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Finding apparent horizons in dynamic 3D numerical spacetimes
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We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of
solving for the partial differential equation describing the location of the apparent horizons, we expand the
closed 2D surfaces in terms of symmetric trace-free tensors and solve for the expansion coefficients using a
minimization procedure. Our method is applied to a number of different spacetimes, including numerically
constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D
rotating, and colliding black holes in Cartesian coordinates.@S0556-2821~98!01414-3#
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I. INTRODUCTION

Black holes are among the most fascinating prediction
the theory of general relativity. The black holes most like
to be observed by future gravitational wave observato
@Laser Interferometric Gravitational Wave Observato
~LIGO! and VIRGO@1## are those in highly dynamical evo
lutions, such as two colliding black holes. Moreover, eve
which are important for observations~i.e., events that occu
more frequently and emit stronger radiation! are not ex-
pected to have a high degree of symmetry; for example,
inspiraling coalescence is a more probable scenario than
axisymmetric head-on collision of two black holes. The m
powerful tool in studying such highly dynamical and intri
sically non-linear events is numerical treatment.

The essential characteristics of a black hole are its h
zons, in particular, the apparent horizon~AH! and the event
horizon ~EH!. One needs to determine the location and
structure of the EH’s in numerical studies to understand
properties of black holes, and indeed even to assert the e
tence of the holes. Algorithms for doing this have recen
been developed@2,3#. In contrast, the problem of determin
ing the location of the AH in a general numerically co
structed 3D spacetime has not yet been solved satisfacto
The present paper represents a step in this direction.

The apparent horizon is defined to be the outer-most m
ginally trapped surface@4#, a surface for which the diver
gence of the out-going null normal is zero@cf., Eq. ~1! be-
low#. The surface is defined locally in time, in contrast to t
EH, which can only be identified after the numerical sim
lation is complete. The AH, as a characteristic of black ho
can be usedduring the numerical construction of the spac
time. As discussed in a number of publications, appar
horizons are useful not only for studying the dynamics
black hole spacetimes@5#, but also for use as an inner boun
ary in numerical evolutions of black holes@6–8#. The so-
called apparent horizon boundary condition~AHBC! is cur-
rently being developed by many groups as a promis
0556-2821/98/58~2!/024003~12!/$15.00 58 0240
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method for use in computing the long term evolution of 3
black hole systems. With AHBC one would like to be able
track the AH throughout the numerical evolution. For the
reasons, it is important to develop efficient methods for
cating apparent horizons in numerically constructed spa
times.

There are many well developed methods for determin
the location of AH’s in lower dimensional spacetimes@9–
13#, e.g., in axisymmetry. The partial differential equatio
~PDE! defining a marginally trapped surface@Eq. ~1! below#
reduces to an ordinary differential equation~ODE! in the
axisymmetric case, and the symmetry conditions also p
vide boundary conditions for starting the integration of t
ODE. This simplifies tremendously the problem, and enab
the construction of efficient methods for finding the AH
However, as these methods rely strongly on the symm
assumptions, they are not generalizable to 3D; going fr
2D to 3D does not amount to simply adding one more spa
dimension. For the general 3D case, there is no symm
and the AH surface to be determined is aclosed surface
~hence no boundary conditions for starting the integrati!
described by a non-linear elliptical PDE. At present there
no efficient algorithms for solving such a partial differenti
problem in general.

We are aware of three independent efforts in determin
the AH in the general 3D case. The first method is based
an expansion of the AH surface in terms of spherical h
monics, with the expansion coefficients determined by
integral equation. The equation is then solved iterativ
@14,15#. The second method attempts to solve directly
elliptic PDE @16,17#. The third method@18# is based on ex-
panding the closed surface in terms of orthogonal functio
in particular symmetric trace-free~STF! tensors, and using a
minimization procedure to determine the expansion coe
cients. Variations on this idea were explored by Brill a
Lindquist @19# and by Eppley@20#. The essential difference
of this method with the first method is in the way the expa
sion coefficients are determined, and the use of STF ten
© 1998 The American Physical Society03-1
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PETER ANNINOSet al. PHYSICAL REVIEW D 58 024003
expansions for 3D Cartesian codes. The major advantag
this method is that the numerical solution of the minimiz
tion problem is much better understood than the correspo
ing PDE problem. In Ref.@18#, we demonstrated that ou
method can be efficiently applied to testbeds made up
analytically given data sets representing time-symme
slices of spacetime. In Ref.@21#, the convergence of the sym
metric trace-free tensor expansion for similar testbeds
studied in detail. In this paper, we follow up on our earl
work and give a more detailed discussion of this method.
also push the application of it in two directions:~1! Appli-
cation of the method to arbitrary data sets which are
time-symmetric~non-zero extrinsic curvature!, and~2! appli-
cation of the method to data obtained in actual numer
evolutions of dynamical spacetimes. The spacetimes
studied include Schwarzschild and Kerr black holes, bla
hole plus Brill wave, and Misner two black hole spacetim
in full 3D. We demonstrate that our method is in princip
applicable to general 311 spacetimes. Another method pre
ently under development also uses a series expansion
the present method, but it evolves the trial surface to the
in an algorithm that combines elements of the AH finder
@14# and of a curvature flow method@22#.

In Sec. II we discuss the formulation of our method, a
the numerical algorithm in detail. Section III gives the resu
of various testbed calculations, with Sec. III A concentrat
on initial data sets, and Sec. III B on spacetime evolutio
Section IV concludes with a discussion of where we stand
the construction of a general method for finding appar
horizons in 3D numerical relativity.

II. FORMULATION OF THE AH FINDER

A. Basic equations

Definingsm to be the outward-pointing spacelike unit no
mal of a two-sphereS embedded in a constant time sliceS
with unit normal nm, we can construct the outgoing nu
normal to any point onS as km5nm1sm. The surfaceS is
called amarginally trapped surface~MTS! if the divergence
of the outgoing null vectors vanishes¹mkm50, or equiva-
lently @23#

Q5Dis
i1Ki j s

isj2K50, ~1!

whereQ is the expansion of the outgoing rays,Di the cova-
riant derivative with respect to the 3-metricg i j , Ki j the ex-
trinsic curvature ofS, and K the trace ofKi j . The AH is
defined as the outer-most trapped surface.

First suppose we are searching for the AH of a sin
black hole in spherical coordinates. As the AH is topolo
cally a 2-sphere@24#, its position can be represented as

F~u,f,r !5r 22 f ~u,f!50. ~2!

The unit normalsi

si5g i j ] jF~gkl]kF] lF !21/2, ~3!

can then be expressed in terms of the functionf (u,f). Sub-
stituting Eqs.~2! and ~3! into Eq. ~1!, one gets an elliptic
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equation forf (u,f). Instead of solving this elliptic equation
directly, we proceed by expandingf in terms of the usual
spherical harmonicsYlm:

f ~u,f!5(
l 50

L

(
m52 l

l

FlmYlm~u,f!. ~4!

Equation~1! then givesQ in terms of the expansion coeffi
cientsFlm. The AH can be determined by finding the set
coefficientsFlm which makeQ50.

For 3D codes in Cartesian coordinates, instead of
spherical harmonic expansion~4!, we choose to expand th
trial surfaces in terms of symmetric trace-free~STF! tensors:

F~x,y,z!5(
i 51

3

~xi2x0
i !22(

l 50

L

FKl
NKl

50, ~5!

where xi are Cartesian coordinates andx0
i the Cartesian

points interior to theF50 surface representing the horizo
center. In expanding the functionf in Eq. ~5!, we have
adopted the notation from Ref.@25#. The STF tensorsFKl

are

coordinate independent coefficients, the subscriptKl is ab-
breviated notation for the vector produ
NKl

[nk1
nk2

. . . nkl
, and theni are unit directional vectors

ni5
xi2x0

i

A( j 51
3 ~xj2x0

j !2
. ~6!

To determine the set ofFKl
which makes Eq.~5! the AH,

we use a minimization procedure. In general, the AH surf
is the outer-most surface represented by the set ofFKl

andx0
i

which satisfy

(
s

WsQs
2~FKl

,x0
i !50. ~7!

Q2 is semi-positive definite.Ws is a positive definite weight-
ing function which can be chosen to improve the accuracy
the minimization procedure depending on the construction
the trial surface. In this paper we do not investigate the
of this parameter and setWs51. With this we have con-
verted the elliptic condition~1! to a standard minimization
problem. There are efficient minimization algorithms
search the space of (FKl

,x0
i ) coefficients for the surface clos

est to the apparent horizon among all test surfaces so pa
etrized. The strength of our method lies in that the minim
zation problem is much better understood than the numer
solution of the corresponding differential equation~1!.

An obvious potential difficulty of this method is that the
is no guarantee that the summation~5! converges, or con-
verges rapidly. For black holes not in highly dynamical sit
ations, we do expect the AH surface to be smooth and
needs only the first few lower rank tensors to find the surf
accurately~as demonstrated in Sec. III!. This is usually the
case through most of the simulations, and our method wil
more efficient at these times. However, we also expect t
for the cases we would like to simulate, there are often
3-2
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FINDING APPARENT HORIZONS IN DYNAMIC 3D . . . PHYSICAL REVIEW D 58 024003
riods of time when the black hole~or holes! goes through
highly dynamical evolutions, e.g., around the moment of
coalescence of two black holes. In such cases, one n
higher order STF expansions. Although STF tensor exp
sions are available in the literature, we find it convenient
include in our code a routine for the automatic generation
STF tensors to an arbitrarily high order. The procedure ta
advantage of the fact that we can associate theni with es-
sentiallyx2x0 , y2y0 or z2z0 in three dimensions. We ca
therefore construct all symmetric and independent perm
tions of

NKl
[Al~x2x0!a~y2y0!b~z2z0!g, ~8!

subject to the constrainta1b1g5 l , wherel is the rank of
the corresponding symmetric tensor, or equivalently the
der of the multipole expansion, andAl is the normalization
factor making the right-hand side~RHS! dimensionless.
There are (l 11)(l 12)/2 such independent combination
The combinations constructed in this fashion can be sup
mented with thel ( l 21)/2 independent conditions impose
on the symmetric permutations to make the rankl tensor
trace-free by contracting on any two indices. The functiof
can be expanded as

f ~x,y,z!5(
l 50

L

(
k

a1b1g5 l

Ck^~x2x0!ak

3~y2y0!bk~z2z0!gk&, ~9!

where Ck are coordinate independent coefficients, and^ &
denotes STF combinations@25#. Partial derivatives] iF and
] i] jF needed to evaluateQ on the trial surfaces are the
easily computed from Eqs.~2! and~9!. The simplicity of the
form ~9! also allows one to easily construct the multipo
expansion to take advantage of any symmetries present in
problem. For instance, our current implementation, by s
ting a flag, can invoke either the even or odd multipo
independently of the other, enforce axisymmetry, fix the s
face centersx0

i , or allow the most general parametric expa
sion.

B. Numerical algorithms

The numerical problem is to find a set of paramet
(Ck ,x0

i ) that minimizes the LHS of Eq.~7!. Minimization
techniques~such as conjugate gradient or quasi-Newt
methods! that evaluate both the function and all its vario
partial derivatives are often preferred, as a means to incr
the convergence rate, to those that do not require deriva
information. However, because of the complexity of Eq.~1!,
in this first generation 3D AH finder we have chosen
implement a multi-dimensional method that does not requ
knowledge of derivatives, namely a direction set or Powe
method@26#. The method is based on successive line m
mizations, whereby the function(Q2 is successively mini-
mized along different vector directions using the on
dimensional Brent’s method with parabolic interpolation. W
find Powell’s method to be generally robust, with a go
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convergence rate and computational speed, for surface f
tions parameterized by fewer than about fifteen or so par
eters~see Sec. III!. Although solutions can still be found fo
parametrizations of higher order, the computational cost
comes overly excessive, especially when compared to
evolution cycle time.

A two-grid system is utilized to evaluate the expansi
functionQ. The first grid~which we refer to as gridA! is the
Cartesian-based computational grid on which the Eins
evolution and constraint equations are solved, and the me
and extrinsic curvature components are defined. A sec
grid B is used to evaluate the surface functionF(u,f,r ).
This second grid need not be structured in the same wa
the first.

Assuming a guess position for the horizon cen
x0

i 5(x0 ,y0 ,z0) on the structured Cartesian gridA, and some
prescription for distributing points throughout this mesh
construct nodes for the second gridB, we can evaluate the
expansionQ on the nodes of gridB once f (u,f) is deter-
mined. Here we choose to distribute the nodes uniform
over a sphere, centered onx0

i : the nodes are evenly spaced
both the polar and azimuthal angles to cover the full sph
0<u<p and 0<f<2p ~or a single octant for the axi- an
equatorial symmetric spacetimes!. However, this procedure
can easily be generalized to, for example, weight the n
distribution according to the coordinate surface curvature
might be desirable for highly distorted horizons. Along t
radial direction, the nodes of gridB are placed uniformly
with an inter-node spacingdr typically equal to the cell reso
lution of grid A on which the Einstein equations are solve
We have also implemented a procedure to constrain
range of radii over which the solver searches for the AH,
might be desirable in cases where multiple trapped surfa
exist in the data set. In these cases, the radial grid spacin
set bydr 5(r max2r min)/Nr , whereNr is the number of ra-
dial nodes, andr min andr max are the lower and upper bound
of allowable radii. Representing the number of nodes on g
B as Nu3Nf3Nr , we setNu5Nf55 along the angular
directions in a single octant, andNr5N along the radial
direction, whereN is the minimum number of cells amon
the three orthogonal axes in gridA.

Once the spherical gridB is constructed and centered o
x0

i , the functionF in Eq. ~2! is evaluated on the nodes o
grid B for a fixed set of coefficients (Ck ,x0

i ) that the Powell
routines compute. Along each radial line, a search is m
for F50, by scanning from large to small radii, until th
conditionF(u,f,r )3F(u,f,r 1dr ),0 is met, and then lin-
early interpolating between adjacent neighbors to find
approximate Cartesian coordinates of the surface corresp
ing to F50. The extrinsic curvature and the metric functio
and their derivatives are then evaluated at these position
interpolating~either linearly or quadratically! from the com-
putational gridA on which they are defined and used in E
~1! to evaluateQ2 on the surface. The process of constru
ing a spherical gridB centered onx0

i , evaluatingF on grid
B, searching for the surface coordinates for whichF50,
interpolating the geometric data to the surface, and eval
ing the expansion~1! on the surface is repeated throug
3-3
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PETER ANNINOSet al. PHYSICAL REVIEW D 58 024003
Powell’s procedure until a minimum of(Q2 in the param-
eter space (Ck ,x0

i ) is realized.
To reduce the computational time spent in finding app

ent horizons and to make the finder usable in real time e
lutions of black hole spacetimes, it is important to impleme
the solver in a parallel fashion. Fortunately, the calculatio
performed at each node on the trial 2D surfaces are inde
dent of the other node calculations. A natural parallel imp
mentation, which we have adopted, thus distributes the
ferent surface calculations to different computation
processors, achieving a speedup ofNu3Nf compared to a
purely scalar code. In addition, a large percentage of the
time is spent interpolating the field variables from gridA
onto the 2D surface. To speedup this bottleneck proced
we have written and implemented generalized algorithms
signed to interpolate~both linearly and quadratically! 3D
data onto different nodes within a 2D surface in parallel. T
computationally intensive elements of the horizon find
have been optimized for both the Cray C90 and the m
sively parallel Thinking Machines CM5 computers.

III. CODE TESTS

In order to test the basic solver described above, we h
developed both 2D and 3D AH finders based on this m
mization method.

For the 2D finder, the AH determined can be direc
compared to those obtained with the standard integra
method. As testbeds, we used data obtained from a c
developed by Bernsteinet al. @27#. This code evolves a blac
hole distorted by an axisymmetric distribution of gravit
tional waves~Brill waves! @28#. The black holes can be
highly distorted by the incoming waves, leading to AH
with extremely prolate or oblate geometric shapes. In so
cases the ratio of polar to equatorial circumference can
ceed 102. When these systems are evolved, the horizons
dergo dynamic oscillations, eventually settling down to
Schwarzschild black hole at late times@5#. For such dynamic
spacetimes, we compared the results obtained with our
AH finder algorithm with those from the AH finder con
structed using the standard ODE method@13,5#. For test sur-
faces with 16 coefficients, and using spherical harmonicsYlm
as basis functions, we find that both methods produce
same results to within the given accuracy of the PDE solv

As this paper is on a 3D implementation of these ideas
finding AH’s, in the following we concentrate on results f
the 3D case only. We have written a Fortran routine t
implements the above method for a general 3D spacetim
Cartesian coordinates, and tested it on various spacetim
interest. We discuss results from this code applied to vari
initial data sets containing one or more black holes~Sec.
III A !, and to evolutions of some of these black hole spa
times carried out with our 3D ‘‘G’’ code@29# ~Sec. III B!.
For all the 3D tests, we use the symmetric trace-free~STF!
tensors as basis functions defined on a unit sphere.

A. Finding horizons in initial data sets

1. Schwarzschild black hole

The simplest, most basic, test for any apparent hori
finder is the static Schwarzschild initial data. The 3-met
can be written in Cartesian coordinates as
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dl25S 11
M

2r D
4

~dx21dy21dz2!, ~10!

whereM is the mass of the black hole. The apparent horiz
in this case is spherically symmetric and located atr
5M /2. Although only theL50 term should contribute to
the surface that defines the apparent horizon, we tested
solver with a more general multipole expansion with them
Þ0 terms up to and includingL56, a total of 28 coeffi-
cients.

The computed surface is plotted in Fig. 1 for four separ
cases with various black hole masses. The grid resolu
used in each case wasDx5Dy5Dz50.075M , using 253

cells. As expected, the surface is mostly defined by
l 50 contribution: The other higher order terms are small
comparison, roughly a factor of 1028 smaller. We find typi-
cal errors in the horizon radius of order 0.04%, and the
merical surfaces are indistinguishable from the analytic
lution in Fig. 1. In each of the cases shown here, the fin
converged to the correct surface in approximately 30 ite
tions. However, the number of iterations decreases sig
cantly if fewer parameters are varied. For example, onl
iterations are needed to converge if only the monopole te
is varied, reducing the computational time by a factor of 6
On average, the CPU time scales approximately asNp ,
whereNp is the number of parameters. Hence, the meth
becomes rather cumbersome for highly distorted horiz
which can only be described with a high order multipo
expansion. We discuss this important issue further in
following more elaborate tests.

2. Misner data

The Misner initial data set represents two equal m
black holes initially at rest, and is defined by the 3-metric

FIG. 1. The coordinate location of the apparent horizon in
x-z plane for Schwarzschild initial data with various masses. T
computed surfaces are indistinguishable from the analytic soluti
with deviations of order 0.04%.
3-4
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FINDING APPARENT HORIZONS IN DYNAMIC 3D . . . PHYSICAL REVIEW D 58 024003
dl25c4~dx21dy21dz2!, ~11!

where

c511 (
n51

`
1

sinh~nm! S 1
1r n

1
1

2r n
D , ~12!

and

6r n5Ax21y21@z6coth~nm!#2. ~13!

The parameterm specifies the proper separation between
two holes and the total ADM mass of the spacetime. App
ent horizons in these data sets may consist of either a si
surface surrounding both black holes if they are sufficien
close to one another (m,1.36) @30#, or two separate hori-
zons located at the throats of the holes.

In the cases where the two holes form a single enco
passing horizon, the surface can be distorted significantly
find the distorted horizons accurately, then, we need to k
higher order multipole terms, buta priori it is not clear how
many terms will be required. In Fig. 2, we show the resu
of systematically increasing the number of axisymmetric
pansion terms for the casem51.2. In each calculation we
use a 643 grid with Dx50.1 and run the code on the 12
node partition of the CM5. We also show the result obtain
with our 2D, axisymmetric code described in Ref.@31#,
which implements an independent ODE integration meth
@5#. It is obvious that a high order expansion, up toL56, is
required to accurately describe this surface which has a
jor to minor axis ratio of 1.5. We expect that even high

FIG. 2. The coordinate location of the apparent horizon for
m51.2 Misner initial data. The solid line is the apparent horiz
computed from our 2D code. The various broken lines are the
faces obtained from the different multipole order expansions.
surface obtained from theL56 expansion is indistinguishable from
the 2D result in this plot. We note that terms up toL56 must be
included to find the AH accurately.
02400
e
r-
le

y

-
o
p

s
-

d

d

a-
r

multipole expansions would be required for more distor
surfaces. In Table I, we show the number of iterations, C
time and(Q2 as a measure of convergence for each of
expansion orders. We note that timings reported here
throughout this paper refer to the Thinking Machines CM

For m.1.36, there are two separate and spherical trap
surfaces on the initial slice, centered off the origin
z56cothm. In the cases we have tested~m52.0 and 2.2!,
the solver is able to locate both the center and radius of
offset horizons to an accuracy of better than 0.06% us
general expansions to any order,L50 to L56. We note that
the iteration count~and hence CPU time! can increase by
factors of between 2 to 10, depending on the total numbe
parameters, as compared to the cases in which the th
center coordinates are not allowed to vary.

3. Black hole plus Brill wave

The Misner initial data family just discussed provides e
amples of both single perturbed horizons and two sepa
but spherical surfaces with offset centers for testing. Ho
ever, black hole horizons in highly dynamic spacetimes c
be extremely distorted geometrically, and the horizon fin
must be able to locate these as well. The black hole plus B
wave initial data set is yet another solution that has b
studied extensively in axisymmetry, and thus provides a u
ful testbed for highly distorted holes in three dimension
This data describes the superposition of a black hole an
‘‘doughnut’’ shaped Brill wave surrounding the hole. I
spherical coordinates, the 3-metric takes the form

dl25c4
„e2q~dr21r 2du2!1r 2sin2udf2

…, ~14!

whereq andc are functions ofr andu only. The functionq
is specified analytically as free data, and the Hamilton
constraint is solved for the conformal factorc. The initial
extrinsic curvature vanishes due to time symmetry.

This data set has been studied with 2D, axisymme
codes @13,28# using a logarithmic radial coordinat
h5 ln(2r/m0), wherem0 is a scale parameter. In this coord
nate system~h,u,f!, the form of theq-function is written as

q5a sinnug~h!, ~15!

e

r-
e

TABLE I. The effect of the~axisymmetric! multipole orderL on
finding the correct horizon surface is demonstrated here for the
black hole Misner data withm51.2. The number of iterations an
CPU time required by the solver is tabulated along with the exp
sion summed over all points on the surface. The timings were
formed on the 128-node partition of the CM5, using a 3D grid
size 643 and a 535 mesh to cover the 2D horizon surface in
single quadrant.

L Iterations CPU time SQ2

0 2 1.2 min 8.331022

2 5 2.2 min 8.031023

4 9 4.6 min 7.931024

6 16 12 min 1.031024
3-5



to
to
s.
lv

en

ri
e
D
ch
i-
e
in

as

al

te
es

s

ost
vita-
lly,

bed

d
-

lar

y of
nd
es.
The
on-
or-
for

the

2D
of
a
nt
in

le
-
as
olid

PETER ANNINOSet al. PHYSICAL REVIEW D 58 024003
where we setn52, and

g~h!5expF2S h1h0

s D 2G1expF2S h2h0

s D 2G . ~16!

We solve the Hamiltonian constraint for the conformal fac
in our 2D code and then interpolate these solutions on
643 Cartesian grid withDx50.15 to generate 3D data set
The 3D horizon finder is tested against an independent so
developed for 2D calculations@13#.

In Fig. 3 we show the coordinate location of the appar
horizon for various parameters of theq-function. The se-
quence shown corresponds to different values of the B
wave amplitudea, for fixed ‘‘shape’’ parameters having th
values (h0 ,s,n)5(0,1,2). Results from both the 2D and 3
calculations are shown. In the 3D case, we allowed sear
up throughL54, but for this case we include only the ax
symmetric terms. In all cases shown, the finder was abl
locate the correct surface to within a third of a grid zone
just 6 iterations.

Figure 4 is a resolution convergence study of the c
a520.75 in which the cell size is varied fromDx50.6,
0.3 and 0.15 with 163, 323 and 643 grids respectively. The
solver clearly converges to the correct surface quadratic
with cell size.

For negative values of the Brill wave amplitude parame
a, the horizon is found off the throat, but for positive valu
below certain limits~depending on the shape parameters! the
horizon is located on the throat atr 5m0/2. We are also able
to locate the AH at the same level of accuracy for the
cases.

FIG. 3. The coordinate location of the apparent horizon for
and 3D Brill wave plus black hole initial data with various values
the Brill wave amplitude. In all runs, the Brill wave is centered
h050 and has a width ofs51. Note that there is good agreeme
even though the initial data is not analytic and actually conta
highly geometrically distorted black hole horizons.
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Although the surfaces shown in Fig. 3 appear to be alm
spherical in coordinate space, the presence of strong gra
tional waves can severely distort the horizons geometrica
much more so than the Misner data solutions descri
above. In Fig. 5 we show the~axisymmetric! geometric em-
bedding of the two casesa561, using the method describe
in Ref. @5#. For all negative values of the amplitude param
eter, the horizon is oblate. Thea511 case is highly dis-
torted geometrically into a prolate shape, with a ratio of po
to equatorial circumference ofCp /Ce54.28.

4. Kerr black hole

The calculations presented so far have tested the abilit
the solver to find single or multiple horizons of spherical a
highly distorted black holes in 3D Cartesian coordinat
However, the data in all these cases are time symmetric.
Kerr initial data set describing a rotating black hole has n
trivial extrinsic curvature, and thus provides another imp
tant testbed with a known analytic solution. The 3-metric
this spacetime in Boyer-Lindquist coordinates is given by

dl25
r2

D
dr21r2du21

„~r 21a2!22Da2sin2u…sin2u

r2 df2,

~17!

where

r25r 21a2cos2u, ~18!

D5r 222Mr 1a2. ~19!

In these coordinates, the non-vanishing components of
extrinsic curvature are

t

s

FIG. 4. A resolution study of the Brill wave plus black ho
spacetime for the case (a,h0 ,s)5(20.75,0,1). The surface con
verges quadratically with grid spacing to the correct location,
represented by an independent 2D calculation shown by the s
line.
3-6



an

te
rt

tes
err

es

ict-

the

.

, are
the
e
m-
ole
ters
not
g
ain,
n-
.

all
ata
ich
ac-
ar-

di-
r to

is

h
e
i-

oo
e
.

FINDING APPARENT HORIZONS IN DYNAMIC 3D . . . PHYSICAL REVIEW D 58 024003
K̂rf5aM@2r 2~r 21a2!1r2~r 22a2!#sin2u/~rr4!,
~20!

K̂uf522a3MrAD cosu sin3ur24, ~21!

whereK̂ i j 5c0
2Ki j , and

c0
45

~r 21a2!22Da2sin2u

r2 . ~22!

To construct this data in 3D, we first transform to
isotropic radial coordinate through the transformation

r 5 r̄ S 11
M1a

2r̄
D S 11

M2a

2r̄
D , ~23!

as described in@32#. In this coordinate system, the coordina
singularities atr 5M6AM22a2 disappear. We then conve

FIG. 5. The geometric embedding diagrams of the apparent
rizons for the Brill wave plus black hole initial data with wav
amplitudesa561. Thea521 horizon is quite oblate, and dev
ates from sphericity even in its coordinate location. For thea51
case, the horizon is actually located on the throat, which is a c
dinate sphere. However, the metric functions are highly nonsph
cal, leading to this very prolate geometry of the horizon surface
02400
the metric and extrinsic curvature from isotropic coordina
to Cartesian coordinates. The apparent horizon for the K
data is a coordinate sphere, located at

r̄ 5
AM22a2

2
. ~24!

In Table II we show results from runs with various valu
of the rotation parametera/M and expansion orderL. These
runs were all done with general expansions, without restr
ing to axisymmetry. For the tests performed here,Dx, Dy
and Dz were chosen to be approximately one tenth of
analytic AH radius, and the number of cells (323) was kept
the same in all cases. Only thel 50 contributions are shown
As expected, the contributions from higher-l terms are small,
ranging from 1029 for a/M50 to 331022 for a/M50.9.
The reason that these terms, in the highly rotating cases
not as small as in the Schwarzschild case is because
metric is not conformally flat, so the interpolations within th
finder are not as accurate. Although we do not display e
beddings of these horizons, we note that rotating black h
horizons can be extremely oblate, and for rotation parame
a/M.0.866 a global embedding into Euclidean space is
possible. The horizon finder has no difficulty in locatin
these surfaces to within a grid zone, although we note, ag
the high computational cost for large order multipole expa
sions as indicated by thea/M50.3 sequence of calculations

5. Transformed Schwarzschild black hole

The above test cases, although treated in full 3D, have
been axisymmetric. In this section we test our finder on d
which does not have any particular symmetry, and for wh
we can derive the correct solution in order to gauge the
curacy of the solver. To this end, we chose to find the app
ent horizon on a Schwarzschild initial slice using a coor
nate system in which the horizon surface does not appea
be axisymmetric. The coordinate transformation we use

r̄ 5r f ~u,f!5r S 11
1

4
sin2 u~cos2f2sin2f! D 21/2

~25!

where r is the radial isotropic coordinate of Eq.~10!. This
f (u,f) has surface modes ofL52. The apparent horizon
location is then defined byr̄ 5(M /2) f (u,f).

o-

r-
ri-
ow the
TABLE II. Performance measures of the horizon solver applied to the Kerr black hole data with various spin parametersa/M . HereL
is the maximum multipole order,Dx is the 3D grid spacing,r a is the analytical position of the horizon,r n is the horizon location found by
the solver, andDr /Dx is the difference between the analytic and numerical locations normalized to the grid spacing. We also sh
number of iterations and CPU time required by the solver running on a 32-node partition of the CM5, using a grid with 323 cells and a 535
mesh for the surface.

a/M L Dx ra r n Dr /Dx Iterations CPU

0 4 0.1 1.0 1.0002 0.003 30 2.4 h
0.3 4 0.1 0.954 1.0095 0.556 37 1.0 h
0.3 2 0.1 0.954 0.9562 0.022 9 6.7 min
0.3 0 0.1 0.954 0.9542 0.002 2 0.5 min
0.9 4 0.039 0.436 0.4748 0.997 27 0.5 h
3-7
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PETER ANNINOSet al. PHYSICAL REVIEW D 58 024003
The solver was allowed to search coefficients with ter
up to L52 and L54. In all cases for theL52 tests, the
finder successfully found the horizon to high accuracy. E
non-zero coefficient was accurate to better than a tenth
one percent, and the largest value found for a coefficient
was supposed to be zero was less than 2% of the sma
non-zero component. We note that better accuracy can
achieved if one uses full knowledge of the analytic form
the metric. When the finder was generalized to all
searches with coefficients up toL54, the horizon was again
successfully found and to comparable accuracy. Howe
with the large number of search parameters, some care
necessary in choosing the initial search direction of the P
ell routine in order to avoid getting trapped at local minim
in Q2 generated in the discretized representation of
spacetime. When the resolution of spacetime grid is
creased, such local minima will disappear/change in locat
in sharp contrast to the actualQ250 point ~the actual loca-
tion of the AH, which converges to a fixed location wi
increased resolution.! In Fig. 6, we show the apparent hor
zon found and the analytic solution in one quadrant of e
of the coordinate planes. The numerical results shown in
figure were obtained with a run in which coefficients up
L54 were allowed to vary.

B. Evolved 3D data sets

The tests described thus far have shown that the hor
finder can locate horizons in a variety of distorted black h
spacetimes, but these have all been initial data sets wi
somewhat restricted 3-metric and extrinsic curvature,
with a large part of the data prescribed analytically. In ge
eral 3D black hole evolutions, all metric and curvature co
ponents will be present, and the data will be contamina
with numerical inaccuracies generated during the cours
evolution. The horizon finder must work under these con
tions for it to be a useful tool in the numerical constructi
of spacetimes. In this section, we discuss results der
from the implementation of the horizon solver into our 3
‘‘G’’ code @29# that solves the Einstein evolution equatio
in Cartesian coordinates.

1. Schwarzschild

The tests discussed here were carried out using multi
expansions up to and including theL54 terms. However, in
order to save computational time, we restricted the searc
axisymmetric surfaces. We have verified that a more gen
expansion does not change the results significantly.

The results for a 3D Schwarzschild spacetime, evolv
with both geodesic and maximal slicings with zero shift, a
shown in Figs. 7 and 8 respectively. A 643(1303) grid with
Dx50.15(0.2) was used for the geodesic~maximal! case
with Dt50.25Dx. Only the l 50 contribution to the surface
is plotted. The other parameters remain small (,1023) dur-
ing the entire evolutions, as expected. In both cases, the
face locations are compared against the corresponding re
from 1D calculations. The two results agree to a small fr
tion of a grid zone throughout the evolution. The late tim
deviation in the maximal run is attributed to errors in the 3
02400
s

h
of
at
est
be
f

er
as
-

e
-
n,

h
is

n
e
a

d
-
-
d
of
i-

d

le

to
al

d
e

ur-
lts
-

FIG. 6. Apparent horizon location in each of the coordina
planes for the transformed Schwarzschild initial data. The num
cal data are represented by solid lines, and the analytic data
symbols. The surface is pureL52, although the finder was allowe
to search through theL54 coefficients as well. The computed co
efficients are found to roughly 0.1% accuracy.
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spacetime evolution, which becomes inaccurate
t.20M , although we note that the difference at the end
the run is still only about a grid zone.

In both the geodesic and maximal cases, the AH fin
accounted for a large portion of the total CPU time. For
geodesic case the code ran 160 timesteps, invoking the fi
once every 0.3M in time ~11 times total!. In this case, the
finder constituted approximately 90% of the CPU time. F
the maximal slicing case the code was run for 11
timesteps, calling the finder every 2M ~14 times total!. In
this case, 40% of the CPU time was spent in finding

FIG. 7. The apparent horizon location for 1D and 3D Schwar
child evolutions using geodesic slicing. The 1D data were obtai
using 128 grid points and resolutionDr 50.0375M , whereM is the
mass of the black hole. The 3D data were obtained using 643 grid
points and resolutionDx50.075M . Only the l 50 contribution to
the 3D apparent horizon is plotted but the other terms in theL54
series are negligible, as discussed in the text.

FIG. 8. The apparent horizon location for 1D and 3D Schwar
child evolutions using maximal slicing. The 1D data were obtain
using 130 grid points and resolutionDr 50.1M , the 3D data using
1303 grid zones and resolutionDx50.1M . We note that the agree
ment is within a grid zone even to the end of the calculation, wh
the 3D evolution becomes inaccurate.
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horizon. The horizon finder with aL54 axisymmetric mul-
tipole expansion is thus approximately 50–100 times slow
than a single update cycle in the hyperbolic evolution~al-
though we note that when the elliptic maximal slicing equ
tion is solved, the relative performance in the solver i
proves significantly!. A factor of roughly 10 can be gaine
by reducing the expansion order toL50.

2. Misner 2BH collision

A more difficult evolution scenario is to capture the ho
zon surfaces as two black holes collide and merge. Our ‘‘
code is used to evolve the two black hole Misner data
described in Sec. III A 2, for a time sufficiently long that w
can test the AH finder on this dynamic spacetime.

To evolve the initial data, we use a zero shift vector a
an algebraic lapse of the form

a5ao~11 log ĝ !, ~26!

whereĝ is the conformal 3-metric determinant andao is the
lapse on the initial time slice, which we take to be the Cad
@33# lapse

ao5
1

c F11 (
n51

`

~21!n
1

sinh nm S 1
1r n

1
1

2r n
D G . ~27!

The solution~27! solves the maximal equation in time sym
metry with a50 as a boundary condition on the throa
Algebraic lapses of the form~26! are singularity avoiding
and produce evolutions similar to maximally sliced spa
times @29#.

The calculation is run on a 643 grid with Dx50.1 for a
time of t510M using an expansion to orderL54. As our
interest is in testing the ability of the solver to locate the A
before and after the surface merger event, it suffices
evolve a data set with a low value for the Misner parame
which is computationally less expensive in evolution. He
we show results for them51.5 case which has, as initia
data, two coalesced black holes with a common event h
zon, but twodistinct trapped surfaces at the two throats.
common apparent horizon encircling both throats forms
time t;1.6M .

Figure 9 plots the surfaces found at each time the finde
called ~t50, 2.5, 5, 7.5 and 10M , whereM is the Arnowitt
Deser-Misner~ADM ! mass, and with the surfaces increasi
in radius at the later times!. At t50, the solver correctly
finds the throat as the surface, centered off the origin. T
finder can subsequently be prevented from locking onto
throat ~which remains a trapped surface throughout the e
lution! by restricting the range of radii over which the fun
tion F(u,f,r ) is evaluated, and by resetting the center of t
surface. Unfortunately, there is no analytic result to comp
against the computed location of the AH at the later tim
Instead, we overlay the 3D computed AH surfaces with
results from our 2D axisymmetric code evolving the sa
initial data. The surfaces determined with these two differ
methods~3D minimization vs ODE integration! applied to
the two different constructions of the spacetime~3D Carte-
sian evolution vs 2D axisymmetric evolution! basically agree

-
d

-
d

n
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with one another. Nevertheless, we note that in the figure
two sets of surfaces are not exactly the same in coordi
space, as they shouldnot be, since we are using differen
lapse and shift functions in the two cases. However, the s
vector is of magnitudeubu;1023 in the region of the AH, so
we do not expect this effect to exceed the grid spacing s
over the time interval of the calculation. Also, the algebr
lapse used in the 3D code is typically larger than the ma
mal slicing lapse in the 2D code by a fractional differen
Da;0.02 near the AH. This should also have a small eff
on the coordinate position of the AH except at late times
fact, the maximum differences in the AH location betwe
the 2D and 3D calculations is only slightly more than a g
cell. The differences may also be attributed to inaccuracie
the evolution; as born out in computing the mass of the
at different times. At t52.5M , after a common surface
forms to surround both throats, we findMAH52.28, com-
pared to the 2D result of 2.36. However, byt510M , the
error in the mass of the computed surface increases
roughly 18% as the evolution becomes less accurate. T
errors are attributable to numerical inaccuracies in the e
lution and not the AH finder routine, in particular, they a
unrelated to the multipole order used, since the surface
comes more spherical in time.

3. Black hole plus Brill wave

One final test of the solver in real time evolutions is
Schwarzschild black hole plus a Brill wave. The initial da

FIG. 9. Apparent horizon locations in the 3D evolution of t
m51.5 Misner two black hole data. The surfaces are plotted
timest50, 2.5, 5, 7.5 and 10M , whereM is the ADM mass of the
spacetime, and the surfaces increase in radius with time. The
lution is performed using a 643 grid with resolutionDx50.1 and a
multipole expansion of orderL54. Also shown are the correspond
ing horizons found in the 2D axisymmetric evolutions. The surfa
from the two calculations agree nicely, although we note that
exact correspondence is not expected due to different shift and l
functions.
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is the same as that discussed in Sec. III A 3 with shape
rameters (h0 ,s,n)5(0,1,2), scale parameterm052 and
amplitudea520.5. For this set of parameters, the ADM
mass of the spacetime isM51.77m053.54. The Hamil-
tonian constraint is solved for the conformal factor in our 2
axisymmetric code, then interpolated onto a 663 Cartesian
grid with Dx50.250.056M . The data is evolved with a
timestepDt50.25Dx50.014M , calling the horizon finder
once everym050.56M intervals of time. The shift vector is
set to zero and the lapse function is computed from the m
mal slicing condition.

Figure 10 shows the horizon shapes and locations in
3D calculation at various times with intervals o
2m051.15M , starting att50. The multipole order used in
this calculation isL54, with m50 to reduce the computa
tional time. The higher order expansion is needed here
describe the oblate shape of the horizons. For the most
the solver required only about five iterations to conver
when the previous solution is given as the initial guess to
finder. Also shown in Fig. 10 are the corresponding surfa
found in our 2D axisymmetric code. Once more we note t
the slicing and shift conditions differ in the two cases, so
do not expect the surfaces to coincide precisely. Howeve
the differences between the lapse functions and shift vec
are small~ubu;1023 andDa;0.07 in regions near the ho
rizon except near thez-axis!, the solutions do agree nicely
In and around thex-y plane, the solutions match to withi
half a grid cell. Greater differences, however, are fou
along thez-axis, where the two surfaces are displaced b
maximum of roughly two grid cells. This is attributed in pa

t

o-

s
n
se

FIG. 10. Coordinate location of the AH found in the 2D and 3
evolutions of the Brill wave plus black hole spacetime. The surfa
are shown starting att50 with time intervals of 2m051.12M ,
whereM53.54 is the ADM mass of the spacetime. Although we
not expect identical results due to different kinematic conditions
the two cases, the surfaces differ at most by little more than
grid cells. The evolution is performed on a 663 grid with Dx
50.2.
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to a biggerDa (;0.1) near thez-axis, which results from
the imposed asymmetry in the lapse function due to the n
ness of the outer boundaries, where we enforce the sphe
Schwarzschild lapse as a boundary condition in the maxi
equation used in the 2D simulation.

Again, a more geometrical comparison or test of t
solver is the mass of the surface found. The horizon mas
defined asMAH5AAAH/16p, whereAAH is the area of the
surface. Figure 11 plots the AH mass as a function of ti
for the 2D and theL54, 3D evolutions. In both cases, th
mass increases at first, as the gravitational waves fall into
black hole, reachingMAH;0.997M at t;6M . The masses
in the two cases differ by only 0.1% att;6M . For compari-
son we also plotMAH for the surface found using a lowe
order L52 multipole expansion. At early times, when th
horizon is most distorted, theL52 expansion is clearly no
adequate to resolve the horizon shape, as evidenced b
AH mass which exceeds the ADM mass by about 1%. Ho

FIG. 11. Comparison of the apparent horizon masses comp
from the 2D and 3D evolutions of the Brill wave plus black ho
spacetime. The AH mass increases initially as the Brill wave f
into the black hole. Byt;6M , the mass approaches 0.997M and
the 2D andL54, 3D results differ by just 0.1% at this time. W
also show the corresponding masses computed from the sur
found with anL52 multipole expansion. The low order expansio
is clearly not adequate in resolving the surface at early times w
the horizon is most distorted.
n-
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ever, as the black hole settles down into a quasi-static s
the surface becomes more spherical and theL52 solution
approaches both the 2D and theL54, 3D results, differing
from the 2D result by about 0.35% att;6M .

IV. CONCLUSIONS

We have developed a promising general 3D method
finding the AH in a numerically constructed spacetime ba
on a minimization procedure. In this paper we have appl
the method and demonstrated that it works for spacet
data which are not time symmetric, and data sets which
obtained in actual numerical evolutions.

The major advantage of this method is that the minimi
tion procedure is much better understood than the co
sponding problem of solving the elliptic equation, and we
tested routines are available for solutions. The ma
drawback of the method is that, for AH surfaces which a
not smooth, and which deviate significantly from spheric
in coordinate space, the higher dimensional minimizat
procedure can be computationally expensive. With o
present implementation of the finder using Powell’s routin
we are limited to searching for AH surfaces at every 50,
so, evolution cycles, instead of continually monitoring t
AH throughout the numerical evolution, as would be o
final goal. In future implementations of the method, we a
ticipate developing a more sophisticated minimization ro
tine using derivative information to speed up the procedu
as well as other means to improve the robustness and
ciency of the code. Our code, which is optimized for both t
C90 and massively parallel CM5 machines, together w
documentation, will be made available on our servers htt
jean-luc.ncsa.uiuc.edu and http://wugrav.wustl.edu.
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