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The cosmological time function
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Abstract. Let (M, g) be a time-oriented Lorentzian manifold andd the Lorentzian distance on
M. The functionτ(q) := supp<q d(p, q) is the cosmological time function ofM, where as usual
p < q means thatp is in the causal past ofq. This function is called regular iffτ(q) <∞ for all
q and alsoτ → 0 along every past inextendible causal curve. If the cosmological time function
τ of a spacetime(M, g) is regular it has several pleasant consequences: (i) it forces(M, g) to
be globally hyperbolic; (ii) every point of(M, g) can be connected to the initial singularity by
a rest curve (i.e. a timelike geodesic ray that maximizes the distance to the singularity); (iii)
the functionτ is a time function in the usual sense; in particular, (iv)τ is continuous, in fact,
locally Lipschitz and the second derivatives ofτ exist almost everywhere.

PACS numbers: 0420C, 0420G, 9880H

1. Introduction

Time functions play an important role in general relativity. They arise naturally in the
global causal theory of spacetime and they permit a decomposition of spacetime into space
and time which is useful, for example, in the study of the solution of the Einstein equation.
The choice of a time function, however, can be rather arbitrary and a given time function
may have little physical significance. Very few situations have been identified which lead
to a canonically defined time function. In this paper we introduce and study what may be
viewed in the cosmological setting as a canonical time function.

Let (M, g) be a spacetime (i.e. a time-oriented Lorentzian manifold) and letd:M ×
M → [0,∞] be the Lorentzian distance function. Define the cosmological time function
τ :M → (0,∞] by

τ(q) := sup
p<q

d(p, q). (1.1)

If c is a causal curve inM denote byL(c) the Lorentzian length ofc and forq ∈ M, let
C−(q) be the set of all past-directed causal curvesc in M that start atq. Then we have the
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alternative definition

τ(q) := sup{L(c): c ∈ C−(q)}.
The numberτ(q) can be thought of as the length of time that pointq has been in existence.

In general the functionτ need not be at all nice; for example, in the case of flat
Minkowski spaceτ ≡ ∞. We will give examples below where(M, g) is globally
hyperbolic,τ(q) <∞ for all q but τ is discontinuous.

Definition 1.1. The cosmological time functionτ of (M, g) is regular if and only if
(i) (M, g) has finite existence times, i.e.τ(q) <∞ for all q ∈ M.
(ii) τ → 0 along every past inextendible causal curve.

The first of these conditions is an assertion that the spacetime has an initial singularity
in the strong sense that for each point of the spacetime any particle that passes throughq

has been in existence for at most a timeτ(q). The second condition is a weak completeness
assumption. It asserts that if we believe that the conditionτ = 0 defines the initial singularity
and that worldlines of particles are inextendible, then every particle came into existence at
the initial singularity.

Our main result is that if the cosmological time function is regular then the spacetime
is quite well behaved.

Theorem 1.2. Suppose(M, g) is a spacetime such that the functionτ :M → (0,∞) defined
by (1.1) is regular. Then the following properties hold.

(i) (M, g) is globally hyperbolic.
(ii) τ is a time function in the usual sense, i.e.τ is continuous and is strictly increasing

along future-directed causal curves.
(iii) For each q ∈ M there is a future-directed timelike rayγq : (0, τ (q)] → M that

realizes the distance from the ‘initial singularity’ toq, that is,γq is a future-directed timelike
unit speed geodesic, which is maximal on each segment, such that

γq(τ (q)) = q, τ (γq(t)) = t, for t ∈ (0, τ (q)]. (1.2)

(iv) The tangent vectors{γ ′q(τ (q)): q ∈ M} are locally bounded away from the light
cones. More precisely, ifK ⊆ M is compact then{γ ′q(τ (q)): q ∈ K} is a bounded subset
of the tangent bundleT (M).

(v) τ has the following additional regularity property: it is locally Lipschitz and its first
and second derivatives exist almost everywhere.

Conditions similar to property (iv) have played an important role in the analysis of
the regularity of Lorentzian Busemann functions and their level sets (cf [1, 8]). Here
property (iv) will be used to establish property (v).

For regularity properties of the level sets{τ = a} see section 3 (as well as the corollary
at the end of section 2). The various conclusions of the theorem will be proven as separate
propositions in the following sections.

1.1. Terminology and notation

We use the standard terminology and notation from Lorentzian geometry, following for
example [4, 9], in particular, if(M, g) is a spacetime thenp � q (respectively,p < q)
means there is a future-directed timelike (respectively causal) curve fromp to q. If S ⊂ M
thenI+(S) is the chronological future ofS andJ+(S) is the causal future ofS. Likewise
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I−(S) and J−(S) are the chronological past and causal past ofS. If p < q, then the
Lorentzian distanced(p, q) is the supremum of the lengths of all the future-directed causal
curves fromp to q and if p 6< q thend(p, q) = 0. A fact that will be used repeatedly is
that if x < p < q then the reverse triangle inequality

d(x, q) > d(x, p)+ d(p, q)
holds.

2. Proofs of the basic properties of the cosmological time function

2.1. Continuity of the cosmological time function

Proposition 2.1. If the cosmological time functionτ of (M, g) is regular then it is
continuous and satisfies the reverse Lipschitz inequality

p < q implies τ(p)+ d(p, q) 6 τ(q). (2.1)

Proof. To prove the reverse Lipschitz inequality assumep < q and let x < p. Then
x < q and so by the reverse triangle inequality (i.e.d(x, p)+ d(p, q) 6 d(x, q)),
τ(p)+ d(p, q) = sup

x<p

(d(x, p)+ d(p, q)) 6 sup
x<p

d(x, q) 6 sup
x<q

d(x, q) = τ(q).

We now establish the continuity ofτ . For anyp ∈ M the functionq 7→ d(p, q) is
lower semicontinuous onM. (That is lim infx→q d(p, x) > d(p, q).) For example, cf [9],
p 215. Thenτ(q) = supp<q d(p, q) is a supremum of lower semicontinuous functions and
therefore also lower semicontinuous. Thus to prove continuity ofτ it is enough to show it
is upper semicontinuous, that is lim supx→q τ (x) 6 τ(q).

Assume, toward a contradiction, thatτ is not upper semicontinuous atq ∈ M. Then
there isε > 0 and a sequencex`→ q such that for each̀

τ(x`) > τ(q)+ ε.
For each̀ we can choosep` with

d(p`, x`) > τ(x`)− 1

`
.

Moreover, by the regularity ofτ , we can choose the sequence{p`} so thatτ(p`) → 0
as ` → 0. (To see this make any choice ofp̂` with d(p̂`, x`) > τ(x`) − 1/`. Then
choose a past-directed inextendible curveσ starting atp̂`. By the definition of regular there
is a pointp` on σ with τ(p`) < 1/`. Then d(p`, x`) > d(p̂`, x`) > τ(x`) − 1/` and
lim`→∞ τ(p`) = 0.) The conditionτ(p`) → 0 and the lower semicontinuity ofτ implies
that {p`} diverges to infinity, that is it has no convergent subsequences.

We now put a complete Riemannian metrich onM and assume that all causal curves
(except possibly those arising as limit curves) are parametrized with respect to arc length
in the metrich. Sinced(p`, x`) <∞ there is a past-directed causal curvec`: [0, a`] → M

(parametrized with respect to arc length inh) from x` to p` such that

L(c`) > d(p`, x`)− 1

`
> τ(x`)− 2

`
> τ(q)+ ε − 2

`
(2.2)

whereL(·) is the Lorentzian arc length functional. Since{p`} diverges,a`→∞. Hence, by
passing to a subsequence if necessary, we have that{c`} converges uniformly on compact
sets to a past inextendible timelike or null ray (maximal half geodesic)c: [0,∞) → M
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(cf [7], sections 2 and 3). Moreover, by the upper semicontinuity of the Lorentzian arclength
functional (strong causality is not required, again cf [7]), for eachb > 0

L(c|[0,b]) > lim sup
`→∞

L(c`|[0,b]). (2.3)

Claim 1. The curvec: [0,∞)→ M is null.

If not thenc is a timelike ray. Chooset > 0 andδ > 0 so that

L(c|[0,t ])+ δ 6 1
2ε.

By (2.3) there is anN such that for all̀ > N ,

L(c`|[0,t ]) 6 L(c|[0,t ])+ δ 6 1
2ε.

Hence, by (2.2) and the above,

L(c`|[t,a`]) = L(c`)− L(c`|[0,t ]) > τ(q)+
ε

2
− 2

`
.

Thus wheǹ is sufficiently large,

L(c`|[t,a`]) > τ(q).

On the other hand, sincec is timelike, we have thatc`(t) ∈ I−(q) for all ` sufficiently
large. It follows thatτ(q) > L(c`|[t,a`]) > τ(q). This contradiction establishes the claim.

Claim 2. τ(p) > τ(q) for all p ∈ I+(c).
Choosey on c such thaty ∈ I−(p).
We havey = c(b) for someb > 0. Sincec is null (2.3) implies,

L(c`|[0,b])→ 0.

Let y` := c`(b). Then,

τ(y`) > L(c`|[b,a`]) = L(c`)− L(c`|[0,b])

> τ(q)+ ε − 2

`
− L(c`|[0,b]) > τ(q),

for all sufficiently large`. Moreover, by taking` even larger if necessary, we have
y` ∈ I−(p), and henceτ(p) > τ(y`) > τ(q), as claimed.

A past inextendible timelike curvẽc asymptotic toc and contained inI+(c) may be
constructed as follows.

(i) First choosey` = c(b`), b`→∞ so that lim̀→∞ y` does not exist.
(ii) Then choose{z`} ⊂ M so that: (a)z`+1 ∈ I−(z`); (b) z` ∈ I+(y`); (c) lim`→∞ z`

does not exist.
Let c̃ be a past-directed timelike curve which threads throughz1� z2� z3� · · ·.
As lim`→∞ z` does not exist, the curvẽc is past inextendible. Since by construction

c̃ ⊂ I+(c), claim 2 impliesτ > τ(q) along c̃, which contradicts the regularity condition.
This completes the proof. �

2.2. Global hyperbolicity of(M, g)

Proposition 2.2. Let (M, g) be a spacetime so that the cosmological time functionτ is
regular. Then(M, g) is globally hyperbolic.
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Proof. We have shown in proposition 2.1 thatτ is continuous. Therefore, ifSt :=
{q ∈ M: τ(q) = t} then by elementary topological and causal considerations,St is closed,
achronal and edgeless. (ThatSt is achronal follows from the reverse Lipschitz inequality.
That St is closed and edgeless follows from the continuity ofτ .)

Recall that the future domain of dependenceD+(St ) of St is the set of all points
q ∈ M such that every past inextendible causal curve fromq intersectsSt . The past
domain of dependenceD−(St ) is defined time-dually. The domain of dependence ofSt is
D(St ) = D+(St )∪D−(St ). From the definition of regularity and the continuity ofτ we see
thatD+(St ) = {q: τ(q) > t}. It follows that each point ofM is contained in intD+(St ) for
somet . Since strong causality holds at each point of intD+(St ) (cf [10], proposition 5.22,
p 48), (M, g) is strongly causal.

Now letp, q ∈ M with p < q. Then chooset > 0 with t < τ(p). ThenJ−(q)∩J+(p)
is a subset of the open set{x: τ(x) > t} ⊂ D(St ) and thusJ−(q) ∩ J+(p) is contained
in the interior ofD(St ). This implies (cf [10], proposition 5.23, p 48)J−(q) ∩ J+(p) is
compact. As(M, g) is strongly causal andp andq were arbitrary points ofM with p < q,
this verifies the definition of globally hyperbolic. �

2.3. Existence of maximizing rays to the initial singularity

Proposition 2.3. Let (M, g) be a spacetime with regular cosmological time functionτ .
Then for eachq ∈ M there is a future-directed timelike rayγq : (0, τ (q)] → M that
realizes the distance from the ‘initial singularity’ toq; that is, γq is a future-directed
timelike unit speed geodesic that realizes the distance between any two of its points (for
0< s < t 6 τ(q), d(γq(s), γq(t)) = t − s) and satisfies,

γq(τ (q)) = q, τ (γq(t)) = t, for t ∈ (0, τ (q)]. (2.4)

Proof. For the purpose of the proof we will parametrize curves with respect to a complete
Riemannian metrich onM as in the proof of proposition 2.1. Fixq ∈ M. As in the proof
of proposition 2.1, one can construct a sequence{y`} ⊂ I−(q) that diverges to infinity and
such that

d(y`, q) > τ(q)− 1

`
and τ(y`) <

1

`
.

By proposition 2.2,(M, g) is globally hyperbolic so there is a past-directed maximal
geodesic segmentγ`: [0, a`] → M from q = γ`(0) to y` = γ`(a`). Since {y`} diverges
to infinity and the curves are parametrized with respect toh arc length we havea` →∞.
Hence, by passing to a subsequence if necessary, the sequence{γ`} converges to a past
inextendible timelike or null rayγ : [0,∞) → M based atq = γ (0). Hence for all
b ∈ (0,∞),

L(γ |[0,b]) = d(γ (b), q). (2.5)

Claim. γ is timelike and for eachb ∈ (0,∞),
d(γ (b), q) = τ(q)− τ(γ (b)). (2.6)

Hence by suitably reparametrizingγ we obtain a timelike rayγq that satisfies (2.4).

To see that the claim holds first note by the reverse Lipschitz inequality,

d(γ (b), q) 6 τ(q)− τ(γ (b)). (2.7)
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By the maximality of the segmentsγ`,

d(γ`(b), q) = d(y`, q)− d(y`, γ`(b)) >
(
τ(q)− 1

`

)
− τ(γ`(b)).

Letting ` → ∞ we obtain d(γ (b), q) > τ(q) − τ(γ (b)) which, together with (2.7),
establishes (2.6). Moreover, sinceτ(γ (b)) → 0 as b → ∞, by taking b large enough
in (2.6) we see thatd(γ (b), q) > 0 and thusγ must be timelike. This completes the proof
of the claim and the proposition. �

Proposition 2.4. Assume the cosmological time functionτ of M is regular and thatK ⊂ M
is compact. For eachq ∈ K let γq : (0, τ (q)] → M be a maximizing ray from the initial
singularity toq in the sense that (2.4) holds. Then{γ ′q(τ (q)): q ∈ K} ⊂ T (M) is bounded
in T (M) (or, which is the same thing,{γ ′q(τ (q)): q ∈ K} has compact closure inT (M)).

Proof. The proof is similar to the last proposition and again we parametrize curves with
respect to a complete Riemannian metric onM. If {γ ′q(τ (q)): q ∈ K} is not bounded then
there exist past inextendible timelike raysγ`: [0,∞)→ M, parametrized with respect toh
arc length, which satisfy

d(γ`(b), γ`(0)) = τ(γ`(0))− τ(γ`(b)) (2.8)

for all b ∈ (0,∞), such thatγ`(0) → q ∈ K and theh-unit vectorsγ ′`(0) converge to an
h-unit vectorX which is null in the Lorentzian metric. Letγ : [0,∞) → M be the past
inextendible null geodesic parametrized with respect toh arc length, satisfyingγ (0) = q
and γ ′(0) = X. Then γ is necessarily a null ray (otherwise the maximality of theγ`’s
would be violated). By (2.8) we have

d(γ (b), γ (0)) = lim
`→∞

d(γ`(b), γ`(0))

= lim
`→∞

(τ (γ`(0))− τ(γ`(b))) = τ(γ (0))− τ(γ (b)) > 0

for sufficiently largeb. But this contradicts thatγ is a null ray. �

2.4. τ is strictly monotonic on causal curves

Proposition 2.5. If the cosmological time functionτ is regular then it is a time function in
the usual sense, that is, it is continuous and strictly increasing along future-directed causal
curves.

Proof. We have already shown thatτ is continuous. Letσ : (a, b) → M be a future-
directed causal curve andt1, t2 ∈ (a, b) with t1 < t2. Setp := σ(t1) and q := σ(t2). If
d(p, q) > 0 thenτ(q) > τ(p)+ d(p, q) > τ(p) by the reverse Lipschitz inequality forτ .
Thus assumed(p, q) = 0. Then there is a null geodesic rayη from p to q. Let γp be the
timelike ray top guaranteed by proposition 2.3. Choose a pointx on γp to the past ofp.
Then by a ‘cutting the corner’ argument nearp strict inequality holds in the reverse triangle
inequality. This strict inequality andd(p, q) = 0 imply

d(x, q) > d(x, p)+ d(p, q) = d(x, p).
Hence,

τ(q)− τ(p) > d(x, q) > d(x, p) = τ(p)− τ(x)
which impliesτ(p) > τ(q), as desired. �
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Recall that for a closed subsetS ⊂ M, the future Cauchy horizonH+(S) is by definition
a future boundary of the domain of dependenceD+(S),

H+(S) = D+(S)− I−(D+(S)).
H−(S) is defined analogously. IfS ⊂ M is edgeless and acausal, thenS is called a partial
Cauchy surface and if in additionH+(S) = ∅ thenS is called a future Cauchy surface (see
[9], ch 6 for details). We can now state the following corollary.

Corollary 2.6. If the cosmological time functionτ is regular then the level setsSa :=
{q: τ(q) = a} (if nonempty) are future Cauchy surfaces.

Proof. As observed in proposition 2.2,Sa is edgeless. The acausality ofSa follows
immediately from proposition 2.5. SupposeH+(Sa) 6= ∅. Let η be a past inextendible null
geodesic generator ofH+(Sa) with future end pointq ∈ H+(Sa) (cf [9], proposition 6.5.3,
p 203). Sinceq ∈ I+(Sa), τ (q) > a. But then, sinceτ → 0 alongη andτ is continuous,
there is a pointp on η such thatτ(p) = a, i.e. η meetsSa, which cannot happen. �

Simple examples show that the level setsSa need not be Cauchy, i.e.H−(Sa) need not
be empty.

3. Other regularity properties of τ and its level sets

A continuous functionu defined on an open subsetU of Rn is semiconvex if and only if
for each pointx ∈ U there is a smooth functionf defined nearx so thatu+ f is convex
in a neighbourhood ofx. Using lemma 3.2 below it is not hard to check that the class
of semiconvex functions is closed under diffeomorphisms between open subsets ofRn and
therefore the definition of semiconvex extends to smooth manifolds (cf [3]). By a well
known theorem of Aleksandrov a convex function has first and second derivatives almost
everywhere and thus a semiconvex function has the same property. (For a beautiful recent
proof see [5] theorem A.2, p 56).

Proposition 3.1. If the cosmological time functionτ is regular on(M, g) then it is
semiconvex and thus its first and second derivatives exist at almost all points ofM.

If f is a smooth function on an open subset ofRn then denote byD2f the matrix
of second partial derivatives off . Let I be then × n identity matrix. For a constantc
let D2f (x) 6 cI mean thatcI − D2f (x) is positive semidefinite. Also recall that ifu is
continuous then a smooth functionϕ is a lower support function foru at x0 iff both u and
ϕ are defined in a neighbourhood ofx0, u(x0) = ϕ(x0) andϕ 6 u nearx0. The proof of
the proposition is based on the following lemma.

Lemma 3.2. Let U ⊂ Rn be convex and letu:U → R be continuous. Assume for some
constantc and allq ∈ U thatu has a lower support functionφq at q so thatD2ϕq(x0) > cI .
Thenu− c‖x‖2/2 is convex inU and thereforeu is semiconvex.

Proof. While in some circles this is a well known folk theorem, the only explicit reference
we know is [1], section 2. �
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Proof of proposition 3.1. For any pointq ∈ M let γq : (0, τ (q)] → M be a geodesic ray
realizing the distance from the initial singularity toq as in proposition 2.3. Define a function
φq on I+(γq(τ (q)/2)) by

φq(x) := τ(q)/2+ d(γq(τ (q)/2), x).
By proposition 2.3,γq realizes the distance between any two of its points and thus
d(γq(t), q) = τ(q)− t for t ∈ (0, τ (q)]. Hence

φq(q) = τ(q)/2+ d(γq(τ (q)/2), q) = τ(q).
By the reverse Lipschitz inequality forτ , if x ∈ I+(γq(τ (q)/2))

τ (x)− τ(γq(τ (q)/2)) > d(γq(τ (q))/2, x),
which impliesτ(x) > φq(q) and thusφq is a lower support function forτ at q.

Also asγq maximizes the distance between its points the segmentγq |[τ(q)/2,τ (q)] will be
free of cut points. Thus the mapx 7→ d(γq(τ (q)/2), x) is smooth in a neighbourhood of
q. This impliesφq is smooth nearq. By standard comparison theorems (see e.g. [2, 6]) it
is possible to give upper and lower bounds for the Hessian (defined in terms of the metric
connection of(M, g)) of x 7→ d(γq(τ (q)/2), x) just in terms of upper and lower bounds of
the timelike sectional curvatures of two planes containingγ ′q(t) for t ∈ [τ(q)/2, τ (q)] and
the lengthτ(q)/2 of γq |[τ(q)/2,τ (q)] . The same Hessian bound will hold forφp.

Now letK ⊂ M be compact. Then by proposition 2.4 the vectorsγ ′q(τ (q)) for q ∈ K
are all contained in some compact setK̂ of the tangent bundle ofM. Therefore there
is a compact setK1 ⊂ M that will contain all the segmentsγq |[τ(q)/2,τ (q)] with q ∈ K
and a compact set̂K1 ⊂ T (M) that will contain all the tangent vectors to these segments.
Therefore there are uniform upper and lower bounds for both the sectional curvatures of
two planes containing a tangent vector to all of the segmentsγq |[τ(q)/2,τ (q)] and also the
lengthsτ(q)/2 of these segments. It follows that there are uniform two-sided bounds on
the Hessians for the support functionsφq for q ∈ K. Therefore given any pointq0 and a
compact coordinate neighbourhoodK of q0, by writing out the two-sided Hessian bounds in
terms of the coordinates we find that the lower support functionsφq, q ∈ K, to τ will also
satisfy two-sided bounds on the HessianD2φq(q) with respect to the coordinates. Therefore
lemma 3.2 impliesτ is semiconvex nearq. As q was any point ofM this completes the
proof. �

We now consider further the regularity of the level setsSa := {q: τ(q) = a} of the
cosmological time function. To do this it is convenient to work in some special coordinate
systems. Letq be any point ofM and letN0 be a smooth spacelike hypersurface passing
throughq. Let

(
x1, . . . , xn−1

)
be local coordinates onN0 centred atq and letxn be the

signed Lorentzian distance (withxn positive to the future ofN0 and negative to the past).
Then nearq,

(
x1, . . . , xn

)
is a local coordinate system so that the form of the metric in this

coordinate system is

g =
n∑

A,B=1

gAB dxA dxB =
n−1∑
i,j=1

gij dxi dxj − (dxn)2
.

Call such a coordinate system an adapted coordinate system centred atq. Then for any
spacelike hypersurfaceN of M throughq we have that locallyN can be parametrized as
the graph of a functionf ; that is,

Ff
(
x1, . . . , xn−1

) = (x1, . . . , xn−1, f
(
x1, . . . , xn−1

))
. (3.1)
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Proposition 3.3. Let the cosmological time functionτ of (M, g) be regular and for
a ∈ (0,∞) let Sa = {x: τ(x) = a} be a nonempty level set ofτ . Then for anyq ∈ Sa and
every adapted coordinate systemx1, . . . , xn centred atq there is a local parametrization of
Sa of the form (3.1) for a unique functionf defined on a neighbourhood of the origin in
Rn−1. This functionf is semiconcave (that is−f is semiconvex) and therefore it is locally
Lipschitz and its first and second derivatives exist almost everywhere.

Proof. The existence and uniqueness of the functionf is elementary, and follows from
the fact thatSa is an acausal hypersurface. We are now going to construct upper support
functions forSa at each of its points. For anyp ∈ Sa let γp: (0, τ (p)] → M be a ray that
realizes the distance to the initial singularity ofM in the sense of proposition 2.3. Then
define

6p := {x ∈ I+(γp(a/2)): d(γp(a/2), x) = a/2}.
That is,6p is the future Lorentzian distance sphere of radiusa/2 about the pointγp(a/2).
Using the fact thatγp realizes the distance between any two of its points and that
γp(τ (a)) = p we seed(γp(a/2), p) = d(γp(a/2), γp(a)) = a/2 so thatp is in 6p.
Also using the reverse Lipschitz inequality forτ , if x ∈ 6p then

τ(x) > τ(γp(a/2))+ d(γp(a/2), x) = 1
2a + 1

2a = a.
Thus every point of6p is in the causal future ofSa. As γp is maximizing, the segment
γp|[a/2,a] will be free of conjugate points and therefore the6p is a smooth hypersurface in
a neighbourhood ofp. Now letK ⊂ Sa be a compact set. Then by proposition 2.3 the set
{γ ′p(a):p ∈ K} has compact closure inT (M). Therefore an argument like that used in the
proof of proposition 3.1 (based on elementary comparison theory) implies that ifh

6p
p is the

second fundamental form of6p at the pointp thenh
6p
p satisfies a uniform two-sided bound

for p ∈ K (or, which is the same thing, the absolute values of the principal curvatures of
6p at the pointp are uniformly bounded forp ∈ K).

For p ∈ Sa sufficiently close toq we can parametrize6p by a functionFfp with Ffp
defined as in (3.1). As the hypersurfaces6p are in the causal future ofSa the functions
fp satisfy fp > f nearp and thus they are upper support functions forf nearp. The
bound on the second fundamental forms of the6p ’s can be translated into a bound on the
HessiansD2fp (for the details of this calculation see [1]). Therefore lemma 3.2 implies
−f is semiconvex. This completes the proof. �

4. Examples

4.1. A globally hyperbolic spacetime withτ finite valued but discontinuous

Let ϕ:R → [0,∞) be a smooth function with support in the interval
[

1
4,

1
2

]
and with∫∞

−∞ ϕ(t) dt = ∫ 1/2
1/4 ϕ(t) dt = 2. Define a function8 on the upper half-planeM :=

{(x, y): y > 0} by

8(x, y) =

 1+ 1

x
ϕ

(
y

x

)
, x > 0

1, x 6 0.

Let g be the Lorentzian metric onM given by

g := dx2−8(x, y)2 dy2.
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Then this metric is smooth onM and using
∫ 1/2

1/4 ϕ(t) dt = 2 it is not hard to check
that for any a > 0 the length of the timelike curveca: [a/4, a/2] → M given by
ca(t) := (a, t) has Lorentzian lengthL(ca) =

∫ a/2
a/4 8(a, t)dt = 2+ a/4 (see figure 1).

Let g0 = dx2 − dy2 be the standard flat Lorentzian metric onM and letW be the open
wedgeW := {(x, y): x > 0, y > 0, x/4 < y < x/2}. Then g = g0 outside ofW . If
F := I+(W) \W = {(x, y): y > 0,−y < x 6 y/2} then, using that the segmentsca all
have Lorentzian length greater than 2, we see that

τ(x, y) > 2 for all (x, y) ∈ F.
But for (x, y) /∈ I+(W) the existence time of(x, y) is the distance of(x, y) from thex-axis
in the usual metricg0, that is

τ(x, y) = y for all (x, y) ∈ M \ I+(W).
This implies thatτ is discontinuous at each point of the segment{(x, y): −2< x < 0, y =
−x}. But the spacetime(M, g) is globally hyperbolic and has finite existence times.

Figure 1. A globally hyperbolic spacetime withτ finite valued but discontinuous.

4.2. Non-strongly causal spacetimes withτ finite valued

Consider the well known example of a spacetime which is causal but not strongly causal
(cf [9], p 193, figure 38). In this example, which is a cylinder with slits, it is easily verified
that τ is finite valued.

If we are willing to drop the requirement that the metric of(M, g) is smooth, but only
of classC1 then there is an example of a Lorentzian metric on a cylinder that hasτ finite
valued, but which has a closed causal curve (which turns out to be a null geodesic). This
example, which we now describe, is used in the next subsection to construct a spacetime
with a nonregularτ such thatτ → 0 along all past inextendible timelike geodesics.

Let the circleS1 (which we think of asR modulo 2π ) have coordinatex and for any
α > 1

2 define a metric on the spaceM := S1× R by

g := dx dt + |t |2αdx2 = dx
(
dt + |t |2α dx

)
.

At each point the null directions are defined by dx = 0 and dt+|t |2α dx = 0. If the direction
of ∂/∂t is used as the direction of increasing time then the only closed causal curve is the
curve{t = 0}.

A past inextendible causal curve will either diverge along the cylinder tot = −∞ or
be asymptotic to the the null geodesic{t = 0}; see figure 2. We now show that any past
inextendible causal curve asymptotic to{t = 0} starting at(x0, t0) has length bounded just
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Figure 2. A non-causal spacetime withτ finite valued.

in terms of (x0, t0). In doing this it is convenient to work on the universal cover of the
cylinder, that isR2. And in doing the preliminary part of the calculation it is no harder
to work with a slightly more general class of metrics. Letf (x) be any smooth positive
function defined on the real line (in our examplef (x) ≡ 1) and letϕ(t) be aC1 function
so thatt = 0 is the only zero ofϕ (in our exampleϕ(t) = |t |α) again defined on the real
line. As t = 0 is the only zero ofϕ it does not change sign on(0,∞) and we assume that
ϕ(t) > 0 on (0,∞). Define a Lorentzian metric onR2 by

g0 = dx dt + ϕ(t)2f (x)2 dx2 = dx
(
dt + ϕ(t)2f (x)2 dx

)
and use the time orientation so that∂/∂t points to the future. At each point the null
directions are defined by dx = 0 and dt + ϕ(t)2f (x)2 dx = 0. From this it follows that
{t = 0} is a null geodesic and that every past inextendible causal curvec either is divergent
with t → −∞ alongc or c remains in the closed upper half-plane defined byt > 0 andc
is asymptotic to the null geodesic{t = 0} in such a way thatx is increasing monotonically
alongc.

Now let c be a past inextendible causal curve starting at the point(x0, t0) and so that
c is asymptotic to the null geodesic{t = 0}. Then c has a parametrization of the form
c(t) = (x(t), t) defined on(0, t0]. As this curve is causal we have (using the notation
ẋ = dx/dt),

0> g0(c
′(t), c′(t)) = ẋ + ϕ(t)2f (x)2ẋ2

=
(
ẋϕ(t)f (x)+ 1

2ϕ(t)f (x)

)2

− 1

4ϕ(t)2f (x)2

> −1

4ϕ(t)2f (x)2
,

and thus ∣∣ẋ + ϕ(t)2f (x)2ẋ2
∣∣ 6 1

4ϕ(t)2f (x)2
. (4.1)

As c is asymptotic to{t = 0} it follows that t > 0 and thus alsoϕ(t) > 0 alongc. Thus
the Lorentzian length ofc satisfies

L(c) =
∫ t0

0

√
ẋ + ϕ(t)2f (x)2ẋ2 dt 6

∫ t0

0

dt

2ϕ(t)f (x(t))
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where the inequality follows from using the bound in (4.1). Now lettingϕ(t) = |t |α with
1
2 < α < 1 andf (x) ≡ 1 then this leads to the boundL(c) 6 t1−α0 /(2(1− α)) as required.

Now if we let M := {(x, t) ∈ S1 × R: t > −1} then the bound on the length of
curves asymptotic to{t = 0} just given implies that if12 < α < 1 andM has the metric
g = dx dt + |t |2α dx2 then (M, g) hasτ finite valued, butτ does not go to zero along the
inextendible causal curves asymptotic to{t = 0}. It is worth noting that in this exampleτ
is continuous.

We know of no example whereτ is finite, there are closed causal curves, and the metric
is smooth.

4.3. A non-regularτ going to zero along all past inextendible causal geodesics

The definition ofτ being regular requires thatτ go to zero along all past inextendible causal
curves. It is natural to ask whether this can be weakened to only requiring thatτ go to zero
along all past inextendible causal geodesics. Here we give an example to show that this is
not the case. Like the example just given the metric in this example is of classC1 but not
C2.

First let (M2, g2) =
(
S1× (−1,∞), dx dt + |t |2α dx2

)
be the two-dimensional example

just given (so that12 < α < 1) and set

f (y) = ey
2 − 1.

Note thatf (0) = 0 andf (y) > 0 for y 6= 0. LetM := {(x, y, t) ∈ S1 × R × R: t > −1}
with the metric

g := dy2+ e2y
(
dx dt + (|t |2α + f (y)) dx2

)
.

Then the two-dimensional submanifold defined byy = 0 is isometric to(M2, g2). Moreover
this submanifold is totally umbilic in(M, g) and so no curve in(M2, g2) can be a geodesic
in (M, g). Let η be the null geodesic defined by{t = 0, y = 0}. The following is easy to
verify.

Lemma 4.1. Let c be a past inextendible causal curve in(M, g). Then one of the following
holds:

(i) t →−1 alongc andc runs off of the ‘bottom’ ofM (that is the part of the boundary
defined byt = −1).

(ii) t → 0 alongc and c is asymptotic to the closed null curveη. Neitherη nor any
curve asymptotic to it are geodesics. �

Harder to show is:

Lemma 4.2. Let c be a past inextendible curve starting at the point(x0, y0, t0) which is
asymptotic to the null curveη. Then there is a finite upper bound on the length ofc only
depending ont0.

Proof. Analogous to what was done in the previous example, there is a parametrization of
c of the formc(t) = (x(t), y(t), t) with t ∈ (0, t0]. As c is causalg(c′(t), c′(t)) 6 0 which
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implies

0> g(c′(t), c′(t)) = ẏ2+ e2y
(
ẋ + (|t |2α + f (y))ẋ2

)
= ẏ2+ e2y

(
1

2
√
|t |2α + f (y)

+
√
|t |2α + f (y) ẋ

)2

− e2y

4
(|t |2α + f (y))

> − e2y

4
(|t |2α + f (y))

and thus √
|g(c′(t), c′(t))| 6 ey

2
√
|t |2α + f (y)

.

If y 6 3 then,

ey

2
√
|t |2α + f (y)

6 e3

2
√
|t |2α
= e3

2|t |α 6
12

|t |α .

If y > 3 then ey 6
√

ey2 − 1= √f (y) and so

ey

2
√
|t |2α + f (y)

6 ey

2
√
f (y)

6 1

2
.

Putting these together we have,√
|g(c′(t), c′(t))| 6 max

(
12

|t |α ,
1

2

)
,

which implies

L(c) =
∫ t0

0

√
|g(c′(t), c′(t))| dt 6

∫ t0

0
max

(
12

|t |α ,
1

2

)
dt,

which is finite as1
2 < α < 1. This gives the required bound and completes the proof of the

lemma. �
Therefore in the spacetime(M, g) all past inextendible curvesc either havet → −1

along c (in which caseτ → 0 alongc) or c is asymptotic to the null curveη (in which
caseτ does not go to zero). As no geodesics are asymptotic toη this gives an example
of a spacetime whereτ → 0 along all past inextendible causal geodesics, but which is not
regular. It would be interesting to know whether there is a smooth example where this
happens.
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Note added in proof.
Previously Wald and Yip introduced the cosmological time function (or rather its time dual, which they

referred to as the ‘maximum lifetime function’) in order to study the existence of synchronous coordinates in a
neighbourhood of a spacelike singularity, see 1981J. Math. Phys.22 2659–65. We are grateful to R Wald for
bringing this article to our attention.
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