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Abstract. We show that the algebra of discretized spatial diffeomorphism constraints in
Hamiltonian lattice quantum gravity closes without anomalies in the limit of small lattice spacing.
The result holds for arbitrary factor-ordering and for a variety of different discretizations of the
continuum constraints, and thus generalizes an earlier calculation by Renteln.
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Motivation

For the most part, our understanding of quantum gravity in four dimensions is not sufficiently
developed to provide unambiguous tests for the consistency and appropriateness of any
candidate theory. In the case of usual gauge field theories, there are well known criteria
to ensure their consistency at the quantum level, for example, the validity of the Slavnov–
Taylor identities. However, the Fock space methods on which they are based are only of
limited use for gravitational theories in more than two spacetime dimensions.

Attempts to construct non-perturbative path integral formulations of 4D gravity have
so far left the question of their continuation to Lorentzian signature unanswered. Even
disregarding this problem, it is difficult to get a mathematical handle on the structure of the
path integral measure. Canonical approaches circumvent the signature problem and allow
one to pose (part of) the quantum consistency problem in a seemingly clear-cut form: is
there an anomaly in the Dirac algebra of the Hamiltonian and diffeomorphism constraints?
In the presence of anomalous terms, the quantum Dirac conditions overconstrain the space of
physical states, which is physically unacceptable. One difficulty in the canonical formulation
lies in finding appropriate regularized versions of the constraint operators, without which the
question is known to be ill-posed [1]. A potential drawback of the Hamiltonian approaches
is the fact that efficient computational techniques for a numerical study of their quantum
properties have yet to be developed.

Schemes that proceed by a direct discretization of spacetime or of the space of all
field configurations in order to achieve a regularization tend to break the diffeomorphism
invariance present in the continuum theory. This, however, is not a fundamental objection,
if one considers the smooth structure of the classical theory only as a semi-classical property,
which does not continue to hold down to the smallest length scales. Still it leaves one with
the technical inconvenience of having to work with an ‘approximately diffeomorphism-
invariant’ regularized theory.

Considerable effort has gone into trying to construct a canonical quantization of 3+ 1
gravity in terms of connection variables, without resorting to a discretization, and with

0264-9381/98/040799+11$19.50c© 1998 IOP Publishing Ltd 799



800 R Loll

the full spatial diffeomorphism group still acting on a suitably defined space of quantum
states [2–5]. However, this approach seems to be running into some difficulties, among
which are a ‘non-interacting’ property of typical realizations of the quantum Hamiltonian,
which leads, for example, to the existence of unexpected local quantum observables [6, 7],
vanishing commutation relations between two such Hamiltonians [8] (even in situations
where the diffeomorphism group acts non-trivially), and commutation relations between
geometric operators that unexpectedly do not vanish [9, 10].

This provides an additional incentive for studying a truly discretized version of this
formulation, which does not share any of these features. On the other hand, like most
discretized models, it does not carry any obvious, non-trivial representation of the classical
invariance group of general relativity. The diffeomorphism group is only recovered in the
limit as the regulator is taken to zero.

In this paper we will generalize a result obtained earlier by Renteln [11] in the
framework of a lattice discretization of 3+ 1 gravity in a connection formulation [11–17].
Various aspects of this version of lattice quantum gravity have changed since these earlier
investigations, as a result of new developments both in the continuum loop representations of
quantum gravity mentioned above, and in lattice gravity proper. The kinematic resemblance
to Hamiltonian lattice gauge theory has become even closer since the theory was rephrased in
terms of realsu(2)-valued connections [18], instead of the originalsl(2,C)-valued Ashtekar
potentials [19], in order to avoid complications related to the reality conditions that appear
in the complex case. As a by-product, there is now a well defined scalar product and a
complete set of square-integrable states for each finite-size lattice. Although this may not
give rise to a scalar product on the sector of physical states (satisfying all of the constraints),
it is nevertheless remarkable that it should exist at all, given that inner products are usually
hard to come by in quantum gravity.

We will show that independent of the factor-orderingand for a variety of operator
symmetrizations, there are no anomalous terms in the commutator algebra of the lattice
analogues of the spatial diffeomorphism generators in the limit of vanishing lattice spacing.
The computations are already substantial for this subalgebra of the entire quantum constraint
algebra. We will also spell out some details of the calculations, that may be of interest in
attempts to compute the commutator in alternative regularization schemes. This result shows
that no inconsistencies arise in the lattice discretization at this level, and paves the way for
the calculation of commutators also involving the Hamiltonian constraint.

1. Introduction

A prominent feature of the lattice discretization we are considering is its resemblance to
canonical lattice gauge theory. Like Hamiltonian gauge field theory, 3+1 continuum gravity
can be formulated in terms of Yang–Mills conjugate variable pairs(A,E) of ‘Ashtekar-
type’, with Poisson brackets{Aia(x), Ebj (y)} = δij δbaδ3(x, y). The variableAia is a spatial
su(2,R)-valued gauge potential.

Up to terms proportional to the Gauss law constraint, the Hamiltonian constraint in this
formulation is the Barbero Hamiltonian [18] (rescaled by a factor(detE)−1/2 to make it a
density of weight one), plus—for the sake of generality—a cosmological constant term,

H(x) = 1√
detE

εijkEai E
b
j F

k
ab −

1

G
(detE)−5/2ηa1a3a4ηb1b3b4(E

a3
k E

a4
l E

b3
m E

b4
n

− 2Ea3
m E

a4
n E

b3
k E

b4
l )E

a2
k E

b2
m (∇a2E

a1
l )(∇b2E

b1
n )+ λ

√
detE = 0. (1.1)
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We have chosen the dimensions of the basic variables and constants to be [A] = L−3,
[E] = L0, [G] = L2, [λ] = L−4, whereG is Newton’s constant. Also recall thatE
transforms as a one-density under spatial diffeomorphisms. In (1.1),H has already been
brought into the form of a polynomial modulo powers of

√
detE, in order to make its

discretization and quantization straightforward. The spatial diffeomorphism constraints are
given by

Vb(x) = Eai (x)F iab(x) = 0. (1.2)

Smearing out these four constraints with the lapse and shift functionsN(x) andNa(x), one
arrives at the expressions

H [N ] :=
∫

d3x N(x)H(x)

V [Na] :=
∫

d3x Nb(x)Vb(x),
(1.3)

which satisfy the usual Dirac Poisson algebra. In particular, for the spatial diffeomorphism
generators one derives

{V [Na], V [Ma]} =
∫

d3x (Nb∂bM
a −Mb∂bN

a)F iacE
c
i −

∫
d3x F iabN

aMb(∇cEci )

≡ V [LNM
a] −G[F iabN

aMb], (1.4)

which coincides with the diffeomorphism Lie algebra on the subspace of phase space given
by the vanishing of the integrated Gauss law constraintsG[3i ] = ∫

d3x 3i(∇aEai ). One
may also redefine the generatorsV [Na] by adding a suitable term proportional to the Gauss
law constraint in order to get rid of the extra phase-space dependent term on the right-hand
side of (1.4) (see, for example, [20]).

2. Discretization

Before setting up the discretization of operators relevant for lattice gravity, we start with
a brief summary of the basic ingredients of Hamiltonian lattice gauge theory [21]. For
computational simplicity, we take the lattice3 to be a cubicN3-lattice with periodic
boundary conditions. The cubic symmetry is convenient but not strictly necessary. The
basic variables and quantum operators may as well be defined on lattices where the valence
of the intersections is not fixed to be 6.

The basic quantum operators associated with each lattice linkl are a group-valued
SU(2)-link holonomy Û (represented by multiplication byU ), together with its inverse
Û−1, and a pair of canonical momentum operatorsp̂+i andp̂−i , wherei is an adjoint index.
The operatorp̂+i (n, â) is based at the vertexn, and is associated with the linkl oriented
in the positiveâ-direction. By contrast,̂p−i (n + 1̂â , â) is based at the vertex displaced by
one lattice unit in thêa-direction, and associated with the inverse linkl−1(â) = l(−â). In
mathematical terms, the momentâp+ and p̂− correspond to the left- and right-invariant
vector fields on the group manifold associated with a given link. The wavefunctions are
elements of×lL2(SU(2), dg), with the product taken over all links, and the canonical Haar
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measure dg on each copy of the groupSU(2). The basic commutators are

[ÛA
B(n, â), ÛC

D(m, b̂)] = 0,

[p̂+i (n, â), ÛA
C(m, b̂)] = − 1

2i δnmδâb̂ τiA
BÛB

C(n, â),

[p̂−i (n, â), ÛA
C(m, b̂)] = − 1

2i δn,m+1δâb̂ ÛA
B(n, â)τiB

C,

[p̂±i (n, â), p̂
±
j (m, b̂)] = ±i δnmδâb̂ εijk p̂

±
k (n, â),

[p̂+i (n, â), p̂
−
j (m, b̂)] = 0,

(2.1)

where εijk are the structure constants ofSU(2). (There are analogous Poisson bracket
relations for the corresponding classical lattice variables.) The commutation relations for
the inverse holonomy operators can be easily deduced from (2.1). The normalization for
the SU(2) generatorsτi is such that [τi, τj ] = 2εijkτk, Tr τiτj = −2δij andAa = 1

2A
i
aτi .

In order to relate discrete lattice expressions to their continuum counterparts, one uses
power series expansions in the so-called lattice spacinga, which is an unphysical parameter
with dimension of length. For the basic classical lattice variables, these are

UA
B(b̂) = 1A

B + a GAbAB + 1
2a

2G(∂bAb +GA2
b)A

B +O(a3),

p±i (b̂) = a2G−1Ebi ± a3G−1∇bEbi +O(a4).

(2.2)

We will assume that similar expansions continue to be valid in the quantum theory. Note
that Newton’s constantG appears in (2.2) since the dimensions of the basic gravitational
variablesA andE differ from those of the corresponding Yang–Mills phase space variables.

Using the expansions (2.2), one obtains unambiguous continuum limits of composite
classical lattice expressions by extracting the coefficient of the lowest-order term in thea-
expansion. The converse is not true: there is no unique lattice discretization of a continuum
expression, since one may always add to the lattice version terms of higher order ina,
which do not contribute in the continuum limit. We will consider different symmetrizations
for the lattice diffeomorphism generators in the rest of this paper.

3. Further preparations

As a first step in the commutator calculation of two lattice diffeomorphisms, one needs to
expand the classical link holonomies in a neighbourhood of the lattice vertexn0 at which
the local commutator will be computed. For simplicity we choose a local lattice coordinate
system such that the vertexn0 coincides with its origin, that is,n0 = (0, 0, 0). There are six
nearest neighbours, which are one lattice unit away, for example, the verticesn = (±1, 0, 0)
in the positive and negativê1-direction. Because of the non-locality of the diffeomorphism
generators, all relevant link holonomies lie on a cube of edge length 2 about the origin.

Using the defining formula for the holonomy along a parametrized pathγ between two
pointsx1 andx2, with γ (0) = x1 andγ (1) = x2,

U(x1, x2) = 1l+
∞∑
n=1

∫ 1

0
ds1

∫ 1

s1

ds2 · · ·
∫ 1

sn−1

dsn A(γ (s1))A(γ (s2)) . . . A(γ (sn)), (3.1)

one expands this into a power series in the lattice spacinga for the special choice
x1 = (0, 0, 0), x2 = (a, 0, 0), say. We will need terms up to powera3 for our computation.
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For the holonomy in the positivêb-direction based at(0, 0, 0), one thus obtains

U
(
(0, 0, 0), b̂

) = 1l+ aAb + a
2

2
(∂bAb + A2

b)

+ a
3

3!

(
∂2
bAb + (∂bAb)Ab + 2Ab(∂bAb)+ A3

b

)+O(a4), (3.2)

where we now have setG = 1. (Note that at ordera3 this differs from the expression
given in [11].) The other positively-oriented link holonomies are computed similarly, as
Taylor expansions with respect to the local Cartesian coordinate system spanned by the
lattice. From these, the inverse holonomies (associated with the opposite link orientation)
are computed order by order usingUU−1 = 1l. Expansions for the link momenta are
obtained in an analogous manner, using (2.2).

Two useful checks for possible errors are given by calculating holonomiesU� around
plaquettes, i.e. shortest closed lattice paths of edge length four. Denoting byU�12 the
plaquette that starts with a link in the positive1̂-direction, followed by links in directions
2̂, −1̂ and−2̂, one has the expansions

TrU�12 = 2+O(a4), Tr(U�12τi) = a2F i12+O(a3). (3.3)

A natural discretization for the smeared spatial diffeomorphism generators, (the second
equation in (1.3)), is schematically given by∑

n

N latt(n, â)Tr(U�ab τi)pi(n, b̂) =:
∑
n

V latt[N, n), (3.4)

where we have not yet specified the details of the implicit summation over the indicesâ

and b̂. We will consider four distinct ways of symmetrizing the local lattice expressions
N latt(n, â)Tr(U�ab τi)pi(n, b̂). Let us introduce the notationN±(n, â) for the lattice shift
functions at the vertexn, associated with the link in positive and negativeâ-direction,
respectively. This notation conforms with the one for the momentap±(n, â). In order for
(3.4) to have the correct continuum limit asa→ 0, we require that

N+(n, b̂)→ 1

a
Nb(x)+ Ñb(x)+O(a1)

N−(n, b̂)→ 1

a
Nb(x)+ ˜̃Nb(x)+O(a1).

(3.5)

We leave the zeroth-order functions̃Nb(x) and ˜̃Nb(x) unspecified; the final result will not
depend on this choice. For the local continuum expression of the formN2F i23E

3
i , say, we

will consider four different lattice representations:

(i) no symmetrization:

N+(n, 2̂)Tr(U�23)p
+
i (n, 3̂);

(ii) symmetrization over shift functions:

1
2

(
N+(n, 2̂)Tr(U�23)p

+
i (n, 3̂)+N−(n, 2̂)Tr(U�3,−2)p

+
i (n, 3̂)

);
(iii) symmetrization over momenta:

1
2

(
N+(n, 2̂)Tr(U�23)p

+
i (n, 3̂)+N+(n, 2̂)Tr(U�−3,2)p

−
i (n, 3̂)

);
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(iv) symmetrization over both shift functions and momenta:

1
4

(
N+(n, 2̂)Tr(U�23)p

+
i (n, 3̂)+N−(n, 2̂)Tr(U�3,−2)p

+
i (n, 3̂)

+N+(n, 2̂)Tr(U�−3,2)p
−
i (n, 3̂)+N−(n, 2̂)Tr(U�−2,−3)p

−
i (n, 3̂)

)
.

Note that in each case we sum over terms that are maximally localized on the lattice,
i.e. consist only of holonomies and momenta located on a single lattice plaquette. Choice
(iv) was the one considered in [11].

4. The commutator

We now come to the actual computation of the commutator of two lattice-regularized
diffeomorphism constraints. As is well known, the algebra of the discretized constraints
(3.4) does not close, not even at the level of the classical Poisson algebra, because the result
is a sum of terms, where each term may extend over up to two plaquettes. That is, the
Poisson commutator is not a linear combination of terms of the form (3.4). However, if
the discretization is consistent, the commutator should yield the continuum result to lowest
order in the lattice spacinga asa→ 0.

We will perform the corresponding quantum computation, and for definiteness will
choose initially the factor-ordering for the Tr(Û�ab τi)p̂i(n, b̂)-terms with all momentâp to
the right.

To obtain the contribution at a given lattice vertexn0 to the commutator of two smeared
lattice diffeomorphisms

[∑
n V̂[N, n),

∑
m V̂[M,m)

]
, one has to collect all terms where

a momentum based atn0 acts on either a holonomy or another momentum based on
the same link. One quickly realizes that there are not only contributions from terms in
[V̂[N, n0), V̂[M,n0)], but also contributions from vertices close by, either from nearest
neighbours (e.g.n0±(1, 0, 0)—there are 6 such vertices) or from vertices across a plaquette
diagonal (e.g.n0± (1, 1, 0)—there are 12 such vertices). We will see below that these non-
local contributions are indeed necessary for obtaining the correct result.

Without loss of generality, we will consider local lattice smearing functionsN(n0, â) =
(N1, 0, 0) and M(n0, â) = (0,M2, 0). For the fully symmetrized version of the local
constraintsV̂[N, n), there are 36 non-vanishing commutators between terms based atn0

and 72 non-vanishing commutators also involving terms based at neighbouring vertices.
The commutators are evaluated using the basic commutation relations (2.1) and various
epsilon-function identities. The most time-consuming task is the expansion and subsequent
simplification of the resulting expressions in powers ofa. It turns out that the holonomies
have to be expanded to third order, i.e. up to terms cubic in the local connection formA(x),
and there are rather a lot of terms at this order.

In the appendix we have collected the separate contributions from both the local
commutators and those involving neighbouring vertices, for all four types of symmetrization.
It is instructive to see what kind of terms arise in the different parts of the calculation and
how they cancel. This may be relevant to attempts in the continuum loop representation
of quantum gravity to reproduce similar quantum commutators. Note also that in order to
derive (4.1) below from the formulae given in the appendix, some partial integrations had
to be performed.

After a lot of algebra one finds that, independent of the symmetrization, the final result
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is given by

lim
a→0

[∑
n

V̂[N, n),
∑
m

V̂[M,m)

]∣∣∣∣
n0

= a3(N1(∂1M
2)(F̂ i23Ê

3
i − F̂ i12Ê

1
i )+M2(∂2N

1)(F̂ i31Ê
3
i − F̂ i12Ê

2
i )

−N1M2F̂ i12(∇̂1Ê
1
i + ∇̂2Ê

2
i + ∇̂3Ê

3
i )

+N1M2(∇̂1F̂
i
23+ ∇̂2F̂

i
31+ ∇̂3F̂

i
12)Ê

3
i )+O(a4). (4.1)

Comparing with equation (1.4), this is the expected answer, without any anomalies, and up
to a term proportional to the Bianchi identity. It shows that at this level both the classical
discretization and the quantization of the diffeomorphism constraints are consistent. The
independence of the symmetrization suggests that there is a chance that the evaluation of
more complicated commutators involving also the Hamiltonian constraint may already yield
the right result if done in terms of the unsymmetrized lattice constraints. This is potentially
important since the calculations become even more complicated.

Let us now turn to the issue of factor-ordering. We have already proven the absence of
anomalies with momenta ordered to the right and will now use this result to deduce what
happens for arbitrary factor-ordering. Let us adopt the notation(TrUτi)p̂i for a typical
term of the quantized diffeomorphism constraint, whereU denotes some plaquette loop.
We have

[(TrUτi)p̂i , (TrV τj )p̂j ] = (TrUτi)[p̂i ,TrV τj ]p̂j

− (TrV τj )[p̂j ,TrUτi ]p̂i + (TrUτi)(TrV τj )[p̂i , p̂j ] (4.2)

and want to investigate what happens when the momenta are ordered to the left, i.e. whether

[p̂i(TrUτi), p̂j (TrV τj )] − p̂j (TrUτi)[p̂i ,TrV τj ]

+ p̂i(TrV τj )[p̂j ,TrUτi ] − [p̂i , p̂j ](TrUτi)(TrV τj ) (4.3)

vanishes or yields new terms of order ¯h. Rewriting p̂i(TrUτi) = (TrUτi)p̂i + [p̂i ,TrUτi ]
and using equation (4.2), expression (4.3) becomes[
(TrUτi)p̂i , [p̂j ,TrV τj ]

]+ [[p̂i ,TrUτi ], (TrV τj )p̂j
]− [p̂j , (TrUτi)[p̂i ,TrV τj ]

]
− [p̂i , (TrV τj )[Tr Uτi, p̂j ]

]− [[p̂i , p̂j ], (TrUτi)(TrV τj )
]

= (TrUτi)
[
p̂i , [p̂j ,TrV τj ]

]+ (TrV τj )
[
[p̂i ,TrUτi ], p̂j

]
− (TrUτi)

[
p̂j , [p̂i ,TrV τj ]

]− (TrV τj )
[
p̂i , [Tr Uτi, p̂j ]

]
− [[p̂i , p̂j ],TrUτi

]
(TrV τj )− (TrUτi)

[
[p̂i , p̂j ],TrV τj

] = 0 (4.4)

where we have made repeated use of the basic commutators (2.1). The last equality
in (4.4) holds by virtue of the Jacobi identity satisfied by the basic quantum operators.
It follows immediately that for an arbitrary factor-ordering of the lattice constraints,
α(TrUτi)p̂i + (1− α)p̂i(TrUτi), 0 6 α 6 1, no anomalies appear. This is, in particular,
true for the caseα = 1

2, where the regularized constraint operators are self-adjoint.
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5. Summary

We have performed a computation of the commutator of two regularized diffeomorphism
constraint operators in lattice gravity, and found that their algebra closes without anomalies
in the limit of vanishing lattice spacing. The discretization and quantization of the classical
diffeomorphism phase space functions is not unique, but our result is independent of the
choice of a local symmetrization and factor-ordering. Independence of factor-ordering
followed from the simple structure of the constraints (linearity in momenta) and the fact that
the basic lattice operators satisfy the Jacobi identity. We do not expect a similar behaviour
for commutators involving also the Hamiltonian constraint.

There are not many regularization schemes for full four-dimensional quantum gravity
in which a computation of this type could be performed. Within our lattice formulation, it
would in principle be preferable to have an exact remnant of the diffeomorphism symmetry
at each stage of the discretization. This would enable one to study invariant measures and
quantum statesbefore the continuum limit is taken. One way of proceeding is to try to
identify a discrete subgroup of the diffeomorphism group (rather than using the discretized
‘infinitesimal’ generators) for each finite lattice, an issue we are currently considering.
Transformations of this type will presumably be non-local in terms of the lattice variables.

Appendix

In this appendix we present some intermediate results of the commutator calculation,
depending on the symmetrization chosen. This will be helpful to anybody attempting a
similar calculation. We split up the contributions into those that arise from contributions
based at the same lattice point (the origin in our case) and those involving contributions
based at neighbouring points on the lattice. It is understood thatA, F andE are operators.

(i) No symmetrization.Contributions at the origin:

−a2
(
N1M2F i12(E

1
i + E2

i + E3
i )+N1M2(F i12+ F i23+ F i31)E

3
i

)
− a3

(
(M2Ñ1+N1M̃2)F i12(E

1
i + E2

i + E3
i )

+ (M2Ñ1+N1M̃2)(F i12+ F i23+ F i31)E
3
i

+ 1
2N

1M2(∇1+∇2)F
i
12(E

1
i + E2

i + E3
i )

+ 1
2N

1M2
(
(∇1+∇2)F

i
12+ (∇2+∇3)F

i
23+ (∇1+∇3)F

i
31

)
E3
i

+N1M2F i12(∇1E
1
i +∇2E

2
i +∇3E

3
i )

+N1M2(F i12+ F i23+ F i31)∇3E
3
i

)+O(a4). (A.1)

Contributions involving neighbouring vertices:

a2
(
N1M2F i12(E

1
i + E2

i + E3
i )+N1M2(F i12+ F i23+ F i31)E

3
i

)
+ a3

(
(M2Ñ1+N1M̃2)F i12(E

1
i + E2

i + E3
i )+ (M2Ñ1

+N1M̃2)(F i12+ F i23+ F i31)E
3
i

+ 1
2N

1M2(∂1F
i
12+ 3εijkA

j

1F
k
12+∇2F

i
12)E

1
i

+ 1
2N

1M2(∂2F
i
12+ 3εijkA

j

2F
k
12+∇1F

i
12)E

2
i

+ 1
2N

1M2
(
2(∇1+∇2)F

i
12+ (∇2+∇3)F

i
23+ (∇1+∇3)F

i
31

)
E3
i
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−N1M2F i12(∇1E
1
i +∇2E

2
i +∇3E

3
i )

−N1M2F i12(∂1E
1
i + ∂2E

2
i + ∂3E

3
i )+N1M2(F i12+ F i23+ F i31)∇3E

3
i

−N1M2(F i12∂3E
3
i + F i23∂1E

3
i + F i31∂2E

3
i )−N1(∂1M

2)F i12E
1
i

−M2(∂2N
1)F i12E

2
i −N1(∂3M

2)F i12E
3
i −M2(∂3N

1)F i12E
3
i

−M2(∂1N
1)F i23E

3
i −N1(∂2M

2)F i31E
3
i

+N1M2εijk(2A
j

3F
k
12+ Aj2Fk31+ Aj1Fk23)E

3i
)+O(a4). (A.2)

(ii) Symmetrization over shift functions.Contributions at the origin:

−a2
(

1
2N

1M2F i12(E
1
i + E2

i + 2E3
i )
)− a3

(
1
4(M

2Ñ1+M2 ˜̃N1+ 2N1M̃2)F i12E
1
i

+ 1
4(2M

2Ñ1+N1M̃2+N1 ˜̃M2)F i12E
2
i + 1

4(3M
2Ñ1+M2 ˜̃N1

+ 3N1M̃2+N1 ˜̃M2)F i12E
3
i + 1

2M
2(Ñ1− ˜̃N1)F i23E

3
i

+ 1
2N

1(M̃2− ˜̃M2)F i31E
3
i + 1

4N
1M2

(
(∇2F

i
12)E

1
i + (∇1F

i
12)E

2
i

+ ((∇1+∇2)F
i
12)E

3
i

)+ 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )
)+O(a4).

(A.3)

Contributions involving neighbouring vertices:

a2
(

1
2N

1M2F i12(E
1
i + E2

i + 2E3
i )
)+ a3

(
1
4(M

2Ñ1+M2 ˜̃N1+ 2N1M̃2)F i12E
1
i

+ 1
4(2M

2Ñ1+N1M̃2+N1 ˜̃M2)F i12E
2
i

+ 1
4(3M

2Ñ1+M2 ˜̃N1+ 3N1M̃2+N1 ˜̃M2)F i12E
3
i

+ 1
2M

2(Ñ1− ˜̃N1)F i23E
3
i + 1

2N
1(M̃2− ˜̃M2)F i31E

3
i

+ 1
4N

1M2
(
(∇2F

i
12)E

1
i + (∇1F

i
12)E

2
i + ((∇1+∇2)F

i
12)E

3
i

)
+N1M2εijk(A

j

1F
k
12E

1i + Aj2Fk12E
2i )

+ 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )−N1M2F i12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i )

−N1M2(F i12∂3E
3
i + F i23∂1E

3
i + F i31∂2E

3
i )−N1(∂1M

2)F i12E
1
i

−M2(∂2N
1)F i12E

2
i −N1(∂3M

2)F i12E
3
i −M2(∂3N

1)F i12E
3
i

−M2(∂1N
1)F i23E

3
i −N1(∂2M

2)F i31E
3
i

+N1M2εijk(2A
j

3F
k
12+ Aj2Fk31+ Aj1Fk23)E

3i
)+O(a4). (A.4)

(iii) Symmetrization over momenta.Contributions at the origin:

a2
(− 1

2N
1M2E3

i (F
i
23+ F i31)

)+ a3
(− 1

2(M
2Ñ1+N1M̃2)E3

i (F
i
23+ F i31)

− 1
4N

1M2E3
i (∇2F

i
23+∇1F

i
31)

− 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )
)+O(a4). (A.5)
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Contributions involving neighbouring vertices:

a2
(

1
2N

1M2(F i23+ F i31)E
3
i

)+ a3
(

1
2(M

2Ñ1+N1M̃2)(F i23+ F i31)E
3
i

+N1M2εijk(A
j

1E
1i + Aj2)F k12E

2i
)+ 1

4N
1M2(∇2F

i
23+∇1F

i
31)E

3
i

+ 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )−N1M2F i12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i )

−N1M2(F i12∂3E
3
i + F i23∂1E

3
i + F i31∂2E

3
i )−N1(∂1M

2)F i12E
1
i

−M2(∂2N
1)F i12E

2
i −N1(∂3M

2)F i12E
3
i −M2(∂3N

1)F i12E
3
i

−M2(∂1N
1)F i23E

3
i −N1(∂2M

2)F i31E
3
i

+N1M2εijk(2A
j

3F
k
12+ Aj2Fk31+ Aj1Fk23)E

3i )+O(a4). (A.6)

(iv) Symmetrization over both shift functions and momenta.Contributions at the origin:

−a3
(

1
4M

2(Ñ1− ˜̃N1)F i23E
3
i + 1

4N
1(M̃2− ˜̃M2)F i31E

3
i

+ 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )
)+O(a4). (A.7)

Contributions involving neighbouring vertices:

a3
(

1
4M

2(Ñ1− ˜̃N1)F i23E
3
i + 1

4N
1(M̃2− ˜̃M2)F i31E

3
i +N1M2εijk(A

j

1E
1i + Aj2)F k12E

2i

+ 1
2F

i
12(∇1E

1
i +∇2E

2
i + 2∇3E

3
i )−N1M2F i12(∂1E

1
i + ∂2E

2
i + ∂3E

3
i )

−N1M2(F i12∂3E
3
i + F i23∂1E

3
i + F i31∂2E

3
i )−N1(∂1M

2)F i12E
1
i

−M2(∂2N
1)F i12E

2
i −N1(∂3M

2)F i12E
3
i −M2(∂3N

1)F i12E
3
i

−M2(∂1N
1)F i23E

3
i −N1(∂2M

2)F i31E
3
i

+N1M2εijk(2A
j

3F
k
12+ Aj2Fk31+ Aj1Fk23)E

3i
)+O(a4). (A.8)

The more one symmetrizes, the more cancellations occur individually among terms
based at the origin and among terms coming from the more non-local commutators. For
example, terms of ordera2 still appear in cases (i)–(iii), but disappear when the totally
symmetrized lattice operators are used. This is in line with the general rule that for lattice
discretizations the convergence properties in the continuum limit are improved when one
symmetrizes the lattice expressions over positive and negative lattice directions. Note also
that terms containing partial derivatives of the shift functionsM andN (that are crucial
in obtaining the correct commutator) come from the commutators involving neighbouring
sites.
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