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Evolution equations for gravitating ideal fluid bodies in general relativity

Helmut Friedrich
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We consider the Einstein-Euler equations for a simple ideal fluid in the domain where the speed of sound
and the specific enthalpy are positive. Using a Lagrangian description of the fluid flow, we obtain evolution
equations which are symmetric hyperbolic. Pressure free matter is discussed as a simple subcase.
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[. INTRODUCTION smoothness properties and jumps near the boundary of the
star is required. In the actual existence proof, the possible
It has been shown by Choquet-Brulid} that the Cauchy drop in smoothness at the boundary for various fields and the
problem for the Einstein-Euler equations, including the cas@ropagation behavior of jumps in the field along the bound-
of pressure free matter, is well posed. For this purpose ary need to be controlled. A careful specification of the
representation of the field equations has been derivéd]in Smoothness properties across the boundary is required for the
which employed the harmonic gauge and used equations éfiqueness proof and for showing that gauge conditions and
third order for the metric coefficients such that the completeconstraints are preserved.
system is Leray hyperbolic. A discussion of this problem Since we are dealing with a hyperbolic problem, it can be
along similar lines has been given|if]. localized. If we are concerned with the problem locally in
Friedrichs, who introduced the idea of a symmetric hyperlime, we need to analyze the situation only in a neighbor-
bolic system(3], pointed out that wave equations as well ashood of the boundary. What happens away from the bound-
(under certain assumptionthe Newtonian equations for an ary on the support of the fluid or in the vacuum region is well
ideal fluid can be cast into the form of symmetric hyperbolicunderstood.
systems. Thus it is not surprising that later discussions of the In the discussion of these various aspects it is clearly de-
Einstein-Euler equations made use of such systems after ingirable to have firm control on the location of the boundary.
posing the harmonicity conditiofcf. [4]). It appeared diffi- However, if the field equations are written in a manifestly
cult, however, to deduce a symmetric hyperbolic system fofyperbolic form by using harmonic coordinates, there ap-
the Einstein equations with pressure free matter. pears to be no immediate way to gain the desired informa-
If in this article Symmetric hyperbo“c propagation equa- tion. If the field equations, considered as a SyStem of second
tions will be extracted from the the Einstein-Euler equations0rder for the metric coefficients, are expressed in coordinates
our intention is not so much to give just another version ofin Which the Lagrangian description of the fluid flow is
such a system, but to cast the equations into a form which wachieved, manifest hyperbolicity will be lost.
expect to be useful in analyzing the evolution of “gaseous It is the purpose of this article to show that the Einstein-
stars.” By this we mean solutions to the Einstein-Euler equaEuler equations imply evolution equations which combine
tions, where the fluid is restricted to a spatially compact reSymmetric hyperbolicity with a Lagrangian description of the
gion and the space-time satisfies the vacuum equations ouffid flow. This representation will be obtained by extending
side the fluid. Despite its interest for modelling physicalthe technique discussed i8]. The special case of dust fol-
systems, the “general” initial value problem for such solu- IowWs as an aside.
tions, even if considered only locally in time, is still waiting ~ Whether in the actual existence proofs one will deal with
for a satisfactory treatment. our systemnfor a variation of if explicitly or if one will prefer
In the case of spherical symmetry, this problem has beefp deal only with the type of energy estimates suggested by
analyzed successfully by Kind and Ehl¢Es6]. Extending a  the system remains to be seen. In any case we consider the
device developed by Makinp7] for the Newtonian case, derivation of our system as a basic step in the discussion of
Rendall[4] has shown the existence of solutions to our probLhe initial value problem for gaseous stars.
lem in cases without symmetry. However, as pointed out by The problems near the boundary will in one way or an-
the author, these solutions have the undesirable property th@ther also turn up in numerical investigations of the evolu-
the boundary of the star is freely falling. Solutions close totion of general relativistic stars. A good understanding of the
static spherically symmetric standard cases cannot be ofnalytical aspects of the problem and the type of systems
tained by this procedure. derived below is therefore likely to prove useful also in nu-
From the point of view of the existence theory, the mostmerical calculations.
conspicuous feature of the problem is the occurrence of a
free boundary, where the Einstein-Euler equations pass into Il. THE BASIC EQUATIONS
the vacuum equations. Thi_s, plays a (_:rypial role in almost all  \y/e shall study the Einstein equation
steps of a general discussion of the initial value problem: In
the construction of initial data, a careful discussion of Gik=kTik, (2.1
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for a metricg with an energy momentum tensor of a simple U'v;s=0. (2.1
ideal fluid,
The system consisting of Eqg$2.1), (2.2, (2.3, (2.10,
Ti=(p+p)UjU—pegix - (22 (2.1, (2.6) is complete.
The case of an homentropic flow, where the entropy is

Here p is the total energy density angl the pressure, as conpstant in space and time, is of some interest. In this case
measured by an observer moving with the fluid, &hdle-  he equation of state can be given in the form

notes the future directed, normalized, time-like flow vector

field. For easier comparison with the discussiof8h which p=h(p) (2.12
makes use of the Bianchi identity in two different formal-

isms, we write the equations in a form which is independentVith some suitable functiom. A complete system is pro-
of the signature. We sat’U;=¢, wheree=1 or e=—1, Vided by Egs(2.1), (2.2), (2.3, (2.4), (2.12 and the result-

depending on the signature gf ing propagation equations will bel somewhat simpler. As a
Equations2.1), (2.2) imply Vi-|-ij =0, which is equivalent special subcase we shall consider pressure free matter
to the system consisting of the Euler equation (“dust” ), whereh=0.
To derive our reduced system, we shall use a representa-
(p+pP)U'V,U;+{U;U'V;— €V }p=0, (2.3) tion of the field equations which is different from Eq8.1),
_ (2.2), but includes these equations. One of the basic variables
and the equation is a frame field {e}—o, 3 satisfying gi=g(e; ey

=¢ diag(1-1,—1,—1). In the following all tensor fields
are given in terms of this frame.

We assume that the fluid is simple, i.e. that it consists of only The LeV|-C|V|tacovar|ant der|vat|ye n .the d|.rect|on af
one class of particles, and denote by s, T the number IS denoted by " IF def|nes§re§pectlvely |S.def|ned bythe
density of particles, the entropy per particle, and the absolutgonnection coefficients satisfying the relations
temperature as measured b_y an observer_ .mc.)ving with the Viek:Fijkejy Fijkgj|+rijlgjk:01

fluid. We shall assume the first law of equilibrium thermo-

dynamics which has the familiar formie= —pdv+Tdsin  and the first structure equatidtorsion free conditiohn
terms of the volume = 1/n and the energg= p/n per par-

U'Vip+(p+p)V,U'=0. (2.4

ticle. In terms of the variables above, we have [ep.eq]=(Tpq—T4 pe. (2.13
p+p We shall consider the latter as an equation for the coeffi-
dp=——dn+nTds (2.5  cientse=e(x*) of the framee, with respect to some
suitably chosen coordinate systg¢mt'} ,_o 3.
We assume an equation of state given in the form Equations for the connection coefficierltg, are given

by the Ricci identity

ep(Tq')) — (L) — T (T q=Tgp) Tl =Tl
with some suitable non-negative functiénof the number D (2.14)
density of particles and the entropy per particle. Using this in Ipa- '
Eq. (2.5), we obtain We assume here the decomposition
Pznz—ﬁ‘f" = % Z_Z’ 2.7 Rijki = Cijii +{8irxSij — 9j1xSuit (2.15
of the curvature tensor in terms of the conformal Weyl tensor
as well as the speed of soumdgiven by Cijw and the tensor
1
J n o —
VZE(_p) :__p' (28) Sjk_Rjk_gjoki (216)
ap s p+poan

K functi fi ands. W ire that th ii given by the Ricci tensoR;; and the Ricci scalaR.
as xnown functions oh ands. vve require that tn€ Spectiic 14 gptain equations for the conformal Weyl tensor, we con-

enthalpy and the speed of sound be positive: i.e., sider the(once contracted Bianchi identity. Using E.15
p+p p & we write it in the form

——>0, —=n—=>0. 2.9 .
n on [?nz ( ) O:ij|EViFljk|, (Zln
Finally we assume the law of particle conservation, where we set
UiVin-f—nViUi:O. (210) Fijklzcijkl_gi[ksl]j' (21&

It implies together with Eqgs(2.4), (2.5 that the flow is Taking the dual of Eq(2.17) (with respect to the index pair
adiabatic; i.e. the entropy per particle is conserved along thk,l), we obtain another equation of the fo@17) with Eq.
flow lines: (2.18 replaced by
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1 e'“k, I"jk, B'k! E'k! n, s, Sk
Fiji =Clji + Espjfpikl . (2.19 I . .
will be derived, where we introduced as an additional vari-

able the spatial differential
Ill. REDUCED SYSTEM
sk=Dxs. 3.3

For a further discussion of the equations above we need to Kk @3
introduce some notation. We writé=e, such thaN=N'e;  We study first the Bianchi identity2.17). For the various
with N'=6'y. With N we associate “spatial” tensor fields, components of the decomposition
i.e. tensor fieldsiri1 _____ i satisfying , , , , ,
_ Fiki = Nj(FninN = FrinNi) — 2€F iy Nip+ eNjF g+ Fig
i N'=0, I=1,...p.

..... [P .
! ! P we get the expressions

The subspaces orthogonal t® inherit the metric

P71 . . A / + e’ —al(FEl +ElL.  +E!
hij=gi;—€eN;N;, andh;! (indices being raised and lowered €Fruin=EnFrnint €D Finion = (Pt it Fini)

with gj;) is the orthogonal_projector onto these subspaces._ — GXij(Fi'jkN+ Fi'Nkj)_inF,quijLX,:,fwkN, (3.9
We shall have to consider for various tensor fields their
projections with respect tl an(_j its orthc_)gonal subspaces. €F (= LnF vkt €D'F i —a (i + Fini) + €(@xF i
For a given tensor any contraction withwill be denoted by 3 . )
replacing the corresponding index by and the projection +aiF ) — €x Fijia = x' Fni— X1 i
with respect tdh;! will be indicated by a prime, such that for VBN BN 3
a tensor fieldT;; we write e.g. XCKEINNET X INKN T X NNk (3.9
Ti,Nk:TmpqhimNphkqv EF]!N| :‘CNFI,\I]N|+ EDIFi,jN| _aI(F;\”” + FI’]N|)+ €a]‘F"\lNN|
- ; : - —ex™ Flu—xi Frnin—x' Frinit X' F
etc. Denoting byej; the totally anti-symmetric tensor field X ikl T XPENINET XEENGNET XN
g:g:mg: 1 and setting:jy = ey« » we have the decompo- +XFMN| , (3.6)

Flu=LnFli+ €D'Flig—aFly + e(@iF inut akF i
i = 2€(Np €710~ €1 kNiy)- €F = LnFnju T €D Fijn ijki T e(@Fynit aF i

SV W | .y A | g AN | = A [ =3
Let Ci be the conformal Weyl tensor ofg, taFyjn) =X Friki— Xk Frgir = x1 Fje T X Fink

fki=32CijpqeaP? its dual, and denote byE;=C{;y;, + X' F it + X Ffin+ XF i (3.7
Bji=Cqjni its N-electric and N-magnetic part. Writing

|j=hix— eN:Ny., we get the decompositions where £y denotes the Lie derivative in the direction Mgf

To relate the frame to the structure of the field equations
Cijia=2¢(1,5 i~ likEiyj) — 2(N[Biype?s; + NiiB i pePia), (2.1), (2.2), we shall now make the specific choice

N=gy=U. (3.8
Cliia = 2N1iB 1P 4Bpri "N = NGBy By Egs.(2.1), (2.2 we have
—Bpqeijet - (3.2 X .
We set Sk=« 3PTP UiUk—§EKphik. (3.9
a'=NVN', xi=h*V,N;, x=h"x, Inserting this together with Eq3.1) into Eq. (2.15 we get
such that we have Rijki = 2€(1jkEni = likEiy) — 20U B p€”ij + UiBjp€Pir)

ViN'=eN;a'+x;', a'=hTyl,, xij=—eh*n/'T,0. 1
J A o Xi R + g exp(lpdii—lighn) + xpthiply U;

SinceN is not required to be hypersurface orthogonal, the

field x;; will in general not be symmetric. —h; U Ui} (3.10
If the tensor fieldT is spatial, i.e.T=T', we define its
spatial covariant differential bpT=(VT)’, i.e. It also follows from Eq.(3.9) that
DT, 5, =ViTj,.j hihi by Jo. Funk= Fnkn=0

if either of the expression§.18), (2.19 for Fj is used.
Thus Egs(3.4), (3.5 should be regarded as constraint equa-
Dihjk:O! DiEjkIZO' tions. . . . .
To obtain evolution equations, we consider E2}6). Us-
In the following a system of propagation equations for theing Egs.(3.9), (2.19, and(2.18), we get from Eq(2.17) the
unknowns equations

It follows that
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OZEF(,”N“)E,CLJB“_DiEk(jE|)ik+ZeaiEik(jE|)k_Xi(jB|)i Foab:O. (31@

—2x('Biyi+ XBji + €xikBpqe” ;€ (3.1)  In the special case of pressure free matter we know more
about the connection coefficients. Equati@g) reduces to
L the geodesic propagation law/ V;U!=0. Thus the frame,

p K 7 i is parallel propagated in the direction df and we have

0:€( F(]-N“)_§hj|hlkFiNk):EuEJ|+Din(j€|)|k p p p g

. : . , I'yi=0. 3.1
_Zéai €Ik(jB|)k_3X(j IE|)i_2X|(jE|)i+hj|XlkEik+ 2)(E]| 0] ( 7)
With this condition Eq(2.14) implies the propagation equa-

K tions
+ §(P+ p)

1
X(j|)_§)(hj|), (3.12

2 ke 0trqij:_rkijqu0+ Riqu, (3.18
0=e;h Fing=Lup T (p+pP)Xx. (.13 _ .
with the curvature tensor given by E@.10. Consequently,
in the case of pressure free matter the propagation equations

The last of these equations is just E2.4) while the first two
for the unknowns

are our evolution equations fd;, andBj,. Observing the
symmetry of these tensor fields but ignoring the information
about the trace, we find that Eq8.11), (3.12 form a sym-
metric hyperbolic system for the unknowgs, , B, j <Kk,

if the frame coefficients, the connection coefficients, and the . .
functions p, p are given. By taking traces in Eq&3.1), ¢ 9Ven by Egs(3.19, (3.18 with Egs. (3.10, (3.1,

L ) . (3.12, (3.13, where we sep=0 everywhere. This system is

fr?tlhzé : gvlgljt?:: iﬁ‘ht?]tetZZtge:SrEkl %Z?IB;éégE?Anltrace free symmetric hyperbolic and incorporates the Lagrangian rep-

. . 9 aly. resentation of the flow field by Eq3.14). Equation(2.3) is

Propagation equations for the frame coefficients are ob;

tained ol W thet. a=123 local taken care of by Eq3.17).
ainea as lollows. vve assume thet, a=21,2,5, are loca We return to the general case. Equat{@rll) implies the
coordinates on some space-like initial hypersurf&eand propagation equation
that they are dragged along with the vector figlg=U.
Furthermore we choosé=t to be a parameter of the flow

es, Ty, Bk, Ejk, p

lines of U, i.e. proper time for observers moving with the Ly5=0. (3.19
fluid. With this choice of coordinates we satisfy the
Lagrange condition Using Egs.(2.10, (2.11), we get

Ut=ely=6%. (3.149 U'V.p=—(p+p)r?V,Ul,

Equation(2.13 then implies for the remaining frame coeffi-

cients the propagation equations which gives with Eq(2.3) the relation

(?te'uaz(I‘Oca_FaCO)eMC—FFOOa&MO' (315) EVJp:(p+p){UIV|U]_V2U]V|UI} (32@

Here and in the following the indices,b,c,d take values For this to be true the following integrability condition must
1,2,3 and the summation rule applies. be satisfied:
To obtain evolution equations for the connection coeffi-
cients we have to impose gauge conditions on the vector _ _
fields e,. We require that they be Fermi propagated in the 0=J;=V{(p+p)(U'V;U;—+?U;ViU")} -V {(p+p)

direction of e, i.e. Veoek+ e{g(ek,YeOeO)eo . X (U'V,U,— 12UV, U1},
—g(ek,eO)Veoeo}zo. In terms of the connection coeffi-
cients this equation reads Using again Eq(3.20, we get, more explicitly,
OZJkJ':(p"Fp) Ui(VkVin—VjViUk)—VZ(UijViUi—UijViUi)—V2V|UI(VkUj—VJ'Uk)+VkUiVin—VjUiViUk
ptp (3% | i i i i
+6_1/2_ W V|U (UkU V|UJ_UJU ViUk) +(CYUK_,8U VIUk)SJ—(aUJ—,BU Vin)Sk, (321)
S
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where we set

a2 nov¥\ap
a':(p-f—p)g— 1+70—n E-ﬁ-v nT,
1 9p
B_nT_FE'

Under our assumptions E€B.2]) is represented equivalently

by the two equations

0=e9(I'o%a) — v?€x(T' %) +To%(Ia%—T'¢%)

2
7
ap s

prp

V2

I Tl — ——s, (3.22
c0'0 a p+pa .

and

0=e,(T'o%) —€n(To%) —To°e(Ta% —T'p%) = v?T S0 (2%

(3.23

B
—T,%)— oip (T'o%asp=T0%Sa)-

We can now complete our system of propagation equation

In view of Eq.(3.16) we get, from Eq(2.14),
atrabc: - decrado_ l_‘Obol_‘aoc_k l_‘abOFOOc_F Rcha -
(3.249
From Egs.(2.14 and(3.22 ensues

é’trooa_ Vzec(raco) =- I‘Ooc aco_

ptp (#p|
2 F -V
v P/

c 0 @ 2 c k
XT%lg at msa"_V [To(Ta"c
- I‘cka) - 1_‘ackrcko"' 1_‘cckrako
+RCOaC]1

(3.29
while Egs.(2.14) and (3.23 give

V20T % — v2en(T%) = 1% T\ (T —Ta50) — Tl %
+ RObOa"‘ I‘Ooc(racb_ I‘bca)
+ VZFCCO(FaOb_ Fboa)
B 0 0
+ oip (I'o"aSp—=T0 bSa) | -
(3.26

Equations(3.15), (3.24), (3.25, (3.26 [where Eq.(3.10 is
assumed] (3.11), (3.12, (2.10, (2.1, (3.19, and (2.6),

2321

ticed, however, that in our
_(Fojk_rk]o)sj:e’“ké’tsw etc.

formalismLy s, = ;S

IV. CONCLUDING REMARKS

The propagation system we have developed lasavell
as the otherwise completely different system considered in
[1]) is of third order in the metric. As a consequence of this,
Eqg. (2.3 attains in our formalism the status of a constraint.
But it should be observed that EQ.3) has been used in the
derivation of the integrability conditior{3.21). Equations
(3.29, (3.26 contribute the sound cone to the system of
characteristics. If one wants to ensure that the sound charac-
teristics are non-space-like, one has to require tlval. For
our considerations there is no need to impose an upper limit
on the speed of sound.

In our procedure the fluid equations serve two purposes.
Their main role is, of course, to determine the motion of the
fluid. In addition to that, we use them to remove the gauge
freedom.

Since under our assumptions the equations for an ideal
fluid can be written on any given background manifold as a
Symmetric hyperbolic system, they can be solved for arbi-
trary, sufficiently smooth data at least locally near any
Cauchy hypersurface. On a given solution to the vacuum
field equations they can thus be used as equations for the
time-like vector fielde, of an orthonormal frame, by set-
ting U =¢, (no coupling to the Einstein equations is intended
here. Fixing the fieldse, by Fermi or some other suitable
transport law and dragging along the coordinates wegh
we obtain a way to fix the gauge in the frame formalism.
This gives a new hyperbolic reduction of the Einstein
vacuum equations. In this procedure any exdtie. com-
pletely unphysical “equation of state” may be prescribed,
the sole objective being to obtain a useful, long-lived gauge.

It may facilitate the analysis near the boundary if such a
gauge is used in the vacuum part of the problem, where the
data for the fieldJ, the densityp, and the equation of state
are extended in a suitable way beyond the boundary.

The system simplifies considerably in the homentropic
case. Thens,=0 in Egs. (3.25, (3.26 and Egs.(2.10,
(2.1, (3.19, (2.6) are replaced by Eq$3.13), (2.12. In the
resulting system the functign+ p neither occurs in the prin-
ciple part nor in a denominator.

We do not demonstrate here that the gauge conditions and
the constraints are preserved in the evolution defined by our
system. The argument should closely follow the correspond-
ing argument given ir{8]. However, in the presence of a
boundary such a demonstration will only be sensible if pre-
cise smoothness properties of the fields near and possible
jumps travelling along the boundary have been worked out in
the course of the existence proof.

We have given the equations in a form which displays
those formal properties which are important for us. It is of
interest to compare Eq3.11), (3.12 with the way in which
the Bianchi equations have been written[8]. Here inter-
pretations of some of the quantities entering the equations

(2.7) provide the desired symmetric hyperbolic system. Theare provided.
Lagrangian representation of the flow is again taken into There may exist variations of the system discussed in this

account by Eq(3.14. Where the operatod'V; occurs in
these equations, it can be replaceddy It should be no-

paper which are of particular interest in numerical work. In
[8] a hyperbolic reduction of the Einstein equations which is
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based on the Arnowitt-Deser-MisnéADM) representation condition(3.21) propagation equations for the lapse function
of the metric has been given. The resulting system is symand the shift vector field.

metric hyperbolic and can be written in flux conservative Finally one may ask how our procedure relates to New-
form. It may be worthwile to attempt something similar in tonian theory. There appears to be no direct analogue in the
the present situation. One would then identify the time-likeNewtonian case. Nevertheless, it may be interesting to see
flow vector field inherent in the ADM representation with the what happens to our system if one tries to obtain a Newton-
flow vector fieldU and try to deduce from the integrability ian limit.
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