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Abstract 

In a recent paper [O. B~irwald, R.W. Gebert, M. Gdnaydin and H. Nicolai, preprint KCL~MTH- 
97-22, IASSNS-HEP-97/20,  PSU-TH-178, AEI-029, hep-th/9703084, to appear in Commun. 
Math. Phys.] it was conjectured that the imaginary simple roots of the Borcherds algebra g11,~.~ at 
level 1 are its only ones. We here propose an independent test of this conjecture, establishing its 
validity for all roots of norm ~> - 8. However, the conjecture fails for roots of norm - 1 0  and 
beyond, as we show by computing the simple multiplicities down to norm - 2 4 ,  which turn out 
to be remarkably small in comparison with the corresponding E~o multiplicities. Our derivation 
is based on a modified denominator formula combining the denominator formulas for Em and 
~H~.~, and provides an efficient method for determining the imaginary simple roots. In addition, 
we compute the E~0 multiplicities of all roots up to height 231, including levels up to £ = 6 and 
norms - 4 2 .  @ 1998 Elsevier Science B.V. 
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1. Introduct ion  

In this paper  we  begin a systemat ic  study o f  the s imple  imaginary  roots o f  the 

Borcherds  L ie  a lgebra  $119,~ and propose  a new method  to compute  their  ( s imp le )  
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multiplicities, enabling us to test the conjecture made in Ref. [ 1 ] concerning the set of 
imaginary simple roots of 1~119.~. Let us recall that ~1t9,~ is the Lie algebra of physical states 
of a subcritical bosonic string fully compactified on the even self-dual Lorentzian lattice 
1193, which coincides with the root lattice Q ( E l o )  of the hyperbolic Kac-Moody algebra 

Elo; this lattice is spanned by the simple roots r - l ,  to, rl . . . . .  r8 of Elo (alias the real 
simple roots of ~i,,,, ). Our primary motivation for investigating the root system of ~1t9,1 
is to better understand the hyperbolic algebra Elo, which is the maximal Kac-Moody 
algebra contained in gttg,~: 

El0 C ~119., • (1) 

As explained in Ref. [ 1 ], the difficulties of understanding hyperbolic Kac-Moody al- 
gebras on the one hand and Borcherds algebras (also called generalized Kac-Moody 

algebras [ 3 ] ) on the other hand are to some extent complementary: while a Lorentzian 
Kac-Moody algebra has a well-understood root system, but the structure of the algebra 
and its root spaces (including their dimensions!) is very complicated, Borcherds alge- 
bras may possess a simple realization in terms of physical string states, but usually have 
a very complicated root system due to the appearance of imaginary (i.e. non-positive 
norm) simple roots. The Chevalley generators corresponding to imaginary simple roots 
of ~119.1 are needed to complete the subalgebra El0 to the full Lie algebra of physical 
states. This can be seen by decomposing the vector space 

A//:= ~ng.~ O El0, (2) 

into an infinite direct sum of "missing modules" all of which are highest or lowest 
weight modules with respect to the subalgebra Elo (see Refs. [ 1,11 ] ). This implies that 
all of  ~tUg.j can be generated from the highest and lowest weight states by the action of 
(i.e. multiple commutation with) the Elo raising or lowering operators. However, not 
all the lowest weight states in .hal correspond to imaginary simple roots of gng,~. This 
is because the commutation of two lowest weight states yields another lowest weight 
state; yet it is only those lowest weight states which cannot be obtained as multiple 
commutators of previous states and which must therefore be added "by hand" that will 
give rise to new imaginary simple roots. Complete knowledge of the imaginary simple 
roots of ~ng.~ is thus tantamount to understanding the hyperbolic Kac-Moody algebra 
Elo (or at least its root multiplicities). 

Let us pause for a moment to rephrase these statements in string theory language. 
As has been shown in Ref. [9], commutation of two physical string states in these 
completely compactified string models is equivalent to tree-level scattering. So, starting 
with a set of ten fundamental tachyons (associated with the real simple roots), we 
generate by multiple scattering an infinite set of physical string states at arbitrary mass 
level. By construction, this set is just the hyperbolic algebra Ejo, and it is easy to see that 
it contains all tachyonic and all massless states as these can be produced by elementary 
scattering processes. By contrast, Elo does not exhaust the massive states because not 
all of  these can be obtained by scattering Elo states of lower mass. To be sure, Elo does 
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act via the adjoint action on all physical states, i.e. we can scatter two states only one 

of which belongs to El0 to get another state, which is also not in El0. Therefore, the 

remaining ("missing", or "decoupled") part of the spectrum can be decomposed into 
El0 representations. In order to identify the pertinent highest or lowest weight states, 
the strategy is to pick suitable missing string states of lowest mass and add them as 

extra Lie algebra elements to E~0. Since the momenta of these states have negative 
norm 4 this corresponds to adjoining timelike simple roots to El0. These simple roots 

generically come with multiplicities bigger than one because massive string states have 
additional polarization degrees of freedom, whereas the tachyons are scalars, and the 

real simple roots consequently have multiplicity one always. Following Ref. [ 1 ] we will 

designate the simple multiplicity of an imaginary simple root A b y / z ( A ) ;  this simple 

mult ipl ici ty/z(A) must not be confused with the multiplicity mult(A) of A as a root 

of E~0 or with the multiplicity dimom.~ ~a) of A as a root of 0Its.,. Therefore, the Lie 
algebra of all physical states is no longer a Kac-Moody algebra since the Cartan matrix 

may now have negative integers on the diagonal. In general, the above procedure has 

to be repeated an infinite number of times because by scattering the adjoined massive 
states with E~0 states, we still do not exhaust the whole spectrum. 

So far, there are only a few string models for which the root system of the associated 

Borcherds algebra has been completely analyzed, and for which a complete set of 
imaginary simple roots associated with extra string states, including their multiplicities, 

has been identified. Celebrated examples are the fake monster [4] and the monster Lie 

algebra [5],  which are related to a toroidal and an orbifold compactification of the 
26-dimensional bosonic string. In Ref. [ 1], an infinite set of level-1 imaginary simple 

roots (with exponentially growing, known multiplicities) for the Borcherds algebra 

gm~ was found and it was conjectured that this set should exhaust all of them. The 
results of this paper disprove the conjecture and show that the structure of the gm~ 
root system is more involved than originally thought. In establishing these results, we 

are led to explore the multiplicities and simple multiplicities of these algebras much 

further than has been done before. Our calculations of the simple root multiplicities are 
based on a new denominator formula which combines the known denominator formulas 

for El0 and 0m.~. Although not as efficient as the Peterson recursion formula (which 
appears to have no analog for simple multiplicities), this formula does simplify the 

computations substantially and allows us to evaluate the simple multiplicities down to 
norms 24. Since we have made no attempt to optimize our computer program (using 

the symbolic algebra system Maple V) with regard to speed, it is quite conceivable 

that the calculations can be carried even further. As an important by-product of this 
investigation we have determined the El0 root multiplicities up to height 231 including 
levels up to g = 6 and norms down to -42 ,  because these numbers are needed as an 
input in our modified denominator formula. Since these results may also be of use in 
other contexts, we have tabulated them separately in Appendix A. 

4 By the "norm" of a root A we mean the (Minkowskian) scalar product A 2. 
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Although the ultimate pattern underlying the multiplicities remains elusive, and despite 
the failure of  our original conjecture, our results do exhibit some intriguing features. In 

particular, we would like to draw attention to the fact that, as far as we have computed 
them, the simple multiplicities come out to be remarkably small, both in comparison 

with the El0 multiplicities and with the number of decoupled states. For instance, at 
level ~ = 4, we find 

/z(A3) = 2,  

whereas the El0 multiplicity of  A3 is given by 

mult(A3) = 1044218,  

and the number of  associated decoupled states is equal to 

A(A3) = 278 125. 

This behavior is to be contrasted with the gnome Lie algebra 1~t6.1 for which the simple 
root multiplicities and the root space dimensions are of the same order of  magnitude [ 1 ]. 

On the other hand, the pattern is clearly more irregular than for the simple imaginary 
roots of the fake monster algebra ~1125.~ whose simple multiplicities either vanish, or are 

uniformly equal to 24. In fact, at this point, we cannot even exclude the possibility of 

a "chaotic" behavior at yet larger (negative) norms and higher levels - after all, El0 

is defined by means of a recursive procedure just like simple chaotic systems. Being 
optimistic and barring such pathologies, the supreme challenge is now to unveil the 

secret behind the numbers we have found; and, whatever hypothesis is proffered to 
explain E~0, it must be tested against these numbers. 

2. A modified denominator formula 

We first summarize our notations and conventions for El0, mostly following [ 13] to 

which we refer the reader for further details. The real simple roots ri and the fundamental 

weights Ai  are labeled in accordance with the Coxeter-Dynkin diagram: 

8 

- 1  0 1 2 3 4 5 6 7 

from which the El0 Cartan matrix Aij  can be easily read off. The root r-1 which extends 
the affine subalgebra E9 to the full hyperbolic algebra El0 will be referred to as the 
over-extended root. The level g of a root r in the fundamental Weyl chamber is defined 

by 

g := -~3. r ,  (3) 
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where 8 denotes the affine null root. The fundamental Weyl chamber C is the positive 

convex cone in II9ol generated by the fundamental weights Ai = - ~ j ( A - l ) i j r j  > O, 
obeying A i  • r j  = - 6 i j  (this is the only place where we deviate from the conventions 
of Ref. [13]) .  So we have, for instance, A-1 = 8 and A0 = r - i  + 26, etc.; since 
A2_l = 0 and A~ < 0 for i >~ 0, C lies inside the forward lightcone and touches it at 

one edge. Acting on C with all elements of the El0 Weyl group and taking the closure 
of the resulting set, one obtains the so-called Tits cone which coincides with the full 
forward light-cone containing all imaginary roots [ 12]. The Weyl chamber C contains 

in particular the imaginary simple roots which must be adjoined to complete El0 to 
the full algebra ~ng.~ of physical states. For the determination of root multiplicities it is 
therefore sufficient to restrict attention to roots in the fundamental Weyl chamber C; for 

a given root norm the computation can thus be reduced to a a finite number of checks. 

In Ref. [ 1 ] a complete characterization of all level-1 imaginary simple roots of ~ii,.~ 
and their multiplicities was given: the missing lowest weight states are just the purely 

longitudinal physical states with momenta r-1 + N8 for N ~> 2. The multiplicities of 

these simple roots are given by Iz(r-1 + N6) = 7rl (N),  where 

~,l(n) :=pa(n)  - p a ( n -  1),  (4) 

with 

Zpc t (n )q , ,  = H (  1 _ qn) -a  (5) 
n=0 n >/1 

One would expect the structure to be far more involved at higher levels, but the explicit 

calculations in Ref. [ 1 ] revealed that there were no imaginary simple roots s at level 2 
with s 2 ~> - 6 .  This unexpected result prompted the conjecture that the level-I roots of 

gl~,,,, are in fact the only imaginary simple roots of gng.l, or, equivalently, that the set of 

missing lowest weight states is the free Lie algebra generated by the purely longitudinal 
states at level 1. The evidence presented in Ref. [ 1 ] was based on computer calculations 
of commutators of  certain level-1 states but this method becomes impractical beyond 

the examples studied there because of the rapidly increasing algebraic complexity as the 
root norms become more negative. We here present an independent test via a modified 
denominator formula, enabling us to carry the checks much further, even without use of 

a computer. This new formula combines the Elo denominator formula with the one for 
~m.,, and is therefore sensitive only to the "difference" of these two algebras. 

The denominator formula for El0 reads (see e.g. Ref. [ 12] ) 

H ( 1 - - e r )  mult(r) = Z (--1)r°em(P)-P'  

rE,4 ~ mE~13 

(6) 

where A+ are the positive roots of El0 and p is the El0 Weyl vector, i . e . p ,  ri = -½rei 
tot i = - 1,0, 1 . . . . .  8. The determination of the root multiplicities 

mul t ( r )  := dim Elf ) (7) 
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at arbitrary level g remains an unsolved problem for Em (and, more generally, for any 
hyperbolic Kac-Moody algebra): closed formulas exist only for levels Igl ~< 2 [13], 
and, albeit in implicit form, for g = -t-3 [2]. The denominator formula relates the infinite 
product over all positive roots to an infinite sum over the Weyl group ~3 - ~ (E10)  
generated by the reflections with respect to the real simple roots. In principle, all root 
multiplicities can be determined from it by multiplying out the 1.h.s. and comparing the 
resulting expressions term by term, but in practice this method reaches its limits rather 
quickly. However, one can derive from (6) the so-called Peterson recursion formula 
(see e.g. Ref. [ 14] ), which can be implemented on a computer. Because, to the best 
of our knowledge, explicit tables of El0 multiplicities available in the literature stop at 
Igl = 2 [ 13] and the actual numbers are needed in our calculation, we have computed 
the Em multiplicities of all roots up to height 231 and levels ~<6 by putting the Peterson 
formula on a computer. Readers may notice that, beyond g = 2, these multiplicities are 

no longer functions of the norm alone, as was still the case for the level 2 roots (so 
Murphy's law has struck again). 

For the Borcherds algebra ~119.,, the denominator formula must be amended in two 
ways: firstly, the El0 multiplicities mult(r) are replaced by the corresponding numbers 

of physical states 

dim ~i/~.~ r~ = "rr9( 1 - ½r 2) /> mult ( r ) ,  (8) 

and secondly, the r.h.s, must be supplemented by extra terms due to the imaginary simple 

roots. The modified denominator formula reads [ 3] 

H (1 - e r )  7 r 9 ( 1 - ½ r 2 )  --  Z (--1) r°er°(P)-P ~ e ( s ) e  r°(s), (9) 

rEd~ r o E ~  s 

where e ( s )  is ( - 1 )  n if s is a sum of n distinct pairwise orthogonal imaginary simple 
roots of ~u9.~, and zero otherwise. As already pointed out the candidates for imagi- 
nary simple roots are all lattice points in the fundamental Weyl chamber C. Because 
all massless physical string states belong to El0, there are no lightlike simple roots. 
Consequently, the imaginary simple roots are all timelike, and we therefore conclude 

that there are no pairwise orthogonal imaginary simple roots. Hence 

-  (a)e 

$ ACCAIIg ,  1 

A2~--2  

oo 

= l - Z rrj ( N ) e  r°{r-'+ua) + . . . .  ( 10 )  

N=2 

where in the second line of this equation, we have made use of our knowledge of the 
simple roots at level 1 and their multiplicities; the dots stand for possible contributions 
from higher-level imaginary simple roots. Unfortunately, there seems to be no analog of 
the Peterson recursion formula that would allow a (comparatively) quick determination 
of the imaginary roots and their simple multiplicities. The proof of this formula crucially 
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relies upon the existence of a Weyl vector with p .  s = -½s  2 for all simple roots s: while 

this requirement is met by the ten simple roots of Em it fails already for the level-1 

imaginary simple roots s = r_ l  + N& as one can easily check. Consequently, no Weyl 
vector exists for gltg.t and we have to seek another way of simplifying the denominator 

formula in order to test our conjecture. 
The idea is to modify the formula in such a way that it "measures" only the corrections 

that arise when enlarging Em to the full Lie algebra gu~,, of physical states. To this aim 
let us introduce the difference between the g119.~ and the El0 multiplicities, i.e., the 

number of decoupled (missing) states associated with the root r, 

A ( r )  :=77"9(1 --  l r 2 )  - mult (r)  (~> 0 ) .  ( 1 1 )  

So, using the known results in for lel ~< 2, we have 

0 for e = 0 ,  

A ( r )  = 77.9( 1 _ 1 2 7r ) - p 8 ( 1 -  ½r 2) for g=  l ,  (12) 

77.9(1_ 1 2 ~ r ) - - s C ( 3 - -  1 2 7r ) for g = 2 ,  

where the function ( ( n )  was defined and tabulated in [13] (notice the accidental 

equality p8(3) = s¢(5)). The explicit El0 multiplicities beyond level 2 which we need 

have been collected in the table of Appendix A, where we also list the relevant values 

for A(r). 
Inserting the Elo denominator formula into the one for 1~,I9.~, we obtain the following 

formula after a little algebra: 

(£(-1)rOem(P))(r~ca (1-er)a(r)-I) 

= -  ~ ~ ( - 1 ) m t z ( a )  em(v+A) 
mC~ZlJ AcCnU,~,I 

A2~<--2 

O O  

= _  ~ ~ - -~ (_ l ) " , rq (N+2)e , , (P+a0+Na  1 ) + . . .  (13) 

mE~213 N=0 

The dots stand for the level e >~ 2 contributions which were conjectured to vanish 
in Ref. [ 1 ]. We will show explicitly how the conjecture fails by exhibiting non-zero 
contributions of this type. 

One advantage of this formula is the absence of terms without r - t  on the 1.h.s. since 
for all such roots we have A(r) = 0; thus, the E9 part of the denominator formula 
has already been factored out in (13). Given the El0 root multiplicities it allows us to 
determine the simple roots together with their simple multiplicities rather efficiently, as 

we will demonstrate in the following section. The analysis of (13) can be considerably 

simplified by restricting oneself on the r.h.s, to roots in the fundamental Weyl chamber 
8 C. To see this, we note that in terms of the fundamental weights we have p = 3-~o=- t A,, 
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so that p + A  E C for all A c C, and that for any to v~ 1 the vector t o ( p + A )  lies outside 

the fundamental Weyl chamber since no fundamental reflection leaves p invariant. With 

this observation, the sum over the Weyl group on the r.h.s, can be disregarded. 

The general procedure for evaluating the new denominator formula is then as follows. 

Let us fix a dominant integral level-g weight A C C for which A = ~ m i A  j with mj >10. 

We wish to determine the coefficient of  e a on the 1.h.s. of  formula (13).  To do so, we 

must first look for all possible decompositions p + A = to (p )  + v with v E Q+(Elo) .  

The reason why we cannot drop the sum over the Weyl group on the l.h.s., even if 

we consider only terms in the fundamental Weyl chamber on the r.h.s., is that in this 

decomposition neither to (p )  nor v will in general be in the fundamental Weyl chamber 

even if their sum is. Now, for 

re (p)  = p + a 

we have a > 0 unless m = 1; this follows from the fact that the Weyl vector is a 

dominant El0 weight. From the preservation of  the scalar product and basic properties 

of  the Weyl vector we deduce that (for a v~ 0) 

a 2 = - 2 p . a = 2 h t ( a )  > 0 ,  

where "h t"  denotes the height of  the root, and 

v 2 = A 2 + 2 (ht ( a )  - a .  A ) .  

Note that for A C C we also have a - A ~< 0 for any positive a. These simple relations 

severely constrain the possible a ' s  that must be taken into account: since repeated 

Weyl reflections will increase the height, there are only finitely many terms which can 

contribute for any given A. Having found all possible v = A - a C Q+(Elo) that 

can appear, the next problem will be to calculate the coefficient of  e v arising from the 

product over the positive roots. For this we must find all decompositions v = ~ j  vj with 

vj E A+. Some care must be exercised with the various minus signs arising from the 

Weyl reflections as well as from the binomial expansions of  the factors in the product 
over the positive roots. In particular, we have to know all multiplicities of  the relevant 

positive roots. At higher level, this causes the extra complication of  determining in which 

El0 Weyl orbits these roots lie. Given any positive root r, this amounts to reflecting it 

by use o f  the Weyl group into the fundamental chamber. Although there seem to be no 
general results available we have found the following method, due to Fuchs [8] ,  to be 

very efficient. One starts by rewriting the root in the basis of  fundamental weights, i.e. 

r = ~-~i m i A i  for m i  E Z. Since r ~ C by assumption, at least one of  the coefficients mi 

is negative. Choose a negative coefficient with the largest absolute value mk, say, and 

apply the kth fundamental Weyl reflection to the root. We obtain l'ok(r) = ~ i t o k ( m i ) A i  

w i t h  tok(mi) := mi --  mkAki, so that the coefficient of  Ak is now --m~ > 0. The next 

step is to determine again the most negative coefficient, to apply the corresponding Weyl 
reflection and so on. This algorithm always terminates after a finite number of  steps. 
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3. S a m p l e  ca lculat ions  for A 2 ~> - -10 

729 

Let us now illustrate how the calculation works in detail for some simple examples 
for which the new denominator formula can be evaluated by hand. This is certainly the 
case for roots A E C with A 2 /> - 1 0 ,  and perhaps beyond; however, the combinatorial 

complexities, and thus the possible sources of  errors, increase rapidly for large negative 

A 2, and we have therefore preferred to let the computer do the rest of  the calculation, 

see the following section. 

For the level-1 roots the required computations are quite straightforward, as we need 

only consider ro E g23(E9) and make use of  the fact that the E9 Weyl orbit of  r - i  + N 6  

consists of  all elements r - l  + (N  + ½b2)8 + b with b C Q(E8) .  It is then not difficult 

to check the validity of  (13) for roots A = A0 + (N - 2 )A_ j  = r-1 + N8 to large N. 

However, since we anyhow know the formula to be correct at level 1, we refrain from 

giving further details. As regards the level-2 roots of  norm 7> - 6 ,  our calculation will 

just confirm the conclusions reached in [ 1], whereas for norms - 8  and - 1 0  our results 

are new (and unlikely to be obtainable by the methods of  [1 ] ) .  We will show that 

all higher-level terms on the r.h.s, of  Eq. (13) down to norm squared - 8  are absent, 

in agreement with the conjecture of  [1 ]; the relevant roots in C are AT, AI,  2A0 and 

A7 ÷ ~, all of  level 2. There are two norm - 1 0  roots in C, namely Al + 6, of  level 2, 

and A8, of  level 3 (all other level ~>3 roots in C have norm ~< - 12); for these, we will 

find a non-vanishing result, refuting the conjecture of  Ref. [ 1 ]. Further counterexamples 

will be provided in the next section. 

In the actual calculations we will need to determine to which Weyl orbit a given root 

belongs, and whenever referring to a root lying in a certain Weyl orbit we have checked 

this by Fuchs'  algorithm. For small norms this is not really necessary, if there is only 

one Weyl orbit; for instance, there is only one orbit g~J(A0), for roots with r 2 = - 2  

which has A ( A o )  = 1. For roots with r 2 = - 4  there are two Weyl orbits, ~ ( A 0  + 6) 

and ~ ( A 7 ) ,  which happen to yield the same numbers d ( A o  + 6) = A(A7) = 9. In 

fact, all Weyl orbits of  level-2 roots in C with the same norm have the same value ['or 

A because the level-2 multiplicities (described by the function ( )  depend only on the 

norm. The combinatorial prefactors below arise from the combinatorics of  the indices 
i , j  . . . .  and are most conveniently determined by inspection of  the Coxeter-Dynkin 

diagram. Relations such as 0 ~< a 2 < - A 2 ÷  2a.  A show that we have listed all non-zero 

contributions to the simple multiplicities of  the roots under consideration. Finally, an 

important consistency check on the calculation is that the non-zero coefficients must 

come out to be non-positive due to the absence of  pairwise orthogonal simple imaginary 

roots. This applies in particular to the large (negative) norm roots to be analyzed 
in the next section, where the final result is obtained as an alternating sum of huge 
contributions. 

( 1 ) A 2 = - 4 ,  i.e. A = AT. 

(a) A . a = 0 :  

( i )  a = 0 =:~ - A ( A 7 )  = - 9 ;  

(ii) a 2 = 2, i.e. a = ri for i 4= 7 ~ 9 x ( - 1 ) 2 d ( A o )  = 9. 
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In total, this gives - 9  + 9 = 0 for the s imple  mult ipl ici ty.  

(2)  A 2 = - 6 ,  i.e. A = A l .  

(a )  A . a = 0 :  

( i )  a = 0  ==~ - A ( A I )  = - 5 3 ;  

( i i )  a 2 = 2 ,  i.e. a =r i  for  i :~ 1 ==~ 9 × ( - 1 ) 2 A ( A 7 )  = 81; 

( i i i )  a 2 = 4, i.e. a = r i + r j  for i , j  :~ 1 and r i . r j  = 0 :=~ 29 × ( - 1 ) 3 A ( A 0 )  = 

--29;  

(b )  A . a = - l :  ( i )  a2 = 2 ,  i.e. a = r l  ~ ( - 1 ) 2 d ( A 0 )  = 1 .  

In total, this gives - 5 3  + 81 - 29 + 1 = 0 for the s imple  mul t ip l ic i ty  5 

(3)  A 2 = - 8 ,  i.e. A = 2A0 or  A = A7 + 8. Let  A = 2Ao. 

(a)  A - a = 0 :  

( i )  a = 0 ~ - A ( 2 A 0 )  = - 2 4 6 ;  

( i i )  a 2 = 2 ,  i.e. a = r i  for i 4 : 0  ~ ( - 1 ) 2 [ A ( A 0  + 2 8 )  + 8 A ( A I ) ]  = 4 7 8 ,  

s ince A - r - l  E ~ ( A 0  + 2 8 )  and A - r l  . . . . .  A - r 8  E ~ ( A l ) ;  

( i i i )  a 2 = 4, i.e. a = r i + r j  for i , j  4 : 0  and r i . r j  = 0 ==~ 29 × ( - 1 ) 3 A ( A 7 )  = 

- 2 6 1 ;  

( i v )  a 2 = 6, i.e. a = r i + r j + r k  for i , j ,  k :/: 0 and r i . r j  = r j . r k  = rk ' r i  = 0, or  

a = 2 r i + r j  for i , j  v~ O a n d r r r j  = - 1  ==~ [ 4 2 × ( - 1 ) 4 + 1 4 × ( - 1 ) 3 ] A ( A 0 )  = 

28; 

(b)  A . a = - 2 :  

a 2 = 2 ,  i.e. a = r o  ~ ( - 1 ) 2 d ( A o )  = 1. 

In total, this gives - 2 4 6  + 478 - 261 + 28 + 1 = 0 for the s imple  mult ipl ici ty.  Let  

A = A 7 + ~ $ .  

(a)  A .  a = 0: 

( i )  a = 0 ==¢, - -A(A7  + 8)  = - 2 4 6 ;  

( i i )  a 2 = 2 ,  i.e. a = r  i for i v~ - 1 , 7  =:~ 8 × ( - - 1 ) 2 A ( A 1 )  = 4 2 4 ,  

s ince A -  a E ~ ( A 1 ) ;  

( i i i )  a 2 = 4, i.e. a = ri + r j  for i , j  4 : - 1 , 7  and ri • r j  = 0 ==~ 21 × 

( - 1 ) 3 A ( A T )  = - 1 8 9 ;  

( i v )  a 2 = 6, i.e. a = r i + r j + r k  for i , j ,  k v~ - 1 , 7  and r i . r  i = r j . rk  = rk.ri  = O, 

or  a = 2 r i + r j  for i , j  4= - 1 , 7  and r i . r j  = - 1  ~ [21 × ( - 1 ) 4 +  1 4 ×  

( - 1 ) 3 ] A ( a o )  = 7; 

(b )  A . a = - l :  

( i )  a 2 = 2, i.e. a = r - 1  or  a = r7 ==~ 2 × ( - 1 ) 2 A ( A 7 )  = 18; 

( i i )  a 2 = 4 ,  i.e. a = r - i  + r i  for i v~ - 1 , 0 , 7  or  a = r 7  + r j  f o r j  :/: - 1 , 6 , 7  

14 × ( - 1 ) 3 A ( A 0 )  = - 1 4 .  

In total,  this gives  - 2 4 6  + 4 2 4 -  189 + 7 + 1 8 -  14 = 0 for the s imple  mult ipl ici ty.  

(4 )  A 2 = - 1 0 ,  i . e . A = A l + 6 o r A = A s .  Let  A = A 1 + 8 .  

(a)  A - a = 0 :  

( i )  a = 0 ~ - A ( A I  + ~3) + ( - 1 ) 2 A ( A o ) A ( A o  + !"o) = - 9 8 2 ,  

5 These two examples amply demonstrate the power of formula ( 13 ): the necessary commutator calculations 
in Ref. I 11 needed to reach the same conclusion required two hours of CPU time! 
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s ince  A = 2Ao + r0 6.  

( i i )  a 2 = 2 ,  i.e. a = r i  f o r /  v~ - 1 , 1  ~ 8 × ( - 1 ) 2 A ( A 7  + 8 )  = 1968, 

s ince  A - r0 E ~ ( 2 A 0 )  and  A - ri  E ~ ( A 7  + 8 )  for  i 4: - 1 , 0 ,  1; 

( i i i )  a 2 = 4, i.e. a = r i  + r j  for  i , j  4= - 1 ,  1 and  r i  " r j  = 0 ~ 22 × 

( - 1 ) 3 A ( A ~ )  = - 1 1 6 6 ,  

s ince  A - a  C ~ ( A l ) ;  

( i v )  a 2 = 6, i.e. a = r i + r j + r  k for  i , j ,  k 4: - 1 ,  1 and  r i . r j  = r j . r k  = rk . r i  = O, 

or  a = 2 r i  + r j  for  i, j 4: -- 1, 1 and  r i • r j  = - 1 ==~ [ 26  × ( - 1 ) 4 + 12 × 

( - 1 ) 3 ] A ( A T )  = 126; 

( v )  a 2 = 8, i.e. a = r i + r j + r k + r l  for  i , j , k , l  4 : - 1 , 1  and  r i . r j  = 

. . . .  rl " r i  = 0, or  a = 2ri  + r j  + r k for  i, j ,  k 4 : - 1 , 1  and  ri  • r j  = - 1, 

ri  • rk = r.j • rk = 0, or  a = 2 ( r i  + r j )  for  i , j  v~ - 1 ,  1 and  ri  • r j  = - 1  

==> [ 1 3 ×  ( - 1 ) 5 + 4 8 ×  ( - 1 ) 4 + 6 ×  ( - 1 ) 4 ] A ( A 0 )  = 4 1 ;  

( b )  A . a = - l :  

( i )  a 2 = 2, i.e. a = r - i  or  a = r l  ==> ( - 1 ) 2 [ A ( A  0 + 2 8 )  + A ( A j )  ] = 107, 

s ince  A - r _ 1  C ~ 3 ( A 0 + 2 8 )  and  A - r l  C ~ ( A I ) ;  

( i i )  a 2 = 4 ,  i.e. a = r - l + r i  f o r /  4: - 1 , 0 ,  1, or  a = r l + r j  f o r j  v~ - 1 , 0 ,  1 , 2  

==~ 13 × ( - 1 ) 3 A ( A 7 )  = - 1 1 7 ;  

( i i i )  a 2 = 6, i.e. a = r - l  + 2 r o ,  a = r l  + 2 r 0 ,  a = r l  + 2 r 2 ,  or  a = r - i  + r i + r j  

for  i, j 4: - 1 ,0 ,  1 and  r i .  r j  = 0, or  a = rl  + ri + r j  for  i, j 4: - 1 ,0 ,  1 , 2  and  

r i • r j  = 0 

[25  × ( - 1 )  4 + 3 × ( - 1 ) 3 ] A ( A 0 )  = 22;  

( c )  A . a = - 2 :  

( i )  a 2 = 4 ,  i.e. a = r - i  + r l  ~ ( - 1 ) 3 A ( A o )  = - 1 .  

In total ,  th i s  g ives  - 9 8 2  + 1 9 6 8 -  1166 + 126 + 41 + 1 0 7 -  117 + 2 2 -  1 = - 2  

c o n t r a d i c t i n g  the  con jec tu re  o f  [ 1 ] !  We have  to c o n c l u d e  that  Al  + 6 is an 

i m a g i n a r y  s i m p l e  roo t  o f  mu l t ip l i c i ty  2. 

Le t  A = As .  

( a )  A - a = 0 :  

( i )  a = 0  ~ - A ( A 8 )  = - 9 8 1 ;  

( i i )  a 2 = 2, i.e. a = ri for  i ~ 8 ~ 9 × ( - 1 ) 2 d ( A 7  + 6 )  = 2214,  

s ince  A - a E ~ ( A 7  + 6 ) ;  

( i i i )  a 2 = 4, i.e. a = r i + r j  for  i , j  4 : 8  and  r i . r j  = 0 =¢.  28 × ( - 1 ) 3 A ( A I )  = 

- 1484, 

s ince  A - a E ~ ( A l  ; 

( i v )  a 2 = 6, i.e. a = r i + r j + r k  for  i , j ,  k ~ 8 and  r i . r j  = r j  . r  k = rk . r  i = 0, or  

a = 2 r i + r j  for  i , j  v~ 8 and  r i . r j  = - 1  ==> [ 3 5 × ( - 1 ) 4 + 1 6 × ( - 1 ) 3 ] A ( A 7 )  = 

171; 

( v )  a 2 = 8, i.e. a = r i + r j + r k + r t  for  i , j , k , l  v~ 8 and  r i . r  j . . . . .  r l . r i  = O, 

or  a = 2ri  + r j  + rk for  i , j ,  k 4 : 8  and  r i - r i  = - -  1 ,  r i  • r k  = r j  • rk = 0, or  

6 Note that this is the first example where we have to take into account the product over the positive roots 
appearing on the 1.h.s. of (13). 
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a = 2 ( r i + r j )  f o r i , j  4= 8 a n d r i . r i  = - 1  ~ [ 1 5 x  ( - 1 ) 5 + 8 4 x ( - 1 ) 4 +  
8 × ( - - I ) 4 ] A ( A 0 )  = 7 7 ;  

(b)  A . a = - l :  
( i )  a 2 = 2 ,  i.e. a = r s  ~ ( - 1 ) 2 A ( A I )  =53 ,  

since A - rs E ~ 3 ( A 1 ) ;  

( i i )  a 2 = 4 ,  i.e. a = r s  + r i  for i 4 : 5 , 8  ~ 8 x ( - 1 ) 3 A ( A 7 )  = - 7 2 ;  

( i i i )  a 2 = 6, i.e. a = r8 + 2r5 or a = r8 + ri + r.j for i , j  4: 5, 8 and ri • r j  = 0 

==> [22X ( - - 1 ) 4 +  1 x ( - 1 ) 3 ] A ( A 0 )  =21 .  

In total, this gives - 9 8 1  + 2214 - 1484 + 171 + 77 + 53 - 72 + 21 = - 1  again 

contradict ing the conjecture. We conclude that A8 is an imaginary simple root of  

mult ipl ici ty  1. 

4. Simple roots and simple multiplicities for A 2 ~> --24 

The above calculations can now be carried much further with the help of  a computer, 

and in this section we present the results that we have obtained down to norms A 2 = 

- 2 4 .  Before giving these results, we would, however, l ike to stress once more some 

of  the extra complicat ions that arise as the root norms become more negative. As 

is already evident from the example A = A~ + 8 of  the last section, we must now 

deal with the product over all positive roots appearing on the l.h.s, of  (13) .  More 

specifically, for a given root A we will have to take into account all decomposit ions 

of  v = A - a into sums of  posit ive roots. To find them, we make use of  the fol lowing 

strategy. Since only posit ive roots with non-vanishing A contribute, we can disregard all 

real and l ight l ike imaginary roots. Moreover, without loss of  generality we can rotate 

v into the fundamental  Weyl chamber and look for decomposit ions v = ~-~j vj  there; 

it is important here that the summands vj need not belong to C separately. Starting 

from any such decomposit ion,  the action of  the little Weyl group "W(A) (i.e., the 

stability subgroup leaving A fixed) yields further decompositions.  Hence we have to 

take into account only those decomposit ions where at least one of  the elements vj  is 

a lowest weight vector of  W ( A ) .  In the cases we have investigated we could restrict 

the search even further because only decomposit ions into two components can occur. In 

general, however, decomposi t ions into an arbitrary number of  positive roots will have 

to be considered. For roots which are multiples of  other roots we also have another 

contribution, coming from higher terms in the expansion of  (1 - e  v ) '~ ' ) .  

Since in long computer  calculations 7 one can never exclude all possible sources of  

errors, we emphasize once more that the posit ivity of the final result constitutes an 

important consistency check, especially with descending norms as the numbers involved 

in the sum become very large. Our results are collected in Table 1. 
For the convenience of  the reader and to provide a "bird 's  eye's  " view on the results 

obtained so far, we have displayed them once more in the table below. This table 

7 For instance, the determination of/z(A3) = 2 took one hour of CPU time. 
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Table 1 
Simple multiplicities of imaginary simple roots with A 2 ~< - 2  

733 

A g(A) ht(A) A 2 dim 01/~,1Ca~ # ( A )  

Ao 1 61 - 2  45 1 
A7 2 76 - 4  20l 0 
6 + AI) 1 91 - 4  201 1 
At 2 93 - 6  780 0 
6 + A7 2 106 - 8  2718 0 
A8 3 115 - 1 0  8730 I 
26 + A0 1 121 - 6  780 2 
2A0 2 122 - 8  2718 0 
6 + Ai 2 123 - 1 0  8730 2 
A2 3 126 - 1 2  26226 0 
26 + A7 2 136 - 1 2  26226 I 
A0 + A7 3 137 - 1 4  74556 3 
6 + A8 3 145 - 1 6  202180 3 
3 6 +  Ao 1 151 8 2718 2 
6 + 2Ao 2 152 -12  26226 2 
2A7 4 152 - 16 202180 0 
26 + AI 2 153 - 14 74556 3 
A 6 4 153 - 1 8  526397 3 
Ao + A i  3 154 -16  202180 4 
6 + A2 3 156 -18  526397 6 
A3 4 160 - 2 0  1322343 2 
36 + A7 2 166 - 1 6  202180 4 
6 + A o  + A7 3 167 - 2 0  1322343 14 
AI + A7 4 169 - 2 2  3218091 14 
26 + A8 3 175 - 2 2  3218091 14 
A0 + A8 4 176 - 2 4  7612014 15 
46 + Ao 1 181 - 10 8730 4 
26 + 2Ao 2 182 - 16 202180 4 
6 + 2A7 4 182 - 2 4  7612014 9 
36 + Aj 2 183 -18  526397 I1 
3Ao 3 183 -18  526397 7 
6 + A6 4 183 - 2 6  17548920 
46 ÷ A7 2 196 - 2 0  1322343 8 
36 ÷ 2A0 2 212 - 2 0  1322343 13 
46 + AI 2 213 -22  3218091 25 
56 + A7 2 226 - 2 4  5717880 19 

highlights two facts, namely, (i)  that in some cases the simple multiplicities depend 

only on the norm of  the root in question, and (ii) (somewhat to our surprise) that the 

simple multiplicities at level g = 2 depend also on the "direction" of  the root, unlike the 

corresponding El0 multiplicities! 
While no clear pattern is discernible in the simple root multiplicities so far, the 

smallness of  the numbers obtained is noteworthy. Especially the zeroes in this table 
(the corresponding roots thus must not be counted as simple roots) appear to us quite 

striking in view of  the fact that we are unaware of  any obvious a pr ior i  reason for 
their existence. Furthermore, we observe that the simple multiplicities do not depend 
monotonically on the norms for levels g ~> 2, unlike the level-1 simple multiplicities, and 
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Table 2 
Simple multiplicities of imaginary simple roots for gttg,~ 

A 2 

g - 2  - 4  - 6  - 8  - 1 0  - 1 2  - 1 4  - 1 6  -18  - 2 0  - 2 2  - 2 4  

! 1 1 2 2 4 4 7 8 12 14 21 24 
2 0 0 0 a 2 1,2 3 4 a II 8,13 25 19 
3 1 0 3 3,4 6,7 14 14 

4 0 3 2 14 9,15 

a Occurs twice. 

unlike the simple multiplicities of the gnome Lie algebra. Also, for fixed A 2, there is a 

tendency for the simple multiplicities to decrease as a function of the level. Of course, 

these results might just be a coincidence, and the simple multiplicities, although rather 

well behaved for low norms and low levels, might explode after a few more steps. On 
the other hand, the fact that we stay so close to zero makes us wonder if there is not a 
hidden structure "just around the corner" 

The smallness of the simple root multiplicities means that that El0 is a rather "big" 
subalgebra of  ~m.l. This behavior is to be contrasted with that of the gnome Lie algebra 

~u~.~, whose maximal Kac Moody subalgebra is the finite algebra sl(2, R). However, 

readers should keep in mind that (1) admits an infinite nested sequence of Borcherds 

algebras "between" El0 and ~It9.1 : these are simply obtained obtained by omitting any 
number of missing El0 modules from gm,, or, equivalently, the corresponding simple 

roots from the root system of ~I19,1" 
Being confronted with the ineluctable conclusion that El0 is much more complicated 

than either the gnome or the fake monster, the next question is, how should one proceed 
from here onwards? Recall that the nice structure underlying the root system of the fake 

monster Lie algebra was discovered by methods very similar to the ones employed here 
(see remarks in Section 5 of Ref. [3] ). By computing the simple multiplicities of roots 
down to norm - 6 ,  Borcherds realized that the imaginary simple roots are all proportional 

to p with uniform multiplicity 24 (corresponding to the 24 transverse polarizations of a 
photon in 26 dimensions), where p is the lightlike Weyl vector of 1125,1; and, happily, 

the pattern thus reveals itself after only very few steps! (Observe that, in fact, for the 

fake monster, all entries in Table 2 would vanish because ~It25., has no simple roots of 
negative norm.) For Ej0, we are evidently not in such a fortuitous situation, and at this 
point the only feasible way to make further progress with presently available techniques 
seems to be to collect even more data about the simple multiplicities. Fortunately, we 
have seen that our method can be conveniently implemented on a computer. 

Assuming a general pattern for the simple multiplicities we would still face the 
problem of a rigorous proof. For the monster, Borcherds was able to prove that the 
emerging pattern was, in fact, a general property of the algebra and its root system by 
establishing a new modular identity. In the case at hand, the question is therefore whether 
our new denominator formula (13) admits a modular interpretation, too. This question 
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is obviously of a more general interest, as similar modified denominator formulas are 

expected to exist for other algebras of this type. After a suitable specialization, these 

formulas would give rise to new modular identities involving all levels simultaneously. 
In making these speculations, we are encouraged by the fact that there do exist examples 

of automorphic forms which give rise to Borcherds algebras with El0 as maximal Kac- 

Moody subalgebra (see Example 1 in Section 16 of Refs. [6,10]). 
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Appendix A. El0 Multiplicities for A E C with ht(A) ~ 231 

In this appendix we collect the multiplicities of all roots of El0 with height ~< 231. 

This includes the multiplicities of all fundamental weights of El0. 

The calculation of these multiplicities starts from Peterson's formula, which in prin- 

ciple allows the recursive computation of the multiplicity of any root. For algebras of 

high rank such as E~0, however, this procedure soon takes up too much time due to 

the large number of roots involved. We will use an approach due to Borcherds [7] to 

simplify the calculations. The idea is to employ the little Weyl (or stability) group of 

the root in question and to group the roots into orbits of this group and then count these 

orbits rather than the roots themselves. One has the following identity 

(ata-2p)ca= ~ (/~'l/~')ca, ctv,--" ~-~(vla-v)cvca-vlW(v)t. (A.I)  
IJ',[Jtt EQ+ vEQ+ 
a=,O'+/~" 

The second sum is over all real roots and all lowest weight vectors v in Q+ with respect 

to the little Weyl group W ( A )  such that A - v is also a positive root. One also has to 

be careful not to count the same orbit twice. IW(v)] denotes the size of the orbit of 

this lowest weight vector under W ( A )  and we have 

k~l 

To give an example for this procedure we consider the two simplest cases: A = A_ ~ -- 

~3 and A = A0. 

( 1 ) a = ~3 ~ ( a [ a  - 20) = - 6 0  

(a) 6 = ro + 0 ~ (O[A - O ) c o c a _ o ] W ( O )  I = --240 
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Table A. 1 
Elo root multiplicities 

A A g(A) ht(A) A 2 mult(A) A(A) 

6 
28 
Ao 
A7 
38 
6 + Ao 
A1 
6 +  A7 
As 
46 
26 + Ao 
2Ao 
6+A1  
A2 
26 + A 7 
Ao -}- A7 
6 + A s  
56 
36 + Ao 
6 + 2Ao 
2A7 
26 + Al 
A6 
Ao + A j 
6 + A 2  
A3 
36 + A7 
6 + Ao + A7 
AI + A7 
26 + A8 
Ao + A8 
66 
46 + Ao 
26 + 2Ao 
6 + 2A7 
36+  AI 
3Ao 
6 + A 6  
6 + Ao + Al 
26 + A2 
2Aj 
Ao + A2 
6 + A 3  
A7 + A8 
A4 
46 + A7 
26 + Ao + A7 

[0, 1,2,3,4,5, 6,4,2,3] 
0,2,4,6,8,  10, 12, 8,4,6] 
1,2,4,6,8, 10,12,8,4,6] 

2,4,6,8,10,12,14,9,4,7] 
0,3,6,9, 12, 15, 18, 12,6,9] 
1,3,6,9, 12, 15, 18, 12,6,9] 
2,4,6,9, 12, 15, 18, 12,6,9] 

2,5, 8, 11, 14, 17,20, 13,6, 10] 
3,6,9, 12, 15, 18,21, 14,7, 10] 
0,4,8, 12, 16,20,24, 16,8, 12] 
1,4,8, 12, 16,20,24, 16,8, 12] 
2,4,8, 12, 16,20,24, 16,8, 12] 
2,5,8, 12, 16,20,24, 16,8, 12] 
3,6,9, 12, 16,20,24, 16,8, 12] 

]2,6, 10, 14, 18,22,26, 17,8, 13] 
[3,6, 10, 14, 18,22,26, 17,8,131 
[3,7, 11,15, 19,23,27, 18,9, 13[ 

[0,5, 10, 15,20,25,30,20, 10, 15] 
[1,5, 10, 15,20,25,30,20, 10, 15] 
[2,5, 10, 15,20,25,30,20, 10, 15] 
[4,8, 12, 16,20,24,28, 18, 8, 14] 
[2,6, 10, 15,20,25,30,20, 10, 15] 
[4,8, 12, 16,20,24,28, 18,9, 14] 
[3,6, 10, 15,20,25,30,20, 10, 15] 
[3,7,11,15,20,25,30,20,10,15] 
[4,8,12,16,20,25,30,20,10,15] 
[2,7,12,17,22,27,32,21,10,16] 
[3,7,12,17,22,27,32,21,10,16] 
[4,8,12,17,22,27,32,21,10,16] 
[3,8,13,18,23,28,33,22,11,16] 
[4,8,13,18,23,28,33,22,11,16] 
[0,6,12,18,24,30,36,24,12,18] 
[1,6,12,18,24,30,36,24,12,18] 
[2,6,12,18,24,30,36,24,12,18] 
[4,9,14,19,24,29,34,22,10,17] 
[2,7,12,18,24,30,36,24,12,18] 
13,6,12,18,24,30,36,24,12,18] 
14,9,14,19,24,29,34,22,11,17] 
[3,7,12,18,24,30,36,24,12,18] 
]3,8,13,18,24,30,36,24,12,181 
14,8,12,18,24,30,36,24,12,18[ 
[4,8,13,18,24,30,36,24,12,18] 
[4,9,14,19,24,30,36,24,12,18] 
[5,10,15,20,25,30,35,23,11,17[ 
[5,10,15,20,25,30,36,24,12,18] 
[2,8,14,20,26,32,38,25,12,19] 
[3,8,14,20,26,32,38,25,12,19] 

0 30 0 8 0 
0 60 0 8 0 
1 61 - 2  44 1 
2 76 - 4  192 9 
0 90 0 8 0 
1 91 - 4  192 9 
2 93 --6 727 53 
2 106 - 8  2472 246 
3 115 - I 0  7749 981 
0 120 0 8 0 
1 121 - 6  726 54 
2 122 - 8  2472 246 
2 123 -10  7747 983 
3 126 -12 22725 3501 
2 136 -12 22712 3514 
3 137 -14  63085 11471 
3 145 -16 167116 35064 
0 150 0 8 0 
1 151 - 8  2464 254 
2 152 --12 22712 3514 
4 152 -16  167133 35047 
2 153 -14  63020 11536 
4 153 -18 425227 101170 
3 154 -16  167099 35081 
3 156 -18 425156 101241 
4 160 -20  1044218 278125 
2 166 -16  166840 35340 
3 167 -20  1043926 278417 
4 169 -22  2485020 733071 
3 175 -22  2483970 734121 
4 176 -24  5749818 1862196 
0 180 0 8 0 
1 181 -10  7704 1026 
2 182 -16  166840 35340 
4 182 -24  5750072 1861942 
2 183 -18 4 2 4 1 6 1  102236 
3 183 -18 425058 101339 
4 183 -26  12971009 4577911 
3 184 -22 2483871 734220 
3 186 -24  5746226 1865788 
4 186 -24 5749565 1862449 
4 187 -26 12970045 4578875 
4 190 -28 28592513 10931086 
5 191 -28 28595548 10928051 
5 195 -30  61721165 25411831 
2 196 -20  1040664 281679 
3 197 -26  12959290 4589630 
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Table A. 1 - -  continued 

737 

A A g(A) ht(A) A 2 mult(A) A(A) 

2Ao + A7 
~J+Ai +AT 
A2 + A7 
36 + A8 
6 + At~ + As 
Al + As 
76 
56 + Ao 
3~3 + 2Ao 
26 + 2A7 
46+ AI 
6 + 3Ao 
Ao + 2A7 
2~ + A6 
26 + Ao + AI 
Ao + A6 
2A~ + AI 
36 + A2 
6 + 2 A i  
6 + Ao + A2 
A I 4- A 2 
26 + A3 
~ + A v + A 8  
All + A3 
~ + A 4  
5~ + A7 
36 + A~ + A7 
6 + 2Ao + A7 
3A7 
26 + A I + A7 
A6 + A7 
AI) + AI + A7 
2As 
A5 

14,8,14,20,26,32,38,25,12,19] 
4,9,14,20,26,32,38,25,12,191 
5,10,15,20,26,32,38,25,12,19] 
3,9,15,21,27,33,39,26,13,191 
4,9,15,21,27,33,39,26,13,19] 
5,10,15,21,27,33,39,26,13,19] 
0,7, 14,21,28,35,42,28, 14,21 ] 
1,7, 14,21,28,35,42,28, 14,21] 
2,7, 14,21,28,35,42,28, 14,211 

14,10,16,22,28,34,40,26,12,20] 
12,8,14,21,28,35,42,28,14,21] 
[3,7,14,21,28,35,42,28,14,211 

15,10,16,22,28,34,40,26,12,20] 
[4,10,16,22,28,34,40,26,13,20] 

3,8,14,21,28,35,42,28,14,211 
5,10,16,22,28,34,40,26,13,201 
4,8, 14,21,28,35,42,28, 14,21 
3,9, 15,21,28,35,42,28, 14,21 
4,9, 14,21,28,35,42,28, 14,21 
4,9, 15,21,28,35,42,28, 14,21 
5,10,15,21,28,35,42,28,14,21 
4,10,16,22,28,35,42,28,14,21 

15,11,17,23,29,35,41,27,13,201 
[5,10,16,22,28,35,42,28,14,211 
15,11,17,23,29,35,42,28,14,211 
12,9,16,23,30,37,44,29,14,221 
13,9,16,23,30,37,44,29,14,221 
14,9,16,23,30,37,44,29,14,221 

[6,12,18,24,30,36,42,27,12,21] 
14,10,16,23,30,37,44,29,14,221 
16,12,18,24,30,36,42,27,13,211 
15,10,16,23,30,37,44,29,14,22] 
16,12,18,24,30,36,42,28,14,20] 
16,12,18,24,30,36,42,28,14,211 

4 198 -28 28589025 10934574 
4 199 -30  61711591 25421405 
5 202 -32 130661924 57690454 
3 205 -28 28559052 10964547 
4 206 -32 130632964 57719414 
5 208 -34  271695444 128129588 
0 210 0 8 0 
I 211 -12  22528 3698 
2 212 -20  1 0 4 0 6 6 4  281679 
4 212 -32 130635596 57716782 
2 213 -22 2474026 744065 
3 213 -24 5 7 4 5 7 2 0  1866294 
5 213 -34  271702532 128122500 
4 213 -34  271618575 128206457 
3 214 -28 28558597 10965002 
5 214 -36  555652661 278885204 
4 215 -30 61699285 25433711 
3 216 -30  61620301 25512695 
4 216 -32 130630342 57722036 
4 217 -34 271609694 128215338 
5 219 -36 555631102 278906763 
4 220 -36 555434128 279103737 
5 221 -38 1118955631 595793867 
5 221 -38 1118894437 595855061 
5 225 -40  2220872914 1251118823 
2 226 -24 5 7 1 7 8 8 0  1894134 
3 227 -32 130395100 57957278 
4 228 -36 555404364 279133501 
6 228 -36 555695680 278842185 
4 229 -38 1118347860 596401638 
6 229 -40 2221039540 1250952197 
5 230 -40  2220699951 1251291786 
6 230 -40  2221026189 1250965548 
6 231 -42 4348985101 2584919075 

Taking an extra  factor  o f  2 due  to the symmet ry  o f  the sum into account  we  

recover  the w e l l - k n o w n  resul t  m u l t ( 6 )  = 8. 

( 2 )  A = Ao ~ ( A I A  - 2 p )  = -124 
( a )  A o  = ~ +  ( A o  - ~ )  ~ ( r 3 1 A  - ~)csca-81W(~)l = - 6 4  

( b )  Ao = r_l  + (Ao - r - l )  ~ ( r - ~ l A  - r - 1 ) C r _ l C a - r  ~lW(r-l)l = - 2 4  

( c )  A 0  = r0 + ( A 0  - r0)  ~ ( r01A - r o ) c r o C a - r o l W ( r o ) t  = - 1 9 2 0  

(d )  A o  = rl  + ( A o  - r l )  ~ ( & [ A -  r~)Cr, CA-r~lW(rl)l = - 7 2 0  

Taking an extra  factor  o f  2 due  to the symmet ry  o f  the sum into account  we  find 

the expec ted  result  m u l t ( A o )  = 44. 

For  a given v the s ize o f  the Weyl orbi t  is easily calculated as fol lows:  For A 4:~5 

the li t t le Weyl  g roup  is a finite g roup  wi th  known  order. We can also assume that v is 

a lowes t  we igh t  vector  for  this group.  The subgroup  fixing it is then the Weyl group  
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whose simple roots are those orthogonal to the vector v. The order of this subgroup is 
calculated by looking it up, determining the simple factors from the Dynkin diagram. 
The size of the orbit is then given as the quotient of these two orders. 

The remaining problem is to find all lowest weight vectors for ~/V(A) in Q+. These 
are given by all positive roots of the form 

8 

= ~ n i A  i ( A . 3 )  12 

i=-I 

where only the coefficients ni corresponding to simple roots r i orthogonal to A have to 
be positive. Due to the symmetry of the sum one can restrict the search to vectors with 
heights ht(v)  ~< [ h t ( A ) / 2 ] .  

For roots of low height this formula can be evaluated by hand but this becomes 
impractical very quickly due to the large number of orbits. For A = A0 + Al + A7 
e.g. there are 635 contributing Weyl orbits. Hence most of the multiplicities were 
calculated with a computer using the symbolic algebra system Maple g. One consistency 
check here is that, despite the occurrence of fractional numbers at intermediate stages 
of the calculation, the final result must be an integer. 

Our results for the E~0 multiplicities and the values of A (cf. (11) )  are col- 
8 lected in Table A.1, where we have labeled the root A = ~-]~j=-i n jA j  by the symbol 

[ n - l , n o ,  nl . . . . .  ns]. 
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