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Nonradial linear oscillations of shells in general relativity

Bernd G. Schmidt*
Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut, Schlaatzweg 1, 14473 Potsdam, Germany

~Received 30 July 1998; published 7 December 1998!

Nonradial perturbations of a static shell with an empty interior, or around a star or black hole, are investi-
gated. The transition conditions at the shell are derived in a Gaussian and in Regge-Wheeler gauge. The
existence of linearized shell solutions is demonstrated. Quasinormal modes are discussed, and the Newtonian
limit of the equations is derived.@S0556-2821~98!04124-1#

PACS number~s!: 04.20.Ex, 04.30.Db, 04.30.Nk
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I. INTRODUCTION

Shells have been studied in Einstein theory in vario
contexts@1–7#. The existence of solutions which describ
static, spherically symmetric shells around a black hole
with an empty interior having been established@3#, one natu-
rally asks for time-dependent linear perturbations of th
solutions. Radial perturbations have been studied in@6#. As
far I have been able to find out, nonradial perturbations h
never been treated. Recently@7#, nonradial perturbations of a
bubble which separates a Minkowski from a de Sitter reg
were analyzed.

A treatment of nonradial oscillations should be qu
straightforward. One just has to take linearized vacuum
lutions inside and outside the background shell and to
pose certain transition conditions which contain informat
on the perturbation of the shell. Because of gauge proble
this turned out to be more complicated than I expected.
tempting to speculate that all this should become much s
pler if one uses Moncrief’s gauge-invariant formulation a
wave equation. I found, however, no way of expressing
fluid shell transition conditions directly in a gauge-invaria
variable. The reason is probably that the second fundame
forms defining the stress-energy tensor of the shell con
always gauge-dependent parts of the metric.

My motivation to study this problem came from the ho
that certain questions which turn up in the linearized the
of stellar oscillations@8# could be treated more easily if th
oscillating star were replaced by an oscillating shell. T
questions I want to study are related to the Newtonian l
it: normal modes versus quasinormal modes, and do o
parameter families of relativistic oscillating shells ex
which have a Newtonian limit?

The paper is organized as follows. Section II describ
shells in the ‘‘frame theory’’@9#, a theory which contains a
parameterl such thatl.0 gives Einstein’s theory andl
50 Newton’s. This formulation turns out to be very usef
in obtaining the Newtonian limit. Section III deals with th
linearization and derives the transition conditions in a Gau
ian gauge. To deal later with questions of existence, the t
sition conditions are also calculated in a Regge-Whe
gauge where they are very lengthy.

In Sec. IV the existence of linearized shell solutions
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demonstrated by the method of characteristics as was don
@8# in the case of stellar oscillations. It is shown that t
Cauchy problem is well posed. An excitation of the gravi
tional field outside the shell sets the shell in motion, which
turn will then be damped by the radiation it emits. Co
versely, a displacement of the shell from its equilibrium p
sition will induce a motion of the shell and radiation. This
the first time that a Cauchy problem is posed and solved
shells in Einstein’s theory, unfortunately only in a lineariz
version.

Section V discusses quasinormal modes. It is shown h
the transition conditions at the shell which are derived
Sec. III can be used to calculate numerically the quasinor
mode frequencies of the shell.

Section VI deals with the Newtonian limit. The ordinar
differential equations describing linearized self-gravitati
Newtonian shells are derived as limits from the relativis
equations. This limit process is rather subtle, because
Gaussian gauge, which is natural in the relativistic picture
not so natural for the usual formulation of Newton’s theo
in an inertial frame. Nevertheless, the correct Newton
equations can be found as a limit from Einstein’s equatio
and the transition conditions at the shell.

II. SHELLS IN THE FRAME THEORY

The ‘‘frame theory’’ formulated by Ehlers@9# is a theory
containing a parameterl such that for l50 we have
Newton-Cartan-Friedrichs theory in general, Newton’s
R •gd

ab 50, in particular if spatially asymptotically flat, an
for l.0 Einstein’s theory of gravitation. The basic variabl
are the time metrictab , the space metricsab, which satisfy
tabsbg52lda

g , and, most important, a symmetric linea
connectionGab

g , which has the property that both metric
are covariantly constant. Matter is described by a tensorTab.
The field equations are written as

Rab58pS Tab
•• 2

1

2
tabT d

d•D ~G51!. ~2.1!

The • indicates where the index was before it was raised
lowered withsab or tab . The equations of motion,Tab

;b ,
have to be postulated independently, because in Newto
theory they do not follow from the field equations.

To describe shells in the frame theory, we need the c
cept of a second-fundamental form for the Newtonian c
©1998 The American Physical Society05-1
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BERND G. SCHMIDT PHYSICAL REVIEW D 59 024005
nection. If na is a one-form normal to a timelike hypersu
face S, we can normalize it by the space metric such t
nanbsab51. The vector fieldn•

a is transversal toS and, in
the casel50, orthogonal toS t , the intersection ofS with
the Newtonian time slicest5const.

Using this vector fieldn•
a , we can define a ‘‘second

fundamental’’ formkmn of S which is equivalent to the usua
one forlÞ0: Let ja andhb be two vector fields tangent t
S and decomposeja

;bhb into its components tangential toS
and in the direction ofn•

a :

ja
;bhb5ja

ubhb1kmnjmhnn•
a , kmnn•

n50, ~2.2!

to define the second-fundamental form as usual. It can
checked that ‘‘u’’ defines a symmetric connection onS and
that kmn is symmetric.

In general relativity shells have been defined and d
cussed, for example, by Israel@1#. We proceed similarly in
the frame theory.

A shell is a timelike hypersurfaceS in a manifold with
continuous time and space metrics and a connection, with
following properties: ~1! the metrics and the connection a
smooth on the complement ofS and satisfy all axioms of the
frame theory in empty space, in particular,Rab50 @9#; ~2!
~in some coordinate system! partial derivatives of the metric
and the connection of any order have limits from both sid
at S.

These conditions imply that the induced space and t
metrics on S coincide and are smooth. The secon
fundamental forms6kab from both sides exist. In the New
tonian case the components of the second-fundamental
in the t5const time hypersurfaces are continuous.

The Ricci tensor is distributional at the shell:

RmnPa
mPb

n 58p dSDkab , ~2.3!

wherePa
m5da

m2n•
mna projects ontoS. HeredS is a distri-

bution which has support onS and could be defined using
for example, Gauss coordinates relative toS. For l.0 this
follows from relations which express four-dimensional qua
tities in terms of three-dimensional ones and the seco
fundamental form. In the casel50 it can be checked in
coordinates adapted to the Newtonian case.

The field equations~2.1! and the relation~2.3! motivate
the definition of the energy-momentum tensor of the sh
Tab5dStab, which is related to the jump of the secon
fundamental form by

Dkab51kab22kab58pS tab
•• 2

1

2
~ tab1lnanb!t d

d•D .

~2.4!

A shell with isotropic internal pressure is characterized
the energy-momentum tensor

tab5~s1lp!uaub1p~sab2n•
an•

b!, ~2.5!
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where the fieldsua,s,p are defined only onS and ua is
tangential toS. Hence a fluid shell is characterized by
certain algebraic structure of the jump of the secon
fundamental form atS.

In Einstein’s theory the vacuum field equations on t
complement ofS imply, at the shell,

tab
ub ~2.6!

and

~1kab12kab!tab50. ~2.7!

These equations are also meaningful forl50, but do not
follow, and we postulate them in this case. Hence proper
~1!, ~2!, and the conditions~2.4!, ~2.5!, ~2.6!, and~2.7! define
a shell with isotropic internal pressure in the frame theory.
Appendix A it is shown that in this way we do obtain
Newtonian shell.

Let us consider as an example a static, spherically s
metric shell.

The time metric:

6tabdxadxb5S 12
2lM 6

r Ddt2

2lF dr2

12
2lM 6

r

1r 2~du21sin2udf2!G
~2.8!

~with l5c22, G51, we also write6tab52l6gab , which
implies, forl.0, sab5gab).

The space metric:

6sab: 2lS 12
2lM 6

r D 21S ]

]t D
2

1S 12
2lM 6

r D S ]

]r D
2

1r 22F S ]

]u D 2

1sin22S ]

]f D 2G . ~2.9!

We assume 2M 2,2M 1,R, whereR is the area radius o
the shell.

We use proper timeT at the shell as a time coordinate
both sides of the shells which makes the identification from
both sides easy, (T,u,f,r )5(xa), (T,u,f)5(xa):

gab52l21e2FdT21r 2dS21e2Ldr2, ~2.10!

e2F5

12
2lM

r

12
2lM

R

, e2L5
1

12
2lM

r

. ~2.11!

L1(R)ÞL2(R) if the masses are different at both side
T,u,f are coordinates on the shell.~In these coordinates th
metric is not continuous at the shell. Constant rescaling
the metric on one side would give a continuous metric. T
is, however, not needed.! We shall write
5-2
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e22L5F2512
2lM

r
, 2FF85

2lM

r 2 . ~2.12!

Second-fundamental form: we normalizesabnanb51, na
5(0,0,0,F21):

kab52
1

2
@Fgab,r #, ~2.13!

k005F21
M

R2 , ~2.14!

kuu52FR, ~2.15!

kff52FR sin2u, ~2.16!

Dk005
1k002

2k005S M 1

F1 2
M 2

F2 DR22, ~2.17!

Dkuu51kuu22kuu52~F12F2!R, ~2.18!

Dkff51kff22kff52~F12F2!R sin2u. ~2.19!

The matter tensor of the shell is

tab5~s1lp!uaub1p~sab2n•
an•

b!,

tab
•• 5tkstkatbs , ~2.20!

na5~0,0,0,F21!, n•
a5sabnb5~0,0,0,F !, ~2.21!

ua5~1,0,0,0!, tabuaub51, ~2.22!

t005s, tuu5pR22, tff5pR22sin22u, ~2.23!

t00
•• 5s, tuu

•• 5l2pR2, tff
•• 5l2pR2sin2u, ~2.24!

t 0
0• 5s, t u

u•52lp, f f
f• 52lp, ~2.25!

t m
m• 5s22lp. ~2.26!

The field equation at the shell is

Dkab58pS tab
•• 2

1

2
~ tab1lnanb!t m

m• D . ~2.27!

This gives

Dk005S M 1

F1 2
M 2

F2 DR2258pS 1

2
s1lpD , ~2.28!

Dkuu52~F12F2!R58p
1

2
lpR2. ~2.29!

The equilibrium condition of the shell is

~1kab12kab!tab50, ~2.30!

and hence
02400
S M 1

F1 2
M 2

F2 DR22s22~F11F2!RpR2250. ~2.31!

The metrics~2.8! and ~2.9! parametrized byl describe a
one-parameter family with a Newtonian limit. For the me
rics, this is obvious: for the connection, it can be check
easily. The equilibrium condition reduces forl50 to

~M 12M 2!R22s24pR2150, ~2.32!

which is obviously the correct Newtonian result for the ca
M 250. In the general caseM 1 is the total mass~far field!,
and henceM 15M 21MS, where MS is the mass of the
shell. Again, we have the correct Newtonian relation.~The
field equation expresses the various masses in terms o
densities.! Nonstatic, spherically symmetric shells are stu
ied, for example, in@1#, @7#.

III. LINEARIZATION AND THE SHELL
TRANSITION CONDITIONS

In this section I want to calculate the oscillation around
static shell to first order. The case of radial oscillations
treated in@6#. The background spacetime, a shell around
black hole or a body, is a Schwarzschild spacetime w
massM 2 inside the shell and with massM 1 outside:

ḡ0052l21S 12
2lM 6

r D S 12
2lM 6

R D 21

52l21e2F6
,

ḡuu5r 2,

ḡff5r 2sin2u,

ḡrr 5S 12
2lM 6

r D 21

5e2L6
. ~3.1!

I take the same notation for the perturbations as in Kin
thesis@12#. The nonvanishing perturbation fields are~I con-
sider onlyf-independent even perturbations!

dg0052l21e2F2kY52e2F2k̂Y, l21k5 k̂,

dguu5r 2~2sY12aY,uu!,

dgff5r 2~2sY12a cot uY,u!sin2u,

dgrr 5e2L2mY,

dg0r5l21/2eL1FhY,

dg0u5l21/2eFr jY,u , l21/2j5 ĵ,

dgru5eLrvY,u . ~3.2!

The perturbations of the time metric are

dtab52ldgab . ~3.3!

We use a Gaussian gauge to calculate the perturbations o
second-fundamental forms on both sides of the shell. Im
5-3
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BERND G. SCHMIDT PHYSICAL REVIEW D 59 024005
ine a one-parameter family of shells. Then we can introd
on each member a Gaussian coordinate system relative t
shell. Linearization of such a family implies

h5v5m50. ~3.4!

On the shell we have the fluid flow vectorua. Because of the
Ylm behavior we choose, this flow is irrotational, and hen
we can use the flow lines and some coordinates in the
thogonal two-surface as coordinates. Hence

j50 for r 5R. ~3.5!

On the shell,k,s,aare continuous. Their radial derivative
however, will have just limits from both sides satisfying ce
tain jump conditions, which we will calculate now.

For the perturbations of the second-fundamental form,
obtain

dkab52
1

2
Fdgab,r ,

dk0051
1

2
F@e2F2k̂# ,rY,

dkuu52
1

2
F@r 2~2sY12aY,uu!# ,r ,

dkff52
1

2
F@r 2~2sY12a cot uY,u!sin2u# ,r ,

dk0u52
1

2
F@eFr ĵ # ,rY,u . ~3.6!

The perturbation of the energy-momentum tensor of the s
is

d@tab#5d@~s1lp!uaub1p~sab2n•
an•

b!#, ~3.7!

dtab5d~s1lp!ūaūb1~ s̄1l p̄!d~uaub!1~dp!s̄ab

1 p̄dsab2~dp!n̄•
an̄•

b2 p̄d~n•
an•

b!. ~3.8!

The four-velocity is normalized,tabuaub51. As ūa5d0
a ,

t̄ 0051, we obtaindt0012du050 or

du052
1

2
dt005le2Fk̂Y. ~3.9!

d(uaub) has only a 00-componentd(u0u0)52dt00. We
need also

dsab5dgab52gamgbndgmn . ~3.10!

Since we use a Gaussian foliation for the one-parameter f
ily defining the linearization, we havedna50, dsrr 50,
which implies dn•

a50. Hence we obtain~at r 5R) @d@s#
5dsY(u)#
02400
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dt005~ds1ldp!Y1~ s̄1l p̄!~2dt00!1dp~2l!

1 p̄l2dg00,

dt005dsY1~ s̄1l p̄!~2dt00!2 p̄ldt`

5dsY2dt00~ s̄12l p̄!,

dtuu5dpYs̄uu1 p̄dsuu,

dtuu5dpYR222 p̄R24dguu ,

dtff5dpYR22sin22u2 p̄R24dgffsin24u.
~3.11!

For the linearized shell we need, in the transition conditio
~2.4!,

AabªdS tab
•• 2

1

2
~ tab2lnanb!t m

m• D , ~3.12!

Aab5dtab
•• 2

1

2
@dtab2ld~nanb!# t̄ m

m•

2
1

2
~ t̄ ab2ln̄an̄b!dt m

m• . ~3.13!

We calculate first

d~tab
•• !5d~tmntamtbn!

5dtmn t̄ am t̄ bn1 t̄mn~dtam t̄ bn1 t̄ amdtbn!.

~3.14!

For a50,u,f we obtain

d~taa
•• !5dtaat̄ aat̄ aa1 t̄aa2 t̄ aadtaa . ~3.15!

Linearization of the trace gives

d~t a
a• !5d~ tabtab!5d~s22lp!5~ds22ldp!Y.

~3.16!

For a50,u,f we have

Aaa5S dtaat̄ aat̄ aa12dtaat̄
aat̄ aa2

1

2
dtaa~ s̄22l p̄!

2
1

2
t̄ aa~ds22ldp!YD , ~3.17!

and hence
5-4
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A005
1

2
dsY1ldpY1dt00S 1

2
s̄2l p̄D ,

Auu58pS 2l2R2dpY1dguu

1

2
ls̄ D ,

Aff58pS 2l2R2dpY1dgff

1

2
ls̄ D .

~3.18!

Furthermore,

A0u50. ~3.19!

Now we can finally write down the transition condition
~2.4!, Dkab58pAab , which define a linearized fluid shell in
the Gaussian comoving gauge:

Ddk0051D
1

2
F@2F2k̂# ,rY

58pF1

2
dsY1ldpY2ldg00S 1

2
s̄2l p̄D G ,

Ddkuu52D
1

2
F@r 2~2sY12aY,uu!# ,r

58pS 2l2R2dpY1dguu

1

2
ls̄ D ,

Ddkff52D
1

2
F@r 2~2sY12a cot uY,u!sin2u# ,r

58pS 2l2R2dpY1dgff

1

2
ls̄ D ,

Ddk0u52D
1

2
Fl21/2@eFr j# ,rY,u50. ~3.20!

Because of the linear independence ofY and Yuu , it holds
that

DF@e2Fk̂G# ,r18plS 1

2
s̄2l p̄De2F2k̂G

58pS 1

2
ds1ldpD , ~3.21!

2DF@r 2sG# ,r28pls̄R2sG58p2l2R2dp, ~3.22!

2DF@r 2a# ,r28pls̄R2a50, ~3.23!

2DF@eFr ĵ # ,r50. ~3.24!

We have shown the following.
Supposea6, s6, k̂6, and j̄6 satisfy the linearized

vacuum field equations together withh5v5m50 ~Gauss-
ian gauge!, a6, s6, k̂6, and j̄6 are continuous atR, the
02400
background shell, anda86, s86, k̄86, and j̄86, the radial
derivatives at both sides of the shell, satisfy Eqs.~3.21!–
~3.24! for someds, dp. Then these fields represent a linear
oscillating shell. If an equation of state,dp5ads, is pre-
scribed for the oscillation, one can eliminate these ma
fields from Eqs.~3.21!, ~3.22!, and three transition condition
remain.

Later, in the existence proof, we will need the transiti
condition in Regge-Wheeler gauge which we shall calcul
next. From Appendix C we find the following expressions
Regge-Wheeler perturbations in terms of the Gauss pertu
tions used up to now:

2m5k5kG2
1

c2 e22Fr 2äG1
1

c
e2Fr j̇G1e22Lr 2F8aG8 ,

~3.25!

m5e22Lr 2FaG9 1aG8 S 2

r
2L8D G , ~3.26!

s5sG1e22LraG8 . ~3.27!

From this we find, becausesG andaG are continuous jumps
for s andm,

Dsªs12s25e22L1
raG8

12e22L2
raG8

2 , ~3.28!

2Dmªe22L1
r 2F81aG8

12e22L2
r 2F82aG8

2 .
~3.29!

If F1ÞF2, i.e., if there is really a background shell, we ca
solve foraG8

1 andaG8
2 in terms ofDs andDm:

aG8
15L1~Ds,Dm!, aG8

25L2~Ds,Dm!. ~3.30!

The transition condition~3.23! for a8 expressesa linearly in
terms ofa81,a82; hence, we obtain

aG5L~Ds,Dm!. ~3.31!

These relations can be differentiated in time.
Now we can express all the Gaussian quantities in te

of the Regge Wheeler quantities:

kG52m11
1

c2 e22F1
r 2äG

12
1

c
e2F1

r j̇G
1

2e22L1
r 2F81aG8

1 ~3.32!

~we could also use the2 side to determinekG). Differentia-
tion giveskG8 in terms of Regge-Wheeler quantities:

kG8
152m811

1

c2 e22F1
r 2äG8

11S 1

c2 e22F1
r 2D 8

äG
1

2
1

c
e2F1

r j̇G8
12

1

c
~e2F1

r !8j̇G
12e22L1

r 2F81aG9
1

2~e22L1
r 2F81!8aG8

1 . ~3.33!
5-5
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In the transition condition fork8, the j8 terms drop out be-
cause of thej transition condition~3.24!. We needaG9

1 in
terms of Regge-Wheeler quantities. We use the seconm
equation~3.26! to calculateaG9

1 :

aG9
15r 22e2L1

m12S 2

r
2L1DaG8

1 ~3.34!

or

aG9
15r 22e2L1

m12S 2

r
2L1DL1~Ds,Dm!. ~3.35!

Similarly, for s,

sG5s12e22L1
raG8

1 , ~3.36!

sG8
15s812e22L1

raG9
12~e22L1

r !8aG8
1 . ~3.37!

Now we can rewrite the transition conditions~3.21!, ~3.22!
in Regge-Wheeler quantitiess and m5k. We obtain one
condition if an equation of statedp5ads is given.

To express the j transition condition ~3.24!,

2D 1
2 Fl21/2@eFr j# ,r50, in s and m, we use thedRru field

equation

05dRru5aG8 2kG8 2sG8 2kGS F82
1

r D
1

r

2c
e2FF2 j̇81 j̇S 1

r
2F8D G . ~3.38!

Rememberingj(R)50 andF(R)51, we can expressj̇ ,r as

l21/2Rj̇85aG8 2kG8 2sG8 2kGS F82
1

r D . ~3.39!

Therefore the time derivative of Eq.~3.24! implies

DFS aG8 2kG8 2sG8 2kGS F82
1

r D50. ~3.40!

Since we have only used the time derivative of the condit

~3.24!, we have to impose2D 1
2 Fl21/2@eFr j# ,r50 at some

time t0 , which can be achieved by the remaining gauge fr
dom.

If we insert the Gaussian expressions in terms of
Regge-Wheeler quantities given above, we obtain a sec
condition in Regge-Wheeler quantities and we have sho
the following.

The shell transition conditions in the Regge-Whee
gauge are two linear relations fors6, s86, k6, andk86 if an
equation of state is given.

We do not write out these lengthy expressions here
cause the explicit expressions are not needed.
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IV. EXISTENCE

In this section we want to show how the existence
linearized solutions satisfying the linearized shell transit
conditions can be established using the method of chara
istics as in@8#. The convergence proof given in that pap
can easily be adapted to the case treated here. The ess
step is to check that the transition conditions give the inf
mation needed to perform the iteration and to control c
vergence.

We rewrite for convenience the system given in@8# ~with
f 5m, g5s), which is equivalent to the field equations
Regge-Wheeler gauge. There are two wave equations fs
andm:

2c22e2~L2F!s̈1s91s8S F82L81
2

r D2e2L
l

r 2 s

1s
2

r S F82L81
1

r D1m
2

r S F81L82
1

r D50,

~4.1!

2c22e2~L2F!m̈1m91m8S 5F82L82
2

r D2e2L
l

r 2 m

24s8S F82
1

r D14m~F912F8F82F8L8!50,

~4.2!

and a constraint

Zªs92s8S L82
3

r D2
1

r
m82e2L

l

2r 2 ~s1m!

1~s2m!
1

r S F82L81
1

r D50. ~4.3!

There is an ordinary differential equation forh,

~2c!21e~L2F!ḣ1s82m822F8m50, ~4.4!

and two more field equations

05Z1ªc21e~L2F!F ṡ82 ṡS F82
1

r D2
1

r
ṁ G

2e2L
l ~ l 11!

4r 2 h, ~4.5!

05Z2ª
1

2
c21e~L2F!~ṁ1 ṡ!2

1

4
~h812F8h!. ~4.6!

Sufficiently differentiable solutions of Eqs.~4.1!, ~4.2! sat-
isfy

2c22e2~L2F!Z̈1Z91Z8S 5~F82L8!1
2

r D2e2L
l

r 2 Z

12ZS F92L913~F82L8!21
4

r
F D50 ~4.7!
5-6
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and

c21e~L2F!Ż15Z814F8Z,

c21e~L2F!Ż25Z. ~4.8!

The existence of solutions away from the shell is obvio
Cauchy datas,ṡ,m,ṁ determine a solution of the two wav
equations. IfZ5Z15Z250 holds for the data, it will also
hold for the evolution of the data. The problem is to fin
solutions near the shell atR which satisfy the transition con
ditions.

As in the case of stellar oscillation@8#, existence will be
demonstrated by showing that the transition conditions g
the information needed to determine the relevant informa
along the characteristics outgoing at the boundary from
incoming quantities, as explained in@8#.

As in @8#, we will useZ50 as a boundary condition o
both sides. This will guarantee that a solutions,m of the
wave equations such that the data satisfyZ50 satisfies iden-
tically Z50 becauseZ satisfies the homogeneous wa
equation~4.7!.

The equation

c22e~L2F!s̈2s8S F82
1

r D2
1

r
m81e2L

l ~ l 11!

2r 2 ~s2m!

2sS 2

r
F81

1

r 2D2mS 2

r
F82

1

r 2D50 ~4.9!

is a consequence of Eqs.~4.1!, ~4.2!, and~4.3!. It implies Z
50 at the boundary if the wave equations hold and the d
satisfy Z50. To uses̈ as boundary data we have to diffe
entiate the wave equation fors with respect to the time vari
able.

At the left side of the shell, the relation

2s̈22ṡ852~2s̈12ṡ8!122s̈ ~4.10!

shows how the field in the direction of the left-going cha
acteristic is determined by the value in the direction of
right-going characteristic and the boundary valuess̈, simi-
larly for the outside.

For m we shall show that the two transition conditions
Regge-Wheeler gauge are equivalent to the relations

1m̈52m̈1J ~ lower derivatives!, ~4.11!

1F1ṁ852F2ṁ81J ~ lower derivatives!,
~4.12!

which imply

1m̈61F1ṁ852m̈62F2ṁ81J ~ lower derivatives!.
~4.13!

With these boundary conditions existence can be shown a
@8#.

It remains to establish the desired form of the conditio
for m.
02400
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We can write the the transition conditions~3.21!, ~3.22! in
the Gauss gauge in the form

1F1k̂G8 22F2kG8 1A1k̂G5A2~a,sG
68,sG

6,l,R!.
~4.14!

The transition condition forj in the form ~3.40! is

21F1k̂G8 22F2k̂G8 1A3k̂G5A4~sG8
6,a86!. ~4.15!

Because ofA1ÞA2 , we can solve

1F1k̂G8 22F2k̂G8 5A5~C,sG8
6,sG

6,l,R,a86!,
~4.16!

k̂G5A6~C,sG8
6,sG

6,l,R,a86!. ~4.17!

Now we replace the Gaussian quantities by Regge-Whe
quantities according to Sec. III. In the terms withä and ä8,
we replaces1 and s2 by Eq. ~4.9! and remarkably the
wanted combination ofm8 appears:

s12s25l
1

R
~1F1m822F2m8!1 lower order.

~4.18!

It can be checked that it is possible to solve in the two tr
sition conditions for1F1m822F2m8 and m̈22m̈2.

If we perform the time derivative to obtainm̈65
66F6ṁ81¯ , second-order terms6ṡ8 appear. We elimi-
nate these by the field equationZ150, which introducesh
into the boundary conditions. Therefore we have to take
~4.4! for h along with the two wave equations in the iteratio
to prove the existence as in@8#.

Let me finally outline how one can construct data of t
following two types.

First, we want a gravitational wave which falls onto th
shell. To find such a solution of our constraints, it is simpl
to use Moncrief’s gauge-invariant and constraint-free form
lation of perturbations of Schwarzschild. In this approa
one choosesC andĊ unconstraints and these data determ
the solutionsC of a wave equation. FromC one calculates
by differentiation and algebraic manipulation the fields in t
Regge-Wheeler gauge. Hence we can take the data foC
such that they vanish outside an interval not containing
shell. The corresponding solution describes a situation
which gravitational waves impinge from the inside or outsi
onto the shell and will set it into motion.

Second, we would like to have the opposite situation,
initial ds and as little gravitational waves as possible. Ta
data for C which vanishes outside an interval around t
shell. We have just to make sure that we choose the va
and derivatives ofC at both sides in such a way thatds does
not vanish. This is possible because we have just two lin
transition conditions in the Regge-Wheeler gauge~see the
end of Sec. III!.
5-7
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V. QUASINORMAL MODES

To find the quasinormal modes of the shell, one has
proceed as follows@10#. First, one determines solutions wit
est time behavior for any complexs. Local solutions of the
two wave equations~4.1!, ~4.2! are determined by initial val-
uess,s8,m,m8 at some pointr 0 . The condition thatZ andZ8
vanish at this point gives two relations between those dat
they are satisfied,Z50 holds for the solution and all field
equations hold because of Eq.~4.8!. Hence we have a two
parameter family of solutions on both sides of the sh
Regularity at the center~or the horizon! determines a one
parameter family. If we fix the overall constant at the cen
we have just one solution for a givens. The two transition
conditions at the shell determine uniquely the outer soluti
Hence there is a unique solution for eachs with est time
behavior.

If we use data form,m8 to characterize the local solution
we can take the transition conditions~4.11!, ~4.12! for m,m8
from Sec. IV.

Similarly, one can find for reals a unique solution which
satisfies the correct boundary condition at infinity. From t
solutions—one regular at the center, one with the corr
behavior at infinity for each reals—one builds the Green
function first for reals. The analytic extension of the Gree
function has poles, the quasinormal modes.

In numerical calculations of quasinormal modes, o
starts with the solution regular at the center for comples
and tries to find those values ofs for which the solution
satisfies at infinity the ‘‘outgoing wave condition’’: the so
lution for general complexs is near infinity, a linear combi-
nation of two solutions with the property that for reals one
solution is bounded the other is diverging. ‘‘Outgoing’’
defined by the property that only the part bounded for res
is present.

The numerical calculations of the quasinormal modes
left to a further paper.

VI. NEWTONIAN LIMIT OF THE EQUATIONS

A solution of the linearized vacuum field equations whi
satisfies the shell transition condition describes a nonrad
oscillating shell. In this section, I want to consider the Ne
tonian limit of the field equations and the transition con
tion, and it will turn out that the limiting system really is
formulation of the Newtonian problem. There is a concept
difference between shells in Newton’s and Einstein’s th
ry: In Einstein’s theory the ‘‘main action’’ is in the field
equations outside the shell and the shell quantities appea
the transition conditions. In Newton’s theory the field outsi
the shell is just the Newtonian gravitational field and t
equations of motion are formulated at the shell. Hence to
successfully the Newtonian limit of the equations we have
extract from the field equations the relevant relations~2.5!
and ~2.6! at the shell.

The object available in both theories is the connections
we look at the linearized connection components in App
dix B, one realizes that we only have a limit—in the Gau
ian gauge—if we assume thatl21k5 k̂ andl21/2j are finite.
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First, we calculate the linearization of the equationstab
ib

of the shell~we write i for the covariant derivative on the
background shell!:

tab5~s1lp!uaub1p~sab2n•
an•

b!, ~6.1!

which implies, fora50,u,f,

tab5~s1lp!uaub1psab. ~6.2!

tab
ib splits as usual into the two equations

s ,aua1~s1lp!ub
ib50 ~6.3!

and

~s1lp!ua
ibub1p,bsab50. ~6.4!

Linearization gives

ds ,aūa1s̄ ,adua1~ds1ldp!ūb
ib1~ s̄1l p̄!dub

ib50,
~6.5!

~ds1ldp!ūa
ibūb1~ s̄1l p̄!d~ua

ibūb!

1dp,bs̄ab1 p̄,bdsab50. ~6.6!

If we use the background relations 05s̄ ,aūa5ūb
ib5 p̄,a

5ūa
ibūb, we obtain

ds ,aūa1~ s̄1l p̄!dub
ib50, ~6.7!

~ s̄1l p̄!d~ua
ibub!1dp,bs̄ab50. ~6.8!

With the linearized connection from Appendix B, we find

dua
ia5@2ṡ2 l ~ l 11!ȧ#Y. ~6.9!

The perturbed accelerationd(ua
ibub) has only a nonvanish

ing u component

l21R22e2FkY,u . ~6.10!

So we obtain finally, for the motion tangentially to the sh
(ds5s̃Y),

ds8 1~ s̄1l p̄!@2ṡ2 l ~ l 11!ȧ#50, ~6.11!

~ s̄1l p̄!l21R22e2FkY,u1dp,uR2250. ~6.12!

The ‘‘normal motion’’ of the shell is contained in the equ
tion

d@~1kab12kab!tab#50. ~6.13!

With Eqs.~3.6!, ~3.11! we obtain
5-8
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F S 1

2
F@e2F2k̂# ,rYD 1

1S 1

2
F@e2F2k̂# ,rYD 2G s̄

1S M 1

AF1
1

M 2

AF2D R22@ds2dt00~ s̄12l p̄!#

1F S 2
1

2
Fr 2@4s22l ~ l 11!a# D

,r

1

1S 2
1

2
Fr 2@4s22l ~ l 11!a# D

,r

2G p̄R22Y

24dpR2114p̄R21@2s2 l ~ l 11!a#Y50. ~6.14!

Now we can evaluate Eqs.~6.11!, ~6.12!, and ~6.14! for l
50 to obtain the Newtonian equations. Remember
l21k5 k̂, we get

ds8 1s̄@2ṡ2 l ~ l 11!ȧ#50, ~6.15!

s̄R22k̂Y,u1dp,uR2250. ~6.16!

The transition conditions~3.22! and ~3.23! imply for l50
that a8 ands8 are continuous, as we expected. Therefore
Eq. ~6.14! the undifferentiateda and s terms cancel forl
50 and we obtain

F S 1

2
@2k̂# ,rYD 1

1S 1

2
@ k̂# ,rYD 21G s̄

1~M 11M 2!R22@ds2dt00~ s̄ !#

1F S 2
1

2
r 2@4s,r22l ~ l 11!a,r # D 1

1S 2
1

2
r 2@4s,r22l ~ l 11!a,r # D 2G p̄R22Y

24dpR2150. ~6.17!

These equations contain the fieldsa(t),s(t), which describe
the motion of the shell, the matter fieldsds,dp, and the
gravitational potentialk̂. We can solve the field equation i
the casel50 to determinek̂ in terms of the other variable
~Appendix B!:

05dRru5a82s8. ~6.18!

The uu component of the field equations has terms prop
tional Y andY,uu which must vanish separately:

05dRuu52r 2Fs91
4s8

r
2 l ~ l 11!

a8

r
1

2s

r 2 G1 l ~ l 11!s,

~6.19!

05dRuu52r 2Fa91
2a8

r
12

a

r 2G12a52~r 2a8!8.

~6.20!
02400
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r-

Using a85s8, a95s9, we obtain from these equations th
unique solution

s5
1

r
g~ t !, a5

1

r
g~ t !1h~ t !. ~6.21!

We can simplify Eq.~6.17! if we use Eq.~6.21!:

~1k̂812k̂8!s̄1~M 11M 2!R22ds̃2s8@422l ~ l 11!# p̄

24dpR2150. ~6.22!

The field equation

05dRTr52 ṡ82
2

r
ṡ1 l ~ l 11!ȧ81 l ~ l 11!

1

r
ȧ8

2 l ~ l 11!
1

2r F ĵ81
1

r
ĵ G ~6.23!

determines

ĵ5ḣS 2
R2

r
1r D , ~6.24!

where we have used thatĵ vanishes at the shell. ThedRtu

50 field equation is satisfied for suchs,a,ĵ.
It remains to calculatek̂ from dRTT :

05dRTT5 k̂91
2

r
k̂82 l ~ l 11!

k̂

r 222s̈1 l ~ l 11!ä

1„2s82 l ~ l 11!a8…F̄8l211 l ~ l 11!ḧS R2

r 2 21D .

If we inserta,s,ĵ, we obtain (c2F85M /R2)

05dRTT5 k̂91
2

r
k̂82 l ~ l 11!

1

r 2 k̂

2@22 l ~ l 11!#
1

r
g̈2@22 l ~ l 11!#

1

r 4 M 6g

1 l ~ l 11!
R2

r 2 ḧ. ~6.25!

Because we are in the Gaussian gauge, we have to solve
equation on both sides of the shell with the prescribed ju
of the normal derivatives atR:

1k̂822k̂854pds̃. ~6.26!

The solutions of the homogeneous equation are~regular at
the origin and bounded at infinity!

2k̂05a~ t !
r l

Rl , 1k̂05b~ t !
Rl 11

r l 11 . ~6.27!

A particular solution of the inhomogeneous equation can
guessed:
5-9
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6k̂p5g̈r 1g
1

r 2 M 61ḧR2. ~6.28!

Continuity atR implies

a1g
1

R2 M 25b1g
1

R2 M 1. ~6.29!

The jump condition is

2b~ l 11!
1

R
22g

1

R3 M 12a l
1

R
12g

1

R3 M 254pds̃.

~6.30!

From this we obtain

b52
l 12

2l 11
g

1

R2 ~M 12M 2!2
1

2l 11
4pRds̃,

~6.31!

a5
l 21

2l 11
g

1

R2 ~M 12M 2!2
1

2l 11
4pRds̃.

~6.32!

Hence atR, the location of the shell, we obtain

2k̂5
l 21

2l 11
g

1

R2 ~M 12M 2!2
1

2l 11
4pRds̃1g̈R

1g
1

R2 M 21ḧR2, ~6.33!

1k̂52
l 12

2l 11
g

1

R2 ~M 12M 2!2
1

2l 11
4pRds̃1g̈R

1g
1

R2 M 11ḧR2, ~6.34!

or because ofg̈R1ḧR25äR2,

k̂52k̂51k̂5äR21F l 11

2l 11
M 21

l 21

2l 11
M 1G 1

R2 g

2
1

2l 11
4pRds̃. ~6.35!

Finally, we need the derivatives

2k̂85 l
l 21

2l 11
g

1

R3 ~M 12M 2!2
l

2l 11
4pds̃

1g̈22g
1

R3 M 2, ~6.36!

1k̂85~ l 11!
l 12

2l 11
g

1

R3 ~M 12M 2!1
l 11

2l 11
4pds̃

1g̈22g
1

R3 M 1. ~6.37!
02400
In the equation for the radial motion, we need

2k̂811k̂852g̈1
2l ~ l 21!

2l 11

M 1

R3 g

2
2~ l 11!~ l 12!

2l 11

M 2

R3 g1
4pds̃

2l 11
.

~6.38!

Now we insert Eq.~6.35! into Eq. ~6.16! for the tangential
motion (dp5d p̃Y)

s̄S g̈R1ḧR21F l 11

2l 11
M 21

l 21

2l 11
M 1G 1

R2 g

2
1

2l 11
4pRds D1d p̃50. ~6.39!

Similarly, we put Eq.~6.38! into Eq. ~6.22! for the radial
motion:

S 2g̈1
2l ~ l 21!

2l 11

M 1

R3 g2
2~ l 11!~ l 12!

2l 11

M 2

R3 g1
4pds̃

2l 11 D s̄

1g
2

R2 @22 l ~ l 11!# p̄1@~M 11M 2!R22

22aR21#ds̃50. ~6.40!

We can replace the background pressurep̄ in the radial equa-
tion by

4p̄

R
5s̄

M 12M 2

R2 .

We can integrate Eq.~6.15!, the continuity equation, to

ds̃1s̄@2s2 l ~ l 11!a#50, ~6.41!

because the value ofa(t) at some time is arbitrary. Thus w
can eliminateds̃ from Eqs. ~6.39!, ~6.40! and obtain two
linear second-order equations forg(t) anda(t). The coeffi-
cients are determined byM 1, M 2, anda, which character-
ize the equation of state of the perturbed shell.

We write these equations explicitly for the caseM 250:

s̄S R2ä1
l 21

2l 11
M 1

1

R2 g2
1

2l 11
4pRds D1d p̃50,

~6.42!

S 2g̈1
2l ~ l 21!

2l 11

M 1

R3 g1
4pds̃

2l 11 D s̄

1g
2

R2 @22 l ~ l 11!# p̄1~M 1R2222aR21!ds̃50.

~6.43!

Insertingp̄ andds̃, we get
5-10
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ä1
M 1

R4 F l 11

2l 11
2

2aR

M 1 Gg
1

M 1

R3 F2
l ~ l 51!

2l 11
1

l ~ l 11!aR

M Ga50 ~6.44!

and

g̈1
M 1

R3 F l 223l 22

2l 11
1

22 l ~ l 11!

4
1

4aR

M 1 Gg
1

M 1

R2 F l ~ l 11!2

2l 11
2

2l ~ l 11!aR

M 1 Ga50. ~6.45!

These two equations are Eqs.~86! and~87! in @11# if we put
h5a and j5g. They describe the Newtonian oscillation
As linear ordinary differential equations with constant co
ficients, they can be integrated in closed form. In@11# it is
shown that Newtonian nonradial oscillations are always
stable. This indicates that there should be relativistic nor
modes because it seems unlikely that the damping by gr
tational waves could overcompensate the exponential gro
of the Newtonian mode.
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APPENDIX A: THE NEWTONIAN SHELL

In Sec. II a fluid shell was defined in the frame theory
want to show that this way we really obtain a shell in Ne
02400
-

-
al
i-
th

l

-

I
-

tonian theory. We assume that the reader is familiar with
frame theory@9#.

The conditions of continuity of the time and space metr
at S imply thatS is a smooth hypersurface in the usual (t,xi)
coordinates of Newtonian theory. From Eqs.~2.4!, ~2.5! we
concludeDkab54pstatb . Hence the second-fundament
forms of S t , the intersection ofS with the Newtonian time
slices, coincide from both sides. Suppose thatxi(t,aB) are
the integral curves of the fluid flow which spanS. Then
ua]a5] t1 ẋi] i is the fluid flow vector. The definition of the
second-fundamental form implies

1kabuaub5u;b
aubna5~ ẍi1F ,i !ni , ~A1!

where we used the form of the Newtonian connection
standard coordinates:

Ggd
a 5sabF ,btgd . ~A2!

Relation~2.7! is

s~1kab12kab!uaub1~1kab12kab!p~sab2n•
an•

b!50
~A3!

or

s„~ ẍi11F ,i !ni1~ ẍi12F ,i !ni…12up50, ~A4!

whereu is the trace of the second-fundamental form ofS t .
This is what we would expect for the normal component
the equation of motion.

Similarly, the component oftab
ub in the direction ofua

contains the mass conservation and the component inS t the
tangential force. Finally, Eq.~2.3! determines the gravita
tional potential

DF54psdS t
. ~A5!
APPENDIX B: THE LINEARIZED CONNECTION AND RICCI TENSOR

From the thesis of Kind@12#, we have the linearized connection

dGT
TT5@ k̇1ceF2LF8h#Y,

dGT
Tr5k8Y,

dG r
TT5c2e2~F2L!@k812F8~k2m!#Y1ceF2LḣY,

dG r
rT5@ṁ2ceF2LF8h#Y,

dGT
rr 5c22e2~F2L!ṁY2c21eF2L~h81F8h!Y,

dG r
rr 5m8Y,

dGT
Tu5kY,u

dGu
TT5c2r 22e2FkY,u1cr21eF@j̇2ceF2LF8v#Y,u ,

dGu
uT5 ṡY1ȧY,uu ,

dGT
uu5r 2c22e22F@ ṡY1ȧY,uu#2rc21e2F@e2LhY1jY,uu#,
5-11
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dGT
Tf50,

dGf
TT50,

dGf
fT5 ṡY1ȧ cot uY,u ,

dGT
ff5r 2c22e22Fsin2u@ ṡY1ȧ cot uY,u#2rc21e2Fsin2u@e2LhY1j cot uY,u#,

dG r
ru5@m2e2Lv#Y,u ,

uGu
rr 52r 22e2LmY,u1r 21eL@v81r 21v#Y,u ,

dGu
ur5s8Y1a8Y,uu ,

dG r
uu52r 2e22L@~s812r 21s!Y1~a812r 21a!Y,uu#1re2L@e2L2mY1vY,uu#,

dG r
rf50,

dGf
rr 50

dGf
fr5s8Y1a8cot uY,u

dG r
ff52r 2e22Lsin2u@~s812r 21s!Y1~a812r 21a!cot uY,u#1re2Lsin2u@e2L2mY1v cot uY,u#,

dGT
ru52~2c!21eL2FhY,u2r ~2c!21e2F@j81j~F82r 21!2c21eL2Fv̇#Y,u ,

dG r
Tu5

1

2
ceL2FhY,u2

1

2
rceF22l@j81j~F81r 21!2c21eL2Fv̇#Y,u ,

dGu
Tr52

1

2
cr22eL1FhY,u1c~2r !21eF@j81j~r 212F8!1c21eL2Fv̇#Y,u ,

and the linearized Ricci tensor

dRTT5$2m̈22s̈1 l ~ l 11!ä1ceF2L@ḣ81ḣ~F812r 21!#2ceFr 21l ~ l 11!@ j̇2ceF2LF8v#

1c2e2~F2L!@k91k8~2F82L812r 21!12s8F82m8f82 l ~ l 11!a8F82~k2m!~F91F8F82F8L812r 21F8!#

2c2e2Fr 22l ~ l 11!k%Y,

dRTr5H 22ṡ812ṡ~F82r 21!12r 21ṁ1 l ~ l 11!ȧ82 l ~ l 11!ȧ~F82r 21!

2ceF2Lh~F91F8F82F8L812r 21F8!2
1

2
ceFr 21l ~ l 11!@j81j~r 212F8!c21eL2Fv̇2r 21eLh#J Y,

dRrr 5$c22e2~L2F!m̈2c21eL2F~ḣ81F8ḣ !2k922s91 l ~ l 11!a91k8~L822F8!

1m8~F812r 21!2 l ~ l 11!~L822r 21!2e2Lr 21l ~ l 11!~v81r 21v!1e2Lr 21l ~ l 11!m%Y,

dRTu5H ȧ2ṁ2 ṡ1
1

2
e2Lr [ v̇81v̇(3r 212gF8)] 1

1

2
ceF2Lr [ j91j8(f82L812r 21)

1j(F92F8L815r 21F82r 21L8] J Y,u ,

dRru5$a82k82s82k~F82r 21!1r ~2c!21e2F@2 j̇81 j̇~r 212F8!1c21eL2Fv̈1eLr 21ḣ#1e2Lv~L82F82r 21!%Y,u ,
024005-12
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dRuu5„c22e22Fr 2s̈2c21e2Fr ḣ2e22Lr 2$s91s8~F82L814r 21!1r 21@k82m82 l ~ l 11!a8#

1~s2m!2r 21~f82L81r 21!%1 l ~ l 11!~s2e2Lv!…Y

3$c22e22Fr 2ä2c21e2Fr j̇2e22Lr 2@a91a8~F82L812r 21!1a2r 21~F82L81r 21!#

12a2k2m1e2Lr @v81v~F81r 21!#%Yuu ,

dRff5$¯%sin2uY1$¯%sin u cosuY,u .

In the brackets$¯% the same expressions appear as indRuu .
tio

the
APPENDIX C: GAUGE TRANSFORMATIONS

A general gauge transformation of an even perturba
with Yl(u) angular behavior is determined by

f t52ceFaY,

f r5eLbY,

f u5rgY,u , ~C1!

wherea, b, andg depend onT,r. The metric perturbations
~3.1! change according to

k5k02
1

c
e2Fȧ2e2LF8b, ~C2!

h5h02
1

c
e2Fḃ1e2L~a82F8a!, ~C3!

j5j02
1

c
e2Fġ1

1

r
a, ~C4!
ua

02400
n

m5m02e2Lb8, ~C5!

v5v02e2LS g82
1

r
g D2

1

r
b, ~C6!

s5s02e2L
1

r
b, ~C7!

a5a02
1

r
g. ~C8!

The Regge-Wheeler gauge is characterized byj5v5a50,
as a consequence of the field equationsk52m. The follow-
ing gauge transformation leads from a Gauss gauge to
Regge-Wheeler gauge:

g5raG ,

b52e2Lr 2~aG!8,

a52r jG1
1

c
e2Fr 2ȧG . ~C9!
av.
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@5# P. Hájı́cěk, B. S. Kay, and K. Kucharˇ, Phys. Rev. D46, 5439

~1992!.
@6# P. R. Brady, J. Louko, and E. Poisson, Phys. Rev. D44, 1891
n-

~1991!.
@7# A. Ishibashi and H. Ishibara, Phys. Rev. D56, 3446~1997!.
@8# S. Kind, J. Ehlers, and B. G. Schmidt, Class. Quantum Gr

10, 2137~1993!.
@9# J. Ehlers, Class. Quantum Grav.14, A119 ~1997!.

@10# H.-P. Nollert and B. G. Schmidt, Phys. Rev. D45, 2617
~1992!.
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