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Stuffed black holes
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Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case.
The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics.
The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The
interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The
resulting matched solutions cover then the whole init@huchy hypersurface, without any singularity, and
can be useful for numerical applications. The simpler cases of one black $alievarzschild dajaor two
identical black holegMisner data are explicitly solved. A procedure for extending this construction to the
multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions
obtained by the conformal imaging method. The numerical evolution of one such “stuffed” black hole is
compared with that of a pure vacuum or “plain” black hole in the spherically symmetric case.
[S0556-282(198)02706-4

PACS numbsd(s): 04.70.Bw, 04.20.Cv

[. INTRODUCTION AND OVERVIEW exterior metric of the “plain” black hole case, obtained by
atpe conformal imaging formalism. But we will match this
exterior metric to a regular conformally flat interior corre-

relativity. Allowing for the well-known “no hair” theorems, . o . . .
: : - . sponding to a positive energy density. The exterior solution
they can be characterized by their mass, charge and spin, liK . S
IS not affected because the matching surfaces coincide in

elementary particles in classical or guantum mechanics. This . - o
. . .every case with the initial position, of the black hole ap-
is because event horizons act as a one way membrane which

L o . parent horizon. This is done for a single non-rotating black
separates the black hole interior from the exterior: There i : . o 2
. ole (Schwarzschild metricin Sec. Il. The interior metric in
no causal effect that can propagate from the inner to the . . : . .
. is case is the spatial part of a positive curvature Friedmann-
outer region. Therefore, one does not need to know all th ; .
. : . . . .Robertson-Walke(FRW) metric, so that the resulting con-
details about physical processes taking place at the interior in . ) L
X . . struction can be interpreted as initial data for the
order to describe the overall evolution of the black hole. This

also means that black hole metrics that differ only inside theOppenhelmer-Schnelder dust collagisec. 1l). In Sec. IV,

i . . We give in closed form the corresponding solution for two
holes can lead to the same exterior spacetime. The idea Oon-rotatin stuffed black holdhe analogous of the Misner
this paper is to replace the singular vacuum solution for a 9 9

black hole interior by a regular one corresponding to a non-data' We provide in SecV a step by step procedure to stuff

vanishing energy density, but keeping the same exterior mefime syr_nmetrl_c |n|t|al_ data conta|n|_ng any number of black
ric. The term “stuffed” black hole is a good description of N0les with arbitrary sizes and locations. _
the resulting solution. .Fmally, in the Appendix, we compare the numerical evo-
The “no hair” property has been very useful in numerical lution of a “plain” black hole with that of a “stuffed” black
relativity to avoid the interior black hole singularity appear- hole in the spherically symmetric case. This is a biased test,
ing in the initial data. The standard practice is to excise thdecause spherical coordinates are singular at the origin and
inner region from the computational domain, so that one caithis coordinate singularity affects only the stuffed hole, be-
safely evolve the exterigiusually vacuumregion. This has cause in that case there is no excised region and the compu-
been done for a single black hol8chwarzschild cageby  tational domain includes the origin. In spite of that, we have
setting an internal boundary on the computational domain atvolved stuffed holes with the same accuracy and stability as
the initial positionr, of the apparent horizon. The same plain holes. This opens the door to three-dimensional appli-
thing has been done for a system consisting of two noneations, where the “stuffing” approach avoids putting inter-
rotating black holes, starting the evolution from the Misnernal curvilinear boundaries that would need a special treat-
data[1,2], or even for an arbitrary number of them, by using ment. The advantage of the “stuffed” black holes versus the
the “conformal imaging formalism’[3] to construct confor-  “plain” ones will be manifest if the coordinate system con-
mally flat initial data. We shall refer to all these pure vacuumtains a shift vector which allows the holes to move across the
solutions as “plain” black hole metrics to distinguish them numerical grid: In the plain case one would need to treat a
from the “stuffed” ones we are presenting here. number of moving curvilinear boundaries, but in the stuffed
In this paper we propose to take advantage of the “nacase nothing special is to be done because there are no inter-
hair” property in a different way. We will keep the same nal boundaries in that case.

Black holes are the most elementary objects in gener
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Il. SINGLE HOLE INITIAL DATA 3.0f

The evolution formalisnhi4—6] is specially well suited for I
numerical relativity. In normal coordinates, the spacetime 2.0
metric can be written as i

o 2 2.0
dSZZ—odetz-l— ’yijdxldX]. (l)
To start the evolution one needs both the spatial meggic 1.5
on the initial hypersurface and its second fundamental form I
(extrinsic curvaturg 1.0L ‘
0 1 2 3
1 r
Kij= =55 % - 2

FIG. 1. Plot of the conformal factor describing initial data for a

These initial data, however, are constrained by the follow-Single stuffed black hole with mass=2 (apparent horizon at
ing equations: =1 in |S(_)trop!c coordinatgs The smoothness and regularity of the
solution is evident.
16mr=167a?T®=R + (K )2-KI K" (3 , _
which corresponds to the space part of the Schwarzschild
(energy constraifitand metric in isotropic coordinates. Allowing for Ed7), the
minimal surface(apparent horizoncondition (6) reads
- 0 ki . _9(Ki.
87S=8maT’ =K/ - g (K))) (4) o (1 ?)=0, a9
(momentum constraintwhere both the Ricci tensdt;; and ] o,
the covariant derivatives are the ones corresponding to th&hich holds forro=m/2. Note that the combination)“ is
three-dimensional geometry of the initial slice. These conPrecisely the “area radiusR of the spherical geometry, so
straint equations are first integrals of the Einstein equationghat the apparent horizoiminimal surfacgis placed at
They are verified at every time slice by the spatial part of any
spacetime metric. R(ro)=2m. (11)
One can learn a lot about the spacetime by just looking at
the geometry of the spatial hypersurfaces. Let us consider for Condition (10) can also be obtained by realizing that the
instance a closed two-surface in one such three- metric given by Eqs(7),(9) is invariant under the discrete
dimensional manifold. The expansighof a congruence of symmetry
outgoing light rays starting at is given by[7]
' - rerifr, (12)
6=n';+Kjn'nl =K/, (5)
_ which can be interpreted as a coordinate inversion=at,.
where the three-dimensional vector is the unit normal to  This inversion symmetry provides suitable boundary condi-
. In the “time symmetric” case K;; =0) the minimal sur-  tions when one excises the spherical regienr, from the

faces of the three-geometry computational domain. The resulting inner boundary condi-
. tion is very easy to implement numerically in spherical co-
n'.;=0 (6)  ordinates, but it is much more difficult to manage in the
three-dimensional cas@vhere one would get a curvilinear
are also apparent horizong< 0) and vice versa. boundary in Cartesian coordinatesven for a single black
In the case of non-rotating black holes, one usually startggle.
with time symmetric initial dataand therefore zero initial As an alternative to this inner boundary aproach, we will
momentum densitys) and conformally flat initial metrics, construct a “stuffed” black hole by replacing the initial data
namely (9) with
vij= 98 . (7) m
1+ — forr>m/2,
This simplifies the constraint equatiof], so that Eq.(3) 2r
can be written in terms of a flat space Laplace operAtor = 8 (13
m forr<m/2,
A= —2m7Y°. (8)

In the spherically symmetric case, the regular vacuum soso that in the exterior region one recovers the “plain” black
lution of Eg.(8) can be written as hole solution(9), whereas in the interior region one gets,
allowing for Eq.(7), a homogeneous three-dimensional met-

_ m ric which is the space part of a closed FRW modste
sw=1t o © Fig. 1.
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ll. PHYSICAL INTERPRETATION symmetry breaking” is in contrast with the more predictable

behavior that one gets in the dust case, where the full stress-

Up to now, we have just constructed time symmetric dat . : ; ;
on the initial slice. This means that we have used only th}nergy tensor is spherically symmetric, so that the spherical

energy and momentum constraints, but not the remaininsymmetry of the initial data will be preserved during evolu-
(evolution field equations. From the energy constraint Eq.

(8), one can compute the energy density
IV. TWO BLACK HOLE INITIAL DATA

0 forr>m/2, The Misner initial datd1] are axially symmetric and de-
= 3 (14)  scribe two identical non-rotating black holes which are ini-
T for r<m/2 ’ . . "
32rm? ' tially at rest. They can be obtained by linear superposition of

spherically symmetric solutions of the Laplace equation,

. . with centers distributed along the symmetry axis:
whereas the momentum constraifd) plus the time- 9 y y

symmetry condition K;; =0) imply that the momentum den- o

sity should vanish. However, in order to get a physical inter- y=1+, (Pr+d,) (19
pretation of the matter content of the spacetimes generated n=1

by these initial data, we need to say something about the .

remaining (spacé components of the stress-energy tensoVith

T+,
. . . a
To do this, we can study the time evolution of the match- q;rf =— cschnug), (20)
ing conditions between the constant density interior and the M

vacuum exterior, namely h
where

TH® |$-0=0, 15 N
-0 13 (r5)2=x2+y?+[z*a cothnug)]% (21)
where® =0 is the equation of the matching hypersurface. ) o ) _
Allowing for the fact that the momentum density vanishes, In order to see how this solution is obtained, let us notice
one gets easily from Eq15) thatd® cannot depend on time. that in the time symmetric vacuum case the constr@non

This means that the matching surface can be taken to be tige conformal factor is the flat space Laplace equation. We
sphere know from electrostatics that we can take advantage of the

invariance of the Laplace equation under discrete symme-
d=r—m/2 (16)  tries, such as Eq12), by using the “imaging methodT10].
This technique was adapted to relativity by Mish&g] in
for any value of time. It follows then from Eq15) that the  order to obtain initial data which are invariant by inversion
radial direction gives an eigenvector of the stress-energy teracross a number of spherical surfaces, which will become at
sor(computed at the matching surfaeeith zero eigenvalue. the end minimal surfacggpparent horizonf the resulting
If we assume for simplicity a barotropic perfect fluid mat- solution. This solution can be interpreted as describing time
ter content, it follows that the pressure should variisio- ~ symmetric initial data for a number of black holes.
herent matter The initial data(13) can then be understood The apparent horizon@ninimal surfacesin Eq. (19) are
as corresponding to a particular case of the well-knowrthe two spheres™ given by
Oppenheimer-Schneider dust collapse: a constant density

spherical star which is initially at rest. In our case, the initial ry =a cschug). (22
star radius actually coincides with the position of the appar-
ent horizon. The term®. ., has been constructed as the imagedgf

The former is just one of the many possibilities allowed under inversion across™. Also, the term®,, ; has been
by the no-hair theorems. A very interesting case is theonstructed as the image & under inversion across .
“string perfect dust” matter conterf9] This means that the dipole combinations

T=gS,”, ar Aimairel 23
where are invariant under inversion across the sphefe respec-
tively.

We have seen in the previous section how to stuff a single

black hole. Now we have two identical holes and we will

is a simple surface-forming bivector. look f lar interi luti p h Let us beai
There are basically two different possibilities to get a zero 20K [0r regular Interior sofutions for each one. Let us begin

radial eigenvalue in the string cag®@|: Either S*"=0 (the _by_c_onsiderir_wg the in_terior regio_n to the first sphere. T_he
bivector has no radial compongrtr the vectom #= S is !nflmte sum in the_ Misner solutiofl9) can here be written
isotropic (and, being antisymmetric, has no radial compo—In a more convenient form

nend. In both ways, it follows that the string stress tensor @

breaks the spherical symmetry of the initial data, and this = E A (24)
will lead to a non-spherical time evolution. This “dynamical n=1

'=atb’—b*a’ (18
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so that every term is now invariant under inversion across 2°r
the spherer™. We will make use of this symmetry property
to match every term in Eq24) to (the conformal factor of
a constant curvature metric.

The conformal factor for a constafpositive curvature
metric (closed FRW modglcan be written as

\/ Ex * 0
- , (25 . i,
Yrrw 1—2br; cosp+(b2+\%/4)(r)? @9 A

whereF is an arbitrary scale factor andandb are param-
eters related to the conformal transformations of Euclidean
three-space. If we impose inversion symmefBq. (10)]
across the sphere, we get

(b2+\%/4)a2=sintt ug. (26) FIG. 2. Surface plot of the conformal factor describing initial
data for two stuffed black holes withy=2, a=1. The plot is in
This single condition ensures, allowing for H40), that the  cylindrical coordinates with the axis along the line joining the two
normal derivatives of the vacuum and FRW conformal fac-holes. The azimuthal angl¢ is suppressed, as the solution is axi-
tors will coincide ono ™ if and only if both conformal factors ally symmetric. The smoothness and regularity of the solution are

actually coincide there. evident.
It follows that, in order to complete the matching, we
need only to look at the conformal factor valuessat and N \/ Folkn
X = - 34
tune the free parameters in E@®5). The FRW conformal ¥y 1+ 2b,(2+ a Cothug) + Sinfag(r /a)? (34

factor can be easily evaluated on :

will also match the vacuum dipole terth, acrosso™. It

7 \/ FA/2 ' (27)  follows that the complete solution for the stuffed two hole
1-b(z—a cothu,) problem reads
where we have noted [ =
- forr; <a csch ug),
z—a cothug=r; cosp. (29 r1§=:1 U ' Ho

On the other hand, a straightforward calculation shows that v o forry <a cschiug),

n=1

Ar:|(r’:2q)r:|<r’ o
2a 1+, (®dF+d,) elsewhere.
= . n=1
Ja?+2az sint nuo]lsini (n—1) wol/sint o] \ (35

(29 The resulting solution is regular and smooth everywhere
Now it is easy to obtain the values of the arbitrary param-see Fig. 2. Following Bowenet al.[11], we can define an
eters in Eq.(25 that ensure the matching between theeffective energy density starting from a “Newtonian poten-
vacuum dipole term\ , and the conformal factor tial” linearly related toW. In our case, allowing for Eq8),
this amounts to

— Fnhn
= — 5
U \/1—2bn(z—a cothug) +sintPug(ry /a)? 30 Terr=TV>. (36)
acrosso~ for every value ofn. Their actual values are This effective energy density can be easily expressed as the
sum of the effective energy density of every FRW compo-
cosh(2n—1 —cos nent, namely
ab— - sinfyay SO~ Dol —cosling] o

Ocosti(2n—1)uo] costiue]—1

f +
_ 2sinf(2n—1) u] sint?[ wo] nZl (Tetf)n  forry<acschpuo),

n= (32) Teft™ 39
cosh(2n—1)pug] cosh pp]—1 0 elsewhere,
Fon= —4a 33 h
" S (2 Dol (39 where
Allowing for the symmetry of the solution across the (feff)n:iz( ). (38
equatorial plane, it is easy to see that the conformal factor 87Fy
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The positivity of the factorgs, ensures that the energy den- . X: _)21
sity (37) is positive inside the holes and it is bounded by the bj=b; e M (44)
maximum energy density of the FRW components. | %)= X4

As in the single hole case, the energy density has a jump . . . . .
at the matching surfaces due to the discontinuity of the sec- A.S in the previous sectlc‘fn, we,!”nust impose first t{}?t the
ond metric derivatives there. It follows from the previous mter!or solutlon(43).have a “throat”(10) at the sphere,
section that a reasonable physical description of the solutioRPt@iNing the condition
could be that of two balls of incoherent matter. Notice, how-
ever, that the energy density of every ball is not constant, as
it was in the single hole case. The gravitational interactio
between the two balls accounts for their distortion.

(bF+\F/14)=1/R?, (45)

Twhich generalizes Eq26). As in the previous section, this
condition ensures that the radial derivatives of the vacuum
and the FRW conformal factors will coincide on the sphere
V. MULTIPLE BLACK HOLE CASE o if and only if both conformal factors actually coincide
there.

Allowing for Eq. (45), the interior facton(43) at the hori-
zon is

Let us consider now the time symmetric multiple black
hole case. As is well known, the vacuum exterior solution
can be obtained by the conformal imaging method]. As
an input for this method, one must provide the size and lo- EN/2
cation of an arbitrary numbeM of spheres, which will be- ¢}1>|0(1): N (46)
come at the end the apparent horizonddblack holes. The 1-bj(x—xy)
resulting solution, by construction, will be then inversion ) )
symmetric across the apparent horizon of every black hole. fPn the other hand, allowing for the fact that the two images
could be written as a linear superposition of poles, in the invariant dipolg41) coincide by construction on the

spheres®), we have
V=1+> ——.
n=1 |X_Xn|

a
L (39 " 23
A= . (47

VRE+2(X— Xy) (Xq—X;) + [Xy — X, |2

Our goal is to provide a suitable interior solution for every
black hole. As far as the holes do not overlap, we can con- It follows that the choice of parameters
sider them separately. Let us begin with the first one: Its

- -

i @) 2 X1— X
horizono'*’ is a sphere centered =f, b=-2 2| 19 il _ 49)
.. Ri+ X=X
|X_Xl| = Rl' (40)
. . . . Ri— X1 =X
Note that, as Eq(39) is invariant under inversion across the N=2R 5 ——=—=5 (49
spheres®, half of the poles in Eq(39) are outside and half RI+[X1—X;]
inside. Moreover, every outside pole is the image under in-
version of an inside pole and vice versa. _ 8a;
, . I FiNi=———= (50
This means that we can combine every pole with its im- " R2+ |X,— ;|2

age to form the invariant dipoles

ensures the matching between Eg@gl) and (43) at o(%).
AlD— a; ai The interior solution for the first hole can then be obtained

]
i =t s (41) by summing the corresponding FRW factd4s)
Ix=x|  [x=xj/

where the exterior point;. is the image of the interior one P = 2 ¢J(1>_ (52)
x; under inversion across the spher€’). The sum in the =1

solution (39) can then be rearranged as follows: i i i i i
The interior solution for every other hole can be obtained in

exactly the same way.

T=> AW, (42)
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(43 APPENDIX: 1D NUMERICAL EVOLUTION

We will compare here the numerical evolution of a single
where spherically symmetric(1D) stuffed black hole against a
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FIG. 3. Evolution of plainsolid line) and stuffeddashed lingblack holes in the spherically symmetric c4$& +log” slicing, 400 grid
pointg. Left: the radial metric coefficient is plotted after 300m. Right: the maximum error for the black hole mass near the horizon is
plotted as a function of time. Both the stuffed and the plain cases show the same accuracy.

“plain” one. We use in both cases the same finite differenceregion and such special treatment is not needed. This is why
code with a 400 point evenly space numerical grid. The metthis 1D test is biased: It is the best case for the plain hole
ric quantities and their evolution equations are also the saméinversion symmetry in spherical coordinatesd the worst
The matter density and speed are computed in the stuffedne for the stuffed cas@eed for a special treatment of the
case by using the standard “upwind” method to model theorigin).

continuity equation and the Euler equation for dust, respec- We have compared the code performance, in terms of
tively (they are equivalent to the stress-energy tensor conseaccuracy and stability, in both cases for three different slic-
vation). ing conditions: harmonic, “*log” and maximal. In the last

In the “plain” case, we have used the throat inversiontwo cases, we can barely notice any significant difference
symmetry to provide the inner boundary condition. In thebetween the plain and the stuffed hole evolution in the exte-
general(3D) stuffed case there is no inner boundary. Therior region (see Fig. 3. In the harmonic slicing case, how-
only concern will arise from the discontinuity of the energy ever, the code for the stuffed black hole crashes as the dust
density (second derivatives of the metriat the throat. We ball in the interior region collapses, evolving towards a sin-
have not seen any problem with the matter varialidesisity  gularity. This is a consequence of the weaker singularity
and speedin our 1D numerical evolution. avoidance properties of harmonic slicing.

The singularity of spherical coordinatesrat 0, however, These results are promising with regards to 3D applica-
demands a special treatment of the origin in the 1D stuffedions in rectilinear grids, where inversion symmetry across
case. We have done it by adding two virtual points as théhe spherical horizons is not so easy to implemgain
mirror image of the first two grid points across the origin. In cas¢, whereas there is no internal boundary of any kit
the “plain” hole case the origin is contained in the excisedcoordinate system is regular everywheirethe stuffed case.
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