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Abstract

We show that the algebra of discretized spatial diffeomorphism constraints in Hamiltonian

lattice quantum gravity closes without anomalies in the limit of small lattice spacing. The

result holds for arbitrary factor-ordering and for a variety of different discretizations of the

continuum constraints, and thus generalizes an earlier calculation by Renteln.
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0 Motivation

For the most part, our understanding of quantum gravity in four dimensions is not

sufficiently developed to provide unambiguous tests for the consistency and appropriateness

of any candidate theory. In the case of usual gauge field theories, there are well-known criteria

to ensure their consistency at the quantum level, for example, the validity of the Slavnov-

Taylor identities. However, the Fock space methods on which they are based are only of

limited use for gravitational theories in more than two space-time dimensions.

Attempts to construct non-perturbative path integral formulations of 4-d gravity have

so far left the question of their continuation to Lorentzian signature unanswered. Even dis-

regarding this problem, it is difficult to get a mathematical handle on the structure of the

path integral measure. Canonical approaches circumvent the signature problem and allow

one to pose (part of) the quantum consistency problem in a seemingly clear-cut form: is there

an anomaly in the Dirac algebra of the Hamiltonian and diffeomorphism constraints or isn’t

there? In the presence of anomalous terms, the quantum Dirac conditions overconstrain the

space of physical states, which is physically unacceptable. One difficulty of the canonical for-

mulation lies in finding appropriate regularized versions of the constraint operators, without

which the question is known to be ill-posed [1]. A potential drawback of the Hamiltonian

approaches is the fact that efficient computational techniques for a numerical study of their

quantum properties have yet to be developed.

Schemes that proceed by a direct discretization of space-time or of the space of all

field configurations in order to achieve a regularization tend to break the diffeomorphism

invariance present in the continuum theory. This however is not a fundamental objection, if

one considers the smooth structure of the classical theory only as a semi-classical property,

which does not continue to hold down to smallest length scales. Still it leaves one with the

technical inconvenience of having to work with an “approximately diffeomorphism-invariant”

regularized theory.

Considerable efforts have gone into trying to construct a canonical quantization of 3+1

gravity in terms of connection variables, without resorting to a discretization, and with the

full spatial diffeomorphism group still acting on a suitably defined space of quantum states

[2-5]. However, this approach seems to be running into some difficulties, among which are a

“non-interacting” property of typical realizations of the quantum Hamiltonian, which leads,

for example, to the existence of unexpected local quantum observables [6,7], vanishing com-

mutation relations between two such Hamiltonians [8] (even in situations where the diffeo-

morphism group acts non-trivially), and anomalous commutation relations between geometric

operators that classically commute [9,10].
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This provides an additional incentive for studying a truly discretized version of this

formulation, which does not share any of these features. On the other hand, like most

discretized models, it does not carry any obvious, non-trivial representation of the classical

invariance group of general relativity. The diffeomorphism group is only recovered in the

limit as the regulator is taken to zero.

In the present piece of work, we will generalize a result obtained earlier by Renteln [11] in

the framework of a lattice discretization of 3+1 gravity in a connection formulation [11-17].

Various aspects of this version of lattice quantum gravity have changed since these earlier

investigations, as a result of new developments both in the continuum loop representations of

quantum gravity mentioned above, and in lattice gravity proper. The kinematic resemblance

with Hamiltonian lattice gauge theory has become even closer since the theory was rephrased

in terms of real su(2)-valued connections [18], instead of the original sl(2,C)-valued Ashtekar

potentials [19], in order to avoid complications related to the reality conditions that appear

in the complex case. As a by-product, there is now a well-defined scalar product and a

complete set of square-integrable states for each finite-size lattice. Although this may not

give rise to a scalar product on the sector of physical states (satisfying all of the constraints),

it is nevertheless remarkable that it should exist at all, given that inner products are usually

hard to come by in quantum gravity.

We will show that independent of the factor-ordering and for a variety of operator sym-

metrizations, there are no anomalous terms in the commutator algebra of the lattice analogues

of the spatial diffeomorphism generators in the limit of vanishing lattice spacing. The compu-

tations are already substantial for this subalgebra of the entire quantum constraint algebra.

We will also spell out some details of the calculations, that may be of interest in attempts

to compute the commutator in alternative regularization schemes. This result shows that

no inconsistencies arise in the lattice discretization at this level, and paves the way for the

calculation of commutators involving also the Hamiltonian constraint.

1 Introduction

A prominent feature of the lattice discretization we are considering is its resemblance with

canonical lattice gauge theory. Like Hamiltonian gauge field theory, 3+1 continuum gravity

can be formulated in terms of Yang-Mills conjugate variable pairs (A,E) of “Ashtekar-type”,

with Poisson brackets {Ai
a(x), Eb

j (y)} = δi
jδ

b
aδ3(x, y). The variable Ai

a is a spatial su(2, IR)-

valued gauge potential.
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Up to terms proportional to the Gauss law constraint, the Hamiltonian constraint in this

formulation is the Barbero Hamiltonian [18] (rescaled by a factor (det E)−
1

2 to make it a

density of weight one), plus – for the sake of generality – a cosmological constant term,

H(x) =
1√

detE
ǫijkEa

i Eb
jF

k
ab −

1

G
(det E)−5/2ηa1a3a4

ηb1b3b4
(Ea3

k Ea4

l Eb3

mEb4

n

− 2Ea3

m Ea4

n Eb3

k Eb4

l )Ea2

k Eb2

m (∇a2
Ea1

l )(∇b2
Eb1

n ) +
λ

G

√
detE = 0.

(1.1)

We have chosen the dimensions of the basic variables and constants to be [A] = L−3,

[E] = L0, [G] = L2, [λ] = L−2, where G is Newton’s constant. Also recall that E transforms

as a one-density under spatial diffeomorphisms. In (1.1), H has already been brought into

the form of a polynomial modulo powers of
√

detE, in order to make its discretization and

quantizion straightforward. The spatial diffeomorphism constraints are given by

Vb(x) = Ea
i (x)F i

ab(x) = 0. (1.2)

Smearing out these four constraints with the lapse and shift functions N(x) and Na(x), one

arrives at the expressions

H[N ] :=

∫
d3x N(x)H(x)

V [Na] :=

∫
d3x N b(x)Vb(x),

(1.3)

which satisfy the usual Dirac Poisson algebra. In particular, for the spatial diffeomorphism

generators one derives

{V [Na], V [Ma]} =

∫
d3x (N b∂bM

a − M b∂bN
a)F i

acE
c
i −

∫
d3xF i

abN
aM b(∇cE

c
i )

≡V [LNMa] − G[F i
abN

aM b].

(1.4)

which coincides with the diffeomorphism Lie algebra on the subspace of phase space given

by the vanishing of the integrated Gauss law constraints G[Λi] =
∫

d3xΛi(∇aEa
i ). One may

also redefine the generators V [Na] by adding a suitable term proportional to the Gauss law
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constraint in order to get rid of the extra phase-space dependent term on the right-hand side

of (1.4) (see, for example, [20]).

2 Discretization

Before setting up the discretization of operators relevant for lattice gravity, we start

with a brief summary of the basic ingredients of Hamiltonian lattice gauge theory [21]. For

computational simplicity, we take the lattice Λ to be a cubic N3-lattice with periodic bound-

ary conditions. The cubic symmetry is convenient but not necessary, as we know from the

continuum loop quantizations which use imbedded lattices.

The basic quantum operators associated with each lattice link l are a group-valued SU(2)-

link holonomy Û (represented by multiplication by U), together with its inverse Û−1, and a

pair of canonical momentum operators p̂+
i and p̂−i , where i is an adjoint index. The operator

p̂+
i (n, â) is based at the vertex n, and is associated with the link l oriented in the positive

â-direction. By contrast, p̂−i (n + 1̂â, â) is based at the vertex displaced by one lattice unit in

the â-direction, and associated with the inverse link l−1(â) = l(−â). In mathematical terms,

the momenta p̂+ and p̂− correspond to the left- and right-invariant vector fields on the group

manifold associated with a given link. The wave functions are elements of ×lL
2(SU(2), dg),

with the product taken over all links, and the canonical Haar measure dg on each copy of the

group SU(2). The basic commutators are

[ÛA
B(n, â), ÛC

D(m, b̂)] = 0,

[p̂+
i (n, â), ÛA

C(m, b̂)] = − i

2
δnmδâb̂ τiA

BÛB
C(n, â),

[p̂−i (n, â), ÛA
C(m, b̂)] = − i

2
δn,m+1δâb̂ ÛA

B(n, â)τiB
C ,

[p̂±i (n, â), p̂±j (m, b̂)] = ±i δnmδâb̂ ǫijk p̂±k (n, â),

[p̂+
i (n, â), p̂−j (m, b̂)] = 0,

(2.1)

where ǫijk are the structure constants of SU(2). (There are analogous Poisson bracket re-

lations for the corresponding classical lattice variables.) The commutation relations for the

inverse holonomy operators can be easily deduced from (2.1). The normalization for the

SU(2)-generators τi is such that [τi, τj ] = 2 ǫijkτk, Tr τiτj = −2δij and Aa = Ai
aτi/2.

In order to relate discrete lattice expressions with their continuum counterparts, one uses
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power series expansions in the so-called lattice spacing a, which is an unphysical parameter

with dimension of length. For the basic classical lattice variables, these are

UA
B(b̂) = 1A

B + aGAbA
B +

a2G

2
(∂bAb + GA2

b)A
B + O(a3),

p±i (b̂) = a2 G−1 Eb
i ± a3 G−1 ∇bE

b
i + O(a4).

(2.2)

We will assume that similar expansions continue to be valid in the quantum theory. Note

that Newton’s constant G appears in (2.2) since the dimensions of the basic gravitational

variables A and E differ from those of the corresponding Yang-Mills phase space variables.

Using the expansions (2.2), one obtains unambiguous continuum limits of composite

classical lattice expressions by extracting the coefficient of the lowest-order term in the a-

expansion. The converse is not true: there is no unique lattice discretization of a continuum

expression, since one may always add to the lattice version terms of higher order in a which

do not contribute in the continuum limit. We will consider in the following different sym-

metrizations for the lattice diffeomorphism generators.

3 Further preparations

As a first step in the commutator calculation of two lattice diffeomorphisms, one needs to

expand the classical link holonomies in a neighbourhood of the lattice vertex n0 at which the

local commutator will be computed. For simplicity we choose a local lattice coordinate system

such that the vertex n0 coincides with its origin, that is, n0 = (0, 0, 0). There are six nearest

neighbours, which are one lattice unit away, for example, the vertices n = (±1, 0, 0) in positive

and negative 1̂-direction. Because of the non-locality of the diffeomorphism generators, all

relevant link holonomies lie on a cube of edge length 2 about the origin.

Using the defining formula for the holonomy along a parametrized path γ between two

points x1 and x2, with γ(0) = x1 and γ(1) = x2,

U(x1, x2) = 1l +

∞∑
n=1

∫
1

0

ds1

∫
1

s1

ds2 . . .

∫
1

sn−1

dsn A(γ(s1))A(γ(s2)) . . . A(γ(sn)), (3.1)

5



one expands this into a power series in the lattice spacing a for the special choice x1 = (0, 0, 0),

x2 = (a, 0, 0), say. We will need terms up to power a3 for our computation. For the holonomy

in positive b̂-direction based at (0, 0, 0), one obtains thus

U((0, 0, 0), b̂) = 1l + aAb +
a2

2
(∂bAb + A2

b) +
a3

3!
(∂2

b Ab + (∂bAb)Ab + 2Ab(∂bAb) + A3
b) + O(a4),

(3.2)

where we now have set G = 1. (Note that at order a3 this differs from the expression given

in [11].) The other positively oriented link holonomies are computed similarly, as Taylor

expansions with respect to the local cartesian coordinate system spanned by the lattice. From

those, the inverse holonomies (associated with the opposite link orientation) are computed

order by order using UU−1 = 1l. Expansions for the link momenta are obtained in an

analogous manner, using (2.2).

Two useful checks for possible errors are given by calculating holonomies U⊓⊔ around

plaquettes, i.e. shortest closed lattice paths of edge length four. Denoting by U⊓⊔12
the

plaquette that starts with a link in positive 1̂-direction, followed by links in directions 2̂, −1̂

and −2̂, one has the expansions

Tr U⊓⊔12
= 2 + O(a4), Tr (U⊓⊔12

τi) = a2F i
12 + O(a3). (3.3)

A natural discretization for the smeared spatial diffeomorphism generators, (second line

of (1.3)), is schematically given by

∑
n

N latt(n, â)Tr (U⊓⊔abτi)pi(n, b̂) =:
∑

n

V latt[N,n). (3.4)

where we have not yet specified the details of the implicit summation over the indices â

and b̂. We will consider four distinct ways of symmetrizing the local lattice expressions

N latt(n, â)Tr (U⊓⊔abτi)pi(n, b̂). Let us introduce the notation N±(n, â) for the lattice shift

functions at vertex n, associated with the link in positive and negative â-direction respectively.

This notation conforms with the one for the momenta p±(n, â). In order for (3.4) to have

the correct continuum limit as a → 0, we require that
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N+(n, b̂) → 1

a
N b(x) + Ñ b(x) + O(a1)

N−(n, b̂) → 1

a
N b(x) + ˜̃N b(x) + O(a1).

(3.5)

We leave the zeroth-order functions Ñ b(x) and ˜̃N b(x) unspecified; the final result will not

depend on this choice. For the local continuum expression of the form N2F i
23E

3
i , say, we will

consider four different lattice representations:

(a) no symmetrization:

N+(n, 2̂)Tr (U⊓⊔23
)p+

i (n, 3̂);

(b) symmetrization over shift functions:

1

2
(N+(n, 2̂)Tr (U⊓⊔23

)p+
i (n, 3̂) + N−(n, 2̂)Tr (U⊓⊔3,−2

)p+
i (n, 3̂));

(c) symmetrization over momenta:

1

2
(N+(n, 2̂)Tr (U⊓⊔23

)p+
i (n, 3̂) + N+(n, 2̂)Tr (U⊓⊔

−3,2)p
−
i (n, 3̂));

(d) symmetrization over both shift functions and momenta:

1

4
(N+(n, 2̂)Tr (U⊓⊔23

)p+
i (n, 3̂) + N−(n, 2̂)Tr (U⊓⊔3,−2

)p+
i (n, 3̂)+

N+(n, 2̂)Tr (U⊓⊔
−3,2)p

−
i (n, 3̂) + N−(n, 2̂)Tr (U⊓⊔

−2,−3
)p−i (n, 3̂));

Note that in each case we sum over terms that are maximally localized on the lattice,

i.e. consist only of holonomies and momenta located on a single lattice plaquette. Choice (d)

was the one considered in [11].

4 The commutator

We now come to the actual computation of the commutator of two lattice-regularized

diffeomorphism constraints. As is well known, the algebra of the discretized constraints

(3.4) does not close, not even at the level of the classical Poisson algebra, because the result
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is a sum of terms, where each term may extend over up to two plaquettes. That is, the

Poisson commutator is not a linear combination of terms of the form (3.4). However, if the

discretization is consistent, the commutator should yield the continuum result to lowest order

in the lattice spacing a as a → 0.

We will perform the corresponding quantum computation, and for definiteness will choose

initially the factor-ordering for the Tr (Û⊓⊔abτi)p̂i(n, b̂)-terms with all momenta p̂ to the right.

To obtain the contribution at a given lattice vertex n0 to the commutator of two smeared

lattice diffeomorphisms [
∑

n V̂[N,n),
∑

m V̂[M,m)], one has to collect all terms where a mo-

mentum based at n0 acts on either a holonomy or another momentum based on the same link.

One quickly realizes that there are not only contributions from terms in [V̂[N,n0), V̂ [M,n0)],

but also contributions from vertices close-by, either from nearest neighbours (e.g. n0±(1, 0, 0)

– there are 6 such vertices) or from vertices across a plaquette diagonal (e.g. n0 ± (1, 1, 0) –

there are 12 such vertices). We will see below that these non-local contributions are indeed

necessary for obtaining the correct result.

Without loss of generality, we will consider local lattice smearing functions N(n0, â) =

(N1, 0, 0) and M(n0, â) = (0,M2, 0). For the fully symmetrized version of the local con-

straints V̂[N,n), there are 36 non-vanishing commutators between terms based at n0 and 72

non-vanishing commutators involving also terms based at neighbouring vertices. The commu-

tators are evaluated using the basic commutation relations (2.1) and various epsilon-function

identities. The most time-consuming task is the expansion and subsequent simplification of

the resulting expressions in powers of a. It turns out that the holonomies have to be expanded

to third order, i.e. up to terms cubic in the local connection form A(x), and there are rather

a lot of terms at this order.

In the appendix we have collected the separate contributions from both the local com-

mutators and those involving neighbouring vertices, for all four types of symmetrization. It

is instructive to see what kind of terms arise in the different parts of the calculation and

how they cancel. This may be relevant to attempts in the continuum loop representation

of quantum gravity to reproduce similar quantum commutators. Note also that in order to

derive (4.1) below from the formulae given in the appendix, some partial integrations had to

be performed.

After a lot of algebra one finds that, independent of the symmetrization, the final result

is given by
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lim
a→0

[
∑

n

V̂[N,n),
∑
m

V̂[M,m)]|n0
=

a3(N1(∂1M
2)(F̂ i

23Ê
3
i − F̂ i

12Ê
1
i ) + M2(∂2N

1)(F̂ i
31Ê

3
i − F̂ i

12Ê
2
i )−

N1M2F̂ i
12(∇̂1Ê

1
i + ∇̂2Ê

2
i + ∇̂3Ê

3
i )+

N1M2(∇̂1F̂
i
23 + ∇̂2F̂

i
31 + ∇̂3F̂

i
12)Ê

3
i ) + O(a4).

(4.1)

Comparing with equation (1.4), this is the expected answer, without any anomalies, and up

to a term proportional to the Bianchi identity. It shows that at this level both the classical

discretization and the quantization of the diffeomorphism constraints are consistent. The

independence of the symmetrization suggests that there is a chance that the evaluation of

more complicated commutators involving also the Hamiltonian constraint may already yield

the right result if done in terms of the unsymmetrized lattice constraints. This is potentially

important since the calculations become even more complicated.

Let us now turn to the issue of factor-ordering. We have already proven the absence of

anomalies with momenta ordered to the right and will now use this result to deduce what

happens for arbitrary factor-ordering. Let us adopt the notation (Tr Uτi)p̂i for a typical term

of the quantized diffeomorphism constraint, where U denotes some plaquette loop. We have

[(Tr Uτi)p̂i, (Tr V τj)p̂j ] =

(Tr Uτi)[p̂i,Tr V τj ]p̂j − (Tr V τj)[p̂j ,Tr Uτi]p̂i + (Tr Uτi)(Tr V τj)[p̂i, p̂j ]
(4.2)

and want to investigate what happens when the momenta are ordered to the left, i.e. whether

[p̂i(Tr Uτi), p̂j(Tr V τj)] − p̂j(Tr Uτi)[p̂i,Tr V τj ]+

p̂i(Tr V τj)[p̂j ,Tr Uτi] − [p̂i, p̂j ](Tr Uτi)(Tr V τj)
(4.3)

vanishes or yields new terms of order h̄. Rewriting p̂i(Tr Uτi) = (Tr Uτi)p̂i + [p̂i,Tr Uτi] and

using equation (4.2), expression (4.3) becomes

[(Tr Uτi)p̂i, [p̂j ,Tr V τj]] + [[p̂i,Tr Uτi], (Tr V τj)p̂j ]−
[p̂j , (Tr Uτi)[p̂i,Tr V τj ]] − [p̂i, (Tr V τj)[Tr Uτi, p̂j ]] − [[p̂i, p̂j ], (Tr Uτi)(Tr V τj)] =

(Tr Uτi)[p̂i, [p̂j ,Tr V τj]] + (Tr V τj)[[p̂i,Tr Uτi], p̂j ] − (Tr Uτi)[p̂j , [p̂i,Tr V τj ]]−
(Tr V τj)[p̂i, [Tr Uτi, p̂j ]] − [[p̂i, p̂j ],Tr Uτi](Tr V τj) − (Tr Uτi)[[p̂i, p̂j ],Tr V τj ] = 0

(4.4)
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where we have made repeated use of the basic commutators (2.1). The last equality in (4.4)

holds by virtue of the Jacobi identity satisfied by the basic quantum operators. This latter

property is not entirely trivial. For example, the holonomy and momentum operators as they

are usually defined in the continuum loop representation do not satisfy a Jacobi identity [22,9],

a feature that gives rise to the occurrence of anomalous commutators for certain composite

operators.

It follows immediately that also for an arbitrary factor-ordering of the lattice constraints,

α(Tr Uτi)p̂i + (1 − α)p̂i(Tr Uτi), 0 ≤ α ≤ 1, no anomalies appear. This is in particular true

for the case α = 1

2
, where the regularized constraint operators are self-adjoint.

5 Summary

We have performed a computation of the commutator of two regularized diffeomorphism

constraint operators in lattice gravity, and found that their algebra closes without anomalies

in the limit of vanishing lattice spacing. The discretization and quantization of the classical

diffeomorphism phase space functions is not unique, but our result is independent of the

choice of a local symmetrization and factor-ordering. Independence of factor-ordering followed

from the simple structure of the constraints (linearity in momenta) and the fact that the

basic lattice operators satisfy the Jacobi identity. We do not expect a similar behaviour for

commutators involving also the Hamiltonian constraint.

There are not many regularization schemes for full four-dimensional quantum gravity in

which a computation of this type could be performed. Within our lattice formulation, it would

in principle be preferable to have an exact remnant of the diffeomorphism symmetry at each

stage of the discretization. This would enable one to study invariant measures and quantum

states before the continuum limit is taken. One way of proceeding is to try to identify a dis-

crete subgroup of the diffeomorphism group (rather than using the discretized “infinitesimal”

generators) for each finite lattice, an issue we are currently considering. Transformations of

this type will presumably be non-local in terms of the lattice variables.
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Appendix

In this appendix we present some intermediate results of the commutator calculation,

depending on the symmetrization chosen. This will be helpful to anybody attempting a

similar calculation. We split up the contributions into those that arise from contributions

based at the same lattice point (the origin in our case) and those involving contributions

based at neighbouring points on the lattice. It is understood that A, F and E are operators.

(a) No symmetrization; contributions at the origin:

−a2(N1M2F i
12(E

1
i + E2

i + E3
i ) + N1M2(F i

12 + F i
23 + F i

31)E
3
i )−

a3( (M2Ñ1 + N1M̃2)F i
12(E

1
i + E2

i + E3
i ) + (M2Ñ1 + N1M̃2)(F i

12 + F i
23 + F i

31)E
3
i +

1

2
N1M2(∇1 + ∇2)F

i
12(E

1
i + E2

i + E3
i )+

1

2
N1M2((∇1 + ∇2)F

i
12 + (∇2 + ∇3)F

i
23 + (∇1 + ∇3)F

i
31)E

3
i +

N1M2F i
12(∇1E

1
i + ∇2E

2
i + ∇3E

3
i ) + N1M2(F i

12 + F i
23 + F i

31)∇3E
3
i ) + O(a4)

(A.1)

contributions involving neighbouring vertices:

a2(N1M2F i
12(E

1
i + E2

i + E3
i ) + N1M2(F i

12 + F i
23 + F i

31)E
3
i )+

a3( (M2Ñ1 + N1M̃2)F i
12(E

1
i + E2

i + E3
i ) + (M2Ñ1 + N1M̃2)(F i

12 + F i
23 + F i

31)E
3
i +

1

2
N1M2(∂1F

i
12 + 3ǫi

jkAj
1F

k
12 + ∇2F

i
12)E

1
i +

1

2
N1M2(∂2F

i
12 + 3ǫi

jkAj
2F

k
12 + ∇1F

i
12)E

2
i +

1

2
N1M2(2(∇1 + ∇2)F

i
12 + (∇2 + ∇3)F

i
23 + (∇1 + ∇3)F

i
31)E

3
i −

N1M2F i
12(∇1E

1
i + ∇2E

2
i + ∇3E

3
i ) − N1M2F i

12(∂1E
1
i + ∂2E

2
i + ∂3E

3
i )+

N1M2(F i
12 + F i

23 + F i
31)∇3E

3
i − N1M2(F i

12∂3E
3
i + F i

23∂1E
3
i + F i

31∂2E
3
i )−

N1(∂1M
2)F i

12E
1
i − M2(∂2N

1)F i
12E

2
i − N1(∂3M

2)F i
12E

3
i − M2(∂3N

1)F i
12E

3
i −

M2(∂1N
1)F i

23E
3
i − N1(∂2M

2)F i
31E

3
i + N1M2ǫijk(2Aj

3F
k
12 + Aj

2F
k
31 + Aj

1F
k
23)E

3i ) + O(a4)
(A.2)

(b) Symmetrization over shift functions; contributions at the origin:
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−a2(
1

2
N1M2F i

12(E
1
i + E2

i + 2E3
i ))−

a3(
1

4
(M2Ñ1 + M2 ˜̃N1 + 2N1M̃2)F i

12E
1
i +

1

4
(2M2Ñ1 + N1M̃2 + N1 ˜̃M2)F i

12E
2
i +

1

4
(3M2Ñ1 + M2 ˜̃N1 + 3N1M̃2 + N1 ˜̃M 2)F i

12E
3
i +

1

2
M2(Ñ1 − ˜̃N1)F i

23E
3
i +

1

2
N1(M̃2 − ˜̃M2)F i

31E
3
i +

1

4
N1M2((∇2F

i
12)E

1
i + (∇1F

i
12)E

2
i + ((∇1 + ∇2)F

i
12)E

3
i )+

1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i ) ) + O(a4)

(A.3)

contributions involving neighbouring vertices:

a2(
1

2
N1M2F i

12(E
1
i + E2

i + 2E3
i ))+

a3(
1

4
(M2Ñ1 + M2 ˜̃N1 + 2N1M̃2)F i

12E
1
i +

1

4
(2M2Ñ1 + N1M̃2 + N1 ˜̃M2)F i

12E
2
i +

1

4
(3M2Ñ1 + M2 ˜̃N1 + 3N1M̃2 + N1 ˜̃M2)F i

12E
3
i +

1

2
M2(Ñ1 − ˜̃N1)F i

23E
3
i +

1

2
N1(M̃2 − ˜̃M2)F i

31E
3
i +

1

4
N1M2((∇2F

i
12)E

1
i + (∇1F

i
12)E

2
i + ((∇1 + ∇2)F

i
12)E

3
i )+

N1M2ǫijk(A
j
1F

k
12E

1i + Aj
2F

k
12E

2i) +
1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i )−

N1M2F i
12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i ) − N1M2(F i

12∂3E
3
i + F i

23∂1E
3
i + F i

31∂2E
3
i )−

N1(∂1M
2)F i

12E
1
i − M2(∂2N

1)F i
12E

2
i − N1(∂3M

2)F i
12E

3
i − M2(∂3N

1)F i
12E

3
i −

M2(∂1N
1)F i

23E
3
i − N1(∂2M

2)F i
31E

3
i + N1M2ǫijk(2Aj

3F
k
12 + Aj

2F
k
31 + Aj

1F
k
23)E

3i ) + O(a4)
(A.4)

(c) Symmetrization over momenta; contributions at the origin:

a2(−1

2
N1M2E3

i (F i
23 + F i

31) ) + a3(−1

2
(M2Ñ1 + N1M̃2)E3

i (F i
23 + F i

31)−
1

4
N1M2E3

i (∇2F
i
23 + ∇1F

i
31) −

1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i ) ) + O(a4)

(A.5)

contributions involving neighbouring vertices:
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a2(
1

2
N1M2(F i

23 + F i
31)E

3
i )+

a3(
1

2
(M2Ñ1 + N1M̃2)(F i

23 + F i
31)E

3
i + N1M2ǫijk(Aj

1E
1i + Aj

2)F
k
12E

2i)+

1

4
N1M2(∇2F

i
23 + ∇1F

i
31)E

3
i +

1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i )−

N1M2F i
12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i ) − N1M2(F i

12∂3E
3
i + F i

23∂1E
3
i + F i

31∂2E
3
i )−

N1(∂1M
2)F i

12E
1
i − M2(∂2N

1)F i
12E

2
i − N1(∂3M

2)F i
12E

3
i − M2(∂3N

1)F i
12E

3
i −

M2(∂1N
1)F i

23E
3
i − N1(∂2M

2)F i
31E

3
i + N1M2ǫijk(2Aj

3F
k
12 + Aj

2F
k
31 + Aj

1F
k
23)E

3i ) + O(a4)
(A.6)

(d) Symmetrization over both shift functions and momenta; contributions at the origin:

−a3(
1

4
M2(Ñ1 − ˜̃N1)F i

23E
3
i +

1

4
N1(M̃2 − ˜̃M 2)F i

31E
3
i +

1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i ) ) + O(a4)

(A.7)

contributions involving neighbouring vertices:

a3(
1

4
M2(Ñ1 − ˜̃N1)F i

23E
3
i +

1

4
N1(M̃2 − ˜̃M2)F i

31E
3
i +

N1M2ǫijk(A
j
1E

1i + Aj
2)F

k
12E

2i +
1

2
F i

12(∇1E
1
i + ∇2E

2
i + 2∇3E

3
i )−

N1M2F i
12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i ) − N1M2(F i

12∂3E
3
i + F i

23∂1E
3
i + F i

31∂2E
3
i )−

N1(∂1M
2)F i

12E
1
i − M2(∂2N

1)F i
12E

2
i − N1(∂3M

2)F i
12E

3
i − M2(∂3N

1)F i
12E

3
i −

M2(∂1N
1)F i

23E
3
i − N1(∂2M

2)F i
31E

3
i + N1M2ǫijk(2Aj

3F
k
12 + Aj

2F
k
31 + Aj

1F
k
23)E

3i ) + O(a4)
(A.8)

The more one symmetrizes, the more cancellations occur already individually among

terms based at the origin and among terms coming from the more non-local commutators.

For example, terms of order a2 still appear in cases (a), (b) and (c), but no longer when the

totally symmetrized lattice operators are used. This is in line with the general rule that for

lattice discretizations the convergence properties in the continuum limit are improved when

one symmetrizes the lattice expressions over positive and negative lattice directions. Note also

that terms containing partial derivatives of the shift functions M and N (that are crucial in

obtaining the correct commutator) come from the commutators involving neighbouring sites.
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