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Abstract 

Near space-like infinity an initial value problem for the conformal Einstein equations is formu- 
lated such that: (i) the data and equations are regular, (ii) space-like and null infinity have a finite 
representation, with their structure and location known a priori, and (iii) the setting relies entirely 
on genera1 properties of conformal structures. 

A first analysis of this problem shows that the solutions develop in general a certain type of 
logarithmic singularity at the set where null infinity touches space-like infinity. These singularities 
form an intrinsic part of the solutions’ conformal structure. Conditions on the free initial data 
near space-like infinity are derived which ensure that for solutions developing from these data 
singularities of this type cannot occur. 

Subj. Class.: General relativity 
1991 MSC: 83CO5 
Kqvwords: Initial value problem; Einstein equations 

1. Introduction 

The conformal Einstein equations, obtained in [7,8] and elaborated in later papers, provide 
a highly efficient tool in analysing solutions to Einstein’s vacuum field equation. In the 
case of non-vanishing cosmological constant they enable us to demonstrate for Einstein’s 
equation the existence of semi-global and global solutions, to gain perfect control on the 
asymptotic structure of the latter, and to derive a wealth of important information on the 
solutions. In the case of Einstein’s vacuum field equations with vanishing cosmological 
constant the conformal field equations have been used to show the existence of solutions 
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possessing a smooth asymptotic structure either in the past or in the future. These results 
are based on the use of hyperboloidal initial data which presuppose asymptotic smoothness 
on the initial hypersurface. 

In all these cases Penrose’s suggestion [ 19,201 that the asymptotic behaviour of solutions 
to Einstein’s equation can be characterized in terms of the conformal structure has been 
confirmed (cf. [13] for a recent survey and relevant references). It remained to be shown 
that smooth hyperboloidal vacuum data can arise by Einstein evolution from asymptotically 
flat standard Cauchy data. 

Analysing solutions to the conformal field equations in the region where “null infin- 
ity touches space-like infinity” appeared to be impossibly difficult. In the model case of 
Minkowski space (rW4, tj = qpLI, dxfi dx”) with metric coefficients npU = diag(1, -1, 
- 1, -1) this region is obviously contained in the domain D 3 (xp xfl < 0). The coor- 
dinate transformation xp + zb = -(x~ xi)-’ xp”, which maps D onto itself, renders the 
metric in the form 6 = (2~ ~*)-~n~~ dz@ dz” and regions where the quantities Izpl are 
small represent neighbourhoods of space-like infinity. Resealing ij with the conformal fac- 
tor a = -ZA. zh we obtain the “conformal metric” n = D2;j = nFV dzp dz”, which extends 
smoothly through the boundary 80 of D in [w4. We denote its extension to D U aD again 
by n and the smoothly extended conformal factor again by a. 

The set aD decomposes into the sets scri+ = (zp E lR41zo > 0, Z~ zp = O}, scri- = 

{zfi E [w41z0 < 0, z /L zp = 01, and the point i” = {zv = 0). The hypersurface scri+ 
(SIX-), which is null for the metric n, can be thought of as being generated by endpoints of 
future (past) directed null geodesics and thus represents part of future (past) null infinity for 
Minkowski space. Since all space-like geodesics on Minkowski space run ultimately into 
i”, this point represents space-like infinity. In the extended space-time the hypersurfaces 
scri* form the null cone through the point i”. Notice that a vanishes quadratically at i” 
while it vanishes only linearly on scri*. 

Any Cauchy hypersurface 3 of Minkowski space approaches i”. If this point is added to 
s, the resulting set S inherits a topology which makes it a compact manifold homeomorphic 
to S3 and the point i” represents space-like infinity for the initial data induced on 5. We can 
assume s to be chosen such that S acquires a smooth differentiable structure. The process 
of “conformal compactification” which embeds 3 into S and maps the Minkowskian initial 
data on 3 onto conformally related fields can, of course, also be described intrinsically 
in terms of s and the given data. The conformal factor on S will then be positive on s, 
vanish quadratically at i, and have non-degenerate Hessian there. It will be convenient to 
distinguish between the notion of space-like infinity which refers to the four-dimensional 
space and the notion of space-like infinity which refers to a three-dimensional Cauchy 
hypersurface. We shall denote the former by the symbol i” and the latter by i 

Consider now a space-like, asymptotically flat initial data set (5, A,,, , j,“) for the vacuum 
field equation, where A,, is a (negative definite) metric and XpU represents the second 
fundamental form. We may ask whether the solution determined by these data admits 
smooth asymptotic structures like those found above for Minkowski space. 

If this were the case, the sets scri* would. as a consequence of the field equations, 
necessarily be null hypersurfaces for the extended metric. The schematic pictures used to 
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illustrate causal relationships in space-times suggest that for our solution space-like infinity 
should again be depicted as a point i”. But the precise relationship between space-like and 
null infinity can, of course, not be inferred from schematic causal pictures and it appears 
extremely difficult to obtain any information about it by using the field equations. The 
source of this difficulty can be found directly in the behaviour of the initial data near space- 
like infinity. The situation differs in general drastically from that observed in the case of 
Minkowski space. 

We perform a conformal compactification S + S = s U (i) and an associated resealing 
of the data as outlined above. It turns out that even under the most fortunate assumptions, 
i.e. if we had chosen data such that S and the conformally resealed data were smooth near 
i, the conformal Weyl tensor of the time evolution determined by the data would diverge at 
i unless the ADM mass of the initial data vanished. 

Thus we find in general the following property of the conformal structure. At its lowest 
level, at which it determines me causal relations, it suggests representing space-like infinity 
by a point. However, at a higher level such a representation will be too narrow for fields 
associated with the conformal structure to be well behaved. 

For this reason it has been surmised occasionally that it does not suffice for the description 
of space-like infinity to consider exclusively the conformal structure. It has been suggested 
that other structures, e.g. the projective structure, should be taken into account as well. The 
singular behaviour of the conformal Weyl tensor makes the application of the conformal 
field equations quite difficult, the more so since one of the basic variables in these equations 
is the resealed conformal Weyl tensor, which diverges even more strongly at i (cf. (2.38) 
and (2.39)). 

It will be shown in this article that it is possible to formulate for the conformal tield 
equations an initial value problem near space-like infinity with the following properties. The 
data and the equations are regular. The relationship between space-like and null infinity and 
their location are known a priori. The form of the problem allows us to analyse the fields 
near space-like and null infinity in a finite picture. The setting relies entirely on general 
properties of conformal structures. 

To explore the nature and demonstrate the efficiency of the setting we give a first analysis 
of the solutions near space-like infinity. It is shown that in general solutions develop a certain 
type of logarithmic singularity at the “set where null infinity touches space-like infinity”. 
Since our setting is based entirely on general conformal properties, we can conclude that 
these singularities form an intrinsic part of the solutions’ conformal structure. The origin 
of these singularities can be traced back to properties of the initial data. We derive (mild) 
conditions on the initial data near space-like infinity which ensure that singularities of this 
type cannot occur. 

These investigations require a very detailed analysis of the structure of the data and the 
inter-relationships of the propagation equations, the constraint equations, and the geometry 
of the solution. It is only for this reason that we restrict the discussion in this article to 
time-symmetric initial data. The conformal properties we use to set up the initial value 
problem and the resulting form of the conformal field equations are independent of any such 
assumption. Since the constraint equations pose only weak restrictions on the regularity of 
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the data at space-like infinity, we have, of course, to impose smoothness requirements there. 
To shorten the arguments we assume the data to be in fact analytic at space-like infinity. 
Results analogous to the ones derived here can, at the expense of complicated and lengthy 
recursion arguments, be obtained also for weaker differentiability assumptions. 

To arrive at our initial value problem we have to make full use of the conformal structure. 
Besides conformal resealings we need to use not just Levi-Civita connections but also con- 
formal connections, i.e. torsion free connections for which parallel transport maps frames 
which are conformal for the given metric again onto such frames. 

The natural place for such a discussion is the theory of normal conformal Cartan connec- 
tions. It has been used in [ 121 to obtain the general conformal representation of the Einstein 
equation and the newly acquired conformal freedom is exploited to introduce gauge condi- 
tions for the conformal Einstein equations which are based on conformal geodesics. Certain 
properties of conformal geodesics derived in [ 121 are basic for the fact that we obtain a reg- 
ular problem and that we can control the (finite) location of null infinity in terms of the 
initial data and some free function. 

The final picture of the initial value problem near space-like infinity which we obtain 
here is different from any representation of space-like infinity considered before. The initial 
manifold S is replaced by a compact manifold 3 with boundary by blowing up the point i 
to a 2-sphere which we denote by I’. We thus write 3 = s \ I’. Close to I0 we introduce 
a “radial” coordinate p on 3 which vanishes on I0 and is positive elsewhere. Near I0 the 
manifold on which the solution is to be constructed is, in a suitable gauge, of the form 
fi = ((t, q) E R x s I I tl 5 1 + p(q)}, where we identify the initial data hypersurface s 
with (0) x 3. Space-like infinity, thought of before as the point i”, is now represented by 
the cylinder Z = []sl < 1, p = 0). 

Close to Z the hypersurfaces Z* = {t = f (1 +p(q)), q E S} will represent null infinity 
for the solution, if the latter extends smoothly far enough into the future and the past. They 
“touch” Z at the sets I* = (T = f 1, p = 0). Th e curves ((r] ( 1 + p(q)), with q E 3 

fixed, are by construction conformal geodesics with natural parameter r. 
In this setting the conformal Cauchy data on .? extend smoothly to I0 and the propagation 

equations implied by the conformal field equations are symmetric hyperbolic near 3. Seen 
from the four-dimensional geometry, the set Z arises partly from a coordinate representa- 
tion which in the radial direction is not adapted to the metric relations. For the conformal 
field equations the set Z is a regular hypersurface. Near 3 the existence of a smooth so- 
lution to our initial value problem follows from known results on symmetric hyperbolic 
systems. 

The set Z is of a very special nature though. This hypersurface is “totally characteristic” in 
the sense that the symmetric hyperbolic system of propagation equations reduces completely 
to an interior system on I. This allows us to determine all fields on Z from the data on IO. 
As to be expected, no boundary values can be prescribed on I. 

Moreover, by taking formal derivatives of the equations with respect to p, we get at any 
order transport equations on Z for the derivatives of the unknown fields. These derivatives on 
Z are determined, apart from calculational complexities, in this article. They define power 
series on Z which are convergent near I’. 
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At the sets I’ the total characteristic I is approached in M transversely by the sets Z* 
which are necessarily null hypersurfaces and thus also characteristic. Therefore, a degener- 
acy of the propagation equations occurs at I* which entails a degeneracy of the transport 
equations when the sets I+ are approached on I. An analysis of the transport equations, 
which can be used to discuss the fields near I to any desired degree of precision, allows us 
to identify a certain class of logarithmic singularities which develop at I’. By the transport 
equations the occurrence of these singularities is related to properties of the initial data. For 
a certain type of expansion near I0 of the free data on 3 those terms which generate the 
singularities can be identified and we obtain a precise criterion under which circumstances 
the singularities are avoided. 

Whether the necessary conditions for regularity obtained by us are also sufficient to 
ensure the smoothness of the structure at null infinity will be investigated elsewhere. For 
us it is important that for the first time a setting is provided in which such questions can be 
analysed. It opens the door to a number of further investigations (cf. Section 9). The results 
of this article clearly demonstrate its efficiency. The final analysis should tell us under which 
circumstances Penrose’s idea of asymptotic flatness is feasible. Whether these conditions 
will be realized for a sufficiently general class of solutions or not, in any case we will gain 
further insights into the structure of the equations, obtain thus important practical tools for 
the numerical construction of solutions, and clarify conceptual problems associated with the 
idea of an “isolated gravitating system” (cf. [ 131 for a discussion of some of the conceptual 
issues which arise in this context). 

2. Asymptotically flat initial data 

2.1. General considerations 

We want to construct asymptotically flat solutions (M, g) of signature (+, -, -. -) to 
Einstein’s equation from smooth data on some three-dimensional manifold 3. The construc- 
tion is to be arranged such that we may think of 3 as being identified diffeomorphically 
with a smoothly embedded space-like Cauchy hypersurface of (fi, j) and such that the 
data given on s coincide with certain data implied on s by g’ and possibly some other fields. 
We shall need to investigate the behaviour of the solutions near space-like infinity in some 
detail. The inclusion of long range source fields would render the analysis quite compli- 
cated. On the other hand, when sources of compact support (e.g. fluid balls) are considered, 
the fields behave near space-like infinity as in the pure vacuum case. Therefore, we shall 
consider solutions to Einstein’s vacuum field equation 

Ric(i) = 0. (2.1) 

The relevant data on s are then given by a metric i,, of signature (-, -, -) and a symmetric 
tensor field )?oLp, fields which represent the first and the second fundamental form induced 
by the metric g on 3, respectively (cf. [5]). Eq. (2.1) entails the constraint equations 
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Da&g - i&pa = 0, r - (jp (y)2 + jp&J = 0, (2.2) 

where fi denotes the Levi-Civita connection and F the Ricci scalar of the metric h. 
Since our goal is to understand the behaviour of far fields of isolated gravitating systems 

we shall require the data set (s, h,~, j&p) to be “asymptotically flat” in the following sense. 
We assume that (3, i) be “asymptotically Euclidean”, i.e. that there exists a compact subset 
of 3 such that its complement is the union of disjoint subsets &, k = 1,2, . . . , K, of 3, the 
“asymptotically flat ends”, each of which can be identified diffeomorphically with {y* E 

[w3 II yI = <c;=, yU2)“2 > t-g} where t-0 is some positive real number. It is assumed that 
in the coordinates y” introduced by this identification on $ the metric coefficients satisfy 

A corresponding fall-off condition, namely 

j&p = 0 1 ( > lY12 ’ as 1.~1 -+ 00, 

(2.3) 

(2.4) 

is imposed on the second fundamental form. 
In the context of Cauchy problems for Einstein’s equations more general notions of 

asymptotical flatness have been considered (cf. [3-61 and the references given there). As 
an example we quote [6]. Here data are constructed which satisfy in standard coordinates 
yU on Iw3 

hc$ +&X&4 E K.s(~3), )?(Y/J E &s+I (W3), s>4, s>-+. (2.5) 

The weighted Sobolev spaces Hs,s(lR3) used here are defined as sets of (measurable etc.) 
complex functions u on [w3 for which 

i 
‘12 

IuI~.~ = c I(1 + ly12)“+@ ]DQyu12dy < 00. 
Ialis 

Data satisfying (2.3) and (2.4) are special cases of data which are characterized in terms of 
analogues on ,? of the weighted Sobolev spaces H,,s(lR3). 

While conditions like (2.5) specify the smoothness of fields in a precise way in finite 
regions of the initial hypersurface, they leave considerable freedom for undesirable “non- 
smoothness at space-like infinity”. The detailed behaviour of the data near space-like infinity 
will most likely affect the asymptotic behaviour of their evolution in time. To have sufficient 
control on the smoothness of the data “at infinity”, we shall strengthen our requirements. 
The conformal structure of the metric h constitutes a basic part of the initial data. Apart 
from the condition of asymptotical flatness, it can be prescribed freely. Our requirements are 
concerned with the detailed behaviour of the conformal structure near infinity. We assume 
(3, h) to be “asymptotically Euclidean and regular” in the following sense. 

There exists a three-dimensional, orientable, smooth, compact Riemannian manifold 
(S,h)WithpOintsikES,k=1,2 ,..., 4. q some positive integer, a diffeomorphism @ of 
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S\(il..... i4) ontoS,andafunction 0 E C*(S)fTP(S\(il, . . . i,)) with the following 
properties: 

fi = 0, d R = 0, Hess(R) = -2 h at the points ik, 

R >O onS\(il....,&). (2.6) 

h=d@,h onS\(it ,..., &,I. (2.7) 

Suitable punctured neighbourhoods of the points ik correspond to the asymptotically flat 
ends of (3, h). Thus each point ik represents a space-like infinity. We shall be concerned 
with the precise behaviour of certain fields near a given space-like infinity. Therefore. we 
shall assume, without loss of generality, that there is only one asymptotically flat end. The 
point representing space-like infinity will be denoted by i. We shall consider in the following 
3 to be identified by 0 with S \ (i}. The set S was assumed to be compact because of the 
special interest of this case. 

Not all compact Riemannian spaces (S. h) can give rise to Riemannian manifolds (s = 
S \ (i}, i = R-’ h) which are asymptotically Euclidean and regular and satisfy for suitable 
choices of 52 and jj the constraint equations [2]. To ensure the possibility. we require that 
(S. h) has positive Yamabe number 

With this assumption the scaling of the metric h. which determines only the conformal 
structure of i, may be chosen (cf. [ 18.221) such that its Ricci scalar satisfies 

rj,<O 0nS. (2.8) 

Later we shall be led to consider further conditions on the conformal structure of (S. h) 
in arbitrarily small neighbourhoods of the point i. That those conditions entail only rather 
mild restrictions in the class of three-dimensional conformal structures with positive Yamabe 
number will then be seen from the following lemma. 

Lemma 2.1. Suppose (N, k) is a smooth three-dimensional Riemannian mani@d of sig- 
nature (-, -, -) and p a point in N. Then, for 0 < 6 5 u, with some small positive number 
a, wejnd smooth metrics h, and a smooth positive,function w on S with the,following pr~)p- 
erties. There exist open neighbourhoods V,, W, of i. satisfying V, c W, and W, + (i ] as 
t + 0, and a diffeomorphism 9 of V,, onto an open neighbourhood of p such that: 

(i) h, is conformal to **k on V,, 
(ii) h, = o2 h on S \ W,. 

(iii) in the C”-topology on the set of smooth metrics on S we have h, + w2 h as E -+ 0, 
(iv) the metrics h, have Yamabe number Y(h,) > 0. 

A metric can always be conformally resealed in a neighbourhood of a given point such 
that the Ricci tensor of the resealed metric vanishes at that point. In three dimensions 
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the curvature tensor is determined by the Ricci tensor. Thus we can find smooth positive 
conformal factors w and Ok on S and N, respectively, such that the curvature tensors of the 
metrics h’ = o2 h, k’ = 0; k satisfy rjklm[h’] = 0 at i, rjktm[k’] = 0 at p. 

Choose a > 0 sufficiently small such that the h’-metric ball B3a(i) is an h’-normal 
neighbourhood of i and the k’-metric ball B3,(p) is a k’-normal neighbourhood of p. 
Denote by .P a system of h’-normal coordinates on B3a(i) centred at i which is based 
on an h’-orthonormal frame and let P’ be an analogous system of k’-normal coordinates 
on B3a (p). Expressing the metrics in these coordinates, we have h& = -6,~ + h,~, 

k&, = -S,I~’ + rf,l,f with 

h,fi = OM3), l&j, = O( I.#) as IX]. lx’] -+ 0. (2.9) 

We denote by P the diffeomorphism of B3 a (i) onto B3 a (p) whose local expression in the 
normal coordinates is given by ly”‘(xp) = .&. Choosing f E C”(R, [w) with f’ 5 0, 
f(z) = 1 for z 5 1, and f(z) = 0 for z 1 2, we define for given e > 0 the function 
lc/t E Cr([w3, R) by e<(x) = f(]x]/~). A family of smooth metrics is then given by 

h, = @< ‘&k’+ (1 - +,)h’, 0 < E <a, 

where the first tensor field on the right-hand side vanishes by definition outside the support 
of the funtion I+?<. These metrics satisfy 

(i’) h, = (p&Jk)2P* k on B,(i), (ii’) h, = wi h on S \ Bzt(i) 

and thus have properties (i), (ii) asserted in the lemma. 
Since the Yamabe number is an invariant of the conformal structure and defines a contin- 

uous functional on the set of smooth metrics on S endowed with the C2-topology (cf. [l]), 
condition (iv) follows from (iii) once we have chosen the number a small enough. 

Because of property (ii’), it is sufficient to control the behaviour of the metrics h, to 
second order in terms of the coordinates _P on Bsa (i). We identify 0: k with P*(oz k) on 
B3 a (i). We observe that 

IeE( 5 c, l&Y@c(x)l I !$ Pd&(~)l I 7 

for some constant C and, by (2.9), we find on B3 a (i) 

Ia;; a$$; (h,B(x) - (wf k),S(x))l i KrC3-p’, p = p1 + p2 + p3 = 0, 1,2. 

with some constant K. This implies our result. 

Remarks. In a similar way we can obtain metrics with positive Yamabe number which 
have prescribed conformal structure near given points ik E S, 1 5 k 5 q. The set of such 
metrics is dense in the set of smooth metrics with respect to the C’-topology. If the metric 
h is analytic in normal coordinates near i and the metric k is analytic in normal coordinates 
near p, the metrics h, can be arranged to be analytic near i. It should be noted that due to 
the constraint equations a change of the conformal structure of 6 near space-like infinity 
entails a change of the metric i in finite regions. 



H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 91 

2.2. The conformal constraint equations 

Later we shall discuss the existence of solutions to Einstein’s equation (2.1) by rewriting 
it as an equation for a suitably chosen conformal factor 52 and the conformal metric 

xccv = Q2&C”. (2.10) 

The first and second fundamental forms determined by the metrics gjlr,. XII,, on s are then 
related by 

h ($ = 52%,/j, XaB = fi (j&X@ + &$i), (2.11) 

where the function C on s denotes the derivative of R in the direction of the future directed 
g-unit normal of 5. This entails for the traces x = h@xUg, i = @B&B the relation 

In terms of the conformal fields the constraint equations (2.2) take the form (cf. [IO]) 

2QD,DffQ - 3D,f2DaS2 + $Q2r - 3.X’ 

- $??(xa (y)2 - x+p} + 2REX, (y = 0, 

a3 DLYW2xng) - .~(D,(x~ “) - 2fl-’ DsC] = 0. 

where D denotes the Levi-Civita connection and r the Ricci scalar of the metric 11. 
We shall assume in the following that 

C=O. xaLy=O on.?. (2.12) 

The first condition is concerned with the choice of the conformal factor which is completely 
at our disposal so far. Both conditions together say that the hypersurface 3 is maximal in 
A? with respect to the metrics gPv, g,,,. With these assumptions the conformal constraints 
on s reduce to 

(D,DQ - $r)tJ = ~x~~x~BO with 8 = Q-tl’, (2.13) 

D’y(Q-‘x~s) = 0. (2.14) 

These equations suggest constructing initial data h,p, xap, L2 directly, without referring first 
to the fields i (yp, iUp. The known technique (cf. [5]) to construct solutions to the vacuum 
constraints (2.2) suggests the following procedure: 

(i) Choose a smooth negative definite metric h on a three-dimensional, orientable. smooth, 
compact manifold S, pick a point i E S and set 3 = S \ (i). 

(ii) Find a smooth, symmetric, tensor field $ol~ on 3 which is trace-free with respect to h 
and satisfies 

Dcr&j = 0. (2.15) 



92 

(iii) 

H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 

Such tensor fields may be obtained by performing a York-splitting [26] as follows: 
Choose a smooth, symmetric, trace-free tensor field $A, on 3 and set 

where X, is some l-form on 3. Eq. (2.15) then implies an elliptic system of PDEs for 
X, which under suitable assumptions can be solved to obtain @Wa. 
Set xog = V4eUp in Eq. (2.13) and find on 3 a positive solution 8 of the resulting 
Lichnerowicz equation 

(DaDa - ;r)tI = ~~,&p+@~-‘. (2.16) 

The fields h, 52 = V2, and xag = fi2eab then provide a solution to the conformal 
constraints on S. 

In this procedure the freedom to prescribe the function Q is reflected in the freedom to 
determine the scaling of the metric h. If 4 is a positive function on S the transition 

h up + +4hcxpt &a + K211rcxp. Q -+ 4% xap + $2xas 

yields another solution to Eqs. (2.13)-(2.16) which corresponds to the same physical data. 
Since we considered Eqs. (2.15) and (2.16) only on s, we need to specify the behaviour 

of the solutions (respectively of q&r and X,) near the point i. Assume a > 0 small enough 
such that the h-metric ball Bza (i) is a strictly convex normal neighbourhood of i and let _F 
be normal coordinates with origin at i which are based on an h-orthonormal frame ek at i. 
Condition (2.6) entails that 0 = ]xj2 f(x) near i, where f is a continuous function with 
,f (0) = 1. Thus we need to impose the condition 

IxlO + 1 asx + 0. (2.17) 

If we define on B,(i) \ (i) coordinates ya = .F/]x I2 and write i = JT2 h = hap dya dyp, 

we find i,~ = -6,~ + O(l/lyl> as Iyl -+ 00. Thus t? satisfies a basic requirement of 
asymptotic euclidicity. Later we shall be more specific about the coefficient of l//y/ in the 
expansion of&s in terms of l/]y IP. It determines the ADM-energy 

1 
m = E = - lim 

16n ~103 s 
@ (a&, - a,&,) ny dS,. 

s, 

Here S, denotes the 2-sphere (Iy] = T], dS, the h-area element on it, and n the outward 
directed h-unit normal to S,. 

The physical second fundamental form )?,+s, the conformal fundamental form xa,y, and 
the solution lcr,,s to (2.15) are related by 

)?(Yfi = a-‘xag = sWc@. 

Let icrp be given in the coordinates y”. Then (2.4) suggests that j&p = O(l/l~]~) as 
] y I + 00 on B, (i) \ (i }. This entails for the coefficients xUg, $ap in the coordinates x” the 
conditions 
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xug = O(l), 
1 

@as = 0 3 ( > as x + 0. (2.18) 

In the case where the solution *a~ to Eq. (2.15) extends smoothly to all of S the coefficients 
j&g, given in the coordinates va, satisfy the strong fall-off conditions j&p = 0(1//v]“) as 
1 y 1 + cm. If we wish to consider data for which the ADM-momentum and the ADM-angular 
momentum. given by 

respectively, do not vanish, we would need to analyse fields @Up which are singular at i. 

Though a detailed discussion of the smoothness of the second fundamental form xUp 
near [i) may be a delicate matter, the source of our main problem lies elsewhere. If we try 
to analyse the time evolution of the data in terms of the “regular conformal field equations” 
deduced in [7,8], we have to consider as unknowns a number of tensor fields derived from 
the basic data h,~, xtip, and Q. The data on S for the conformal field equations in the 
form used in this article are listed in (2.27) (2.31)-(2.33) (2.35), (2.36), (2.38) and (2.39). 
To determine the electric and magnetic part (2.38) and (2.39) of the resealed Weyl tensor. 
which represent in a sense the most important data, we have to divide by powers of R. This 
leads to singularities in the fields at i which cannot be avoided unless the ADM-energy 
m of the data vanishes, i.e. unless the conformal Weyl tensor vanishes everywhere on S 
and we deal with Minkowski space (cf. [ 22,251). These “structural singularities” pose the 
essential problem in any detailed analysis of the time evolution of the fields near space-like 
infinity. The best we can do to simplify the analysis is to impose smoothness conditions 
near i to avoid the occurrence of “spurious singularities” in the evolution, which may arise 
from unsatisfactory regularity properties of the metric and the second fundamental form at 
space-like infinity. 

In this article we shall use the conformal representation of Einstein’s equation introduced 
in [ 121 to analyse the time evolution near space-like infinity. Though the focus of our 
investigation will be on the structure of the evolution equations contained in the conformal 
field equations, we shall need quite detailed information on the behaviour of the data near i. 
To simplify the discussion we shall therefore consider in this article only the time-symmetric 
case 

XC@ = 0. )7ap = 0 on S. (3.19) 

The comparison of expressions (2.38) and (2.39) with expression (2.40), which is obtained 
under the assumption above, shows that this leads to considerable simplifications. 

Nevertheless, the essential difficulty which arises from an ADM-energy m > 0 will still 
be present as is seen from expressions (2.42) and (2.43) which take into account (2.19). We 
shall see that even with (2.19) and the smoothness assumption on the metric h, there will 
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be, depending on the choice of h, interesting distinctions in the asymptotic behaviour of the 
time evolution of the data. 

The construction of constrained inital data is now reduced to solving (2.16) on 5 with 
vanishing right-hand side such that condition (2.17) is satisfied. For convenience we shall 
assume that 

h is analytic near i (2.20) 

in the sense that the metric coefficients of h with respect to the normal coordinates P on 
Bza (i) are real analytic functions if a is chosen small enough. 

Under conformal resealings h -+ h’ = @2 h with smooth positive conformal factors the 
Yamabe operator Lh [u] = (h @ D,Dg - i rh) [u] transforms as 

4-(n+2)/2 Lh [u] = Lh, [$-(NP u]. (2.21) 

This allows us to scale h such that (2.8) holds. We use Hadamard’s construction to obtain 
a parametrix for L = Lh. The function r = 1x1’ is analytic on Bza(i) and satisfies 

D,T Dar = -4r. (2.22) 

A function U(P) on B7,a(i) which is analytic and satisfies U(i) = 1 and L[UT-‘/2] = 0 
on Bza (i) \ (i) is obtained as follows (cf. [ 141). The equation 

0 = -r312 L[UT-““I = Dar D, U + ;(D* D,T + 6) U - r L[U] (2.23) 

will be satisfied on Bza (i) \ (i) by a function of the form 

p=o 
(2.24) 

if the coefficient functions Up are analytic, if they solve the equations 

Dar D,Uo = -;(D” Dar + 6) Uo, U(i) = 1, 

DLyrDalJp = -i(D* D,r+6-4p)U, 

1 
--LVJ,-11, p= 1,2,... 2p- 1 

(2.25) 

(2.26) 

and if they define a convergent series on Bza (i) by (2.24). Such functions are determined 
recursively by 

I 
l-‘/Z 

Uo = exp t 
J 

(DaD”T+6)$ , 

0 1 
r’/? 

U 
Uo 

P+’ = -(4P _ 2)r(p+l)/2 s 

NJ,1 sP ds 

uo ’ 
p = 0,l ,..., 

0 
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where the integration is performed in terms of the affine parameter s = f ‘1’ = 1.x 1 along 
the geodesics emanating from i. Notice that the function U is determined completely in 
terms of the local geometry near i 

We now choose a function 8* E Coo(s) which coincides with UTP1/’ on B,(i) \ (i). 
Then L[B*] = ,f on 3 with some function ,f E P(S) which vanishes on B,(i). To obtain 
the solution 8 to our problem we need to add a function which contains information on the 
global geometry. We find a weak solution W to the equation L] W] = -,f on S by observing 
that in the weak form 

of this equation the left-hand side defines a bilinear form which is continuous and coercive 
on the Sobolev space H’**(S). The existence of a unique weak solution W E H’,‘(S) to 
our equation thus follows by the Lax-Milgram theorem (cf. [ 151). Elliptic regularity theory 
shows that this solution is smooth on S and analytic on B,(i) where it satisfies L[ W] = 0. 
The function 0 = 8* + W is the unique solution to (2.16) and (2.17). Since 0 > 0 on a 
punctured neighbourhood of i it follows from (2.8) and the strong maximum principle that 
8 > 0 on s. Using again the inversion as coordinate transformation we find that i is of the 
form (2.3) with ADM-energy m = 2 W(i). 

The function 0’ = @- ‘/% solves the Yamabe equation with respect to the metric h’ = . 
4’ h and i = 0-’ h = 0’-2 h’ is independent of the scaling condition (2.8). 

Near i let x”’ be the h’-normal coordinates with origin at i based on the h’-orthonormal 
frame e; = 4-‘ek. The relation P k&w = ek = 4 e; = 4s”’ k (a,P/a.r”‘)i),u at i entails 
.r”(.P’) = _P’(@(i)-’ +O(]x’l)). This implies that@ = @P’l’H = @‘/‘(U/lx + W) has 
the form H’ = CJ’/Ix’I + W’ near i with U’(i) = 1 if and only if 4(i) = 1 and in this case we 
have 2 W’(i) = 2 W(i). In other words, if we fix our procedure of solving the constraints 
by imposing condition (2.17), we are only free to choose h in the subclass of metrics in the 
conformal structure of h which all coincide at i. Transition to another such class results in 
a resealing of the “physical” metric i by a constant conformal factor. 

2.3. Initial data,for the ccmformal Einstein equations 

To study the propagation of the fields, we shall use the conformal representation of 
Einstein’s equation (2.1) in the form discussed in [ 121. Here the equation is considered 
as an equation for the metric g in the conformal class of the “physical” metric i. where 
the conformal factor in (2.10) is fixed by some gauge condition, and a connection e which 
preserves the conformal structure in the sense that parallel transport maps conformal frames 
onto conformal frames. The connection e need not be metric for any metric in the conformal 
class of g. The following associated fields appear as unknowns in the equations: 

(i) The coefficients 

eiL k = (dxl*. ek), k, p = 0. I. 2,3. (2.27) 
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of a local frame ek with respect to some local space-time coordinates xP. We require 
that g(ej, ek) = r]jk. The coordinates and the frame are subject to gauge conditions 
which will be discussed in detail later on. It will be assumed that 

x0 =O on S, eo is future directed and normal to S. (2.28) 

such that e” k = 0 for k = 1,2, 3. In the following all spatial tensors on S will be 
expressed with respect to the local frame ej, j = 1, 2, 3, on S. . n a 

(ii) The connection coefficients fi J k of V in the frame ek which satisfy V,, ek = Fi J k Cj. 
Since the connection respects the conformal structure we can write 

fi j k = ri j k + 8’ i fk f 6’ k ,fi - qikqj’ fi, (2.29) 

where the fi j k are the connection coefficients in the frame ek of the Levi-Civita 
connection V of g and 

fk = f f;-'j. (2.30) 

The 1 -form fk, which is exact if and only if V is locally the Levi-Civita connection of 
a metric in the conformal class, is subject to gauge conditions. We shall require that 

Fuji =O, j,k=O, 1,2,3 onS (2.3 1) 

and assign certain values to the functions fj, j = 1,2, 3 on S. Then we have on S 

pk”u = 0, fi j k = ri j k + 8’ i fk + 6’ k ,fi - hik hj’ ,fr 

_fiokhkj = fijo = xij - - Xapea it? k hkj, 
(2.32) 

i, j,k= 1.2.3. 

with 

cJ k ej = De,ek, Xij = g(+ejeO. ej). (2.33) 

With assumption (2.19) the data for the connection coefficients are given completely 
by the connection coefficients for the interior connection D and the functions fj on S. 

(iii) The tensor 
. A A 

Ajk = i R(jk) - $ vi’ Rilrljk + d R[jkl (2.34) 

derived from the Ricci tensor kjk of 9. It will be subject to the gauge condition 

Ajo = 0. (2.35) 

The remaining coefficients will be given on S in our choice of gauge by 

Ajk = -JT’{Dj DkQ - 4 Dl D’L’hjk) + &(r - (XI’)~ + Xi[Xil} hjk, 

Aok = dxk’ D, Qcz, i, j,k,l = 1.2.3. (2.36) 

such that Ajk is represented under assumption (2.19) by the spatial tensor 

Ajk = -ST’{Dj DkQ - fD[D’Q hjk} + &r hjk. (2.37) 

All other projections vanish on S. 
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(iv) The “rescaled Weyl tensor” d’ jki = Q2-’ C’ jkl, where C’ jk/ is the Weyl tensor of II. 
It is specified on ,I? in terms of its electric part 

d;j E diojo = fip2{Di Djf2 - 3 hij Dk DkL? + $2 Sij] 

-Q-‘{Xk kxij - Xk ixkj - f hi,j ((x” k)’ - xk’Xkl)] (2.38) 

and its magnetic part 

(2.39) 

which are both spatial tensors on 3. Here sjk denotes the trace-free part of the Ricci 
tensor of h and eijk the corresponding Levi-Civita symbol. Under assumption (2.19) 
these data reduce to 

dij E diojo = iT2(Di Djf2 - f hij Dk DkO + C?;tSij}. dlTj = 0. (2.40) 

Using the local form R = f /( U + Ix 1 W )2, we get near i a more detailed expression for 
the field above. If dij is represented in the space-spinor notation by the spinor field &&cd, 
we get a splitting 

(2.41) 

Here 

@:bcd = a’-“hb Dcd, fi’ + 52’ &bcd 1 

= r-‘(u2 D(,b &d)r - 4 u L&r D,d,u 

- 2r u &b &d) u + 6r D(abu &i)u + r u’S&d) (2.42) 

is the part derived from the function Qnl = T/U’ which contains only information on the 
local geometry near i. The information on the global geometry is contained in 

@w abed 
= r2 

( 
-131UWD~,hrD,d)T+(iWIXlD~abDcd)r 

2 IXI 

We shall call 4Lbcd the “massless” and $zcd the “massive” part of the resealed Weyl tensor. 
While under suitable assumptions on the metric h the massless part can be extended to 

an analytic tensor field on B,(i), the massive part always behaves like O(f -s12) as r + 0 
unless m = 0. If we admit cases where compact subsets of 3 have been removed from our 
initial hypersurface, we may consider initial data with @zcd = 0 but @Abed # 0 near i. 
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3. Normal expansions at space-like infinity 

We shall now consider a certain manifold C, and a certain type of expansion which will 
allow us a convenient discussion of data which are singular at i. The initial value problem 
near space-like infinity, to be discussed later, will also make use of the manifold C, . 

3.1. The construction of C, 

The construction of C, involves a blow up of the point i to a sphere and an extension 
through this sphere. The following discussion will be given in analogy to a similar discussion 
in [9] to which we refer for further details. We shall employ the space-spinor formalism on 
S in the notation used in [12]. It will be obvious from our subsequent considerations that 
for our purpose it is irrelevant which spin structure were chosen if there existed more than 
one. Let SU(S) denote the bundle of normalized spin frames over S with structure group 
SU(2, C) and projection n onto S. Later we shall assume that S is a space-like hypersurface 
of a four-dimensional space-time and that the restriction of SU (S) to S arises as the set 
of spin frames S = (&],=e,t which are normalized with respect to the alternating form E, 
such that 

E()] = 1 (3.1) 

as well as with respect to the Hermitian form on spinors which is defined by contraction 
with the future directed normal vector field r of S, such that 

(3.2) 

Here we assume that g(t, t) = 2 and g denotes the space-time metric. Given with respect 
to such a spin frame, the vector t has representation 

5 
ad = EO aq)’ a’ + El at,’ u’, (3.3) 

which we will assume in the following. We use the realizations 

SL(2, C) = (tab E GL(2, C) 1 E,,ta b tC d = Ebd), 

su(2, C) = {t” b E sL(2, C) 1 taa’ta #’ b’ = tbb’]. 

If 6 E SU(S), the action oft E SU(2, C) maps 6 onto 6 t given by basis spinors 8b tb a, 
a = 0, 1. Using the Van der Waerden symbols for space spinors 

*j 
ab = aj (a aftb’a’, aj ab = t(b”aj a)a,, j = 1.2,3, 

such that 
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the covering map onto the connected component of the rotation group is given by 

SU (2. C) 3 ta h C ti j = ai ah ta c tb daj cd E 0+(3, Iw), 

the induced isomorphism of Lie algebras by 

@” 
cyU(2. c) 3 Ua b 3 11’ j = k’ (lb Ua c aj c/I E 0(3. [WI. 

and the inverse of the latter by 

99 

” I 

0(3,[w) 3 Uij "~ uab = lUi 2 ,j 0; %jbc E SU(2,c). 

Finally. the covering morphism of SU(S) onto the bundle O+(S) of positively oriented 
orthonormal frames on S maps the frame 6 E SV (S) onto the frame on S with vectors 
aj ab8n6b, j = 1, 2, 3. W e use this map to pull back to SU (S) the Levi-Civita connection 
form on SO(S). Combining this with the map @I-‘, the connection is represented by an 
su(2)-valued connection form ;a b on SU(S). Similarly, pulling back the If@-valued solder 
form on O+(S) and contracting with the Van der Waerden symbols results in a l-form crab 
on SU(S) which we call the solder form on SU(S). 

Let k denote the real horizontal vector field on SU(S) satisfying (cab. /?) = to ((I ~1 ‘) 
or, equivalently, 

” 
T&(n) H(6) = 6(0 tl) b’&,J = ;(60&, - 6, &), 8 E Su(S). 

It follows that Ts, (JT) I?(6 t) = T,J(x) f?(S) if and only if 

The construction of the manifold C, will be described now. Choose a fixed spin frame 
6* in the fibre IY’ (i) over i. The action of the group on this spin frame defines a smooth 
parametrization 6(t) of the fibre in terms of t E SU(2, C) such that 6(e) = 6* with e 
the unit in SU(2. C). Choose a > 0 such that the metric ball B,(i) in S with centre i 

and radius a is strictly geodesically convex and that the metric h is analytic on B, (i). Let 
1 - a. a [ 3 p + 6(p, t) E SU (S) be the integral curve of the vector field & fi satisfying 
6(0. t) = s(t). We set C, = (6(p, t) E SU(S) )I pi < a. t E SU(2, C)). This set defines 
a smooth submanifold of SU(S) diffeomorphic to ] - u, u[ x SU(2, C) which is in fact an 
analytic submanifold of the restriction of SU(S) to B,(i). Since the integral curves of &!fi 
through TI-’ (i) project onto the geodesics through i with tangent vector of unit length. the 
restriction of x to C,. denoted in the following by n’, maps C, onto B,(i). 

Theactionof U( 1) on SU(S) impliesanactionofthisgroupon C,. While I0 = x’-‘(i) = 
{p = 0) is diffeomorphic to SU(2), forapoint p in “thepunctureddisk” B, = B,(i)\{i] the 
fibre n’-l (p) consists of an orbit of U( 1) on which the function p is positive and of another 
orbit on which it is negative, both being diffeomorphic to U (1). The map 75’ factorizes 

as C, 2 CA 2 B,(i) where the quotient space CL = C,/ U( 1) is diffeomorphic to 
1 - a, a[ xS2. Since the function p on C, is invariant under the action of U(l), it induces 
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a function on CA which will also be denoted by p. For a fixed value of p the map nr is the 
Hopf fibration realized by 

SU(2, C) 3 t + fiak &ta (jtb 1 E s2 c R3. (3.4) 

The set ~2’ (B,) consists of a component C&+ on which p > 0 and a component CA- on 
which p < 0. Each component is mapped diffeomorphically onto the punctured disk by 
n2. Using IQ to identify CL+ with B, we obtain an extension S* of S. The point i has 
been replaced here by the set rrr (I’) = rr;r (i) diffeomorphic to S2, to which is glued the 
set Cl-. Of course, from the point of view of the metric h the set nl (I’) still corresponds 
to a point and the function p defined near it on S is the geodesic distance from that point. 
Nevertheless, the initial value problem considered later will essentially be given an extension 
of the original initial hypersurface S which is similar to S* 

Close to i various properties of the data are analysed conveniently in terms of the U(l)- 
bundle space C, . The pull backs to C, of the connection form and the solder form on SU (S) 
are analytic l-forms on C, which will be denoted again by &’ b and oab, respectively. Any 
smooth spinor field 6 on an open subset V of BcI (i) is represented on the subset n’-’ (U) 
of C, in a natural way by a smooth “spinor-valued function” &, .,_,ak which is given at 
6 E n’-‘(U) by the components of 6 in the frame defined by 6. We shall refer to this 
function as to the “lift” of 6. 

The structure equations on SU (S) imply on C, the equations 

(3.5) 

(3.6) 

with 

denoting the curvature form determined by the curvature spinor r&&f. It holds 

rabcdef = (& Sabce - n ’ rhabcekdf + ($ sabdf - #abdfkce> (3.7) 

where S&e = S(&e) is the trace-free part of the Ricci tensor of h and r its Ricci scalar. 
The curvature tensor of h is given by 

ragbhcdef = -rabcdef Egh - rghcdef cab 

and the Bianchi identity reads 

D ab 
Sabcd = ; D,-dr. 

We use t E SU(2, C) and x1 = p as coordinates on C,. The vector field fi tangent 
to C, then takes the form &fi = aP. Further vector fields are defined on C, as follows. 
Consider the basis 

u+p ;), u2=g _d), u3=;(; “i> (3.8) 
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of the Lie algebra su(2, C), were u3 is the generator of the group U( 1). We denote by 
Zui, i = 0, 1,2, the Killing vector fields generated on SU(S) by ui and the action of 
SU(2, C). These fields are tangent to I0 where we set 

X+ = -(Z,? + iZ,,>, X- = -(Z,, - iZ,, ), X = -2iZ,,. 

These vector fields are extended to C,, by the requirements 

[&X]=O, [H,X+]=O, [ci,X_]=O. (3.9) 

The analytic vector fields fi, X, X+, X_ constitute a frame field on C,. It follows imme- 
diately from their definition that we also have 

LX, x+1 = 2 x+, [X, x-1 = -2x_, [X,, x-1 = -x. (3.10) 

For p in the punctured disk B, the vector field iX is tangent to the fibres n’-‘(p). The 
complex vector fields X+, X_ are complex conjugates of each other such that X_ W = 
X+ W for any real-valued function W. 

The definitions yield immediately 

(0 uh. X) = 0, (&“b, X) = Qatb 0 - t,aQ ‘. (3.11) 

By considerations similar to those used in [9] we find 

(ff crh, X,) = pY.&/%o b + O(p2), (;” b,X+) = EOacbl +o(p2), 

(a ab,X_) = -pZ/Zqaqb +o(p2), (&"b,x-) = -6&b"+O(p2) 

as p -+ 0. It follows that for p in the punctured disk the projections of fi, X+, X_ span 
the tangent space at p. 

We define furthermore vector fields Cab = C(&) on C, \ 1’ by the requirements 

(c 
b ab. c,d) = E(,acd) , C,d = && +C+&+ +C- cd x_. (3.12) 

The first condition implies T6 (&)C& = 6(, rb) “$,f for 6 E C, \ I’. The second condition 
is imposed to ensure that the vector fields do not pick up a component in the direction of 
X. Using the properties of the solder and the connection form discussed above we find 

1 1 
c 

1 -1 
ab = &b f c &,. c+ ab = - Zab + ?+ &,, C- ah = 

P 
; Yab +-c-~b, (3.13) 

where we have on the right-hand sides 

and analytic functions satisfying 

"a c ab =0(p), PO, = 0, a!= 1,+,-. 

(3.14) 

(3.15) 
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Here the second equation is obtained because we have by construction cut = ctu = Z?. It 
will be seen later as a consequence of the structure equations that 

“I c ab- - 0. (3.16) 

We have connection coefficients 

1 
Ycdab = (Gab, c,d) = ;$d’b+&d’b (3.17) 

with 

Y* abed = &cXbd + ~bd&zc), fOlcd = 0, j/abed = 0 (/‘I. 

The analyticity of the solder form and of the vector fields I?, X+, X_ entails that the vector 
fields p Ccd whence the functions 

PYcd’b, &d, Pc+cd, PC-cd 

extend to analytic fields on C, . 
A smooth function F on an open subset of C, is said to have spin weight s if 

X(F) = 2s F (3.18) 

on this set with 2s an integer. The construction of C, entails that any spinor-valued function 
on it has a well-defined spin weight. 

The evaluation of the structure equations on the vector fields Cab and X gives equations 
which show that the functions P ab, Y&cd have a well-defined Spin weight. In view of 
(3.1 I), the evaluation of (3.5) on X A Ccd gives 

(oab, [X, c,d]) = Ef)‘c(c ‘cd) b - Et ae(c ‘cd) b + CO bc(c ‘t& - Et bc(c ‘td) ‘. 

Since it follows from (3.9) and (3.10) that the commutator of X and Cab can be expanded 
in terms of the fields Cab, this implies 

[X3 Cab] = 2(‘5(a ‘Cb)O - c(a ’ cb)l). 

Using (3.10) and the expansion of the frame vectors in (3.12), we arrive at the equations 

XC’ &=2(1-a-b)c’& X&=2(1-(fl)-a-b)‘?*& (3.19) 

which determine the spin weights of the functions c” ab. The evaluation of (3.6) on X A C& 
gives 

Xyabcd = 2 (2 - U - b - C - d)Y&.d. (3.20) 

The WdUatiOU of the structure equations on the vector fields c,b yields the essential 
content of the structure equations. By (3.12) the commutators of the vector fields Cab are 

of the form [c,b, C&] = /tab ef cd Cef + &cd x. SinCe B&d = C- ab C+ cd - C- Cd C+ ab, 



H. Friedrich/Journal of Geometry and Physics 24 (I 998) 83-163 103 

the vector fields Cab are nowhere tangent to a local section of C, \ I0 over the punctured 
disk. We get in particular 

[CO]. C&i = -j${+C’ cdap + t&C+ cd x+ + a,C- L.d x-1. 

The evaluation of (3.5) on ccd A cef gives after contraction with c,b the equations 

&d ” rf Cab = 2(?‘cda (&f) 
b 

- Ye,f a (ccd) b, Cub. 

These equations entail the radial equations 

la ca 
J2” 

ab = -&‘ab’ (OEI) d cU cd. a = 1, +, -, 

which are satisfied trivially if a # b. Observing (3.13) and (3.17), the non-trivial equations 
can be rewritten in the form 

&(p?’ 
Jz 

(1ti) = i/aaoo(P~’ 11) - km11 (P~'OO), 

which implies (3.16), and 

L&G+ 
fi 

UU) = j/aaoo(P:+ 11) - liaall (P:+cd - L,d,> 
fi 

(3.21) 

J- ap (pE- aa) = &rje (pF 
A 

II> - fmll (Pi.-oo) - -I&XI. 
h 

(3.22) 

which contain the non-trivial content of the radial equations. The evaluation of (3.6) on 
Cc.d A crf gives the equations 

C,d(Yefab)-Crf(Ycdab)+YcdUhYefhb-YefahY~dhb 

- &‘,h a b(Ycd’ (eef) h - Yef ’ (ccd) h, 

- (C- cd C+ ef - C- ef C+ cd)(EOacbo - E] ‘Eb ‘) = ra bcdef. 

They entail the radial equations 

&‘Ye.fab = -2 YghabYef ’ (OE]) ” 

+; l(sabOe- &bO+]f + (&zb,,f - &b,f)Coe}, 

which are satisfied trivially if a # b. Observing (3.13) and (3.17), the non-trivial equations 
can be rewritten in the form 

-!- 
Jz 

8pkk.d + f (E, ‘cd o&joO + Ec ‘cd ’ kO] 1 + 7OOcd) 

= hOOO~l1cd - %Ollhkd - ; SOOcd + +c ‘cd ‘3 (3.23) 

+);llcd+ ik-“~do~,lOO+&dl~ll,, +);,lcd) 
P 

= ~11001jllcd - ??lll);oo,d + $,,<.d - $Eco~dO. (3.24) 
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As a consequence of these equations we have 

~ap(P2(Plloo + ~OOll)I = b2(~lloo + ioo11>~(J?1cHI - ?%011)~ 
2/2 

which implies 

J5100 = +0011. (3.25) 

The unknowns in the radial equations are not independent of each other. The vector fields 
Cab satisfy the reality condition (Cab)+ = ta a’r, “&lb’ = -Cab, the connection coefficients 

satisfy (Yabcd) + = -Yabcd, and We have (S&d)+ = s&cd. 
Covariant differentiation is expressed on C, \ I0 by the “usual” rules. If F denotes the 

lift of a smooth function f on B,, the covariant differential Df is represented on C, \ 1’ 
by the invariant function Dab f = cab(F). In the following we shall use the same symbol 
for a function and its lift. Let p&, be the invariant function representing a spatial spinor 
field ,u on Ba. To derive an expression for the invariant function representing the covariant 
differential Dl consider C, as being embedded into SU(S) and denote at S E C, \ 1’ the 
horizontal lift of TV Cab with respect to ;a b (which is not necessarily tangent to C, \ I’) 
by cLb. The invariant function implied by Dp is then given on C, \ I0 by 

Dab&d = C;b(kcd) = Cab&cd) - %be ckd - Ytibe d&e. 

Analogous formulas are obtained for covariant differentials of spinor fields of higher 
valence. 

3.2. C, versus B,(i) 

We note some relations between C, and B,(i) and introduce notation needed later on. 
Let X” be the normal coordinates on B,(i) centred at i and based on the orthonormal frame 

c* =,.abc* - 
I I ab = ojab8,*6g (3.26) 

at i and let V = x~L3/3xB be the radial vector field, which is tangent to the geodesics 
through i and satisfies h (V, V) = -Ix j2. Denote the spin frame on B,(i) which coincides 
with 6* at i and is parallely transported in the direction of V again by 6* = 6*(P), and 
denote the frame field on B,(i) which is parallely transported along the geodesics through 
i and coincides with CT at i again by CT such that (3.26) holds everywhere on B,(i). The 
local expression of the projection n’ is then given by 

n’:(p,t)~x~(p,t)=p~c~~(i)tCOtdl =p&3ajCTjcdtCOtd~. (3.27) 

Thus the pull back of the function IX I by n’ is IpI. We write 

V(q) = vbcc;, = 1x1 vbcC;c (3.28) 

on B,(i) with coefficients Vnb, uab satisfying VCd Vcd = -Ix 12, ucd Ucd = - 1, respectively. 
The latter are given by 

Vab(x’Y(p, r)) = z/2t(actb) 1. (3.29) 
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The pull back of the function r by n’ will be denoted again by r such that we have f = p7 

on C,. The map n’ projects the frame Cob at the point (p, t), p # 0, onto the frame 

T(n’) Cab = &(p, f)Ab(p, t> = 6,*(Xly(/Z’, t)) tC, s;(.T”(p. 1)) td b. 

3.3. Normal expansions at i 

Since the singular fields which we will have to analyse are usually built from fields on 
S which are analytic near i, we begin by recalling a certain type of expansion of analytic 
fields near i. We use the notation introduced above and write Dj for the covariant derivative 
in the direction of c;*. 

Suppose T is an analytic tensor field of rank (r, s) on B,(i) which has components 
T*it . ..i. /,,,,j,$ with respect to the frame CT. Since DV cy = 0. we find for .P E B,(i). 

ItI I 1. 

*iI . ..i. JI...jr(fX(y)) = X’ &T*i”‘.ir j,...js> (tx”) 

= V’(X”)(D/T*““.‘~ jl..,js)(t xv). 

Observing that such formulae also hold for the covariant differentials of T, we get by 
induction 

&T 
*il . ..i. ,I...jr(t~a) = V’P ‘. ’ V” Dl, ..’ D/,(T*“““‘j ,_.. ~,)(Ix~). 

p =o, 1.2, . . . 

Evaluating the Taylor expansion 

03 

T *ii”‘Lr jl...j,r(t.K(Y) = C t’ ~~(T*“‘.~‘. j,.,,j, (tx”))/t=O 
p=o 

atf = l,weget 

T 
O3 1 

*i”..rr~ ,... j,7(q) = c - V”‘(q). . . V’](q) Dip.. . DI,T*il’..i’ j ,,,, j,(i), 
p=o P! 

q E B,(i). 

Since only covariant operations occur on the right hand side, the final result does neither 
depend on the normal coordinates .P nor on the frame ek and it can be written (with the 
bracket indicating the obvious contraction) in the short form 

T(q) = 5 i ((v(q)@‘, 
p=o p! 

Dp)T)(i). 

Analogous expansions are obtained for analytic spinor fields. Let cz,*, ...a, be the compo- 
nents of the symmetric analytic spinor field c on B,(i) with respect to the spin frame 6*(.P ). 
By similar arguments as above we find the expansion 
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p=CO 

6; ,... &q) = c ~~/p~~bpcp~~~~b,c’ Db,c;..Db,c,[; ,... a, (3.30) 
p=o 

with vab = vab(q), q E B,(i), and the derivatives of the spinor field evaluated at the point i. 
Since the index pairs bj cj , j = 1,2, . . . , p, are all transvected with the same spinor vcd, the 
derivatives in (3.30) can be replaced by the symmetrized (in the pairs on indices) derivatives. 
If in the symmetrized derivatives a contraction of indices Cj , ck, j # k, is performed, 
the resulting expression is antisymmetric in the indices bj, bk. Thus, decomposing into 
irreducible parts (with respect to the indices b,, . . . , cl) yields in each summand of (3.30) 

with p 2 2 an expansion 

vbPCP . . . vb,‘, Db c 
PP 

. . @,,& ,.., cI, 

=v bpCp ’ . vb’c’ (‘$,O: bpcp...b,qq . ..a. 

+~;,,;bpcP...b3c3u ,... a,hb,c,b2c> +“‘)T (3.31) 

where the dots indicate terms (vanishing for p 5 3) which are at least quadratic in the 
metric tensor habcd. The spinors satisfy the symmetry condition 

ci,i; bpCp...b?i+,CZ;+,a,...a, = ti.i; (bpcp...b2,+I(.2,+l)(al...a/)’ i = 0,. . . , [ip] 

with[~p]=~pifpiseven,[~p]=~(p-l)ifpisodd.Inparticular 

~;,O:bpcp...b,c,a ,... a, =D(b,=,“‘Db,c,)~~,...a,’ 

$kl; bpcp...b3c3a, . ..a[ 

(3.32) 

where the dots on the right-hand side of the last equation indicate operators of the form 

O4 c, and where Dd, Def are assumed to stand in the kth and hth position respectively. 
To obtain the complete decomposition of the coefficients of (3.30) into irreducible parts 

one finally has to observe the expansion 

with totally symmetric spinors satisfying 

cj,i; bpcp...b2i+Ic2i+l ~,...a, = c” ‘. p.,. (bpcp...bzI+lcz;+l *,..a/)’ 

ei,i; bpcp...b2i+l al..a-I = Cl c* 
e 

p.z,l p,i: (bpcp...b2i+l IeJa, ...tiL-l ) ’ . . . 

and positive real coefficients CL i I) etc. . . 

(3.33) 

(3.34) 
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3.4. The functions T, j k 

If expression (3.30) of ,$ is lifted to C,, we encounter a certain class of functions on C,, 
associated with unitary representations SU(2, C). The matrix elements of these represen- 
tations are given by the complex-valued functions 

S(I(2.C,3t-.T~,jX(t)=(~)1’2(~)1’2t(~~~~ ,,... th,),a ,,,, I, 

Ti”oW = 1, j,k=O ,..., m, m = 1.2.3 ,.... 

where, as in the following, setting a string of indices into brackets with a lower index k is 
meant to indicate that the indices are symmetrized and then k of them are set equal to 1 
while the remaining ones are set equal to 0. We state a few properties of these functions 
which follow directly from their definition; more details can be found in [9]. The functions 
are real analytic on SU(2, C), the representation is given by 

SUC. C) 3 t --, Tm(t) = (T&(t)) E SU(m + 1). 

and the functions J’m T, j k(r) form a complete orthonormal set in the Hilbert space 
L2(~, SU(2, C)) where ,U denotes the normalized Haar measure on SU (2. C). In particular. 
any real analytic complex-valued function f on SU (2, C) admits an expansion 

with complex coefficients fm,k,j which vanish rapidly as m + co. To be able to take care 
of reality conditions, we note that under complex conjugation the functions transform as 

T,,, j k(t) = (-l)j+k T, m-j ,,_k(t), t E SU(2. C). 

We denote by ZUi, i = 0, 1.2, the left invariant vector fields on SU(2, C) generated by the 
Ui given in (3.8) and set 

X+ = -t-G2 + G, 1. X- = -(Z,, - iZ,, ), X = -2i Z,,, 

It follows then for 0 5 k, j ( m, m = 0, 1,2, . . . . that 

X T, k j = (m -2j)Tmkj, X+Trnkj =/%,jTrnlijp~~ 

X- Tm kj = -Bm,j+l Tm kj+l 

with 

Bm,j = {j (m - j + 1)]“2 

(3.35) 

From this ensues that for a function f with integer or half integer spin weight s. i.e. 

Xf =2sf, 
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the expansion above reduces to the form 

(3.36) 

where m takes even values if s is an integer and odd values if s is a half integer. 
The products of two functions of the type above can be expanded in the form 

CL 
Tm i k T,, j ,J = c D(m, i, k; n, j, 1; m + n - 2p, i + j - p, k + 1 - p) 

p=o 

x T,,,+n-2p i+j-p k+l-p (3.37) 

with 1 = min(m, n, i + j, k + 1) and coefficients D(m, i, k; n, j, 1; w, r, s) which are 
products 

D(m, i, k; n, j, 1; w, I, s) = C(m, i; n, j; w, r)C(m, k; n, 1; w, s) 

of Clebsch-Gordan coefficients C(m, i; n, j; 20, r). Since the latter satisfy 

c IC(m, i; n, j; w, r>12 = 1, 
i.j 

we have ID(m, i, k; n, j, 1; w, r, s)l 5 1 for all admissible values of the indices. 
We note the following special case of the expansion formula above: 

T2m ’ k T2n ’ I 
i?Z+Jl 

= 
c D(2m, i, k; 2n, j, 1; 29, i + j + q -m - n, k + I+ q - m - n) 

4’40 
x T,, i+j+q-m-n 

-4 k+i+q-m-n (3.38) 

with 

qo=max{lm-nl,m+n-i-j,m+n-k-1). 

For an even more specialized case we shall need later the following information on the 
coefficient of the highest order term in this expansion. 

Lemma 3.1. If m is an integer and n, p, k, k’, j are non-negative integers such that p-n 1. 
0, n + m 2 2, p + m 2 2, 0 5 k 5 2(p - n), 0 5 k’ 5 2(n + m), then in the expansion 

T2cp-n) k p-n T2(n+m) 
k’ 

nfm-2fj 

= D(j) fi~~+~ 
k+k’ 

p+m_2+j + “terms of lower order” 

the coeficients D(j) (suppressing all the other indices since we are interested here only in 
the dependence on j) do not vanish and satisfy D(0) = D(4). 

Applying (p + m - 2 + j)-times the operator X+ to the expansion above, all the lower 
order terms drop out and we get, observing the Leibniz rule, 
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pfm-2fj 

W) n B2(p+m),l T?(p+m) &+&’ 0 
I=1 

109 

= p+m-2fj 
D(j) X+ T Zp+m) 

kfk’ 
p+m -2+j 

n+m-3+j 
= n B2(n+m).l T2(p-n) ‘0 T2m+rn)’ o. 

/=I 

This equation implies D(j) # 0 and 

The functions T, j & on SU (2, C) induce functions on C, which are obtained as follows. 
The set I0 is identified by its construction with the set SU(2, C). Thus we can consider the 
functions T,,, j & as functions on 1’. we extend the functions T, j & to analytic functions on 
C, such that fi T, j & = 0. By the same identification the vector fields Z,, , X+, X_. X on 
SU(2, C) are identified on I0 with the vector fields introduced earlier for which we used 
the same notation. Relations (3.35) remain true on C,. 

3.5. Normal expansions at I0 

Any analytic function f on C, with integer spin weight s has an expansion of the type 
(3.36) with coefficients fq,& which are analytic functions of p. In the case of spin-valued 
functions arising from spinor fields on B,(i) the expansions are of a very specific kind. 
Suppose &, ._a, is the spin-valued function on C, representing a symmetric analytic spinor 
field on B,(i) and denote by cj = ~(a,_.a,),, 0 5 j 5 1, its essential components. The 
function tj has spin weights = l/2 - j and a unique expansion of the form 

tj = fJ tj.pP’ 
p=o 

(3.39) 

with 

2p+l 

tj.p = C 2 6j.p:m.k Tm ’ cm-I)/Z+j 

m=max(ll-2jl.l-2p} k=O 

(3.40) 

and complex coefficients cj,p;m,&. Here m takes even values if 1 is even and odd values 
otherwise. We shall refer to this type of expansion as to the “normal” expansion at 1’. Its 
form can be deduced by the abstract arguments given in [9]. To see how it relates to the 
spinor field c on B,(i) it is more useful to derive it directly from (3.30). Expression (3.39) 
at the point (p, t) is obtained from (3.30) by the following operations on Eq. (3.30): 

(i) Perform the transition 6: ,... a, + 6; ,,., br tbl a, . . . tbl a,. 

(ii) Replace 1x1 by p and the coefficients u ab by the right-hand side of (3.29). 



110 H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 

(iii) Decompose all spinor-valued coefficients into sums of products of symmetric coeffi- 
cients with E’S. Contractions of E’S with pairs of t’s yield factors 1 or 0. The remaining 
expressions assume the form of expansions in terms of the functions T, ’ I. 

The coefficient of pJ’ is then 

(l/z)P DQ,, . . &,c, 6:, _.elfbp o fCP I . . . tbl 0 tC’ , te’ to, . . te’ a,,, 

2pfl-2 

= C 2 6j.p;m.k Tm k (m-/)/2+j 
m=max(ll-2jl,l-2p] k=O 

+ (1/z)’ D(b,+-, . . . Dblc, cl, ...ec$bD 0 tC” 1 . . . lb1 0 tC’ 1 te’ ca, . . te’ a,)j. 

The second term on the right-hand side, which is of order 4 = 2~ + 1 in the t’s, has the 
expansion 

(fi>’ D(b,c, . . . Db,c, 6:, ,,,,,)fbp o+ 1 . . . fb’ or=’ I f-’ (a, 

2p+l 

= x 6j.p;2p+l.k T2p+l k p+j 
k=O 

with 

Thus we find the symmetry 

!fO,p;2p+l.k = &,p;2p+l.k~ 

which will be important for us later. 
We shall also be interested in (symmetric) systems of analytic functions &.,,nzr with 

“essential components” tj = &a,_.az,)j, 0 5 j 5 2r, of spin weight s = r - j which do 
not descend to analytic spinor fields on B,(i). In this case we have again expansions of the 
form (3.39) but (3.40) is now replaced by the more general expression 

. ter a,), 

Y(P) 2q 

6j.p = C c tj.pz2q.k T2y k y-r+jT 
q=lr-jl k=O 

(3.42) 

where for given r we have a priori 

0 < Ir - jl 5 q(p) i 00. - 

In the cases considered later q(p) will be a finite integer for given positive integer p. 
An expansion of the form (3.39) and (3.42), or simply an expansion coefficient like (3.42) 

will in the following be said to be of “expansion type q(p)“. It will be understood here that 
terms for which q(p) < 0 vanish. It should be noted that we do not require q(p) to be the 
minimal function for which (3.42) is true. 

Spin weights and expansion types obey the following rules under algebraic operations on 
functions. Suppose the functions f, g have spin weights s = 2r, s’ = 2r’, with r, r’ integers, 
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and are of expansion type q(p), q’(p). respectively. Then by (3.37) the product fg has spin 
weight 2(r + r’) and expansion type qx (p) = maxo sjip{q’(j) + q(p - j)}. Ifs = S’ the 
sum f + g has well-defined spin weight s and expansion type q+(p) = max(q (p). q’(p) ) 
Of course, it may happen that due to cancellations for certain functions smaller expansion 
types may be assigned to their sum or product. The control of the expansion types will be 
quite important for us later on and we shall use the rules above repeatedly without referring 
to them in each case. 

In the case where 1 = 2r and m = 2q the reality condition c+ = (- 1 )‘( reads 

(j = (-l)jc$-j 

or, in terms of the expansion coefficients, 

6j.p:Zy.k = t-1) r+qfk~i-j,p:2q,2q-k. 

4. Structure of data near space-like infinity 

In this section we shall investigate normal expansions of the initial data in some detail. 
The need for the specific information on the data derived in this section will become clear 
only when we study the evolution of the fields. 

The following facts will be used repeatedly. The curvature tensor of h is given in three 
dimensions by 

rmj/k = h,lIkj - hmkllj + hjkllm - hjllkm. lij = sij + h r hij , (4.1) 

where .Sjk denotes the trace-free part of the Ricci tensor Yjk of h and r denotes the Ricci 
scalar. Since we are dealing with problems of conformal geometry we shall need the Cotton 
tensor 

kpij = Djlip - Diljp resp. kij = -i kik/Ej “. (4.2) 

We have 

ki i = 0, kij = kji, D’kij = 0. 

The space-spinor representation kah cd ef of the Cotton tensor has decomposition 

k,t, 1.d e.f = babc&d,f + babdf G-e. (4.3) 

where 

babcd = Dh (aSbcd)h (4.4) 

satisfies 

Dub b&d = 0. 

Under resealings h -+ h’ = @* h we have transformation laws 

kbij = kpij, kij = 4-l kij. bh,,d = 4-l bnhc<f 
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4.1. The expansion type of the resealed Weyl tensor 

The resealed conformal Weyl tensor is in a sense the most important unknown in the 
propagation equations. We shall analyse now its normal expansion at I’. 

Denote by Cz the subset of C, on which p is positive. If we lift the function Q to C,’ 
and consider it as a function of the coordinates p, t, it is an analytic function which can 
be extended analytically beyond the set I’. We shall refer to analytic functions obtained 
by lifting to C,’ and extending analytically through I0 as to the “analytic lift to C=” of the 
given function on B,(i). Since we will consider this procedure only for a finite number of 
functions, we shall assume that the number a has been chosen small enough for the analytic 
lifts to be defined an all of C, . 

We choose now a positive, analytic function K’ on B,(i) with K’(i) = 1 and set K = Ix 1~‘. 

To state our first main result, we consider the analytic lifts of the tensor fields K~c&_,~~, 

K3hmi~ K3ch! on B,(i) which we denote by &)abcd, I$&.~, JaTcd, respectively. The 
following properties of the conformal Weyl tensor will be important for us. 

Theorem 4.1. The analytic lifs &;abcd, $Lbcd, JaTcd on C, have expansion types p. 
(i) The expansion coeficients JJy’.2y.k of thefunctions J,y = $Ebcdjj sati& the symmetry 

condition 

'W 4 -$” 
0.p.2 p.k - 4.p.2 p.k’ p = 0, 1,2, . . . , k = 0, . . . ,2 p. 

(ii) The expansion coeficients $j,p32q.k of the functions 4; = $iabrdIj satisfy the antisym- 
metry condition 

“I 
4 

-I 

O.p.2p,k = -44.p.2 p,kl p=O,1.2 ,..., k=O ,..., 2p (4.6) 

(iii) If and only zfthe Cotton tensor satisJies the condition 

D(a@, . . . Da,b, b&f)(i) = 0, q =o, 1,2,... (4.7) 

we have 

$j.p,2p.k=0. p=O,1,2 ,..., k=O ,..., 2p, j=O ,..., 4 

and thefunctions 4; have expansion type p - 1. 

(4.8) 

It will be seen in Section 7 that property (4.6) is related to a certain type of non-smooth 
behaviour of the fields at the “sets I* where null infinity touches space-like infinity” 
(cf. Section 5). Condition (4.7) will be recognized then as a condition on the data which is 
implied by the requirement that the solution evolves smoothly through the sets I*. 

Condition (4.7) has been observed before in a related though somewhat different context. 
In [lo] it has been derived as a consequence of the requirement, called “radiativity condi- 
tion”, that the spinor field 4Lbcd has an analytic extension to B,(i). Answering a question 
which has been posed in [IO], we shall show that (4.7) is in fact equivalent to the radiativity 
condition. 
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Theorem 4.2. We consider the tensorjield 

elj = DiDjs2’- lhij DkDkS2’+Q2’sij, (4.9) 

which is derived,from the analyticfunction L2’ = T/U’ on B,(i). The,following conditions 
are equivalent.. 

(i) The Cotton tensor satisjies condition (4.7). 
(ii) The complex analytic extension qfthe,function bkl DkL” D' R’, dejined on the complex 

analytic extension of (B,(i), h). vanishes near i on the comp1e.x cone N which is 
generated by the null geodesics through i. 

(iii) The,field ck! = n’-’ ei,, i.e. the massless part qf the We_vl tensor; extends to i as a real 
anal~tic,function. 

(iv) The field d;, = 52’-’ e;,, i.e. th e massless part of the resealed Wqvl tensor; extends to 
i as a real analytic function. 

Remarks. Under conformal resealings the complex null cone N, which coincides near i 

with the set (Q = O}, is invariant and the function bkl D” R’ D’ L?’ transforms on N like a 
conformal density. This entails that condition (ii) is conformally invariant and we see that 
(4.7) is in fact a condition on the free initial data. We note that also the other conditions of 
Theorem 4.1 are invariant under conformal resealings. 

The lift of a smooth spinor field of rank 4 being of expansion type p + 2, multiplication 
by a factor ~~ gives a field of expansion type p - 1. Thus it follows as a simple consequence 
that the field $Lbcd has expansion type p - 1 if the conditions of Theorem 4.2 are satisfied. 

It should be noted that the argument by which we will be led in Section 7 to consider (4.7) 
as a regularity condition is quite different from that used in [IO]. The formalism considered 
in the present article is designed for the analysis of massive whence singular data while in 
[lo] only massless data have been considered. 

In [lo] has been exhibited a class of metrics which are analytic and satisfy condition (4.7) 
but which are not conformally flat near i. These metrics do not imply conformal structures 
on compact manifolds. However, Lemma 2.1 shows that conformal structures on compact 
manifolds which have positive Yamabe number and satisfy condition (4.7) at a given number 
of points are abundant among all conformal structures with positive Yamabe number. 

To prove assertion (i) of Theorem 4.1 we discuss the normal expansion of the analytic 
lift of the spinor field 

lx?d&d = -;$ U W D(at,r D<d) r + U W &at, Dc.d)r 

+2{W &br &d)u - 3 u D(abr &dw 

+ w-u &b Dcd) w - w htb &-d) u 

+ 6 D(abU Dcd) w + u w hbcd) 

+ 1X13{-2 w D(ab Dcd) w + 6DcabW Dcd) w + W’&bcd} (4.10) 

on B,(i) \ [i}. 
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Observing that Dabr = 2p X& on C,, we find that the first term on the right-hand side 
lifts to 

on C, where we make use of the constant coefficients 

E,kbcd = c@ @ @ f EC ’ Ed) h)k. 

Since scalar functions have expansion type p, this term has expansion type p. It satisfies 
the symmetry condition because 

$bcd), = 0 forj = 0,4. 

The second term has lift 

U W D(ab Dcd)i I’ = -4 U WPY(abe c Xd)je. 

Since S&cd and r have expansion type p -I- 2, p, respectively, it follows by induction from 
the structure equations (3.23) and (3.24) that the coefficients j&d have expansion type 
p + 1. Therefore, the function above has expansion type p. It holds 

” 
Y(ab ’ c Xd)oe = 

1 ” 
-J2~0000, ?&becXd),e = -$h- 

Observing (3.13) and (3.17) we get 

DObDabr + 6 = 2& (?I 100 - h01 I ), 

which entails with (3.25) for the first coefficient function in (2.24) 

(4.11) 

Eqs. (3.23) and (3.24) are ordinary differential equations for fuuuu, 71111 if the quantities 
inut 1, SO,JOO, st t 1 t are considered as given. Their solution can be represented in view of 
Eqs. (3.25) and (4.11) in the form 

” u,2 ’ Pf2 Qbcd), 
PY(ab e cxd)je = - 

2P s UC? 

dp’ for j = 0,4. 

0 

Since lJi2 S(&-d), has an expansion of type p+2 and satisfies (3.41), the integral divided by 
p has expansion type p and satisfies the symmetry condition. Since because of Lemma 3.1 
these properties are not affected by multiplication with analytic functions, the term above 
has the desired properties. The third term lifts to 
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2{w D(atJ Dcd), u - 3 u D(aX Dcd), WI 

= %'{Wx(,b&d)iU - 3~x(at&i),Wl~ 

This term is of type p, since the lift of a smooth 1 -form is of type p + 1. It satisfies the 
symmetry condition because xcab), = 0 for j = 0,2. 

Being a product of a smooth tensor field of rank 2 with a factor p2, the lift of the fourth 
term is of expansion type p and it satisfies the symmetry condition because of (3.41). 
Because of the factor p”, the last term in (4.10) is in fact of expansion type p - 1 and thus of 
the desired type. This proves the assertion (i) of Theorem 4.1 because multiplication with 
the lift of K’ does not change the expansion type. 

To prove the remaining assertions of the theorems above we shall analyse the behaviour 
of the analytic tensor field (4.9). The function R’ is the unique analytic function satisfying 
the conditions 

L?’ = 0, DjQ’ = 0, DjDkQ’ = -2hjk at i (4.12) 

and the equation 

252’ Dj DjaC' - 3 DjLI’ Djf2’ + i rRt2 = 0 (4.13) 

equivalent to the Yamabe equation. Instead of using the Hadamard procedure, the expansion 
of a’ can be determined directly by taking derivatives of (4.13) and evaluating at i. By this 
procedure we get 

DlDkDjG’(i) = 0, 

DmD/DkDjQ’(i) = -i rm(jk)l + 4hc,rrkj) - r h,,,,lhkj,. (4.14) 

DpDmQDkDjfl’(i) = -(&rp(jk)l + Dpr/(jk)m + D/r,(jk)p) 

+ lOhcp,Dlrkj, - i hc,,h/kDj,r. 

From this we obtain the following expansion coefficients at i: 

eij = 0, Dkeij = 0. Dl Dkeij = 0, 

D,D,Dke”J = 2 hck (’ kl,,,) j) + 2 h(k/ k” mJ j’. (4.15) 

We denote the spinor field corresponding toe;, and its analytic lift by eLbCd. Using (4.15). 
(4.3). and the procedure discussed in Section 2 for calculating normal expansions, we find 
for the function e( = eiabcdjj the expansion 

ej = ej,jp3 + 0(p4) 

with 

ei,j = (2 - j)$ f: (~)1’2b~abcd,, Takj_ 
k=O 

(4.16) 
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Whereas we would expect by our considerations in Section 2 an expansion of the type 

5 24 

q=12-jI k=O 

we see that, in agreement with Theorem 4.1, the terms of order q > p - 1 = 2 vanish. 
Furthermore, we observe that the coefficients ejj.3;4,k do not vanish in general and that 

ek.3;4.k = -eb,3:4,k. (4.17) 

To determine derivatives of ejj of higher order is already very awkward and we shall use 
other methods to discuss the structure of the expansion coeffhcients in a general way. 

Lemma 4.3. The tensorjeld elk satisjes the equations 

Q’Dieij - 2DiQ’eij = 0, 

2 (Di e(il - Dj ej[) - hiI Dk eLj + hjl Dk eLi + 2Q’klij = 0 

on Bn (i) which read in space-spinor notation 

0’ Dab eib& - 2 Dab&? e&bcd = 0, 

Df cnebcd)f - fl’ b&-d = 0. 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

Eq. (4.18) is only a rewriting of the constraint equations satisfied by djk (cf. [ 121) in terms 
of eik. The integrability condition (4.19) is obtained as follows. From (4.9) we get 

Die~k=DiDiDkS2’-$Dk(DiDiQ’+~Q’r)+DiQ’Zik+L”Dilik 

=DkDiDiQ’+DiQ’(lik+{t+hik)-$Dk(DiDiQ’+$Q’r) 

+ D’Q’ lik + L?’ D’ lik 

= 2(D’Q’lik + 5 Dk (D’Dis2’ + $G”r)). 

Taking a derivative of (4.9) and antisymmetrizing we get 

Dj eik - Di e(jk 

= - Dh 52’ rhkji + Dj 52’ lik - Di $2’ ljk + C?' kkij 

- f hik Dj (DlD’Q’ + ia’r) + f hjk Di (DlD’Q’ + ffl’r), 

which, together with the preceding equation and (4.1) gives (4.19). 
As noted above, the conditions of Theorems 4.1 and 4.2 are invariant under conformal 

resealings. This allows us to employ a particular conformal gauge to simplify the arguments. 
To explain this gauge we consider certain conformal geodesics of ( Ba (i), h) through the 
point i. These are given by solutions (x(t), b(t)) of the conformal geodesic equations 

Dii-f = -2(b, i)i + h(li, i) h#(b, .), (4.22) 

Di b = (b, i)b - ; h#(b, b)k + l(a, .) (4.23) 
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with initial conditions 

x(O) = i, h(f, i) = -1, b(0) = 0. (4.24) 

Here n(t) denotes a space-time curve through i, b(t) a l-form along that curve, and by h# 
we denote the contravariant form of h. Assuming that a is small enough, there exists on 
B,(i) a unique conformal resealing of the metric which is analytic, keeps the metric and 
the connection unchanged at i, and which is such that if the solutions to (4.22)--(4.24) is 
expressed in terms of the resealed metric, we have 

(b. -i-) = 0 on B,(i). (4.25) 

A metric in the conformal class for which condition (4.25) is satisfied along solutions to 
(4.22)-(4.24) will be said to satisfy the “cn-gauge”. In the following we shall assume our 
metric to satisfy the cn-gauge. 

Along any conformal geodesic the relations 

D.t (h(f, i_)) = -2(6, i) h(i, i), 

&(b, i) = -(b, i)’ + ; h#(b. 6) h(i-, i) + I(f, i) 

are satisfied. Therefore, we get in cn-gauge along the conformal geodesics satisfying (4.22)- 
(4.24) the relations 

D4 (h(i, i)) = 0, (4.26) 

f(f, i) = -; h#@, b) h(i-, i). (4.27) 

It will be convenient to consider the complex analytic extension of the space (B,(i), h) 
near i . We assume that there exists a three-dimensional complex analytic metric manifold 
(B, h) (i.e. h defines a complex-valued non-degenerate scalar product) which contains 
(B,(i), h) as a real Riemannian subspace and which is such that B is a convex normal 
neighbourhood with respect to h and that the function r has an analytic extension to B. 
The exact size of B is not important to us; it can easily be seen that B can always be chosen 
such that the statements made in the following are true. The restriction of SU(S) to B,(i) 
has a complex analytic extension to a bundle SL(B) of spin frames on B with structure 
group SL(2, C). We denote the analytic extensions of the connection and the solder form 
again by &’ t,, oab, respectively and note that the first and second structure equation hold 
unchanged on the complex analytic extension. The standard horizontal vector fields HL.d 
are defined on SL (B) by the requirements 

(;“,,, Hcd) = 0. (cTub, Hcd) = hcdab. (4.28) 

The complex cone which is generated by the null geodesics through i will be denoted by 
N. We assume that a’ has a complex analytic extension with U # 0 on B. The field ejk is 
then also extended by (4.9). We have N = (f = 0) = (L?’ = O), dr, dQ # 0 on N \ (i) 

and Dk r, Dk f2’ are tangent to the null generators of N by (2.22) and (4.13). 
Since we assumed the cn-gauge before extending into the complex domain, conditions 

(4.26) and (4.27) will remain true along conformal geodesics through i in B. The first 
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condition implies that null generators of N are conformal geodesics (considered as point 
sets) and the second condition then implies that 

DkrD’rsjk=DkrD’rIjk=O onN. (4.29) 

To exploit the fact that the field e(ik is defined in terms of the unique analytic solution 52’ 

of (4.12) and (4.13), it is convenient to introduce a certain submanifold fi of SL(B) which 
is constructed as follows. We consider the group 

Suppose 6* is the spin frame at i on which was based the construction of C,. Let y be the 
generator of N which is tangent to S;ST. Denote by S(z) the spin frame which is obtained by 
the action of s(z) E G on 6* such that 6(O) = 6*, denote by y -+ 6(y, z) the integral curve 
of Htt satisfying 6(0, z) = 6(z), by x -+ 6(x, y, z) the integral curve of Ho0 satisfying 
6(0, y, z) = 6(y, z), and finally by D the set of (x, y, z) E C3 for which the latter are 
defined. The set g = (6(x, y, z) 1 (x, y, z) E D] sweeps out a complex analytic three- 
dimensional submanifold of SL(S) with global coordinates z’ = x, z’ = y, z3 = z. We 
denote by ir the restriction of the projection rr to 6 and define the subsets i = (6 (0.0, z> I z E 

Cl, G = (6(x, 0, z) I (x, 0, z) E D, x # 01, f = (6(0, y, ~1 I@, y, z) E D) of 6 which 
project onto i, N \ y, y, respectively. 

A spinor field .$ on B is represented on 6 by an invariant spinor-valued function to which 
we refer as to the lift of 6. In the following there will be made no distinction in the notation 
for the fields on B and their lifts to l?. It will be clear from the context what is meant. The ” 
trace-free part of the Ricci tensor is then represented on B by the function S&cd. 

The map 5 has rank equal to 2 at the points of f. Since its rank is 3 on g \ 7, the condition 

(0 cd, cab) = h,b cd 

defines there analytic vector fields Cab. By arguments similar to those given in [9] we see 
that 

a 
cab =C%ba 

with coefficients such that 

andc”ll,~‘ol,c*01,~~01areanalyticon~with 

cl 1, = c3 11 = cl ct = c*rJt = & = 0, c*t, = 1 on 7. 

The connection coefficients 

1 
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satisfy 

I 
Y&h = -E(c Ofd) ‘ta OCb O, Yooah = 0. f&b = o(lXl) as X + 0. 

The fUnCtiOnS fci,d& extend by analyticity to i. Again, spinor fields on B are represented 
by invariant spinor-valued functions on i. 

Since D,bi2' = DI~PE, 'cu ' on i?. condition (4.29) translates into 

~~0 =0 onI?. (4.30) 

For given p = 0, 1,2, . . . this implies Die SOW = 0 on 6. Taking the limit to i along a 

fixed null generator of I?, we find that this implies at i in terms of our earlier notation 

.s”” a.& 0 . . S” osb’ of o.Sb ash OS” o&b,, . . . &,b, &cd = 0 

for s” 0 = s“ a(;) with arbitrary z. This entails 

+,B,, . . Qqtq &$ = 0. p = 0, 1.2. . . , (4.31) 

which in turn implies (4.30). 
The Cotton tensor is represented by the function babcd and, by the argument above, 

condition 4.7 translates into the equivalent condition 

betjoa=O onfi, (4.32) 

which proves the equivalence of conditions (i) and (ii) of Theorem 4.2. 
Evalutating the first structure equation on COQ A c,b yields the equations 

a., c ’ 1 1 
()1=--c 01 + 2~01ocl L.’ 01 - 2fo1011 X 

a., 2 o1 = -i c2 o1 + 2foi,,, Cz ol, 

a,t3 o1 = -4 o1 + 2foi,,,E3 o1 + -!fo,,. 1 -3 
.Y X 

The second equation implies 

c2 a, = 0, 

whence 

COI =clOlax + (Ii; +c301) a, 

with 
x 

2 go, = -- p s XI ” 

x 
-/OIOI dx’, r30, = & (p - I), p = ,zj,” fo;oloodx’ 

0 

We get now furthermore the equations 

a,c’ II = 2J+moc’01 - fllOl7 a, c2 ,, = 0, 
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which imply 

Cl1 = cl 118x + a, +c3 11az 

with coefficients which are given by simple integrals. Evaluating the second structure equa- 
tion On Coo A Cab gives 

&flloo + $3l- 2~0100);1100 = woo1~ 

&I&IOI - 2~0101~1100 = sooty + +-, 

&);I111 -2~01111i1100 = SOIll. 

Observing (4.30), the first of these equations, if expressed in terms of the unknown u = 
x2$;ol~, takes on I? the form 

The general solution of this equation is given by 

ax 
‘= 2a+cx' 

a, c = const., Ial + ICI # 0. 

Since u = 0([x12) as x + 0, it follows that u whence jlolm vanishes on %. 
Integration of the remaining structure equations gives on I? 

1 1 x 
YOloo = -2x’ YOlOl = Fg 

s 
x’ so001 dx’, 

~o~,~=~~x~~-~~-~~~x~, yl,w=;/x’sootudx’. 

0 0 
x x 

YllOl = 
S( 

2Y0101Y11oo + mall + &) h’, Yllll = 
s 

(2~0111~1100 + solll)dX’, 

0 0 

CO1 = C’ ,,a, + &a,. Cl1 =c’ ,,ax +a, +c3 ,,a,. 

2 x 
x 

cl01 = -- ~‘~0101 dx’, cl 11 = (2~~moc’01 -2yllol)dx’, 
X s s 

0 0 
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C3 ,, = s 1 
x’ytmo dx’. 

0 

Lemma 4.4. On fi holds so001 = - 5 1; ,I+‘~ boooo dx’. 

From (4.4) and the coefficients determined above we get on I? 

-~oooo = Do0 so001 - DOI so000 = ax SOOOI - co1 hlOOO) + 4YOl .f 0 SOOO,~ 
2 1 

= & so001 + ; .KKIul = $.K (x’%001) 

whence the result. 

We shall now analyse the behaviour of the function a near fi. Taking a derivative of 
(4.13) and restricting to N gives there 

0 = 3 D’f2’DiDj.R’ - DjS2’AQ’. 

Lifting these equations to i? and using the metric and connection coefficients calculated 
above we find as the only non-trivial equation in this system 

0=3Do(jD,,L?‘-2(D~D,,G’-Do, Dolti’) 
1 

= 8, DI, f2’ - ; Dl, R’ = x& (k D,,Q’). 

Since limx,o(~ D11) = Do0 DI 1 U’(i) = -2 this equation implies 

V 
DIIR’ = -2x on N. 

From this we get by direct calculation on i 

Do0 D&2’ = 0, Do0 DOI R’ = 0, 
Dc,o D,,sZ’ = -2, Do1 Do,R’ = 1, 

IA 
Do, D,,l2’= -4x& ; , 

0 (4.33) 

To determine the value of D11 D11 f2’ on fi we differentiate (4.13) twice, interchange 
derivatives, and restrict to i to obtain 

0=6DiS2’DiD~DjS2’-2DjaC’A Dk$Z- 2DkLZn’A DjSZ’ 

+6 Dk D’Q’Di DjC?’ - 2452’ Dk DjQ' - $ r DkG” DjJ2’ 

-4DkJT’Sji Di52’-4Dj52’~ki D’f2’+6h~~~i~D’S2’0’52’ 

In view of the quantities determined above we derive from this the equation 
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x2ax +o,*LY =f(x)E4x 
> ( 

1 
2 olax + 2xai 

> 
Do1 QlQ’ 

+8vo101 Do1 Q~fi’+ 12(Do1 hQ’12 

Since the expansion coefficients (4.14) give 

this entails 

s x f(x’> dx, Dll D,,f2’ =x - xf2 . 

0 

(4.34) 

Using (4.33), (4.34), and Lemma 4.4 we find on i? 

ehcd = 0, (4.35) 

a relation which can also be obtained by restricting Eq. (4.20) to J?. It does not require any 
assumption on the gauge or on the conformal structure. Furthermore 

(4.36) 

+ 8~‘~0101 eblll + 12 (eh,,,)2 
I 

ti’. 

It follows that eLbcd vanishes on $ if and only if bmu vanishes there. Since a’-’ e&cd 
extends to an analytic tensor field on B,(i) if and only if eLbcd vanishes on I? (cf. [ 17]), 
this shows the equivalence of conditions (ii) and (iii) of Theorem 4.2. 

Condition (iv) of Theorem 4.2 is equivalent to the vanishing of Dd eAbcd on i? (cf. [lo]). 
Since eLbcd = 0 at x = 0 by (4.15), it follows immediately that condition (iv) implies (iii). 
To show the reverse we assume now that eLbcd = 0 whence bm = 0 and suuor = 0 on i?. 
This leads to some simplifications in the values of the metric and connection coefficients 
given above. 

Since Dm, DOI are interior operators on Z? we have 

Dof eLbcd = 0 on i?. 

In view of these equations the restriction of the integrability condition (4.21) to k gives 

0 = De ca &-dje = DI(, &-d)o 
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whence 

0 = D,f eibcO on i. 

It remains to determine on 6 the value of 

&I e;,,, = DII DII &IQ’+ DII~~‘.sIII,. 

By taking three covariant derivatives of Eq. (4.13). interchanging the order of derivatives, 
and restricting to N. we get 

0=6Di~;2’DiDrDkDjn’-6Di~2/D~rhjki DhS2’ 

- 6 D’S2’ (rhX_/i Dh Dj R’ + rhj[i Dh Dk R’ 

+ r/&j; Dh Dli2;2’ $ rhjki Dh D/a’) 

+6D~D~Dii2;2’DiDjS2’+6D~DiDjR’DiD~R’ 

+6 DiDkDjS2’DiD~Q’- 2 D~DkDjaQ’Ai2’ 

-2D~D~.R’DjALi”- 2D,Djfl;2’DkAR’- 2DkDjQ’D~AC?’ 

-rDjn’DIDk~n’-rD~R’D,Dj~‘-rDla’DkDjSZ’ 

-2Dja’D,D,An’-2D,~2’D,DjAn’-2D,a’D,DjAsz’ 

- Dj r DlC?’ DkR’ - Dk r DIR’ DjQ’ - DI r DkQ’ Dji2'. 

In view of the quantities determined above this induces on fi as the only non-trivial equation 

Commuting the Laplacian in the last term with the covariant derivatives, expanding the 
Laplacian, and evaluating on I? gives 

1 
DII D11&f2’=2& DI, DII L&152’+ - DII DII D,,R’ 

X 

Inserting this into the equation above we get 

0= 12x& Djl DII Dlli-2’ - 12 Dll Dll 01152’ -24.x’ Doos~~~~ 

= 12x’& 
1 

+I @I &I-Q’+ DIIQ’SIIII) . 
1 

Since by (4.14) 

1 
lim 

1 
-(&I &I &IQ’+ DII~~‘~III~) 

x+0 X 1 

= Dc,,J Dll Dll Dlls2’(i) - 2qlll(i) = 0, 

we conclude that DI 1 e; , 1 1 = 0 on &‘. Thus we have shown the equivalence of conditions 
(iii) and (iv) of Theorem 4.2. 
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To prove assertions (ii) and (iii) of Theorem 4.1 we need to analyse the field eik in more 
detail. Its expansion type is defined in terms of expansion (3.30). As indicated in (3.33) 
and (3.34), we write the symmetrized derivatives occurring in (3.32) in terms of completely 
symmetric spinors 

D(bpcp . . . Db,c,)e 
‘wzbcd = ‘0 

ep,O; b,c,...bl c, 
abed 

‘1 
+ ep,O: (bpcp...bl @b%(., ) d)+... (4.37) 

Eq. (3.31) shows that the contributions of type p + 2, p + I arise solely from the first two 
terms on the right-hand side of (4.37), while the third and fourth term contain a contribution 
of type p, p - 1, respectively. The remaining contributions of type p and p - 1 are contained 
in first and second term on the right-hand side of 

‘* 
ep, 1: b,c,...bscj 

abed = 1 
2p - 1 

c D(b,=, . . . Dlef, . . . Def . . . Db3C3)C?abcd 

lzk<hip 

‘0 
= ep.l: bpcp...b3c3 Obcd + ez,,: (b,c,...b3 (crbc+) d, + . . . (4.38) 

Here we use again the notation of (3.31)-(3.34). 
The complex analytic extension of ejk is obtained by expanding it in the form (3.30) by 

setting Vab = Ix 1 vab in this formula, and by allowing Vab to take all complex values. On 
I? we have Vab = x sa 0 sb 0 where sa 0 = sa o(z) and x, z are the coordinates introduced 
on fi above. It follows from Eq. (3.31) that the restriction of eLbcd to k contains exactly 
the information of (4.37). It can be extracted by observing the argument which led to the 
interpretation of (4.30) by (4.3 1). Observing (4.35), taking the limit of D& ehCd to i along 

a fixed generator of I?, and evaluating for all z we obtain 

‘0 
ep.O: bpcp...blclabcd = O? e:,O; bpcp...b,abc = O, ezO; bpcp...c2ab = O, p > 3. 

(4.39) 

Observing (4.36) and taking the limit of D&, ebl 1, to i we obtain 

‘3 8(p- I)@-2) 
ep,O; bpcp...b4c4abcd = - 

P+l 
D(bpcp ’ . Db,c,b,*b,j. 

To derive the contributions of type p and p - 1 contained in (4.38), we need some 
information on the field A eLbcd = Dgh DgheLbcd on fi. 

Lemma 4.5. Let i, j, k be non-negative integers. The following equations hold on k: 
(i) A e’ = ??a ‘W+olll + i&eolll - +ollll, 

(ii) Dofyeb,f = 28:eb,,, + ~13~eblll - $& eblll, 

(iii) D&, Dgh Dk Dgh D$, eha = Dz’kA eha, 
(iv) if i + j + k 2 1 and the operator D’ Dj Dk of order i + j + k is generated by 

i + j + k - 1 factors Do0 and one factor Dol, then 

D’ Dgh Dj Dgh Dk e’ oooo = Do0 
i+j+k-1 Do, A eh. 
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The following relations hold on I?. Eqs. (4.21) and (4.35) imply D11 e&,, = co ’ a, eb, , ]. 
From this and (4.35) we get by direct calculation 

DOI Dot e&, = ca ‘~omo(&oe~~~~ +oyomoeorrr). 

Since Do0 Dl1 e&,, = D11 Do0 e&,, by (4.35), we get for 

Ae~o,=(DooD11+D,,Doo-2DolDol)e~, 

expression (i). From this (ii) is derived by direct calculation. 
Relations (iii) and (iv) are obtained by repeated commutations of covariant derivatives. 

We shall only indicate a few steps. 
We have [ DOI , DOO] D& ebOOO = 0 since the commutator is given by terms of the form 

r.f’ a~~~ Die ejooo and rf OOKM D& eLfoo, which vanish because of (4.35), and if j > I it 

contains terms of the form ,f cure D&, Dof DA0 ei,,, i + k + 1 = j, which vanish either 
because of (4.35) or because 2 Y’ CJC,~CHJ = -so000 = 0 in the cn-gauge. Since DOI e:,om = 0 
by (4.35), it follows inductively that 

D$, DOI D&, eAom = 0, k, j = 0, I, 2. . . 

We have [ DI 1, D~Jo] D& ebooo = 0 by the result above and the arguments used to obtain 
it. It follows that 

j+l I 
D&, DOI D, edoo = D$‘DolD&eiooo, k.j=0,1,2 ,... 

By these results and the arguments above we also get 

DOI D$’ DOI D& eLm = Do0 DOI D& Dal D& eLooo, 

DOI Dh DOI D, aOOO = DOI D$’ DOI Dd,e:,. j+l et k, j = 0, I, 2, . . 

Using these relations we get (iii). The arguments leading to (iv) are lengthier, but the 
calculations are straightforward, quite similar to the ones indicated above, and will therefore 
not be given. 

We shall now determine the remaining contributions of type p and p - 1. Relations (i) 
and (iii) of Lemma 4.5 imply on fi 

Oh0 D D&, Def Dk e’ 4f 00 oooo = 0. 

Taking limits to i along a fixed generators of fi and evaluating for all ; we get from this 

&,I+, . . . Dl,fl Def . Da3t,3e&.d, = 0, 

where the dots indicate operators of the form D+, and, apart from their relative positions. 
the positions of the operators Dd, D’f are arbitrary. Thus we get 

‘0 
ep, I: bpc,-b~cyzbcd = 0. (4.41) 

It follows from (4.39) and (4.41) that ehbcd is of type p - 1 and this holds true for $Abcd 

since it is obtained from ebbed by multiplying with a function of type p. This proves the 
first assertion of Theorem 4.1. Moreover, it follows now in terms of expansion (3.30) that 



126 H. FriedrichlJournal of Geometry and Physics 24 (1998) 83-163 

a,p e;b&=O = p! (2/2)P(sbP 0.~” 1 . . ‘Sbl 0s” $0; (bpc,,,~b2 %Q b,, %q) h, 

-1 b 2 s p ()sC” , . ‘. s b3 d3 Ie$: (bpcp...b3 cefg h) +3 ) I (4.42) 

x S,a sfb sgc Shd + . ’ . . 

where the dots at the end of the right-hand side indicate terms of type lower than p - 1. 
Since an odd number of C’S occur in both terms written on the right-hand side and since 
multiplication by powers of (U + p W) does not affect the asymmetry, we obtain (4.6). 

To see that (4.7) is a necessary condition for (4.8) to be true, we show the following 
lemma: 

Lemma 4.6. 

~pPe&oolp=o = cp 

X D(b,_3c,_3 . . ’ Db,r, b,*,...,4)k T2cP-1) ‘p-3, 

cp = const. > 0, P 24. 

That the first term of (4.38) is of the type as asserted by Lemma (4.6) follows from (4.40) 
and (4.38). It remains to determine the value of 

‘1 4 (P - 2) ‘* 
ep,l: b,c,...ajabr = 

f 
P 

ep,l: (a,,bp~~.b3a31flabc) 

Observing the expression of ebr , , g iven in (4.36) and property (ii) of Lemma 4.5, we find 

by taking for p z 3 the limit to i of Dii3 DofA e& f that 

By (iii) and (iv) of Lemma 4.5 and (4.38) the spinor e;‘,,; bpC,,,.,a3crbc is sum of such terms 
with positive coefficients. Then the second term of (4.38) is also of the type described in 
Lemma 4.6. Assertion (iii) of Theorem 4.1 follows now. 

4.2. Expansion types and coejlkients of variousjelds 

For later use we calculate the first few expansion coefficients. 

Lemma 4.7. 
(i) Assuming the cn-gauge, we find the following expansion types: 

type(r) = type(W) = p, tYPe(sabcd) = P + 1, 

tYpe(J%bcd) = P, we(::b) = P? type(U - 1) = p - 1. 
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(ii) Iffor some non-negative integer k it holds in addition 

Du+,c,, . . . &,c, b:,...a4) = 0, p=O. l;...k. 
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(4.43) 

then 

type(a,P .bbcdlp=O) = P. p=O,l,..., k+l, 

tYPe(a~?&bcdip=O) = P - 1, 

type(a~2~bl,=o) = p - I, 

type(a,P(CT--l)l,,=o)=p-2, p=O.l,..., k+2. 

The functions r and W have expansion type p in any gauge. The expansion type of the 
trace-free part of the 3-Ricci tensor follows from (4.30) and the expansion types of the fields 
f&cd, ?:b then follow inductively from the structure equations (3.23), (3.24), (3.21) and 
(3.22). 

Using (4.11) together with (2.24) and the expansion type given above for f&d, the final 
assertion of(i) follows. 

The first assertion of (ii) follows from (4.30) and Lemma 4.4. The remaining assertions 
are shown now by going through the steps considered above. 

For later use we note some consequences of the cn-gauge and of condition (4.7). At the 
point i we have in cn-gauge 

Iji = 0, D(k !ii, = 0, DC/ Dk lj;, = 0, DC,,, Dl Dk I,;;, = 0. at i. (4.44) 

The first of these equations is implied immediately by (4.27). It implies in turn by (4.22) 
and (4.23) at i 

D.?i = 0. D4 D.ti = 0. D4 b = 0. 

Taking directional derivatives of (4.27) and evaluating at i. we obtain there 

.t’i’.i’ Dk Ij; = 0. i-‘i’ij$ DIDk lji = 0, ,i~ m .I .k j .i XX X X D,DlDkIji =O 

for all allowed initial data, whence our result. 
By taking traces. respectively, symmetrizing we get from (4.44) 

r* = 0. D,h r* = 0, D,b D,d r* = -$At, sz,,&. (4.45) 

We now determine the first few expansion coefficients for various fields in the cn-gauge. 
For any symmetric spatial spinor field &-d one has in general 

Dab&-def = &b&d& - 2 (G(cDb gfdcy)g + fbcc& ‘grdrj)g) - ~~,,cDgh~,gh,de~f,b~ 

In the case of S&d this gives by (4.3 1) and (4.45) 

&b$d,f = -2 kz(cb;dej, + ??b(cb:drf,). 

It follows that 
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S(abcd)i = sj.lp + 0(lP12)7 

and 

By Lemma 4.7 we have expansions 

with certain non-negative integers cI~& and 

j/abed = 5 Pp 

P % 

c c )iabcd;p:2q.k T2q k q-2+a+b+c+d. 
p=l q=max(l2-a-b-c-dl,l-p) k=O 

From the structure equations and the results above we get for j = 0, 1,2 

E,b)j = &<l - j)Sj.lP2 + 0(lp13), 

‘:,b,, = -&(I - j)sj+2.1P2 + O(lp13), 

)&,( d), = -d(4 - I1 - jl) S. ,p2 + 0(1,,13) c I J. 

71,(d) = JZU-~-i’)li21~2+0(,~13). c I 24 J 3 

If in addition to the cn-gauge condition (4.7) is satisfied, we have 

Sij = WlP12)> t&jj = o(lPi3>~ hbcd = o(lPi3). 

Using the expression above in formula (4.11) we find that Ua = 1 + 0( 1~1~). Observing 
this in the recursive definition of the function UP+1 we find Ut = O(lp12) whence 

Dab u(i) = 0, Dcd &b U(i) = 0, Dd D,d Dab u(i) = 0. 

For the field r2 djk = r2f2-2 ejk = u4 eik we get 

D, (r2 dLj)(i) = D, (u4 ejk)(i) = Da eij (i), bl I 6. (4.46) 

The expansion type of the analytic lift of the tensor field (2.37) follows now immediately 
from the equation 

rAjk = f (-G’djk + Sjk + h r hjk}. (4.47) 

The expansion of Da& can be derived easily from the data given above and the formula 
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D,bfi = 
b&b Dab u + &b w + P D,b w 

(U + p WY 
-2r 

tu+p WI3 

2P (&b u - P Dab u - r &bw) 2P (&b - r &zbW) 

(U + p w3 
= 

(1 +p WI3 
+ O(IP15). 

The expansions above entail 

&EC, = -K’3(12 WC? &cd + 12p x(ab Drd) w + 22 &b&d) w 

- 2P’ w &bcd + 2p” w &b Dccl, W 

- 6~~ D(crb Dcd, W + o(lPl‘?). (4.48) 

Assuming that W is an arbitrary solution to (A - i r) W = 0 on &(i), we get 

w=~p~Wp+O(p3)=~p~ 
p=o p=o 

j~Wp;2p.i T&j +O(P”, 

with 

Furthermore 

&,,w=~pp( xab (P + I) w,+l + Zab x+ &+I + .v,b x- w,,+,] + o([pl’). 
p=o 

This gives the representation 

JEkd,, = -K’3{82 j (2 WO + 6p WI + 12~’ W?) 

+ ~5’j (3P X+ WI + 4p’ X+ W?) 

+ 63 j UP C-X-) WI + 4p’ (-X_) W?) 

+ 8ojP’ x+ x+ WZ + S4 jp’ X- X_ W-, + O(Jpl-l)]. (4.49) 

Finally we have by (4.16) 

(4.50) 
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5. The evolution equations 

Our final goal is to gain control on the evolution of the fields in a neighbourhood of 
space-like infinity which extends to future and past null infinity. This problem, to which 
we refer as the “initial value problem near space-like infinity”, will be given a more precise 
formulation at the end of this section. The intention is not only to show that the outgoing 
null geodesics starting close to space-like infinity are complete but also to analyse under 
which assumptions on the data the solution will allow a smooth conformal extension through 
null infinity. This requires precise information on the solution and leaves little freedom for 
playing with estimates. The main purpose of this section is to develop a formulation of 
the initial value problem which allows to relate properties of the initial data directly to 
properties of the fields near null infinity. 

In space-times admitting smooth conformal extensions through null infinity the asymp- 
totic behaviour of fields is analysed, “locally” near null infinity, in a convenient way in terms 
of coordinates based on outgoing null geodesics. Such coordinates are well adapted to the 
situation because null geodesics, considered as point sets, are invariant under conformal 
resealings and their affine parameters have a simple transformation law. To analyse the grav- 
itational field near space-like and null infinity in a time-symmetric way, one might therefore 
be tempted to use double null coordinates. However, already in the simplest non-trivial case, 
namely Schwarzschild space-time, such coordinates have undesirable properties. While the 
outgoing null hypersurfaces orthogonal to the orbits of the rotation group extend smoothly 
through future null infinity, the family of ingoing null hypersurfaces orthogonal to these 
orbits does not extend smoothly through future null infinity. 

To avoid such problems, we shall employ gauge conditions based on time-like conformal 
geodesics. These curves are autoparallel with respect to “conformal connections”, i.e. tor- 
sion free connections which preserve the conformal structure but not necessarily a metric 
in the conformal class. Thus we are forced to extend the analysis of conformal structures to 
include conformal connections. Such an analysis, including a detailed study of the use of 
conformal geodesics in the context of the field equations, has been carried out in [ 121. 

It turns out that in terms of gauge conditions based on conformal geodesics the conformal 
factor can be determined explicitly in terms of the initial data. Thus, provided the fields and 
the congruence of conformal geodesics extend regularly to null infinity, we have near space- 
like infinity perfect control on the location of null infinity. Furthermore, the newly acquired 
gauge freedom leads to a particularly simple conformal representation of the field equations. 

In the usual conformal representation of the solution, where space-like infinity is thought 
of as a point, the initial value problem near space-like infinity, if formulated in terms of 
the conformal field equations, is a problem which is local but singular at space-like infinity 
(cf. (2.42) and (2.43)). By making full use of the formalism introduced in [ 121, this local 
singular problem can be converted into another problem where null infinity is represented by 
certain explicitly known hypersurfaces and where the data are regular at space-like infinity. 
The formulation of this “finite regular problem” will be the main result of this section. 

In the following considerations we shall make use of the results of [ 121. The reader 
is referred to this article for further details and the general background underlying our 
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analysis. It should be noticed, however, that instead of using the conventions for the sign of 
the curvature spinors employed in [ 121 we shall adopt the convention of [7,&l 11. 

5. I. The conformal representation of the Einstein equations 

Suppose that (k, g) is a solution to the Einstein equations (2.1) which contains the 
“physical part” s = S \ {i) of the 3-manifold S as a smoothly embedded space-like Cauchy 
hypersurface such that the interior metric induced on 3 is given by h and the second funda- 
mental form on 3 vanishes. We shall be concerned here mainly with a detailed study of the 
evolution of the data on the punctured neighbourhood B, of i in S. 

Besides the metric g and its Levi-Civita connection V the analysis will involve: 
(i) A conformal connection V, i.e. a torsion free connection for which parallel transport 

preserves the &causal nature of vectors. 
(ii) A metric g in the conformal class of i 

g = e’g. (5.1) 

(iii) The Levi-Civita connection V associated with g. 
With any l-form d on h? we associate the tensor field S(d) given in index notation by 

S(d) P ” P = 6 P dP + 6” P dP - g,, g”’ dh. 

Then, since the three connections considered above respect the same conformai structure, 
there are l-forms b and f on I’? such that the difference tensors of the connections are of 
the form 

-+ - ? = S(b). G - v = S(f), 

V - V = S(b - f, = S(W’ de). (5.2) 

We shall express the conformal field equations in terms of the conformal factor 69, the 
l-form d = Ob, the metric g, the l-form f, the connection V’, and fields derived from 
these structures. Later on we shall express V in terms of V and f. Let SL(fi) denote the 
bundle of normalized spin frames over fi with structure group SL(2. C) and assume that 
the metric g has Spinorrepresentation g&bb’ = t&,t,‘b’ where ~1 = 1. As described in [ 121 
we denote by aaa’ the solder form on SL(A?) and by wU b the s/(2. C)-valued connection 
form representing the connection V on SL(&). 

To accomodate the connection V we have to consider an extended bundle. In an obvious 
way SL(2, C) will be regarded as subgroup of the product of groups CSL(2, C) = Iw+ x 
SL(2, C). We denote by CSL(I)-;I) the associated bundle of fibre type CSL(2. C). This 
principal fibre bundle may be identified with the set of the spin frames (M,),=u,t with 
(S,},=u,t in SL(M), h E OX+. We denote by TI the projection of CSL(fi) onto M. The 
solder form cran’ and the connection form ma b extend in a natural way to CSL(k). The 
connection V is represented on CSL(k) by a R @ x1(2. Q-valued connection form 2” t, 
which is related to ma b by 
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where faO/ denotes the invariant function on CSL(k) which represents the l-form f. The 
pull back of this l-form to CSL(k) is thus given by C?I = cja a = fnarcaa’. We write 0 
also for the pull back of 0 to CSL(A?) and denote by daat, &bcd. @&bb’ the inVariant 

functions on CSL(A& which represent the l-form d, the resealed Weyl spinor field, and 
the tensor field (2.34), respectively. We have a decomposition 

@&bb = @&,b’ + &bea’b + @ab&,b’ + &‘b’%b, 

where 2@&bb’ represents the symmetric trace-free part of the Ricci tensor ijk of e, A = 

&g jkijk, and the last two terms, with @ab = a(&), represent the antisymmetric tensor 

i il jk]. For conciseness we write the field equations in terms of @&bb’. Finally we set 

K aa’bb’cc’ = -dee’(~eabcEe’a’~b’c’ + &‘a’b’c’&w~br~ 

and define the forms 

I_%& = -Oaa’cc’BCCt, flab = ;@bcdoc& Au dd’ . 

a aa’ = 7 ’ Kaa’bb’ccfCTbbt A CT”‘, 

Then, observing relation (5.3), the Einstein equations (2.1) are represented in terms of the 
conformal fields introduced above by the equations (cf. [ 121) 

0 = doaa’ + ma b ,, oba’ + wa’ b’ A nab’, (5.4) 

o= dGab+Ga rA(jCb-Ljbc’A~ac’-OS2ab, (5.5) 

0 = d; - &J A a”‘, (5.6) 

0 = d&&t + C&J A EC’ af + &+a~ A 6’ a - f&l. (5.7) 

o= dDab-fiaC AWCb+WacAfiCb. (5.8) 

Eq. (5.6) is the contraction of (5.5), it has been added to the list for later convenience. 
To write this system in the usual form of a differential system we choose a local section 

o : U + X-~(U), with U an open subset of A?, and define vector fields C,,I on a(U) by 
the requirement 

(P’, Cbb’) = Ebacb’ . a’ 

If we denote the pull back of g to a(U) again by g, we then have 

g(ca,,, Cbb’) = &bh’b’. 

We define connection coefficients on O(U) by 

r&tab = (W*b,c,,,), l=&+, = (iiab,Ceef). (5.9) 

They satisfy 
A 

rcc’ab = rcc’ba, rccjab = rCC’ab+Cca fbC’. (5.10) 

The connection coefficients which occur in tensor calculations are then given by 
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rbb’ aa’ cc! = rbb’ a &’ ‘I + &,’ ” c/EC ‘. 
^ 

r,,b’ ‘& 
,. 

cc, = rbb, a ct,’ ‘I + ij,,’ ” c’t, ‘. 

Using the connection coefficients we define on o(U) covariant derivatives of spinor-valued 
functions by the usual formulas and denote by V,, 1 resp. Va,,/ covariant derivatives in the 
direction of c,,~. Evaluation of the system of forms on the vector fields c,,~ now gives the 
system of partial differential equations 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

We note that the fields 0, b,,! are not subject to differential equations here. Their occurrence 
reflects the conformal gauge freedom introduced into the Einstein equations. 

5.2. Gauge conditions 

To fix the gauge dependent quantities, we consider solutions .xp(r), b,(r), e;(r) to the 
conformal geodesics equations 

V_& = -2(b, i-)i + g(a, a)&b, .). (5.17) 

Vi b = (b, i)b - ;j#(b, b)g(k, .) + L(.k .), (5.18) 

V.,e, = -(b, ek)i - (b, i)ek + j(f, ek) b. (5.19) 

Here xw(s) is a space-time curve in A?, b, is a I-form, and ek = ei& a frame field along 
this curve. The tensor field L, which is determined from the Ricci tensor of 2, vanishes 
under our assumptions. 

For given point 4 E 3 we consider conformal geodesics satisfying at that point initial 
conditions with 

x(0) = q. f (0) = eo is future directed and orthogonal to 3, (5.20) 

@:g(ej, ek) = Vjk, 0, > 0, (5.21) 

(b. ,i) = 0. (5.22) 

This leaves the freedom to specify on 3 the function 0, and the pull back of b to 3. 
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As shown in Lemmas 3.1 and 3.2 of [ 121, the solutions to the conformal geodesic equations 
for such initial conditions satisfy 

k(r) = co(r), @‘g(ej, ek) = rljk 

with a conformal factor 0 = o(t) such that 

) dk(t) s @ b,ep k = (6. da,). 

Here, as below, quantities with lower index * are assumed to be independent of T such 
that along a conformal geodesic they are given by their value at the intersection of the 
conformal geodesics with 3. We denote by r%#(b, b) the scalar product of the pull back of 
b to .$ with itself. On the right-hand side of the last equation we use vector notation, with 
da*, a = 1,2,3, denoting the value of 0, b,e* LI at p. 

In the following we denote by K some smooth, positive function on 3. Specializing to 

0, = IC-‘~ on S, (5.23) 

pullbackofbtoS = a-‘dD, (5.24) 

where Q is the conformal factor determined in Section 2 and K some smooth function on 
S, we get 

Here 

252 s2 l/2 
W= 

J~DJ~D~T?~ = IAf2/6 + t-52/24/ 
on S close to i. 

(5.25) 

(5.26) 

Notice that, in accordance with assumption (2.12), the normal derivative of 0 vanishes on 
s. 

The functions 0 and bk are known a priori and are given completely in terms of data 
on 3. The components of the l-form field b in conformal Gauss coordinates are not known 
a priori since the frame coefficients e@ k are not known before the propagation equations 
have been solved. 

For given K > 0 on 3 conditions (5.20)-(5.24) determine on some neighbourhood W 
of s in k a smooth congruence of conformal geodesics orthogonal to 3 and a smooth 
time function x0 = t with x0 = 0 on s. We assume, possibly after shrinking M, that W 
coincides with k. 

Local coordinates x@, CY = 1,2,3, on 3 can be dragged along the congruence to ob- 
tain coordinates x0, _P on fi. Such coordinates will be referred to as “conformal Gauss 
coordinates”. 
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The l-form b, is smooth near 3 and defines a conformal connection V by the first of 
Eqs. (5.2). Setting 

& = b, - O-%,0, (5.27) 

the remaining equations of (5.2) are satisfied as well. Along the conformal geodesics we 
have 

V-ken. = 0, V.t4g =o, g(ei, ej) = Vij, (5.28) 

and in conformal Gauss coordinates _x? the frame coefficients ep k = (dx@, ek) satisfy 

eP 0 = P 0 on M. (5.29) 

In general e" j = 0 for j = 1,2,3 only on S. 
We choose now a smooth spin frame field S = (S,},=u.i on fi which is parallely prop- 

agated along the congruence of conformal geodesics with respect to V and which is such 
that I&& = eaal = ok &ek, where crk aar are the constant Van der Waerden symbols. This 
spin frame field defines a section of CSL(M) which we take to be the section CJ used to 
derive Eqs. (5.llH5.15). It follows that the vectors c,,/ project onto the vectors eUUf. 

We will refer to the pull back of Gauss coordinates to CJ (M) again as to Gauss coordinates. 
In such coordinates our constructions entails the relation 

whence also 

5 
aa’ cI-1 (1(1’ = v5S@ 0 (5.30) 

on I@. As shown in [ 121, we have in our gauge also 

raa’ faal = 0. rbb’(7),&,, = 0. on nTI. (5.31) 

Since in our gauge the functions 0 and d,, I are known, the system (5.11)--(5.15) is in fact 
a differential system for the fields (5.16). 

5.3. The finite regular initial value problem near space-like infinity 

To formulate the desired initial value problem we extend the formalism introduced in 
Section 3 and assume the gauge described above. Thus we keep in particular the metric 
g, its Levi-Civita connection form oU b, the connection V, the associated connection form 
;a b. the conformal factor 0, and the l-form field daaf introduced in Section 5.2. 

The metric ~1 g is by our construction independent of the choice of K. We associate with 
it the bundle SL(M) of normalized spin frames considered earlier and denote by SU (3) 
its subset of spin frames which are defined over s and satisfy the normalization condition 
(3.2) as well as (3.1). The subset Cz of C, c SU(S) on which p is positive is a smooth 
submanifold of SL(s), thus also of CSL(fi), which projects onto B,. 
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Consider the resealing map 6 + K Ii26 defined for spin frames 6 over B,. Its restriction 
to C,’ (which we consider here only as a map of points) defines a diffeomorphism E of C,’ 
onto a submanifold CafK = K ‘j2 C$ of CSL (A?). We use this diffeomorphism to carry over 
to CzK the coordinates p, t and the vector fields a,, , X, X+, X_ defined on C,’ in Section 3. 
The projection of CiK onto Ba will be denoted again by n’. 

The connection form 6~“ t, determines a vector field fi on CSL(G) by the conditions 

(5.32) 

i.e. 2 is the vector field which is horizontal with respect to the connection ? and has 
projection T~(rrr)Ej(S) = (l/&)s”“‘S,&. 

At points of C& the vector field fi projects onto the future directed g-unit normal ec 

of B, in k. The push forward of C a’, by fi is a smooth five-dimensional submanifold 

of CSL(A!l) which we denote by M,fK. The induced projection is again denoted by rr and 

its image, which is independent of the choice of K, is denoted by fi,. Points on M& 

are spin frames 6 over k, which satisfy with respect to the metric g the normalization 
g(&&, &,&,‘) = e&E,‘b’. 

By our construction M& is a fibre bundle over I@ with fibre type U (1). Denoting by 

t the parameter on the flow lines of g which vanishes on C&, the projections of these 
curves coincide with the conformal geodesics considered in Section 5.2. Flow lines passing 
through the same fibre of MzK project onto the same conformal geodesic. 

Dragging along with the how of fi the coordinates p and t given on CzK, we obtain 
smooth coordinates t, p, I on Mz,. The vector fields a,,, X. X+, X_ on C,‘, extend in a 

unique way to vector fields on M,iT, having vanishing commutator with fi. Together with 

& = a, these vector fields constitute a frame field on M a’, . The vector field iX generates 
the fibres of M&. Close to B, the projections of the fieids a,, ap, X+, X_ generate the 

tangent spaces at points of Ic;l,. 
Using the embedding of Mz, into CSL(fi), we can pull back to M& forms and invariant 

functions as well as the equations considered on CSL(k). Using for the quantities so 
obtained the same notation as before, we have forms aaa’, &Y’ 6, ua b which we call again 
solder and connection form, respectively. 

In analogy with our procedure on C,’ we define vector fields coal on M& by the 
requirements 
(i) (aaa’, ar ebb’) =E,,‘@ . 

(ii) coat = co aalas + c’ aalap + C+ aarX+ + C- aafX_. 

Here the expansion in (ii), which excludes components in the direction of X, ensures the 
uniqueness of the vector fields. These vector fields allow splittings of the form 

caa’ = &,&C,e’ - rba“& 

with taa’cacc~ = &a,, which is the analogue of (5.30), and vector fields 

(5.33) 

cab = ‘(a b’ cb)bf = Co ab& + CAba,, + C+ abX+ + c- abx-. (5.34) 
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It should be observed that the spatial component of these vector fields are identical with the 
vector fields cab introduced in Section 3 only for the choice K = 1. 

To the splitting of the vector fields corresponds an expansion of the solder form 

c aa’ = I 
15 

ad q.cc’&c~ + t/&Q 

with aah = -rca (I,ab)cr’. We have 

(&‘(T(“’ . &&) = 2, ( &.qlC‘ ‘, Cbd) = 0. 

(a”“. gee ‘&$) = 0. (C?. C’,,d) = hU” bd. 

Let CY*, 01 be the l-forms on M,’ which annihilate the vector fields a,, a, and have with 
Xk, X non-vanishing pairings 

(a+. X,) = ((;Y_. x-) = ((II, X) = 1 

only. Since X is vertical and the solder form is horizontal, the latter allows an expansion 

D UQ’ = or ua’ dt + aP aa’ dp + (T+ aa’~+ + D- ““‘in-. 

From the pairings above we conclude that 

%,‘~r au’ ZZ Jz. 

rua’ap ua’c’ bd + raalu+ aa’C+ bd + raatO- ““c- bd + X’%’ bd = 0 

and that the forms 0 ab have expansions aac = (TV ar dp + ot ac’a+ + CT ““a with coef- 
ficients satisying 

OP 
ac .I 

( hd +n+ acCf bd + (T_ “‘C- bd = ha” bd, 

Given the vector fields Cab. we can determine by the equations above the expansion coeffi- 
cients of the solder form. The pull back of the metric to M,‘, denoted again by R, is then 
given by 

!j’ = ~ub%‘b’~ 
aa’abb’ 

= + ra,(,‘d’a’ rbb’o bb’ + ha/,cdcTabcTc’d. (5.35) 

Connection coefficients, which satisfy again (5.10). are defined on MzK by formulae 
+ (5.9). Again. invariant functions induced on MaI, by covariant differentials of spinor fields 

are given then by the usual expressions for covariant derivatives in terms of the frame ctlU’ 
and of the connection coefficients. Relations (5.3 1) also hold on Mz,. 

The conformal factor lifts to a function on MT, which we denote again by 0. Using the 
expression Q = r/(U + p W)’ we obtain for the function (5.26) appearing in (5.25) 

w=p(u +PW)(U~+~PUX~~D,~U -p2 DabU D,bU+2p2U.xabDa/,W 

- 2p3 DabU D,bW - p3 DabW D,bW]-‘I?-. (5.36) 

Using (5.25) we get for dab = r(, b’ db)bt an expression which does not contain the factor 
K; ’ explicitly 

dab = 2P 
U xab - p DabU - p’ Dab W 

> (u+Pw3 *’ 
(5.37) 
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5.3.1. The propagation equations 
Evaluation of the conformal Einstein equations (5.4)-(5.8) on X A c,,r gives equations 

which determine the spin weights of the unknowns (5.16). To obtain propagation equations 
we evaluate Eqs. (5.4)-(5.8) on c,, I AC&t. To obtain a suitable form, we follow the procedure 
in [12, Section 51, express the equations in terms of the l-form f and the connection V, 
convert primed indices into unprimed indices, and introduce some useful notation. We set 

& &bcd = rabcd - r+ bacd, 

From (5.31) follows 

fab = f(ab)> r, c ab = t CCkc’ab = - fab, @,b cc = 0. 

Since the connection V is metric we have 

rabcd = rab(cd), Xabcd = Xab(cd)T hbcd = &ab)(cd) 

and thus 

r 
abed = Jz i (tabcd - Xabcd) = 5 (hzbcd - X(ab)cd) - ;hb fed. 

We use the covariant directional derivative operators 

D ‘,b = rca “V@& P = taa’Vaa’ 

to express the evolution equations as equations for 

cP ab$ r abed - @acbd 3 &bd. (5.38) 

and the derived quantities 

f ab, Xabcd 3 tabcd. 

By suitable contractions with taa’ we get from (5.1 l)-(.?i. 14) 

&Co ab = -X(ab) ef 0 c ef -fabt (5.39) 

&Cc” ab = -X(ab) ef cx c ef3 a = 1,2,3, (5.40) 

a&bcd = -X(ub) ef k?f cd + L &X(bd)ef + ??bdX(ac)ef ) f ef z/z 
- hXCab)(c e fd)e - $ (&c@f f bd + Ebd@,f f ac) - i@kbcd. (5.41) 

1 &fab = -X(ab) ef fef + pf ’ ab, (5.42) 
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hi((crb)cd = -x(ub) “Xefcd - @(cd)ab + @Vubcd. (5.43) 

h@(ab)cd = -x(cd) ef @Cab)ef. - w%bcd + i&de (aFb)cdr. (5.44) 

a, ~9,~ K ef@ g 
ub = -X(ab) g ef + fidef &be., (5.45) 

Here expressions (5.25), (5.36) and (5.37) for 8, a,@ and dab are assumed and we 

denote by )lubcd = i thbcd + $(l+bcd ) and p&d = - ;i (#&cd - ~$7~~~) the electric and 

the magnetic part Of $&d. respectively, where @u+hcd = rlr “rh b’r,. “rCl d’&hC.d. 
Finally, we get from (5.15) 

0 = rd d’V’ d’hbcf = Pubcd - $d(&h, 

with 

Pubcd = -#%bcd - 2v,d '&bc, f) cub = ~%hbq‘ ’ 

From this we deduce the system 

0 = -2 Pabcd = Phbcd - =+d hzbc) f (5.46) 

and the system 

-2 Poooo = 0, -2 POool - $00 = 0, -2 P()()l, = 0. 

-2 POllI + $11 = 0, -2 Ptttt = 0. (5.47) 

Both these systems are of the form 

V%?&@ + AUb~~Obafi~ = B(f)@. (5.48) 

where the unknown 4 is a “column vector” with complex-valued components 

&I = &zbcd),,, p=o, 1,2,3,4 

and the Aah are constant matrices, B(f) denotes a linear matrix-valued function of the 
connection coefficients, and E denotes the 5 x 5 unit matrix. 

Similarly the constraint equations Cab = 0 can be written in the form 

Pub cW &&@ - H(f)+ = 0 (5.49) 

with constant matrices Fab and a linear matrix-valued function H(T) of the connection 
coefficients. 

Eqs. (5.46) or (5.47) yield together with (5.39)-(5.45) after a simple transformation 
(cf. [ 121) a symmetric hyperbolic system of propagation equations, the “standard system” 
in the first and the “boundary adapted system” in the second case. 

For convenience we write out the boundary-adapted propagation equations (5.47). 

bh-2coo,)a,~o+2coooas~1 -2c~ola,~o+2~~~au~l 

= (X001 I - 8r101oMo + (4~0001 + f3~1oooM - 6Gooo~2, (5.50) 

fiar+t - co i I a,4o + co ooas42 - ~a l l aa4o + ~a ooaa42 
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= -(4rlllo + fllM0 + WilOll +4r11oo - 2fo1)qb 

+ 3 .foo@2 - ~~OOOO@S, 

ha542 - co llas+l + co00a5+3 - CU Ilad$l + c&a,43 

= -~111160 - 2 (TllOl + fll)& + 3 (fool1 + flloo)@2 

- 2 (fooo1 - fooM3 - &00@4, 

~as~3-~011a,~~+~oooa5~4--~ylao(~2+c~ooa(y~4 

=-2~1111~1 -3.f11~2+(2~1100+4f0011 +2fol)$3 

- (4hOl - hoM4. 

(~+2~001)as~4-22011as~3+2C~001a(1~4-2c~lla(Y~3 

= -6f1111+2 + (4flllo + 8fo111)$3 + (2flm - 8folol)&+. 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

Constraints (5.49) read explicitly 

~o~la,~o-2~o0la,~l+~oooa5~2+~~lla,~o-2~~01a,~~+~~ooacy~2 

= +r(ou11 - 4G 1 lOM0 + Wool I - 4f(Ol)Ol - 4fl loo)& 

+ 6r(ol,oo42 - =‘ooooh> 

collarh ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 

= fllll@O - W(Ol)ll - 2~llOl)h + 3 (Go11 - ~llOO)$J2 

- vhol - 4~(01)00)~3 - foooo@4, 

~o~la,~2-2~oo~as~3+~o~as~4++~11a(y~2-2~~o1a(y~3+~~ooaoL~4 

= 2fl111h - 6r(o1)11& + (4fooll +4f(o1)o1 - 2flmo)qb 

- (4fooOl - 2~(Ol)oo)@4. 

5.3.2. The initial data 
Observing our gauge conditions we find for the data on Ca9, + the following representation. 

Consider the functions 

as introduced on C$ in Section 3. We use the diffeomorphism E to transport these functions 
to c,+, and denote the functions so obtained by the same symbols. Then the data for the 
curvakre fields are given on C& by 

K2 21 
@abed = -5 &b Dcd)fi + K 12 r ha&d, 

K3 

&bcd = - (D(ab Dcd@ + fi &zbcd). 
L22 

The data for the frame coefficients are given on C& by 
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0 
C utJ=O, C1ob=KXab, C+ab=K ;LYb+i-vb ( 

( > 

( 

1 

> 

(5.57) 
L.- ab = K ;Yab+t-.b , 

where we use xab. z&, y& as given by (3.14). With this notation we write for a given smooth 
function I_L on Cz, 

I-cub = K -’ (C’obap +L.+&x+ +C-abx-)p. 

The data for the connection coefficients are then given on C,+lh. by 

- ; (h-Khd + EbdKm) (5.58) 

,hrh = Kab. X(ab)cd = 0. (5.59) 

For later use we note that in the particular case where K is of the form K = PK’ with some 
smooth function K’, we get 

hbcd = ~{PK’j/abcd - ;p hzcK;d + tbdK&)]. 

In the following we shall always assume the data to be given in cn-gauge. 

(5.60) 

5.3.3. Choice of K 

Depending on the choice of K, we may arrive at quite different initial value problems. 
The simplest choice is K = 1 on ,?. In this case scri*. if smooth, would be given by 

SCll .* = {p > 0, t = ztw*} (5.61) 

near space-like infinity. Since w = O(p) as p -+ 0, this choice corresponds to the conformal 
representations near space-like infinity where space-like infinity is envisioned as a point i”. 
In fact, if we choose h to be flat, which implies U = 1. and set W = 0. we arrive at the 
standard conformal representation of Minkoski space near space-like infinity discussed at 
the end of Section 6. The basic problem with this choice of K is that the data for &,t,(.d blow 
up as p + 0. 

To avoid that problem we choose a positive analytic function K’ on B,(i) with K’( i ) = 1 
(this normalization is somewhat arbitrary), set K = PK’, and consider the analytic lift of K 

to c,. 
We can assume C,Sr, to be extended to an analytic 4-manifold C,,, such that the analytic 

diffeomorphism C from Cz onto CzK extends to an analytic diffeomorphism, denoted 
again by C, from C, onto C,,,. The map C is used to carry the functions K, T, j x, p. 

t, and the vector fields aP, X, X+, X_ defined on C, to C,,,. The resulting fields will be 
denoted again by same symbols. Using our function K in (5.57)-(5.56), we find that all 
data extend analytically through the subset I0 = {p = 0} of C,,,. Furthermore, we find 
that the functions b,b as well as the functions Q/K. K~/&, ~fl/w’, which appear in the 
expressions for 0, a,@, extend in an analytic way through I0 with 
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K2 

;Jz +I on IO. 

We assume a to be chosen small enough such that the functions above extend analytically 
to all of C,,, . We shall use the same notation as above for the extended functions. 

It follows that our initial value problem can be extended in a regular way, in fact as an 
initial value problem for a symmetric hyperbolic system, to a larger domain. We introduce 
the sets 

M,’ = I(r,q) E ml I4 E C&L 
1 = {(t. q) E Ma I q E IO, ItI -c 11, 

Z* = ((r,q) E Ma [q E I', t =&l}, 

The functions p, t, T, j k are assumed to be extended off C,,, into Ma such that for fixed 

9 E C&K they are constant on the curves t + (r, q) E M,. 
We shall consider now the initial value problem near space-like infinity as the question 

whether for some a > 0 and suitably chosen initial data (5.57)-(5.56) there exists a smooth 
solution to the propagation equations (5.39)-(5.46) (or (5.47)) M,' such that for some CI’, 
0 < a’ < a, the set M: is in the closure in Ma of the domain of dependence of the set CzK 
with respect to the given solution. 

If the existence of such solution can be established, it follows from [ 12, Lemma 6. I], that 
the complete set of conformal field equations (5.4)-(5.8) will be satisfied on Ms. The sets 
Z$ on which 8 vanishes will represent part of future, respectively, past null infinity for this 
solution. For solutions to Einstein’s vacuum field equations with vanishing cosmological 
constant it is well known that null infinity is represented by a null hypersurface. On the 
other hand, the function 0 is given here explicitly. Remarkably, as discussed in [ 121 (cf. the 
remarks following Lemma 3.2), no contradiction arises from this. 

The extension Ma of Mz has been introduced here for convenience. Since our propagation 
equations extend to a symmetric hyperbolic system on MO near C,,, and the data are smooth, 
it follows from known results (cf. [ 16,241) that the problem has a unique, smooth solution 
on some neighbourhood W c M, of C,,,. It follows immediately that the solution extends 
smoothly to the boundary Z fl W of M,' n W which represents now part of space-like 
infinity. The discussion in Section 7 will make it clear why the solution in M,' f' W does 
not depend on the extension of the data to C,,, . 

Of course, the basic problem is to show that the solution extends smoothly to a set 2:, 
a’ > 0. With our choice of the function K we find that the differential of 0 does not vanish 
on the sets Z and Z$ which represent space-like and null infinity respectively. It vanishes, 
however, on the sets I* at which null infinity “touches” space-like infinity. This indicates 
that the sets I* will be of particular interest in the further discussion. 
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As an important though immediate consequence of the conformal geodesic equations we 
note that the choice of a different function K on 3 neither affects the conformal geodesics, 
considered as point sets, nor the l-form b,, or the connection ? along these curves. The 
parameter r as well as the frame ek suffer resealings which are constant along the conformal 
geodesic. The 1 -form fP is changed by some additive contribution. 

From this follows that the function 

(-j’ = K*(7) (5.62) 

would have been the conformal factor which we had obtained if we had required that 
0’ = R on 3. The corresponding time function on the conformal geodesics would have 
been 

5’ = TK,. (5.63) 

We would have had 

and therefore also (5.61). We see that by the simple transformations (5.62). (5.63) and 
related simple transformations of the other fields we can easily proceed from the picture 
where space-like infinity is represented by the cylinder I to the picture where space-like 
infinity is represented by a point i”. 

6. The Schwarzschild solution near space-like infinity 

Even if the solutions we wish to construct possessed a smooth structure at null infinity, our 
gauge conditions could turn out to be unsatisfactory. If a non-vanishing ADM-mass induced 
the conformal geodesics to form caustics before they reach null infinity, the coordinates 
associated with them would be useless for our purposes. We therefore test our setting for 
Schwarzschild data. 

In standard coordinates the Schwarzschild line element is given by 

with da’ = de2 + sin’0 d#’ the standard line element on the unit sphere S” in polar 
coordinates. Rewriting it in terms of the coordinate r = i(f - m + dm) where 
r > 2m, we obtain the Schwarzschild line element in isotropic coordinates 

We express the first fundamental form h and the second fundamental form X on the initial 
hypersurface .? = {t = 0) in terms of the coordinate p = 1 /r and get h = tin-’ h. jj = 0 
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with h = -(d ,02 + p2 da2), D = p2/( 1 + r~rp/2)~. Thus the Schwarzschild solution 
implies data of the type considered in Section 1 with h the flat metric. It follows that U = 1 
nearp=OandW=im. 

We set now K = p and assume that a is chosen small enough such that (I+ (m/2)p) # 0 
for IpI < a. 

The functions entering the evolution equations are given by 

P r2 
O= 

(1 + pm/D* 
l- 

> (1 + pm/2)2 ’ 

a,o = -2r p dab = 
2P &b 

(1 + pm/2)4 ’ (1 + pm/2)3 ’ 

and the initial data on C,., are given by 

c 0 
ah = 0. c1 ah = p&b, c- ab = Yob, C+ ab = Zab. 

fob = &zb, hbcd = 0, x(ab)cd = 0, 

(6.1) 

(6.2) 

@abed = 
6w 2 

(1 + pm/2)* ’ abed’ 
2 

&cd = -6me obcd. 

We assume the ansatz 

c 
0 

ab = c 
0 

&b, c 
1 1 

ab =C Xab, c- ab = C- yab. c+ ab = c+ Zab, 

fob = f &zb, hbcd = -t (%c Xbd + Ebd &c), 
h 

x(ab)cd = x46 
2 

abed + f X habcd, 

1 1 
@abed = @4c2 abed + j”T habcd + -@REab Xcd, 

2 

1/2 
hbcd = ‘+ abed 

for the solution of the propagation equations. Here the components of the unknown 

u = (co, ct,c-.c+, f.4. x4, x, 04, @T, OR,@) 

are real-valued functions of ‘5 and p. The initial data uu = u Is=0 are given by 

co = 0, c’=p. c-=c+=1, f=l, (=O, x4=0, x=0, 

04 = 
6w 

(1 + pm/2)2 ’ 
@T =O. @R = 0, 4 = -6m. 

The propagation equations (5.39)-(5.46) reduce to 

a,c"=;(X4-X)co- f, ad1 =+LY~-x)c~, 

a,c*=-;(X4+2X)c*, ad = -i (~4 + %a - &~4 f - @R. 

& f = 4 (~4 - X) f + @R, arx4 = ;x: - $x4x - o4 + 04. 

ad = -a~4 - g~ 
I 2 1 2-B T. a&! = ix404 - f (~4% + X04) - &@@. 

aTOT = -ix404 - fx@, 
2P 

&OR = f (X4 - X)@R - 3 (1 + pm,2j3 4, 

a,4 = -; (x4 + ~XM. 
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Thus the problem of reconstructing the conformal Schwarzschild solution from the given 
data amounts to finding a solution u = u(r, p; m) of an initial value problem of the type 

a, u = F(u, r, P; m)? ~(0. p: m) = uo(p; ml 

with analytic functions F and uu. For given values p. m with 1 + pm/2 > 0. there exists a 
smooth solution close to t = 0. It represents part of the conformal Schwarzschild solution. 

For m = 0 the only non-vanishing components of the solution u are given for r. p E [w 

by 

(.a = -_T. c’=p, c*=1, f’= I, (6.3) 

which entails 

The pull back under the Hopf map of the standard metric on the ‘-sphere is given by 
2 (o-o+ + a+~). We denote it again by do*. Observing (5.35) we obtain 

1 
g = $d (pt)” - dp* - ,o* da*] 

Notice that g(a,, a,) + 00 as p + 0, It 1 < 1. A coordinate better adapted to the metric 
(6.4) for small values of p would be r = - log(p) which leads to 

g = ds’ - 2r dr dr - (1 - t’) dr’ - da’. 

It is seen that the cylinder I lies at infinity but has a finite circumference with respect to the 
metric R. The null hypersurfaces scri* = (r = f 1) have a finite location. 

In the conformally flat case we find that f&Jab = (1 /p) dp is closed and the connection 
$ is in fact the Levi-Civita connection of the metric p’ g. Writing x0 = rp, we get from 

(6.4) 

g = 0-1 
1 

g = (p” _ (xo)“)2 ((dx0)2 - dp’ - p’da’]. 

Since this metric is invariant under the action of the group U( 1) it descends to the underlying 
manifold. Assuming p to be the radial coordinate associated with spatial normal coordinates 
x0. a = 1, 2, 3, we get the expression 

which after the inversion xfi -+ -xb/xhxh gives near space-like infinity the standard 
representation of the Minkowski metric. 

Since form = 0 the solution exists for r, p E R, it follows from well known results on 
ordinary differential equations, that for a given value ro > 1 there exist numbers mg > 0, 

po > 0 such that the solution u(r, p; m), which is analytic in all variables, exists for 
Ir~~ro,~p~(p~,~m~(mo.Itisdefinedinparticularonthesets{r=f(l+pm/2).O~ 



146 H. Friedrich/Journal of Geometry and Physics 24 (1998) 83-163 

p < min(po, (2/m)(q) - I))} which represent part of null infinity of the corresponding 
Schwarzschild space-time. With the exception of 4, the initial data contain p and m only 
in form of the product p m and in the equation only such products or the product p$ occur. 
This implies for arbitrary m > 0 the existence of solutions which extend smoothly through 
null infinity for sufficiently small values of p. 

Thus we have obtained a system of coordinates near space-like infinity which is simultane- 
ously analytic through future and past null infinity. No caustics of the underlying congruence 
of conformal geodesics occur before the latter have passed null infinity. The coordinates 
should allow to analyse the behaviour of fields near space-like infinity to any desired degree 
of precision. It is remarkable that in the coordinates above conformal Minkowski space- 
time is obtained in a fixed coordinate neighbourhood of f = ( 1 T ( ( 1, p = 0) as a uniform 
limit of Schwarzschild solutions as m -+ 0. 

In our conformal representation (6.4) of Minkowski space the null geodesics orthogonal 
to the spheres {p = const. > 0) are given by 

s 

r=F3 P=po(l rs), Pb=const. 

The outgoing geodesics, for which the minus sign applies, arrive at SIX? for the value 
s = 5 at which p = $~o. It follows from the remark above that corresponding outgoing 
null geodesics of the conformal Schwarzschild solution behave more and more like those 
for the Minkowski solution as pu -+ 0 or m + 0. The incoming geodesics do not arrive at 
scri+ for a finite value of s. As po + 0, these curves approach the set (0 5 r 5 I, p = 

0} U (T = 1, p > 0) in a non-uniform way. The corresponding behaviour in the case of the 
conformal Schwarzschild solution together with the detailed structure of this solution near 
I+ should allow one to exhibit the source of the non-smoothness of the family of incoming 
null hypersurfaces at scri+. 

7. The characteristic Z at space-like infinity 

We consider the system (5.39)-(5.45) and (5.48) in h4, with data given on C,. For 
definiteness we assume the boundary adapted system (5.47). The complete system is of the 
form 

(A”& + A%, + A’+ X+ + A’- X-) u = C’ u 

with a “vector’‘-valued unknown 

(7.1) 

11 = (C’ab> ca abt rabcdt @abed, &abed). 

Here u = 1, f, and A”, A”, A’*, C’ denote matrix-valued functions which depend on u 
and the coordinates. We consider now a neighbourhood W of C,,, in M, on which a unique 
smooth (analytic) solution of our Cauchy problem is given and analyse the behaviour of the 
solution near the set I’ = Z fl W which we assume to be diffeomorphic to [c, c] x SU(2, C) 
with some c > 0. 
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We have seen that from the point of view of the metric g the set I’ arises in a singular 
representation of the metric. From the point of view of the field equations (5.39)-(5.45) 
(5.48) the set I’ is a regular hypersurface. We write u” = u 111 and use a similar notation for 
other functions. Since the function 0 vanishes on I’, Eqs. (5.39)-(5.45) decouple on I’ from 
(5.48) and can be integrated on I’. Since the restrictions of the initial data (5.57)-(5.55) to 
1 coincide, irrespective of the choice of the function K’. with the restriction of Minkowski 
data. we find on I’ 

It follows from this that 

A” =0 onI’ (7.4) 

and in particular that the system (5.48) also implies an interior system on I’. Observing 
(5.56). the integration gives 

(7.5) 

We see that I’ is a characteristic of the system (5.39)-(5.45), (5.48). It is a “total charac- 
teristic” in the sense that the complete system reduces to a (symmetric hyperbolic) system 
of interior equations on I’. Also the constraints (5.49) induce interior equations on I’. By 
repeated application of aP to Eqs. (5.39)-(5.45) and (5.48) we obtain symmetric hyperbolic 
interior systems for the quantities II P = i$ CI[,~, p = 0. 1,2. . where the coefficients 
and right-hand sides in the system for 11p, p 1 1. are given in terms the quantities 11“. 

q =o. I ,..., p - 1. Obviously, these systems can be deduced in a formal way and studied 
on the whole set I. 

Another important observation is the following. If the solution extends smoothly to the 
sets Z,“. the latter will necessarily be null hypersurfaces whence characteristics for the 
propagation equations. Since they extend transversely across I U I+ U I- and I is a total 
characteristic, there should occur a degeneracy of the propagation equations on the sets I*. 
It follows in fact from (7.3) that we have in (5.48) 

A”-&E+Aabco.~= &diag(l + r. 1. 1, 1. 1 - r} on I. (7.6) 

Thus the matrix A’. which is positive definite on 1. degenerates on the sets I*. This 
degeneracy represents the essential remaining problem in our discussion. If the matrix A’ 
were positive definite on I, we could deduce the existence of solutions with a smooth 
asymptotic structure near spatial infinity from well-known stability results for solutions of 
symmetric hyperbolic systems. 

To see the effect of the degeneracy we shall analyse the behaviour of the functions up on 
I. To simplify the calculations we shall make the specific choice 

K’= I. 
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It should be observed that under certain circumstances this choice might have disadvantages. 
In our study of Minkowski space this choice resulted in the relation C&/K+ = 1. This entails 
that t = const. on the characteristic hypersurfaces 2,‘. As a consequence the matrix A0 
degenerates on 1:. It should be observed that this degeneracy can be removed while the 
degeneracy at I* cannot be removed by a suitable choice of K’. 

Expanding all quantities in terms of the T,,, j k, the functions UP are obtained on I as 
solutions to ordinary differential equations. By direct integration we obtain 

O,‘,,, = 6m (1 - t2)c2abcd + 2dimtr,bx,d, (7.7) 

X:ab)cd = m (-12T + 4r3)E2 abed, fib = mir4 &b, (7.8) 

e &cd = fim(ir2 - ir4) (Eat xbd + Ebd Xac), (7.9) 

(c-&)’ =m(r2 - ir4)Yab, (c+&)’ = m(r2 - ir4)z&, (7.10) 

(c’ .b)r = X,b, (co&,)’ = m($r3 - $t5)X,b, (7.11) 

4’ abed = -(WI 36 (1 - t2) + m2 (18t2 - 3t4}e2 &d 

- 12 (1 - t)2 x+ Wrr’ &cd + 12 (1 + t)2 x_ w,c3 &&. (7.12) 

Because #&,C&j = 0 for j = 0,4, no problem arises at this stage from the degeneracy of 

AT on I*. 
Since Of f nb # 0 if m # 0 by (7.7), we see that the Ricci tensor of $ is non-symmetric 

and therefore e is no longer metric if m # 0. 
In the following we shall use the expressions for the initial data obtained in Section 3.2 

in the cn-gauge. A lengthy but straightforward calculation gives the following expansion 
coefficients. 

@j? * at, = &(m*(-12t - ir3 + it5) + W1 (48r - 16t3)}x,b 

+ 2/2 (24r i- 8r3) (X-WI hb + x+wl Zab), (7.13) 

@f,b,cd = { m2(-12 + 12x2 - lot4 + zr”) + WI (72 - 72t2 + 36t4)}c2 &d 

+m2(4r2 - ;r” + $r6) h&d + 24t2 (x- wt y& + x+ WI Zab) Xcd 

+ (24 - 24t2 - 12t4) {x+wrC’ &Cd - x-wlc3 &d], (7.14) 

&bJcd = (m2(24r - 8t3 -t 4r5 - +r7) 

+ Wi(-144r + 72t3 - Fr5)}c2 &Cd 

+T?12(+t3 + ;r” - gt7) h&d 

- 8r3 &b (x- WI Ycd + x+ WI Zcd) 

+ (-48~ + 8r3 + $‘) (x+w& abed - x_w1E3 abed), (7.15) 

fib = {m2(-2t2 + l 4 3t - $r6 + ft*) + Wt(2t4 - ;t6)]x,b 

+ (3r4 + :r6) (x- wl yab + x+ WI Zab), (7.16) 

6 &,_d = 2/2(m2(:r4 - $r6 - &r”) + W,(6s2 - $r4 + $t6)) 

x (&Xbd + EbdX,,) + 1/2(-$t4 - &t6) 
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x th, (x- WI Ybd + x+ WI Zbd) + cbd (x- wl yac + x+ wl &I,)} 

+ ( 12t2 + r4 - ;t6) .&b (x- WI ycd - x+ WI Zcd) 

+ (-24~~ + 12r4) (X+W& at& + X-WP3 abed), (7.17) 

(C- ab)2 = (m2(-2t2 + 3t4 - ;r” + A’*) + WI ( 12t2 - 3t4 + $t6)) y& 

+ (-6t’ - &r4 + h&X+ Wt X,b, (7.18) 

(C+,1b)2 = (m2(-2r2 + 3t” - ;r” + I$*) + Wt(12r2 - 3t4 + ;t6)} Z& 

+ (-6t’ - ;r” + &r6) x_ Wt X,b. (7.19) 

(cl Ub)2 =m(-4t2 + ;t4)Xab, (7.20) 

(Co (1 b)2 = {m2(-2r3 - 3t5 + ‘t7 7 - +r9) + W,(16t3 - Fr5 + !jt7))X,b 

+ (8t3 - ;r’ - ;r7){X_W1 v& + x+Wt Zab). (7.21) 

The field @zbcd is given on I as a sum of three terms. The solution for vanishing initial data 
on I0 to the inhomogeneous equations satisfied by @zbcd (cf. Eqs. (8.10)-X8.14)) is of the 
form 

with 

ul(t) = -18~~ +46t3 - +r” - yr’ + gr” = -ag(---t), 

a2 = -72t2 + 62r4 - St6 5 ’ c2 = 6t2 - 15t4 + 3r6 - p. 

It extends smoothly to I*. 
The solution to the homogeneous equation which takes on I0 the initial data induced by 

4 zcd (cf. (4.49)) is given by 

4 

(1 + r)’ (1 - t)4-j C W2:d.k T4 kj. 
k=O 

(7.23) 

It extends smoothly to I*. 
The solution to the homogeneous equation which takes on I0 the initial data induced by 

4 :zbcd (cf. (4.50)) is given by 

$;ibcd ,, (7.24) 

with 

q(r) = 2 (1 - r)4 K(-t) = -%4(-t), (7.25) 

a1(t)=4(1 -#(l_tr)K(-r)-& = --a3(--r), (7.26) 
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i 

2-r 
a2(t) = A ~ 

(1 + t>2 
-2(l-t)2(l+t)2K(t) =-a2(-t), 

1 
(7.27) 

where 
T 

K(r) = 1 - 3 
s 

ds 

(1 -s) (1 + s)5’ 
(7.28) 

0 

This part of $$,d has logarithmic singuhuities at I* unless b&cd = 0 at i . 
The transport equations on I are invariably connected with the propagation equations. 

Singularities of solutions to the transport equations will most likely affect the nature of the 
solution in Ma. To gain control on the smoothness of the solution near space-like infinity 
we therefore need to study the behaviour of the solutions to the transport equations on I. 

In the following section we shall study the occurrence of the type of logarithmic singu- 
larity observed above in a systematic way. 

8. The transport equations on I 

The role of condition (4.7) is illustrated by the following simple situation. 

Theorem 8.1. Suppose that r$zL* = 0 near i. Then the solution to the initial value problem 
near space-like infinity extends as an analytic solution to T,’ for some a > 0 if condition 
(4.7) is satisfied. 

This follows from the discussion in [lo] and Theorem 4.2. Since by our assumptions 
the resealed conformal Weyl tensor is analytic at i, we can pose near space-like infinity a 
regular Cauchy problem for the conformal field equations in the form in which they have 
been used in [ 111. This will give an analytic solution near i. The cone generated by the null 
geodesics through i provides then the sets 1,‘. 

The assumption of analyticity is made here mainly for convenience. If +zcd = 0 near 
i and condition (4.7) is satisfied only to some (sufficiently high) order p, we could still 
show the existence of a solutions near space-like infinity with a differentiable structure 
at null infinity, the differentiability of the latter depending on p. It follows that condition 
(4.7), possibly only to a certain order, is a necessary regularity condition. The proof and the 
precise analysis of the differentiability properties require in this case complicated recursion 
arguments. 

The formalism developed here is designed to allow a discussion of the questions of 
smoothness also in the presence of a non-vanishing massive part of the resealed Weyl 
spinor. The analysis of the transport equations on I allows us to recognize again the role of 
(4.7) as a necessary regularity condition. 

Theorem 8.2. The solution to the regular3nite initial value problem is smooth through 
I’ only if condition (4.7) is satisfied by the free initial data. Zf (4.7) is violated at some 
order q, the solution will develop logarithmic singularities at I’. 
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Remarks. It is important to note that our gauge conditions are defined entirely in terms 
of the confonnal structure of the solution. Thus also the logarithmic singularities observed 
here are associated directly with the conformal structure. They are not due to obscure gauge 
conditions. Furthermore, it is remarkable that the source of the logarithmic singularities can 
be identified in the structure of the data. 

Our result is a statement about the solution to the initial value problem posed in Section 5. 
A priori the smoothness of the solution along I is not our main concern. We could live with 
a situation where a singularity develops at Ii which does not affect the smoothness of null 
infinity. However, most likely any singularity at I* will “spread along null infinity”. 

It is well known that for static solutions having sufficiently fast fall-off behaviour on a 
slice of time symmetry, null infinity admits a smooth structure. As shown in [lo], the data 
on the slice of time symmetry do satisfy condition (4.2) as a consequence of the static field 
equations. We expect this to be the structural reason for the smoothness of scri in the case 
of static solutions. 

The results of the following discussion allow us to control more properties of the solu- 
tions to the transport equations than those asserted in Theorem 8.2. Apart from the calcula- 
tional complexities our results will show how to determine explicitly the formal expansion 

C,“=u(llP!) p p u p on I to any given order. Moreover, we consider part (i) of Lemma 8.6 
as an indication that condition (4.7) may be the only regularity requirement which needs 
to be observed. Part (iii) of Lemma 8.6 indicates one of the difficulties to complete the 
analysis. 

Spin weights are preserved by performing analytic lifts of spinor fields and their transport 
to C,,, Furthermore, they are preserved by the propagation equations. Analytic functions 
of well-defined spin weights given in some neighbourhood of I0 in M, can be expanded in 
the form (3.39) and (3.42) with coefficients which are analytic functions of r. To these 
functions the notion of expansion type introduced in Section 2 extends in an obvious 
way. 

For the functions which enter the initial conditions we find: 

Lemma 8.3. Assume, as above, that K = ,o~‘. Tlzen the functions 0, i&H-,, dub are oj 
expansion type p - 1 on M,. Assume furthermore that the data are given in cn-gauge. Therz 
the analytic e.rtensions of the functions 

(U+pw)“-1, 
R 

fdU” -2x&, (“)‘- 1. - - 1 
w P2 

are of expansiorz type p - I. In particular; if in addition K’ = 1, the functions 

(9 
- - (1 - t”), 
P 

y +2s. 

Lzre of expansion type p - 1 on M, 

This follows from (5.36), (5.37). and Lemma 4.7. For the initial data we get: 
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Lemma 8.4. Suppose the initial data are given in en-gauge and K’ = 1. Then the analytic 
lijis to C,,, of the fields 

0 
C ab, 

I 
C ab, C + ab - Zab, C- ab - Yab, 

XCab)cd 3 fab - Xab. hbcd 3 rabcd f $cab xcd 

52 
@abed = -;4abcd + K2(Sabcd f $ r habcd) 

are of expansion type p - 1. 

This follows from Lemmas 4.7, 8.3 and Theorem 4.1. 
We shall now derive the transport equations on I in general form and make a few general 

observations about their solutions. Introducing the notation 

u = (Co abt Cff abt Gbcd, @abcd)t 

we can write Eqs. (5.39)-(5.45) in the form 

3, u = Ku + Q(u, u) + L#, (8.1) 

where K, Q denote linear and quadratic functions respectively, which have constant coef- 
ficients, and L denotes a linear function with coefficients which depend on the coordinates 
such that Lo = 0. We thus get on I transport equations 

3, up = K up + Q(u”. up) + Q(vp. u”) 
P-l 

+c 
j=l 

,p-j) + Ljp-i} + ~~40 , p=l,2,3 ,..., (8.2) 

where the values of u”, 4’ given by (7.2), (7.3) and (7.5) are assumed. 
By taking formal derivatives of (5.48) restricting to I, and observing the values deter- 

mined above for u”, u’ ,@O we get transport equations 

Aptip=Rp. p=1,2,3 ,... (8.3) 

with a linear differential operator 

Ap4p = {(E - r A”)& + (p - 2) A” + D + ; (Am X+ - A” X_)]@, (8.4) 

where D = diag(O, 1 , 0, - 1 , 0), and a “column vector” RP given by 

P 
+ c 7 (B(rj) - Aab (Co ab)jar 0 - Aab (C+ ab)j x+ 

j=l 

- Aab (c- .b)j x_}4’-j (8.3 
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We note that the form of the operator dp is independent of the solution. In the case where 
the Bianchi equation is considered as linear equation on Minkowski space the functions RP 
vanish for all p. 

We shall also use the constraint equations (5.49). They imply conditions 

apqv = sp, p = 2,3,. . 

with a linear differential operator, given by 

.13&F = (-T Pa, + p FO’ + 4 (FOOX+ - F” X_))qb” 

and a right-hand side, given by 

P 

+ c f (f@) - F”’ (co,&& - Fab (c+ &,)j x, 
j=l 0 

- F”’ (c- a,, j’ X_}@P-i, 

(8.6) 

(8.7) 

(8.8) 

Again we note that the form of the operator !3, is independent of the solution. 
It follows that given u”, . . , up-’ ,c#I’, . . . , qF ’ for some p 2 1, the linear ordinary dif- 

ferential equation (8.2) allows to solve for UP and after this the linear symmetric hyperbolic 
system (8.3) determines c$J’ if the data (5.57)~(5.56) are assumed. 

Lemma 8.5. 
(i) Thefunctions (c’ Ub-px&)P, up, I$J’, p = 1, 2. . . , on I areofexpansion Qpe p-2, 

p - 1. p, respectively. 
(ii) The functions RP, SP are of expansion type p - 1 for p = 1,2, . . 

(iii) Iffor a given integer p > 1 the data for @’ on C,,, are of type p - 1, then the,function 
4” on I is of type p - 1. 

By the explicit form of the initial data and by Lemma 8.4, assertion (i) is consistent with 
the structure of the intial data. That the statements (i) are true for p = 1 follows from 
(7.2)~(7.12). Next we observe that (cp &, - p x,b) P = 0, p = 0, 1, and that Eq. (5.40) 
together with (7.2) and (7.3) imply equations 

on I for 4 = 0, 1, . . . Let k > 1 be an integer and assume as induction hypothesis assertions 
(i)forp = 1,2,. . . , k. Eq. (8.9) implies then that 3, (c’ & - ,o X,b)kf’ is of expansion type 
k - 1. The structure of the initial data implies that (cl &, - p Xtib)kf’ is of expansion type 
k - 1. By Lemma 8.3 Lj has expansion type j - 1. Eqs. (8.2) together with the induction 
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hypothesis therefore allows to conclude that v k+’ is of expansion type k. Finally, observing 
that (c’ ab - p x,b)q = (cp &)’ for q 2 2, the induction hypothesis implies that Rkf’ is of 
type k. Eqs. (8.3) and the structure of the data then allow to conclude that c$~+’ is of type 
k + 1. From the given arguments (ii), (iii) follow now immediately. 

To see the consequences of the degeneracy of the matrix (7.6) we analyse the system of 
transport equations in more detail. Eqs. (8.3) read explicitly 

(1 + GJ,4,P +X+4; - (p - 2)4,p = R;. (8.10) 

a,# + $(X+@z” + X-4;) + 4; = Rf, (8.11) 

a,@ + ;(X+ti,p + X-$f) = R& (8.12) 

a,@ + +(x+4,” + x-@,p) -4; = R;, (8.13) 

(1 - r)a,@,P + X-43” + (p - 2)#4” = RI, (8.14) 

while Eqs. (8.6) read 

The two systems entail 

(P + r)@f = i((l - t) x+4,” - (1 + t) x_@) - s; + r Rf, (8.18) 

R@,” = ;((l - r) X+@ - (1 + T) x-c$) - $ + t R;, (8.19) 

(R - r)# = ;((l - r) X+@ - (1 + t) X-4;) - s; + r R;, (8.20) 

from which we get 

4P(P+r)#f+(l-r*)X+X-@f-(l-r)*X~&+2p(l+r)X_# 

=-2(l-r)X+(S~--rR[)-44~(S~-rR~), (8.21) 

4 P (P - r)@ + (1 - r*> X- X+4,” - (1 + r)* X2&f - 2 p (1 - r) X+& 

= 2 (1 i- r) X- (Sl - r R[) - 4p (S; - r R:). (8.22) 

Observing Theorem 4.1, we expand now 

4: = 2 2aj.p;q.k T2q k q-Z+j 
q=i2-jl k=O 

(8.23) 

with complex coefficients Uj,p;q,k. Notice that this expansion differs from expansions (3.39) 
and (3.40) by factors p!. 

In the case of the system (8.18)-(8.20) expansion (8.23) leads to an equation of the 
form 
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-- 2 
VZq.y+l 

(8.24) 

where for given values of the indices p. q, k with p 2 0, 12 - jl 5 q 5 p, 0 5 k 5 2q. 

the quantities Aj.p;y.k, j = 1, 2, 3, are functionals of the coefficients Llj,p’:y’,k’, 0 5 ,i ( 4. 

p’ -C p. and UO,~:~,~, L14,pzy.k. The determinant of the matrix on the left-hand side, given by 

D = 4 ~12 p’ - q (q + 1) + 5’ (q (q + 1) - 2)). 

satisfies D > 2 for p p 2, 0 5 q 5 p, (t( 5 1. For p L 2 Eq. (8.24) can therefore be 
solved for the expansion coefficients a~,~:~.k, a2,p;y,k, UQq.k. This allows us to reduce the 
problem of solving the system (8.10)-(8.14) for five unknowns to solving a system for two 
unknowns. 

Assuming the values of indices p, q, k of aj.p;4,k as fixed, we shall suppress them in the 
following equations. Using Eqs. (3.35) we obtain from Eqs. (8.2 1) and (8.22) the algebraic 
coniitttons 

(4 P (P + 5) - (1 - 5?)&&UI - (1 - dB2y.y+,B2q.q (13 

= 2 p (1 + t)&q,q--l a0 + UI, 

14 P (P - r) - (1 - r2)B&,,+, I a3 - (1 + t?B2q.yB2q.q+~ aI 

= 2 p (1 - r)B2q,q+Za4 + u3. 

We define for p > 2 functions 

f‘(r) = 2 (p + 1) (p - 1) - (q - 1) (q + 2) (1 - t5, 

g(r) = -Cp - 2)f(r) + (q - l)(q + 2) 

X (P+1)(l+r)-_(1+r)~-~((14;l)(1-r)(l+r)~). 
( 

h(s)= (q-l)q(q+l)(q+2) 
4P 

(1 - 03, 

such that 

f‘z 1 forp>2, 05q5p, Irl5l. 

For a given function 1 = l(t) we defined the function 1, by I,(r) = 1(--t ). From the 
equations above we get 

.fat= (p+l)(l+r)-(l+~)~- 
( 

(1 - r)(l + ‘)‘@ 

4P 
3q,q+l 

> 
BT~.~- I a0 
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+ (1 - o3 
4p&.yB2y.q+i8~.q+2 a4 + fil, 

fa3=(( p + 1) (1 - r) - (1 - t)2 - (’ - r:jl + r)P&) B2q.q+2 a4 

+ (1 + tJ3 
4pB2y.y-1824,4B24.4+~ a0 + c3. 

Rewriting Eqs. (8.10) and (8.14) in terms of the expansion coefficients and using Eqs. (3.35), 
we get 

(8.25) 

(8.26) 

where the prime denotes the derivative with respect to r . 
It is important here to observe that the quantities Ul, lJ3, cl, fi3, To, T4 depend for 

0 5 q 5 p - 1 on the Coefficients ajl,pl;qf,k I with p’ < p and that they vanish identically 
forq = p. 

We see that Eqs. (8.18)-(8.20) allow to express the coefficients al, a2, a3 in terms of ag, 
a4 and lower order terms. Thus we find that the problem of solving Eqs. (8.10)-(8.14) is 
reduced to solving the system (8.25) and (8.26). The remaining components of the solution 
are determined by algebraic operations which do not lead to singular terms. Of course in 
each order we have to solve the equations arising from (5.4OH5.45). 

Lemma 8.6. For the homogeneous system arisingfrom (8.25) and (8.26) by setting To = 0, 
T4 = 0 the following holds true: 

(i) If0 ( q ( p - 1, the system has an analytic fundamental matrix on Jt ) c 1 which 
extends analytically through t = f I. 

(ii) Zf q = p, the solutions satisfying ao(0) = ad(O) extend analytically through t = fl 
while any other solution has logarithmic singularities at t = f 1. 

(iii) For 0 5 q 5 p the Wronskian of anyfundamental matrix is of theform w = c f (5) (l- 
t2)pP2 with some constant c # 0. 

If the 2 x 2 matrix X(t) is a fundamental matrix of the system, the Wronskian w = det(X) 
satisfies w’ = k(t) w with 

k(t) = - g(t) g(-t) P-2 
(l+ t) f(t) + (1-s) f(-t) = - - 1+t 

P - 2 + f’(r) -_ 
l-r f(t)' 

This implies w = (w(O)/ f (0)) f(t) (1 - t2)PP2, which shows (iii). 
For q = 0, 1 we have h = 0 and Eqs. (8.25) and (8.26) decouple. The general solution 

is given in the case q = 0 by a0 = co( 1 + t)Pp2(p + r), a4 = ~(1 - t)PA2(p - t), and 
in the case q = 1 by ao = ch( 1 + t)Pe2, a4 = ci( 1 - t)Pp2, with constant coefficients co, 
c4, Cb, c;. 
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For q > 2 we study second order equations satisfied by au, ad. Considering To, T4 in 

Eqs. (8.25) and (8.26) for a moment as name for the quantities on the left-hand sides, we 

find 

(1 -r)hfT;+h*T4-{Cl -t)fh’+hg,s)To 

=~~.f’((1-t2)a;;+(4+2(p-I)r)a;,+~q+p~~q-~+~~~o~. 

(1 + r)h,y f T; - A,2 To - ((1 + r) 0:. + h.7 81 T4 

=-h,~f”{(l-t*)a~+(-4+2(p-l)tJa;+(q+p)(q-~+l)~~~. 

Thus, for 2 ( p. 2 5 q 5 p, the coefficients ac. a4 satisfy 

(l-&;;+(4+2(p-l)t}a;+(q+p)(q-p+l)ao=O. (8.27) 

(I-?)a;+(-4+2(p-l)r}a;+(q+p)(q-p+l)alr=O. (8.28) 

i.e. Jacobi equations 

0 = ~(n,a$) a 
~(1-r2)~“+(~-cr-(~+++2)r)U’+~(~+~+B+1)~~ (8.29) 

where 

a,=-p-2, p=--p+2 and 

n=nl=p+q or n=n?=p-q-1, (8.30) 

in the case of (8.27) and the values of a! and p are swapped in the case of (8.28). Eq. (8.29) 
is well known from the theory of Jacobi polynomials. 

We note that au solves (8.27) if and only if aos solves (8.28). Thus it will be sufficient to 
study Eq. (8.27). 

In the following discussion of the solutions to (8.29) for the values (8.30) of the parameters 
we shall make use and quote some of the results of [23] without referring to this monograph 
in each case. 

For integers II 2 0 and arbitrary complex parameters o, B a class of solutions to (8.29) 
is given by the generalized Jacobi polynomials which are of the form 

with coefficients 

L’o = (a + 1) ((II + 2) ” (cl + ?I), 

c,, = “!(nn~v),((1+u+l)(a.+u+2) 

x ‘. (a, + n) (n + 1 + CX + /V) (n + 2 + a! + B). . . (n + v + a! + B) 

for1 IuSn-1, 

c -((n+l+a+B)(n+2+a!+B)...(2n+cr+B). n- 
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They satisfy Pi”.“(s) = 1 and P,‘*.B’(-r) = (-1)’ P,$““‘(r). 

From the coefficients above it follows that the polynomials P~~p-2’-p-t2) vanish iden- 

tically while the polynomials Q2 = P&p-2’-p+2), p > 3, 2 5 q 5 p - I are of degree 

n2. 

To find further non-trivial solutions we use the identities 

(8.3 1) 

(8.32) 

(8.33) 

which hold for 1 t 1 < 1, arbitrary C2-functions a, and arbitrary values of the parameters c~, 

B. n. 
Using (8.31) with II = nt, (II = -2 - p, p = -p + 2 we find the polynomial solutions 

P+2 
P(p+2.-p+2)(T), q-2 

p > 2, 2 5 q 5 p, 

of degree n 1. Since n2 < n 1 the solutions Q 1, Q2 are independent of each other and define 
a fundamental system of Eq. (8.27) for p 2 3, 2 5 q 5 p - 1. 

For later use we note that by using (8.32) with IZ = 121, a! = -2 - p, /I = -p + 2 we 
obtain the solution 

which is a polynomial of degree n 1. For p > 3,2 5 q 5 p - 1 it can be expanded in terms 
of the solutions considered above with coefficients which are determined by evaluating at 
the points r = f 1. We get 

l+r pP2 (-1 p’-P-2.P-2’ 

2 q+2. 

1 - r (i ) 
Pf2 

= (-1)P 2 p(p+2.-p+2’ _ p’-p-2.-p+2’ 
9-2 n2 

1 

(8.34) 

Having found the general solutions to (8.27) and (8.28) for q 5 p - 1, we determine the 
general solution to (8.25) and (8.26). It has been given already in the case p 1 2, q = 0. 1. 

Weconsiderthecasep>3,2(qip-1. 
We write solutions to Eqs. (8.25) and (8.26) as column vectors u 1 = (2). There exists a 

fundamental matrix of the system (8.25) and (8.26) with To = 0, T4 = 0 which has column 
vectors 
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with real coeffcients elk , . By taking suitable linear combinations of these solutions if nec- 
essary, we can assume that ci’ = 0, ci’ = I. Observing that ~2 < nt, we conclude from 
(8.25) that cz’ QtS + cz’ Q2$ must be a polynomial of degree nl and thus cz’ = 0. Adding 
a suitable multible of CIZ to u 1 and normalizing we find a fundamental matrix with column 
vectors 

U] = 141 = 

with real numbers X, y, z such that x # 0. y # 0. 
To determine the coefficients we insert u 1 and u-, into (8.25) and (8.26) and evaluate at 

Jsing the values r = fl. I 

Ql 

Q2 ( 

1) = 0. Ql(-1) = Q2(--1) = (‘- 3)! 
(q - 2)! II?! * 

I) = (-I)“? 
(p + l)! 

(q + 2)!nz!’ 

we get x = z = -y = (- I)“?. Taking linear combinations of the solutions so obtained and 
observing (8.34) we get a fundamental matrix 

x= Ql (-ljq Q3 
(-II4 Q3s > QI.~ ’ 

(8.35) 

This ends the proof of assertion (i) of Lemma 8.6. 
We write aa = (( 1 - t)/2>P+’ (( 1 + ~)/2)~-’ a(t) to discuss the solutions of (8.27) 

for p > 2.9 = p. Using (8.33) with n = rzt , a = -p - 2, B = -p + 2 we rewrite (8.27) 
in the form 

Dtn,.-p-2.-p+2) (( !$)p+2 ( !$)p-2 u(r)) 

= (T)“” (!$)‘I D~0,1~+2,p-2)a(~) =O. 

The equation D(0,~+2,~_2) n = 0 can be solved explicitly. We get 

@= (~)“+*(q”l ko+g (] +b)p_f;, _o)p+3) 

(8.36) 

with arbitrary coefficients do, dt . Notice that for dt # 0 these solutions have logarithmic 
singularities at t = fl. 

We verify by direct calculation that a polynomial solution of (8.25) and (8.26) with 
TO = 0, TJ = 0 is given by 
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( (1 - t)P+2 (1 + t)@ 
u= (l+t) Pf2 (1 _ r)P-2 ) . (8.37) 

It follows that any solution with au(O) # ad(O) is not proportional to this one and has 
logarithmic singularities at t = f 1. This proves (ii). 

We can now prove Theorem 8.2. For given p, q we write Eqs. (8.25) and (8.26) in the 
form y’ = A (t ) y + b with b the column vector defined by To, T4, and assume that X (t ) is a 
fundamental matrix of the associated homogeneous system, i.e. X’ = A(t) X, X(0) = X0, 
det(Xu) # 0. The solution to the inhomogeneous problem with Y(Q) = ye is given by 

The considerations which led to Lemma 8.5 show that for q = p we have b E 0 whence 
y(t) = X(t) X0’ yu. From Theorem 4.1 and from the discussion above it follows that this 
solution is smooth through I’ if and only if condition (4.7) is satisfied. 

9. Concluding remarks 

We have obtained in this article a setting which enables us for the first time to discuss 
in detail the consequences of the conformal Einstein evolution near space-like infinity. The 
analysis has shown that, in a sense, we can gain complete control on the solutions to the 
transport equations along the total characteristic at space-like infinity. These equations allow 
us to relate the behaviour of solutions to Einstein’s vacuum field equation near null infinity 
to properties of the free initial data. 

The following problems would have to be solved for a complete understanding of the 
situation. The solutions to the transport equations should be further investigated to see 
whether condition (4.7) is sufficient for the regularity of their solutions or if more restrictive 
regularity conditions need to be imposed. Given a reasonable set of regularity conditions, 
the existence of solutions to the problem formulated in Section 5 should be shown and the 
continuous dependence of the solution on the data should be discussed. 

This proof would not only be of interest for theoretical reasons. If in the complete analysis 
the equations turn out to be as good-natured as suggested by the discussion in this article, 
they should be of enormous practical use in the numerical construction of space-times. 

The discussion should be extended to include non-trivial second fundamental forms. In 
this case certainly further regularity requirements will arise. Following the argument which 
led in [lo] to condition (4.7), we would arrive at generalized regularity conditions in the 
following way. Observing (2.38), (2.36), and (2.34), where we can assume for the following 
purpose that 6 = V, we get 

522dij=DiDjS;Z+nfij-Shij, 

where we set 

(9.1) 
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S=;DkDkQ++,hjkk Jk* 

.fik = ljk + XljXk ’ - Xl’Xjk + &{(X/ ‘j2 - Xi[Xi’} hjk 

and all indices are assumed to take values 1.2, 3. With (2.34) and the assumption c = 0, 
Eq. (3.10) of [ 121 can be written 

Dj.? = -Ajk D”L’. 

Applying Dk to both sides of (9.1), antisymmetrizing in the indices i and k. contracting 
with Djf2. and using the equation above as well as (2.38), (2.36) and (2.34) to simplify. 
we get 

D[k .f;lj Dji2 = D[ksZ dilj DjS2 + G’ D[k dilj DjL’. 

This entails 

Bjk Dj f2 DkL2 = Q Dk dijCki / D’SZ Djf2. 

where we set & = Di fj(ke’j [I. Setting furthermore ckl = Dixj(kE'j I), Eq. (2.39) reads 

ck/ = -Qd,;. 

We note here that the symmetric trace-free tensor fields Bk., ckl have been used by R. Beig 
and L. Szabados to characterize initial data for conformally flat solutions. 2 Making now 
as in [lo] the assumption that the fields Q, hij, xij, dij, d,;, extend to real analytic fields at 
the point i of our initial hypersurface S, we obtain for the complex analytic extensions of 
the fields Bk[, ckl the following generalization of condition (ii) of Theorem 4.2 

BjkDjS;!D”R=O, Ck[=O onN. 

In terms of the space-spinor representations of &I, ck/ these equations translate into the 
generalization 

Dca,,bq . . . &,b, &bcd)(i) = 0, 

4. p = 0, 1.2, . . . 

&,b, . ‘. &,b, j Cnbcdti) = 0, 

of (4.7). 
Of course, in the case of non-vanishing ADM-mass one would have to go through the 

analogue of the analysis performed in Sections 2,4, 7 and 8, before the relevance of these 
condition for the initial value problem can be properly assessed. Furthermore, one would 
like to understand whether the conditions above can be expressed in terms of the data which 
can be given freely in the construction of constrained initial data. 

These questions, as well as why our setting seems to work so well and what the geometrical 
meaning of the regularity conditions could be, will be pursued elsewhere. 

* I am grateful to L. Szabados for a discussion on this point. 
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10. Definitions and general identities 

The following quantities are used in many calculations. 

X,b = z/ZE@ ‘Eb) ‘, yab = -+ ‘cb ‘, 0 0 Zab = -& Eb , 

&d = c(a (e Eb f 6~ ’ Ed) h)k, y* abed = &cXbd + ??bdXac). 

They satisfy the following relations: 

X&X ab = -1, &by 
ab 

= XabZ 
ab = 0, 

?tabY 
ab = 0, yabZab = -;, ZabZ 

ab = 0, 

Ya*Xbf = -YYab, 
32 

h ab(c f xd) f = & (6~ xbd + Ebd &zc>. 

4 0 
-1 

(ck abed)+ = (-ljkc4-k abed, ctabcd), = ak j k , 

2 
E abcdc 

2abcd = 1 
6, c2,b ef 2 E cdef = -;c2abcd + Ahabcd, 

%ibcd xcd = -; Zab, 
2 

E,bcd x 
cd = -5 e&b, 3 

%bcd x 
cd 

= ; Yab, 

1 
(abed y 

cd 
= -; X&, 

2 
E,bcd y 

cd 
= $ Yabt E,3bcd ycd = 0, 

1 
%bcd z cd = 0, Ezbcd ZCd = i Zab, E,3bcd Zcd = ; &,b. 

X(a f c’ b)cdf = 
1 1 

- Zab Xcd t 
2Jz 

+I f c3 b)cdf = - Yab Xcd 1 
245 

X(a f E2 b)cdf = j$ (Eat xbd + cbd &c). 
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