real roots.
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Beyond` = 2, no general formula seems to be known although for` = 3 the multiplicity
problem was recently solved [2]. However, the resulting formulas are somewhat implicit
and certainly more cumbersome than the above results. Of course, if one is only interested
in a particular root, the relevant multiplicity can always be determined by means of the
Peterson recursion formula (see e.g. [27]).

4.2. Lowest and highest weight modules ofE10. We know from Thm. 5 thatM+ (resp.
M−) decomposes into a direct sum of lowest (resp. highest) weight modules forE10.
As before,H± denotes the subspace spanned by the corresponding lowest and highest
weight states, respectively. Clearly,H± inherits fromgII9,1 the grading by the level,

H± =
⊕
`≷0

H[`] , H[`] := H ∩ gII9,1
[`] .

Since the Chevalley involution provides an isomorphism betweenH[`] andH[−`] and
since we are ultimately interested in identifying the imaginary simple roots and their
multiplicities, it is sufficient to restrict the explicit analysis toH+. We will first study the
structure of the spaceH[1] and will explicitly demonstrate how it is made up of purely
longitudinal DDF states. Intuitively, this is what one should expect. Recall that the level-
1 sector ofE10 is isomorphic to the basic representation ofE9 (cf. [12]); in terms of the
DDF construction, it is generated by the transversal states built on|r −1〉, i.e., it is spanned
by all states of the formAj1

−m1
· · ·Ajk

−mk
|r −1〉 and their orbits under the action of theE9

affine Weyl group [17]. Thus the longitudinal states at level 1 do not belong toE10 and
must be counted as missing states. Furthermore, the level-1 transversal DDF operators
can be identified with the adjoint action of appropriateE9 elements (corresponding to
multiples of the affine null root). Hence the purely longitudinal DDF states built on the
level-1 roots ofE10 are candidates for missing lowest weight vectors. But apparently
this set can be further reduced, because each (real) level-1 root ofE10 is conjugated to
some root of the formr −1 +Mδ (M ≥ 0) under the action of the affine Weyl group.
So we end up with purely longitudinal states built on|r −1〉 – the same set we already
encountered in Sect. 3.3 for the case of the gnome Lie algebra! And indeed, we have

Proposition 1. The space of missing level-1 lowest weight vectors consists of purely
longitudinal DDF states built on|r −1〉,

H[1] = span
{
A−

−n1
· · ·A−

−nN
|r −1〉

∣∣∣n1 ≥ n2 ≥ . . . ≥ nN ≥ 2
}
,

i.e., it is (modulo null states) the longitudinal Virasoro–Verma module with|r −1〉 as
highest weight vector. In particular,r −1 +nδ for anyn ≥ 2 is an imaginary simple root
for gII9,1 with multiplicityµ(r −1 + nδ) = π1(1 +n).

Proof. Let us consider the state

v3 := A−
−n1

(r −1) · · ·A−
−nN

(r −1)|r −1〉
with momentum3 := r −1+Mδ,M :=

∑
j nj > 1. We first check that, under the adjoint

action ingII9,1, it is a lowest weight vector for the basic representation ofE9. Acting with
either of the affine Chevalley generatorsei = |r i〉 andfi = −| − r i〉 (i = 0, 1, . . . , 8) on
v3, we can move it through the longitudinal DDF operators by the use of the general
“intertwining relation” [18]
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Er
nA

−
m(r −1) = A−

m(a′)Er
n,

wherea′ := r −1 + r + δ andEr
n denotes the step operator associated with the real

affine rootr + nδ. Thereby we end up with the same state but where the Chevalley
generator now acts on|r −1〉. The latter, however, is just a lowest weight vector for the
basic representation ofE9, viz.

fi|r −1〉 = 0, e
1−r i·r −1

i |r −1〉 = 0, for i = 0, 1, . . . , 8 ,

which is readily seen by inspection of the momenta. Indeed, (r −1 − r i)2 =
(
r −1 + (1−

r i ·r −1)r i

)2
= 2(2− r i ·r −1) ≥ 4, contradicting the mass shell condition (2.4). Since

hi(v3) = r i ·3v3 = −δi0v3, we conclude thatv3 is a vacuum vector for the adjoint
action ofE9 generating the basic representation. According to [17] it is given by the
transversal states built onv3, i.e.,U(E9)v3 is spanned by the statesAj1

−m1
· · ·Ajk

−mk
v3,

whereAj
m ≡ Aj

m(r −1).
To show that the statev3 is a lowest weight vector for the fullE10 algebra, we have

to check the remaining two Chevalley generators. Again by momentum conservation,
the statef−1(v3) = −[| − r −1〉, v3

]
has momentumMδ. But since the physical states

associated with lightlike momentum are purely transversal and are elements ofE10, the
resulting missing state must be a null state (or vanishes identically). WithingII9,1, we
therefore havef−1(v3) = 0. On the other hand, acting with the Chevalley generatore−1
onv3 repeatedly, sayk times, we obtain a state of momentumλ = (1 +k)r −1 +Mδ. By
the mass shell condition, this state identically vanishes forλ2 = 2(1+k)(1+k−M ) > 2,
i.e.,k > M − 1 = 1− r −1·3. Fork = M − 1, the momentum vectorλ is lightlike, and
by the same reasoning as before we conclude that the state is null also for this value of
k.

Altogether, we have shown that

fi(v3) = (ei)
1−r i·3(v3) = 0 for i = −1, 0, 1, . . . , 8 .

These are the defining conditions forv3 to be a lowest weight state forE10. Since
adhi = r i ·p, it is clear that the lowest weight is just3. The fact thatf−1 annihilates
the statev3 in particular implies that we can “only go up” in level (for positive level
lowest weight states) and that it is not possible to cross the line` = 0 by the action of
E10. �

In the context of representation theory of hyperbolic Kac–Moody algebras (see [13]),
the above result provides the first examples of explicit realizations of unitary irreducible
lowest weight representations of the hyperbolic algebraE10. More specifically, they are
associated with lowest weights30 +m3−1 for anym ≥ 0. By commutation we even
obtain an infinite set of missing lowest-weight vectors with lowest weights`30 +m3−1
for any` ≥ 1 andm ≥ 0, on which we can build irreducibleE10 modules. Analogous
statements can be also made for other hyperbolic algebras when we replaceII9,1 by the
root lattice of the hyperbolic algebra. Due to the string realization this lattice should be
even and Lorentzian, conditions which rule out some hyperbolic algebras (see e.g. [30]
for a list of them).

The next question is now whethergII9,1 also provides realizations of other lowest
weight representations ofE10. The results of the following section suggest that this may
not be the case. More specifically, we are led to make the following
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Conjecture 1.There are no imaginary simple roots forgII9,1 at level 2 or higher, i.e., the
Lie algebra of missing lowest weight states,H+, is a free algebra generated by the states
given in Prop. 1.

Note that for the true monster Lie algebra the analogous claim is actually valid: the
imaginary simple roots are all of level 1. On the other hand, the conjecture obviously
fails for the gnome Lie algebra. The reason for this is that the root spaces in the former
example are much bigger (due to the “hidden” extra 24 dimensions of the moonshine
module), even though the maximal Kac–Moody algebra in both examples is the same,
namelysl2. This appears to suggest thatE10 has just the right size so that the missing
modules built on elements of the free Lie algebra overH[1] precisely fill upE10 to the
full Lie algebra of physical states.

At present, we are not aware of any convincing general argument in favour of the
above conjecture. In the next subsection, however, we will verify it for two explicitly
constructed non-trivial root spaces. More specifically, we will consider a 201 = 192 + 9
dimensional and a 780 = 727+53 dimensional level-2 root space, respectively, where the
first contribution in each sum equals the dimension of theE10 root space and the second
term is the dimension of the space of missing states. We will show for both examples that
all the missing states are contained inE10 modules built on level-1 missing lowest weight
vectors or on commutators of them. Of course, these two zeros could be accidental like
in the case of the gnome Lie algebra where we also found a zero at level 2 (see Fig. 4).
In the latter example, this was not unexpected since the root multiplicities in this region
of the fundamental cone are very low, anyway. For theE10 algebra, by contrast, there is
no apparent reason why all missing states in certain level-2 root spaces should belong to
E10 modules of the conjectured type. The fact that they do in the cases we have studied
constitutes our primary motivation for the above conjecture.

4.3. Examples:37 and31. We use the same system of polarization vectors and DDF
decomposition as in [17], which we recall here for convenience: Explicitly,37 is given
by

37 =

[
7

2 4 6 8 10 12 14 9 4

]
= (0, 0, 0, 0, 0, 0, 0, 0, 0 | 2),

so32
7 = −4. Its decomposition into two level-1 tachyonic roots is37 = r +s+2δ, where

r := r −1=

[
0

1 0 0 0 0 0 0 0 0

]
= (0, 0, 0, 0, 0, 0, 0, 1,−1 | 0),

s:=
[

1
1 2 2 2 2 2 2 1 0

]
= (0, 0, 0, 0, 0, 0, 0,−1,−1 | 0).

Sincen = 1 − 1
232

7 = 3, we have the DDF decomposition37 = a − 3k, where
k := − 1

2δ and

a := r + s− k = (0, 0, 0, 0, 0, 0, 0, 0,− 3
2 | 1

2).

As for the three sets of polarization vectors associated with the tachyon momenta
|r 〉, |s〉 and|a〉, respectively, a convenient choice is
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ξα ≡ ξα(r ) = ξα(s) = ξα(a) for α = 1, . . . , 7 ,

ξ1 := (1, 0, 0, 0, 0, 0, 0, 0, 0 | 0),
...

ξ7 := (0, 0, 0, 0, 0, 0, 1, 0, 0 | 0);

ξ8(r ) := (0, 0, 0, 0, 0, 0, 0, 1, 1 | 1),

ξ8(s) := (0, 0, 0, 0, 0, 0, 0,−1, 1 | 1),

ξ8 ≡ ξ8(a) := (0, 0, 0, 0, 0, 0, 0, 1, 0 | 0).

The little group isW(37, δ) = W(D8) = S8o(Z2)7 of order 214315171. We only have
to evaluate the following commutator, whereε denotes a cocycle-factor:

[|s〉, A−
−2|r 〉

]
= ε

(
− 1

2
A−

−3 − 5
6
A8

−1A
8
−1A

8
−1 +

1
3
A8

−3 +
1
2

7∑
µ=1

Aµ
−1A

µ
−1A

8
−1

)
|a〉.

To identify the remaining missing states, we act on this state with the little Weyl group
(which leaves the longitudinal contribution invariant):S8 permutes all transversal po-
larizations, and hence generates another seven states. To see that the longitudinal state
can be separated from the transversal ones, we act withw0 · · · w5w8w6w5 · · · w0 on the
above state; this operation switches the relative sign between the transversal and the
longitudinal terms. Altogether we can thus isolate the following nine states:

A−
−3|a〉 1 state,

{2Ai
−3 − 8Ai

−1A
i
−1A

i
−1 + 3Ai

−1

∑8
j=1A

j
−1A

j
−1}|a〉 8 states.

We use Roman lettersi, j running from 1 to 8 to label the transversal indices. These
nine states indeed span the orthogonal complement of the 192-dimensional root space
E10

(37) in gII9,1
(37) as was already noticed in [19] where the result was derived by a

completely different approach based on multistring vertices and overlap identities.
Our second (more involved) example is the fundamental root31 given by

31 =

[
9

2 4 6 9 12 15 18 12 6

]
= (0, 0, 0, 0, 0, 0, 1, 1, 1 | 3),

hence32
1 = −6 (our conventions used here are the same as in [1]). We have the DDF

decomposition31 = a − 4k, wherek = − 1
2δ and

a := 31 + 4k =
(
0, 0, 0, 0, 0, 0, 1, 1,−1|1)

.

We will need two different decompositions of31 into level-1 roots, namely:

1. 31 = r + s+ 3δ with

r :=

[
0

1 0 0 0 0 0 0 0 0

]
= (0, 0, 0, 0, 0, 0, 0, 1, −1 | 0),

s :=

[
0

1 1 0 0 0 0 0 0 0

]
= (0, 0, 0, 0, 0, 0, 1, 0, −1 | 0);
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2. 31 = r ′ + s′ + 2δ with

r ′ :=

[
0

1 1 1 0 0 0 0 0 0

]
= (0, 0, 0, 0, 0, 1, 0, 0, −1 | 0),

s′ :=

[
3

1 1 1 3 4 5 6 4 2

]
= (0, 0, 0, 0, 0, −1, 1, 1, 0 | 1).

Although we will need several sets of polarization vectors adjusted to these different
decompositions, we will present the basis using the following set, which is adjusted to
the first decomposition:

ξα ≡ ξα(r ) = ξα(s) = ξα(a) for α = 1, . . . , 7,

ξ1 = (1, 0, 0, 0, 0, 0, 0, 0, 0 | 0),
...

ξ6 = (0, 0, 0, 0, 0, 1, 0, 0, 0 | 0),

ξ7 = 1
2

√
2(0, 0, 0, 0, 0, 0, 1, 1, 1 | 1),

ξ8(a) = 1
2

√
2(0, 0, 0, 0, 0, 0, 1, −1, 0 | 0),

ξ8(r ) = 1
2

√
2(0, 0, 0, 0, 0, 0, −1, 1, 1 | 1),

ξ8(s) = 1
2

√
2(0, 0, 0, 0, 0, 0, 1, −1, 1 | 1).

The little Weyl group,W(31, δ), which is isomorphic toZ2×W(E7) in this case, acts on
this set by permutingξ1, . . . ξ6, as aZ2 onξ8 and by a more complicated transformation
onξ7. We worked out the following commutator equations,ε denoting some irrelevant
cocycle factor:[|s〉, A−

−3|r 〉
]

= ε
{

1
8

∑7
µ,ν=1A

µ
−1A

µ
−1A

ν
−1A

ν
−1 − 1

2

√
2A8

−1A
−
−3 − 3

4A
8
−1A

8
−1A

−
−2

− 3
4

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1 − 5

24A
8
−1A

8
−1A

8
−1A

8
−1

− 5
6A

8
−1A

8
−3 + 1

4

∑7
µ=1A

µ
−1A

µ
−1A

−
−2 + 1

2

∑7
µ=1A

µ
−1A

µ
−3

}
|a〉,

[|s〉, A8
−1A

−
−2|r 〉

]
= ε

{
7
64

√
2A8

−1A
8
−1A

8
−1A

8
−1 − 5

32

√
2

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1

+ 7
16

√
2A8

−1A
8
−3 − 1

16

√
2

∑7
µ=1A

µ
−1A

µ
−3

+ 1
16

√
2A−

−2A
−
−2 − 1

64

√
2

∑7
µ,ν=1A

µ
−1A

µ
−1A

ν
−1A

ν
−1

− 3
4A

8
−1A

8
−1A

8
−2 + 1

4

∑7
µ=1A

µ
−1A

µ
−1A

8
−2 − 1

4

√
2A−

−4

}
|a〉,[

A8
−1|s〉, A−

−2|r 〉
]

= ε
{

− 3
4A

8
−1A

8
−1A

8
−2 + 1

4

∑7
µ=1A

µ
−1A

µ
−1A

8
−2 − 1

16

√
2A−

−2A
−
−2

− 7
16

√
2A8

−1A
8
−3 − 7

64

√
2A8

−1A
8
−1A

8
−1A

8
−1

+ 1
64

√
2

∑7
µ,ν=1A

µ
−1A

µ
−1A

ν
−1A

ν
−1 + 1

16

√
2

∑7
µ=1A

µ
−1A

µ
−3

+ 5
32

√
2

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1 + 1

4

√
2A−

−4

}
|a〉,[

Aµ
−1|s〉, A−

−2|r 〉
]

= ε
{

− 1
4

∑7
ν=1A

ν
−1A

ν
−1A

µ
−2 + 1

2

√
2A8

−1A
µ
−3 − 1

6

√
2Aµ

−1A
8
−3

− 1
2A

µ
−1A

−
−3 + 3

4A
8
−1A

8
−1A

µ
−2 + 1

12

√
2Aµ

−1A
8
−1A

8
−1A

8
−1

− 1
4

√
2

∑7
ν=1A

ν
−1A

ν
−1A

µ
−1A

8
−1

}
|a〉,



Missing Modules, the Gnome Lie Algebra, andE10 63

[|s〉, Aµ
−1A

−
−2|r 〉

]
= ε

{
− 3

4A
8
−1A

8
−1A

µ
−2 + 1

4

∑7
ν=1A

ν
−1A

ν
−1A

µ
−2 + 1

2

√
2A8

−1A
µ
−3

− 1
6

√
2Aµ

−1A
8
−3 − 1

2A
µ
−1A

−
−3 + 1

12

√
2Aµ

−1A
8
−1A

8
−1A

8
−1

− 1
4

√
2

∑7
ν=1A

ν
−1A

ν
−1A

µ
−1A

8
−1

}
|a〉.

We need one more commutator, associated with a second DDF decomposition. Namely,[|s′〉, A−
−2|r ′〉] = ε

{
1
32

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1 + 1

64A
8
−1A

8
−1A

8
−1A

8
−1

+ 1
16

∑7
µ=1A

µ
−1A

µ
−3 + 1

64

∑7
µ,ν=1A

µ
−1A

µ
−1A

ν
−1A

ν
−1

− 1
16A

−
−2A

−
−2 − 1

3

√
3A7

−1A
−
−3 + 1

3A
6
−1A

−
−3

√
6 + 1

6

√
2A6

−3A
7
−1

+1
4

√
2A6

−1A
7
−1A

8
−1A

8
−1 − 1

3

√
2A6

−1A
7
−1A

7
−1A

7
−1

+1
6

√
2A6

−1A
7
−3 + 1

16A
8
−3A

8
−1 − 1

3A
6
−3A

6
−1 − 1

4A
6
−1A

6
−1A

8
−1A

8
−1

− 1
6A

7
−3A

7
−1 − 1

8A
7
−1A

7
−1A

8
−1A

8
−1 + 1

3A
6
−1A

6
−1A

6
−1A

6
−1

+ 1
12A

7
−1A

7
−1A

7
−1A

7
−1 − 1

4

∑7
µ=1A

µ
−1A

µ
−1A

6
−1A

6
−1

− 1
8

∑7
µ=1A

µ
−1A

µ
−1A

7
−1A

7
−1 +A6

−1A
6
−1A

7
−1A

7
−1 + 1

4A
−
−4

− 2
3

√
2A6

−1A
6
−1A

6
−1A

7
−1 + 1

4

√
2

∑7
µ=1A

µ
−1A

µ
−1A

6
−1A

7
−1

}
|a〉.

We displayed this result using the basis of polarization associated with the first decom-
position. Appropriate linear combinations and the little Weyl group action lead to the
following 53 states, spanning the orthogonal complement of the 727-dimensional root
spaceE10

(31) in gII9,1
(31). We use the following conventions to label the transversal

indices: Roman lettersi, j, . . . run from 1 to 8, Greek letters from the middle of the
alphabetµ, ν, . . . run from 1 to 7 and Greek letters from the beginning of the alphabet
α, β, . . . run from 1 to 6.

Ai
−1A

−
−3|a〉 8 states,

{A8
−1A

8
−1A

i
−2 − 1

3

∑7
µ=1A

µ
−1A

µ
−1A

i
−2}|a〉 8 states,

{A−
−2A

−
−2 − 4A−

−4}|a〉 1 state,

{Aµ
−1A

8
−1A

8
−1A

8
−1 − 3

∑7
ν=1A

ν
−1A

ν
−1A

µ
−1A

8
−1 − 2Aµ

−1A
8
−3

+6A8
−1A

µ
−3}|a〉 7 states,

{Aα
−1A

7
−3 +A7

−1A
α
−3 − 2Aα

−1A
7
−1A

7
−1A

7
−1 − 4Aα

−1A
α
−1A

α
−1A

7
−1

+3
2

∑8
i=1A

i
−1A

i
−1A

α
−1A

7
−1}|a〉 6 states,

{Aα
−3A

α
−1 − 3

2A
8
−3A

8
−1 + 1

2A
7
−3A

7
−1 −Aα

−1A
α
−1A

α
−1A

α
−1

− 1
4A

7
−1A

7
−1A

7
−1A

7
−1 + 3

4

∑8
i=1A

i
−1A

i
−1A

α
−1A

α
−1

+3
8

∑8
i=1A

i
−1A

i
−1A

7
−1A

7
−1 −Aα

−1A
α
−1A

7
−1A

7
−1

+3
8

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1 − 3

8A
8
−1A

8
−1A

8
−1A

8
−1}|a〉 6 states,

{Aα
−1A

β
−3 +Aβ

−1A
α
−3 + 1

2A
α
−1A

β
−1A

β
−1A

β
−1 + 1

2A
α
−1A

α
−1A

α
−1A

β
−1

− 3
2

∑6
γ=1

γ 6=α,β
Aα

−1A
β
−1A

γ
−1A

γ
−1 + 3

2A
α
−1A

β
−1A

8
−1A

8
−1

+3
2A

α
−1A

β
−1A

7
−1A

7
−1 + 4Aγ

−1A
δ
−1A

ε
−1A

η
−1}|a〉 15 states,

{ 4
3A

8
−1A

8
−3 − 1

8

∑7
µ=1A

µ
−1A

µ
−1A

−
−2 + 3

8A
8
−1A

8
−1A

−
−2

+1
3A

8
−1A

8
−1A

8
−1A

8
−1 + 1

4

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1}|a〉 1 state,

{7A8
−1A

8
−3 + 7

4A
8
−1A

8
−1A

8
−1A

8
−1 − 5

2

∑7
µ=1A

µ
−1A

µ
−1A

8
−1A

8
−1

− 1
4

∑7
µ,ν=1A

µ
−1A

µ
−1A

ν
−1A

ν
−1 − ∑7

µ=1A
µ
−1A

µ
−3}|a〉 1 state.
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These are precisely the missing states found in [1].

Acknowledgement.H.N. would like to thank R. Borcherds for discussions related to this work.

Note added in proof
We have meanwhile performed an independent test of the Conjecture 1 by means of
a modified denominator formula, establishing its validity for all roots of norm≥ −8.
However, the conjecture fails for roots of norm≤ −10. See O. B̈arwald, R.W. Gebert and
J. Niocolai, “On the Imaginary Simple Roots of the Borcherds AlgebragII9,1”. Nuclear
PhysicsB510, 721–738 (1998).
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