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Abstract

Near space-like infinity an initial value problem for the conformal Einstein equations is formu-
lated such that: (i) the data and equations are regular, (ii) space-like and null infinity have a finite
representation, with their structure and location known a priori, and (iii) the setting relies entirely
on general properties of conformal structures.

A first analysis of this problem shows that the solutions develop in general a certain type of
logarithmic singularity at the set where null infinity touches space-like infinity. These singularities
form an intrinsic part of the solutions’ conformal structure. Conditions on the free initial data
near space-like infinity are derived which ensure that for solutions developing from these data
singularities of this type cannot occur.

Subj. Class.: General relativity
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1. Introduction

The conformal Einstein equations, obtained in {7,8] and elaborated in later papers, provide
a highly efficient tool in analysing solutions to Einstein’s vacuum field equation. In the
case of non-vanishing cosmological constant they enable us to demonstrate for Einstein’s
equation the existence of semi-global and global solutions, to gain perfect control on the
asymptotic structure of the latter, and to derive a wealth of important information on the
solutions. In the case of Einstein’s vacuum field equations with vanishing cosmological
constant the conformal field equations have been used to show the existence of solutions
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possessing a smooth asymptotic structure either in the past or in the future. These results
are based on the use of hyperboloidal initial data which presuppose asymptotic smoothness
on the initial hypersurface.

In all these cases Penrose’s suggestion [19,20] that the asymptotic behaviour of solutions
to Einstein’s equation can be characterized in terms of the conformal structure has been
confirmed (cf. [13] for a recent survey and relevant references). It remained to be shown
that smooth hyperboloidal vacuum data can arise by Einstein evolution from asymptotically
flat standard Cauchy data.

Analysing solutions to the conformal field equations in the region where “null infin-
ity touches space-like infinity” appeared to be impossibly difficult. In the model case of
Minkowski space (R?, N = nuvdx*dx’) with metric coefficients n,, = diag(l, ~I,
—1, —1) this region is obviously contained in the domain D = {x, x* < 0}. The coor-
dinate transformation x* — z* = —(x; x)‘)_l x*, which maps D onto itself, renders the
metric in the form n = (2 z’\)_znw dz* dz¥ and regions where the quantities |z#| are
small represent neighbourhoods of space-like infinity. Rescaling 7 with the conformal fac-
tor 2 = —z; 7" we obtain the “conformal metric” n = 227 = n,,, dz* dz*, which extends
smoothly through the boundary 3D of D in R*. We denote its extension to D U 3D again
by 7 and the smoothly extended conformal factor again by £2.

The set 8D decomposes into the sets scrit = {z# € R*z0 > 0, 2t =0}, scri” =
(z* € RYZ® < 0, 7y z# = 0}, and the point i = {z* = 0}. The hypersurface scri™
(scri™), which is null for the metric 7, can be thought of as being generated by endpoints of
future (past) directed null geodesics and thus represents part of future (past) null infinity for
Minkowski space. Since all space-like geodesics on Minkowski space run ultimately into
i0, this point represents space-like infinity. In the extended space-time the hypersurfaces
scri* form the null cone through the point i®. Notice that £2 vanishes quadratically at i°
while it vanishes only linearly on serit.

Any Cauchy hypersurface S of Minkowski space approaches i°. If this point is added to
S, the resulting set S inherits a topology which makes it a compact manifold homeomorphic
to 52 and the point i® represents space-like infinity for the initial data induced on S. We can
assume S to be chosen such that S acquires a smooth differentiable structure. The process
of “conformal compactification” which embeds S into S and maps the Minkowskian initial
data on S onto conformally related fields can, of course, also be described mtrmsmally
in terms of S and the given data. The conformal factor on § will then be positive on S,
vanish quadratically at i, and have non-degenerate Hessian there. It will be convenient to
distinguish between the notion of space-like infinity which refers to the four-dimensional
space and the notion of space-like infinity which refers to a three-dimensional Cauchy
hypersurface. We shall denote the former by the symbol i® and the latter by i.

Consider now a space-like, asymptotically flat initial data set ( S, h wv+ Xuv) for the vacuum
field equation, where h wv is a (negative definite) metric and ¥, represents the second
fundamental form. We may ask whether the solution determined by these data admits
smooth asymptotic structures like those found above for Minkowski space.

If this were the case, the sets scri* would. as a consequence of the field equations,
necessarily be null hypersurfaces for the extended metric. The schematic pictures used to
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illustrate causal relationships in space—times suggest that for our solution space-like infinity
should again be depicted as a point ;. But the precise relationship between space-like and
null infinity can, of course, not be inferred from schematic causal pictures and it appears
extremely difficult to obtain any information about it by using the field equations. The
source of this difficulty can be found directly in the behaviour of the initial data near space-
like infinity. The situation differs in general drastically from that observed in the case of
Minkowski space.

We perform a conformal compactification § — § = S U {i} and an associated rescaling
of the data as outlined above. It turns out that even under the most fortunate assumptions,
i.e. if we had chosen data such that S and the conformally rescaled data were smooth near
i, the conformal Weyl tensor of the time evolution determined by the data would diverge at
i unless the ADM mass of the initial data vanished.

Thus we find in general the following property of the conformal structure. At its lowest
level, at which it determines the causal relations, it suggests representing space-like infinity
by a point. However, at a higher level such a representation will be too narrow for fields
associated with the conformal structure to be well behaved.

For this reason it has been surmised occasionally that it does not suffice for the description
of space-like infinity to consider exclusively the conformal structure. It has been suggested
that other structures, e.g. the projective structure, should be taken into account as well. The
singular behaviour of the conformal Weyl tensor makes the application of the conformal
field equations quite difficult, the more so since one of the basic variables in these equations
is the rescaled conformal Weyl tensor, which diverges even more strongly at i (cf. (2.38)
and (2.39)).

It will be shown in this article that it is possible to formulate for the conformal field
equations an initial value problem near space-like infinity with the following properties. The
data and the equations are regular. The relationship between space-like and null infinity and
their location are known a priori. The form of the problem allows us to analyse the fields
near space-like and null infinity in a finite picture. The setting relies entirely on general
properties of conformal structures.

To explore the nature and demonstrate the efficiency of the setting we give a first analysis
of the solutions near space-like infinity. It is shown that in general solutions develop a certain
type of logarithmic singularity at the “‘set where null infinity touches space-like infinity”.
Since our setting is based entirely on general conformal properties, we can conclude that
these singularities form an intrinsic part of the solutions’ conformal structure. The origin
of these singularities can be traced back to properties of the initial data. We derive (mild)
conditions on the initial data near space-like infinity which ensure that singularities of this
type cannot occur.

These investigations require a very detailed analysis of the structure of the data and the
inter-relationships of the propagation equations, the constraint equations, and the geometry
of the solution. It is only for this reason that we restrict the discussion in this article to
time-symmetric initial data. The conformal properties we use to set up the initial value
problem and the resulting form of the conformal field equations are independent of any such
assumption. Since the constraint equations pose only weak restrictions on the regularity of
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the data at space-like infinity, we have, of course, to impose smoothness requirements there.
To shorten the arguments we assume the data to be in fact analytic at space-like infinity.
Results analogous to the ones derived here can, at the expense of complicated and lengthy
recursion arguments, be obtained also for weaker differentiability assumptions.

To arrive at our initial value problem we have to make full use of the conformal structure.
Besides conformal rescalings we need to use not just Levi-Civita connections but also con-
formal connections, i.e. torsion free connections for which parallel transport maps frames
which are conformal for the given metric again onto such frames.

The natural place for such a discussion is the theory of normal conformal Cartan connec-
tions. It has been used in [12] to obtain the general conformal representation of the Einstein
equation and the newly acquired conformal freedom is exploited to introduce gauge condi-
tions for the conformal Einstein equations which are based on conformal geodesics. Certain
properties of conformal geodesics derived in [12] are basic for the fact that we obtain a reg-
ular problem and that we can control the (finite) location of null infinity in terms of the
initial data and some free function.

The final picture of the initial value problem near space-like infinity which we obtain
here is different from any representation of space-like infinity considered before. The initial
manifold S is replaced by a compact manifold S with boundary by blowing up the point i
to a 2-sphere which we denote by 7°. We thus write S = S\ 1°. Close to I° we introduce
a “radial” coordinate p on § which vanishes on /% and is positive elsewhere. Near /0 the
manifold on which the solution is to be constructed is, in a suitable gauge, of the form
M = {(r.q) € R x §||t| < 1 + p(q)}, where we identify the initial data hypersurface §
with {0} x §. Space-like infinity, thought of before as the point Y, is now represented by
the cylinder I = {|t| < 1, p = 0}.

Close to / the hypersurfaces Z* = {1 = + (14+p(q)), g € S} will represent null infinity
for the solution, if the latter extends smoothly far enough into the future and the past. They
“touch” I at the sets I* = {r = +1, p = 0}. The curves {itl < 14 p(g)}, withg € S
fixed, are by construction conformal geodesics with natural parameter 7.

In this setting the conformal Cauchy data on S extend smoothly to /° and the propagation
equations implied by the conformal field equations are symmetric hyperbolic near S. Seen
from the four-dimensional geometry, the set I arises partly from a coordinate representa-
tion which in the radial direction is not adapted to the metric relations. For the conformal
field equations the set 7 is a regular hypersurface. Near S the existence of a smooth so-
lution to our initial value problem follows from known results on symmetric hyperbolic
systems.

The set I is of a very special nature though. This hypersurface is “totally characteristic” in
the sense that the symmetric hyperbolic system of propagation equations reduces completely
to an interior system on /. This allows us to determine all fields on I from the data on /°.
As to be expected, no boundary values can be prescribed on 7.

Moreover, by taking formal derivatives of the equations with respect to p, we get at any
order transport equations on / for the derivatives of the unknown fields. These derivatives on
I are determined, apart from calculational complexities, in this article. They define power
series on / which are convergent near 9.
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At the sets /¥ the total characteristic / is approached in M transversely by the sets 7+
which are necessarily null hypersurfaces and thus also characteristic. Therefore, a degener-
acy of the propagation equations occurs at /* which entails a degeneracy of the transport
equations when the sets 7T are approached on /. An analysis of the transport equations,
which can be used to discuss the fields near / to any desired degree of precision, allows us
to identify a certain class of logarithmic singularities which develop at /*. By the transport
equations the occurrence of these singularities is related to properties of the initial data. For
a certain type of expansion near /9 of the free data on S those terms which generate the
singularities can be identified and we obtain a precise criterion under which circumstances
the singularities are avoided.

Whether the necessary conditions for regularity obtained by us are also sufficient to
ensure the smoothness of the structure at null infinity will be investigated elsewhere. For
us it is important that for the first time a setting is provided in which such questions can be
analysed. It opens the door to a number of further investigations (cf. Section 9). The results
of this article clearly demonstrate its efficiency. The final analysis should tell us under which
circumstances Penrose’s idea of asymptotic flatness is feasible. Whether these conditions
will be realized for a sufficiently general class of solutions or not, in any case we will gain
further insights into the structure of the equations, obtain thus important practical tools for
the numerical construction of solutions, and clarify conceptual problems associated with the
idea of an “isolated gravitating system” (cf. [13] for a discussion of some of the conceptual
issues which arise in this context).

2. Asymptotically flat initial data
2.1. General considerations

We want to construct asymptotically flat solutions (M, §) of signature (+, —, —. —) to
Einstein’s equation from smooth data on some three-dimensional manifold S. The construc-
tion is to be arranged such that we may think of § as being identified diffeomorphically
with a smoothly embedded space-like Cauchy hypersurface of (M, %) and such that the
data given on S coincide with certain data implied on S by g and possibly some other fields.
We shall need to investigate the behaviour of the solutions near space-like infinity in some
detail. The inclusion of long range source fields would render the analysis quite compli-
cated. On the other hand, when sources of compact support (e.g. fluid balls) are considered,
the fields behave near space-like infinity as in the pure vacuum case. Therefore, we shall
consider solutions to Einstein’s vacuum field equation

Ric(g) = 0. (2.1)

The relevant data on S are then given by a metric ﬁa,g of signature (—, —, —) and a symmetric
tensor field Xog, fields which represent the first and the second fundamental form induced
by the metric g on S, respectively (cf. [5]). Eq. (2.1) entails the constraint equations
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D%Nap — DpX*a =0, 7= (X" + X Fup =0, (2.2)

where D denotes the Levi-Civita connection and 7 the Ricci scalar of the metric /.

Since our goal is to understand the behaviour of far fields of isolated gravitating systems
we shall require the data set (S, ﬁa,g, Xap) to be “asymptotically flat” in the following sense.
We assume that (S, /1) be “asymptotically Euclidean”, i.e. that there exists a compact subset
of S such that its complement is the union of disjoint subsets S’k, k=1,2,...,K,0of 5, the
“asymptotically flat ends”, each of which can be identified diffeomorphically with {y* €
Ry = (Zgzl y*2)1/2 5 ro} where rg is some positive real number. It is assumed that
in the coordinates y* introduced by this identification on Sy the metric coefficients satisfy

- 2 my 1
hop = — (1 + |i|k) Sap + O(W) as |y| — oo, my = const. 2.3)
y y

A corresponding fall-off condition, namely

1
)?Otﬂ = O(W), as Iyl - OQ, (24)

is imposed on the second fundamental form.

In the context of Cauchy problems for Einstein’s equations more general notions of
asymptotical flatness have been considered (cf. [3-6] and the references given there). As
an example we quote [6]. Here data are constructed which satisfy in standard coordinates
y% on R3

hap + 8ap € H s(R?),  Fup € Hy511(R), s>4, 6> -3 (2.3)

The weighted Sobolev spaces Hy s(R>) used here are defined as sets of (measurable etc.)
complex functions u on R3 for which

12
s = | X fasipieivnutey ] <o

lee}<s

Data satisfying (2.3) and (2.4) are special cases of data which are characterized in terms of
analogues on S of the weighted Sobolev spaces Hy s (R).

While conditions like (2.5) specify the smoothness of fields in a precise way in finite
regions of the initial hypersurface, they leave considerable freedom for undesirable “non-
smoothness at space-like infinity”. The detailed behaviour of the data near space-like infinity
will most likely affect the asymptotic behaviour of their evolution in time. To have sufficient
control on the smoothness of the data “at infinity”, we shall strengthen our requirements.
The conformal structure of the metric 4 constitutes a basic part of the initial data. Apart
from the condition of asymptotical flatness, it can be prescribed freely. Our requirements are
concermned with the detailed behaviour of the conformal structure near infinity. We assume
(S, k) to be “asymptotically Euclidean and regular” in the following sense.

There exists a three-dimensional, orientable, smooth, compact Riemannian manifold
(S. h) with points iy € S,k = 1,2, ..., g, g some positive integer, a diffeomorphism & of
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S\li1, ..., iz} onto S, and afunction 2 € C2(S)NC>(S\ {i)..... ig}) with the following
properties:

£2=0, d2 =0, Hess(£2) = —2h at the points iy,

Suitable punctured neighbourhoods of the points i; correspond to the asymptotically flat
ends of (S. 7). Thus each point i represents a space-like infinity. We shall be concerned
with the precise behaviour of certain fields near a given space-like infinity. Therefore. we
shall assume, without loss of generality, that there is only one asymptotically flat end. The
point representing space-like infinity will be denoted by /. We shall consider in the following
S to be identified by @ with S\ {i}. The set S was assumed to be compact because of the
special interest of this case.

Not all compact Riemannian spaces (S, /) can give rise to Riemannian manifolds (S =
S\{i}. h = 2272 h) which are asymptotically Euclidean and regular and satisfy for suitable
choices of £2 and x the constraint equations [2]. To ensure the possibility. we require that
(S. h) has positive Yamabe number

Yh)= — inf fS(shuﬁD(xd’ Dﬁ¢>+rh¢2)duh
b 1/3
deC(85).¢>0 (fs ¢6 duh) /

With this assumption the scaling of the metric 4, which determines only the conformal
structure of &, may be chosen (cf. [18.22]) such that its Ricci scalar satisfies

rp, <0 onsS. (2.8)

Later we shall be led to consider further conditions on the conformal structure of (S. 4)
in arbitrarily small neighbourhoods of the point i. That those conditions entail only rather
mild restrictions in the class of three-dimensional conformal structures with positive Yamabe
number will then be seen from the following lemma.

Lemma 2.1. Suppose (N. k) is a smooth three-dimensional Riemannian manifold of sig-
nature (—, —, —) and p a pointin N. Then, for 0 < € < a, with some small positive number
a, we find smooth metrics he and a smooth positive function w on S with the following prop-
erties. There exist open neighbourhoods Ve, W, of i, satisfying Ve C We and W, — (i} as
€ — 0, and a diffeomorphism ¥ of V,, onto an open neighbourhood of p such that:

(1) he is conformal to W, k on V.,

(i) he = w*hon S\ We.
(iii) in the C*-topology on the set of smooth metrics on S we have he — w> h as e — 0,
(iv) the metrics h. have Yamabe number Y (h.) > 0.

A metric can always be conformally rescaled in a neighbourhood of a given point such
that the Ricci tensor of the rescaled metric vanishes at that point. In three dimensions
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the curvature tensor is determined by the Ricci tensor. Thus we can find smooth positive
conformal factors @ and w; on S and N, respectively, such that the curvature tensors of the
metrics &' = w? b, k' = of k satisfy rjum[h'] = 0 ati, rjum(k'l = 0 at p.

Choose @ > 0 sufficiently small such that the #’-metric ball B3, (i) is an h'-normal
neighbourhood of i and the k’-metric ball B3,(p) is a k’-normal neighbourhood of p.
Denote by x* a system of A’-normal coordinates on B3 (i) centred at i which is based
on an /’-orthonormal frame and let x* be an analogous system of k’-normal coordinates
on B3,(p). Expressing the metrics in these coordinates, we have h‘;ﬁ = —bqp + flaﬂ,

k —8yp + ko With

/ —
a/ﬂ!—‘
hag = O(x*), kg =O(X')  asixl. x| = 0. (2.9)

We denote by ¥ the diffeomorphism of B3, (i) onto B3 ,(p) whose local expression in the
normal coordinates is given by g (xB) = x¥. Choosing f € C*(R, R) with f' < 0,
f(z) = 1forz < 1,and f(z) = 0 for z > 2, we define for given € > 0 the function
Ve € C(‘)’o(R3, R) by ¥ (x) = f(|x|/€). A family of smooth metrics is then given by

he =YW k' + (1 — YR, 0<e<a,

where the first tensor field on the right-hand side vanishes by definition outside the support
of the funtion .. These metrics satisfy

(i) he = W)Wk on Be(i), (i) he =wih on S\ Bac(i)

and thus have properties (i), (ii) asserted in the lemma.

Since the Yamabe number is an invariant of the conformal structure and defines a contin-
uous functional on the set of smooth metrics on S endowed with the C2-topology (cf. [1]),
condition (iv) follows from (iii) once we have chosen the number a small enough.

Because of property (i), it is sufficient to control the behaviour of the metrics A¢ to
second order in terms of the coordinates x* on B3, (i). We identify a),% k with lI/*(w,% k) on
B3,(i). We observe that

C 3C
[We(x)| = C, [8 e (X)] < e |00 3 (x)| < ol
for some constant C and, by (2.9), we find on B3, (i)

187185287 (hap(x) — (0] Kap(x))| < KeBP p=pi+pr+p3=012

with some constant K. This implies our result.

Remarks. In a similar way we can obtain metrics with positive Yamabe number which
have prescribed conformal structure near given points iy € S, 1 < k < g. The set of such
metrics is dense in the set of smooth metrics with respect to the C2-topology. If the metric
h is analytic in normal coordinates near i and the metric k is analytic in normal coordinates
near p, the metrics 4. can be arranged to be analytic near i. It should be noted that due to
the constraint equations a change of the conformal structure of h near space-like infinity
entails a change of the metric h in finite regions.
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2.2. The conformal constraint equations

Later we shall discuss the existence of solutions to Einstein’s equation (2.1) by rewriting
it as an equation for a suitably chosen conformal factor £2 and the conformal metric

8uv = -nguw (2.10)

The first and second fundamental forms determined by the metrics g, g, On S are then
related by

hap = 2hag,  Xap = 2 Gap + Shap), 2.11)

where the function X on S denotes the derivative of £2 in the direction of the future directed
g-unit normal of S. This entails for the traces y = h*# Xaf X = hef Xap the relation

2y =x+3%.
In terms of the conformal fields the constraint equations (2.2) take the form (cf. [10])

22DaD*2 — 3D 2D%$2 + 1 2% r — 327
~ 32X ) = xapx P} + 22T * =0,
2° D*(27 2 xap) — 2(Dg(xa®) — 227 ' Dy X} = 0.

where D denotes the Levi-Civita connection and r the Ricci scalar of the metric h.
We shall assume in the following that

X =0, x%*=0 onS. (2.12)

The first condition is concerned with the choice of the conformal factor which is completely
at our disposal so far. Both conditions together say that the hypersurface S is maximal in
M with respect to the metrics g, g,v. With these assumptions the conformal constraints
on S reduce to

(Do D¥ = §r)0 = £ Xapx®0  with 0 = 27'/2, (2.13)
D* (27 % x4p) = 0. (2.14)

These equations suggest constructing initial data 48, xap, §2 directly, without referring first
to the fields ﬁaﬂ, Xaop- The known technique (cf. [5]) to construct solutions to the vacuum
constraints (2.2) suggests the following procedure:
(i) Choose a smooth negative definite metric / on a three-dimensional, orientable, smooth,
compact manifold S, pick a pointi € S and set § = S\ {i}.
(ii) Find a smooth, symmetric, tensor field ¥, on S which is trace-free with respect to
and satisfies

D*ap = 0. (2.15)
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Such tensor fields may be obtained by performing a York-splitting [26] as follows:
Choose a smooth, symmetric, trace-free tensor field lﬂ‘;ﬁ on S and set

Vap = Do Xg + D Xo — 5 hap Dy X7 + Y.

where X, is some 1-form on S. Eq. (2.15) then implies an elliptic system of PDEs for
X, which under suitable assumptions can be solved to obtain ¥qg.

(iii) Set xop = 6‘41//,1,3 in Eq. (2.13) and find on Sa positive solution 8 of the resulting
Lichnerowicz equation

(DoyD* — 1r)0 = Lyrapy®Po. (2.16)

The fields A, 2 = 672, and Xap = .Qzlllaﬂ then provide a solution to the conformal
constraints on S.

In this procedure the freedom to prescribe the function 2 is reflected in the freedom to
determine the scaling of the metric 4. If ¢ is a positive function on S the transition

hap = G haps  Vap = & Vap. 2 0°2,  Xap = O ap

yields another solution to Egs. (2.13)—(2.16) which corresponds to the same physical data.

Since we considered Egs. (2.15) and (2.16) only on S, we need to specify the behaviour
of the solutions (respectively of w; y and X, ) near the point i. Assume a > 0 small enough
such that the A-metric ball By, (i) is a strictly convex normal neighbourhood of i and let x*
be normal coordinates with origin at i which are based on an h-orthonormal frame e; at .
Condition (2.6) entails that 2 = [x|? f(x) near i, where f is a continuous function with
f(0) = 1. Thus we need to impose the condition

x| - 1 asx — 0. (2.17)

If we define on B, (i) \ {i} coordinates y* = x®/|x|? and writeh = 22 h = flaﬂ dy® dy?,
we find ﬁalg = =84 + O(1/|y]) as [y] — oco. Thus h satisfies a basic requirement of
asymptotic euclidicity. Later we shall be more specific about the coefficient of 1/|y]| in the
expansion of ﬁaﬁ in terms of 1/|y|”. It determines the ADM-energy

1 _ _
m=E=— lim /a“ﬂ (3ahp, — dyhap)n” dS,.

Here S, denotes the 2-sphere {|y| = r}, dS; the h-area element on it, and n the outward
directed A-unit normal to S,

The physical second fundamental form xug, the conformal fundamental form x,g, and
the solution g to (2.15) are related by

Xap = 27 Xap = 2Vap.

Let xop be given in the coordinates y*. Then (2.4) suggests that xos = O(1/ |y|2) as
|y| = oo on B, (i) \ {i}. This entails for the coefficients xug, ¥yp in the coordinates x® the
conditions
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Xo(ﬂ:O(l)~ lpaﬂ =0 W asx — 0. (218)
x

In the case where the solution v, to Eq. (2.15) extends smoothly to all of S the coefficients
Xap- given in the coordinates y“, satisfy the strong fall-off conditions xos = O(1/ iv|®) as
|¥] — oc.If we wish to consider data for which the ADM-momentum and the ADM-angular
momentum, given by

Fa = g,‘i‘“ f(Xaﬂ ~ Xhap) n dS,.
5
1 o
Yo = S_nrll»";ofeaﬂy YR = xh")n, dS;,
Sr

respectively, do not vanish, we would need to analyse fields /4 which are singular at /.

Though a detailed discussion of the smoothness of the second fundamental form xqg
near {7} may be a delicate matter, the source of our main problem lies elsewhere. If we try
to analyse the time evolution of the data in terms of the “regular conformal field equations™
deduced in {7,8], we have to consider as unknowns a number of tensor fields derived from
the basic data hyg, xag, and £2. The data on S for the conformal field equations in the
form used in this article are listed in (2.27), (2.31)—(2.33), (2.35), (2.36), (2.38) and (2.39).
To determine the electric and magnetic part (2.38) and (2.39) of the rescaled Weyl tensor,
which represent in a sense the most important data, we have to divide by powers of £2. This
leads to singularities in the fields at i which cannot be avoided unless the ADM-energy
m of the data vanishes, i.e. unless the conformal Weyl tensor vanishes everywhere on §
and we deal with Minkowski space (cf. [22,25]). These “structural singularities™ pose the
essential problem in any detailed analysis of the time evolution of the fields near space-like
infinity. The best we can do to simplify the analysis is to impose smoothness conditions
near / to avoid the occurrence of “spurious singularities” in the evolution, which may arise
from unsatisfactory regularity properties of the metric and the second fundamental form at
space-like infinity.

In this article we shall use the conformal representation of Einstein’s equation introduced
in [12] to analyse the time evolution near space-like infinity. Though the focus of our
investigation will be on the structure of the evolution equations contained in the conformal
field equations, we shall need quite detailed information on the behaviour of the data near .
To simplify the discussion we shall therefore consider in this article only the time-symmetric
case

Xap = O. Jop =0 on§. (2.19)

The comparison of expressions (2.38) and (2.39) with expression (2.40), which is obtained
under the assumption above, shows that this leads to considerable simplifications.
Nevertheless, the essential difficulty which arises from an ADM-energy m > 0 will still
be present as is seen from expressions (2.42) and (2.43) which take into account (2.19). We
shall see that even with (2.19) and the smoothness assumption on the metric A, there will
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be, depending on the choice of &, interesting distinctions in the asymptotic behaviour of the
time evolution of the data.

The construction of constrained inital data is now reduced to solving (2.16) on S with
vanishing right-hand side such that condition (2.17) is satisfied. For convenience we shall
assume that

h is analytic near i (2.20)

in the sense that the metric coefficients of # with respect to the normal coordinates x“ on
B>, (i) are real analytic functions if a is chosen small enough.

Under conformal rescalings # — h’ = ¢* h with smooth positive conformal factors the
Yamabe operator Ly, [u] = (h*f D,Dg — %rh) [u] transforms as

¢~ D2 L (] = Ly [¢~ D2 ). (2.21)

This allows us to scale & such that (2.8) holds. We use Hadamard’s construction to obtain
a parametrix for L = L. The function I = x| is analytic on By, (i) and satisfies

D, D*I" = —4T. (2.22)

A function U (x®) on By, (i) which is analytic and satisfies U(i) = 1 and L[UT" "%} =0
on By, (i) \ {i} is obtained as follows (cf. [14]). The equation

0=-r2LIWUIr "= DT Do U + 3(D* Do I" + 6)U —~ ' LIU]  (2.23)

will be satisfied on Bz, (i) \ {i} by a function of the form
o0
U=> UpI®, (2.24)
=0

if the coefficient functions U, are analytic, if they solve the equations

DI DuUg = —3(D* Do I +6) Uy, U(i) = 1. (2.25)
DT DyU, = —3(D* Dy + 6 —4p) U,
- LUyl p=1.2.... 22
2 — 1 [ p 1 P (2.26)

and if they define a convergent series on B, (i) by (2.24). Such functions are determined
recursively by

r2

1 @ ds
Uy = exp 7 (D D*I" +6) — ¢,

s
0
riz
Uy L{Up1s?

Up+1__(4p—2)F(P+1)/2 / o ds =0,1,
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where the integration is performed in terms of the affine parameter s = I"''/? = |x| along
the geodesics emanating from i. Notice that the function U is determined completely in
terms of the local geometry near {

We now choose a function 8* € C°(S) which coincides with U™ ~Y/2 on B, (i) \ {i}.
Then L[6*] = f on S with some function f € C°°(S) which vanishes on B, (i). To obtain
the solution 6 to our problem we need to add a function which contains information on the
global geometry. We find a weak solution W to the equation L| W] = — f on § by observing
that in the weak form

/(“DaWDa¢_%rW¢)dHh:_ff¢dﬂll~ ¢€Coc(s)‘
N S

of this equation the left-hand side defines a bilinear form which is continuous and coercive
on the Sobolev space H'2(S). The existence of a unique weak solution W € H'->(S) to
our equation thus follows by the Lax—Milgram theorem (cf. [ 15]). Elliptic regularity theory
shows that this solution is smooth on S and analytic on B, (i) where it satisfies L[W] = 0.
The function § = 6* + W is the unique solution to (2.16) and (2.17). Since 8 > O on a
punctured neighbourhood of i it follows from (2.8) and the strong maximum principle that
6 > 0 on S. Using again the inversion as coordinate transformation we find that 4 is of the
form (2.3) with ADM-energy m = 2 W (i).

The function 6’ = ¢~'/26 solves the Yamabe equation with respect to the metric i’ =
¢>2 handh =2 2h =0 "2his independent of the scaling condition (2.8).

Near i let x® be the A’-normal coordinates with origin at i based on the #’-orthonormal
frame e,’\, = ¢ 'e;. The relation §% ;9 = e; = ¢ e,’( = ¢>8"" k (8x"/8x"')a‘~u at i entails
x*(x*) = x* (¢ (i)' +O(x'])). This implies that 8’ = ¢~ /26 = ¢~ '/2(U/|x| + W) has
the form 6’ = U'/|x'|+ W' near i with U’(i) = | ifand only if ¢ (i) = 1 and in this case we
have 2 W/(i) = 2 W(i). In other words, if we fix our procedure of solving the constraints
by imposing condition (2.17), we are only free to choose % in the subclass of metrics in the
conformal structure of A which all coincide at i. Transition to another such class results in
a rescaling of the “*physical™ metric h by a constant conformal factor.

2.3. Initial data for the conformal Einstein equations

To study the propagation of the fields, we shall use the conformal representation of
Einstein’s equation (2.1) in the form discussed in [12]. Here the equation is considered
as an equation for the metric g in the conformal class of the “physical” metric g, where
the conformal factor in (2.10) is fixed by some gauge condition, and a connection V which
preserves the conformal structure in the sense that parallel transport maps conformal frames
onto conformal frames. The connection V need not be metric for any metric in the conformal
class of g. The following associated fields appear as unknowns in the equations:

(i) The coefficients

et =(dxt. e, kou=0.12,3, (2.27)
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(i)

(iii)
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of a local frame e; with respect to some local space—time coordinates x*. We require
that g(¢;, ex) = njx. The coordinates and the frame are subject to gauge conditions
which will be discussed in detail later on. It will be assumed that

=0 on$§ , eo is future directed and normal to S, (2.28)

such that e®; = 0 for ¥ = 1,2, 3. In the following all spatial tensors on S will be
expressed with respect to the local frame ¢;, j = 1,2,3,0n S.

The connection coefficients ﬁ Iy of V in the frame e, which satisfy %e,- e = ﬁ U Cj.
Since the connection respects the conformal structure we can write

Gilv=Tc4+8 fu + 80 fi —nun S, (2.29)

where the I/ are the connection coefficients in the frame e; of the Levi-Civita
connection V of g and

fi=107 (2.30)

The 1-form f, which is exact if and only if Vis locally the Levi-Civita connection of
a metric in the conformal class, is subject to gauge conditions. We shall require that

l0/¢=0, jk=0,1,230n8 (2.31)
and assign certain values to the functions f;, j =1,2,3 on S. Then we have on S

fi%0=0.  L/y=Toc+d i+ i fi —huh f
N . . . ) (2.32)
%N =70 = 7 = xepeief kWY, i jik=1,2.3.
with
Ii7iej=Deer,  Xij = 8(Ve€0.€)). (2.33)

With assumption (2.19) the data for the connection coefficients are given completely
by the connection coefficients for the interior connection D and the functions f; on §.
The tensor

Ajp = %R(jk) - l_lzrlilkilﬂjk + };Ié[jk] (2.34)
derived from the Ricci tensor R ik of V. It will be subject to the gauge condition

Ajo=0. (2.35)
The remaining coefficients will be given on S in our choice of gauge by

Aji==27D; Dk — 3 DI D' hjx) + 5 {r — O + xux "V hji

A = 2 ! Dy 82, i jok =123, (2.36)
such that A}, is represented under assumption (2.19) by the spatial tensor

Ajk = =2 1YD; k2 — IDD'2 hjx) + 5 hji. 2.37)

All other projections vanish on S.
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(iv) The “rescaled Weyl tensor” dl k= R-1¢ jkl» Where Ci jkt 18 the Weyl tensor of g.
It is specified on S in terms of its electric part

di; = digjo= 27 D; D;$2 — %hij DY D2 + 25}
=27 0 o = XM i — Y (R0 = Mol 238)
and its magnetic part
djy = dhjo = —27" Dy €)™, (2.39)

which are both spatial tensors on S. Here sji denotes the trace-free part of the Ricci
tensor of & and ¢;j; the corresponding Levi-Civita symbol. Under assumption (2.19)
these data reduce to

dij = diojo = 273{D; D;j2 — L hi; D* Dy 2 + £2 5y} 4 =0. (2.40)

Using the local form £2 = I'/(U + |x| W)?, we get near i a more detailed expression for
the field above. If d;; is represented in the space-spinor notation by the spinor field @qpcq.
we get a splitting

Babed = Dped + Paved- (2.41)

Here

¢z,1bm' = Q’_Z{D(ab Dcd)-Q/ + ' Sabed }
=T "2U? Dap DeaylI” — 4 U Dy I DeaU
—2I' U D(ap Deay U + 61" DapU DeayU + I U sapea) (2.42)

is the part derived from the function £ = I"/U? which contains only information on the
local geometry near i. The information on the global geometry is contained in

_ 31
bopea =T 2{ *EmUWD(abFDcd)F+UWIXID(ab Degy I’

+2|x| (W D" DegyU — 3 U DgpI” Dy W)
+2x|F (=U Dp Degy W — W Digp Degy U
+ 6 DiapU Degy W + U W sapea)

+ T2 (—2W Dap Deay W + 6 D(apy W Dogy W + W? sabcd)]. (2.43)

We shall call ¢, , the “massless” and ¢;‘I/,C 4 the “massive” part of the rescaled Weyl tensor.
While under suitable assumptions on the metric h the massless part can be extended to
an analytic tensor field on B, (i), the massive part always behaves like O(]” 32y as I — 0
unless m = 0. If we admit cases where compact subsets of S have been removed from our
initial hypersurface, we may consider initial data with ¢:ZC 4 = Obut @ peqg # Oneari.
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3. Normal expansions at space-like infinity

We shall now consider a certain manifold C, and a certain type of expansion which will
allow us a convenient discussion of data which are singular at i. The initial value problem
near space-like infinity, to be discussed later, will also make use of the manifold C,.

3.1. The construction of C,

The construction of C, involves a blow up of the point i to a sphere and an extension
through this sphere. The following discussion will be given in analogy to a similar discussion
in [9] to which we refer for further details. We shall employ the space-spinor formalism on
S in the notation used in [12]. It will be obvious from our subsequent considerations that
for our purpose it is irrelevant which spin structure were chosen if there existed more than
one. Let SU (S) denote the bundle of normalized spin frames over § with structure group
SU (2, C) and projection T onto S. Later we shall assume that S is a space-like hypersurface
of a four-dimensional space-time and that the restriction of SU(S) to S arises as the set
of spin frames § = {8,}4=0,1 Which are normalized with respect to the alternating form e,
such that

€(84,p) = €ap, €1 =1 (3.1)

as well as with respect to the Hermitian form on spinors which is defined by contraction
with the future directed normal vector field t of S, such that

1

g(rt, 8ada) = €4 Oea/ o + €4 lear I (3.2)

Here we assume that g(z, ) = 2 and g denotes the space—time metric. Given with respect
to such a spin frame, the vector t has representation

94 = €0 Cegy a4 €1 %y a (3.3)
which we will assume in the following. We use the realizations

SL2,C)={t", € GL(2,C) | €act® vt q = €pa},
SUQ,C) ={t € SL2, C) | Taart® b7® 1y = Tpp'}.

If § € SU(S), the action of + € SU(2, C) maps § onto 8¢ given by basis spinors & .
a = 0, 1. Using the Van der Waerden symbols for space spinors

’ . ’ .
Gjab=0j (aa/rb)a‘ o’ ab=T(baU] aa's j= 1.2, 3,
such that
. . . ’ ! ; i
8 k=07 por®, j=1,2,3, €aley? = %r,m/tbb +o’/ aftfa/r"b oj b,

Pk Pk
Njk07? ap0" ca = =810 ap0" ca = —€a(c€arp = habed.
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the covering map onto the connected component of the rotation group is given by

SUR.C) 51", 5t =o' gy 19t 4o; % € 0,3, R).

the induced isomorphism of Lie algebras by

”"

su2, CYsup 3 uij =20 u’ . o b e 0(3.R).

and the inverse of the latter by
//_ 1

. . ,
o3.R)su'; 5 u'p= %u'ja,- WCalpe €su2,C).

Finally, the covering morphism of SU(S) onto the bundle O, (S) of positively oriented
orthonormal frames on S maps the frame § € SU(S) onto the frame on S with vectors
of! ab 848p, j = 1,2, 3. We use this map to pull back to SU (S) the Levi-Civita connection
form on SO(S). Combining this with the map cD: ~!, the connection is represented by an
su(2)-valued connection form »? , on SU (S). Similarly, pulling back the R3-valued solder
form on O (S) and contracting with the Van der Waerden symbols results in a 1-form o %?
on SU(S) which we call the solder form on SU(S).

Let H denote the real horizontal vector field on SU(S) satisfying (092, H) =€ @ ¢, ”
or, equivalently,

Ts(m) FI(B) =3¢ ‘L’])b/gb' = %(5050/ — 4§ 81'), 6 € SU(S).

It follows that Ty, () H(8 1) = Ts(r) H(8) if and only if

i¢
teU(l)E[teSU(2,C)|t=(eO eg‘f’)‘(”ER}'

The construction of the manifold C, will be described now. Choose a fixed spin frame
8* in the fibre w~!(i) over i. The action of the group on this spin frame defines a smooth
parametrization §(¢) of the fibre in terms of r € SU(2, C) such that §(¢) = §* with e
the unit in SU(2, C). Choose a > 0 such that the metric ball B,(i) in § with centre i
and radius a is strictly geodesically convex and that the metric 4 is analytic on B, (i). Let
|—a.al3 p — 8(p,t) € SU(S) be the integral curve of the vector field V2 H satisfying
8(0.1) = 8(¢). Weset Cp = {8(p.t) € SU(S) || pl < a. t € SU(2,C)}. This set defines
a smooth submanifold of SU (S) diffeomorphic to ] — a, a[ x SU (2, C) which is in fact an
analytic submanifold of the restriction of SU(S) to B, (/). Since the integral curves of V2H
through 7 ~! (i) project onto the geodesics through i with tangent vector of unit length, the
restriction of 7 to C,. denoted in the following by 7', maps C, onto B, (i).

The action of U (1) on SU (S) implies an action of this group on C,. While 10 = TNy =
{p = 0} is diffeomorphic to SU (2), for a point p in “the punctured disk™ B, = B, (i)\{i} the
fibre 7' ~1( p) consists of an orbit of U (1) on which the function p is positive and of another
orbit on which it is negative, both being diffeomorphic to U(1). The map =’ factorizes
as Cy I C, bt B, (i) where the quotient space C, = C,/U(1) is diffeomorphic to
] — a. a[x SZ%. Since the function o on C, is invariant under the action of U (1), it induces
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a function on C;, which will also be denoted by p. For a fixed value of p the map m; is the
Hopf fibration realized by

SU@2,C) >t — v20% p1%0t? 1 € §? c R, (3.4)

The set 7, ! (B,) consists of a component CL/]L on which p > 0 and a component C;_ on
which p < 0. Each component is mapped diffeomorphically onto the punctured disk by
7p. Using 77 to identify C ;+ with B, we obtain an extension $* of S. The point i has
been replaced here by the set 71 (1 0 = Ty ! (i) diffeomorphic to $2, to which is glued the
set C;_. Of course, from the point of view of the metric 4 the set 71 (J O) still corresponds
to a point and the function p defined near it on S is the geodesic distance from that point.
Nevertheless, the initial value problem considered later will essentially be given an extension
of the original initial hypersurface S which is similar to §*

Close to i various properties of the data are analysed conveniently in terms of the U (1)-
bundle space C,. The pull backs to C, of the connection form and the solder form on SU (S)
are analytic 1-forms on C, which will be denoted again by & , and o%?, respectively. Any
smooth spinor field £ on an open subset U of B, (i) is represented on the subset 71 )
of C, in a natural way by a smooth “spinor-valued function” &, ., which is given at
§ € 7N by the components of £ in the frame defined by 6. We shall refer to this
function as to the “lift” of £.

The structure equations on SU (S) imply on C, the equations

do® = —% o Ao — b, A 0%, (3.5)
dcbabz—d')aeAcbeb+éab 3.6)
with
2% = 1% peaeso® Aol
denoting the curvature form determined by the curvature spinor rapcdef . It holds

Yabedef = (% Sabce — %rhabce)edf + (% Sabdf — le‘rhabdf)fce’ (3.7)

where Sgbce = S(abee) 18 the trace-free part of the Ricci tensor of 4 and r its Ricci scalar.
The curvature tensor of 4 is given by

Yagbhcdef = —FYabcdef€gh — T'ghcdef €ab
and the Bianchi identity reads
Dab Sabcd = % Degr.

Weuser € SUR2,C) and x! = p as coordinates on C,. The vector field H tangent
to C, then takes the form V2H = d,. Further vector fields are defined on C, as follows.
Consider the basis

LYo L_L(o -1 /i 0 2
'=3\i o) “73\1 o) ®¥T3\lo0 = 3.8)
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of the Lie algebra su(2, C), were u3 is the generator of the group U(1). We denote by
Zy, i = 0,1,2, the Killing vector fields generated on SU(S) by u; and the action of
SU(2, C). These fields are tangent to / 0 where we set

Xy =—(Z,, +iZ,), X_=—(Zy, —iZ,)), X =-2iZ,,.
These vector fields are extended to C,, by the requirements
(H.X1=0, [H,X:]1=0, [H,X_]=0. (3.9)

The analytic vector fields H . X, X4, X_ constitute a frame field on C,. It follows imme-
diately from their definition that we also have

[X, Xi]=2X,, [X,X_]=-2X_, [X4. X_1=-X. (3.10)

For p in the punctured disk B, the vector field i X is tangent to the fibres 7 p). The

complex vector fields X, X_ are complex conjugates of each other such that X_ W =
X4 W for any real-valued function W.
The definitions yield immediately

(0c*’. Xy =0, (&% 5, X) = e€0%p° — €% . (3.11)
By considerations similar to those used in [9] we find

(0%, Xy) = pvV2e0%0" + 0D, (@5 X1) =€ " +0(p?).
0. X_) = —pV2€e1% P + 0P, (0%p X_) = —€1%;, % + O(p?)
as p — 0. It follows that for p in the punctured disk the projections of H. X +, X_ span

the tangent space at p.
We define furthermore vector fields a5 = ¢(ap) on C, \ I° by the requirements

0% cca) =€y’ cca=c'cadptcTa Xy T X . (3.12)

The first condition implies T3(")cap = 8(aTh) b/Sbf ford € Co\ I 0. The second condition
is imposed to ensure that the vector fields do not pick up a component in the direction of
X . Using the properties of the solder and the connection form discussed above we find

+ 1 1

I .1 , -
C ab=Xgp+C ab» €' ab= ; Zab +C+ ab» € ab= ; Yab +C  ab, (3.13)

where we have on the right-hand sides

1 1
Xab = «/Ee(a Oeb) t Yab = ——=€4 161, I Zab = Eea Oebo (3.14)

/2

and analytic functions satisfying

¢ ab = O(p), o =0, =1+, —. (3.15)
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Here the second equation is obtained because we have by construction cg; = ¢19 = H.1t
will be seen later as a consequence of the structure equations that
ap=0. (3.16)

‘We have connection coefficients

. 1 .
Yed“ b = (@%b, Ced) =;V;jab+ycdab (3.17)
with
¥* abed = 3(€acXbd + €bdXac)s Yotea = 0, Yabed = O (p).

The analyticity of the solder form and of the vector fields H, X +, X _ entails that the vector
fields o c.q whence the functions

1 + -
PYed®by Ccdy PCTed, PCed

extend to analytic fields on C,.
A smooth function F on an open subset of C,, is said to have spin weight s if

X(F)=2sF (3.18)

on this set with 2s an integer. The construction of C, entails that any spinor-valued function
on it has a well-defined spin weight.

The evaluation of the structure equations on the vector fields ¢, and X gives equations
which show that the functions ¢ 45, Yapca have a well-defined spin weight. In view of
(3.11), the evaluation of (3.5) on X A ¢4 gives

b 0 b 1 b b 0 b 1
(0, [X,ceal) =€0“€c"€ay” —€1%(c €a)” +€0"€c "€ay? — €17€c €a) .

Since it follows from (3.9) and (3.10) that the commutator of X and ¢, can be expanded
in terms of the fields c,p, this implies

[X, cab] = 2(€(a ° chyo — €@  con)-
Using (3.10) and the expansion of the frame vectors in (3.12), we arrive at the equations
Xdw=20-a=-bcw Xctap=201—(FD)—a—-bcta,, (3.19

which determine the spin weights of the functions ¢* 45. The evaluation of (3.6) on X A c¢¢g
gives

XVabed =22 —a — b~ c—d)Vabed- (3.20)

The evaluation of the structure equations on the vector fields ¢, yields the essential
content of the structure equations. By (3.12) the commutators of the vector fields ¢, are
of the form [cap, ccal = Aab ®/ ca cef + Babea X. Since Bapea = ¢ ap ¢ e — ¢~ ca ¢t ap
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the vector fields c,), are nowhere tangent to a local section of C,, \ I® over the punctured
disk. We get in particular

[ ] :
€01+ Ced|l = —=
C ﬁ

The evaluation of (3.5) on ¢4 A c.y gives after contraction with ¢, the equations

{8pc! cadp + 3pc™ ca Xo + 8o ca X}

Aca® of cab = 2Ved ® €5y " — Ver “ (c€ay ) can-

These equations entail the radial equations

) d
— 03¢ ap = —2Vab © (0€1) * ¥ cas a=1+, -,

NG

which are satisfied trivially if @ # b. Observing (3.13) and (3.17), the non-trivial equations
can be rewritten in the form

1 . . . . .
ﬁa/’(pcl aa) = Yaal0 (PCI 1) — Yaall (p('l 00).

which implies (3.16), and

1 . . . . . 1 .

ﬁap(p('+ aa) = Yaa00 (,0C+ 11) — Vaall (PC+ 00) — ﬁ)’aall’ (3.21)
1 . y . . . 1

?aﬂ(pc aa) = Yaa00 (PC™ 11) — Yaal1 (PC™ 00) — '\/—EyaaOO- (3.22)

which contain the non-trivial content of the radial equations. The evaluation of (3.6) on
Ced N Cep gives the equations

Cod Vef “b) — Cer (Vea ® ) + Yed “ h Ve " b — Yer “n¥ea b
— 2%en “ blYed ® € " — Ver & (c€ay")
—fc cact o —cT o ct )@Y — €1%b ) = 1 bedes-
They entail the radial equations

1
Eapyefab = —2 YghavVes & 0€1) "

5 [ (e = G havoe) 1 + (s = G vy ) oc)
= - = € - = €0e | »
5 \Sabve = ¢ haboe ) €17 + \Sablf = ¢ Rablf ) €0

which are satisfied trivially if a # b. Observing (3.13) and (3.17), the non-trivial equations
can be rewritten in the form

1 . 1 . “ .

7 {3,))/00(-(1 + P (ec "ea “Vo000 + € 'ea ' Too11 + Voom)}
= 000071 1cd — Y0011 700cd — % S00ed + 137 €c €d (3.23)
1 . 1 . - .

—= 18, V11ca + — (ec%ea “Pr100 + €c 'ea P + Pitea)

V2 1’ P

. v I L, 0.0
= V1100V led — V1111Y00cd + 5 Stled — 137 €c €d - (3.24)
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As a consequence of these equations we have

1 . . . . . .
ﬁap{pz(yllw + 300110} = {P>(P1100 + Y0011)} (1100 — Yoo11)
which implies

Y1100 = — Y0011 (3.25)

The unknowns in the radial equations are not independent of each other. The vector fields
cap satisfy the reality condition (c.5)t = 1, “/ra ”’Ea/br = —cub, the connection coefficients

Covariant differentiation is expressed on C, \ I° by the “usual” rules. If F denotes the
lift of a smooth function f on B,, the covariant differential Df is represented on C, \ I°
by the invariant function D,y f = c4p(F). In the following we shall use the same symbol
for a function and its lift. Let ., be the invariant function representing a spatial spinor
field i on B,. To derive an expression for the invariant function representing the covariant
differential Dy consider C, as being embedded into SU(S) and denote at § € C, \ / 0 the
horizontal Lift of T3 () c4p with respect to @? , (which is not necessarily tangent to C, \ I 0y
by c},. The invariant function implied by Dy is then given on C, \ 1 0 by

Dapprca = C;b(//«cd) = Cap(fed) — Vab € cled — Vab € dlhce-

Analogous formulas are obtained for covariant differentials of spinor fields of higher
valence.

3.2. C, versus B, (i)

We note some relations between C, and B, (i) and introduce notation needed later on.
Let x* be the normal coordinates on B, (i) centred at i and based on the orthonormal frame

ct=0;%c, =0;%8%8; (3.26)

at i and let V. = xP3/0x? be the radial vector field, which is tangent to the geodesics
through i and satisfies A(V, V) = —|x|2. Denote the spin frame on B, (i) which coincides
with §* at i and is parallely transported in the direction of V again by §* = §*(x*), and
denote the frame field on B, (i) which is parallely transported along the geodesics through
i and coincides with c}‘ at i again by c]*.‘ such that (3.26) holds everywhere on B, (i). The
local expression of the projection 7’ is then given by

7' (p, ) > x%(p, 1) = pV2E5 @) 1€ 010 | = p/28% jo 1€ 1? ). (3.27)
Thus the pull back of the function |x| by 7’ is |o|. We write

Vig) = Vbl = x| v ¢, (3.28)
on B, (i) with coefficients V%, v satisfying V¢ V.4 = —|x|%, v°¢ vsg = —1, respectively.

The latter are given by

v (x%(p, 1)) = V219 P |. (3.29)
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The pull back of the function I" by 7’ will be denoted again by I such that we have I" = p>
on C,. The map 7’ projects the frame ¢, at the point (p, ), p # 0, onto the frame

T(7") cab = 8alp, D)3p(p, 1) = 85 (x* (0. ) 1 4 85 (x* (0. 1)) 19 .

3.3. Normal expansions at i

Since the singular fields which we will have to analyse are usually built from fields on
S which are analytic near i, we begin by recalling a certain type of expansion of analytic
fields near i. We use the notation introduced above and write D; for the covariant derivative
in the direction of ('j*

Suppose T is an analytic tensor field of rank (r,s) on B,(i) which has components
T*‘A"“"'jl_‘_j_\ with respect to the frame cf. Since Dy C; = 0. we find for x* € B,(i),
lf) < 1.

d . 3 .
T T e x®)) = xP (WT*”""’ jl-..jx) (£ x*)
= VIO(DTH L0 x%).
Observing that such formulae also hold for the covariant differentials of T, we get by
induction
dr

3 D e )y = Ve VD Dy (1 x),

Evaluating the Taylor expansion

1 dr
Txirir g x%) = Z P _'F;(T*il.ui, PA(; X)) |r=0
= pd
atr =1, we get
o0
anﬁﬁmh@>==2327v%w)~-vhm)0%~~DaT”“”ﬁmAU%
p=0""

q € B,(i).

Since only covariant operations occur on the right hand side, the final result does neither
depend on the normal coordinates x® nor on the frame e; and it can be written (with the
bracket indicating the obvious contraction) in the short form

o0
1
T@) =) — (V@® . D)T)).
p!
p=0
Analogous expansions are obtained for analytic spinor fields. Let E:; e be the compo-
nents of the symmetric analytic spinor field £ on B, (i) with respect to the spin frame §* (x%).
By similar arguments as above we find the expansion
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p=00
|
g:r"az @) = Z |x|PF vheer . b1 Dp,c, - DblClg‘-;.--va, (3.30)
=0 ’

with v9® = yab (), q € By(i), and the derivatives of the spinor field evaluated at the point .
Since the index pairs b;cj, j = 1,2, ..., p, are all transvected with the same spinor v, the
derivatives in (3.30) can be replaced by the symmetrized (in the pairs on indices) derivatives.
If in the symmetrized derivatives a contraction of indices cj, cx, j # k, is performed,
the resulting expression is antisymmetric in the indices b;, bx. Thus, decomposing into
irreducible parts (with respect to the indices bp, ..., ¢1) yields in each summand of (3.30)
with p > 2 an expansion

bpc bicy D s*
virte ...y Dprp'” b]C] ap--ajy
byc bicy *
[ AT P} (Ep.O: b,,c,,~~~b|¢‘lal---“l

+ E:,]; prp---b3C3a|~~-a[ hb1C|b2C2 + - ‘)’ (331)

where the dots indicate terms (vanishing for p < 3) which are at least quadratic in the
metric tensor hgpc4. The spinors satisfy the symmetry condition

* gk . 1
SIJJ:prp-"172i+|Czi+|al"'al - sp‘i: (bpcp-boiyic2ir1)ar-ar)’ i=0,..., [§P]
with [$p] = 1 pif piseven, [§p] = 3(p — 1) if p is odd. In particular

* _ *
EP,O: bpep-biciar—a = D(bpfp o Dblcl)gar--al’

S*
p. i bycp---biciar-q

1
T 2,1 Y Dy, Diest- DY - Dy (3.32)
p I<k<h<p

where the dots on the right-hand side of the last equation indicate operators of the form
Dy, ¢; and where Dy, D¢/ are assumed to stand in the kth and Ath position respectively.

To obtain the complete decomposition of the coefficients of (3.30) into irreducible parts
one finally has to observe the expansion

E* . 1
Py bpepbaiticaiqy
— g0 a--ay 1 (ay--aj— ar)
T Spuibpep byt + %'.DJI (bpcpbrin €caiv)
2 (a2 aj-) ap)
+ Ep,i: (bpcp-Cit3 €byiy1 €cyipy) T (3.33)

with totally symmetric spinors satisfying

0 _e*
spsilbpcp“'b2i+152i+l ay-ar — gp.i: (bpcp--briy1c2i+1 a1 -a1)°

1 _ .1 * e
5p,i; Bpcp-baiyr ara; — Spil ";:p‘,'; (bpcp-briptlelar~a,_) > = (3.34)

and positive real coefficients cllJ ;.10 €tC.
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3.4. The functions T, Iy

If expression (3.30) of £ is lifted to C,. we encounter a certain class of functions on C,
associated with unitary representations SU(2, C). The matrix elements of these represen-
tations are given by the complex-valued functions

‘ i\ Y2\ 172
SU(2.C)BI—>ijk(l‘)=(j) (I\) 10 gy P

Tol0ty=1, jk=0,....m. m=1273,....

where, as in the following, setting a string of indices into brackets with a lower index £ is
meant to indicate that the indices are symmetrized and then k of them are set equal to |
while the remaining ones are set equal to 0. We state a few properties of these functions
which follow directly from their definition; more details can be found in [9]. The functions
are real analytic on SU(2, C), the representation is given by

SUR.CYst— Tu(t) = (T, (1)) € SUm + 1).

and the functions v/m + 1 T, / 4 (¢) form a complete orthonormal set in the Hilbert space
Lz(u. SU (2. C)) where p denotes the normalized Haar measure on SU (2, C). In particular,
any real analytic complex-valued function f on SU (2, C) admits an expansion

FO=33 fuks Tk 50
m=0j=0 k=0

with complex coefficients fy, « ; which vanish rapidly as m — oc. To be able to take care
of reality conditions, we note that under complex conjugation the functions transform as

T/ 3 (1) = (=) T, (). 1€ SUQR.C).

We denote by Z,,,,i =0, 1, 2, the left invariant vector fields on SU (2, C) generated by the
u; given in (3.8) and set

X+ = _(Zu'_a +iZu|)~ X_.= _(Zu2 - iZu|)~ X = _2iZ1¢3.
It follows thenfor0 < k, j <m,m =0, 1.2, .... that
XTnkj=(m=2j)Tn* ., XiTnj =B T 1.
X_ kaj = —Bm.j+1 kaj+l (3.35)

with
Bm.j =i (m— j+ D)/,
From this ensues that for a function f with integer or half integer spin weight s, i.e.

Xf=2sf
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the expansion above reduces to the form

f= Z Z Jmk T k m/2—s» (3.36)

m>|2s| k=0

where m takes even values if s is an integer and odd values if s is a half integer.
The products of two functions of the type above can be expanded in the form

uw
Tn'kTu? 1= Dim,i,kin, j.lim+n—2p,i+j—pk+Il—p)
p=0

X Tmin—2p " V7P kt1-p (3.37)

with u = min{m,n,i + j, k + I} and coefficients D(m. i, k;n, j,I; w, r,s) which are
products

D(m,i,k;n, j,liw,r,s) =C(m,i;n, j;w,r)Cim, k;n.liw,s)
of Clebsch-Gordan coefficients C(m, i; n, j; w, r). Since the latter satisfy
Y ICm, isn, jiw, NP =1,
ij
we have |D(m, i, k; n, j,1; w,r,s)| <1 for all admissible values of the indices.
We note the following special case of the expansion formula above:

Tom' &k Tan? 1
m+n
=Y D@m,ik;2n,j,l;2q,i+j+q—m—nk+l+qg—m—n)
4=40

X Tog FIHm v gemen (3.38)

with
go=max{lm —n|,m+n—i—jm+n—k—1I}.
For an even more specialized case we shall need later the following information on the

coefficient of the highest order term in this expansion.

Lemma 3.1. Ifmisanintegerandn, p,k,k', j are non-negative integers suchthat p—n >
On+m=>2,p+m=>20<k<2(p—n),0 <k <2n+m), then in the expansion
T2(p—n) k p—n T2(n+m) k n+m—2+4j
= D(j) Tap+m) ket ptm—24j + “terms of lower order”

the coefficients D(j) (suppressing all the other indices since we are interested here only in
the dependence on j) do not vanish and satisfy D(0) = D(4).

Applying (p + m — 2 + j)-times the operator X to the expansion above, all the lower
order terms drop out and we get, observing the Leibniz rule,
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ptm—=2+j
’

D) [T Bepemt Tapem o
I=1

o yPtm=2+] k+k
=D(j) XL Do ptm) prm—2+j

n+m—2+4j

N =
ptm—=2+] k K
= _ Trp— T .
(n+m—2+j Eﬂz(p nyd ]IJ Brnmri Tp—ny” 0 Doy ™ 0

This equation implies D(j) # 0 and
2 2
DA (i) Thitree—y Brmsmya

T (ptm=2\ yynt+m-+2
D© (n+m—2) I=pt+m—1 P2(ptm).d

=1

The functions 7, / ; on SU (2, C) induce functions on C, which are obtained as follows.
The set I9 is identified by its construction with the set SU (2, C). Thus we can consider the
functions T}, / s as functions on 7°. We extend the functions 7, / 4 to analytic functions on
C,suchthat H T,/ = 0. By the same identification the vector fields Z,,, X+, X_. X on
SU(2, C) are identified on I° with the vector fields introduced earlier for which we used
the same notation. Relations (3.35) remain true on C,.

3.5. Normal expansions at I°

Any analytic function f on C, with integer spin weight s has an expansion of the type
(3.36) with coefficients f, ; which are analytic functions of p. In the case of spin-valued
functions arising from spinor fields on B, (i) the expansions are of a very specific kind.
Suppose &, ...q is the spin-valued function on C, representing a symmetric analytic spinor
field on B,(i) and denote by & = £, ...q)) 0= j=1 its essential components. The
function §; has spin weight s = [/2 — j and a unique expansion of the form

o
5= &.pp" (3.39)
p=0
with
2p+l m
Ejp= Z Zgj,p:m.k T k (m—1)/2+j (3.40)

m=max{|[-2j|,i-2p} k=0

and complex coefficients &; ;. x. Here m takes even values if [ is even and odd values
otherwise. We shall refer to this type of expansion as to the “normal” expansion at /°. Its
form can be deduced by the abstract arguments given in [9]. To see how it relates to the
spinor field £ on B, (i) it is more useful to derive it directly from (3.30). Expression (3.39)
at the point (p, t) is obtained from (3.30) by the following operations on Eq. (3.30):

(i) Perform the transition §:1~~~al — S;‘]__lbl i ai " -t ar-

(ii) Replace |x| by p and the coefficients v?? by the right-hand side of (3.29).
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(iii) Decompose all spinor-valued coefficients into sums of products of symmetric coeffi-
cients with ¢s. Contractions of €’s with pairs of #’s yield factors 1 or 0. The remaining
expressions assume the form of expansions in terms of the functions T, k.

The coefficient of p? is then

b b
(V2)P Dp,c, "'Dme:l-..e,t POt Pt 1 (g 1 gy,

2p+=-2 m

= Z Zgj,p;m,k ka(mAI)/Z‘f‘j

m=max{|/—-2j|.1-2p} k=0
b b
+ (V2)? Dpye, -+ Dol opt™ 017 1+ 17 01T 115 (g - 1% 4.

The second term on the right-hand side, which is of order ¢ = 2p + [ in the ¢’s, has the
expansion

b b
(ﬁ)l’ Dpye, - Dblclé::[...e/)t P tP - 2P gt (1®l (g o ¥ a);
2p+
k
=Y & paptik Topst* pij
k=0
with

2p+l>‘/2(2p+1

—12
*
k p+ J) Dy, -+ Db‘qsel---el)k'

& papih = (V2)F (

Thus we find the symmetry

§0.p:2p+1.k = &l pi2p+iks (3.41)

which will be important for us later.

We shall also be interested in (symmetric) systems of analytic functions &;,...,,, with
“essential components” §; = §(g,...a5,);» 0 < j < 2r, of spin weight s = r — j which do
not descend to analytic spinor fields on B,(i). In this case we have again expansions of the
form (3.39) but (3.40) is now replaced by the more general expression

qp)  2q
gj.p = Z Zsj.pZZq.k T2q k q—r+js (3.42)
g=Ir—j| k=0

where for given r we have a priori
0<|r—Jjl<q(p) < oo

In the cases considered later g (p) will be a finite integer for given positive integer p.

An expansion of the form (3.39) and (3.42), or simply an expansion coefficient like (3.42),
will in the following be said to be of “expansion type g (p)”. It will be understood here that
terms for which ¢ (p) < O vanish. It should be noted that we do not require g (p) to be the
minimal function for which (3.42) is true.

Spin weights and expansion types obey the following rules under algebraic operations on
functions. Suppose the functions f, g have spin weights s = 2r, s’ = 2r', withr, r’ integers,
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and are of expansion type g (p), ¢'(p), respectively. Then by (3.37) the product fg has spin
weight 2(r 4 r) and expansion type g (p) = maxo<j<p{g’(j) +g(p — )} If s = 5" the
sum f + g has well-defined spin weight s and expansion type g, (p) = max{q(p).q'(p)}.
Of course, it may happen that due to cancellations for certain functions smaller expansion
types may be assigned to their sum or product. The control of the expansion types will be
quite important for us later on and we shall use the rules above repeatedly without referring
to them in each case.
In the case where [ = 2r and m = 2gq the reality condition £T = (—1)"£ reads

g = (—1)&_;
or, in terms of the expansion coefficients,

+q+kg
Ej,p:lq.k = (_l)r 1 El—j.p:Zq.Zq—k'

4. Structure of data near space-like infinity

In this section we shall investigate normal expansions of the initial data in some detail.
The need for the specific information on the data derived in this section will become clear
only when we study the evolution of the fields.

The following facts will be used repeatedly. The curvature tensor of & is given in three
dimensions by

Fmjtk = Rmili; — hiliy + Biklim — Rjilem. lij = sij + % rhi;, (4.1

where s;; denotes the trace-free part of the Ricci tensor rj; of & and r denotes the Ricci
scalar. Since we are dealing with problems of conformal geometry we shall need the Cotton
tensor

kpij = Djlip — Diljp rtesp. k;j = —% kiki€j K 4.2)
We have
ki'=0,  kij=ki.  Dkj=0.

The space-spinor representation kgp ¢4 ¢y Of the Cotton tensor has decomposition

kabcdef = Dabce€df + babdfé€ce. (4.3)
where

babea = D" (aSbcd)h 4.4)
satisfies

D bapea = 0.

Under rescalings h — k' = ¢* h we have transformation laws

’ ! -1 7 —1
kl’i./ - kpij- ]‘ij =¢ kij‘ babcd =¢  babcd-
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4.1. The expansion type of the rescaled Weyl tensor

The rescaled conformal Weyl tensor is in a sense the most important unknown in the
propagation equations. We shall analyse now its normal expansion at 1°.

Denote by C; the subset of C, on which p is positive. If we lift the function £2 to C;f
and consider it as a function of the coordinates p, ¢, it is an analytic function which can
be extended analytically beyond the set 7. We shall refer to analytic functions obtained
by lifting to C; and extending analytically through / 0 as to the “analytic lift to C,” of the
given function on B, (i). Since we will consider this procedure only for a finite number of
functions, we shall assume that the number a has been chosen small enough for the analytic
lifts to be defined an all of C,.

We choose now a positive, analytic function «’ on B, (i) with«’(i) = 1 and setx = |x|«’.
To state our first main result, we consider the analytic lifts of the tensor fields K3 Pabed,
KS(I);bcd, i3 ‘%Cd on B,(i) which we denote by d;abcd, Jﬁ;bcd’ ‘h?llxd’ respectively. The
following properties of the conformal Wey! tensor will be important for us.

Theorem 4.1. The analytic ltfts ¢abcd, ¢ab cd’ ¢abe 4 0on Ca have expanszon types p.
(i) The ;xpanswn coefficients ¢ iip.2q.k of the functions qb q)( abed); satisfy the symmetry
condition

S p2pk =Pap2pre P=0.12,.... k=0,..2p. 4.5)

. . . <7 : 3o 37 : ;
(ii) The expansto.n coefficients ¢j‘ p.2q.k of the functions ¢j = Dlape ; satisfy the antisym-
metry condition

B0 p2pk =—P4p2pir P=0.12..... k=0,....2p. (4.6)

(iii) If and only if the Cotton tensor satisfies the condition

Diayb, - Dayby babeay(i) =0, g =0,1,2,... .7
we have
¢ papx =0 p=0,1.2...., k=0,...,2p, j=0,....4 (4.8)

and the functions d;]’ have expansion type p — 1.

It will be seen in Section 7 that property (4.6) is related to a certain type of non-smooth
behaviour of the fields at the “sets /¥ where null infinity touches space-like infinity”
(cf. Section 5). Condition (4.7) will be recognized then as a condition on the data which is
implied by the requirement that the solution evolves smoothly through the sets /.

Condition (4.7) has been observed before in a related though somewhat different context.
In [10] it has been derived as a consequence of the requirement, called “radiativity condi-
tion”, that the spinor field ¢/, , has an analytic extension to B, (i). Answering a question
which has been posed in [10], we shall show that (4.7) is in fact equivalent to the radiativity
condition.
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Theorem 4.2, We consider the tensor field
e;sz,-Dj.Q’—%h,-j Dka.Q/-F.Q/S,'j, (4.9)

which is derived from the analytic function 2' = I'JU* on B, (i). The following conditions
are equivalent:
(i) The Cotton tensor satisfies condition (4.7).

(i1) The complex analytic extension of the function by D*2' D! §2', defined on the complex
analvtic extension of (B, (i), h), vanishes near i on the complex cone N which is
generated by the null geodesics through i.

(i) The field ¢y = Q1 ey i.e. the massless part of the Weyl tensor. extends to i as a real
analvtic function.

(iv) The field di; = 22 e,’(,, i.e. the massless part of the rescaled Wevl tensor, extends to
i as a real analytic function.

Remarks. Under conformal rescalings the complex null cone N, which coincides near i
with the set {£2’ = 0}, is invariant and the function by; DF 2’ D! 2’ transforms on N like a
conformal density. This entails that condition (ii) is conformally invariant and we see that
(4.7) is in fact a condition on the free initial data. We note that also the other conditions of
Theorem 4.1 are invariant under conformal rescalings.

The lift of a smooth spinor field of rank 4 being of expansion type p + 2, multiplication
by a factor k3 gives a field of expansion type p — 1. Thus it follows as a simple consequence
that the field d;é pcq Nas expansion type p — 1 if the conditions of Theorem 4.2 are satisfied.

It should be noted that the argument by which we will be led in Section 7 to consider (4.7)
as a regularity condition is quite different from that used in [10]. The formalism considered
in the present article is designed for the analysis of massive whence singular data while in
[10] only massless data have been considered.

In [10] has been exhibited a class of metrics which are analytic and satisfy condition (4.7)
but which are not conformally flat near i. These metrics do not imply conformal structures
on compact manifolds. However, Lemma 2.1 shows that conformal structures on compact
manifolds which have positive Yamabe number and satisfy condition (4.7) at a given number
of points are abundant among all conformal structures with positive Yamabe number.

To prove assertion (i) of Theorem 4.1 we discuss the normal expansion of the analytic
lift of the spinor field

31
xPd g = ~37 UW Dl Deay" + U W Diay Deap

+2{W D@pI” Dea)U — 3 U Diap!” Deay W}
+ 27 {~U Dgp Deay W — W Dy Deay U
+ 6 DapU Deay W + U W s4pcd)
+1x?{=2 W Dp Deay W + 6 Diap W Deay W + W2 sqpcal (4.10)

on B, (i) \ {i}.
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Observing that Dy, I" = 20 x5 on C,, we find that the first term on the right-hand side
lifts to

31
35 UW Dyl Deay, I = =12U Welype,.

on C, where we make use of the constant coefficients

k _ h
€nbed = €la ey fe €d) S

Since scalar functions have expansion type p, this term has expansion type p. It satisfies
the symmetry condition because

2 .
e(abcd)j = 0 for] = 0, 4
The second term has lift
UW Db Deay, ' = —4U Wp¥iab € ¢ Xaye-

Since sqpeq and r have expansion type p + 2, p, respectively, it follows by induction from
the structure equations (3.23) and (3.24) that the coefficients y,5.s have expansion type
p + 1. Therefore, the function above has expansion type p. It holds

. | . 1 .
Viab € ¢ Xdyge = —EVOOOO, Viab € ¢ Xdye = ﬁ)’llll-

Observing (3.13) and (3.17) we get
Doy DT + 6 = 2+/2p (F1100 — Yoo11),

which entails with (3.25) for the first coefficient function in (2.24)
o
Uo=exp[~/§/}7“00ds . (4.11)
0

Eqgs. (3.23) and (3.24) are ordinary differential equations for ygooo, 1111 if the quantities
$0011»> 50000, S1111 are considered as given. Their solution can be represented in view of
Egs. (3.25) and (4.11) in the form

Py
U [p 2 S(abed);

dp’ forj=0,4.
2 J T j

p);(ab ‘e Xd)je =

Since Uy, 2 S(abed); has an expansion of type p+2 and satisfies (3.41), the integral divided by
p has expansion type p and satisfies the symmetry condition. Since because of Lemma 3.1
these properties are not affected by multiplication with analytic functions, the term above
has the desired properties. The third term lifts to
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2{w D(abr Dcd)j U-3U D(abl’ Dcd)b,» W}
= 4p{W x(ap Dca); U — 3 U X(ap Dca); W}

This term is of type p, since the lift of a smooth 1-form is of type p + 1. It satisfies the
symmetry condition because x(qp); = 0 for j = 0.2.

Being a product of a smooth tensor field of rank 2 with a factor p2, the lift of the fourth
term is of expansion type p and it satisfies the symmetry condition because of (3.41).
Because of the factor p?, the last term in (4.10) is in fact of expansion type p — 1 and thus of
the desired type. This proves the assertion (i) of Theorem 4.1 because multiplication with
the 1ift of ' does not change the expansion type.

To prove the remaining assertions of the theorems above we shall analyse the behaviour
of the analytic tensor field (4.9). The function £2 is the unique analytic function satisfying
the conditions

2 =0, Dj.Q/IO, DjDk.Q,:-—-Zhjk ati 4.12)
and the equation
22 D;DIQ -3D;2' DI +1r2% =0 (4.13)

equivalent to the Yamabe equation. Instead of using the Hadamard procedure, the expansion
of £2’ can be determined directly by taking derivatives of (4.13) and evaluating at i. By this
procedure we get

D[DijQ/(i) =0,

Dy DDy D;$2'(i) = —% Fm(jkl + 4 homirkjy — r homihij). (4.14)

D, Dy, D[Dij.Q/(i) = —(Dmrpiky + Dpriiom + Dirmiiop)
+ 10k pm Dirijy — 5 hpmbuix Djyr.
From this we obtain the following expansion coefficients at i:

e;j =0, Dke,/'j =0, Dleegj =0,

Dy DD =2h Ckymy ) 4+ 2 b k) 7. (4.15)

We denote the spinor field corresponding to ej’. . and its analytic liftby e/, ,. Using (4.15).
(4.3), and the procedure discussed in Section 2 for calculating normal expansions, we find
for the function ¢/, = ¢/ _ the expansion

j (abcd);

r_ 3 4
e; = €;3p" +0(0")

with

: V2 (' )
ef~3:(2_’)_6_2<k) bipear, T ¥ J- (4.16)
k=0
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Whereas we would expect by our considerations in Section 2 an expansion of the type

5 2q
- ’ k .
€3= Z Zej.B;Zq.k Tyg " q—2+j
g=[2—j| k=0

we see that, in agreement with Theorem 4.1, the terms of order ¢ > p — 1 = 2 vanish.
Furthermore, we observe that the coefficients e;. 3.4 ¢ do not vanish in general and that

’ _ ’
€13.4k = T€0,3:4.k 4.17)

To determine derivatives of e; ; of higher order is already very awkward and we shall use
other methods to discuss the structure of the expansion coeffficients in a general way.

Lemma 4.3. The tensor field e} i Satisfies the equations

2'Diej; —2D'Q'¢}; =0, (4.18)

2(D; €}, — Dje};) — hiy D* € + hji D* ¢}, + 22 kiij = 0 (4.19)
on B, (i) which read in space-spinor notation

Q2'D%e, , —2D%Q ey =0, (4.20)

D/ (u€peqy; — 2" babca = 0. (4.21)

Eq. (4.18) is only a rewriting of the constraint equations satisfied by d; ¢ (cf. [12])in terms
of e} «- The integrability condition (4.19) is obtained as follows. From (4.9) we get

Diey=D'D;iD2 — I Dy(D'Di2' + 12'r) + D' Q2 Iy + 2' D' Iy
=DyD'D;2 + D' Uik + S rhip) — } D (D'D;i 2" + 12'r)
+ D' Iy + 2" D' 1y,
=2(D'2 Iy + § D (D'D; 2" + 12" ).
Taking a derivative of (4.9) and antisymmetrizing we get
Dj ejy — Di ejy
= —D"2 ryji + D2’ i — DiS2 L + 2’ ki
— Lhy D (DID' 2"+ 12 r) + L hjx Di(DID' 2 + 12 7),
which, together with the preceding equation and (4.1) gives (4.19).

As noted above, the conditions of Theorems 4.1 and 4.2 are invariant under conformal
rescalings. This allows us to employ a particular conformal gauge to simplify the arguments.
To explain this gauge we consider certain conformal geodesics of (B, (i), k) through the
point {. These are given by solutions (x(¢), b(t)) of the conformal geodesic equations

Dix = =2(b, %)% + h(x, ) K* (b, ), (4.22)
Dib=(b,i)b— Lr* (b, b)x +1(x, ") (4.23)
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with initial conditions
x(O =i, h&x,x)=-1, b0O)=0. (4.24)

Here x(t) denotes a space-time curve through i, b(¢) a 1-form along that curve, and by h¥
we denote the contravariant form of 4. Assuming that a is small enough, there exists on
B, (i) a unique conformal rescaling of the metric which is analytic, keeps the metric and
the connection unchanged at i, and which is such that if the solutions to (4.22)—(4.24) is
expressed in terms of the rescaled metric, we have

(b.%) =0 on Ba(i). (4.25)

A metric in the conformal class for which condition (4.25) is satisfied along solutions to
(4.22)—(4.24) will be said to satisfy the “cn-gauge”. In the following we shall assume our
metric to satisfy the cn-gauge.

Along any conformal geodesic the relations

Dy (h(i., %)) = —2(b, X) h(x. %),
Di(b.x) = —(b, £)* + L ¥ (b. b) (%, %) + 1(x. %)

are satisfied. Therefore, we get in cn-gauge along the conformal geodesics satisfying (4.22)—
(4.24) the relations

Dy (h(x,%)) = 0, (4.26)
1, %) = =4 h* (b, b) h(x, %). 4.27)

It will be convenient to consider the complex analytic extension of the space (B, (i), h)
near i. We assume that there exists a three-dimensional complex analytic metric manifold
(B, h) (i.e. h defines a complex-valued non-degenerate scalar product) which contains
(B4 (i). h) as a real Riemannian subspace and which is such that B is a convex normal
neighbourhood with respect to A and that the function I” has an analytic extension to B.
The exact size of B is not important to us; it can easily be seen that B can always be chosen
such that the statements made in the following are true. The restriction of SU(S) to B,(i)
has a complex analytic extension to a bundle SL(B) of spin frames on B with structure
group SL(2, C). We denote the analytic extensions of the connection and the solder form
again by @ , %, respectively and note that the first and second structure equation hold
unchanged on the complex analytic extension. The standard horizontal vector fields H.4
are defined on SL(B) by the requirements

(@%b, Hea) =0. (0°°, Heg) = hea®. (4.28)

The complex cone which is generated by the null geodesics through i will be denoted by
N. We assume that £2’ has a complex analytic extension with U # 0 on B. The field e;. it
then also extended by (4.9). Wehave N = {I" =0} = {2’ =0}, dI", d2 #0on N\ {i}
and D¥I", DK$2' are tangent to the null generators of N by (2.22) and (4.13).

Since we assumed the cn-gauge before extending into the complex domain, conditions
(4.26) and (4.27) will remain true along conformal geodesics through i in B. The first
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condition implies that null generators of N are conformal geodesics (considered as point
sets) and the second condition then implies that

DXrDirsy=pD*rD'rizy=0 onN. (4.29)

To exploit the fact that the field e} . is defined in terms of the unique analytic solution £2'

of (4.12) and (4.13), it is convenient to introduce a certain submanifold B of SL(B) which
is constructed as follows. We consider the group

G={s(z)eSL(2,C)|s(z)=<i ?),zEC}.

Suppose &* is the spin frame at i on which was based the construction of C,. Let y be the
generator of N which is tangent to 878} Denote by §(z) the spin frame which is obtained by
the action of s(z) € G on §* such that §(0) = §*, denote by y — &(y, z) the integral curve
of Hyy satisfying 8(0, z) = 8(z), by x — 8(x, v, z) the integral curve of Hyo satisfying
8(0,v,2) = é(y,2), and finally by D the set of (x,y,z) € C3 for which the latter are
defined. The set B = {5(x, v,2) | (x,y,z) € D} sweeps out a complex analytic three-
dimensional submanifold of SL(S) with global coordinates d=x2= y, 23 =z. We
denote by 7 the restriction of the projection  to B and define the subsetsi = {§(0,0,2) |z €
C), N = {6(x,0,2)| (x,0,2) € D,x # 0}, = {8(0, y.2) (0, y, z) € D} of B which
project onto i, N \ y, v, respectively.

A spinor field £ on B is represented on B by an invariant spinor-valued function to which
we refer as to the lift of £. In the following there will be made no distinction in the notation
for the fields on B and their lifts to B. It will be clear from the context what is meant. The
trace-free part of the Ricci tensor is then represented on B by the function sgpcq.

The map 7 has rank equal to 2 at the points of y. Since its rank is 3 on B\ 7, the condition

(O'qu Cab) = hap cd

defines there analytic vector fields c,4. By arguments similar to those given in [9] we see
that

d
_
Cab = C gb _8 s

with coefficients such that
5 3

1 . -
“op=8% onB, 60122——-}-6301 onB\y
X

and ¢® 11, ¢l o1, ¢2 01, &3 o1 are analytic on B with
1 3 1 2 . .
cdiu=n=cda=ta=80=0, =1 onyp.

The connection coefficients

. 1 v
Yed“ b = (@%b, Ccd) = ;)/C/d”b+ycd“b
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satisfy

, 0. 1.0_0 -
Yedab = —€(c €d) €a €b » Y00ap = 0, Yedab = O(x]) asx — 0.

The functions Y445 extend by analyticity to B. Again, spinor fields on B are represented
by invariant spinor-valued functions on B.
Since D, 2" = D1182'¢, 'e, ! on N. condition (4.29) translates into

50000 =0 on N. (4.30)
For given p = 0,1, 2, ... this implies Dgo s0000 = O on N. Taking the limit to / along a
fixed null generator of N, we find that this implies at / in terms of our earlier notation

by, b b b :
759087 05% 057 05" 0s¢ ODa,,b,, Db, S:bcd =0

s4p i
for s¢ o = s“ ¢(2) with arbitrary z. This entails
D(a,,b,, -+ Dqyp, S;bcd) =0. p=0.12,..., (4.31)

which in turn implies (4.30).
The Cotton tensor is represented by the function bgp.4 and, by the argument above,
condition 4.7 translates into the equivalent condition

boooo =0 on N, (4.32)

which proves the equivalence of conditions (i) and (ii) of Theorem 4.2.
Evalutating the first structure equation on cgp A cqp yields the equations

1
! 1 . I .
dcc o1 = —Lco + 2y0100 ¢ 01 — 2¥0101,
I 1, . 2
dy 701 = —L o + 20100 ¢~ 01+
- 1.3 L3 v
0 C” 01 = —LC o + 2%0100¢” 01 + ~ Yo100-

The second equation implies
F1 =0,

whence

! Iy
cor=¢ 01dx + | z—+¢01)0;
2x

with

= |t

1
¢ 01 = —

X
! l .. ,
p/ x_v()lOl dx’, Ban=—p-D. p =e2fo Yoio0 dx”
p 2x
0

We get now furthermore the equations

1
a1 . 1 . 2 3 . .3
9 11 =2100C 01 — V1101, Ox ¢ 11 =0, Oxc 11 = V100 (; + 2c¢ 01)-
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which imply
_ 1 3
cr1=c 119x +3y + ¢ 119;

with coefficients which are given by simple integrals. Evaluating the second structure equa-
tion on cgp A Cqp gives

. 2., . 1
0x Y0100 + S Y0100 = 2)’02100 = 5 50000,
. 1 . . 1
dxYo101 + i 2y0100 | Vo101 = 5 0001
. 1 . . 1 r
cvo111 + | — — 2yo100 ) Yo111 = = soo11 — =
X 2 12

. 1. ..
dx Y1100 + Z Yoo — 2Y0100¥1100 = 50001
A V1101 — 270101 V1100 = .
x Y1101 Yo101Y1100 = S0011 + 137+
Y1111 — 2011171100 = S0111-

Observing (4.30), the first of these equations, if expressed in terms of the unknown u =
x2%0100, takes on N the form

.2 5
u=—u".
%2
The general solution of this equation is given by

ax

u=———, a,c=const, c| #0.
Yatox c fal + lc| #

Since u = O([xlz) as x — 0, it follows that # whence 100 vanishes on N.
Integration of the remaining structure equations gives on N

X
1 1
Y0100 = =5~ Yol01 = Efx/Soom dx’,
0
X X
1 ! r 7 1 ! ’
vorrr=—f x (Soou--)dx~ viteo = — [ X' soo01 dx’,
2x 6 X
0 0
X X
r ’
Y1101 = / (2V0101Y1100+50011 + 1—2) dx’,  ynn = /(2Y0|11)/1100+S()111)dx .
0 0
1 1 1 3
o1 =¢ 013x+531. cip =c¢ 110y + 9y +¢ 110,
X X
1 _ 2 1 ’ N 1 ’
c o1—~;/XV0101dx, c 11=f(2)/1100€ o1 — 2yi101) dx’,
0 0
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Re
1
A= f — Y1100 dx’.
X
0

Lemma 4.4. On N holds 0001 = — \]—2 for x2 boooo dx’.

From (4.4) and the coefficients determined above we get on N
—boooo = Doo so001 — Dot 50000 = dx 50001 — <01(s0000) + 4v01 7 0 $000 £
p 2 l 2
= Jx So001 + < Sooor = x—23x {x* s0001)

whence the result.
We shall now analyse the behaviour of the function £’ near N. Taking a derivative of
(4.13) and restricting to N gives there

0=3D'Q'D;D;j2' — D;2' AS2'".

Lifting these equations to N and using the metric and connection coefficients calcuiated
above we find as the only non-trivial equation in this system

0=3Dgy D112 —2(Dgo D112' — Do D1 £2)
1 1
=0, D12 — - D12 =xd, (— D]].Q/).
X X

Since limxﬁo(} D11) = Doy D11£2'(i) = —2 this equation implies
D“.Q/ =-—2x on 1\7
From this we get by direct calculation on N

Doo Dpo$2' =0,  Dgo D1 2" = 0,
Doo D112' = =2, Doy Dp1 2 =1,

Do1 D112 = —4x9 (l:l-)
R VN (4.33)
1 X ke
U= ;/ / x"sgoo1 dx” | dx’, AR’ = —6.
0 0

To determine the value of Dy; D1182" on N we differentiate (4.13) twice. interchange
derivatives, and restrict to N to obtain

0=6D'Q2'D;DyD;j2' ~2D;2' A D2 — 2D 2'A D;$2'
+6DyD'2'D; Dj2' —2A2' Dy D; 2’ — 3r DyS2' D; 2’
— 4D 2 5j; D' 2' — 4D;j$2' 54; D' 2’ + 6hy sy D' 2’ D'$2’.

In view of the quantities determined above we derive from this the equation
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1 1
xzax (; Dy DHQ/) =fx)=4x (cl 010x + gaz) Dg1 D112
+8xy0101 Dot D11£2' + 12(Do1 D1182))%.

Since the expansion coefficients (4.14) give

1
lin}) (— Dy DuQ') = Dgo D11 D11£2'() =0,
X

X—

this entails

X

’
D D12 = x/ f(,);) dx’. (4.34)
X

0
Using (4.33), (4.34), and Lemma 4.4 we find on N

ehoed = 0, (4.35)

a relation which can also be obtained by restricting Eq. (4.20) to N. It does not require any
assumption on the gauge or on the conformal structure. Furthermore

’

X 2 X
eo111 =/ 2 '/‘)C”3 boooo dx” |dx’,
0 0
X 1 1
el =xf ﬁ[4x, (Cl 010y + 2—x/8z> eor11 (4.36)
0

+ 8)/)/0101 e(/)“l + 12 (eé)l“)zldx/

It follows that e/, 4 vanishes on N if and only if boogo vanishes there. Since -1 € bed
extends to an analytic tensor field on B, (i) if and only if e;b g vanishes on N (cf. [17]),
this shows the equivalence of conditions (ii) and (iii) of Theorem 4.2.

Condition (iv) of Theorem 4.2 is equivalent to the vanishing of D, ¢ e; bed O N (cf. [10]).
Since e(’z bea = 0at x = 0 by (4.15), it follows immediately that condition (iv) implies (iti).
To show the reverse we assume now that e’a bea = 0 whence bogoo = 0 and sge01 = Oon N.
This leads to some simplifications in the values of the metric and connection coefficients
given above.

Since Dgyy, Dyg; are interior operators on N we have
Dofe;bcd :0 on N.
In view of these equations the restriction of the integrability condition (4.21) to N gives

’ ’
0 = D (4 €pere = Dita €pearo
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whence
0= Defeyy on N.
It remains to determine on N the value of
Dy e}y, = D1y Dy D12’ + Dy 2 s

By taking three covariant derivatives of Eq. (4.13). interchanging the order of derivatives.
and restricting to N, we get
0=6D'Q2'D;D;DyD;2' — 6 D' 2' Dy ryju; D" 2
~6 D' (rys; D"Dj 2" + rpji; D" Dy 2’
+ rhiji Dth.Q/ + rpjki ph D 2)
+6D;DyD;$2' D'D;j2' + 6 D;D; D;j2' D' Dy 22
+6D;DyD;2' D'D;2' — 2 DDy D; 2' AR’
—2D;Dy$2' D;A2" —2D;D;2' Dy A2 — 2D D; 2" D A2’
—rD;2' DDy —r D2 DiDj2 — r D12 DD $2'
—2D;2' DiDy A2 — 2Dy 2' DiD; A2 — 2Dy 2" Dy D; AR’
—Djr D2 D2 — Dy r Di2' D;2' — Dy r Di$2' D $2".

In view of the quantities determined above this induces on N as the only non-trivial equation

0=6D1182'3, D1y D11 D1182" — 6 (D112')* D11 0011 1100
—24 Dy Dy D112 =3 Dy r (D11 2') —6 D1 2" Dy Dy AR

Commuting the Laplacian in the last term with the covariant derivatives, expanding the
Laplacian, and evaluating on N gives

Dy D1 Ap 2" =28, D1y Dyy D112 + % Dy Dy Dy 2/
+ D112 (Doo st111 — 2 D1y ri100)-
Inserting this into the equation above we get
0=12x3; D1y Dyy D112’ — 12Dy D1y D182 — 24 x° Doo 1111

1
= 12x%3, [;(Dn Dy D1 12"+ D119/51111)}-
Since by (4.14)

1 /
lim {;(Dll Dy D12' + D1 2 Sml)}

x—0

= Doo D11 D11 D1182'(i) — 2s1111(i) = 0,

we conclude that Dy e’l 111 =0on N. Thus we have shown the equivalence of conditions
(ii1) and (iv) of Theorem 4.2.
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To prove assertions (ii) and (iii) of Theorem 4.1 we need to analyse the field ej’. ¢ in more
detail. Its expansion type is defined in terms of expansion (3.30). As indicated in (3.33)
and (3.34), we write the symmetrized derivatives occurring in (3.32) in terms of completely
symmetric spinors

"sabcd __ 0 abed
D(prp e l)b]('])e - ep,O; b,,cp-~-b|cl
1 {abc d)
€ 0 ey oty PP+ 4.37)

Eq. (3.31) shows that the contributions of type p + 2, p + | arise solely from the first two
terms on the right-hand side of (4.37), while the third and fourth term contain a contribution
of type p, p— 1, respectively. The remaining contributions of type p and p — 1 are contained
in first and second term on the right-hand side of

’ 1 14
bcd bcd
ep*,l;bpcp-nb3c3 abed _ 51 Z D(bpc‘p ce Dlefl ce Def . Db303)e *abc

I<k<h<p

_ .o abed 1 (abc d)
- ep,l: prP~-~b3C3 + ep.l: (bp(‘p---b3 603) +o-- (438)

Here we use again the notation of (3.31)—(3.34).

The complex analytic extension of ej’. « is obtained by expanding it in the form (3.30), by
setting V?? = |x| v*® in this formula, and by allowing V4b to take all complex values. On
N we have V@0 = x 59 5 5% o where 5% o = 5% ¢(z) and x, z are the coordinates introduced
on N above. It follows from Eq. (3.31) that the restriction of ¢/, , to N contains exactly
the information of (4.37). It can be extracted by observing the argument which led to the
interpretation of (4.30) by (4.31). Observing (4.35), taking the limit of D&) €o0cq 1O 1 along
a fixed generator of N, and evaluating for all z we obtain

‘0 1 2
ep,O: bpcp---bicrabed =0, ep,O; bpcp---brabe =0, ep.O; bpcp--c2ab =0, p=z 3.
(4.39)
Observing (4.36) and taking the limit of D{)’O €yy1; to i we obtain
' 8(p—D(p=-2)
3
eP.O: bpcp--bycsabed = - p+1 D(prp T Db4C4b;bcd)' (4.40)

To derive the contributions of type p and p — 1 contained in (4.38), we need some
information on the field Ae/, . = Dy Dghe;bcd on N.

Lemma 4.5. Let i, j, k be non-negative integers. The following equations hold on N:
(i) Aepg, = €a {20%e0111 + Laceorn — x%eom}.
(ii) DosA epp” =233 €4y + 387 €gryy — 720x €op 1
(iii) Dl Den Dy D" Dy ehona = Do’ T A e
(v) ifi + j + k > 1 and the operator D' D) D* of order i + j + k is generated by
i + j +k — 1 factors Dog and one factor Dy, then

D' Dy, DY DE* DX €y = Dl ™! Doyt A ey
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The following relations hold on N. Egs. (4.21) and (4.35) imply D11 €fyy, = €a ' 3x €fy ;-
From this and (4.35) we get by direct calculation

Do1 Doi €pg0, = €a Lv0100 (Doo €411 + 6¥0100 €0111)-
Since Doo D11 €5, = D11 Doo e, by (4.35), we get for
A egppq = (Doo D11 + D11 Doo — 2 Doy D01)€600a

expression (i). From this (ii) is derived by direct calculation.

Relations (iii) and (iv) are obtained by repeated commutations of covariant derivatives.
We shall only indicate a few steps.

We have [ Dgy, Dgol D(’)0 ";1000 = 0 since the commutator is given by terms of the form
r! 20100 Déo 9}000 and r/ go100 Déo e/afoo’ which vanish because of (4.35), and if j > 1 it
contains terms of the form r/ 00100 D60 Doy Dé‘o e;OOO, i + k + 1 = j, which vanish either
because of (4.35) or because 2 ! go100 = —soo00 = 0 in the cn-gauge. Since Do, 6;000 =0
by (4.35), it follows inductively that

Dy Doy DYy ehopo = 0. k. j=0.1.2,...

We have [ D1, Dgop] Déo ";000 = () by the result above and the arguments used to obtain
it. It follows that
DY, Dot DYy €000 = D! Doi Dy e, koj=0.1.2
00 £01 Yoo €a000 = Moo 01 Ypg €4000- J=U00, 2.
By these results and the arguments above we also get
Do1 DX Do DYy €000 = Doo Dot Dy Doi Dy €000-
‘ ji+1 j )
Doi D&y Dot DYy €000 = Dot Dig* Dot Dy ehopp- k. j=0.1.2....
Using these relations we get (iii). The arguments leading to (iv) are lengthier, but the
calculations are straightforward, quite similar to the ones indicated above, and will therefore
not be given.
We shall now determine the remaining contributions of type p and p — 1. Relations (i)
and (iii) of Lemma 4.5 imply on N
Diyy Des Do D! Dy etp0 = 0-
Taking limits to i along a fixed generators of N and evaluating for all 7 we get from this
Diayb, +* Diegy -+ pef ... Daypi€apeqy = 0.

where the dots indicate operators of the form Dy, and, apart from their relative positions.
the positions of the operators Dy, D¢/ are arbitrary. Thus we get

’

ep. 2 bpcp---byczabed =0. (4.41)

It follows from (4.39) and (4.41) that €/, _, is of type p — 1 and this holds true for B bed
since it is obtained from e/, _, by multiplying with a function of type p. This proves the
first assertion of Theorem 4.1. Moreover, it follows now in terms of expansion (3.30) that
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)

’ b c b 3 h
85 €abed|p=0= P! (ﬁ)p{s P osP o870 ps”! 1€5.0; (bpcp--b2 (efcz fébn geq)

g h
— %sb” 08P - 573 05 1€p.1: (bycp--bs (efgem 8! (4.42)
X Sea Sfb Sge Shd + -
where the dots at the end of the right-hand side indicate terms of type lower than p — 1.
Since an odd number of €’s occur in both terms written on the right-hand side and since

multiplication by powers of (U + pW) does not affect the asymmetry, we obtain (4.6).
To see that (4.7) is a necessary condition for (4.8) to be true, we show the following

lemma:

Lemma 4.6.
4 1/2 )
3 .
9, €oooolo=0 = €3 (k) blay agy T4 05 €3> 0,
k=0
2p—1) 1/2 ~1/2
20p—1) 2(p-1
p €0000p= p _
k=0 k p—3

* k
X D(b,,_3cp_3 “++ Dp, ¢ bal...a4)k T2(p—l) p=3

cp=const. >0, p= 4.

That the first term of (4.38) is of the type as asserted by Lemma (4.6) follows from (4.40)
and (4.38). It remains to determine the value of

. 4(p-2) ., f
€p.1; bycp-mazabe = T Cp.li(apbp--bias| flabe)
P pCp---azabe p P pbp-b3az
Observing the expression of ef,,, given in (4.36) and property (ii) of Lemma 4.5, we find
by taking for p > 3 the limit to i of Df~ Doy A ey, ! that

, 4 p2 —2p—4
D(b,,c,, T Db4C4Dalﬂeb*cd) f= pl— D(b,,c,, ce Db4c4b;bcd)'

By (iii) and (iv) of Lemma 4.5 and (4.38) the spinor e}}h}; bpcp....azabe is sum of such terms
with positive coefficients. Then the second term of (4.38) is also of the type described in
Lemma 4.6. Assertion (iii) of Theorem 4.1 follows now.

4.2. Expansion types and coefficients of various fields
For later use we calculate the first few expansion coefficients.

Lemma 4.7.
(i) Assuming the cn-gauge, we find the following expansion types:

type(r) = type(W) = p, type(Saped) = P+ 1,
type(Jabed) = p» type(és) =p.  type(U—-D=p—1.



H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 127
(i1) If for some non-negative integer k it holds in addition

D =0, p=01,---k, (4.43)

nCp e

then

type(d) Sabealp=0) = p. p=0,1.... . k+1,
type(d) Vabed|p=0) = p — 1,

type(alﬁ’c';t“p:o) =p-1,

type(@F (U = Dlp=0) =p—2. p=0.1..... k+2.

The functions r and W have expansion type p in any gauge. The expansion type of the
trace-free part of the 3-Ricci tensor follows from (4.30) and the expansion types of the fields
Vabed Zfltb then follow inductively from the structure equations (3.23), (3.24), (3.21) and
(3.22).

Using (4.11) together with (2.24) and the expansion type given above for Y,pc4. the final
assertion of (i) follows.

The first assertion of (ii) follows from (4.30) and Lemma 4.4. The remaining assertions
are shown now by going through the steps considered above.

For later use we note some consequences of the cn-gauge and of condition (4.7). At the
point i we have in cn-gauge

lii =0, Duljjy=0. DqDiljjy=0. DupmDiDilj=0. ati. (4.44)

The first of these equations is implied immediately by (4.27). It implies in turn by (4.22)
and (4.23) at {

D;x=0, D{Dyx=0, D;b=0.
Taking directional derivatives of (4.27) and evalunating at i, we obtain there
B Dl =0, R DDl =00 "5 R 8 Dy DDl =0

for all allowed initial data, whence our result.
By taking traces, respectively. symmetrizing we get from (4.44)

r* =0, Dapr*=0, DapDear*=—2A45khcq (4.45)

We now determine the first few expansion coefficients for various fields in the cn-gauge.
For any symmetric spatial spinor field ;5.4 one has in general

Dabtedes = Diabledes) — 2 (€ace Db *taef)g + €bic Da *taefrg) — Leaie D tighiae€rp.
In the case of s,pcq this gives by (4.31) and (4.45)
DabS:def = —% (Ga(CbZdef) + Gb(rb:def)).

It follows that
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Sabedy; = 8j.1P + O(lpI?),
4

2 A\V2 74\ 172 A
() ()

k=0 J
and
2
r =0(pl").
By Lemma 4.7 we have expansions
00 P 2q
o P vt k
Cao=2.°" D0 D Canpagu Toa ' axi-teath
p=l g=q% k=0
with certain non-negative integers qu, and

p 2q

00

~ ~ k

Yabed = Z p? Z Z Yabed:p:2g.k T2g ° g—2+a+b+ctd-
p=1 g=max{|2—a—b—c—d|,1—-p} k=0

From the structure equations and the results above we get for j =0, 1,2
Eary = 121 = D) si10° + Ol
&y, =~ 121 = D) sjz210% + 0o,
V2@ 11—

Y0Oted); = e s5.10% +O( o),
. V2@ -1 - D)
Yil(ed); = —24"—Sj+2,1p2 +0(p).

If in addition to the cn-gauge condition (4.7) is satisfied, we have
sij = 0UpP). &gy, = 0P Vabea = O(pl?).

Using the expression above in formula (4.11) we find that Uy = 1 4+ O(|p|*). Observing
this in the recursive definition of the function U, we find Uy = O(| p|?) whence

Dap U(@) =0, Dy DapU(i) =0, Do Deg Dap U(i) = 0.
For the field 1% dj; = re'-2 e, = Ut e), we get
Do (P2 d}j) (i) = Dy (U* €i)(i) = Dy €} (i), la] <6. (4.46)

The expansion type of the analytic lift of the tensor field (2.37) follows now immediately
from the equation

TFAje=T{(—2djx +sjx + 57 hji}. (4.47)

The expansion of D, §2 can be derived easily from the data given above and the formula
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D52 = 2p Xap __ rDabU+xabW+l;DabW
U +pW)- U+ pW)
2p (xab U — p Dap U — I" Dgp W) 2,0 (xap — I' DgpW) i O(|p|5)
(U+pW)3 (1+pW)3 '
The expansions above entail
P = =1 12 Welypoq + 120 X(ab Deay W + 20% Dyay Deay W
- 2,02 W Sabead + 2p3 w D(ab D('(I) 44
— 60° Diab Deay W + Ol o). (4.48)

Assuming that W is an arbitrary solution to (A — % ryW =0on B,(i), we get

W= ZPPW +O(P)—pr Z p.l\'TZpkp +O(p3)
[7*—0 _()

with
m 12
Wo.00 = W* = 5 Wik = (k) Dapy, w*,
4\ 2 g\ 12 .
Wk = 5 P Dy Degy W™,
Furthermore

1
DapW =" p% {xab (P + 1) Wp i1 + Zab Xt Wit + Yab X= Wyt )+ O(lpl%)
p=0

4 aN172 g\ V2
DpDeay, W = Z (2> (]) Waax Ts¥ j +0( ).
k=0

This gives the representation
Brabear, = =K 187 j (2 Wo + 6p W1 + 1207 Wa)
+81; (3o Xo Wi +4p% X4 Wa)

+8 ;B (X)W +4p (—X_) Wa)
+8% 02 X1 X4 Wa + 8% 07 X_ X_ Wy + O(pl)). (4.49)

Finally we have by (4.16)

. V2 4 172 |
Plabeay, = K {(2 ey Z ( ) Blapear, T 107 + O(|p|3)}. (4.50)
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5. The evolution equations

Our final goal is to gain control on the evolution of the fields in a neighbourhood of
space-like infinity which extends to future and past null infinity. This problem, to which
we refer as the “initial value problem near space-like infinity”, will be given a more precise
formulation at the end of this section. The intention is not only to show that the outgoing
null geodesics starting close to space-like infinity are complete but also to analyse under
which assumptions on the data the solution will allow a smooth conformal extension through
null infinity. This requires precise information on the solution and leaves little freedom for
playing with estimates. The main purpose of this section is to develop a formulation of
the initial value problem which allows to relate properties of the initial data directly to
properties of the fields near null infinity.

In space—times admitting smooth conformal extensions through null infinity the asymp-
totic behaviour of fields is analysed, “locally” near null infinity, in a convenient way in terms
of coordinates based on outgoing null geodesics. Such coordinates are well adapted to the
situation because null geodesics, considered as point sets, are invariant under conformal
rescalings and their affine parameters have a simple transformation law. To analyse the grav-
itational field near space-like and null infinity in a time-symmetric way, one might therefore
be tempted to use double null coordinates. However, already in the simplest non-trivial case,
namely Schwarzschild space—time, such coordinates have undesirable properties. While the
outgoing null hypersurfaces orthogonal to the orbits of the rotation group extend smoothly
through future null infinity, the family of ingoing null hypersurfaces orthogonal to these
orbits does not extend smoothly through future null infinity.

To avoid such problems, we shall employ gauge conditions based on time-like conformal
geodesics. These curves are autoparallel with respect to “conformal connections”, i.e. tor-
sion free connections which preserve the conformal structure but not necessarily a metric
in the conformal class. Thus we are forced to extend the analysis of conformal structures to
include conformal connections. Such an analysis, including a detailed study of the use of
conformal geodesics in the context of the field equations, has been carried out in [12].

It turns out that in terms of gauge conditions based on conformal geodesics the conformal
factor can be determined explicitly in terms of the initial data. Thus, provided the fields and
the congruence of conformal geodesics extend regularly to null infinity, we have near space-
like infinity perfect control on the location of null infinity. Furthermore, the newly acquired
gauge freedom leads to a particularly simple conformal representation of the field equations.

In the usual conformal representation of the solution, where space-like infinity is thought
of as a point, the initial value problem near space-like infinity, if formulated in terms of
the conformal field equations, is a problem which is local but singular at space-like infinity
(cf. (2.42) and (2.43)). By making full use of the formalism introduced in [12], this local
singular problem can be converted into another problem where null infinity is represented by
certain explicitly known hypersurfaces and where the data are regular at space-like infinity.
The formulation of this “finite regular problem” will be the main result of this section.

In the following considerations we shall make use of the results of [12]. The reader
is referred to this article for further details and the general background underlying our
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analysis. It should be noticed, however, that instead of using the conventions for the sign of
the curvature spinors employed in [12] we shall adopt the convention of [7,8,11].

5.1. The conformal representation of the Einstein equations

Suppose that (M, ) is a solution to the Einstein equations (2.1) which contains the
“physical part” § = S\ {i} of the 3-manifold § as a smoothly embedded space-like Cauchy
hypersurface such that the interior metric induced on § is given by / and the second funda-
mental form on S vanishes. We shall be concerned here mainly with a detailed study of the
evolution of the data on the punctured neighbourhood B, of i in S.

Besides the metric Z and its Levi-Civita connection V the analysis will involve:

(i) A conformal connection V, i.e. a torsion free connection for which parallel transport
preserves the g-causal nature of vectors.
(i1) A metric g in the conformal class of g

g =0 (5.1

(iii) The Levi-Civita connection V associated with g.
With any 1-form d on M we associate the tensor field S(d) given in index notation by

S =8 udy+8" pdy — gup £ d1.

Then, since the three connections considered above respect the same conformal structure,
there are 1-forms b and f on M such that the difference tensors of the connections are of
the form

V-V=80h). V-V=5(),
V-V=Sb-f)=S©""'do). (5.2)

We shall express the conformal field equations in terms of the conformal factor &, the
I-form d = ©b, the metric g, the 1-form f, the connection Y7, and fields derived from
these structures. Later on we shall express V in terms of V and f. Let SL(M) denote the
bundle of normalized spin frames over M with structure group SL(2, C) and assume that
the metric g has spinor representation g,,/pp’ = €ap€q'p Where €gr = 1. As described in [12])
we denote by o’ the solder form on SL(M) and by w” p the s/(2, C)-valued connection
form representing the connection V on SL(M).

To accomodate the connection V we have to consider an extended bundle. In an obvious
way SL(2, C) will be regarded as subgroup of the product of groups CSL(2, C) = R" x
SL(2,C). We denote by CSL(M) the associated bundle of fibre type CSL(2, C). This
principal fibre bundle may be identified with the set of the spin frames {A8,}4=0.1 With
{8a}a=0.1 1n SL(M), A € R*. We denote by 7 the projection of CSL(M) onto M. The
solder form 0% and the connection form w? » extend in a natural way to C SL(M ). The
connection V is represented on C SL(M ) by a R @ s/(2, C)-valued connection form oty
which is related to w® , by

&= b+ froo. (5.3)
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where f,, denotes the invariant function on C SL(M) which represents the 1-form f. The
pull back of this 1-form to CSL(M) is thus given by & = &%, = = fawro®@ . We write @
also for the pull back of @ to C SL(M) and denote by duu's Pabed. Oaa'pe the invariant
functions on CSL(M) which represent the 1-form d, the rescaled Weyl spinor field, and
the tensor field (2.34), respectively. We have a decomposition

Ouarby = Paa'by + A€oy + Pap€ay + Parpy€ab,
where 2¢aa'bb/ represents the symmetric trace-free part of the Ricci tensor I?l (Of V, A =

24 gf R]k, and the last two terms, with @4, = ®(4p), represent the antisymmetric tensor
R[ jk1- For conciseness we write the field equations in terms of @45y . Finally we set

Kaapbreo = _dee (Peabc€era'€p'c + Pe'a'b'c'€cac)

and define the forms
N ’ !
Waa’ = —Ouarcr 0 QR = %‘Pa bed0 g A o,
’ ’
240 = %Kaa’bb’cc’o'bb A
Then, observing relation (5.3), the Einstein equations (2.1) are represented in terms of the

conformal fields introduced above by the equations (cf. [12])

0= do™ + %y Ac? + &% y Ao, (5.4)
0=d@%p+ &% c AQ p — Dper AT — @R, (5.5)
0= dd — de A0, (5.6)
0= ddag + Dact A & ot + Goar A OF @ — P (5.7)
0=dR% — Q2% AW+ AR, (5.8)

Eq. (5.6) is the contraction of (5.5), it has been added to the list for later convenience.

To write this system in the usual form of a differential system we choose a local section
o:U — 7 1 (U), with U an open subset of M, and define vector fields Car On 0 (U) by
the requirement

(09, cpp) = €5 %€p @
If we denote the pull back of g to o (U) again by g, we then have
8(Caas Coby) = €ab€a’h'-
We define connection coefficients on o (U) by
Leo® b= (0" pocee).  Too @b = (0", oo (5.9
They satisfy
Fecab = Teobar  Teo®b=Tec® b+ € foo. (5.10)

The connection coefficients which occur in tensor calculations are then given by
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! ’ —_ I
Top ¢ oo = Ty @ c€0 @ + Ty @ €,
A 7

~ ! A r A~
rbb’ aa ol = be/ a € 4 -+ th/ a C/Gca.
Using the connection coefficients we define on o (U) covariant derivatives of spinor-valued
functions by the usual formulas and denote by V,, resp. V,,/ covariant derivatives in the
direction of ¢,,r. Evaluation of the system of forms on the vector fields ¢,, now gives the
system of partial differential equations
0=1[cpprs Ceerl = Tpr ™ e = Teer b )Cau’ (5.1
0=cee(Laa®p) — caa(Tee' “ b)
—Feo T alpa o+ Tag T Tpo s — T alap s
tlag " olep b+ Tee® plaad b — Tya“ s Tee b

+ Opgrccr€d® — Operdarec  — OP” ped€crar (5.12)
0= Ve (faa) — Vaa (fee) + Ouaree’ — Oceraar (5.13)
0= Voo Occ'aa — Vaa Ocebr — A% Peabe€erc€arty + Perahic€ec€ab), (5.14)
0=V" \Baben (5.15)

for the unknowns

A~

. o b
Coa's  Tuaber  Jaar = Taa " by Oua’bb's  Gabed- (5.16)

We note that the fields @, b, are not subject to differential equations here. Their occurrence
reflects the conformal gauge freedom introduced into the Einstein equations.

5.2. Gauge conditions

To fix the gauge dependent quantities, we consider solutions x*(t), b, (1), e,’\,‘(r) to the
conformal geodesics equations

Vek = —2(b, %)% + g(x, x)g* (b, ), (5.17)
Vib= (b, x)b~ 38" (5. b)aCi, ) + L. ). (5.18)
Vier = —(b,ex)x — (b, X)ex + g(x, ex) b. (5.19)

Here x*(1) is a space—time curve in M, b, is a 1-form, and e; = e,)c‘a;\ a frame field along
this curve. The tensor field L, which is determined from the Ricci tensor of g, vanishes
under our assumptions.

For given point g € S we consider conformal geodesics satisfying at that point initial
conditions with

x(0) =¢q, x(0)=-ep is future directed and orthogonal to S, (5.20)
(ﬂfg(epek) =1k, Ox >0, (5.21)
(b, x) =0. (5.22)

This leaves the freedom to specify on S the function @, and the pull back of b to S.
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As shown in Lemmas 3.1 and 3.2 of [ 12], the solutions to the conformal geodesic equations
for such initial conditions satisfy

i) =eo(r), O(ej, ) = njk
with a conformal factor ® = @ (t) such that

5 11* (b, b)|«

O(r) =6, (l—t 4@3

) . di(7) = O bye” = (O, dy).
Here, as below, quantities with lower index  are assumed to be independent of T such
that along a conformal geodesic they are given by their value at the intersection of the
conformal geodesics with S. We denote by 1* (b, b) the scalar product of the pull back of
b to § with itself. On the right-hand side of the last equation we use vector notation, with
dgs, a = 1,2, 3, denoting the value of @, b,e* , at p.

In the following we denote by x some smooth, positive function on S. Specializing to

O,=«7'2 onS, (5.23)
pull back of bto § = £27'de2, (5.24)

where £2 is the conformal factor determined in Section 2 and « some smooth function on
S, we get

K2
O() =K*_IQ* (l -2 —i),

w}
Ky $2 _ |
d(7) = (°2f o (ea(-(?))*). (5.25)
*
Here
282 0 1/2 3
B - Sl 3 26
¢ 1D, 2 D52 <|AQ/6+r.Q/24|) on S close to i (5.26)

Notice that, in accordance with assumption (2.12), the normal derivative of @ vanishes on
S.

The functions @ and b; are known a priorni and are given completely in terms of data
on 8. The components of the 1-form field b in conformal Gauss coordinates are not known
a priori since the frame coefficients e ; are not known before the propagation equations
have been solved.

For given « > O on S conditions (5.20)—(5.24) determine on some neighbourhood W
of § in M a smooth congruence of conformal geodesics orthogonal to § and a smooth
time function x° = ¢ with x® = 0 on S. We assume, possibly after shrinking M, that W
coincides with M.

Local coordinates x%*, « = 1, 2, 3, on S can be dragged along the congruence to ob-
tain coordinates x°, x? on M. Such coordinates will be referred to as “conformal Gauss
coordinates”.
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The 1-form by, is smooth near S and defines a conformal connection V by the first of
Eqgs. (5.2). Setting

fu=b,—07v,0, (5.27)

the remaining equations of (5.2) are satisfied as well. Along the conformal geodesics we
have

@_fek =0, €7.\" g=0, g, €;) = nij, (5.28)
and in conformal Gauss coordinates x* the frame coefficients e# ; = (dx*, e;) satisfy
eto=8"¢ onM. (5.29)

In general eoj =0for j=1,2,3o0nlyonS.

We choose now a smooth spin frame field § = {8,},=0.1 on M which is parallely prop-
agated along the congruence of conformal geodesics with respect to V and which is such
that 8,8,” = €, = 0% 40k, Where o* . are the constant Van der Waerden symbols. This
spin frame field defines a section of CS L(M ) which we take to be the section ¢ used to
derive Eqgs. (5.11)—(5.15). It follows that the vectors c,,’ project onto the vectors eq,.

We will refer to the pull back of Gauss coordinates to o ( M) again as to Gauss coordinates.
In such coordinates our constructions entails the relation

!

) ) , ,
19 = 2eg = V20; with 1% = €p“en + € %€ @,
whence also
T4t L = N28% (5.30)

on M. As shown in [12], we have in our gauge also

roA

44 e =0, 1 fo =0, ™ Oy =0,  onM. (5.31)

Since in our gauge the functions @ and d,, are known, the system (5.11)—(5.15) is in fact
a differential system for the fields (5.16).

5.3. The finite regular initial value problem near space-like infinity

To formulate the desired initial value problem we extend the formalism introduced in
Section 3 and assume the gauge described above. Thus we keep in particular the metric
g, its Levi-Civita connection form o 5, the connection V, the associated connection form
&“ p, the conformal factor @, and the 1-form field d,, introduced in Section 5.2.

The metric Kf g is by our construction independent of the choice of «. We associate with
it the bundle § L(M ) of normalized spin frames considered earlier and denote by SU S
its subset of spin frames which are defined over S and satisfy the normalization condition
(3.2) as well as (3.1). The subset C; of C, C SU(S) on which p is positive is a smooth
submanifold of SL( S). thus also of CS L(M ), which projects onto B,.
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Consider the rescaling map § — « /2§ defined for spin frames § over B,. Its restriction
to C;f (which we consider here only as a map of points) defines a diffeomorphism X of C +
onto a submanifold C/, =« 1/2 CF of CSL(M). We use this diffeomorphism to carry over
to Cf, the coordinates p, ¢ and the vector fields 8,, X, X+, X _ defined on C;} in Section 3.
The projection of C;f onto B, will be denoted again by 7.

The connection form w“ j, determines a vector field HonCS L(M ) by the conditions

~a Ty aa’ 1y _ l w
(@ p,H) =0, (0%, H) = ﬁr , (5.32)
i.e. H is the vector field which is horizontal with respect to the connection V and has
projection Ts(m)H(8) = (1/+/2)1% 8,8,

At points of CI  the vector field H projects onto the future directed g-unit normal cg
of B, in M. The push forward of C j « by H is a smooth five-dimensional submanifold
of CSL(M) which we denote by M. + - The induced projection is again denoted by 7 and
its image, which is independent of the choice of «, is denoted by M,. Points on M;L‘ P
are spin frames § over M, which satisfy with respect to the metric g the normalization
g(saga’ﬁ SbSb') = €ab€y'p - .

By our construction M, is a fibre bundle over M with fibre type U (1). Denoting by
7 the parameter on the flow lines of H which vanishes on C; . the projections of these
curves coincide with the conformal geodesics considered in Section 5.2. Flow lines passing
through the same fibre of M, project onto the same conformal geodesic.

Dragging along with the flow of H the coordinates p and ¢ given on C ;L «» We obtain
smooth coordinates t, p, t on M,’,.. The vector fields d,, X, X4, X_ on C; extend in a
unique way to vector fields on M, having vanishing commutator with H. Together with
H= 0, these vector fields constitute a frame field on M j - The vector field iX generates
the fibres of M. Close to B, the projections of the fields 3., 8,, X1, X_ generate the
tangent spaces at points of M.

Using the embedding of M}, into CSL (M), we can pull back to M -+ forms and invariant
functions as well as the equations considered on CSL(M). Using for the quantities so
obtained the same notation as before, we have forms o‘“’/, ®* p, w* , which we call again
solder and connection form, respectively.

In analogy with our procedure on C; we define vector fields c,,r on M, +. by the
requirements

() (0%, cppr) =e€p%ep ?.
(i) caar = P + ¢! grdp + et g Xp + ¢ s X

Here the expansion in (ii), which excludes components in the direction of X, ensures the
uniqueness of the vector fields. These vector fields allow splittings of the form

Caa’ = %raa’feelcee’ —* a’'Cab (5.33)
with r“”/caar = +/28,, which is the analogue of (5.30), and vector fields

’

Cab = T(a b Coyp = c° abOr + C;bap +ct ab X4+ + ¢ apX_. (5.34)
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It should be observed that the spatial component of these vector fields are identical with the
vector fields ¢4 introduced in Section 3 only for the choice « = 1.
To the splitting of the vector fields corresponds an expansion of the solder form

’ ol ’ .
aa .[aa T('C’UL( + T(' a O,La

1
o = 3
. !
with 0% = —1%@ ,¢P4" We have
A ! A
(Teer 0 LT ¢} =2, (tecr0 L cpa) = 0.
(09, T ceer) =0, (0% cpg) = h" pa.

Let a*, a be the 1-forms on M} which annihilate the vector fields 3, 9, and have with
X+, X non-vanishing pairings
@ X)) =@ . X)) ={,X) =1
only. Since X is vertical and the solder form is horizontal, the latter allows an expansion
g4 — o, 44 dr + o, ad' do+ 0y ad'(+ | o ad -
From the pairings above we conclude that

- aa’ _ \/5
ad T - »
’ ! ! —
Taa0p “* " bd + Taa 04 % et pi 4 Taw o e pa + V20 s =0

and that the forms 6*® have expansions 0% = 0,%“dp + oL %“ay + 0~ “a with coef-
ficients satisying

o) a('(_l bd + 04 ac .+ bd + 0 ac .~ bd = hac¢ bd-
Given the vector fields c,p, we can determine by the equations above the expansion coeffi-
cients of the solder form. The pull back of the metric to M. denoted again by g, is then
given by

! ! 4 ! N -
g = €wpegpot@ ot = %tm,ra““ T 0?7 + hapeao®Pod. (5.35)

Connection coefficients, which satisfy again (5.10), are defined on M}, by formulae
(5.9). Again, invariant functions induced on M ;r « by covariant differentials of spinor fields
are given then by the usual expressions for covariant derivatives in terms of the frame ¢,
and of the connection coefficients. Relations (5.31) also hold on Mj‘ P

The conformal factor lifts to a function on M, which we denote again by ©. Using the
expression 2 = I'/(U + p W)? we obtain for the function (5.26) appearing in (5.25)

w=p U +pW)Y{U?+2pUx®DoyU — p> D°U DU + 2p> U x** Dy W
—2p3 DU DWW — p* D°W D, W)~ (5.36)

Using (5.25) we get for dgp = 7(4 4 dpyy an expression which does not contain the factor
;! explicitly

2
Uxagp — p DopU — p DabW) . (5.37)

dyp =2
b p( U+pW)3
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5.3.1. The propagation equations

Evaluation of the conformal Einstein equations (5.4)—(5.8) on X A ¢4, gives equations
which determine the spin weights of the unknowns (5.16). To obtain propagation equations
we evaluate Egs. (5.4)—(5.8) on ¢ 4’ Acpp. To obtain a suitable form, we follow the procedure
in [12, Section 5], express the equations in terms of the 1-form f and the connection V,
convert primed indices into unprimed indices, and introduce some useful notation. We set

Cab = T(p blca)b’v Fubed =t Tapreas  fab = w7 farr,
‘/EXabcd = —1lgbcd — rt bacd

= —Tubea + 57 % Tapea

=Tp @ (Vaa’t(‘(")rd c”

V2Eaped = Taped — T'™ pacd Ouckd = 7 1 ¥ Ouarbir-
From (5.31) follows

Jab = faby I Cap= TCC/Fcc’ab = — fab, Oapc =0.
Since the connection V is metric we have

Tubcd = Tab(ed)ys  Xabed = Xabied)s  §abed = E(ab)(cd)
and thus

1 1 1
Tabed = ﬁ (Sabed — Xabed) = E (Eabed — X(abyed) — 7 €ab Jea-

We use the covariant directional derivative operators
Dap = T(a a/Vb)a” P= Taalvaa’
to express the evolution equations as equations for
c*abe Tabed,  Oacvas Dacbd-
and the derived quantities

Jfabs  Xabcds  Eabed-

By suitable contractions with 79 we get from (5.11)—(5.14)

8100 ab = — X(ab) of CO ef — Jab,

3 ab=—Xar) ! ¥er. a=12,3,

1
e Eabed = —X(ab)  Eefea + 7 (€acXbdref + €bd Xiacrer) F

—V2x @by fae — % (€acOr T ba + €Oy S ) = 1O papea.

. 1
O fab = —X(ab) effef + ﬁ@f 4 ab

(5.38)

(5.39)
(5.40)

(5.41)

(5.42)
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O Xtabycd = —X(ab) ! Xefed — Otcdrab + ONabed. (5.43)

3 Oabycd = ~Xicd) ! Otabrer — 3 ONaped + V2 d® witbyede (5.44)
3O ub=—Xeaty L O 8 o + V2 d Naper. (5.45)

Here expressions (5.25), (5.36) and (5.37) for @, 9;® and d,, are assumed and we
denote by upcq = % (Gabed + p.y) and Rabea = —%i (Pubcd — §peq) the electric and

b

the magnetic part of ¢qpq4, respectively, where ¢ij, J= Ty 4 babed.

Finally, we get from (5.15)

0=17v/ d'Pabet = Pubed — %ed(ccah)
with

Pubed = =3(Poabcd — 2Da ! Gaberf).  Cab = DY Pupes.
From this we deduce the system

0= —2 Papca = Pubed — 2D F baber (5.46)
and the system

—2Poooo =0, —2 Pooor — 5Co0 =0, —2 Poo11 = 0.

—2Poiii +35C11 =0, —2Pyy =0. (5.47)
Both these systems are of the form

V2Ed:¢ 4 A c* 43,4 = B, (5.48)
where the unknown ¢ is a “column vector” with complex-valued components

¢[) - ¢(abcd),,w p= 0.1,2,3.4

and the A%? are constant matrices, B(I") denotes a linear matrix-valued function of the
connection coefficients, and E denotes the 5 x 5 unit matrix.
Similarly the constraint equations C = 0 can be written in the form

Fb el 9, — H(IMp =0 (5.49)

with constant matrices F2° and a linear matrix-valued function H (I') of the connection
coefficients.

Egs. (5.46) or (5.47) yield together with (5.39)—(5.45) after a simple transformation
(cf. [12]) a symmetric hyperbolic system of propagation equations, the “standard system™
in the first and the “‘boundary adapted system” in the second case.

For convenience we write out the boundary-adapted propagation equations (5.47).

(v2 2% 01300 + 2% 008: 01 — 2% 018a0 + 2 ¢ 00821
= (21011 — 811010) 0 + (410001 + 81 1000)91 — 61000002, (5.50)
V28,01 — ® 113:00 + © 008: 2 — ¢ 11800 + €% 000a 2



140 H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163

= —(@@y10 + fi1)go + 27001 + 471100 — 2 fo1)d1
+ 3 food2 — 21000093, (5.51)
V203 — ® 110:61 + 0093 — ¢ 1131 + GoBud3
= —Tngo — 2ot + f1)é1 + 3 (Toonr + o)z
— 2(I'o001 — foo)p3 — Too009s, (5.52)
V20: 3 — ¢ 11962 + © 000:hs — ¢ 119a2 + * 000u s
= —2I11¢1 — 3 fuéz + 2o + 410011 + 2 for)¢s

— (415001 — fo0)P4. (5.53)
(V2 4+2c%01)8:¢a — 2% 11093 + 2¢* 018ups — 2% 110a 3
= —60111¢2 + 41110 + 810110093 + (211100 — 810101)P4- (5.54)

Constraints (5.49) read explicitly

® 113:¢0 — 2% 010: 61 +  003: 2 + ¢ 11800 — 2% 013a1 + ¢ 000u 2
= —Q2Lon11 —4M10)éo + 2loo1r — 40101 — 471100091
+ 6010082 — 21000093,
P 118:01 — 2% 013:¢2 + ¢ 00983 + ¢ 11821 — 2% 018292 + ¢ 000u B3
= INingo — @Honn — 200¢1 + 3 (Tooir — o)
— (215001 — 41 01)00)93 — 000094,
P 119:¢2 — 2% 010:63 + ¢ 008rpa + ¢ 113042 — 2¢% 0133 + % 000a s
=2In¢1 — 60 onné2 + 4o + 40 onor — 21100093
— (415001 — 21701)00)94-

5.3.2. The initial data
Observing our gauge conditions we find for the data on Caf . the following representation.
Consider the functions

v

&t abs  C ab» ];abcd’ Sabeds T D(ab DCd)‘Qv

asintroduced on C;]" in Section 3. We use the diffeomorphism X' to transport these functions
to C;, and denote the functions so obtained by the same symbols. Then the data for the
curvature fields are given on C j « by

2

K 1

Ouped = —— Dap Deay§2 + k*— 1 hapea, (5.55)
Q 12

3
K
Dabed = o7 (Db Deay$2 + 82 sabed)- (5.56)

The data for the frame coefficients are given on C/, by
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1
0 1 -
cab=0, ¢ ap=xKXxgp, C+ah=K(_Zab+C+ab .

_ 1 "
c ab=K<_yab+C ab>’
P

where we use Xqp, Zab, Yab as given by (3.14). With this notation we write for a given smooth
function p on C,

(5.57)

Hab = K~l (Cl abap +C+ ab X+ +c X Hu.

The data for the connection coefficients are then given on C}, by

1 . 1
Eubed = ﬁ{K (;yfbcd + Vahcd) 5 (€ackpd + Ebd’(ac)]~ (5.58)

fuh = Kab. X(ab)ed = 0. (5.59)

For later use we note that in the particular case where « is of the form x = p«’ with some
smooth function «”/, we get

Eabed = N2k Vabca — 5P (€ackpg + €bak )} (5.60)

In the following we shall always assume the data to be given in cn-gauge.

5.3.3. Choice of
Depending on the choice of x, we may arrive at quite different initial value problems.
The simplest choice is k = 1 on S. In this case scrit, if smooth, would be given by

scri® = {p > 0, 7 = Fwy} (5.61)

near space-like infinity. Since w = O(p) as p — 0, this choice corresponds to the conformal
representations near space-like infinity where space-like infinity is envisioned as a point i o,
In fact, if we choose 4 to be flat, which implies U = 1, and set W = 0, we arrive at the
standard conformal representation of Minkoski space near space-like infinity discussed at
the end of Section 6. The basic problem with this choice of « is that the data for ¢4 blow
up as p — 0.

To avoid that problem we choose a positive analytic function «’ on B, (i) with /(i) = |
(this normalization is somewhat arbitrary), set k = p«’, and consider the analytic lift of «
to C,.

We can assume C;, to be extended to an analytic 4-manifold C, . such that the analytic
diffeomorphism ¥ from C;} onto CJ, extends to an analytic diffeomorphism, denoted
again by X, from C, onto C, .. The map X is used to carry the functions «, Ty, I kv P
t, and the vector fields d,, X, X, X_ defined on C,; to Cq .. The resulting fields will be
denoted again by same symbols. Using our function x in (5.57)—~(5.56), we find that all
data extend analytically through the subset / 0 = {p = 0} of C, «. Furthermore, we find
that the functions by, as well as the functions §2/k. k> /w?, k §2 /w*, which appear in the
expressions for @, 9; @, extend in an analytic way through / 0 with
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[3%)

0
2—>] onl".

‘S[K

We assume a to be chosen small enough such that the functions above extend analytically
to all of C, . We shall use the same notation as above for the extended functions.

It follows that our initial value problem can be extended in a regular way, in fact as an
initial value problem for a symmetric hyperbolic system, to a larger domain. We introduce
the sets

M, = {(T,q)lq ECa.,(,—M <t < w(q)],
k(q) k(q)

M} ={(tr,q9) e M,|q e Cl,},

I={(t.q)eM,|qel’ |t] <1},

IF={(t.q)eMy|qgel’ t=xl1},

ZZt={(r~q)€MIIq€CIK’T=iw(q)}-

k(q)

The functions p, t, T}, / 4 are assumed to be extended off Cq.« into M, such that for fixed
q € C,  they are constant on the curves T — (7, 9) € M,.

We shall consider now the initial value problem near space-like infinity as the question
whether for some a > 0 and suitably chosen initial data (5.57)-(5.56) there exists a smooth
solution to the propagation equations (5.39)—(5.46) (or (5.47)) M a+ such that for some a’,
0 < a’ < a, the set M; is in the closure in M, of the domain of dependence of the set C7,
with respect to the given solution.

If the existence of such solution can be established, it follows from [12, Lemma 6.1], that
the complete set of conformal field equations (5.4)—(5.8) will be satisfied on M‘f,. The sets
Ij on which @ vanishes will represent part of future, respectively, past null infinity for this
solution. For solutions to Einstein’s vacuum field equations with vanishing cosmological
constant it is well known that null infinity is represented by a null hypersurface. On the
other hand, the function ® is given here explicitly. Remarkably, as discussed in [12] (cf. the
remarks following Lemma 3.2), no contradiction arises from this.

The extension M, of M has been introduced here for convenience. Since our propagation
equations extend to a symmetric hyperbolic system on M, near C, , and the data are smooth,
it follows from known results (cf. [16,24]) that the problem has a unique, smooth solution
on some neighbourhood W < M, of C, .. It follows immediately that the solution extends
smoothly to the boundary 7 N W of M- N W which represents now part of space-like
infinity. The discussion in Section 7 will make it clear why the solution in M}t N W does
not depend on the extension of the data to C, .

Of course, the basic problem is to show that the solution extends smoothly to a set If,,
a’ > 0. With our choice of the function « we find that the differential of @ does not vanish
on the sets I and I;E, which represent space-like and null infinity respectively. It vanishes,
however, on the sets /% at which null infinity “touches” space-like infinity. This indicates
that the sets I will be of particular interest in the further discussion.
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As an important though immediate consequence of the conformal geodesic equations we
note that the choice of a different function x on § neither affects the conformal geodesics,
considered as point sets, nor the 1-form b, or the connection v along these curves. The
parameter T as well as the frame ey suffer rescalings which are constant along the conformal
geodesic. The 1-form f,, is changed by some additive contribution.

From this follows that the function

O = k0 (5.62)

would have been the conformal factor which we had obtained if we had required that
©®' = £2 on S. The corresponding time function on the conformal geodesics would have
been

7 = Tky. (5.63)

We would have had

i
o=2.(1-5
w*

and therefore also (5.61). We see that by the simple transformations (5.62), (5.63) and
related simple transformations of the other fields we can easily proceed from the picture
where space-like infinity is represented by the cylinder / to the picture where space-like
infinity is represented by a point i°.

6. The Schwarzschild solution near space-like infinity

Even if the solutions we wish to construct possessed a smooth structure at null infinity, our
gauge conditions could turn out to be unsatisfactory. If a non-vanishing ADM-mass induced
the conformal geodesics to form caustics before they reach null infinity, the coordinates
associated with them would be useless for our purposes. We therefore test our setting for
Schwarzschild data.

In standard coordinates the Schwarzschild line element is given by

2m\ > 2m\ 2
dA'v"z:(l—Tm) dt2—<l—Tm) 47 — P2 do>
r r

with do® = d6? + sin? 0 d¢? the standard line element on the unit sphere S? in polar
coordinates. Rewriting it in terms of the coordinate r = %(F —m + /r(r —2m)) where
r > 2m, we obtain the Schwarzschild line element in isotropic coordinates

-2 1 —m/2r 2 2 my4 5 5,
4% = (—22) a2 — (14 2 @r? + r2do?).
y (1+m/2r) ( +2r) @r=+rdo?)

We express the first fundamental form /4 and the second fundamental form ¥ on the initial
hypersurface S = {tr = 0} in terms of the coordinate p = l/randgeth =2 2h. 5 =0
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with b = —(d p? + p%do?), 2 = p*/(1 + mp/2)*. Thus the Schwarzschild solution
implies data of the type considered in Section 1 with £ the flat metric. It follows that U = 1

nearp:OandW:%m.

We set now « = p and assume that a is chosen small enough such that (14 (m/2)p) # 0

for |p| < a.
The functions entering the evolution equations are given by

p 7?
@ = 1 - )
(1 + pm/2)? (14 pm/2)? 5
80 =2 =
(1 + pm/2) (1+pm/2)
and the initial data on C, , are given by

0 1 — + -
cab=0, ¢ ap=pPXab, € ab=Yab» € ab = Zab-

Jab = Xabs  Eabea =0, X(ab)ed = 0,

6mp 5
—_— €
(1 + pm/2)2

We assume the ansatz

2
BOubed = abed» Pabed = —OME” gpeqd.

0
1
fab = [ Xxabs Eabea = 7—7:5 (€ac Xpd + €pd Xac),

X(abyed = X4€” abed + 3 X habed,

1 1
Oubed = O4€® apea + g@T habea + :/_E@Rfab Xed  Pabed = D€ abed

for the solution of the propagation equations. Here the components of the unknown

u=(clc.ct, f.E xa. x. Os. Or, O, $)

are real-valued functions of T and p. The initial data ug = u|,;=¢ are given by

=0, =p. cT=ct=1, f=1 &=0,
_ 6mp

(1 + pm/2)?
The propagation equations (5.39)—(5.46) reduce to

@4 @T = 0. @R = 0, ¢ = —6m.

@=10u-0"—-f =i

et =—F(a+2x)c",  dE=—%(xe+2x0)0E — Sxa f — O,
b f=4(a=— 0 f+Or  dexa=Lixi— Ixax — 04+ 068,

0 1 1 — —
A =xp, ab=c"xab, ab=¢ Yap. ¢ ub=c"zap,

(6.1)

(6.2)

dex=—2Xi—3xT—Or.  8:04 =} x404 — § (xaO7 + xO4) — 3: 09,

307 =—4x40s — 3xOr,  3:Or =3 (x4 — x)Or —

drp=—3% (x4 +2x)9.

3(1 4 pm/2
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Thus the problem of reconstructing the conformal Schwarzschild solution from the given
data amounts to finding a solution 4 = u(t, p: m) of an initial value problem of the type

dru = F(u, 1, p;m), u(0. p; m) = ug(p; m)

with analytic functions F and ug. For given values p. m with | + pm/2 > 0, there exists a
smooth solution close to T = 0. It represents part of the conformal Schwarzschild solution.

For m = 0 the only non-vanishing components of the solution u are given for 7. p € R
by

c=-1. ¢ =p, =1, f=1, (6.3)

which entails
, T I
T 0% =2 (d T4 — dp) .0 = dp — 2yt by
0 2

The pull back under the Hopf map of the standard metric on the 2-sphere is given by
2(a”at + ataT). We denote it again by do?. Observing (5.35) we obtain

|
g = ;{d (p7)? — dp* — p?do?). (6.4)

Notice that g(3,, 9,) — ooas p — 0, |t] < 1. A coordinate better adapted to the metric
(6.4) for small values of p would be r = —log(p) which leads to

g= dt? —2rdrdr — (1 — t3)dr? — do?.

It is seen that the cylinder / lies at infinity but has a finite circumference with respect to the
metric g. The null hypersurfaces scri™ = {r = %1} have a finite location.

In the conformally flat case we find that f,,0%? = (1/p)dp is closed and the connection
V is in fact the Levi-Civita connection of the metric p” g. Writing x® = 1p, we get from
(6.4)

1 2 2 i
f=0lg=——— {(d)co)2 — dp” — p-do~).
¢ $ TG0y
Since this metric is invariant under the action of the group U (1) it descends to the underlying
manifold. Assuming p to be the radial coordinate associated with spatial normal coordinates
x% a =1,2,3, we get the expression
- 1

g = m Nuv d.x'u d.xv.
X J

which after the inversion x* — —x*/x; x* gives near space-like infinity the standard
representation of the Minkowski metric.

Since for m = 0 the solution exists for 7, p € R, it follows from well known results on
ordinary differential equations, that for a given value gy > 1 there exist numbers mq > 0,
po > 0 such that the solution u(t, p; m), which is analytic in all variables, exists for
IT| < 70, lpl < po, |m| < myg. Itis defined in particular on the sets {t = +(1+ pm/2),0 <
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p < min(pg, (2/m)(tp — 1))} which represent part of null infinity of the corresponding
Schwarzschild space—time. With the exception of ¢, the initial data contain p and m only
in form of the product p m and in the equation only such products or the product p¢ occur.
This implies for arbitrary m > 0 the existence of solutions which extend smoothly through
null infinity for sufficiently small values of p.

Thus we have obtained a system of coordinates near space-like infinity which is simultane-
ously analytic through future and past null infinity. No caustics of the underlying congruence
of conformal geodesics occur before the latter have passed null infinity. The coordinates
should allow to analyse the behaviour of fields near space-like infinity to any desired degree
of precision. It is remarkable that in the coordinates above conformal Minkowski space—
time is obtained in a fixed coordinate neighbourhood of [ ={|t] < 1, p = 0} as a uniform
limit of Schwarzschild solutions as m — 0.

In our conformal representation (6.4) of Minkowski space the null geodesics orthogonal
to the spheres {p = const. > 0} are given by

T = —S—, p=po(1 F5), t%,=const
1Fs
The outgoing geodesics, for which the minus sign applies, arrive at scri* for the value
s = % at which p = % po- It follows from the remark above that corresponding outgoing
null geodesics of the conformal Schwarzschild solution behave more and more like those
for the Minkowski solution as pg — 0 or m — 0. The incoming geodesics do not arrive at
scri™ for a finite value of s. As pp — 0, these curves approach the set {0 <7 < |, p =
0}U{r =1, p > 0} in a non-uniform way. The corresponding behaviour in the case of the
conformal Schwarzschild solution together with the detailed structure of this solution near
I should allow one to exhibit the source of the non-smoothness of the family of incoming

null hypersurfaces at scrit.

7. The characteristic / at space-like infinity

We consider the system (5.39)—(5.45) and (5.48) in M, with data given on C,. For
definiteness we assume the boundary adapted system (5.47). The complete system is of the
form

(A%, + AT, + AT X + A X Ju=Cu (7.1)
with a “vector’-valued unknown

0
u=1(c"ab, < ab» Tabcds Oabed, Pabed)-

Here ¢« = 1, £+, and A/O, A’], Ali, C’ denote matrix-valued functions which depend on u
and the coordinates. We consider now a neighbourhood W of C, , in M, on which a unique
smooth (analytic) solution of our Cauchy problem is given and analyse the behaviour of the
solution near the set I’ = I N W which we assume to be diffeomorphic to [c, ¢] x SU(2, C)
with some ¢ > 0.
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We have seen that from the point of view of the metric g the set I’ arises in a singular
representation of the metric. From the point of view of the field equations (5.39)—(5.45),
(5.48) the set I is a regular hypersurface. We write «® = u|;+ and use a similar notation for
other functions. Since the function & vanishes on I’, Egs. (5.39)(5.45) decouple on /' from
(5.48) and can be integrated on /. Since the restrictions of the initial data (5.57)~5.55) to
1° coincide, irrespective of the choice of the function «’. with the restriction of Minkowski
data, we find on I’

0 0 _ 0 _ 0 _
Oah('d =0, Xiabyed = 0. -fab = Xab- Eab('d =0, (7.2)

(CO ub)() = —T Xgb, (Ci ab)o =0, (c™ ah)0 = VYah- (C+ ub)o = Zab- (7.3
It follows from this that
Al=0 onr' (7.4)

and in particular that the system (5.48) also implies an interior system on /’. Observing
(5.56), the integration gives

02.q = —6me? gpeq. (7.5)

We see that /' is a characteristic of the system (5.39)—(5.45), (5.48). It is a “total charac-
teristic™ in the sense that the complete system reduces to a (symmetric hyperbolic) system
of interior equations on /’. Also the constraints (5.49) induce interior equations on /', By
repeated application of d,, to Egs. (5.39)—(5.45) and (5.48) we obtain symmetric hyperbolic
interior systems for the quantities u? = 85 ulp, p = 0.1,2.... where the coefficients
and right-hand sides in the system for u”, p > 1, are given in terms the quantities 9.
g =0.1,..., p—1.0bviously, these systems can be deduced in a formal way and studied
on the whole set 1.

Another important observation is the following. If the solution extends smoothly to the
sets Z£. the latter will necessarily be null hypersurfaces whence characteristics for the
propagation equations. Since they extend transversely across / U It U I~ and [ is a total
characteristic, there should occur a degeneracy of the propagation equations on the sets /=.
[t follows in fact from (7.3) that we have in (5.48)

A"=V2E+ A%, = V2diag{l +1.1.1.1.1 =7} onl (7.6)

Thus the matrix A, which is positive definite on /, degenerates on the sets /=. This
degeneracy represents the essential remaining problem in our discussion. If the matrix A0
were positive definite on I, we could deduce the existence of solutions with a smooth
asymptotic structure near spatial infinity from well-known stability results for solutions of
symmetric hyperbolic systems.

To see the effect of the degeneracy we shall analyse the behaviour of the functions «” on
I. To simplify the calculations we shall make the specific choice

k' =1.



148 H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163

It should be observed that under certain circumstances this choice might have disadvantages.
In our study of Minkowski space this choice resulted in the relation w, /&, = 1. This entails
that T = const. on the characteristic hypersurfaces Iai. As a consequence the matrix A°
degenerates on Z=. It should be observed that this degeneracy can be removed while the

Aoganarany ot ri nnnnn + ha ahla ~ho ~f
ucscucu:b_y auv 1 bd.llllUl. ve lUlllUVUU U_y a auuauxc bllUle O1 K .

Expanding all quantities in terms of the T,, / s, the functions u” are obtained on I as
solutions to ordinary differential equations. By direct integration we obtain

O pea =6m (1 — He? 4peq + 2V/2meap xca, (1.7)
X(lab)cd =m (—12r + 41 abea, [y =mit* xa. (7.8)
abcd = ‘/_m( %14) (€ac Xpa + €bd Xac), (7.9)
(€ ) =m(* - 574) Yab, (€T ap)' =m(z* = 124, (7.10)
) =%, (P ap) =m(GT — 1% xa, (7.11)

Olea = —(W136 (1 — 22) + m? (1872 — 3t4}€2 4pea
—12(1 = 1)> X Wi€' apea + 12(1 + 7)2 X_ Wi€? apea. (7.12)

Because ¢(]a bed); = 0 for j = 0, 4, no problem arises at this stage from the degeneracy of
AT on I,

Since &¢ f ap # 0if m # 0 by (7.7), we see that the Ricci tensor of Vis non-symmetric
and therefore V is no longer metric if m s 0.

In the following we shall use the expressions for the initial data obtained in Section 3.2
in the cn-gauge. A lengthy but straightforward calculation gives the following expansion
coefficients.

07 ap =v2{m (121 — §7° + $1°) + Wy (487 — 167%)} xap

+ /2 (241 + 87%) (X_W1 yap + X+ W1 Zab). (7.13)
Olipyea = Im* (=12 + 1207 = 10t* + 326 + Wy (72 — 7277 + 361%)}€? apea

+m2(@t2 — 8% + $20) hapea + 2472 (X_ W yap + X4 Wi Z4b) Xea

+ (24 — 2412 — 121H (XL Wi€' aped — X_W1€° abeals (7.14)
x(zab)cd = {m*(24t — 873 +41° — 37 47y

+ Wi(—1447 +720° ~ 1852,

+m* (-2 + 85 - 6317)ha,,cd

~ 873 Xty (X— Wi Yeu + X Wi Zea)

+ (487 + 87° + R¢°%) (X, Wie! upea — X_Wi€? apea). (7.15)
fay=1m*(=20 + 7% = 32 + 319 + W1 21* — §2) xwp
+ Bt + 218) (X_ W1 yap + X+ W1 2ap), (7.16)

abcd—x/_{mz(“ 4_ 2 78 231'8)+W1(61'2—2r + Or &)

X (€qc Xbd + €bd Xac) + ﬁ(—%r“ _ %16)



H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 149

X {€gc (X— W1 Yba + X4 W1 2pg) + €pa (X Wy Yo + X Wi 240)}
+ (1202 + % — 319 xap (X= Wi yea — X4 Wi 2e)

+(—247% + 1204 (X1 Wie abea + X-Wi€? apea). (7.17)
(c™ a[,)2 = {m2(~21r2 + 34 — gr(’ + —l%tg) + W1(12t2 — 3¢t + %7:6)} Vab

+ (=617 = v + 10X, W xes, (7.18)
(" a)? = (m? (=207 + 3% = 3e8 + Lo¥) + w1202 = 31t + 2%} 2w

+ (=612 — 3t + FH10) X Wi xas. (7.19)
(! ap)? =m(—4v? + 31*) xgp, (7.20)
(® ab)2 = {mz(—2t3 —3°+ %17 - %rg) + W1(167:3 — %75 + %’t7)}xab

+ @87 — 17 — 3T MX_W1 yap + X+ Wi 2ab)- (721)

The field ¢>§bc 4 is given on I as a sum of three terms. The solution for vanishing initial data
on 19 to the inhomogeneous equations satisfied by ¢§de (cf. Egs. (8.10)—(8.14)) is of the
form

2ih _ 2ih _ 2ih _
¢(abcd)0 — O’ ¢(abcd)4 =0, ¢(abcd)| - al(r) m X+ w1,

' , (7.22)
¢(2albhcd)2 = a(t)m Wi + ca(t) m’, (Za‘lf'cdh =a3(tym X_Wy,
with
ay(t) = —181% + 4673 — %r“ — %‘ts + %l’6 = —a3(—71),
ap = 727+ 627 — %‘Lj, cy = 612 — 15¢* + 38 — 58718.

It extends smoothly to I+
The solution to the homogeneous equation which takes on / 0 the initial data induced by
¢a“;cd (cf. (4.49)) is given by

4
. 4 A .
Plaveay, = 46 (,) A+ A=Y Waas T* . (7.23)
k=0

It extends smoothly to I+,
The solution to the homogeneous equation which takes on / 0 the initial data induced by
@ peq (cf. (4.50)) is given by

abc

4
o 1 4
2 k
¢(abcd)j =4 (t)g Z 2 (k) ,(kabcd)k I" (7.24)
k=0
with
ap(t) =2(1 — 1) K (1) = —aa(—7), (7.25)

at)=4(1-1P A +1)K(-1) — l—ir— = —a3(—1), (7.26)
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ar(7) = f{(l —2(1—t)2(1+r)2K(t)]—~—a2( 1), (7.27)

where

T

ds

f

o~
~l
[\o]
o

N

abci
The transport equations on / are invariably connected with the propagation equations.

Qs ritia
Singularities of solutions to the transport equations will most likely affect the nature of the

solution in M,,. To gain control on the smoothness of the solution near space-like infinity
we therefore need to study the behaviour of the solutions to the transport equations on /.

In the following section we shall study the occurrence of the type of logarithmic singu-
larity observed above in a systematic way.

This part of ¢2 4 has logarithmic singularities at / * unless bapeq = O ati.

8. The transport equations on /

The role of condition (4.7) is illustrated by the following simple situation.

Theorem 8.1. Suppose that d?z]um = Oneari. Then the solution to the initial value problem
near space-like infinity extends as an analytic solution to T ;t Sfor some a > 0 if condition
(4.7) is satisfied.

This follows from the discussion in [10] and Theorem 4.2. Since by our assumptions
the rescaled conformal Weyl tensor is analytic at #, we can pose near space-like infinity a
regular Cauchy problem for the conformal field equations in the form in which they have
been used in {11]. This will give an analytic solution near i. The cone generated by the null
geodesics through i provides then the sets Z;t.

The assumption of analyticity is made here mainly for convenience. If d)(%c 4 = O near
i and condition (4.7) is satisfied only to some (sufficiently high) order p, we could still
show the existence of a solutions near space-like infinity with a differentiable structure
at null infinity, the differentiability of the latter depending on p. It follows that condition
(4.7), possibly only to a certain order, is a necessary regularity condition. The proof and the
precise analysis of the differentiability properties require in this case complicated recursion
arguments.

The formalism developed here is designed to allow a discussion of the questions of
smoothness also in the presence of a non-vanishing massive part of the rescaled Weyl
spinor. The analysis of the transport equations on / allows us to recognize again the role of
(4.7) as a necessary regularity condition.

Theorem 8.2. The solution to the regular finite initial value problem is smooth through
It only if condition (4.7) is satisfied by the free initial data. If (4.7) is violated at some
order g, the solution will develop logarithmic singularities ar I*.
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Remarks. It is important to note that our gauge conditions are defined entirely in terms
of the conformal structure of the solution. Thus also the logarithmic singularities observed
here are associated directly with the conformal structure. They are not due to obscure gauge
conditions. Furthermore, it is remarkable that the source of the logarithmic singularities can
be identified in the structure of the data.

Our result is a statement about the solution to the initial value problem posed in Section 5.
A priori the smoothness of the solution along / is not our main concern. We could live with
a situation where a singularity develops at /= which does not affect the smoothness of null
infinity. However, most likely any singularity at /¥ will “spread along null infinity”.

It is well known that for static solutions having sufficiently fast fall-off behaviour on a
slice of time symmetry, null infinity admits a smooth structure. As shown in [10], the data
on the slice of time symmetry do satisfy condition (4.2) as a consequence of the static field
equations. We expect this to be the structural reason for the smoothness of scri in the case
of static solutions.

The results of the following discussion allow us to control more properties of the solu-
tions to the transport equations than those asserted in Theorem 8.2. Apart from the calcula-
tional complexities our results will show how to determine explicitly the formal expansion
Z;’,ozo(l /pYu? p? on I to any given order. Moreover, we consider part (i) of Lemma 8.6
as an indication that condition (4.7) may be the only regularity requirement which needs
to be observed. Part (iii) of Lemma 8.6 indicates one of the difficulties to complete the
analysis.

Spin weights are preserved by performing analytic lifts of spinor fields and their transport
to C,.«. Furthermore, they are preserved by the propagation equations. Analytic functions
of well-defined spin weights given in some neighbourhood of 7° in M, can be expanded in
the form (3.39) and (3.42) with coefficients which are analytic functions of t. To these
functions the notion of expansion type introduced in Section 2 extends in an obvious
way.

For the functions which enter the initial conditions we find:

Lemma 8.3. Assume, as above, that k. = px'. Then the functions ®, 3;: 0, d,, are of
expansion type p — 1 on M. Assume furthermore that the data are given in cn-gauge. Then
the analytic extensions of the functions
x 1 o\2 2
U+oWY =1, = duw—2xa. (—) S T A
P w P~
are of expansion type p — 1. In particular, if in addition &' = 1, the functions

® 0; 0
— (1 =1, i
P

+ 21,
are of expansion type p — 1 on M,,.

This follows from (5.36), (5.37), and Lemma 4.7. For the initial data we get:
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Lemma 8.4. Suppose the initial data are given in cn-gauge and &’ = 1. Then the analytic
lifts to C, . of the fields

Pabe cape cTab—2abs ¢ ab— Yabs
1
X(abyeds  Jab — Xabs  &abcd.  Tabed + 3€ab Xcd
2 2 1
Oabed = "';¢abcd + k" (Sabed + 15 T habed)
are of expansion type p — 1.
This follows from Lemmas 4.7, 8.3 and Theorem 4.1.

We shall now derive the transport equations on / in general form and make a few general
observations about their solutions. Introducing the notation

v = (CO ab c” abs Tabeds Gabed),
we can write Egs. (5.39)—(5.45) in the form
orv=Kv+ Q(v,v)+ Lo, 8.1

where K, @ denote linear and quadratic functions respectively, which have constant coef-
ficients, and L denotes a linear function with coefficients which depend on the coordinates
such that L% = 0. We thus get on / transport equations

3: vP = K vP + Q% vP) + QP %)

p—1

+Z(?){Q(vf,v"‘f)+Lf¢"“f}+LP¢°, p=123... (82
—\j

j=1

where the values of VY, ¢0 given by (7.2), (7.3) and (7.5) are assumed.
By taking formal derivatives of (5.48), restricting to /, and observing the values deter-
mined above for v%, v!, ¢° we get transport equations

A, =RP, p=1.2.3,... 8.3
with a linear differential operator
Apd? = {(E—t A3 + (p— D A" + D+ (AU x, — Al X )}9?. (84
where D = diag(0, 1,0, —1, 0), and a “column vector” R? given by
p
V2RP == (’7) AD (! ap) pPIH!
=2 ™
p

+ (?){B(Ff) — A% (0 ) 8 — A% (¢ ) X4
Jj=1

— A (™ ) X_YpP . (8.5)
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We note that the form of the operator A, is independent of the solution. In the case where
the Bianchi equation is considered as linear equation on Minkowski space the functions R”
vanish for all p.

We shall also use the constraint equations (5.49). They imply conditions

B,pP =SP, p=2.3, ... (8.6)
with a linear differential operator, given by
Byp” = {—t F', + p FO' + L (FO x, — F' X _))o" (8.7)

and a right-hand side, given by

p
J2S§P = _ Z (i’) Fa (¢! ) P!
j=2
P p . . .
+y (}) (H?) = F (P p) 8c — F% (et ) X
j=1

— F (¢ ) X_}or /. (8.8)

Again we note that the form of the operator B, is independent of the solution.

It follows that given WO, Pl ¢0 ..... qb”" for some p > 1, the linear ordinary dif-
ferential equation (8.2) allows to solve for v” and after this the linear symmetric hyperbolic
system (8.3) determines ¢? if the data (5.57)—(5.56) are assumed.

Lemma 8.5.
(i) The functions (¢! up— p xap)P, VP, ¢P, p=1.2,.. ., on I are of expansion type p —2,
p — 1. p, respectively.
(i1) The functions RP, S? are of expansion type p — 1 forp =1.2, ...
(iii) Iffor a given integer p > 1 the data for ¢¥ on C, , are of type p — |, then the function
¢P onlisof type p— 1.

By the explicit form of the initial data and by Lemma 8.4, assertion (i) is consistent with
the structure of the intial data. That the statements (i) are true for p = 1| follows from
(7.2)~(7.12). Next we observe that (¢” zp — p xep)P = 0, p = 0, 1, and that Eq. (5.40)
together with (7.2) and (7.3) imply equations

g—1
- j i —J =l ’
I (Cl ab — P Xap)? = — Z (3))((]”[)) ¢f (Cl ef — pxef)‘f I — q)((qab) ¢f X (8.9)
j=1
onlforqg =0,1,...Letk > | be an integer and assume as induction hypothesis assertions
() forp=1.2,..., k. Eq.(8.9) implies then that 9, < ap—p Xap)¥ Tl s of expansion type
k — 1. The structure of the initial data implies that (c! o5 — p x45)**! is of expansion type
k — 1. By Lemma 8.3 L/ has expansion type j — 1. Egs. (8.2) together with the induction
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hypothesis therefore allows to conclude that v¥*! is of expansion type k. Finally, observing

that (¢! 25 — p xap)? = (¢ 4p)9 for g > 2, the induction hypothesis implies that R¥t1is of
type k. Egs. (8.3) and the structure of the data then allow to conclude that ¢**! is of type
k + 1. From the given arguments (ii), (iii) follow now immediately.

To see the consequences of the degeneracy of the matrix (7.6) we analyse the system of
transport equations in more detail. Eqs. (8.3) read explicitly

(1+ )35 + X197 — (p — 29§ = R, (8.10)
07 + 3 (X1 ¢) + X_¢)) + ¢l =R}, 8.11)
0 + 3(X 405 + X_¢7) = RS, (8.12)
0% + 3 (X1 ¢) + X_¢8) — ) = RE, (8.13)
(1 —1)d:¢5 + X_¢5 + (p—2)¢] = R}, (8.14)

while Eqgs. (8.6) read

1307 + 3 (X405 — X_¢f) — pol = 57, (8.15)
10 @5 + 3(X 40} — X_¢7) — poy = S5, (8.16)
105 + S(X40f — X_¢5) — po} = S5. (8.17)

The two systems entail

(p+0¢] = 3((1 =) X185 — (1 + 1) X_¢§) = S} + T RY, (8.18)
poy = 3 (1 =) X4 — (1 + 1) X_¢0) — S + T RS, (8.19)
(p—00) = 31 = 1) X4¢) — (1 + ) X_¢5) = S§ + T RY, (8.20)

from which we get

4pp+0el + (U -t X X @) — (1 —1)2 X208 +2p (1 + 1) X_¢f

==2(1-1) X1 (S —tR))—4p (ST — TR, (8221
Ap(p—0¢) + 1 =) X_X49! — (1 +0)2X20" —2p(1 — 1) X1 0F
=2(14+7)X_(S) —TtR))—4p(S§ -t R)). (8.22)

Observing Theorem 4.1, we expand now

14 2q
¢ = D D ajpqaTrg g2y (8.23)
g=I2~j| k=0

with complex coefficients a;, ., «. Notice that this expansion differs from expansions (3.39)
and (3.40) by factors p!.

In the case of the system (8.18)—(8.20) expansion (8.23) leads to an equation of the
form
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+ L7y 0
prt ——5 P2y
2 ok
l+1 1 —1 1. p.q.k
2 B2q 4 P 5 P2g.q+1 az piq.k
141 a3 piq.k
0 - Ty -t e
Al.p:q.k
Az pigk |- (8.24)
A3.p:q.k

where for given values of the indices p.g. k with p > 0, 2~ j| < ¢ < p,0 <k < 2gq.
the quantities A; ., «, j = 1,2, 3, are functionals of the coefficients a; .4 4. 0 < j < 4.
p' < p.and ag p.q k> da p:q k- The determinant of the matrix on the left-hand side, given by

D=ip2pi—qg@+D+t @@+ hH -2}

satisfies D > 2forp > 2,0 < g < p.|t{ < L. For p > 2 Eq. (8.24) can therefore be
solved for the expansion coefficients ay, .k @2, p:q.k» @2 p;q k- This allows us to reduce the
problem of solving the system (8.10)—(8.14) for five unknowns to solving a system for two
unknowns.

Assuming the values of indices p, ¢, k of j p.4 1 as fixed, we shall suppress them in the
following equations. Using Egs. (3.35) we obtain from Eqgs. (8.21) and (8.22) the algebraic
condiitions

dp(p+1)— (=13, Jar — (1 = 1) By 124 43
=2p(l+1)B2gq-1a0+ Ui,

dp(p—1)— (=B, .o ihaz — (1 + 1) By g Brgg+1 41
=2p—1)Brgq+2a4 + Us.

We define for p > 2 functions

floy=2(p+D(p-1H—@g-D@g+2)(1 — 1),
gy =—(p—=Df()+(g—Dg+2)

1
q(q+ )(I

s —r)(l+r)2).

X ((p+1)(1+r)—(1+r)2—

(g—Dqg@g+D@g+2)

h(t) = (1—1)3,

such that

4p

f=1 forp=2 0=qg=p, [tf]<L

For a given function [ = [(r) we defined the function /; by I;(r) = I(—7). From the

equations

above we get

(1-0)1+1) ,

far= ((p-i— D+ -1+ T)z - Tﬂz"“’“) ﬂ'lq.qfl ag
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1 -1)? .
4p B2q.qP2q.9+1B2.q+2a4 + U1,
(1-10*0+1)

2
4p ﬂ2q‘q> ﬂZq,q+2‘14

f03=<(p+1)(1—t)—(1—f)2—

+(1+r)3

4P ﬁZq,q—lﬂZq,qﬂZq.q+l ap + 03-

Rewriting Eqgs. (8.10) and (8.14) in terms of the expansion coefficients and using Egs. (3.35),
we get

(1+7) fag+gao+has =T, (8.25)
—(1-1) fsa:1+gsa4+hsaO=T4’ (8.26)

where the prime denotes the derivative with respect to .

It is important here to observe that the quantities U;, Uz, U 1, 03, Ty, T4 depend for
0 < g < p — 1 on the coefficients a; . & With p’ < p and that they vanish identically
forg = p.

We see that Eqs. (8.18)—(8.20) allow to express the coefficients aj, a2, a3 in terms of ag,
a4 and lower order terms. Thus we find that the problem of solving Eqs. (8.10)—(8.14) is
reduced to solving the system (8.25) and (8.26). The remaining components of the solution
are determined by algebraic operations which do not lead to singular terms. Of course in
each order we have to solve the equations arising from (5.40)—(5.45).

Lemma 8.6. Forthe homogeneous system arising from (8.25) and (8.26) by setting To = 0,
Ty = 0 the following holds true:
(1) If0 < g < p — 1, the system has an analytic fundamental matrix on |t} < 1 which

extends analytically through v = £1.

(ii) If g = p, the solutions satisfying ag(0) = a4(0) extend analytically through T = =1
while any other solution has logarithmic singularities at T = £1.

(iii) For0 < q < p the Wronskian of any fundamental matrix is of the formw = ¢ f(t) (1—
12)P=2 with some constant ¢ # 0.

If the 2 x 2 matrix X (t) is a fundamental matrix of the system, the Wronskian w = det(X)
satisfies w’ = k(t) w with

__ &) gy _p=2 p=-2 f©
I+ f@ (A-fC-0 1+t 1-1t  f(®)

k() =

This implies w = (w(0)/ £(0)) f(z) (1 — t2)P~2, which shows (iii).

For g = 0, 1 we have & = 0 and Egs. (8.25) and (8.26) decouple. The general solution
is given in the case ¢ = 0 by ap = co(l + r)"_z(p +1), a4 =ca(l — )P~ 2(p — 1), and
in the case ¢ = 1 by ap = ¢((1 + W2 a4 = cy(1— 7)P~2, with constant coefficients cg,
C4, €y €y
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For g > 2 we study second order equations satisfied by ao, a4. Considering Ty, 74 in
Egs. (8.25) and (8.26) for a moment as name for the quantities on the left-hand sides, we
find

A= hfTy+hrTy—{(1—0) fh' +hg}To
—h f20 =t ay + 4 +2(p— Dtyag+ (g + p) g — p+ Daol.
(04 0hs fT,—h2To—{(1+7) fh,+hs g} Ty
= —hy fA0 —tHa] +{—=4+2(p—Drlas+ g+ p)(g—p+ Dasl.

Thus, for 2 < p.2 < g < p, the coefficients ap. a4 satisfy

(1—1taj +{4+2(p—Drlaj+(@+p)g—p+1a=0, (8.27)

"

(1 —tHa] +{-4+2(p—Drlay+(q+p) (g—p+1)as=0. (8.28)
i.e. Jacobi equations

0=Dyapa
=(l-1Had" +{B—a—(@+B+221)d +n(n+a+p+ Da, (8.29)

where

a=—p—-2, B=-p+2 and
n=n=p+q or n=n=p—q-—1, (8.30)

in the case of (8.27) and the values of « and § are swapped in the case of (8.28). Eq. (8.29)
is well known from the theory of Jacobi polynomials.

We note that ag solves (8.27) if and only if agy solves (8.28). Thus it will be sufficient to
study Eq. (8.27).

In the following discussion of the solutions to (8.29) for the values (8.30) of the parameters
we shall make use and quote some of the results of [23] without referring to this monograph
in each case.

For integers n > 0 and arbitrary complex parameters «, f a class of solutions to (8.29)
is given by the generalized Jacobi polynomials which are of the form

1 & T —1\"
(@B ppy — -
P, (r) = p ZCU ( > )

" =0

with coefficients

co={(a+ D(a+2) - (a+n),

1
=—L—(a+v+1)(a+v+2)
vi(n —v)!

x - (@+myn+l+a+pfn+2+a+p)-(nt+v+a+p)

Cy

forl <v<n-—1,

G=m+1l+a+Bn+2+a+p)---Cnt+a+p).
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They satisfy Péa‘ﬁ)(r) = ] and P,,(c"ﬁ)(—t) = (=D P,fﬂ‘a)(t).

From the coefficients above it follows that the polynomials P,fl_p ~277%2) vanish iden-

tically while the polynomials Q7 = P,,(Z—p_z’_p+2), p>3,2<g < p-—1are of degree
no.

To find further non-trivial solutions we use the identities

11—\ 1—-7\7“
Dn.a.p) ((—2—) a(f)) = ( 5 ) Do —a.p) a(T), (8.31)

D(n.a.p) L+ r\_ﬂ G(T)\ = (1 T\_ﬁ Dinyp.a.—p) alt), {8.32)
P\ ) \U27) «
o\ -8
D(naﬂ)((lzr> (“2”) a(r))
T—t\ % /14+7\*?
:( 2 ) ( > ) Dipta+p.—a.—p) al7), (8.33)

which hold for |t| < 1, arbitrary C2-functions a, and arbitrary values of the parameters «,

B.n.
Using (8.31) withn = nj, ¢« = —2 — p, B = —p + 2 we find the polynomial solutions

2
of degree n|. Since ny < n| the solutions Q, Q7 are independent of each other and define
a fundamental system of Eq. (8.27)forp > 3,2 <g <p—1.
For later use we note that by using (8.32) withn = nj,a = -2 —p, = —p+2we
obtain the solution

1+t\% o,
Q3=< 5 ) P2 (D),

which is a polynomial of degree n;. For p > 3,2 < g < p — 1 it can be expanded in terms
of the solutions considered above with coefficients which are determined by evaluating at
the points T = 1. We get

-2
LT\ pp 22
2 q+2

1 -\ (p+2.—p+2) (—p—=2.—p+2)
= (—l)p 3 Pq72 ’ — Pnz . (834)

Having found the general solutions to (8.27) and (8.28) for ¢ < p — 1, we determine the
general solution to (8.25) and (8.26). It has been given already inthe case p > 2,¢ =0, 1.
We considerthecase p > 3,2 <g < p~— 1.

We write solutions to Egs. (8.25) and (8.26) as column vectors u; = (Zg) There exists a
fundamental matrix of the system (8.25) and (8.26) with Ty = 0, Ty = 0 which has column
vectors

1—1\""  pi2—pt2)
Q1= P.-, ()., p=2, 2<q=<p,
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" 12 11 12
¢ Qi+ @2 Cs Q1+C2 0}]
=1 o 2 : 2=1 4 2
i Qs +c1” O 5 Qs + 657 Qo

with real coeffcients cij k By taking suitable linear combinations of these solutions if nec-
essary, we can assume that Cél =0, céz = 1. Observing that n» < nj, we conclude from
(8.25) that cgl Qs+ C%z Q2 must be a polynomial of degree n; and thus cgl = 0. Adding
a suitable muitible of u» to | and normalizing we find a fundamental matrix with column
vectors

u;z( 01 ) mz(Qz)
vOis+202 /)" - x Qg

with real numbers x, v, z such that x # 0, y # 0.
To determine the coefficients we insert u; and u; into (8.25) and (8.26) and evaluate at
T = %1. Using the values

(p—3)!
Qi =0. Q=)= Qa(-1) = L=
(g —2)!ny!
(p+ D!
=" —,
Qa2 = (1) PEIER
we get x = 7z = —y = (—1)"2. Taking linear combinations of the solutions so obtained and
observing (8.34) we get a fundamental matrix
Q1 (=D Q3)
X = . (8.35)
((_1)‘] Q3s Ols

This ends the proof of assertion (i) of Lemma 8.6.

We write ap = ((1 — 7)/2)PT2((1 + 7)/2)P7% a(7) to discuss the solutions of (8.27)
forp>2,q = p.Using (8.33) withn = nj,0 = —p — 2, 8 = —p + 2 we rewrite (8.27)
in the form

-7 pt+2 147 p-2
D(nl.—p—2.—p+2) < 3 ) < 5 ) a(t)

1 —2\PP2 (14 7\P7?
= < 2 ) ( 2 ) D(pr+2‘p_2) (1(‘() = O (836)

The equation D, p4+2, -2y a = 0 can be solved explicitly. We get

T
-\ /14 1\P? do
— d
“ ( 2 ) ( 2 ) do+ ‘/(1+ow~1<1—o)ﬂ+—*
0

with arbitrary coefficients dg, d;. Notice that for d; # 0 these solutions have logarithmic
singularities at t = +1.

We verify by direct calculation that a polynomial solution of (8.25) and (8.26) with
To = 0. Ty = Ois given by
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(1 — )P (1 4 1)P2
"=((1+z)!’+2(1—r)1’“2)' (8.37)

It follows that any solution with ap(0) # a4(0) is not proportional to this one and has
logarithmic singularities at T = £1. This proves (i1).

We can now prove Theorem 8.2. For given p, g we write Egs. (8.25) and (8.26) in the
form y’ = A(t) y + b with b the column vector defined by Ty, T4, and assume that X (t) isa
fundamental matrix of the associated homogeneous system, i.e. X' = A(7) X, X (0) = Xq,
det(Xo) # 0. The solution to the inhomogeneous problem with y(zp) = vy is given by

T

o) =X @ | x5! yo+/X(o)_1b(o)da
0

The considerations which led to Lemma 8.5 show that for ¢ = p we have b = 0 whence
y(T) = X(1) Xy ! vo- From Theorem 4.1 and from the discussion above it follows that this
solution is smooth through 7 * if and only if condition (4.7) is satisfied.

9. Concluding remarks

We have obtained in this article a setting which enables us for the first time to discuss
in detail the consequences of the conformal Einstein evolution near space-like infinity. The
analysis has shown that, in a sense, we can gain complete control on the solutions to the
transport equations along the total characteristic at space-like infinity. These equations allow
us to relate the behaviour of solutions to Einstein’s vacuum field equation near null infinity
to properties of the free initial data.

The following problems would have to be solved for a complete understanding of the
situation. The solutions to the transport equations should be further investigated to see
whether condition (4.7) is sufficient for the regularity of their solutions or if more restrictive
regularity conditions need to be imposed. Given a reasonable set of regularity conditions,
the existence of solutions to the problem formulated in Section 5 should be shown and the
continuous dependence of the solution on the data should be discussed.

This proof would not only be of interest for theoretical reasons. If in the complete analysis
the equations turn out to be as good-natured as suggested by the discussion in this article,
they should be of enormous practical use in the numerical construction of space—times.

The discussion should be extended to include non-trivial second fundamental forms. In
this case certainly further regularity requirements will arise. Following the argument which
led in [10] to condition (4.7), we would arrive at generalized regularity conditions in the
following way. Observing (2.38), (2.36), and (2.34), where we can assume for the following
purpose that V=V,we get

2%d;; = D; Dj2 + 2 fij — 5 hyj, ©.1)

where we set
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<1 k Jjk 4.
S—§DkD.Q+.Qh Aje,
I} I 1\2 i
ik =Lk + xijxe’ = xi“ xjx + 1—12{()(1 )= XilX'l}hjk

and all indices are assumed to take values 1, 2. 3. With (2.34) and the assumption X = 0,
Eq. (3.10) of [12] can be written

D;5 = —Aj Dk g2.

Applying Dy to both sides of (9.1), antisymmetrizing in the indices i and k. contracting
with D72, and using the equation above as well as (2.38), (2.36), and (2.34) to simplify,
we get

Dy fij D/2 = Dy§2 dyy; D' 2 + 2 Dy diyj D' 2.

This entails
By D'2 D*2 = 2 Dy d;jje" , D'2 D' 2.

where we set By = D; fje'/ ). Setting furthermore Cx; = D; xj ke 1), Eq. (2.39) reads
Cu=-Qd}

We note here that the symmetric trace-free tensor fields By;, Cy; have been used by R. Beig
and L. Szabados to characterize initial data for conformally flat solutions.? Making now
as in [10] the assumption that the fields £2, h; s Xij» dijs di*j, extend to real analytic fields at
the point / of our initial hypersurface S, we obtain for the complex analytic extensions of
the fields By, Cy; the following generalization of condition (ii) of Theorem 4.2

By DIQ2D*2 =0, Cy=0 onN.

In terms of the space-spinor representations of By, Cy; these equations translate into the
generalization

D(aqbq co Da|h| Bab(‘d)(i) - Ow D(a,,br, e Dalb|) Cabcd(i) =0.
qg.p=0,1,2,...

of (4.7).

Of course, in the case of non-vanishing ADM-mass one would have to go through the
analogue of the analysis performed in Sections 2, 4, 7 and 8, before the relevance of these
condition for the initial value problem can be properly assessed. Furthermore, one would
like to understand whether the conditions above can be expressed in terms of the data which
can be given freely in the construction of constrained initial data.

These questions, as well as why our setting seems to work so well and what the geometrical
meaning of the regularity conditions could be, will be pursued elsewhere.

2 am grateful to L. Szabados for a discussion on this point.
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10. Definitions and general identities

The following quantities are used in many calculations.

1 1
Xab = ‘/ie(a 0Eb) l’ Yab = _Eea lfb 1s Zab = :/‘Eea 06b0~

h _ 1
fgbcd =eo“e e €™, ¥ abed = 5 (€acXbd + €bdXac)-

They satisfy the following relations:

xapx? = 1, xy® = x0p2°? = 0,
1 b

yabyab = 0# )’abzab = "7 Zabza = 0’
1 1

Ya fxbf = ﬁ Yab, Za fxbf = —7—‘2‘ Zab

hab(c y Xdyf = % (€ac Xbd + €bd Xac)-

- N~
(fk abcd)+ = (_1)k€4 ¢ abcd s Efabcd)j = akj(k) ’

€ abcd€2ah6d = %s € ab “f 2 cdef = _éGZ abed + %habcd,
G;bcd x4 = ‘% Zab» ngcd x4 = —%xabv egbcd xd = %Yab»
€abed V' = —1%abs  €apea Y = §Yabs  €opeg Y =0,
ﬁibcd 4 =0, egbcd = %Zabs egbcd 4= %xab

X(a el byedf = m ZabXedy Xa f€3 byedf = 2\/5 Yab Xcd»

2 1
xe e byedf = 15 (€ac Xbd + €bd Xac)-
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