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Abstract

We present a few remarks on disconnected components of the moduli space of heterotic string compactifications on T .2

We show in particular how the eight dimensional CHL heterotic string can be understood in terms of topologically
Ž .non-trivial E =E and Spin 32 rZ vector bundles over the torus, and that the respective moduli spaces coincide. q 19988 8 2

Elsevier Science B.V.

1. Introduction

The recent developments in string theory have made clear that moduli spaces of string compactifications are
often connected. This is particularly pronounced for theories with extended supersymmetry. However, even for
theories with extended supersymmetry it is in general not true that all string compactifications to the same
number of dimensions and with the same amount of supersymmetry are continuously connected. It is indeed
well-known that there are disconnected components of theories with Ns2 supersymmetry in eight and six

w xdimensions, or Ns4 supersymmetry in four dimensions 1–3 . It would certainly be interesting to have a
deeper geometrical understanding of the appearance of such disconnected components, which typically lead to
non-simply laced gauge groups.

For compactifications of the heterotic string, disconnected components arise because such compactifications
require the choice of a manifold X together with a holomorphic vector bundle on X with structure group, given

Ž .by either GsE =E or Spin 32 rZ . The moduli space of holomorphic vector bundles on X can in general8 8 2

have several disconnected components. This applies in particular to the two gauge groups just mentioned when
X is a torus. Indeed, for T compactifications of the heterotic string to Ds8 there are two known components:2

the usual component, MM , corresponds to the standard Narain moduli space based on the lattice G , while18,2 18,2
w xthe other component MM corresponds to the CHL string whose moduli space is based on G 1,2 . Moduli10,2 10,2

spaces of flat G-valued connections over tori had also played a role in the recent work of Friedman, Morgan andˆ
w xWitten 4 . Quite generally, disconnected components of moduli spaces correspond to topologically non-trivial
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G-bundles. 1 Fortunately, a rather explicit description of all such disconnected components is known from
w xconformal field theory 8 . This will be reviewed and further discussed in Section 2 of the present letter.

Subsequently, in Section 3 we will then use this description to gain geometrical insight into the nature of the
CHL string in eight dimensions. In particular, we will explicitly show that the disconnected components of the

Ž .E =E and of the Spin 32 rZ compactification are equivalent, ie., that they form the same moduli space8 8 2
w xMM . This generalizes the well-known result 5 in the trivial component of the moduli space, namely that10,2

ordinary toroidal compactifications of the two heterotic strings map into the same moduli space MM .18,2

2. Flat bundles with non-simply connected structure groups

We start our discussion of disconnected components of the moduli space with an explicit description of the
moduli spaces of flat connections over an elliptic curve S. We fix a compact, real, connected Lie group G

˜which, however, is not necessarily simply connected. Its universal covering group will be denoted by G; if
˜Ž .Z:sp G is the fundamental group of G, then G can be obtained from G by dividing out a subgroup of the1

˜center of G that is isomorphic to Z:

˜GsG r Z . 2.1Ž .
Let us fix a canonical basis c ,c of one-cycles on S. Flat connections can be characterized by theira b

˜holonomies g and g around c and c which are elements in the universal covering group G. Aftera b a b

projection to G these elements have to reproduce the single non-trivial relation in the fundamental group of S:
y1 y1

p g g g g se 2.2Ž . Ž . Ž .Ž .a b a b

˜which means in G that
y1 y1g g g g sv with vgZ . 2.3Ž . Ž . Ž .a b a b

< <As a consequence, the moduli space MM of flat G-connections over S decomposes into Z disconnectedG

components, which are labelled by elements of Z:

˙ vMM sjMM . 2.4Ž .G G

w xIt has been shown in 8 that the components with v/e – which, as explained above, we call topologically
Ž .non-trivial components – are isomorphic as varieties, and up to a rescaling also as complex spaces to the

topologically triÕial component of the moduli space over the same elliptic curve, but with another structure
group Gv. In other words: we have a fully non-perturbative identity which allows us to trade topological
non-triviality for a change in the gauge group.

The change in the structure group corresponds to folding the affine Dynkin diagram 2 by the automorphism
associated to vgZ. The relevant folding data of all the groups are listed in Table 1.

Two explicit examples are shown in Fig. 1: in the left column it is shown that the two non-trivial elements in
the center of E give the moduli space of flat G connections. The total moduli space of topologically trivial6 2

and non-trivial E connections thus has the following three components:6

MM sD MM i ( MM 0 jMM 0 jMM 0 . 2.5Ž .E isy1,0,1 E E G G6 6 6 2 2

Two comments are in order: we first remark that the case of A corresponds to vector bundles of rank nq1.n

It seems that to algebraic geometers the following closely related isomorphism has been known: the moduli
Ž .space MM r,d of vector bundles of rank r and degree d over an elliptic curve is isomorphic to the moduli space

1 As usual in physics, we call these bundles, topologically non-trivial, because they cannot be deformed as flat bundles to the trivial
bundle. In the case of a two-dimensional torus such bundles are even non-trivial as topological bundles.

2 w xThis is related to but different as Ref. 4 , where automorphisms of non-affine Dynkin diagrams were considered.
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Table 1
vG v N G

Žnq1.r NŽ .A s N- nq1 An nq1 ŽŽ nq1.r N .y1
� 4A s nq1 0n nq1
Ž2.˜B s 2 Bn Õ ny1
Ž2.˜C s 2 B2 n n

C s 2 C2 nq1 n

D s 2 Cn Õ ny2

D s 2 B2 n s n

D s 4 C2 nq1 s ny1

E s 3 G6 2

E s 2 F7 4

Ž Ž . . Ž . Ž .MM x r,d ,0 , where x r,d denotes the greatest common divisor of r and d. Also notice for A that if vn

generates the whole center, then the moduli space is just a single point. Our second comment is about the
˜Ž2. Ž .symbol B c.f., right part of Fig. 1 : this denotes the only twisted affine Lie algebra which has characters thatn

span a unitary representation of the modular group. In this case, the moduli space can be build from the
maximal torus of this algebra and its affine Weyl group precisely in the same way as the other moduli spaces
can be built from the data of the untwisted affine Lie algebras.

More specifically, any connection in the topologically trivial sector can be described by two commuting
elements g , g which are only determined up to a simultaneous conjugation with an element of G; hence wea b

can assume without loss of generality that they are both elements of a fixed maximal torus of G. We write

g sexp 2p ih and g sexp 2p ih . 2.6Ž . Ž . Ž .a a b b

The remaining gauge transformations are taken into account by the diagonal action of the Weyl group W on
both maximal tori, so that the moduli space is

MM s g rL[g rL rW 2.7Ž . Ž .G 0 0

where g is the Cartan subalgebra of the Lie algebra of G, and L is the coroot-lattice so that g rL is just the0 0
˜Ž2. Žmaximal torus. In the case of B , g is an abelian Lie algebra of rank r, L is the root lattice not the corootr 0

. Ž . Ž . w xlattice of B , and W is the Weyl group of Spin 2 rq1 or, equivalently, of Sp 2 r . It was shown in 8 that ther

disconnected components of the moduli space can be described using the analogous data of the group Gv.
Ž .Let us make this explicit for the case of Spin 32 , which is relevant for the eight dimensional heterotic string

Ž .compactifications to be discussed later. Usually one describes the Lie algebra of Spin 32 by antisymmetric

Fig. 1. Some foldings of affine Dynkin diagrams.
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matrices; here we prefer to work in a basis where the Cartan subalgebra is realized by diagonal matrices. This is
Ž .achieved by the introduction of complex fermions c ,c ,is1 . . . 16. In this basis, the boundary conditions fori i

a world sheet of genus 1 and modular parameter t and for winding numbers L and L in the bosonic sector1 2

are:

c zqnqmt sexp 2p i nhi L qmhi L c z , 2.8Ž . Ž . Ž .Ž .Ž .i a 1 b 2 i

w xThe corresponding partition function can be computed explicitly 7 .
We now extend this calculation to the topologically non-trivial bundles. They are again described by the

monodromies g and g along the non-trivial cycles of the torus. Here g and g are group elements ina b a b
Ž .Spin 32 which obey the condition

g g gy1 gy1 sv , 2.9Ž .a b a b

Ž .where v is the element in the center of Spin 32 that corresponds to the spinor conjugacy class. Notice that in
contrast to the topologically trivial sector, the monodromies now do not commute any more, and the relations of

Ž 2 . Ž .the fundamental group p T (Z=Z are only reproduced after projection to Spin 32 rZ . According to the1 2
Ž .automorphism presented above, the moduli space MM of the topologically non-trivial Spin 32 rZ bundle is1 2

Ž .isomorphic to the moduli space of topologically triÕial Spin 17 -bundles. Hence its dimension is dim MM sC 1
Ž Ž ..rank Spin 17 s8.

Ž .More generally, a simultaneous conjugation of g and g with an element in Spin 2n can be used to bringa b
Ž .the general solution of 2.9 to the form

g sexp 2p i h qh g sAexp 2p ih 2.10Ž Ž . Ž . Ž .a 0 a b b

Ž .where h , h and h are elements in the Cartan subalgebra of spin 2n and A is a group element which upon0 a b

conjugation reproduces on the Cartan subalgebra the action of the following Weyl transformation:

w a Ž i. sa Žnyi. for is1 . . . ny1Ž .
ny2 2.11Ž .Žn. Ž1. Žny1. Žn. Ž i.w a syusya ya ya y2 a .Ž . Ý
is2

w xh is a specific element of the Cartan subalgebra which is described in more detail in 8 . Moreover, the0

elements h and h are restricted by the conditiona b

Ah Ay1 sh and Ah Ay1 sh . 2.12Ž .a a b b

This condition implies that only half of the possible Wilson lines in the topologically trivial sector survives. This
accounts for the reduction of the dimension of the moduli space.

ŽAn explicit description of the possible Wilson lines h and h is as follows for notation, details and aa b
.derivation see the appendix : in a suitable basis the general element of the Cartan subalgebra can be written as

n

l EE yEE . 2.13Ž . Ž .Ý i i , i iqn , iqn
is1

where EE is the 2n=2n matrix with only zero entries, except one. The subalgebra of the Cartan subalgebrai, j

that is invariant under conjugation with A is given by those elements for which

l sl ; 2.14Ž .i nq1yi

it is an nr2-dimensional subalgebra.
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3. Geometric realization of the 8d CHL compactification

We now come to compactifications of the heterotic string to 8 dimensions. The compactification space has to
be a Calabi-Yau manifold, and hence be the two-dimensional torus. Moreover, one has to choose a gauge
bundle over this compactification manifold. The conditions for anomaly cancellation require the structure group

Ž .of this bundle to be either G sE =E or G sSpin 32 rZ . Since the Calabi-Yau metric on the torus is flat,1 8 8 2 2

anomaly cancellation tells us that the background gauge field on the bundle has to be flat as well.
Ž .Let us consider first the case of G sSpin 32 rZ . This group is not simply connected, and we have seen2 2

that in this case the moduli space MM of flat connections has more than one connected component. More
Ž . Ž .precisely, one finds that p MM sp G sZ . A similar logic applies to G sE =E ; in this case the outer0 1 2 2 1 8 8

automorphism is just the permutation of the two E factors, and again we have two connected components of8

the moduli space.
We will now show that the component MM gives the CHL compactification of the heterotic string. This1

affords in particular a geometric description of the CHL compactification.
To fix the Wilson lines, we choose nr2 elements u g IR mod Z and nr2 elements f g IR mod Z. Given ai i

world sheet of genus 1 and modular parameter t and in the sector with winding numbers L and L in the1 2

bosonic sector, the boundary conditions for the 2n complex fermions are in the direction of the a-cycle

L 2p iu L i1° i 1i e c z for is1 . . . nr2Ž . Ž .
L 2p iu L i1 nq1y i 1i e c z for isnr2q1 . . . nŽ . Ž .i ii 2p i L Žh qh . i ~1 a 0c zq1 sR e c z sŽ . Ž . Ž .

L y2p iu L i1 iyn 1yi e c z for isnq1 . . . 3r2nŽ . Ž .
L¢ y2 p iu L i1 2 nq1y i 1yi e c z for is3r2nq1 . . . 2nŽ . Ž .

3.1Ž .
and in the direction of the b-cycle for odd winding L2

2n
i ji L 2p i h L2 b 2c zqt s R A e c zŽ . Ž . Ž .Ý j

js1

° 2p if i L2 2 nq1yiie c z for is1 . . . nr2Ž .
2p if L 2 nq1yinq 1y i 2ie c z for isnr2q1 . . . nŽ .~s 3.2Ž .y2 p if L 2 nq1yiiy n 2yie c z for isnq1 . . . 3r2nŽ .¢ y2 p if L 2 nq1yi2 nq1y i 2yie c z for is3r2nq1 . . . 2nŽ .

and similarly for even winding. We see that the fermions come in groups of four, and the boundary conditions
Ž .of such a group of four fermions is described by two parameters u and f . For Spin 32 rZ we have thei i 2

Ž . Ž . Ž . Ž .following groups of indices: 1,16,8,9 , 2,15,7,10 , 3,14,6,11 , 4,13,5,12 .
This should be compared to the topologically non-trivial component of the moduli space of the E =E8 8

string. Here, we impose the following boundary conditions: along one cycle, say c , we introduce an ordinarya

Wilson line, while the monodromy along the other cycle c interchanges the two E factors and hence inb 8

particular the fermionic operators that are used to make up their Cartan subalgebras. This leads to an exchange
of two complex fermions, which in turn can be described in terms of real fermions. Up to different phases
Ž .which can be compensated by the Wilson lines and a relabeling of the fermions , we recover exactly the same

Ž .behaviour as for the non-trivial component of the Spin 32 rZ string.2

We have thus shown that the CHL string has a natural geometric description and that the equivalence of
Ž .heterotic compactifications based on E =E on the one hand and on Spin 32 rZ on the other hand holds in8 8 2

the topologically non-trivial component of the moduli space of connections as well.
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Notice that so far we have been concerned only with the moduli space MM of flat connections, i.e. theG

moduli space of the Wilson lines. The full moduli space of heterotic compactifications is locally a product of
this moduli space and the moduli space MM of 2-tori:2,2

MM ; MM =MM ; MM =MM , MM ; MM =MM rZ . 3.3Ž .18 ,2 SpinŽ32. 2,2 E =E 2,2 10,2 SpinŽ17. 2,2 28 8

In this context, the following observation seems to be intriguing: for the Narain compactification, the moduli
Ž .space is described by either E =E or Spin 32 bundles, and both groups appear as possible gauge8 8

Ž Ž . Ž ..enhancements by allowing general rotations involving G , one can extend Spin 32 to Spin 36 . In the CHL2,2
Ž .compactification, the Wilson lines are described by Spin 17 which is not simply-laced and does not appear as a

Ž wpossible gauge group of the CHL-string. However, its dual obtained by reversing the arrow in the non-ex-
x . Ž . Žtended Dynkin diagram , which is Sp 16 , does by allowing general rotations, this can similarly be extended to

Ž ..Sp 20 . In other words, and this seems to be a general rule, the gauge group that one canonically obtains is not
given by the structure group G of the bundle, but by its dual, G k.

w xA similar structure, however related to affine Dynkin diagrams, was found in Ref. 4 . In fact, this pattern is
w xfamiliar from many contexts, like for example in Ns2 gauge theories 9 .

Given that the CHL string has this geometric interpretation which puts it on the same footing as the usual
Narain compactification, it is natural to ask what its F-theory dual is; this will be addressed in a future
publication.
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( )Appendix A. Conjugations in Spin 2n

We need the group elements g and g that describe the monodromies around c and c explicitly in thea b a b
Ž .2n-dimensional representation of Spin 2n , the vector representation. Notice that this is not a representation of

Ž .Spin 2n rZ , and as a consequence, the element v in the center is not represented by the identity.2
Ž .To this end we first give the generators of the Lie algebra so 2n in the 2n-dimensional representation.

Denote by EE the 2n=2n matrix which has only zeros as entries, except for 1 in the i-th row and j-thi, j

column. Again it is convenient not to work with antisymmetric matrices but to perform a unitary transformation
with the matrix

n1
U :s i EE yEE y i EE yEE . A.1Ž .Ý i , i iqn , iqn i ,nqi nqi , i'2 is1

This corresponds to the usual introduction of complex fermions and allows to represent elements of the Cartan
subalgebra by diagonal matrices. The matrices B of the 2n-dimensional representation of the Lie group

Ž . tSpin 2n are then characterized by the fact that B KBsK , where K is the matrix

n
tK :sU Us EE qEE . A.2Ž .Ý i , iqn iqn , i

is1
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Ž .The generators of the Lie algebra spin 2n in a Cartan-Weyl basis are then represented as follows:

R Ei s EE yEE for is1 . . . ny1Ž .q i , iq1 iqnq1, iqn

iR E s EE yEE for is1 . . . ny1Ž .y iq1, i iqn , iqnq1

nR E s EE yEEŽ .q ny1,2 n n ,2 ny1 A.3Ž .
nR E s EE yEEŽ .y 2 n ,ny1 2 ny1,n

iR H s EE yEE yEE qEE for is1 . . . ny1Ž . i , i iq1, iq1 iqn , iqn iqnq1, iqnq1
nR H s EE qEE yEE yEE .Ž . ny1,ny1 n ,n 2 ny1,2 ny1 2 n ,2 n

Ž . Ž .Finally, we need the generators for the su 2 -subalgebra of spin 2n generated by the highest root u of
Ž .spin 2n :

R Eu s EE yEEŽ .q 1,nq2 2,nq1

uR E s EE yEE A.4Ž .Ž .y nq2,1 nq1,2

uR H s EE qEE yEE yEE .Ž . 1,1 2,2 nq1,nq1 nq2,nq2

We claim that the following matrix is a solution:
n

A:s y i EE q i EE . A.5Ž .Ý i ,2 nq1yi 2 nq1yi , i
is1

2 Ž .One can check that it has the following properties: A s1, A is in SO 2n , which follows from the fact that

UAUqsy 2nEE A.6Ž .Ý i ,2 nq1yi
is1

which is a real orthogonal matrix. Moreover, one has

AR Ei A s yR Eny i for is1 . . . ny1Ž . Ž ." "

n . uAR E A s R EŽ .Ž ." A.7Ž .
i nyiAR H A s R H for is1 . . . ny1Ž . Ž .
n uAR H A s R H .Ž . Ž .

Ž . w xThis reproduces correctly the action of the Weyl group element w described in 2.11 . Using the results in 8
one may show that

n1
R h s EE yEE A.8Ž . Ž . Ž .Ý0 i , i nqi ,nqi4 is1

2p i h0 y2 p i h0 y1 Ž . n Ž .One readily verifies that this satisfies e Ae A sv with R v sy EE qEE , asÝ i, i nqi,nqiis1
Ž .implied by 2.9 .
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