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The cosmological time function
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Abstract. Let (M, g) be a time-oriented Lorentzian manifold asidhe Lorentzian distance on

M. The functionz (¢) := sup,, d(p. ) is the cosmological time function @f, where as usual

p < g means thap is in the causal past @f. This function is called regular iff (g) < oo for all

g and alsor — 0 along every past inextendible causal curve. If the cosmological time function
T of a spacetimé&M, g) is regular it has several pleasant consequences: (i) it faideg) to

be globally hyperbolic; (ii) every point ofM, g) can be connected to the initial singularity by

a rest curve (i.e. a timelike geodesic ray that maximizes the distance to the singularity); (iii)
the functiont is a time function in the usual sense; in particular, @vis continuous, in fact,
locally Lipschitz and the second derivativeswogxist almost everywhere.

PACS numbers: 0420C, 0420G, 9880H

1. Introduction

Time functions play an important role in general relativity. They arise naturally in the
global causal theory of spacetime and they permit a decomposition of spacetime into space
and time which is useful, for example, in the study of the solution of the Einstein equation.
The choice of a time function, however, can be rather arbitrary and a given time function
may have little physical significance. Very few situations have been identified which lead
to a canonically defined time function. In this paper we introduce and study what may be
viewed in the cosmological setting as a canonical time function.

Let (M, g) be a spacetime (i.e. a time-oriented Lorentzian manifold) and:léf x
M — [0, co] be the Lorentzian distance function. Define the cosmological time function
7: M — (0, 0o] by

T(q) == supd(p, q). (1.2)

pP=<q

If ¢ is a causal curve i denote byL(c) the Lorentzian length of and forg € M, let
C~(g) be the set of all past-directed causal curyés M that start ay. Then we have the
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alternative definition
7(q) = sudL(c):c € C” (¢g)}.

The numberr (¢) can be thought of as the length of time that pgjrtias been in existence.

In general the functiorr need not be at all nice; for example, in the case of flat
Minkowski spacet = oo. We will give examples below wheréM, g) is globally
hyperbolic,z(gq) < oo for all ¢ but t is discontinuous.

Definition 1.1. The cosmological time functiom of (M, g) is regular if and only if
() (M, g) has finite existence times, i.e(g) < oo for all g € M.
(i) = — 0 along every past inextendible causal curve.

The first of these conditions is an assertion that the spacetime has an initial singularity
in the strong sense that for each point of the spacetime any particle that passes through
has been in existence for at most a tim@). The second condition is a weak completeness
assumption. It asserts that if we believe that the conditien0 defines the initial singularity
and that worldlines of particles are inextendible, then every particle came into existence at
the initial singularity.

Our main result is that if the cosmological time function is regular then the spacetime
is quite well behaved.

Theorem 1.2. SupposéM, g) is a spacetime such that the function — (0, co) defined
by (1.1) is regular. Then the following properties hold.

(i) (M, g) is globally hyperbolic.

(ii) 7 is a time function in the usual sense, ireis continuous and is strictly increasing
along future-directed causal curves.

(iii) For eachq € M there is a future-directed timelike ray,: (0, t(¢)] — M that
realizes the distance from the ‘initial singularity’ 49 that is, y, is a future-directed timelike
unit speed geodesic, which is maximal on each segment, such that

Ye(t (@) =q, T(y, () =1, for t e (0, (q)]. (1.2)

(iv) The tangent vectors$y,(t(q)):q € M} are locally bounded away from the light
cones. More precisely, ik € M is compact thery, (t(¢)):q € K} is a bounded subset
of the tangent bundl& (M).

(v) T has the following additional regularity property: it is locally Lipschitz and its first
and second derivatives exist almost everywhere.

Conditions similar to property (iv) have played an important role in the analysis of
the regularity of Lorentzian Busemann functions and their level sets (cf [1, 8]). Here
property (iv) will be used to establish property (v).

For regularity properties of the level sgts= a} see section 3 (as well as the corollary
at the end of section 2). The various conclusions of the theorem will be proven as separate
propositions in the following sections.

1.1. Terminology and notation

We use the standard terminology and notation from Lorentzian geometry, following for
example [4, 9], in particular, ifM, g) is a spacetime thep « ¢ (respectively,p < q)
means there is a future-directed timelike (respectively causal) curvegrtow. If S ¢ M
then 7+ (S) is the chronological future of and J*(S) is the causal future of. Likewise
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I=(S) and J=(S) are the chronological past and causal pastSoflf p < ¢, then the
Lorentzian distancd(p, ¢) is the supremum of the lengths of all the future-directed causal
curves fromp to ¢ and if p £ ¢ thend(p, q) = 0. A fact that will be used repeatedly is
that if x < p < ¢g then the reverse triangle inequality

d(x,q) 2 dx, p)+d(p,q)
holds.

2. Proofs of the basic properties of the cosmological time function

2.1. Continuity of the cosmological time function

Proposition 2.1. If the cosmological time functionc of (M, g) is regular then it is
continuous and satisfies the reverse Lipschitz inequality

P<gq implies t(p) +d(p,q) < 1(q). (2.1)

Proof. To prove the reverse Lipschitz inequality assume< ¢ and letx < p. Then
x < g and so by the reverse triangle inequality (dé€x, p) + d(p, q) < d(x, q)),
t(p) +d(p,q) = supd(x, p) +d(p, q)) < supd(x, q) < supd(x, q) = t(q).
x<p x<p x<q

We now establish the continuity af. For anyp € M the functiong — d(p, q) is
lower semicontinuous oM. (That is liminf._,., d(p,x) > d(p, q).) For example, cf [9],
p 215. Thent(g) = sup,_, d(p, q) is a supremum of lower semicontinuous functions and
therefore also lower semicontinuous. Thus to prove continuity ibfis enough to show it
is upper semicontinuous, that is limsup, 7 (x) < t(q).

Assume, toward a contradiction, thatis not upper semicontinuous ate M. Then
there ise > 0 and a sequence — ¢ such that for eacld

T(xe) = 7(q) +&.

For each?¢ we can choosg, with

1
d(pe, xe) = t(xg) — 7

Moreover, by the regularity of, we can choose the sequenge} so thatz(p,) — 0
as¢ — 0. (To see this make any choice ¢f with d(p., x;) > t(x;) — 1/€. Then
choose a past-directed inextendible cusvstarting atp,. By the definition of regular there
is a point p, on o with t(p,) < 1/¢. Thend(pg, x¢) > d(pe, x¢) > t(x0) — 1/¢ and
limy_ o t(p;) = 0.) The conditiont(p,) — 0 and the lower semicontinuity af implies
that {p,} diverges to infinity, that is it has no convergent subsequences.

We now put a complete Riemannian metkion M and assume that all causal curves
(except possibly those arising as limit curves) are parametrized with respect to arc length
in the metrich. Sinced(p,, x;) < oo there is a past-directed causal curye[0, a;] — M
(parametrized with respect to arc lengthaipfrom x, to p, such that

1 2 2
L(ce) = d(pe, x0) — 7 > T(xg) — 7 =2 1t(q)+e— 7 (2.2)

whereL () is the Lorentzian arc length functional. Singe} divergesa, — oo. Hence, by
passing to a subsequence if necessary, we havgdhiatonverges uniformly on compact
sets to a past inextendible timelike or null ray (maximal half geodesif), o) - M
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(cf [7], sections 2 and 3). Moreover, by the upper semicontinuity of the Lorentzian arclength
functional (strong causality is not required, again cf [7]), for each 0

L(clio,p) = limsupL(celpo,p))- (2.3)

{— 00

Claim 1. The curvec: [0, co) — M is null.

If not thenc is a timelike ray. Choose > 0 andé > 0 so that
L(clp.) + 6 < 36

By (2.3) there is anV such that for all¢
L(celpo,) < L(clp,q) +6

Hence, by (2.2) and the above,

>N1
<%8.

e 2
Ledlira)) = L) = Liedlp.n) > 7@ + 5 = 5.
Thus whent is sufficiently large,

Lcelra) > T(q).

On the other hand, sinceis timelike, we have that,(t) € I~ (¢) for all ¢ sufficiently
large. It follows thatr(¢) > L(c¢ly,q]) > T(g). This contradiction establishes the claim.

Claim 2. 1(p) > t(g) for all p € I (c).
Choosey on ¢ such thaty € 1~ (p).
We havey = c(b) for someb > 0. Sincec is null (2.3) implies,

L(celpo.p) — O.
Let y, := c¢(b). Then,

T(ye) 2 L(celp.a)) = L(ce) — Lcelp,p))

zt(g)+e— % — L(celo.py) > 7(q),

for all sufficiently large¢. Moreover, by taking¢ even larger if necessary, we have
yve € I~ (p), and hence (p) > t(y,) > t(g), as claimed.

A past inextendible timelike curvé asymptotic toc and contained in*(c) may be
constructed as follows.

(i) First choosey, = c(b;), by — oo so that lim_, ., y, does not exist.

(if) Then choose(z,} € M so that: (@)ze+1 € 1 (z¢); (b) 20 € IT(ye); (€) liMy— oo z¢
does not exist.

Let ¢ be a past-directed timelike curve which threads throggly zo > z3 > - .

As lim,_, ., z, does not exist, the curvé is past inextendible. Since by construction
¢ C I*(c), claim 2 impliest > t(g) along¢, which contradicts the regularity condition.
This completes the proof. O

2.2. Global hyperbolicity ofM, g)

Proposition 2.2. Let (M, g) be a spacetime so that the cosmological time functios
regular. Then(M, g) is globally hyperbolic.
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Proof. We have shown in proposition 2.1 thatis continuous. Therefore, if, =
{g € M:t(q) = t} then by elementary topological and causal considerati§nis closed,
achronal and edgeless. (Th&tis achronal follows from the reverse Lipschitz inequality.
That S; is closed and edgeless follows from the continuityrgf

Recall that the future domain of dependenbé (S;) of S, is the set of all points
g € M such that every past inextendible causal curve figrintersectsS,. The past
domain of dependencB (S,) is defined time-dually. The domain of dependences,ofs
D(S;) = DT (S;)UD(S,). From the definition of regularity and the continuity ofve see
that D (S;) = {g:t(g) > t}. It follows that each point oM is contained in inD*(S;) for
somet. Since strong causality holds at each point ofDiftsS;) (cf [10], proposition 5.22,
p 48), (M, g) is strongly causal.

Now let p, g € M with p < ¢. Then choose > 0 withr < z(p). ThenJ(g)NJ*(p)
is a subset of the open sgt:7(x) > t} C D(S,) and thusJ~(¢) N J*(p) is contained
in the interior of D(S;). This implies (cf [10], proposition 5.23, p 48)~(g) N J*(p) is
compact. ASM, g) is strongly causal ang andg were arbitrary points oM with p < ¢,
this verifies the definition of globally hyperbolic. O

2.3. Existence of maximizing rays to the initial singularity

Proposition 2.3. Let (M, g) be a spacetime with regular cosmological time function
Then for eachg € M there is a future-directed timelike ray,: (0, t(¢)] — M that
realizes the distance from the ‘initial singularity’ tp; that is, y, is a future-directed
timelike unit speed geodesic that realizes the distance between any two of its points (for
0<s <t <1(g), dy,(s), v,() =t —s) and satisfies,

Ye(t(@) =q, (Y, (1) =1, for 1€ (0, (9] (2.4)

Proof. For the purpose of the proof we will parametrize curves with respect to a complete
Riemannian metrié on M as in the proof of proposition 2.1. Fixe M. As in the proof
of proposition 2.1, one can construct a sequeige C I~ (¢g) that diverges to infinity and
such that
1 1

d(ve.q) 2 t(@) — 5 and (o) < -
By proposition 2.2,(M, g) is globally hyperbolic so there is a past-directed maximal
geodesic segmenk:[0,a;] — M from g = y,(0) to y, = y¢(as). Since{y,} diverges
to infinity and the curves are parametrized with respedt torc length we have, — oo.
Hence, by passing to a subsequence if necessary, the sequeh@anverges to a past
inextendible timelike or null rayy:[0,00) — M based aty = y(0). Hence for all
b € (0, 00),

L(ylo.r) =d(y D), q). (2.5)

Claim. y is timelike and for eaclh € (0O, 00),
d(y (), q) = t(q) — t(y(b)). (2.6)
Hence by suitably reparametrizingwe obtain a timelike ray, that satisfies (2.4).

To see that the claim holds first note by the reverse Lipschitz inequality,
d(y (), q) < t(g) — t(y(D)). (2.7)
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By the maximality of the segmentis,

1
d(ye(d), q) = d(ye, q) — d(ye, e (D)) = <r(q) - Z) — 1 (ye(b)).

Letting £ — oo we obtaind(y(b),q) > t(gq) — t(y(b)) which, together with (2.7),
establishes (2.6). Moreover, sineéy (b)) — 0 asb — oo, by taking b large enough
in (2.6) we see thad(y (b), q) > 0 and thusy must be timelike. This completes the proof
of the claim and the proposition. O

Proposition 2.4. Assume the cosmological time functierof M is regular and thak c M
is compact. For each € K let y,:(0, 7(¢)] — M be a maximizing ray from the initial
singularity tog in the sense that (2.4) holds. Théyy (t(¢)):q € K} C T(M) is bounded
in T(M) (or, which is the same thingg/(;(t(q))iq € K} has compact closure ifi(M)).

Proof. The proof is similar to the last proposition and again we parametrize curves with
respect to a complete Riemannian metricin If {y,(z(¢)):¢ € K} is not bounded then
there exist past inextendible timelike rays [0, co) — M, parametrized with respect o

arc length, which satisfy

d(ye(D), v¢(0)) = t(y:(0)) — T (y¢(b)) (2.8)

for all b € (0, 00), such thaty,(0) — ¢ € K and thek-unit vectorsy,(0) converge to an
h-unit vector X which is null in the Lorentzian metric. Let: [0, c0) — M be the past
inextendible null geodesic parametrized with respeck t@rc length, satisfying/ (0) = ¢
and y’'(0) = X. Theny is necessarily a null ray (otherwise the maximality of thés
would be violated). By (2.8) we have

d(y(®),y(0) = Zango d(ye (D), ye(0))
= ZILTO(T(W(O)) —t(ye) =7(y(0) — (¥ (b)) >0

for sufficiently largeb. But this contradicts thay is a null ray. O

2.4. 7 is strictly monotonic on causal curves

Proposition 2.5. If the cosmological time function is regular then it is a time function in
the usual sense, that is, it is continuous and strictly increasing along future-directed causal
curves.

Proof. We have already shown that is continuous. Lets:(a,b) — M be a future-
directed causal curve ang, t, € (a, b) with r; < 1,. Setp ;= o(#1) andg = o(tp). If
d(p,q) > 0thent(q) > t(p) +d(p,q) > t(p) by the reverse Lipschitz inequality far.
Thus assumé(p, g) = 0. Then there is a null geodesic rgyfrom p to ¢. Let y, be the
timelike ray top guaranteed by proposition 2.3. Choose a pgimn y, to the past ofp.
Then by a ‘cutting the corner’ argument neastrict inequality holds in the reverse triangle
inequality. This strict inequality and(p, ¢) = 0 imply

d(x,q) > d(x,p)+d(p,q) =d(x, p).
Hence,
(g) —t(p) 2dx,q) >d(x,p)=1t(p) —1(x)
which impliest(p) > 1(g), as desired. O
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Recall that for a closed subs&tc M, the future Cauchy horizoff *(S) is by definition
a future boundary of the domain of dependeir&(S),

H*(S) = DT (S) — I (D*(S)).

H~(S) is defined analogously. I§ ¢ M is edgeless and acausal, thgiis called a partial
Cauchy surface and if in additiod ™ (S) = @ then S is called a future Cauchy surface (see
[9], ch 6 for details). We can now state the following corollary.

Corollary 2.6. If the cosmological time functionr is regular then the level sets, =
{g:1(q) = a} (if nonempty) are future Cauchy surfaces.

Proof. As observed in proposition 2.25, is edgeless. The acausality 6f follows
immediately from proposition 2.5. Suppos&™(S,) # ¥. Letn be a past inextendible null
geodesic generator af T (S,) with future end pointy € H*(S,) (cf [9], proposition 6.5.3,
p 203). Sinceg € I7(S,), t(g) > a. But then, sincer — 0 alongn andt is continuous,
there is a poinip on n such thatr(p) = a, i.e. n meetsS,, which cannot happen. ]

Simple examples show that the level s8tsneed not be Cauchy, i.é1~(S,) need not
be empty.

3. Other regularity properties of = and its level sets

A continuous function: defined on an open subsgt of R” is semiconvex if and only if

for each pointx € U there is a smooth functioyf defined near so thatu + f is convex

in a neighbourhood ok. Using lemma 3.2 below it is not hard to check that the class

of semiconvex functions is closed under diffeomorphisms between open sub&tsnél
therefore the definition of semiconvex extends to smooth manifolds (cf [3]). By a well
known theorem of Aleksandrov a convex function has first and second derivatives almost
everywhere and thus a semiconvex function has the same property. (For a beautiful recent
proof see [5] theorem A.2, p 56).

Proposition 3.1. If the cosmological time functiorr is regular on(M, g) then it is
semiconvex and thus its first and second derivatives exist at almost all poims of

If f is a smooth function on an open subsetRf then denote byD?f the matrix
of second partial derivatives of. Let I be then x n identity matrix. For a constant
let D?f(x) < c¢I mean thatt] — D?f(x) is positive semidefinite. Also recall that if is
continuous then a smooth functignis a lower support function fox at x iff both » and
¢ are defined in a neighbourhood &f, u(xo) = ¢(xp) andg < u nearxg. The proof of
the proposition is based on the following lemma.

Lemma 3.2. Let U c R" be convex and let: U — R be continuous. Assume for some
constant and allg € U thatu has a lower support functiopy, atg so thatD?p, (xo) > cl.
Thenu — c||x||?/2 is convex inU and therefore: is semiconvex.

Proof. While in some circles this is a well known folk theorem, the only explicit reference
we know is [1], section 2. O
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Proof of proposition 3.1. For any pointg € M let y,: (0, t(¢9)] — M be a geodesic ray
realizing the distance from the initial singularitydaas in proposition 2.3. Define a function

¢q ON 17 (y4(t(q)/2)) by
bq(x) ==1(q)/2+d(yy(t(q)/2), x).

By proposition 2.3,y, realizes the distance between any two of its points and thus
d(y,(t),q) = t(q) —t for t € (0, r(g)]. Hence

®q(q@) = 1(q)/2+d(yy((9)/2). q9) = T(q).
By the reverse Lipschitz inequality far, if x € I7(y,(t(¢)/2))

T(x) — (Y (r(q)/2) = d(y,(t(9))/2, x),

which impliest(x) > ¢,(¢g) and thusg, is a lower support function for atg.

Also asy, maximizes the distance between its points the segmgnt,) 2. Will be
free of cut points. Thus the map— d(y,(t(g)/2), x) is smooth in a neighbourhood of
g. This implies¢, is smooth neay. By standard comparison theorems (see e.g. [2, 6]) it
is possible to give upper and lower bounds for the Hessian (defined in terms of the metric
connection of(M, g)) of x — d(y,(t(g)/2), x) just in terms of upper and lower bounds of
the timelike sectional curvatures of two planes containing) for € [t(¢)/2, 7(¢)] and
the lengtht(g)/2 of y,l[zq)/2()- The same Hessian bound will hold fey.

Now let K C M be compact. Then by proposition 2.4 the vectpfér(¢)) for g € K
are all contained in some compact Jetof the tangent bundle oM. Therefore there
is a compact seK; C M that will contain all the segmentg, |(z(g)/2.:() With ¢ € K
and a compact sek; C T (M) that will contain all the tangent vectors to these segments.
Therefore there are uniform upper and lower bounds for both the sectional curvatures of
two planes containing a tangent vector to all of the segmenis),2.-) and also the
lengthst(q)/2 of these segments. It follows that there are uniform two-sided bounds on
the Hessians for the support functiops for ¢ € K. Therefore given any poinjp and a
compact coordinate neighbourho&dof ¢q, by writing out the two-sided Hessian bounds in
terms of the coordinates we find that the lower support functigns; € K, to = will also
satisfy two-sided bounds on the Hessla?usq (g) with respect to the coordinates. Therefore
lemma 3.2 impliest is semiconvex neaj. As ¢ was any point ofM this completes the
proof. |

We now consider further the regularity of the level s§is:= {q:t(gq) = a} of the
cosmological time function. To do this it is convenient to work in some special coordinate
systems. Ley be any point ofM and let Ny be a smooth spacelike hypersurface passing

throughg. Let (x,...,x""*) be local coordinates oW, centred aty and letx” be the
signed Lorentzian distance (wittf positive to the future ofVy and negative to the past).
Then neay, (xl, ...,x”) is a local coordinate system so that the form of the metric in this

coordinate system is

n

n—1
g= Z gap dxtdx® = Z gi; dx' dx/ — (dx")z.

A.B=1 ij=1

Call such a coordinate system an adapted coordinate system cengedTaen for any
spacelike hypersurfac¥ of M throughg we have that locallyv can be parametrized as
the graph of a functiory’; that is,

Ff(xl, e x”_l) = (xl, B f(xl, ... ,x”_l)). 3.1
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Proposition 3.3. Let the cosmological time functiom of (M, g) be regular and for
a € (0,0) let S, = {x:1(x) = a} be a nonempty level set af. Then for anyg € S, and
every adapted coordinate systar ..., x" centred ay there is a local parametrization of
S, of the form (3.1) for a unique functioif defined on a neighbourhood of the origin in
R"~1, This functionf is semiconcave (that is f is semiconvex) and therefore it is locally
Lipschitz and its first and second derivatives exist almost everywhere.

Proof. The existence and uniqueness of the functjois elementary, and follows from

the fact thatS, is an acausal hypersurface. We are now going to construct upper support
functions for S, at each of its points. For any € S, let y,: (0, 7(p)] — M be a ray that
realizes the distance to the initial singularity &f in the sense of proposition 2.3. Then
define

= {x € IT(yp(a/2):d(yp(a/2),x) = a/2}.

That is, X, is the future Lorentzian distance sphere of radiy2 about the poiny,(a/2).
Using the fact thaty, realizes the distance between any two of its points and that
vp(t(a)) = p we seed(y,(a/2), p) = d(yp(a/2), yp(a)) = a/2 so thatp is in X,.
Also using the reverse Lipschitz inequality for if x € X, then

T(x) > 1(yp(a/2) +d(ypa/2),x) = 3a + 3a = a.

Thus every point oft, is in the causal future of,. As y, is maximizing, the segment
Ypllas2.a) Will be free of conjugate points and therefore thg is a smooth hypersurface in
a neighbourhood op. Now let K C S, be a compact set. Then by proposition 2.3 the set
{y,(a): p € K} has compact closure ifi(M). Therefore an argument like that used in the
proof of proposition 3.1 (based on elementary comparison theory) implies tlm,at i§ the
second fundamental form af, at the pointp thenth satisfies a uniform two-sided bound
for p € K (or, which is the same thing, the absolute values of the principal curvatures of
%, at the pointp are uniformly bounded fop € K).

For p € S, sufficiently close tag we can parametriz&, by a function Fy, with F,
defined as in (3.1). As the hypersurfacgs are in the causal future of, the functions
fp satisfy f, > f nearp and thus they are upper support functions fomear p. The
bound on the second fundamental forms of Hygs can be translated into a bound on the
HessiansD?f, (for the details of this calculation see [1]). Therefore lemma 3.2 implies
— f is semiconvex. This completes the proof. O

4. Examples

4.1. A globally hyperbolic spacetime withfinite valued but discontinuous

Let ¢:R — [0, 00) be a smooth function with support in the interfg, 3] and with

[ e de = fll/42(p(t)dt 2. Define a function® on the upper half-planés =

{(x y):y > 0} by

1
1+—<p(X>, x>0
Oy =1 x \x

1, x <0.
Let ¢ be the Lorentzian metric oM given by
g = dx® — d(x, y)? dy?.
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Then this metric is smooth oM and usingfll/fw(t)dt = 2 it is not hard to check
that for anya > 0 the length of the timelike curve,:[a/4,a/2] — M given by
¢s(t) = (a,r) has Lorentzian lengtii(c,) = fj/f@(a,t)dt = 2+ a/4 (see figure 1).
Let go = dx? — dy? be the standard flat Lorentzian metric &#h and letW be the open
wedgeW = {(x,y):x > 0,y > 0,x/4 < y < x/2}). Theng = go outside ofW. If

F:=ITW)\W = {(x,y):y > 0,—y < x < y/2} then, using that the segments all

have Lorentzian length greater than 2, we see that

T(x,y) > 2 forall (x,y) e F.

But for (x, y) ¢ I (W) the existence time ofx, y) is the distance ofx, y) from thex-axis
in the usual metrigo, that is

T(x,y) =y forall (x,y) e M\ It (W).

This implies thatr is discontinuous at each point of the segmignt y): —2 <x <0,y =
—x}. But the spacetiméM, g) is globally hyperbolic and has finite existence times.

Null lines ——

The segments c,
all have length > 2

Figure 1. A globally hyperbolic spacetime with finite valued but discontinuous.

4.2. Non-strongly causal spacetimes witlinite valued

Consider the well known example of a spacetime which is causal but not strongly causal
(cf [9], p 193, figure 38). In this example, which is a cylinder with slits, it is easily verified
that t is finite valued.

If we are willing to drop the requirement that the metric(df, g) is smooth, but only
of classC? then there is an example of a Lorentzian metric on a cylinder that Hamte
valued, but which has a closed causal curve (which turns out to be a null geodesic). This
example, which we now describe, is used in the next subsection to construct a spacetime
with a nonregular such thatr — 0 along all past inextendible timelike geodesics.

Let the circleS* (which we think of asR modulo 2r) have coordinate: and for any
a >  define a metric on the spadé := S* x R by

g = dx dr + [1]*dx® = dx(dr + > dx).

At each point the null directions are defined by-¢ 0 and d+|¢|>* dx = 0. If the direction
of 8/dt is used as the direction of increasing time then the only closed causal curve is the
curve{r = 0}.

A past inextendible causal curve will either diverge along the cylinder+o—oco or
be asymptotic to the the null geodegic= 0}; see figure 2. We now show that any past
inextendible causal curve asymptotic {to= O} starting at(xo, 7o) has length bounded just
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Asymptote
/tot:tO
4
-4
& ! |»~<~t=‘.0
-
w——-—/‘-t:*l

Figure 2. A non-causal spacetime with finite valued.

in terms of (xg, fo). In doing this it is convenient to work on the universal cover of the
cylinder, that isR?. And in doing the preliminary part of the calculation it is no harder
to work with a slightly more general class of metrics. Lftx) be any smooth positive
function defined on the real line (in our exampiéx) = 1) and letp(¢) be aC?* function

so thatt = 0 is the only zero ofp (in our examplep(¢) = |¢t|*) again defined on the real
line. Ast = 0 is the only zero ofy it does not change sign a®, co) and we assume that
¢(t) > 0 on (0, c0). Define a Lorentzian metric oR? by

go = dx dr + ¢(1)?f (x)” dx? = dx (df + ¢(1)* £ (x)” dx)

and use the time orientation so th@td: points to the future. At each point the null
directions are defined byxd= 0 and d + ¢(r)2f(x)?dx = 0. From this it follows that
{r = 0} is a null geodesic and that every past inextendible causal cueither is divergent
with + — —o0 alongc or ¢ remains in the closed upper half-plane definedr by 0 andc
is asymptotic to the null geodesjc = 0} in such a way that is increasing monotonically
alongc.

Now let ¢ be a past inextendible causal curve starting at the paitp) and so that
¢ is asymptotic to the null geodesic = 0}. Thenc¢ has a parametrization of the form
c(t) = (x(@),t) defined on(0, rg]. As this curve is causal we have (using the notation
X = dx/dt),

0> go(c' (1), /(1)) = % + (1) f (x)%i?
= (W(t)f(X) +

-1
2 —7
Ap(1)% f (x)?

2
1
2<ﬂ(t)f(x)> T Ap(0)2f (x)?

and thus

[t + o) f (0)%%?| < (4.1)

1
dp(1)?f (x)?
As c is asymptotic to{r = 0} it follows that: > 0 and thus als@(¢) > 0 alongc. Thus
the Lorentzian length of satisfies

fo dr
20(t) f(x(1))

L) = / A2 dr < /
0 0
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where the inequality follows from using the bound in (4.1). Now letting) = |¢|* with
% <a < 1andf(x) =1 then this leads to the bouridc) < t&*"‘/(Z(l — a)) as required.
Now if we let M := {(x,f) € S' x R:t > —1} then the bound on the length of
curves asymptotic t¢r = 0} just given implies that if% < a < 1 andM has the metric
g = dx dr + |#|> dx? then (M, g) has finite valued, butr does not go to zero along the
inextendible causal curves asymptotic{to= 0}. It is worth noting that in this example
is continuous.
We know of no example whereis finite, there are closed causal curves, and the metric
is smooth.

4.3. A non-regularr going to zero along all past inextendible causal geodesics

The definition ofr being regular requires thatgo to zero along all past inextendible causal
curves. It is natural to ask whether this can be weakened to only requiring tftato zero
along all past inextendible causal geodesics. Here we give an example to show that this is
not the case. Like the example just given the metric in this example is of €fabsit not
C2.

First let (Ma, g2) = (S* x (=1, 00), dx dr + |#|* dx?) be the two-dimensional example
just given (so tha% < o < 1) and set

fy=e' -1

Note that f(0) = 0 and f(y) > O for y # 0. Let M = {(x, y,t) € St x R x R:t > —1}
with the metric

g = dy? + € (dx dr + (It + f()) di?).

Then the two-dimensional submanifold definedyby O is isometric ta(M», g2). Moreover
this submanifold is totally umbilic ifM, g) and so no curve ifMs, g2) can be a geodesic
in (M, g). Letn be the null geodesic defined By = 0, y = 0}. The following is easy to
verify.

Lemma 4.1. Letc be a past inextendible causal curvg M, g). Then one of the following
holds:

(i) t = —1 alongc andc runs off of the ‘bottom’ ofM (that is the part of the boundary
defined byr = —1).

(i) + — 0 alongc andc is asymptotic to the closed null curve Neithern nor any
curve asymptotic to it are geodesics. a

Harder to show is:

Lemma 4.2. Let ¢ be a past inextendible curve starting at the pa@ist yo, 7o) which is
asymptotic to the null curvg. Then there is a finite upper bound on the lengthe ainly
depending ony.

Proof. Analogous to what was done in the previous example, there is a parametrization of
¢ of the forme(t) = (x(¢), y(¢), t) with t € (0, tp]. As c is causalg(c'(¢), ¢’(¢)) < 0 which
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implies
0> g(c(t), (1) = y* + €2 (x + (ItI* + f(1))x?)
1 2 e
:’2+e2y(—+\/ 2 4 ')——
' 2iE o) TV IO ) S g o)
&
41112 + f(y))
and thus
2@, O € ——o
21t + f(y)
If y <3then,

e - e  é - 12

2/t + f(y) 2/ 2l T e

If y>3thené <ve’—1=.f(y) and so
, .

e €
< < 5
2/t + f(y)  2VF) 2
Putting these together we have,

|g@%n,da»|<rnax<33 5),

|t]e” 2

=

which implies

L(c) :/0,/|g(c/(t),c’(t))|dt < /omax<%, %)dt,
0 0

which is finite as% < a < 1. This gives the required bound and completes the proof of the
lemma. O

Therefore in the spacetim@/, g) all past inextendible curves either haver — —1
along ¢ (in which caser — 0 alongc) or ¢ is asymptotic to the null curve (in which
caset does not go to zero). As no geodesics are asymptotig tinis gives an example
of a spacetime where — 0 along all past inextendible causal geodesics, but which is not
regular. It would be interesting to know whether there is a smooth example where this
happens.
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Note added in proof

Previously Wald and Yip introduced the cosmological time function (or rather its time dual, which they
referred to as the ‘maximum lifetime function’) in order to study the existence of synchronous coordinates in a
neighbourhood of a spacelike singularity, see 198Math. Phys.22 2659-65. We are grateful to R Wald for
bringing this article to our attention.
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