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Stuffed black holes
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Initial data corresponding to spacetimes containing black holes are considered in the time symmetric case.
The solutions are obtained by matching across the apparent horizon different, conformally flat, spatial metrics.
The exterior metric is the vacuum solution obtained by the well known conformal imaging method. The
interior metric for every black hole is regular everywhere and corresponds to a positive energy density. The
resulting matched solutions cover then the whole initial~Cauchy! hypersurface, without any singularity, and
can be useful for numerical applications. The simpler cases of one black hole~Schwarzschild data! or two
identical black holes~Misner data! are explicitly solved. A procedure for extending this construction to the
multiple black hole case is also given, and it is shown to work for all time symmetric vacuum solutions
obtained by the conformal imaging method. The numerical evolution of one such ‘‘stuffed’’ black hole is
compared with that of a pure vacuum or ‘‘plain’’ black hole in the spherically symmetric case.
@S0556-2821~98!02706-4#
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I. INTRODUCTION AND OVERVIEW

Black holes are the most elementary objects in gen
relativity. Allowing for the well-known ‘‘no hair’’ theorems,
they can be characterized by their mass, charge and spin
elementary particles in classical or quantum mechanics. T
is because event horizons act as a one way membrane w
separates the black hole interior from the exterior: There
no causal effect that can propagate from the inner to
outer region. Therefore, one does not need to know all
details about physical processes taking place at the interio
order to describe the overall evolution of the black hole. T
also means that black hole metrics that differ only inside
holes can lead to the same exterior spacetime. The ide
this paper is to replace the singular vacuum solution fo
black hole interior by a regular one corresponding to a n
vanishing energy density, but keeping the same exterior m
ric. The term ‘‘stuffed’’ black hole is a good description o
the resulting solution.

The ‘‘no hair’’ property has been very useful in numeric
relativity to avoid the interior black hole singularity appea
ing in the initial data. The standard practice is to excise
inner region from the computational domain, so that one
safely evolve the exterior~usually vacuum! region. This has
been done for a single black hole~Schwarzschild case! by
setting an internal boundary on the computational domai
the initial position r 0 of the apparent horizon. The sam
thing has been done for a system consisting of two n
rotating black holes, starting the evolution from the Misn
data@1,2#, or even for an arbitrary number of them, by usi
the ‘‘conformal imaging formalism’’@3# to construct confor-
mally flat initial data. We shall refer to all these pure vacuu
solutions as ‘‘plain’’ black hole metrics to distinguish the
from the ‘‘stuffed’’ ones we are presenting here.

In this paper we propose to take advantage of the ‘
hair’’ property in a different way. We will keep the sam
570556-2821/98/57~4!/2397~6!/$15.00
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exterior metric of the ‘‘plain’’ black hole case, obtained b
the conformal imaging formalism. But we will match th
exterior metric to a regular conformally flat interior corr
sponding to a positive energy density. The exterior solut
is not affected because the matching surfaces coincid
every case with the initial positionr 0 of the black hole ap-
parent horizon. This is done for a single non-rotating bla
hole ~Schwarzschild metric! in Sec. II. The interior metric in
this case is the spatial part of a positive curvature Friedma
Robertson-Walker~FRW! metric, so that the resulting con
struction can be interpreted as initial data for t
Oppenheimer-Schneider dust collapse~Sec. III!. In Sec. IV,
we give in closed form the corresponding solution for tw
non-rotating stuffed black holes~the analogous of the Misne
data!. We provide in Sec. V a step by step procedure to stu
time symmetric initial data containing any number of bla
holes with arbitrary sizes and locations.

Finally, in the Appendix, we compare the numerical ev
lution of a ‘‘plain’’ black hole with that of a ‘‘stuffed’’ black
hole in the spherically symmetric case. This is a biased t
because spherical coordinates are singular at the origin
this coordinate singularity affects only the stuffed hole, b
cause in that case there is no excised region and the com
tational domain includes the origin. In spite of that, we ha
evolved stuffed holes with the same accuracy and stability
plain holes. This opens the door to three-dimensional ap
cations, where the ‘‘stuffing’’ approach avoids putting inte
nal curvilinear boundaries that would need a special tre
ment. The advantage of the ‘‘stuffed’’ black holes versus
‘‘plain’’ ones will be manifest if the coordinate system con
tains a shift vector which allows the holes to move across
numerical grid: In the plain case one would need to trea
number of moving curvilinear boundaries, but in the stuff
case nothing special is to be done because there are no
nal boundaries in that case.
2397 © 1998 The American Physical Society
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II. SINGLE HOLE INITIAL DATA

The evolution formalism@4–6# is specially well suited for
numerical relativity. In normal coordinates, the spaceti
metric can be written as

ds252a2dt21g i j dxidxj . ~1!

To start the evolution one needs both the spatial metricg i j
on the initial hypersurface and its second fundamental fo
~extrinsic curvature!

Ki j 52
1

2a
] tg i j . ~2!

These initial data, however, are constrained by the follo
ing equations:

16pt516pa2T005R j
j 1~K j

j !22K k
j K j

k ~3!

~energy constraint! and

8pSi58paT i
0 5K i ; j

j 2] i~K j
j ! ~4!

~momentum constraint!, where both the Ricci tensorRi j and
the covariant derivatives are the ones corresponding to
three-dimensional geometry of the initial slice. These c
straint equations are first integrals of the Einstein equatio
They are verified at every time slice by the spatial part of a
spacetime metric.

One can learn a lot about the spacetime by just lookin
the geometry of the spatial hypersurfaces. Let us conside
instance a closed two-surfaces in one such three-
dimensional manifold. The expansionu of a congruence of
outgoing light rays starting ats is given by@7#

u5n ; j
j 1Ki j n

inj2K j
j ~5!

where the three-dimensional vectorni is the unit normal to
s. In the ‘‘time symmetric’’ case (Ki j 50) the minimal sur-
faces of the three-geometry

n ; j
j 50 ~6!

are also apparent horizons (u50) and vice versa.
In the case of non-rotating black holes, one usually st

with time symmetric initial data~and therefore zero initia
momentum densitySi) and conformally flat initial metrics,
namely

g i j 5c4d i j . ~7!

This simplifies the constraint equations@8#, so that Eq.~3!
can be written in terms of a flat space Laplace operatorD:

Dc522ptc5. ~8!

In the spherically symmetric case, the regular vacuum
lution of Eq. ~8! can be written as

cSW511
m

2r
, ~9!
e
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which corresponds to the space part of the Schwarzsc
metric in isotropic coordinates. Allowing for Eq.~7!, the
minimal surface~apparent horizon! condition ~6! reads

] r~rc2!50, ~10!

which holds forr 05m/2. Note that the combinationrc2 is
precisely the ‘‘area radius’’R of the spherical geometry, s
that the apparent horizon~minimal surface! is placed at

R~r 0!52m. ~11!

Condition ~10! can also be obtained by realizing that th
metric given by Eqs.~7!,~9! is invariant under the discret
symmetry

r↔r 0
2/r , ~12!

which can be interpreted as a coordinate inversion atr 5r 0.
This inversion symmetry provides suitable boundary con
tions when one excises the spherical regionr ,r 0 from the
computational domain. The resulting inner boundary con
tion is very easy to implement numerically in spherical c
ordinates, but it is much more difficult to manage in t
three-dimensional case~where one would get a curvilinea
boundary in Cartesian coordinates! even for a single black
hole.

As an alternative to this inner boundary aproach, we w
construct a ‘‘stuffed’’ black hole by replacing the initial da
~9! with

c55 11
m

2r
for r .m/2,

A 8

11~2r /m!2 for r ,m/2,
~13!

so that in the exterior region one recovers the ‘‘plain’’ bla
hole solution~9!, whereas in the interior region one get
allowing for Eq.~7!, a homogeneous three-dimensional m
ric which is the space part of a closed FRW model~see
Fig. 1!.

FIG. 1. Plot of the conformal factor describing initial data for
single stuffed black hole with massm52 ~apparent horizon atr
51 in isotropic coordinates!. The smoothness and regularity of th
solution is evident.
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III. PHYSICAL INTERPRETATION

Up to now, we have just constructed time symmetric d
on the initial slice. This means that we have used only
energy and momentum constraints, but not the remain
~evolution! field equations. From the energy constraint E
~8!, one can compute the energy density

t5H 0 for r .m/2,

3

32pm2 for r ,m/2, ~14!

whereas the momentum constraint~4! plus the time-
symmetry condition (Ki j 50) imply that the momentum den
sity should vanish. However, in order to get a physical int
pretation of the matter content of the spacetimes gener
by these initial data, we need to say something about
remaining ~space! components of the stress-energy ten
Tmn.

To do this, we can study the time evolution of the matc
ing conditions between the constant density interior and
vacuum exterior, namely

TmnFnuF5050, ~15!

whereF50 is the equation of the matching hypersurfac
Allowing for the fact that the momentum density vanishe
one gets easily from Eq.~15! thatF cannot depend on time
This means that the matching surface can be taken to be
sphere

F5r 2m/2 ~16!

for any value of time. It follows then from Eq.~15! that the
radial direction gives an eigenvector of the stress-energy
sor~computed at the matching surface! with zero eigenvalue.

If we assume for simplicity a barotropic perfect fluid ma
ter content, it follows that the pressure should vanish~inco-
herent matter!. The initial data~13! can then be understoo
as corresponding to a particular case of the well-kno
Oppenheimer-Schneider dust collapse: a constant de
spherical star which is initially at rest. In our case, the init
star radius actually coincides with the position of the app
ent horizon.

The former is just one of the many possibilities allow
by the no-hair theorems. A very interesting case is
‘‘string perfect dust’’ matter content@9#

Tmn5SmrSr
n , ~17!

where

Smn5ambn2bman ~18!

is a simple surface-forming bivector.
There are basically two different possibilities to get a ze

radial eigenvalue in the string case@9#: Either Smr50 ~the
bivector has no radial component! or the vectorlm5Smr is
isotropic ~and, being antisymmetric, has no radial comp
nent!. In both ways, it follows that the string stress tens
breaks the spherical symmetry of the initial data, and t
will lead to a non-spherical time evolution. This ‘‘dynamic
a
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symmetry breaking’’ is in contrast with the more predictab
behavior that one gets in the dust case, where the full str
energy tensor is spherically symmetric, so that the spher
symmetry of the initial data will be preserved during evol
tion.

IV. TWO BLACK HOLE INITIAL DATA

The Misner initial data@1# are axially symmetric and de
scribe two identical non-rotating black holes which are i
tially at rest. They can be obtained by linear superposition
spherically symmetric solutions of the Laplace equatio
with centers distributed along the symmetry axis:

c511 (
n51

`

~Fn
11Fn

2! ~19!

with

Fn
65

a

r n
6 csch~nm0!, ~20!

where

~r n
6!25x21y21@z6a coth~nm0!#2. ~21!

In order to see how this solution is obtained, let us not
that in the time symmetric vacuum case the constraint~8! on
the conformal factorc is the flat space Laplace equation. W
know from electrostatics that we can take advantage of
invariance of the Laplace equation under discrete sym
tries, such as Eq.~12!, by using the ‘‘imaging method’’@10#.
This technique was adapted to relativity by Misner@12# in
order to obtain initial data which are invariant by inversio
across a number of spherical surfaces, which will becom
the end minimal surfaces~apparent horizons! of the resulting
solution. This solution can be interpreted as describing ti
symmetric initial data for a number of black holes.

The apparent horizons~minimal surfaces! in Eq. ~19! are
the two spheress6 given by

r 1
65a csch~m0!. ~22!

The termFn11
1 has been constructed as the image ofFn

2

under inversion acrosss1. Also, the termFn11
2 has been

constructed as the image ofFn
1 under inversion acrosss2.

This means that the dipole combinations

Ln
65Fn

61Fn21
7 ~23!

are invariant under inversion across the spheres6, respec-
tively.

We have seen in the previous section how to stuff a sin
black hole. Now we have two identical holes and we w
look for regular interior solutions for each one. Let us beg
by considering the interior region to the first spheres2. The
infinite sum in the Misner solution~19! can here be written
in a more convenient form

c5 (
n51

`

Ln
2 ~24!
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so that every term is now invariant under inversion acr
the spheres2. We will make use of this symmetry propert
to match every term in Eq.~24! to ~the conformal factor of!
a constant curvature metric.

The conformal factor for a constant~positive! curvature
metric ~closed FRW model! can be written as

cFRW5A Fl

122br1
2 cosw1~b21l2/4!~r 1

2!2, ~25!

whereF is an arbitrary scale factor andl andb are param-
eters related to the conformal transformations of Euclid
three-space. If we impose inversion symmetry@Eq. ~10!#
across the spheres2, we get

~b21l2/4!a25sinh2m0 . ~26!

This single condition ensures, allowing for Eq.~10!, that the
normal derivatives of the vacuum and FRW conformal fa
tors will coincide ons2 if and only if both conformal factors
actually coincide there.

It follows that, in order to complete the matching, w
need only to look at the conformal factor values ats2 and
tune the free parameters in Eq.~25!. The FRW conformal
factor can be easily evaluated ons2:

cFRWus25A Fl/2

12b~z2a cothm0!
, ~27!

where we have noted

z2a cothm05r 1
2 cosw. ~28!

On the other hand, a straightforward calculation shows t

Ln
2us252Fn

2us2

5
2a

Aa212az sinh@nm0#sinh@~n21!m0#/sinh@m0#
.

~29!

Now it is easy to obtain the values of the arbitrary para
eters in Eq. ~25! that ensure the matching between t
vacuum dipole termLn

2 and the conformal factor

cn
25A Fnln

122bn~z2a cothm0!1sinh2m0~r 1
2/a!2 ~30!

acrosss2 for every value ofn. Their actual values are

abn52sinhm0

cosh@~2n21!m0#2cosh@m0#

cosh@~2n21!m0# cosh@m0#21
~31!

aln5
2 sinh@~2n21!m0# sinh2@m0#

cosh@~2n21!m0# cosh@m0#21
~32!

Fn5
4a

sinh@~2n21!m0#
. ~33!

Allowing for the symmetry of the solution across th
equatorial plane, it is easy to see that the conformal fact
s

n

-

t

-

cn
15A Fnln

112bn~z1a cothm0!1sinh2m0~r 1
1/a!2 ~34!

will also match the vacuum dipole termLn
1 acrosss1. It

follows that the complete solution for the stuffed two ho
problem reads

C55
(
n51

`

cn
2 for r 1

2,a csch~m0!,

(
n51

`

cn
1 for r 1

1,a csch~m0!,

11 (
n51

`

~Fn
11Fn

2! elsewhere.

~35!

The resulting solution is regular and smooth everywh
~see Fig. 2!. Following Bowenet al. @11#, we can define an
effective energy density starting from a ‘‘Newtonian pote
tial’’ linearly related toC. In our case, allowing for Eq.~8!,
this amounts to

te f f5tC5. ~36!

This effective energy density can be easily expressed as
sum of the effective energy density of every FRW comp
nent, namely

te f f5H (
n51

`

~te f f!n for r 1
6,a csch~m0!,

0 elsewhere,
~37!

where

~te f f!n5
3

8pFn
2~cn

6!5. ~38!

FIG. 2. Surface plot of the conformal factor describing initi
data for two stuffed black holes withm052, a51. The plot is in
cylindrical coordinates with the axis along the line joining the tw
holes. The azimuthal anglef is suppressed, as the solution is ax
ally symmetric. The smoothness and regularity of the solution
evident.
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57 2401STUFFED BLACK HOLES
The positivity of the factorscn
6 ensures that the energy de

sity ~37! is positive inside the holes and it is bounded by t
maximum energy density of the FRW components.

As in the single hole case, the energy density has a ju
at the matching surfaces due to the discontinuity of the s
ond metric derivatives there. It follows from the previo
section that a reasonable physical description of the solu
could be that of two balls of incoherent matter. Notice, ho
ever, that the energy density of every ball is not constant
it was in the single hole case. The gravitational interact
between the two balls accounts for their distortion.

V. MULTIPLE BLACK HOLE CASE

Let us consider now the time symmetric multiple bla
hole case. As is well known, the vacuum exterior solut
can be obtained by the conformal imaging method@12#. As
an input for this method, one must provide the size and
cation of an arbitrary numberN of spheres, which will be-
come at the end the apparent horizons ofN black holes. The
resulting solution, by construction, will be then inversio
symmetric across the apparent horizon of every black hol
could be written as a linear superposition of poles,

C511 (
n51

`
an

uxW2xWnu
. ~39!

Our goal is to provide a suitable interior solution for eve
black hole. As far as the holes do not overlap, we can c
sider them separately. Let us begin with the first one:
horizons (1) is a sphere centered atxW1,

uxW2xW1u5R1 . ~40!

Note that, as Eq.~39! is invariant under inversion across th
spheres (1), half of the poles in Eq.~39! are outside and hal
inside. Moreover, every outside pole is the image under
version of an inside pole and vice versa.

This means that we can combine every pole with its i
age to form the invariant dipoles

L j
~1!5

aj

uxW2xW j u
1

aj 8

uxW2xW j 8u
, ~41!

where the exterior pointxj 8 is the image of the interior one
xj under inversion across the spheres (1). The sum in the
solution ~39! can then be rearranged as follows:

C5(
j 51

`

L j
~1! . ~42!

Our strategy will be then to match separately every inva
ant dipole~41! to a closed FRW factor, given by

c j
~1!5A F jl j

122bW j~xW2xW1!1~bj
21l j

2/4!uxW2xW1u2
, ~43!

where
p
c-

n
-
s

n

-

It

-
s

-

-

i-

bW j5bj

xW j2xW1

uxW j2xW1u
. ~44!

As in the previous section, we must impose first that
interior solution~43! have a ‘‘throat’’~10! at the spheres (1),
obtaining the condition

~bj
21l j

2/4!51/R1
2 , ~45!

which generalizes Eq.~26!. As in the previous section, thi
condition ensures that the radial derivatives of the vacu
and the FRW conformal factors will coincide on the sphe
s (1) if and only if both conformal factors actually coincid
there.

Allowing for Eq. ~45!, the interior factor~43! at the hori-
zon is

c j
~1!us~1!5A F jl j /2

12bW j~xW2xW1!
. ~46!

On the other hand, allowing for the fact that the two imag
in the invariant dipole~41! coincide by construction on the
spheres (1), we have

L j
~1!us~1!5

2aj

AR1
212~xW2xW1!~xW12xW j !1uxW12xW j u2

. ~47!

It follows that the choice of parameters

bj522
uxW12xW j u

R1
21uxW12xW j u2

~48!

l j52/R1

R1
22uxW12xW j u2

R1
21uxW12xW j u2

~49!

F jl j5
8aj

R1
21uxW12xW j u2

~50!

ensures the matching between Eqs.~41! and ~43! at s (1).
The interior solution for the first hole can then be obtain

by summing the corresponding FRW factors~43!

C~1!5(
j 51

`

c j
~1! . ~51!

The interior solution for every other hole can be obtained
exactly the same way.
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APPENDIX: 1D NUMERICAL EVOLUTION

We will compare here the numerical evolution of a sing
spherically symmetric~1D! stuffed black hole against a
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FIG. 3. Evolution of plain~solid line! and stuffed~dashed line! black holes in the spherically symmetric case~‘‘1 1log’’ slicing, 400 grid
points!. Left: the radial metric coefficient is plotted aftert5300m. Right: the maximum error for the black hole mass near the horizo
plotted as a function of time. Both the stuffed and the plain cases show the same accuracy.
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‘‘plain’’ one. We use in both cases the same finite differen
code with a 400 point evenly space numerical grid. The m
ric quantities and their evolution equations are also the sa
The matter density and speed are computed in the stu
case by using the standard ‘‘upwind’’ method to model t
continuity equation and the Euler equation for dust, resp
tively ~they are equivalent to the stress-energy tensor con
vation!.

In the ‘‘plain’’ case, we have used the throat inversi
symmetry to provide the inner boundary condition. In t
general~3D! stuffed case there is no inner boundary. T
only concern will arise from the discontinuity of the ener
density~second derivatives of the metric! at the throat. We
have not seen any problem with the matter variables~density
and speed! in our 1D numerical evolution.

The singularity of spherical coordinates atr 50, however,
demands a special treatment of the origin in the 1D stuf
case. We have done it by adding two virtual points as
mirror image of the first two grid points across the origin.
the ‘‘plain’’ hole case the origin is contained in the excis
D

e
t-
e.

ed
e
c-
er-

d
e

region and such special treatment is not needed. This is
this 1D test is biased: It is the best case for the plain h
~inversion symmetry in spherical coordinates! and the worst
one for the stuffed case~need for a special treatment of th
origin!.

We have compared the code performance, in terms
accuracy and stability, in both cases for three different s
ing conditions: harmonic, ‘‘11log’’ and maximal. In the last
two cases, we can barely notice any significant differen
between the plain and the stuffed hole evolution in the ex
rior region ~see Fig. 3!. In the harmonic slicing case, how
ever, the code for the stuffed black hole crashes as the
ball in the interior region collapses, evolving towards a s
gularity. This is a consequence of the weaker singula
avoidance properties of harmonic slicing.

These results are promising with regards to 3D appli
tions in rectilinear grids, where inversion symmetry acro
the spherical horizons is not so easy to implement~plain
case!, whereas there is no internal boundary of any kind~the
coordinate system is regular everywhere! in the stuffed case.
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