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We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of
solving for the partial differential equation describing the location of the apparent horizons, we expand the
closed 2D surfaces in terms of symmetric trace-free tensors and solve for the expansion coefficients using a
minimization procedure. Our method is applied to a number of different spacetimes, including numerically
constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D
rotating, and colliding black holes in Cartesian coordingt86556-282(198)01414-3

PACS numbd(s): 04.25.Dm, 95.30.Sf

[. INTRODUCTION method for use in computing the long term evolution of 3D
black hole systems. With AHBC one would like to be able to
Black holes are among the most fascinating predictions irtrack the AH throughout the numerical evolution. For these
the theory of general relativity. The black holes most likely reasons, it is important to develop efficient methods for lo-
to be observed by future gravitational wave observatoriegsating apparent horizons in numerically constructed space-
[Laser Interferometric Gravitational Wave Observatorytimes.
(LIGO) and VIRGO[1]] are those in highly dynamical evo- There are many well developed methods for determining
lutions, such as two colliding black holes. Moreover, eventshe location of AH's in lower dimensional spacetimjgs-
which are important for observatiorise., events that occur 13], e.g., in axisymmetry. The partial differential equation
more frequently and emit stronger radiatioare not ex- (PDE) defining a marginally trapped surfapgq. (1) below]
pected to have a high degree of symmetry; for example, theeduces to an ordinary differential equati6@DE) in the
inspiraling coalescence is a more probable scenario than trexisymmetric case, and the symmetry conditions also pro-
axisymmetric head-on collision of two black holes. The mostvide boundary conditions for starting the integration of the
powerful tool in studying such highly dynamical and intrin- ODE. This simplifies tremendously the problem, and enables
sically non-linear events is numerical treatment. the construction of efficient methods for finding the AH.
The essential characteristics of a black hole are its horiHowever, as these methods rely strongly on the symmetry
zons, in particular, the apparent horizG®H) and the event assumptions, they are not generalizable to 3D; going from
horizon (EH). One needs to determine the location and the2D to 3D does not amount to simply adding one more spatial
structure of the EH’s in numerical studies to understand thelimension. For the general 3D case, there is no symmetry
properties of black holes, and indeed even to assert the exiand the AH surface to be determined isclwsed surface
tence of the holes. Algorithms for doing this have recently(hence no boundary conditions for starting the integration
been developef?,3]. In contrast, the problem of determin- described by a non-linear elliptical PDE. At present there are
ing the location of the AH in a general numerically con- no efficient algorithms for solving such a partial differential
structed 3D spacetime has not yet been solved satisfactorilproblem in general.
The present paper represents a step in this direction. We are aware of three independent efforts in determining
The apparent horizon is defined to be the outer-most mathe AH in the general 3D case. The first method is based on
ginally trapped surfacg4], a surface for which the diver- an expansion of the AH surface in terms of spherical har-
gence of the out-going null normal is zefdf., Eq. (1) be-  monics, with the expansion coefficients determined by an
low]. The surface is defined locally in time, in contrast to theintegral equation. The equation is then solved iteratively
EH, which can only be identified after the numerical simu-[14,15. The second method attempts to solve directly the
lation is complete. The AH, as a characteristic of black holeselliptic PDE[16,17]. The third method 18] is based on ex-
can be usedluring the numerical construction of the space- panding the closed surface in terms of orthogonal functions,
time. As discussed in a number of publications, apparenin particular symmetric trace-frea&TH tensors, and using a
horizons are useful not only for studying the dynamics ofminimization procedure to determine the expansion coeffi-
black hole spacetimd$§], but also for use as an inner bound- cients. Variations on this idea were explored by Brill and
ary in numerical evolutions of black hol¢6—8|. The so- Lindquist[19] and by Eppley{20]. The essential difference
called apparent horizon boundary conditi@dHBC) is cur-  of this method with the first method is in the way the expan-
rently being developed by many groups as a promisingsion coefficients are determined, and the use of STF tensor
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expansions for 3D Cartesian codes. The major advantage efjuation forf( 9, ¢). Instead of solving this elliptic equation
this method is that the numerical solution of the minimiza-directly, we proceed by expandirfgin terms of the usual
tion problem is much better understood than the correspondspherical harmonicy¥'™:
ing PDE problem. In Ref[18], we demonstrated that our .
method can be efficiently applied to testbeds made up of Imolm

analytically given data sets representing time-symmetric f(9,¢)=|20 mzil FTYT(0,9). (4)
slices of spacetime. In RgR21], the convergence of the sym-

metric trace-free tensor expansion for similar testbeds igquation(1) then gives® in terms of the expansion coeffi-

studied in detail. In this paper, we follow up on our earlier cjentsE'™. The AH can be determined by finding the set of
work and give a more detailed discussion of this method. We qefficientsE'™ which make® = 0.

also push the application of it in two directiond) Appli- For 3D codes in Cartesian coordinates, instead of the
cation of the _method to arb}trqry data sets which are Nokpherical harmonic expansidd), we choose to expand the
time-symmetridnon-zero extrinsic curvatureand(2) appli-  tja| surfaces in terms of symmetric trace-f&TP tensors:

cation of the method to data obtained in actual numerical

evolutions of dynamical spacetimes. The spacetimes we s L

studied include Schwarzschild and Kerr black holes, black F(x,y,z)=2 (x'—x'o)z—E ]-'KlNK|=O, (5)
hole plus Brill wave, and Misner two black hole spacetimes =1 1=0

in full 3D. We demonstrate that our method is in principle
applicable to general-81 spacetimes. Another method pres-

ently under development also uses a series expansion as RRInts interior to theF=0 surface representing the horizon

the present method, but it evolves the trial surface to the AI—F‘;mer' dlnh expandin% the I_\':”B%tio_lf_]hin S%qu' (5), we have
in an algorithm that combines elements of the AH finder of2doPted the notation from Rg25]. The tensorsy, are

[14] and of a curvature flow methd@2]. coordinate independent coefficients, the subsdfipts ab-
In Sec. Il we discuss the formulation of our method, andbreviated ~ notation ~ for ~ the  vector  product

the numerical algorithm in detail. Section |1l gives the resultsNk, =Nk, N, - - - N, and then; are unit directional vectors

of various testbed calculations, with Sec. Il A concentrating

where x' are Cartesian coordinates ang the Cartesian

on initial data sets, and Sec. Ill B on spacetime evolutions. xi—xiO
Section IV concludes with a discussion of where we stand in n; :W- (6)
i=1\A" "7 A0

the construction of a general method for finding apparent

horizons in 3D numerical relativity. To determine the set of, which makes Eq(5) the AH,

we use a minimization procedure. In general, the AH surface
is the outer-most surface represented by the séi(pfandx'o
A. Basic equations which satisfy

Definings* to be the outward-pointing spacelike unit nor-
m.al of a two-sphere& embedded in a constant timg slize 2 Wg@i(]ﬂ( ,x{)):O. )
with unit normal n#, we can construct the outgoing null - !
normal to any point ors ask#=n#+s*. The surfaceS is . . - o _ N o _
called amarginally trapped surfacéMTS) if the divergence ©< is semi-positive definitéV,, is a positive definite weight-

of the outgoing null vectors vanishés,k“=0, or equiva- ing function which can be chosen to improve the accuracy of
lently [23] the minimization procedure depending on the construction of

_ . the trial surface. In this paper we do not investigate the use
©=D;s'+Kjs's'=K=0, (1) of this parameter and s&¥,=1. With this we have con-
verted the elliptic conditio(1) to a standard minimization
where® is the expansion of the outgoing rays, the cova-  problem. There are efficient minimization algorithms to
riant derivative with respect to the 3-metrig; , Kjj the ex-  gearch the space oﬂl,xg) coefficients for the surface clos-

trinsic curvature of%,, andK the trace ofK;;. The AH is est to the apparent horizon among all test surfaces so param-

defllzr)e? as the outer-most trappﬁd Sl:crfact:;:. AH of inal etrized. The strength of our method lies in that the minimi-
IrSt Suppose we are searching for the O @ SINGIE Htion problem is much better understood than the numerical
black hole in spherical coordinates. As the AH is topologi-

. - solution of the corresponding differential equatidn.
cally a 2-spher¢24], its position can be represented as An obvious potential difficulty of this method is that there

II. FORMULATION OF THE AH FINDER

2 _ is no guarantee that the summati(@) converges, or con-
F(8.4.1)=r"~1(6.4)=0. @ verges rapidly. For black holes not in highly dynamical situ-
The unit normalk' ations, we do expect the AH surface to be smooth and one
needs only the first few lower rank tensors to find the surface
s'=yIgF(YaFaF)~12 (3)  accurately(as demonstrated in Sec.)llThis is usually the

case through most of the simulations, and our method will be
can then be expressed in terms of the funcfipé, ¢). Sub-  more efficient at these times. However, we also expect that,
stituting Egs.(2) and (3) into Eq. (1), one gets an elliptic for the cases we would like to simulate, there are often pe-
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riods of time when the black holéor holeg goes through convergence rate and computational speed, for surface func-
highly dynamical evolutions, e.g., around the moment of thetions parameterized by fewer than about fifteen or so param-
coalescence of two black holes. In such cases, one needgers(see Sec. Il Although solutions can still be found for
higher order STF expansions. Although STF tensor expressarametrizations of higher order, the computational cost be-
sions are available in the literature, we find it convenient tocomes overly excessive, especially when compared to the
include in our code a routine for the automatic generation okyglution cycle time.

STF tensors to an arbitrarily high order. The procgdure takes A two-grid system is utilized to evaluate the expansion
advantage of the fact that we can associatertheith es-  fnction@. The first grid(which we refer to as grid) is the

sentiallyx—Xo, Y~ Yo Or Z—Zo in three dimensions. We can cartesian-based computational grid on which the Einstein
:_herefofre construct all symmetric and independent permutgs, q)ytion and constraint equations are solved, and the metric
1ons o and extrinsic curvature components are defined. A second
grid B is used to evaluate the surface functibgé, ¢,r).
tS) : . :
This second grid need not be structured in the same way as

bject to th traint+ B+ v=1. wherel is th K of the first.
tsr?eJsgrreospoigagssr?rlnmeﬁic ze_ns’o\rN oerriqlusivale;;:ag tr?e or.. AASsuming a guess position for the horizon center
[ i i it Xo= (X Z,) on the structured Cartesian an m
der of the multipole expansion, amy is the normalization ° (X0.Y0:20) on the structured Cartesian grid and some

factor making the right-hand sidéRHS) dimensionless prescription for distributing points throughout this mesh to
: . .~ construct nodes for the second gBd we can evaluate the
There are (+1)(I+2)/2 such independent combinations. . . ;
LN S . expansion® on the nodes of gri® oncef(0,) is deter-
The combinations constructed in this fashion can be supple:

mented with thd (I —1)/2 independent conditions imposed E)nvlgreg.er?(;?eV\::eer::tz(r)gj?mgptr?::cl)zlg:atrzeecgr?less u:éfg(;rinnly
on the symmetric permutations to make the rdntensor P ' ' y sp

trace-free by contracting on any two indices. The funcfion 82%38 pola";lroznd<a22|m(uthal ?”gl'es t? C?\;er :Ee fuI_I sphdere
can be expanded as <f@< an ¢=<2m (or a single octant for the axi- an

equatorial symmetric spacetimegiowever, this procedure

N, =Ai(X=X0) “(y—Y0) (2= 20)7,

L at+p+y=I can easily be generalized to, for example, weight the node
f(xy,2)=> > Cil(X—xg)% distribution according to the coordinate surface curvature, as
=0 K might be desirable for highly distorted horizons. Along the

(VB 7— 7. %k 9 radial direction, the nodes of griB are placed uniformly

(Y= Y0) "z~ 29) ), ©) with an inter-node spacingr typically equal to the cell reso-
lution of grid A on which the Einstein equations are solved.
We have also implemented a procedure to constrain the
range of radii over which the solver searches for the AH, as
might be desirable in cases where multiple trapped surfaces
exist in the data set. In these cases, the radial grid spacing is

where C, are coordinate independent coefficients, dnd
denotes STF combinationi25]. Partial derivatives);F and
d;0;F needed to evaluat® on the trial surfaces are then
easily computed from Eg$2) and(9). The simplicity of the
form (9) also allows one to easily construc'g the multipple set by St =(r .~ Fmin)/N, , whereN, is the number of ra-
expansion to take advantage of any symmetries present in t

roblem. For instan " current implementation. b i fal nodes, and,,;, andr .« are the lower and upper bounds
probiem. For instance, our curre piementation, Dy S€Uy o 1owable radii. Representing the number of nodes on grid

ting a flag, can invoke either the even or odd multipoles SN
) ) , XN 4 X =Ny =
independently of the other, enforce axisymmetry, fix the sur-B as Np>Ny >N, , we setN,=N,=5 along the angular

face centers), or allow the most general parametric expan directions in a single octant, an, =N along the radial
sion 0 9 P PAN" girection, whereN is the minimum number of cells among

the three orthogonal axes in grid
_ _ ~ Once the spherical gri is constructed and centered on
B. Numerical algorithms Xy, the functionF in Eq. (2) is evaluated on the nodes of

The numerical problem is to find a set of parametersgrid B for a fixed set of coefficientsQy ) that the Powell
(Cy.xp) that minimizes the LHS of Eq(7). Minimization  routines compute. Along each radial line, a search is made
techniques(such as conjugate gradient or quasi-Newtonfor F=0, by scanning from large to small radii, until the
methods that evaluate both the function and all its variousconditionF(6,¢,r) XF(6,¢,r+ r)<0 is met, and then lin-
partial derivatives are often preferred, as a means to increaggly interpolating between adjacent neighbors to find the
the convergence rate, to those that do not require derivativ@pproximate Cartesian coordinates of the surface correspond-
information. However, because of the complexity of FL, ing to F=0. The extrinsic curvature and the metric functions
in this first generation 3D AH finder we have chosen toand their derivatives are then evaluated at these positions by
implement a multi-dimensional method that does not requirdnterpolating(either linearly or quadraticallyfrom the com-
knowledge of derivatives, namely a direction set or Powell'sputational gridA on which they are defined and used in Eq.
method[26]. The method is based on successive line mini-(1) to evaluate®? on the surface. The process of construct-
mizations, whereby the functioB®? is successively mini- ing a spherical gri® centered orx;, evaluatingF on grid
mized along different vector directions using the one-B, searching for the surface coordinates for whiek O,
dimensional Brent’'s method with parabolic interpolation. Weinterpolating the geometric data to the surface, and evaluat-
find Powell's method to be generally robust, with a gooding the expansion(l) on the surface is repeated through
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Powell's procedure until a minimum &®?2 in the param- Schwarzschild Initial Data
eter space @y ,xy) is realized. S o S
To reduce the computational time spent in finding appar-
ent horizons and to make the finder usable in real time evo-
lutions of black hole spacetimes, it is important to implement r
the solver in a parallel fashion. Fortunately, the calculations 2= T n
performed at each node on the trial 2D surfaces are indepen- - S =™
dent of the other node calculations. A natural parallel imple- s ST e U
mentation, which we have adopted, thus distributes the dif- L i) R \ ]
ferent surface calculations to different computational | L {0 O " ‘, |
processors, achieving a speedupNgf<N, compared to a AR ; ;
purely scalar code. In addition, a large percentage of the cpu N el
time is spent interpolating the field variables from gAd Ve s
onto the 2D surface. To speedup this bottleneck procedure, A s
we have written and implemented generalized algorithms de-  —2 "
signed to interpolatéboth linearly and quadratically3D -
data onto different nodes within a 2D surface in parallel. The - M=3 ===~
computationally intensive elements of the horizon finder L M=4 —-—-—-- ]
have been optimized for both the Cray C90 and the mas- -4L. . . . . , | . . . |

sively parallel Thinking Machines CM5 computers. —4 -2 0 2 4
X

lll. CODE TESTS FIG. 1. The coordinate location of the apparent horizon in the

x-z plane for Schwarzschild initial data with various masses. The

In order to test the basic solver described above, we hav e : _
developed both 2D and 3D AH finders based on this mini_c‘?omputed surfaces are indistinguishable from the analytic solutions,

o with deviations of order 0.04%.
mization method.

For the 2D finder, the AH determined can be directly
compared to those obtained with the standard integration di?=
method. As testbeds,_ we used dr_;\ta obtained from a code
ﬂg?gelgg?gr?e%Bgnzge?ng%Hé L?és(;g?r?bﬁ;’igh/esfag?g?é whereM is the mass of the black hole. The apparent horizon
X : “in this case is spherically symmetric and located rat
tional waves (Brill waves) [28]. The black holes can be =M/2. Although only theL=0 term should contribute to

highly distorted by the incoming waves, leading to AH’s . .
with extremely prolate or oblate geometric shapes. In somg1e surface that defines the apparent horizon, we tested the

cases the ratio of polar to equatorial circumference can ex3°lver with a more general multipole expansion with the
ceed 16. When these systems are evolved, the horizons unZ 0 terms up to and including =6, a total of 28 coeffi-
dergo dynamic oscillations, eventually settling down to aCl€nts. _ o
Schwarzschild black hole at late timgs. For such dynamic The computed surface is plotted in Fig. 1 for four separate
spacetimes, we compared the results obtained with our ne@ases with various black hole masses. The grid resolution
AH finder algorithm with those from the AH finder con- used in each case wasx=Ay=Az=0.075M, using 25
structed using the standard ODE methi@@,5]. For test sur- cells. As expected, the surface is mostly defined by the
faces with 16 coefficients, and using spherical harmo¥ijgs  |=0 contribution: The other higher order terms are small in
as basis functions, we find that both methods produce theomparison, roughly a factor of 16 smaller. We find typi-
same results to within the given accuracy of the PDE solverszal errors in the horizon radius of order 0.04%, and the nu-

As this paper is on a 3D implementation of these ideas fomerical surfaces are indistinguishable from the analytic so-
finding AH's, in the following we concentrate on results for |ytion in Fig. 1. In each of the cases shown here, the finder
the 3D case only. We have written a Fortran routine thaionverged to the correct surface in approximately 30 itera-
implements the above method for a general 3D spacetime ifigns. However, the number of iterations decreases signifi-
Cartesian coordinates, and tested it on various spacetimes Qéntly if fewer parameters are varied. For example, only 3
interest. We discuss results from this code applied to variouge ations are needed to converge if only the monopole term
Il?lri\al datg sets cior_ltalnm? one orf rTr]lore tl;llackk Eofssac is varied, reducing the computational time by a factor of 60.
tim ), an o evolutions o Some o these black hole spaceg, average, the CPU time scales approximatelyNgs

es carried out with our 3D “G” codg29] (Sec. Il B). hereN. is th b ¢ ; Y th thod
For all the 3D tests, we use the symmetric trace-fi®€F) where N, 1S the number of parameters. Hence, (neé metho
tensors as basis functions defined on a unit sphere. bec;omes rather cumberspme fqr h|ghly distorted hO!’IZOﬂS

which can only be described with a high order multipole
A. Finding horizons in initial data sets expansion. We discuss this important issue further in the
following more elaborate tests.

4
(dx?+dy?+dZ?), (10)

1+M
2r

1. Schwarzschild black hole

The simplest, most basic, test for any apparent horizon 2. Misner data

finder is the static Schwarzschild initial data. The 3-metric The Misner initial data set represents two equal mass
can be written in Cartesian coordinates as black holes initially at rest, and is defined by the 3-metric
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Misner Initial Data TABLE I. The effect of thelaxisymmetri¢ multipole order. on
finding the correct horizon surface is demonstrated here for the two
black hole Misner data witlw=1.2. The number of iterations and
CPU time required by the solver is tabulated along with the expan-
sion summed over all points on the surface. The timings were per-
formed on the 128-node partition of the CM5, using a 3D grid of
size 64 and a 5<5 mesh to cover the 2D horizon surface in a
single quadrant.

L Iterations CPU time 302

N
0 2 1.2 min 8.%x10°?
2 5 2.2 min 8.x10°3
4 9 4.6 min 7.%x10°4
6 16 12 min 1.x10°%

multipole expansions would be required for more distorted
surfaces. In Table I, we show the number of iterations, CPU
time and>®2 as a measure of convergence for each of the
expansion orders. We note that timings reported here and
throughout this paper refer to the Thinking Machines CM5.

FIG. 2. The coordinate location of the apparent horizon for the For u>1.36, there are two separate and spherical trapped
=12 Misner initial data. The solid line is the apparent horizong faces on the initial slice, centered off the origin at
computed from our 2D code. The various broken lines are the sur; _ cothu. In the cases we have testéd=2.0 and 2.2,
faces obtained from the different multipole order expansions. Th‘?he solver is able to locate both the center and radius of the
surface obtained from the=6 expansion is indistinguishable from offset horizons to an accuracy of better than 0.06% using
the 2D result in this plot. We note that terms uplte-6 must be . _ )
included to find the AH accurately. gengral expansions to any order 0 to_L—6. We note that

the iteration counfand hence CPU timecan increase by

factors of between 2 to 10, depending on the total number of
parameters, as compared to the cases in which the throat
where center coordinates are not allowed to vary.

dI?=yA(dx®+dy?+dz?), (11)

p=1+2

1 1 1 3. Black hole plus Brill wave
—_— ( — ) , (12
A=t sinh(nw) r

“r, = The Misner initial data family just discussed provides ex-
amples of both single perturbed horizons and two separate
and but spherical surfaces with offset centers for testing. How-
. —— 5 ever, black hole horizons in highly dynamic spacetimes can
Fn=\X*+y*+[z= cothinu)]*. (13)  pe extremely distorted geometrically, and the horizon finder

o . must be able to locate these as well. The black hole plus Brill
The parametep. specifies the proper separation between th(?/vave initial data set is yet another solution that has been

two holgs anq the total ADM mass of the Spacetime. Appars tudied extensively in axisymmetry, and thus provides a use-
ent horizons in these data sets may consist of either a sing | testbed for highly distorted holes in three dimensions.

surface surrounding both black holes if they are sufficie-ntly.l.hiS data describes the superposition of a black hole and a
close to one anotheru(<1.36) [30], or two separate hori- “doughnut” shaped Brill wave surrounding the hole. In

zons located at the throats of the holes. . spherical coordinates, the 3-metric takes the form
In the cases where the two holes form a single encom-

passing horizon, the surface can be distorted significantly. To
find the distorted horizons accurately, then, we need to keep
higher order multipole terms, bat priori it is not clear how
many terms will be required. In Fig. 2, we show the resultswhereq andy are functions of and 6 only. The functiong

of systematically increasing the number of axisymmetric exis specified analytically as free data, and the Hamiltonian
pansion terms for the cage= 1.2. In each calculation we constraint is solved for the conformal faCt(,M The initial
use a 64 grid with Ax=0.1 and run the code on the 128 extrinsic curvature vanishes due to time symmetry.

node partition of the CM5. We also show the result obtained This data set has been studied with 2D, axisymmetric
with our 2D, axisymmetric code described in R¢81], codes [13,28 using a logarithmic radial coordinate
which implements an independent ODE integration method?= IN(2r/mg), wheremy is a scale parameter. In this coordi-
[5]. It is obvious that a high order expansion, uplte 6, is  nate systent»,6,¢), the form of theq-function is written as
required to accurately describe this surface which has a ma-

jor to minor axis ratio of 1.5. We expect that even higher g=a sin"g(7), (15

d12= yA4(e2(dr?+r2d 6?) + r2sirf6d ¢?), (14
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Distorted Black Hole Initial Data
. — ——————

10 7 T T

. [ e 3D, Ax=0.6 |
I 3D, Ax=0.3 -
——mm 3D, Ax=0.15
2D

FIG. 3. The coordinate location of the apparent horizon for 2D
and 3D Brill wave plus black hole initial data with various values of

the Brill wave amplitude. In all runs, the Brill wave is centered at . : ) ) .
70=0 and has a width of=1. Note that there is good agreement verges quadratically with grid spacing to the correct location, as

even though the initial data is not analytic and actually Containﬁr_epresented by an independent 2D calculation shown by the solid
highly geometrically distorted black hole horizons.

FIG. 4. A resolution study of the Brill wave plus black hole
spacetime for the case(rnq,0)=(—0.75,0,1). The surface con-

Although the surfaces shown in Fig. 3 appear to be almost
spherical in coordinate space, the presence of strong gravita-
tional waves can severely distort the horizons geometrically,

2 n— 102 much more so than the Misner data solutions described
+expg — p . (16 above. In Fig. 5 we show th@xisymmetri¢ geometric em-
bedding of the two cases= = 1, using the method described
in Ref.[5]. For all negative values of the amplitude param-
ter, the horizon is oblate. Thee=+1 case is highly dis-
orted geometrically into a prolate shape, with a ratio of polar
dp equatorial circumference @&,/C.=4.28.

where we seh=2, and

n+ 10

g(n)=exr{—

We solve the Hamiltonian constraint for the conformal factor
in our 2D code and then interpolate these solutions onto
64° Cartesian grid withAx=0.15 to generate 3D data sets.
The 3D horizon finder is tested against an independent solv
developed for 2D calculatior4.3].

In Fig. 3 we show the coordinate location of the apparent
horizon for various parameters of tlefunction. The se- The calculations presented so far have tested the ability of
guence shown corresponds to different values of the Brilthe solver to find single or multiple horizons of spherical and
wave amplitudea, for fixed “shape” parameters having the highly distorted black holes in 3D Cartesian coordinates.
values (70,0,n)=(0,1,2). Results from both the 2D and 3D However, the data in all these cases are time symmetric. The
calculations are shown. In the 3D case, we allowed searchd<e!T initial data set describing a rotating black hole has non-
up throughL =4, but for this case we include only the axi- trivial extrinsic curvature, and thus provides another impor-
Symmetric terms. In all cases shown, the finder was able tnt testbed with a known analytic solution. The 3-metric for
locate the correct surface to within a third of a grid zone inthis spacetime in Boyer-Lindquist coordinates is given by

4. Kerr black hole

just 6 iterations. 2 2, 22 A a2 :

Figure 4 is a resolution convergence study of the case dI2=p—dr2+p2d02+ (r"+a%) A:‘ sm20)sm20d¢2,
a=—0.75 in which the cell size is varied fromx=0.6, A P
0.3 and 0.15 with 1% 32° and 64 grids respectively. The (17)

solver clearly converges to the correct surface quadratical%h ere
with cell size.

For negative values of the Brill wave amplitude parameter p?=r2+a%co, (18
a, the horizon is found off the throat, but for positive values
below certain limitgdepending on the shape parameténe A=r2—2Mr+a2 (19

horizon is located on the throat iat my/2. We are also able
to locate the AH at the same level of accuracy for thesdn these coordinates, the non-vanishing components of the
cases. extrinsic curvature are
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Embeddings of Distorted Black hole AH's the metric and extrinsic curvature from isotropic coordinates
o to Cartesian coordinates. The apparent horizon for the Kerr
data is a coordinate sphere, located at

SN ] _ M2
0.6 \.\ — = 2 . (24)

0.8

a=—1 ] In Table Il we show results from runs with various values
—————- a=1 ] of the rotation parametet/M and expansion ordér. These
| runs were all done with general expansions, without restrict-
ing to axisymmetry. For the tests performed heke, Ay
and Az were chosen to be approximately one tenth of the
analytic AH radius, and the number of cells $32vas kept
the same in all cases. Only the 0 contributions are shown.
As expected, the contributions from higHeterms are small,
ranging from 10° for a/M=0 to 3x 10 2 for a/M=0.9.
The reason that these terms, in the highly rotating cases, are
I i not as small as in the Schwarzschild case is because the
O'% S e— metric is not conformally flat, so the interpolations within the
. . 4 0.6 0.8 . .
X finder are not as accurate. Although we do not display em-
_ _ _ beddings of these horizons, we note that rotating black hole
~ FIG. 5. The geometric embedding diagrams of the apparent hongrizons can be extremely oblate, and for rotation parameters
rizons for the Brill wave plus bIapk hgle |r)|t|al data with wave o/\>0.866 a global embedding into Euclidean space is not
amplitudesa=*1. Thea=—1 horizon is quite oblate, and devi- ,qqinie The horizon finder has no difficulty in locating

ates from Spher'c'.ty even in its coordinate location. Eorqhel these surfaces to within a grid zone, although we note, again,
case, the horizon is actually located on the throat, which is a coor;,

; . . . the high computational cost for large order multipole expan-
dinate sphere. However, the metric functions are highly nonspheri-. indicated by the/M = 0.3 f calculati
cal, leading to this very prolate geometry of the horizon surface. SIons as indicated by =UY.5 sequence of calculations.

0.2

N 5. Transformed Schwarzschild black hole
K,g=aM[2r?(r?+a?)+ p?(r?—a?)]sito/(r p*),

(20) The above test cases, although treated in full 3D, have all
. been axisymmetric. In this section we test our finder on data
Kop= —2a3Mr A cos 6 sirtep 4, (21)  which does not have any particular symmetry, and for which
. ) we can derive the correct solution in order to gauge the ac-
whereKj; = #gK;; , and curacy of the solver. To this end, we chose to find the appar-
(r2+a2)2— Aasintg ent horizon on a Schwarzschild initial slice using a coordi-
4 . . .
0= > . (220  nate system in which the horizon surface does not appear to
P be axisymmetric. The coordinate transformation we use is
To construct this data in 3D, we first transform to an 1 1
isotropic radial coordinate through the transformation T=rf(6,¢)=r| 1+ 7 Sir? 6(cofp—sirt )
M+a M—a
r=d 1+ - ) 14+ ——|, (23 (25
r

wherer is the radial isotropic coordinate of E¢L0). This
as described ifi32]. In this coordinate system, the coordinate f(6,¢) has surface modes df=2. The apparent horizon

singularities at = M = M?—a? disappear. We then convert location is then defined b?z (M/2)f(6,¢).

TABLE Il. Performance measures of the horizon solver applied to the Kerr black hole data with various spin parativetdiere L
is the maximum multipole ordef\x is the 3D grid spacing,, is the analytical position of the horizon, is the horizon location found by
the solver, and\r/Ax is the difference between the analytic and numerical locations normalized to the grid spacing. We also show the

number of iterations and CPU time required by the solver running on a 32-node partition of the CM5, using a grid wits3hd a 5 5
mesh for the surface.

a/M L AX la " Ar/Ax Iterations CPU

0 4 0.1 1.0 1.0002 0.003 30 24 h
0.3 4 0.1 0.954 1.0095 0.556 37 10 h
0.3 2 0.1 0.954 0.9562 0.022 9 6.7 min
0.3 0 0.1 0.954 0.9542 0.002 2 0.5 min
0.9 4 0.039 0.436 0.4748 0.997 27 0.5 h
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The solver was allowed to search coefficients with terms
up toL=2 andL=4. In all cases for the.=2 tests, the
finder successfully found the horizon to high accuracy. Each
non-zero coefficient was accurate to better than a tenth of
one percent, and the largest value found for a coefficient that
was supposed to be zero was less than 2% of the smallest
non-zero component. We note that better accuracy can be
achieved if one uses full knowledge of the analytic form of
the metric. When the finder was generalized to allow
searches with coefficients up ko= 4, the horizon was again
successfully found and to comparable accuracy. However
with the large number of search parameters, some care was
necessary in choosing the initial search direction of the Pow-
ell routine in order to avoid getting trapped at local minima
in ®2 generated in the discretized representation of the
spacetime. When the resolution of spacetime grid is in-
creased, such local minima will disappear/change in location,
in sharp contrast to the actu@?=0 point (the actual loca- 12 [T T
tion of the AH, which converges to a fixed location with i
increased resolutionln Fig. 6, we show the apparent hori-
zon found and the analytic solution in one quadrant of each
of the coordinate planes. The numerical results shown in this
figure were obtained with a run in which coefficients up to
L=4 were allowed to vary.

B. Evolved 3D data sets

The tests described thus far have shown that the horizon
finder can locate horizons in a variety of distorted black hole
spacetimes, but these have all been initial data sets with a
somewhat restricted 3-metric and extrinsic curvature, and
with a large part of the data prescribed analytically. In gen-
eral 3D black hole evolutions, all metric and curvature com-
ponents will be present, and the data will be contaminated
with numerical inaccuracies generated during the course of
evolution. The horizon finder must work under these condi- 1 e B
tions for it to be a useful tool in the numerical construction
of spacetimes. In this section, we discuss results derived
from the implementation of the horizon solver into our 3D
“G” code [29] that solves the Einstein evolution equations I
in Cartesian coordinates. 0.8

1. Schwarzschild

The tests discussed here were carried out using multipole
expansions up to and including the=4 terms. However, in
order to save computational time, we restricted the search to
axisymmetric surfaces. We have verified that a more general
expansion does not change the results significantly. 0zl

The results for a 3D Schwarzschild spacetime, evolved I
with both geodesic and maximal slicings with zero shift, are

0.4

ool

shown in Figs. 7 and 8 respectively. A%430°) grid with o 02 o4 o6 0 o o
Ax=0.15(0.2) was used for the geodegmaxima) case © Y

with At=0.25A%. Only thel =0 contribution to the surface

is plotted. The other parameters remain smalitLQ™%) dur- FIG. 6. Apparent horizon location in each of the coordinate

ing the entire evolutions, as expected. In both cases, the Suftanes for the transformed Schwarzschild initial data. The numeri-
face locations are compared against the corresponding resuig| data are represented by solid lines, and the analytic data by
from 1D calculations. The two results agree to a small fracsymbols. The surface is pute=2, although the finder was allowed
tion of a grid zone throughout the evolution. The late timeto search through the=4 coefficients as well. The computed co-
deviation in the maximal run is attributed to errors in the 3Defficients are found to roughly 0.1% accuracy.
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P Schwarzschild Evolution, Geodesic Slicing horizon. The horizon finder with B=4 axisymmetric mul-

tipole expansion is thus approximately 50—100 times slower
than a single update cycle in the hyperbolic evolut{af
though we note that when the elliptic maximal slicing equa-
e tion is solved, the relative performance in the solver im-
s 1 proves significantly A factor of roughly 10 can be gained
7 1 by reducing the expansion order lte=0.

T 1 2. Misner 2BH collision

T 1 A more difficult evolution scenario is to capture the hori-
- zon surfaces as two black holes collide and merge. Our “G”
i | code is used to evolve the two black hole Misner data set,
L 1 described in Sec. Ill A 2, for a time sulfficiently long that we
ool e 1 can test the AH finder on this dynamic spacetime.

0 1 " 2 3 To evol\(e the initial data, we use a zero shift vector and

an algebraic lapse of the form
FIG. 7. The apparent horizon location for 1D and 3D Schwarzs- ~
child evolutions using geodesic slicing. The 1D data were obtained a=ay(1+log v), (26)
using 128 grid points and resolutidxr =0.0379V, whereM is the “
mass of the black hole. The 3D data were obtained usifggid ~ Wherey is the conformal 3-metric determinant ang is the
points and resolutioAx=0.079M. Only thel=0 contribution to Iapse on the initial time slice, which we take to be the Cadez
the 3D apparent horizon is plotted but the other terms inLthet  [33] lapse
series are negligible, as discussed in the text. 1 .
EREu

 E—
|

0.5

1

==

spacetime evolution, which becomes inaccurate for °

t>20M, although we note that the difference at the end o
the run is still only about a grid zone.

In both the geodesic and maximal cases, the AH find
accounted for a large portion of the total CPU time. For th
geodesic case the code ran 160 timesteps, invoking the find
once every 0.8 in time (11 times totgl In this case, the times[29]. L o
finder constituted approximately 90% of the CPU time. For The calculation is run on a 84grid with Ax=0.1 for a

the maximal slicing case the code was run for 110qlime of t=10M using an expansion to ordér=4. As our

timesteps, calling the finder everyV2 (14 times total. In interest is in testing the ability of the solver to locate the AH

this case, 40% of the CPU time was spent in finding thebefore and after the surface merger event, it suffices to
’ evolve a data set with a low value for the Misner parameter,

which is computationally less expensive in evolution. Here
aximl Slicing we show results for the.=1.5 case which has, as initial
data, two coalesced black holes with a common event hori-
zon, but twodistinct trapped surfaces at the two throats. A
common apparent horizon encircling both throats forms at
timet~1.6M.

Figure 9 plots the surfaces found at each time the finder is
e called(t=0, 2.5, 5, 7.5 and 1@, whereM is the Arnowitt
Deser-MisnefADM) mass, and with the surfaces increasing
in radius at the later timg¢sAt t=0, the solver correctly
finds the throat as the surface, centered off the origin. The
finder can subsequently be prevented from locking onto the
throat(which remains a trapped surface throughout the evo-
lution) by restricting the range of radii over which the func-

oo o tion F(0,¢,r) is evaluated, and by resetting the center of the

0 5 10 15 20 surface. Unfortunately, there is no analytic result to compare
¢/ Miou against the computed location of the AH at the later times.

FIG. 8. The apparent horizon location for 1D and 3D Schwarzs/nstead, we overlay the 3D computed AH surfaces with the
child evolutions using maximal slicing. The 1D data were obtainedresults from our 2D axisymmetric code evolving the same
using 130 grid points and resolutiaxr =0.1M, the 3D data using initial data. The surfaces determined with these two different
130 grid zones and resolutiohx=0.1IM. We note that the agree- methods(3D minimization vs ODE integratignapplied to
ment is within a grid zone even to the end of the calculation, wherthe two different constructions of the spacetif@® Carte-
the 3D evolution becomes inaccurate. sian evolution vs 2D axisymmetric evolutipbasically agree

__q\n
1+n§1( b sinhnu
fThe solution(27) solves the maximal equation in time sym-
ofnetry with =0 as a boundary condition on the throats.
eAlgebraic lapses of the forni26) are singularity avoiding
gpd produce evolutions similar to maximally sliced space-

Schwarzschild Evolution, M
— — —

3o T T

25 L

20 P

\
ITIIN AR BT

0.5; A0 -eememenennne

N
& ]
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Misner Evolution, Data Every 2.5M Distorted Black Hole Evolution

gTT T T AL AL L L ]

FIG. 9. Apparent horizon locations in the 3D evolution of the  FIG. 10. Coordinate location of the AH found in the 2D and 3D
wn=1.5 Misner two black hole data. The surfaces are plotted atvolutions of the Brill wave plus black hole spacetime. The surfaces
timest=0, 2.5, 5, 7.5 and 1@, whereM is the ADM mass of the are shown starting at=0 with time intervals of Zny=1.12M,
spacetime, and the surfaces increase in radius with time. The evavhereM =3.54 is the ADM mass of the spacetime. Although we do
lution is performed using a 64rid with resolutionAx=0.1 and a  not expect identical results due to different kinematic conditions in
multipole expansion of orddr=4. Also shown are the correspond- the two cases, the surfaces differ at most by litle more than two
ing horizons found in the 2D axisymmetric evolutions. The surfacegyrid cells. The evolution is performed on a%@rid with Ax
from the two calculations agree nicely, although we note that an=0.2.
exact correspondence is not expected due to different shift and lapse

functions. is the same as that discussed in Sec. Ill A 3 with shape pa-

_ _ ] rameters g,0,n)=(0,1,2), scale parametan,=2 and
with one another. Nevertheless, we note that in the figure thgmpjitudea= —0.5. For this set of parameters, the ADM

two sets of surfaces are not exactly the same in coordinalgyzss of the spacetime il =1.77my=3.54. The Hamil-

space, as they shoulibt be, since we are using different tonjan constraint is solved for the conformal factor in our 2D
lapse and shift functions in the two cases. However, the Sh'féxisymmetric code, then interpolated onto & &Bartesian
vector is of magnitudgs| ~10°% in the region of the AH, SO grig with Ax=0.2=0.058\I. The data is evolved with a
we do not expect this effect to exceed the grid spacing ScalﬁmestepAt=O.2&x=0.014\/|, calling the horizon finder
over the time interval of the calculation. Also, the algebraicynce everymy,=0.56M intervals of time. The shift vector is

lapse used in the 3D code is typically larger than the maxiget 1o zero and the lapse function is computed from the maxi-
mal slicing lapse in the 2D code by a fractional difference,q slicing condition.

Aa~0.02 near the AI—!._ThlS should also have a smgll effect Figure 10 shows the horizon shapes and locations in the
on the coordinate position of the AH except at late times. I'gp  cajculation at various times with intervals of
fact, the maximum differences in the AH location between2m0:1'15M, starting att=0. The multipole order used in
the 2D and 3D calculations is only slightly more than a gridihis' calculation is. =4, with m=0 to reduce the computa-
cell. The differences may also be attributed to inaccuracies ifjonal time. The higher order expansion is needed here to
the evolution; as born out in computing the mass of the AHgegcribe the oblate shape of the horizons. For the most part,
at different times. Att=2.5M, after a common surface e solver required only about five iterations to converge
forms to surround both throats, we fiMa,=2.28, com-  \yhen the previous solution is given as the initial guess to the
pared to the 2D result of 2.36. However, by 10M, the  finder. Also shown in Fig. 10 are the corresponding surfaces
error in the mass of the computed surface increases tfyund in our 2D axisymmetric code. Once more we note that
roughly 18% as the evolution becomes less accurate. Thesge sjicing and shift conditions differ in the two cases, so we
errors are attributable to numerical inaccuracies in the evogq not expect the surfaces to coincide precisely. However as
lution and not the AH finder routine, in particular, they are the gifferences between the lapse functions and shift vectors
unrelated to the multipole order used, since the surface begge small(|8|~10"2 and Aa~0.07 in regions near the ho-
comes more spherical in time. rizon except near the-axis), the solutions do agree nicely.
In and around the-y plane, the solutions match to within
half a grid cell. Greater differences, however, are found
One final test of the solver in real time evolutions is aalong thez-axis, where the two surfaces are displaced by a
Schwarzschild black hole plus a Brill wave. The initial datamaximum of roughly two grid cells. This is attributed in part

3. Black hole plus Brill wave
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Distorted Black Hole AH Mass ever, as the black hole settles down into a quasi-static state,
L I the surface becomes more spherical andltke2 solution
approaches both the 2D and the=4, 3D results, differing
from the 2D result by about 0.35% &t-6M.

IV. CONCLUSIONS

We have developed a promising general 3D method of
finding the AH in a numerically constructed spacetime based
on a minimization procedure. In this paper we have applied
the method and demonstrated that it works for spacetime
data which are not time symmetric, and data sets which are
obtained in actual numerical evolutions.

The major advantage of this method is that the minimiza-
tion procedure is much better understood than the corre-
sponding problem of solving the elliptic equation, and well-
tested routines are available for solutions. The major

ool . . 4y drawback of the method is that, for AH surfaces which are
0 2 4 6 not smooth, and which deviate significantly from sphericity
Mo in coordinate space, the higher dimensional minimization

FIG. 11. Comparison of the apparent horizon masses computegrocedure can be computationally expensive. With our
from the 2D and 3D evolutions of the Brill wave plus black hole present implementation of the finder using Powell’s routine,
Spacetime. The AH mass increases Inltlally as the Brill wave fa”s\Ne are limited to Searching for AH surfaces at every 50, or
into the black hole. Bjt~6M, the mass approaches 0.887and 5o, evolution cycles, instead of continually monitoring the
the 2D andL =4, 3D results differ by just 0.1% at this time. We AH throughout the numerical evolution, as would be our
also show the corresponding masses computed from the surfacgs, ) goal. In future implementations of the method, we an-
found with anL =2 multipole expansion. The low order expansion ticipate developing a more sophisticated minimization rou-
is clear_ly no_t adequat_e in resolving the surface at early times Wheﬂne using derivative information to speed up the procedure,
the horizon is most distorted. as well as other means to improve the robustness and effi-
. . : ciency of the code. Our code, which is optimized for both the
to a biggerAa (~0.1) near thez-axis, which results from C90 gnd massively parallel CM5 macEines, together with

the imposed asymmetry in the lapse function due to the nealrd'?cumentation, will be made available on our servers http://

ness of the outer boundaries, where we enforce the spheri ' )
Schwarzschild lapse as a boundary condition in the maximj%an luc.ncsa.uiuc.edu and http:/Awugrav.wustl.edu.

equation used in the 2D simulation.

Again, a more geometrical comparison or test of the
solver is the mass of the surface found. The horizon mass is \We gratefully acknowledge the assistance of Andrey Od-
defined asM 5= VAan/16m, WhereA,y is the area of the intsov and David Rosnick, who helped in testing and coding
surface. Figure 11 plots the AH mass as a function of timevarious components of the code described in this paper. We
for the 2D and the.=4, 3D evolutions. In both cases, the also thank Thomas Baumgarte for discussions and John
mass increases at first, as the gravitational waves fall into thghalf for help in visualization of the horizon surfaces pre-
black hole, reachingl ,y~0.99™ att~6M. The masses sented in this paper. This research is supported by the Na-
in the two cases differ by only 0.1% &t 6M. For compari- tional Center for Supercomputing Applications, the Pitts-
son we also ploM ,y for the surface found using a lower burgh Supercomputing Center, and NSF grants Nos. PHY94-
order L=2 multipole expansion. At early times, when the 04788, PHY94-07882, PHY96-00507 and PHY/ASC93-
horizon is most distorted, the=2 expansion is clearly not 18152(arpa supplementg¢dW.M.S. would also like to thank
adequate to resolve the horizon shape, as evidenced by thtee Institute of Mathematical Sciences of The Chinese Uni-
AH mass which exceeds the ADM mass by about 1%. Howwersity of Hong Kong for hospitality during his visit.
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