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Evolution equations for gravitating ideal fluid bodies in general relativity

Helmut Friedrich
Albert-Einstein-Institut, Max-Planck-Institut fu¨r Gravitationsphysik, Schlaatzweg 1, 14473 Potsdam, Germany

~Received 27 August 1997; published 16 January 1998!

We consider the Einstein-Euler equations for a simple ideal fluid in the domain where the speed of sound
and the specific enthalpy are positive. Using a Lagrangian description of the fluid flow, we obtain evolution
equations which are symmetric hyperbolic. Pressure free matter is discussed as a simple subcase.
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I. INTRODUCTION

It has been shown by Choquet-Bruhat@1# that the Cauchy
problem for the Einstein-Euler equations, including the c
of pressure free matter, is well posed. For this purpos
representation of the field equations has been derived in@1#
which employed the harmonic gauge and used equation
third order for the metric coefficients such that the compl
system is Leray hyperbolic. A discussion of this proble
along similar lines has been given in@2#.

Friedrichs, who introduced the idea of a symmetric hyp
bolic system@3#, pointed out that wave equations as well
~under certain assumptions! the Newtonian equations for a
ideal fluid can be cast into the form of symmetric hyperbo
systems. Thus it is not surprising that later discussions of
Einstein-Euler equations made use of such systems after
posing the harmonicity condition~cf. @4#!. It appeared diffi-
cult, however, to deduce a symmetric hyperbolic system
the Einstein equations with pressure free matter.

If in this article symmetric hyperbolic propagation equ
tions will be extracted from the the Einstein-Euler equatio
our intention is not so much to give just another version
such a system, but to cast the equations into a form which
expect to be useful in analyzing the evolution of ‘‘gaseo
stars.’’ By this we mean solutions to the Einstein-Euler eq
tions, where the fluid is restricted to a spatially compact
gion and the space-time satisfies the vacuum equations
side the fluid. Despite its interest for modelling physic
systems, the ‘‘general’’ initial value problem for such sol
tions, even if considered only locally in time, is still waitin
for a satisfactory treatment.

In the case of spherical symmetry, this problem has b
analyzed successfully by Kind and Ehlers@5,6#. Extending a
device developed by Makino@7# for the Newtonian case
Rendall@4# has shown the existence of solutions to our pro
lem in cases without symmetry. However, as pointed out
the author, these solutions have the undesirable property
the boundary of the star is freely falling. Solutions close
static spherically symmetric standard cases cannot be
tained by this procedure.

From the point of view of the existence theory, the mo
conspicuous feature of the problem is the occurrence o
free boundary, where the Einstein-Euler equations pass
the vacuum equations. This plays a crucial role in almost
steps of a general discussion of the initial value problem
the construction of initial data, a careful discussion
570556-2821/98/57~4!/2317~6!/$15.00
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smoothness properties and jumps near the boundary of
star is required. In the actual existence proof, the poss
drop in smoothness at the boundary for various fields and
propagation behavior of jumps in the field along the boun
ary need to be controlled. A careful specification of t
smoothness properties across the boundary is required fo
uniqueness proof and for showing that gauge conditions
constraints are preserved.

Since we are dealing with a hyperbolic problem, it can
localized. If we are concerned with the problem locally
time, we need to analyze the situation only in a neighb
hood of the boundary. What happens away from the bou
ary on the support of the fluid or in the vacuum region is w
understood.

In the discussion of these various aspects it is clearly
sirable to have firm control on the location of the bounda
However, if the field equations are written in a manifes
hyperbolic form by using harmonic coordinates, there a
pears to be no immediate way to gain the desired inform
tion. If the field equations, considered as a system of sec
order for the metric coefficients, are expressed in coordina
in which the Lagrangian description of the fluid flow
achieved, manifest hyperbolicity will be lost.

It is the purpose of this article to show that the Einste
Euler equations imply evolution equations which combi
symmetric hyperbolicity with a Lagrangian description of t
fluid flow. This representation will be obtained by extendi
the technique discussed in@8#. The special case of dust fol
lows as an aside.

Whether in the actual existence proofs one will deal w
our system~or a variation of it! explicitly or if one will prefer
to deal only with the type of energy estimates suggested
the system remains to be seen. In any case we conside
derivation of our system as a basic step in the discussio
the initial value problem for gaseous stars.

The problems near the boundary will in one way or a
other also turn up in numerical investigations of the evo
tion of general relativistic stars. A good understanding of
analytical aspects of the problem and the type of syste
derived below is therefore likely to prove useful also in n
merical calculations.

II. THE BASIC EQUATIONS

We shall study the Einstein equation

Gik5kTik , ~2.1!
2317 © 1998 The American Physical Society
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2318 57HELMUT FRIEDRICH
for a metricg with an energy momentum tensor of a simp
ideal fluid,

Tik5~r1p!UiUk2pegik . ~2.2!

Here r is the total energy density andp the pressure, as
measured by an observer moving with the fluid, andU de-
notes the future directed, normalized, time-like flow vec
field. For easier comparison with the discussion in@8#, which
makes use of the Bianchi identity in two different forma
isms, we write the equations in a form which is independ
of the signature. We setUiUi5e, wheree51 or e521,
depending on the signature ofg.

Equations~2.1!, ~2.2! imply ¹ iTi j 50, which is equivalent
to the system consisting of the Euler equation

~r1p!Ui¹ iU j1$U jU
i¹ i2e¹ j%p50, ~2.3!

and the equation

Ui¹ ir1~r1p!¹ iU
i50. ~2.4!

We assume that the fluid is simple, i.e. that it consists of o
one class of particles, and denote byn, s, T the number
density of particles, the entropy per particle, and the abso
temperature as measured by an observer moving with
fluid. We shall assume the first law of equilibrium therm
dynamics which has the familiar formde52pdv1Tds in
terms of the volumev5 1/n and the energye5 r/n per par-
ticle. In terms of the variables above, we have

dr5
r1p

n
dn1nTds. ~2.5!

We assume an equation of state given in the form

r5 f ~n,s!, ~2.6!

with some suitable non-negative functionf of the number
density of particles and the entropy per particle. Using this
Eq. ~2.5!, we obtain

p5n
]r

]n
2r, T5

1

n

]r

]s
, ~2.7!

as well as the speed of soundn, given by

n2[S ]p

]r D
s

5
n

r1p

]p

]n
, ~2.8!

as known functions ofn ands. We require that the specifi
enthalpy and the speed of sound be positive: i.e.,

r1p

n
.0,

]p

]n
5n

]2r

]n2.0. ~2.9!

Finally we assume the law of particle conservation,

Ui¹ in1n¹ iU
i50. ~2.10!

It implies together with Eqs.~2.4!, ~2.5! that the flow is
adiabatic; i.e. the entropy per particle is conserved along
flow lines:
r

t

ly

te
he

n

e

Ui¹ is50. ~2.11!

The system consisting of Eqs.~2.1!, ~2.2!, ~2.3!, ~2.10!,
~2.11!, ~2.6! is complete.

The case of an homentropic flow, where the entropy
constant in space and time, is of some interest. In this c
the equation of state can be given in the form

p5h~r! ~2.12!

with some suitable functionh. A complete system is pro
vided by Eqs.~2.1!, ~2.2!, ~2.3!, ~2.4!, ~2.12! and the result-
ing propagation equations will be somewhat simpler. As
special subcase we shall consider pressure free m
~‘‘dust’’ !, whereh[0.

To derive our reduced system, we shall use a represe
tion of the field equations which is different from Eqs.~2.1!,
~2.2!, but includes these equations. One of the basic varia
is a frame field $ek%k50,...,3, satisfying gik[g(ei ,ek)
5e diag(1,21,21,21). In the following all tensor fields
are given in terms of this frame.

The Levi-Civitàcovariant derivative in the direction ofei
is denoted by¹ i . It defines~respectively is defined by! the
connection coefficients satisfying the relations

¹ iek5G i
j
kej , G i

j
kgjl 1G i

j
lgjk50,

and the first structure equation~torsion free condition!

@ep ,eq#5~Gp
l
q2Gq

l
p!el . ~2.13!

We shall consider the latter as an equation for the coe
cients em

k5ek(x
m) of the frameek with respect to some

suitably chosen coordinate system$xm%m50,...,3.
Equations for the connection coefficientsG i

j
k are given

by the Ricci identity

ep~Gq
i
j !2eq~Gp

i
j !2Gk

i
j~Gp

k
q2Gq

k
p!1Gp

i
kGq

k
j2Gq

i
kGp

k
j

5Ri
jpq . ~2.14!

We assume here the decomposition

Ri jkl 5Ci jkl 1$gi [kSl ] j2gj [kSl ] i% ~2.15!

of the curvature tensor in terms of the conformal Weyl ten
Ci jkl and the tensor

Sjk5Rjk2
1

6
Rgjk , ~2.16!

given by the Ricci tensorRi j and the Ricci scalarR.
To obtain equations for the conformal Weyl tensor, we co
sider the~once! contracted Bianchi identity. Using Eq.~2.15!
we write it in the form

05F jkl[¹ iF
i
jkl , ~2.17!

where we set

Fi jkl 5Ci jkl 2gi [kSl ] j . ~2.18!

Taking the dual of Eq.~2.17! ~with respect to the index pai
k,l !, we obtain another equation of the form~2.17! with Eq.
~2.18! replaced by
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Fi jkl 5Ci jkl* 1
1

2
Sp je

p
ikl . ~2.19!

III. REDUCED SYSTEM

For a further discussion of the equations above we nee
introduce some notation. We writeN5e0 such thatN5Niei
with Ni5d i

0 . With N we associate ‘‘spatial’’ tensor fields
i.e. tensor fieldsTi 1 ,...,i p

satisfying

Ti 1 ,...,i l ,...,i p
Ni l50, l 51,...,p.

The subspaces orthogonal toN inherit the metric
hi j 5gi j 2eNiNj , andhi

j ~indices being raised and lowere
with gi j ! is the orthogonal projector onto these subspace

We shall have to consider for various tensor fields th
projections with respect toN and its orthogonal subspace
For a given tensor any contraction withN will be denoted by
replacing the corresponding index byN and the projection
with respect tohi

j will be indicated by a prime, such that fo
a tensor fieldTi jk we write e.g.

TiNk8 5Tmpqhi
mNphk

q,

etc. Denoting bye i jkl the totally anti-symmetric tensor fiel
with e012351 and settinge jkl5eN jkl8 , we have the decompo
sition

e i jkl 52e~N[ ie j ]kl2e i j [kNl ] !.

Let Ci jkl be the conformal Weyl tensor ofg,

Ci jkl* 5 1
2 Ci jpqekl

pq its dual, and denote byEjl 5CN jNl8 ,

Bjl 5CN jNl* 8 its N-electric and N-magnetic part. Writing
l jk5hjk2eNjNk , we get the decompositions

Ci jkl 52e~ l j [kEl ] i2 l i [kEl ] j !22~N[kBl ] pep
i j 1N[ iBj ] pep

kl!,
~3.1!

Ci jkl* 52N[ iEj ] pep
kl24Ep[ ie j ]

p
[kNl ]24N[ iBj ][ kNl ]

2Bpqe
p

i j e
q

kl . ~3.2!

We set

ai5Nk¹kN
i , x i j 5hi

k¹kNj , x5hi j x i j ,

such that we have

¹ jN
i5eNja

i1x j
i , ai5hj

iG0
j
0 , x i j 52ehi

khj
lGk

0
l .

SinceN is not required to be hypersurface orthogonal,
field x i j will in general not be symmetric.

If the tensor fieldT is spatial, i.e.T5T8, we define its
spatial covariant differential byDT5(¹T)8, i.e.

DiTi 1 ,...,i p
5¹ jTj 1 ,...,j p

hi
jhi 1

j 1•••hi p

j p.

It follows that

Dihjk50, Die jkl50.

In the following a system of propagation equations for t
unknowns
to

ir

e

e

em
k , G i

j
k , Bjk , Ejk , n, s, sk

will be derived, where we introduced as an additional va
able the spatial differential

sk5Dks. ~3.3!

We study first the Bianchi identity~2.17!. For the various
components of the decomposition

F jkl5Nj~FNkN8 Nl2FNlN8 Nk!22eF jN[k8 Nl ]1eNjFNkl8 1F jkl8 ,

we get the expressions

eFNkN8 5LNFNNkN8 1eDiFiNkN8 2ai~FNNki8 1FNikN8 1FiNkN8 !

2ex i j ~Fi jkN8 1FiNk j8 !2xk
jFNN jN8 1xFNNkN8 , ~3.4!

eFNkl8 5LNFNNkl8 1eDiFiNkl8 2ai~FNikl8 1FiNkl8 !1e~akFNNNl8

1alFNNkN8 !2ex i j Fi jkl8 2xk
iFNNil8 2x l

iFNNki8

1x i
kFiNNl8 1x i

lFiNkN8 1xFNNkl8 , ~3.5!

eF jNl8 5LNFN jNl8 1eDiFi jNl8 2ai~FN jil8 1Fi jNl8 !1eajFNNNl8

2ex ikFi jkl8 2x j
iFNiNl8 2x l

iFN jNi8 1x i
jFiNNl8

1xFN jNl8 , ~3.6!

eF jkl8 5LNFN jkl8 1eDiFi jkl8 2aiFi jkl8 1e~ajFNNkl8 1akFN jNl8

1alFN jkN8 !2x j
iFNikl8 2xk

iFN jil8 2x l
iFN jki8 1x i

jFiNkl8

1x i
kFi jNl8 1x i

lFi jkN8 1xFN jkl8 , ~3.7!

whereLN denotes the Lie derivative in the direction ofN.
To relate the frame to the structure of the field equatio

~2.1!, ~2.2!, we shall now make the specific choice

N5e05U. ~3.8!

By Eqs.~2.1!, ~2.2! we have

Sik5kS 2

3
r1pDUiUk2

1

3
ekrhik . ~3.9!

Inserting this together with Eq.~3.1! into Eq. ~2.15! we get

Ri jkl 52e~ l j [kEl ] i2 l i [kEl ] j !22~U [kBl ] pep
i j 1U [ iBj ] pep

kl!

1
1

3
ekr~ l j [khl ] i2 l i [khl ] j !1kp$hi [kUl ]U j

2hj [kUl ]Ui%. ~3.10!

It also follows from Eq.~3.9! that

FNNkl8 5FNNkN8 50

if either of the expressions~2.18!, ~2.19! for Fi jkl is used.
Thus Eqs.~3.4!, ~3.5! should be regarded as constraint equ
tions.

To obtain evolution equations, we consider Eq.~3.6!. Us-
ing Eqs.~3.9!, ~2.19!, and~2.18!, we get from Eq.~2.17! the
equations
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2320 57HELMUT FRIEDRICH
05eF ~ j uNu l !8 [LUBjl 2DiEk( je l )
ik12eaie

ik
( jEl )k2x i

( jBl ) i

22x ( j
iBl ) i1xBjl 1ex ikBpqe

pi
( je

kq
l ) , ~3.11!

05eS F ~ j uNu l !8 2
1

3
hjl h

ikFiNk8 D5LUEjl 1DiBk( je l )
ik

22eaie
ik

( jBl )k23x ( j
iEl ) i22x i

( jEl ) i1hjl x
ikEik12xEjl

1
k

2
~r1p!S x~ j l !2

1

3
xhjl D , ~3.12!

05e
2

k
hikF ~ i uNuk!8 5LUr1~r1p!x. ~3.13!

The last of these equations is just Eq.~2.4! while the first two
are our evolution equations forEjk andBjk . Observing the
symmetry of these tensor fields but ignoring the informat
about the trace, we find that Eqs.~3.11!, ~3.12! form a sym-
metric hyperbolic system for the unknownsEjk , Bjk , j <k,
if the frame coefficients, the connection coefficients, and
functions r, p are given. By taking traces in Eqs.~3.11!,
~3.12!, it is seen that the fieldsEkl andBkl remain trace free
in the evolution if the data are given accordingly.

Propagation equations for the frame coefficients are
tained as follows. We assume thatxa, a51,2,3, are local
coordinates on some space-like initial hypersurfaceS and
that they are dragged along with the vector fielde05U.
Furthermore we choosex0[t to be a parameter of the flow
lines of U, i.e. proper time for observers moving with th
fluid. With this choice of coordinates we satisfy th
Lagrange condition

Um5em
05dm

0 . ~3.14!

Equation~2.13! then implies for the remaining frame coeffi
cients the propagation equations

] te
m

a5~G0
c
a2Ga

c
0!em

c1G0
0

adm
0 . ~3.15!

Here and in the following the indicesa,b,c,d take values
1,2,3 and the summation rule applies.

To obtain evolution equations for the connection coe
cients we have to impose gauge conditions on the ve
fields ea . We require that they be Fermi propagated in t
direction of e0 , i.e. ¹e0

ek1e$g(ek ,¹e0
e0)e0

2g(ek ,e0)¹e0
e0%50. In terms of the connection coeffi

cients this equation reads
n

e

-

-
or
e

G0
a

b50. ~3.16!

In the special case of pressure free matter we know m
about the connection coefficients. Equation~2.3! reduces to
the geodesic propagation lawUi¹ iU

j50. Thus the frameek
is parallel propagated in the direction ofU and we have

G0
i
j50. ~3.17!

With this condition Eq.~2.14! implies the propagation equa
tions

] tGq
i
j52Gk

i
jGq

k
01Ri

j 0q , ~3.18!

with the curvature tensor given by Eq.~3.10!. Consequently,
in the case of pressure free matter the propagation equa
for the unknowns

em
a , Ga

j
k , Bjk , Ejk , r

are given by Eqs.~3.15!, ~3.18! with Eqs. ~3.10!, ~3.11!,
~3.12!, ~3.13!, where we setp50 everywhere. This system i
symmetric hyperbolic and incorporates the Lagrangian r
resentation of the flow field by Eq.~3.14!. Equation~2.3! is
taken care of by Eq.~3.17!.

We return to the general case. Equation~2.11! implies the
propagation equation

LUsk50. ~3.19!

Using Eqs.~2.10!, ~2.11!, we get

Ui¹ i p52~r1p!n2¹ iU
i ,

which gives with Eq.~2.3! the relation

e¹ j p5~r1p!$Ui¹ iU j2n2U j¹ iU
i%. ~3.20!

For this to be true the following integrability condition mu
be satisfied:

05Jk j[¹k$~r1p!~Ui¹ iU j2n2U j¹ iU
i !%2¹ j$~r1p!

3~Ui¹ iUk2n2Uk¹ iU
i !%.

Using again Eq.~3.20!, we get, more explicitly,
05Jk j5~r1p!H Ui~¹k¹ iU j2¹ j¹ iUk!2n2~U j¹k¹ iU
i2Uk¹ j¹ iU

i !2n2¹ lU
l~¹kU j2¹ jUk!1¹kU

i¹ iU j2¹ jU
i¹ iUk

1e
r1p

n2 S ]2p

]r2D
s

¹ lU
l~UkU

i¹ iU j2U jU
i¹ iUk!J 1~aUk2bUi¹ iUk!sj2~aU j2bUi¹ iU j !sk , ~3.21!
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where we set

a5~r1p!
]n2

]s
2S 11

n

n2

]n2

]n D ]p

]s
1n2nT,

b5nT2
1

n2

]p

]s
.

Under our assumptions Eq.~3.21! is represented equivalentl
by the two equations

05e0~G0
0

a!2n2ea~Gc
c
0!1G0

0
c~Ga

c
02G0

c
a!

1Fr1p

n2 S ]2p

]r2D
s

2n2GGc
c
0G0

0
a2

a

r1p
sa ~3.22!

and

05ea~G0
0

b!2eb~G0
0

a!2G0
0

c~Ga
c
b2Gb

c
a!2n2Gc

c
0~Ga

0
b

2Gb
0

a!2
b

r1p
~G0

0
asb2G0

0
bsa!. ~3.23!

We can now complete our system of propagation equatio
In view of Eq. ~3.16! we get, from Eq.~2.14!,

] tGa
b

c52Gd
b

cGa
d

02G0
b

0Ga
0

c1Ga
b

0G0
0

c1Rb
c0a .

~3.24!

From Eqs.~2.14! and ~3.22! ensues

] tG0
0

a2n2ec~Ga
c
0!52G0

0
cGa

c
02Fr1p

n2 S ]2p

]r2D
s

2n2G
3Gc

c
0G0

0
a1

a

r1p
sa1n2@Gk

c
0~Ga

k
c

2Gc
k
a!2Ga

c
kGc

k
01Gc

c
kGa

k
0

1Rc
0ac#, ~3.25!

while Eqs.~2.14! and ~3.23! give

n2] tGa
0

b2n2eb~G0
0

a!5n2S Gk
0

b~G0
k
a2Ga

k
0!2G0

0
cGa

c
b

1R0
b0a1G0

0
c~Ga

c
b2Gb

c
a!

1n2Gc
c
0~Ga

0
b2Gb

0
a!

1
b

r1p
~G0

0
asb2G0

0
bsa! D .

~3.26!

Equations~3.15!, ~3.24!, ~3.25!, ~3.26! @where Eq.~3.10! is
assumed#, ~3.11!, ~3.12!, ~2.10!, ~2.11!, ~3.19!, and ~2.6!,
~2.7! provide the desired symmetric hyperbolic system. T
Lagrangian representation of the flow is again taken i
account by Eq.~3.14!. Where the operatorUi¹ i occurs in
these equations, it can be replaced by] t . It should be no-
s.

e
o

ticed, however, that in our formalismLUsk5] tsk
2(G0

j
k2Gk

j
0)sj5em

k] tsm, etc.

IV. CONCLUDING REMARKS

The propagation system we have developed here~as well
as the otherwise completely different system considered
@1#! is of third order in the metric. As a consequence of th
Eq. ~2.3! attains in our formalism the status of a constrai
But it should be observed that Eq.~2.3! has been used in th
derivation of the integrability condition~3.21!. Equations
~3.25!, ~3.26! contribute the sound cone to the system
characteristics. If one wants to ensure that the sound cha
teristics are non-space-like, one has to require thatn<1. For
our considerations there is no need to impose an upper l
on the speed of sound.

In our procedure the fluid equations serve two purpos
Their main role is, of course, to determine the motion of t
fluid. In addition to that, we use them to remove the gau
freedom.

Since under our assumptions the equations for an id
fluid can be written on any given background manifold a
symmetric hyperbolic system, they can be solved for ar
trary, sufficiently smooth data at least locally near a
Cauchy hypersurface. On a given solution to the vacu
field equations they can thus be used as equations for
time-like vector fielde0 of an orthonormal frameek by set-
ting U5e0 ~no coupling to the Einstein equations is intend
here!. Fixing the fieldsea by Fermi or some other suitabl
transport law and dragging along the coordinates withe0 ,
we obtain a way to fix the gauge in the frame formalis
This gives a new hyperbolic reduction of the Einste
vacuum equations. In this procedure any exotic~i.e. com-
pletely unphysical! ‘‘equation of state’’ may be prescribed
the sole objective being to obtain a useful, long-lived gau

It may facilitate the analysis near the boundary if such
gauge is used in the vacuum part of the problem, where
data for the fieldU, the densityr, and the equation of stat
are extended in a suitable way beyond the boundary.

The system simplifies considerably in the homentro
case. Thensa[0 in Eqs. ~3.25!, ~3.26! and Eqs.~2.10!,
~2.11!, ~3.19!, ~2.6! are replaced by Eqs.~3.13!, ~2.12!. In the
resulting system the functionr1p neither occurs in the prin-
ciple part nor in a denominator.

We do not demonstrate here that the gauge conditions
the constraints are preserved in the evolution defined by
system. The argument should closely follow the correspo
ing argument given in@8#. However, in the presence of
boundary such a demonstration will only be sensible if p
cise smoothness properties of the fields near and pos
jumps travelling along the boundary have been worked ou
the course of the existence proof.

We have given the equations in a form which displa
those formal properties which are important for us. It is
interest to compare Eqs.~3.11!, ~3.12! with the way in which
the Bianchi equations have been written in@9#. Here inter-
pretations of some of the quantities entering the equati
are provided.

There may exist variations of the system discussed in
paper which are of particular interest in numerical work.
@8# a hyperbolic reduction of the Einstein equations which
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based on the Arnowitt-Deser-Misner~ADM ! representation
of the metric has been given. The resulting system is s
metric hyperbolic and can be written in flux conservati
form. It may be worthwile to attempt something similar
the present situation. One would then identify the time-l
flow vector field inherent in the ADM representation with th
flow vector fieldU and try to deduce from the integrabilit
y-
-
condition~3.21! propagation equations for the lapse functi
and the shift vector field.

Finally one may ask how our procedure relates to Ne
tonian theory. There appears to be no direct analogue in
Newtonian case. Nevertheless, it may be interesting to
what happens to our system if one tries to obtain a Newt
ian limit.
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