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Nonradial linear oscillations of shells in general relativity
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Nonradial perturbations of a static shell with an empty interior, or around a star or black hole, are investi-
gated. The transition conditions at the shell are derived in a Gaussian and in Regge-Wheeler gauge. The
existence of linearized shell solutions is demonstrated. Quasinormal modes are discussed, and the Newtonian
limit of the equations is derivedS0556-282(98)04124-1]
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[. INTRODUCTION demonstrated by the method of characteristics as was done in
[8] in the case of stellar oscillations. It is shown that the
Shells have been studied in Einstein theory in variousCauchy problem is well posed. An excitation of the gravita-
contexts[1-7]. The existence of solutions which describe tional field outside the shell sets the shell in motion, which in
static, spherically symmetric shells around a black hole ofurn will then be damped by the radiation it emits. Con-
with an empty interior having been establish&¢ one natu- versely, a displacement of the shell from its equilibrium po-
rally asks for time-dependent linear perturbations of thes@ition will induce a motion of the shell and radiation. This is
solutions. Radial perturbations have been studielnAs  the first time that a Cauchy problem is posed and solved for
far | have been able to find out, nonradial perturbations havéhells in Einstein’s theory, unfortunately only in a linearized
never been treated. Receniti], nonradial perturbations of a version.
bubble which separates a Minkowski from a de Sitter region Section V discusses quasinormal modes. It is shown how
were analyzed. the transition conditions at the shell which are derived in
A treatment of nonradial oscillations should be quite Sec. Il can be used to calculate numerically the quasinormal
straightforward. One just has to take linearized vacuum somode frequencies of the shell.
lutions inside and outside the background shell and to im- Section VI deals with the Newtonian limit. The ordinary
pose certain transition conditions which contain informationdifferential equations describing linearized self-gravitating
on the perturbation of the shell. Because of gauge probleméjewtonian shells are derived as limits from the relativistic
this turned out to be more complicated than | expected. It i€quations. This limit process is rather subtle, because the
tempting to speculate that all this should become much simGaussian gauge, which is natural in the relativistic picture, is
pler if one uses Moncrief's gauge-invariant formulation andnot so natural for the usual formulation of Newton’s theory
wave equation. | found, however, no way of expressing thén an inertial frame. Nevertheless, the correct Newtonian
fluid shell transition conditions directly in a gauge-invariant équations can be found as a limit from Einstein’s equations
variable. The reason is probably that the second fundamentand the transition conditions at the shell.
forms defining the stress-energy tensor of the shell contain
always gauge-dependent parts of the metric. Il. SHELLS IN THE FRAME THEORY
My motivation to study this problem came from the hope )
that certain questions which turn up in the linearized theory 1he “frame theory” formulated by Ehlerf9] is a theory
of stellar oscillationg8] could be treated more easily if the containing a parametek such that forn=0 we have
oscillating star were replaced by an oscillating shell. TheNéwton-Cartan-Friedrichs theory in general, Newton's if
questions | want to study are related to the Newtonian limR*:,5=0, in particular if spatially asymptotically flat, and
it:  normal modes versus quasinorma| modes, and do onéor A>0 Einstein’s theory of gravitation. The basic variables
parameter families of relativistic oscillating shells existare the time metri¢,;, the space metris*#, which satisfy
which have a Newtonian limit? taﬁsm:—)\ég, and, most important, a symmetric linear
The paper is organized as follows. Section Il describesonnectionI’} ;, which has the property that both metrics
shells in the “frame theory’{9], a theory which contains a are covariantly constant. Matter is described by a tem&6r
parameterA such thatA>0 gives Einstein’s theory ani The field equations are written as
=0 Newton'’s. This formulation turns out to be very useful
in obtaining the Newtonian limit. Section Il deals with the
linearization and derives the transition conditions in a Gauss-
ian gauge. To deal later with questions of existence, the tran-
sition conditions are also calculated in a Regge-WheeleThe - indicates where the index was before it was raised or
gauge where they are very lengthy. lowered withs*? or t,z. The equations of motionT"B;B,
In Sec. IV the existence of linearized shell solutions ishave to be postulated independently, because in Newtonian
theory they do not follow from the field equations.
To describe shells in the frame theory, we need the con-
*Email address: bernd@aei-potsdam.mpg.de cept of a second-fundamental form for the Newtonian con-

(G=1). 2.2

. 1 Se
Raﬁzg’ﬂ Ta,B_ E ta,BT Fy

0556-2821/98/5@)/024005%13)/$15.00 59 024005-1 ©1998 The American Physical Society



BERND G. SCHMIDT PHYSICAL REVIEW D 59 024005

nection. Ifn, is a one-form normal to a timelike hypersur- where the fieldau®,o,p are defined only o, and u“ is

face 3, we can normalize it by the space metric such thatangential toX. Hence a fluid shell is characterized by a

nanﬁsaﬁ=1. The vector fielch® is transversal t&® and, in  certain algebraic structure of the jump of the second-

the case =0, orthogonal ta¥,, the intersection oE with ~ fundamental form ak.

the Newtonian time slices=const. In Einstein’s theory the vacuum field equations on the
Using this vector fieldn®, we can define a “second- complement o imply, at the shell,

fundamental” formk ,,, of % which is equivalent to the usual

one forA #0: Let & and »? be two vector fields tangent to Ta'g\ﬁ (2.6
> and decompos&“;ﬁnﬁ into its components tangential X and
and in the direction oh":

(*kaﬁrkaﬂ)#ﬁ:o. 2.7

@ opP=E%mP+k, 4 p'n®, k,n’=0, (2.2 _ :
E5pm = K, k=0, (22 These equations are also meaningful for 0, but do not

] follow, and we postulate them in this case. Hence properties
to define the second-fundamental form as usual. It can bgy) (2), and the condition€2.4), (2.5), (2.6), and(2.7) define
checked that {” defines a symmetric connection dhand 3 shell with isotropic internal pressure in the frame theory. In

thatk,,, is symmetric. _ ~ Appendix A it is shown that in this way we do obtain a
In general relativity shells have been defined and dis\ewtonian shell.
cussed, for example, by Israfl]. We proceed similarly in Let us consider as an example a static, spherically sym-
the frame theory. metric shell.
A shell is a timelike hypersurfack in a manifold with The time metric:

continuous time and space metrics and a connection, with the
following properties: (1) the metrics and the connection are _p AM= 5
smooth on the complement 8fand satisfy all axioms of the =~ tapdX*dX"= ( 1= ——]dt
frame theory in empty space, in particul&,;=0 [9]; (2)

2

(in some coordinate systemartial derivatives of the metrics r 20462+ sirod b2
and the connection of any order have limits from both sides —A o= T (de7+sinod 4
at3. 1-

These conditions imply that the induced space and time '
metrics on % coincide and are smooth. The second- (2.9

fundamental forms* K. from both sides exist. In the New-
tonian case the components of the second-fundamental for
in thet=const time hypersurfaces are continuous.

The Ricci tensor is distributional at the shell:

fwith A\=c~2, G=1, we also write"t,z=—\"g,z, which
implies, for\>0, s*¥=g*#),
The space metric:

. ap. L 2AM*\ 71 g2 L 2AM*\ [ )2
R, AT =8m S5AK,p4, (2.3 s =N 1-— =) T3
whereIl% = 8% —nkn, projects ontaX. Here & is a distri- L2 d 2+ [ a2 29
bution which has support oB and could be defined using, r 2g) TSI a0 | (2.9

for example, Gauss coordinates relativeStoFor A >0 this

follows from relations which express four-dimensional quan-We assume B~ <2M " <R, whereR is the area radius of

tities in terms of three-dimensional ones and the secondhe shell.

fundamental form. In the case=0 it can be checked in We use proper tim& at the shell as a time coordinate at

coordinates adapted to the Newtonian case. both sides of the shed which makes the identification from
The field equationg2.1) and the relatior(2.3) motivate  both sides easy,T(, 0, ¢,r)=(x%), (T, 6,¢)=(x?):

the definition of the energy-momentum tensor of the shell b 2ee . DA

Tf= 55 7%F, which is related to the jump of the second- Jop= N €TdT +r7dx+e™dr?,  (2.10

fundamental form by

2\M
1 20 _ r 2A _ 1
AkaB:+kaﬁ_7kaB:87T T.a'ﬁ’_ E (taﬁ+)\nanﬁ)76¢;‘) . &= 2\M"’ €= 2A\M° (211)
(2.4) == ==

“(R)#A~(R) if the masses are different at both sides.
T,6, ¢ are coordinates on the shdlln these coordinates the
metric is not continuous at the shell. Constant rescaling of
the metric on one side would give a continuous metric. This
= (o +\p)uuf+p(s*P—ninf), (2.9 is, however, not needed. We shall write

A shell with isotropic internal pressure is characterized b
the energy-momentum tensor
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2\M
e =F?=1-——, 2FF'="—7p.

(2.12

Second-fundamental form: we normalizéﬁnanﬁ=1, n,

—(0,0,0F Y):

1
Kap=— 2 [Fgab,r]a

koo=F %

§21
kggz - FR,

M* M~

Akogo="koo— koo= (F_+_ F_> R™2,

Akgg="Kgg— Kgo=—(F"=F )R,
Akgy="Kgpp— Kgy=—(F"—F )R sirfe.
The matter tensor of the shell is
P =(o+\p)u®uP+p(s*¥—nn¥),
T'a.B: TKUtKat,B(rv
n,=(0,0,0F %), n¥=sn,=(0,0,0F),
u®=(1,0,0,0, t,uuf=1,
799=pR~2

70— & r*¢=pR2Zsin"2¢,

Too=0, Typ=N2pRZ, T'(;(/):)\Zpstinzﬁ,
om0 Th=Ap @Y= p,
TM,;:O'—Z}\p.

The field equation at the shell is

Akaﬁ:877

1
Taﬁ_ E (talg‘l')\nanﬁ)t'“#) .

This gives

M- 1
AkOO:(F_+_ F—_) R2=87T(§ a+)\p),
1
Akgyy=—(F"—F )R=8mw > ApRZ.

The equilibrium condition of the shell is
(+ka’3+ 7kaﬁ) TQBZO,

and hence

(2.13

(2.19

(2.19
(2.19

(2.17

(2.18
(2.19

(2.20
2.2
(2.22
(2.23
(2.24
(2.29
(2.26

(2.27

(2.28

(2.29

(2.30
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MT M~
( R 20—2(F*+F7)RpR ?=0. (2.3)

R

The metrics(2.8) and (2.9 parametrized byx describe a
one-parameter family with a Newtonian limit. For the met-
rics, this is obvious: for the connection, it can be checked
easily. The equilibrium condition reduces for=0 to
(M*—M7)R 20— 4pR 1=0, (2.32
which is obviously the correct Newtonian result for the case
M~ =0. In the general cadél * is the total masgfar field),
and henceM " =M~ +MS, where M® is the mass of the
shell. Again, we have the correct Newtonian relatiofhe
field equation expresses the various masses in terms of the
densities. Nonstatic, spherically symmetric shells are stud-
ied, for example, i 1], [7].

[ll. LINEARIZATION AND THE SHELL
TRANSITION CONDITIONS

In this section | want to calculate the oscillation around a
static shell to first order. The case of radial oscillations is
treated in[6]. The background spacetime, a shell around a
black hole or a body, is a Schwarzschild spacetime with
massM ~ inside the shell and with madd* outside:

2AM*\ T

2\M™* .
§OO:—>\—1(1— ) = -\ "le2?
Ypo=T172,
g,f,d,:rzsinzﬁ,

_ 2aM=\ L .
Orr= ( 1- r ) IGZA . (3-1)

| take the same notation for the perturbations as in Kind's
thesis[12]. The nonvanishing perturbation fields dfecon-
sider only ¢-independent even perturbations

89go= — N te?®2kyY=—e?®2ky, A k=K,
89pe=r%(2sY+2aY 4),
8944=r?(2sY+2a cot 0Y ,)sir’6,

59, =e*2uY,

S0 =N Ve Y,

5G0y= )\—1/2€<I>r§Y‘0 ' )\—1/252 %
89, p=€rrwY 4. (3.2
The perturbations of the time metric are
Mop=—"N6Q,p- (3.3

We use a Gaussian gauge to calculate the perturbations of the
second-fundamental forms on both sides of the shell. Imag-
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ine a one-parameter family of shells. Then we can introduce
on each member a Gaussian coordinate system relative to the
shell. Linearization of such a family implies
n=w=u=0. (3.9
On the shell we have the fluid flow vectof'. Because of the
Y,m behavior we choose, this flow is irrotational, and hence
we can use the flow lines and some coordinates in the or-
thogonal two-surface as coordinates. Hence
£=0 (3.5
On the shellk,s,aare continuous. Their radial derivatives,
however, will have just limits from both sides satisfying cer-
tain jump conditions, which we will calculate now.
For the perturbations of the second-fundamental form, we
obtain

for r=R.

1
5kab: - E I:6gab,r )
1 .
Skoo=+ 5 F[e*2K],.Y,
1 2
5k09: - z F[I’ (2SY+ 2aY'06)]’r :
1, _
Sk gg=— 5 FIr*(2sY+2a cot Y ,)sirfd]

1 .3
5k00: - E F[e I’f],rY’g. (36)

The perturbation of the energy-momentum tensor of the shell
is
S rPl= ¢l (o+Ap)ucuP+p(s*—ninf)],  (3.7)

57P= 8o+ AP)UTP+ (T +\P) 8(u°uP) + (5p)S*#

PHYSICAL REVIEW D 59 024005

87%°= (80 +\8p)Y + (a+\p)(— Stoo) + Sp(—\)
+H)\25900,

857%9= S Y+ (T+Ap)( — Stgg) — PA St
=8aY — dto(a+2\p),

87"=spY S+ pss’,
87%%=SpYR 2~ pR 59,

87%?=S6pYR 2sin 20—pR *5g,4,sin” *6.
(3.11)

For the linearized shell we need, in the transition conditions

(2.9,
oo 1 Mo
AaB::5 Tap™ E (taﬁ_)\nanﬂ)t ) (312
.o l — .
AD‘B: 57'04;_ E [&aﬁ—)\ﬂnanﬁ)]t#ﬂ
1 T —_ .
3 (taﬁ—)\nanﬁ)ﬁt”#. (3.13
We calculate first
O Top)=O(TH", 1 p,)
= 5Tﬂvt_ap,t_ﬁv+?ﬂv( &aﬂt_,l3v+t_cvu5tﬁv)'
(3.19
Fora=0,0,¢ we obtain
N T = O™ ot g0t T2t 00 0ee. (3.5

+p3sP—(sp)ninP—pas(ninf). (3.8

The four-velocity is normalizedtaﬁu“uﬁzl. Asu®= 6y,
too=1, we obtaindtyy+26u’=0 or

5u°=—E

2 &00: )\ezq”kY.

(3.9
8(u®uf) has only a 00-componenf(u®u®)=—tg,. We
need also

8s*F=sg*P=—g**gf sy, . (3.10

Since we use a Gaussian foliation for the one-parameter fam-

Linearization of the trace gives

8(7%) = 8(t*Pt )= 8(o—2\p) = (Sa—2\Sp)Y.

(3.16
Fora=0,0,¢ we have
_ 1 .
Aga=| 0T g t 4ot 20t 0T pa— > Staa(0—2\p)
1_
5 taa(do—2N\8p)Y |, 3.19

ily defining the linearization, we havén,=0, 8s" =0,
which implies 5nf=0. Hence we obtaifat r=R) [ o]
=38aY(6)]
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A=

1

EO'—)\D s
1

Ag0:877( 2)\2R25pY+ (Sggg E )\(T) y

1
A¢¢=87T( 2N*R2GPY+ 8044 5 m) :
(3.18
Furthermore,

Aog:O. (319

Now we can finally write down the transition conditions
(2.4), Ak,z=8mA,z, Which define a linearized fluid shell in
the Gaussian comoving gauge:

1 e
Adkoo=+4 5 F[272K] Y

1

=8 5

1

1
Adkgy=—A 5 Fr¥(2sY+2aY )],
1 _
=87-r( 2N*RPSPY+ 8099 5 xg),
1 2 .
Adkyy=—A 5 F[r(2sY+2a cot Y 4)SIN?]
=8| 2\?R?5pY+ & L \o
—om p Yo 5 N0 |

1
Adkoy=—A 5 FAY4e®re], Y ,=0. (3.20

Because of the linear independenceYofndY ,, it holds
that

E_ )\F) eZ(I)ZRG

N[ =

AF[eZ‘DRG]JJrSw)\(

1

> 50'+)\5p),

=87T( (3.2)

—AF[r?sg] ,—8m\oR?*sg=8m2\?R?5p, (3.22

—AF[r?a] ,—8m\oR%*a=0, (3.23

— AF[e®r¢] =0. (3.24

We have shown the following.

Supposea®, s*, k¥, and ¢* satisfy the linearized
vacuum field equations together with= w= =0 (Gauss-
ian gauge a*, s, k*, and & are continuous aR, the

PHYSICAL REVIEW D 59 024005

background shell, and’=, s’=, k’*, and &', the radial
derivatives at both sides of the shell, satisfy E(&21)—
(3.29) for somedo, Sp. Then these fields represent a linearly
oscillating shell. If an equation of statép=ado, is pre-
scribed for the oscillation, one can eliminate these matter
fields from Eqs(3.21), (3.22, and three transition conditions
remain.

Later, in the existence proof, we will need the transition
condition in Regge-Wheeler gauge which we shall calculate
next. From Appendix C we find the following expressions of
Regge-Wheeler perturbations in terms of the Gauss perturba-
tions used up to now:

1 1 .
—n=k=ks= e ?%Prlas+ S e Prégte #r2d’ag,

(3.2

—2A 2| 47 ’ 2 ’
pn=e “relasgtag F_A , (3.26
s=sgt+e rag. (3.27

From this we find, becausg; andag are continuous jumps
for sand y,

2A 2A

+ — = 2AT —2A " ot —
As:=s"—-s"=e rag —e rag , (3.28
e a—2AT 2 ot A—2AT 2~ —

—Ap=e r<o&’"ag —e r<d’'~ag .

(3.29

If ®"#® 7, i.e., if there is really a background shell, we can
solve forag" andag in terms ofAs and A

=

ag =L"(As,Au), ag =L 7 (As,Au). (3.30
The transition conditiort3.23 for a’ expressesa linearly in
terms ofa’ *,a’ ~; hence, we obtain
ag=L(As,Au). (3.3
These relations can be differentiated in time.
Now we can express all the Gaussian quantities in terms

of the Regge Wheeler quantities:
1 .
rad - c e‘“’?gé

(3.32

(we could also use the side to determind). Differentia-
tion giveskg in terms of Regge-Wheeler quantities:

!

1 +
—20F 2| 5+
? e r dg

1 +
ké+=—,u’++—02 e 2* r2aL +
T S S Y S S
—ce rég —E(e ryés—e r<d’'"ag

+
_(esz rZ(DHr)ra(/;r )

(3.33
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In the transition condition fok’, the ¢’ terms drop out be- IV. EXISTENCE
cause of thef transition condition(3.24). We needaé+ in

i f R Wheel ities. W th d In this section we want to show how the existence of
erms ot kegge-vvheeler q,}ia_” ues. We use the Seqond jinearized solutions satisfying the linearized shell transition

equation(3.26 to calculateag” : conditions can be established using the method of character-
istics as in[8]. The convergence proof given in that paper
At = —2e2AT (E—A+)a’+ (3.34 can easily be adapted to the case treated here. The essential
¢ # r ¢ ' step is to check that the transition conditions give the infor-
mation needed to perform the iteration and to control con-
or vergence.
We rewrite for convenience the system giverf&h (with
. 2 f=u, g=s), which is equivalent to the field equations in
agt=r-2e?A M*—(F—A*) L*(As,Ax). (3.359  Regge-Wheeler gauge. There are two wave equations for
and u:

Similarly, for s, 2 A
—02e2<Aq’)é+s”+s’(CI>’—A’ += —e?A zS
se=s"—e A ral", (3.36
2 1 2 1
. . +SF CI)’—A’-FF +,LLF CI)'-FA’—F:O,
sg =s'"—e M ral’ —(e P ryagt. (3.37
4.1
Now we can rewrite the transition conditiof3.21), (3.22 ) \
in Regge-Wheeler quantities and w=k. We obtain one 2020 oy Bp A — S| 20
condition if an equation of statép= ado is given. ¢ prRT R r) & H
To express the ¢ transition condition (3.24), 1
—AFFN"YTe®r¢] =0, insand u, we use thesR, , field —45’(@’— Z| 4+ Ap(@"+2d'd'—D'A’)=0,
equation r
4.2
1
0=06Ry=ag—kg—sg— kG< P’ - F) and a constraint
3 1 A
r . (1 =g’ g/ P a2 +
tooe |k rE F—CD’H. (3.39 Z:=s S(A r) P AT o (st
1 @/ AI 1 —
Remembering(R)=0 and®(R) =1, we can express, as T(smp) p| @A =0, “.3
e 1 There is an ordinary differential equation fgr
N VR¢ =aL—ki—ss—k (CD’——). (3.39
G N6 %6 Te r (2¢) NP4+ —pu' =20 u=0, (4.9
Therefore the time derivative of E¢3.24) implies and two more field equations
1 1
1 — e 1A(A=D)| a7 & /2
AF a{;—k{;—s{;—ke(db’—F 0. (340 0=2Zy:=c e s S(q’ r) r M}
oy 1(1+1)
Since we have only used the time derivative of the condition e (4.9

(3.24, we have to impose- A3FA~Ye®r¢] =0 at some
timety, which can be achieved by the remaining gauge free-
dom.

If we insert the Gaussian expressions in terms of the
Regge-Wheeler quantities given above, we obtain a secorfBufficiently differentiable solutions of Eq#$4.1), (4.2) sat-
condition in Regge-Wheeler quantities and we have showisfy
the following.

The shell transition conditions in the Regge-Wheeler
gauge are two linear relations fst, s’*, k™, andk’* if an
equation of state is given.

We do not write out these lengthy expressions here be- 107
cause the explicit expressions are not needed.

1 1
0=Zp=> c*1e<A*‘D>(ﬂ+s)—Z(7;'+2c1>'7;). (4.6)

. A
—c 22N =Pz 47"+ 7 —e2A r—ZZ

2
5(d'~A')+

4
<D”—A”+3(CD’—A’)2+FCI>):O 4.7
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NONRADIAL LINEAR OSCILLATIONS OF SHELLS N.. ..
and
c le "7, =7"+4d'7,

c ler¥z,=7. (4.9

The existence of solutions away from the shell is obvious

Cauchy datss, s, u, u determine a solution of the two wave
equations. IfZ=27,=27,=0 holds for the data, it will also
hold for the evolution of the data. The problem is to find
solutions near the shell & which satisfy the transition con-
ditions.

As in the case of stellar oscillatidi8], existence will be

demonstrated by showing that the transition conditions give
the information needed to determine the relevant information
along the characteristics outgoing at the boundary from the

incoming quantities, as explained [i@].

As in [8], we will useZ=0 as a boundary condition on
both sides. This will guarantee that a solutise of the
wave equations such that the data satfy0 satisfies iden-
tically Z=0 becauseZ satisfies the homogeneous wave
equation(4.7).

The equation

1\ 1 [(1+1)
—2A(A—D)a_ o [ 2A _
c ‘e 5 S(CD r) oM +e 512 (s—u)
2<I>’+—1 2<I>’ —1 =0 4.9
S T r2) MY 2= (4.9

is a consequence of Eq&l.1), (4.2), and(4.3). It implies Z

PHYSICAL REVIEW D 59 024005

We can write the the transition conditio(&21), (3.22 in
the Gauss gauge in the form

+F+R('3—7F7ké+A1RG=A2(a,SGi',SGt,)\,R).
(4.19

The transition condition fok in the form (3.40 is

—TFYkg— TF kgt Askg=A4(sg,a’ ). (4.15
Because ofA; #A,, we can solve

TFTks— FTkg=As(C,857 .56\, R,a" ),
(4.16

ks=Ag(C,85",5¢" .\, R,a’ ™). (4.1

Now we replace the Gaussian quantities by Regge-Wheeler
guantities according to Sec. lll. In the terms wihanda’,

we replaces™ and s~ by Eg. (4.9 and remarkably the
wanted combination of.’ appears:

1
st—s =\ " (*F*u'—"F u')+lower order.
(4.18

It can be checked that it is possible to solve in the two tran-
sition conditions for*F u'— "F " u’ andit™ — i~ .

=0 at the boundary if the wave equations hold and the data |f we perform the time derivative to obtairi.™=

satisfyZ=0. To uses as boundary data we have to differ-
entiate the wave equation fewith respect to the time vari-
able.
At the left side of the shell, the relation
T8—"8'=—("8+7§)+278

(4.10

shows how the field in the direction of the left-going char-

acteristic is determined by the value in the direction of the

right-going characteristic and the boundary val&gsimi-
larly for the outside.

For u we shall show that the two transition conditions in
Regge-Wheeler gauge are equivalent to the relations

(4.11

*i="j+J (lower derivatives,

*Ffu'="F u'+J (lower derivatives,

(4.12
which imply

tTartFTu' ="+ F u'+J (lower derivatives.

(4.13

With these boundary conditions existence can be shown as

[8].

+*F*u'+---, second-order terms$s’ appear. We elimi-
nate these by the field equatiah =0, which introducesy

into the boundary conditions. Therefore we have to take Eq.
(4.4) for n along with the two wave equations in the iteration
to prove the existence as jB].

Let me finally outline how one can construct data of the
following two types.

First, we want a gravitational wave which falls onto the
shell. To find such a solution of our constraints, it is simplest
to use Moncrief's gauge-invariant and constraint-free formu-
lation of perturbations of Schwarzschild. In this approach
one choose¥ andV¥ unconstraints and these data determine
the solutions¥ of a wave equation. Fron¥ one calculates
by differentiation and algebraic manipulation the fields in the
Regge-Wheeler gauge. Hence we can take the datalfor
such that they vanish outside an interval not containing the
shell. The corresponding solution describes a situation in
which gravitational waves impinge from the inside or outside
onto the shell and will set it into motion.

Second, we would like to have the opposite situation, an
initial o and as little gravitational waves as possible. Take
data for ¥ which vanishes outside an interval around the
shell. We have just to make sure that we choose the values
@nd derivatives off at both sides in such a way thé# does
not vanish. This is possible because we have just two linear

It remains to establish the desired form of the conditiongransition conditions in the Regge-Wheeler gadgee the

for u.

end of Sec. II).
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V. QUASINORMAL MODES First, we calculate the linearization of the equatiof%,,
of the shell(we write || for the covariant derivative on the

To find the quasinormal modes of the shell, one has tooackground shell

proceed as follow§10]. First, one determines solutions with
es! time behavior for any comples Local solutions of the
two wave equation&4.1), (4.2) are determined by initial val-
uess,s’,u,u’ at some pointy. The condition thaZ andZ’ S
vanish at this point gives two relations between those data. fvhich implies, fora=0,6, ¢,

they are satisfiedZ=0 holds for the solution and all field

equations hold because of E@.8). Hence we have a two- 0= (o +\p)utuP+ psP. (6.2
parameter family of solutions on both sides of the shell.

Regularity at the centefor the horizon determines a one- 2%, splits as usual into the two equations

parameter family. If we fix the overall constant at the center,

we have just one solution for a given The two transition o U3+ (a+Ap)ul =0 (6.3
conditions at the shell determine uniquely the outer solution.

Hence there is a unique solution for eaglwith €' time  gng

behavior.

If we use data fop, " to characterize the local solutions, (0+AP)UBUP+ P ,s2P=0. (6.4)
we can take the transition conditiot%.11), (4.12 for w,u’ '
from Sec. IV.

Similarly, one can find for read a unique solution which
satisfies the correct boundary condition at infinity. From two
solutions—one regular at the center, one with the correct
behavior at infinity for each read—one builds the Green
function first for reals. The analytic extension of the Green _
function has poles, the quasino):mal modes. (80+N8p)U%pU°+ (7+\P) 8(u5U”)

In nu_merical calpulations of quasinormal modes, one +6p bgab+5b55ab:0_ (6.6)
starts with the solution regular at the center for compdex ’ '
and tries to find those values affor which the solution

F=(a+Np)uuf+p(s*¥—nnP), (6.2

Linearization gives

87 JUP+ T 20U+ (So+\Sp)UPp+ (a+Ap)suP =0,
(6.

; — TA—_T0 —H
satisfies at infinity the “outgoing wave condition”: the so- Ijlge_lése the background relations=@ ,Uu" =1, =P,a
lution for general comples is near infinity, a linear combi- =Upu”, we obtain
nation of two solutions with the property that for reabne — = b
solution is bounded the other is diverging. “Outgoing” is S0 U+ (0 +AP)6u”p=0, 6.7
defined by the property that only the part bounded for seal
is present. (o+\Pp) 8(u?,uP) + 8p ,s2P=0. (6.8

The numerical calculations of the quasinormal modes are
left to a further paper. With the linearized connection from Appendix B, we find
Sud,=[25—1(1+1)a]y. (6.9

VI. NEWTONIAN LIMIT OF THE EQUATIONS

A solution of the linearized vacuum field equations which The perturbed acceleratia¥®(u?,u®) has only a nonvanish-
satisfies the shell transition condition describes a nonradialling 6§ component
oscillating shell. In this section, | want to consider the New-
tonian limit of the field equations and the transition condi- AR 2e?®kY ,. (6.10
tion, and it will turn out that the limiting system really is a '
formulation of the Newtonian problem. There is a conceptuakg we obtain finally, for the motion tangentially to the shell
difference between shells in Newton’s and Einstein’s theo{ 5, =5V,
ry: In Einstein’s theory the “main action” is in the field
equations outside the shell and the shell quantities appear via P : :
thqe transition conditions. In Newton’s thegry the field I;ﬂtside o6+ (o tAp)[2s—I(I+1)al=0, (6.19
the shell is just the Newtonian gravitational field and the _ o2 20 5
equations of motion are formulated at the shell. Hence to do (e +NP)A""R™°e™°KY 4+ op R °=0. (6.12
successfully the Newtonian limit of the equations we have to
extract from the field equations the relevant relati¢p$)  The “normal motion” of the shell is contained in the equa-
and(2.6) at the shell. tion

The object available in both theories is the connections. If
we look at the linearized connection components in Appen- 6[(+kaﬁ+*kaﬁ)r“ﬁ]zo. (6.13
dix B, one realizes that we only have a limit—in the Gauss-

ian gauge—if we assume thet 'k=k and\ ~%¢ are finite. ~ With Egs.(3.6), (3.11) we obtain
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Usinga’'=s', a"=s", we obtain from these equations the

1 . o1 .
[(E F[eZ‘DZk]YrY) +3 F[ez‘DZk]er)

o unique solution
_ 1 1
M* M _ _
0 RS- St s=—-g(t), a=—g(t)+h(t). (6.21)
+(\/F_*+\/F_ R™“[ 80— Sto(oc+2\p)] r r
1 " We can simplify Eq(6.17) if we use Eq.(6.21):
+|| — = Fr4s—2I(I1+1)a] . . _
2 g (k' +kYo+(MT+M R 255 —s'[4=2I(1+1)]p
1 1 —48pR1=0. 6.2
+ —EFr2[4s—2I(I+1)a] pR2Y P (622
,r

The field equation
—46pR *+4pR Y 2s—1(1+1)a]Y=0. (6.19

2 1
0=6Rr,=—-§—=-5s+I(I+D)a'+I1(1+1) - &’
Now we can evaluate Eq$6.11), (6.12), and(6.14) for \ r r

=0 to obtain the Newtonian equations. Remembering

) 1. 1.
Nk, we get “l+D) 5o |8+ € (6.23
86+0a]25—1(1+1)a]=0, ©.19  jetermines
TR ZKY 4+ 8p R 2=0. (6.16 t=h _R—2+r (6.29
r ' '

The transition condition$3.22 and (3.23 imply for A=0

thata’ ands’ are continuous, as we expected. Therefore inyhere we have used thatvanishes at the shell. ThéR,,
Eqg. (6.14) the undifferentiatech and s terms cancel foin — 0 field equation is satisfied for susha E

=0 and we obtain ] 2
It remains to calculat& from SRyt

1 . o1 -1 -

(_[ZK]rY +(—[k] rY) o f, 2 k. )
2 ' 2 0:5RTT=k”+Fk'—I(I+1) r—z—25+|(|+1)a
+(M*+M7 )R Y 50— Sto(0) ] o R2

L . +(2$’—I(I+1)a’)<1>’)\‘1+l(l+1)H(—2—1).
+|| =5 ri4s, -2+ 1)a,] r

L - If we inserta,s, &, we obtain £2&'=M/R?)
+ —§r2[4s,,—2|(|+1)a,,] }HR‘ZY 5 1

0= S6Rr=k'+ - k' —1(1+1) = k
—45pR1=0. (6.17
1 1
These equations contain the fielag),s(t), which describe —[2=10+D] - g-[2=1(+D)] 7 M~g

the motion of the shell, the matter fieldsr,sp, and the
gravitational potentiak. We can solve the field equation in

the case\ =0 to determinek in terms of the other variables
(Appendix B:

R2
+1(1+1) r—z'h. (6.2

Because we are in the Gaussian gauge, we have to solve this
0=6R,,=a’'—5'. (6.1  equation on both sides of the shell with the prescribed jump
of the normal derivatives &:

The 60 component of the field equations has terms propor-

tional Y andY ,, which must vanish separately: Tk'="k'=4m65G. (6.26
4s’ a’  2s The solutions of the homogeneous equation @egular at
0=06Ry,=—r?s"+ T_I(I +1) T+ z +1(1+1)s, the origin and bounded at infinity
(6.19 R ! i RI+1
“ko=a(t) gr. Tko=B(1) TrT- (6.27
O_5R _ 2 ”+23’+23+2 _ 247N\
S oRg= T AT 2| t2a=—(rra’)’. A particular solution of the inhomogeneous equation can be

(6.20 guessed:
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R 1 .
:'gr+gr7MI+hR2. (6.29
Continuity atR implies
1 1 .
a+g@M =,8+g@M . (6.29
The jump condition is
I1121M+I 21M‘—45"
B(+)§ gﬁg a§+g§3 =41o0.
(6.30
From this we obtain
o 1+2 1M+M‘ 14R5‘
B="5ir1 9 M ~M )= 5 4mRoT,
(6.32
-1

1 1
— +_ Il
=577 9z (M* =M )= 5= 4R
(6.32

Hence afR, the location of the shell, we obtain

-1 1 1
T_M ") —
k=g 9 Rz (MF =M )= 5 47RSG+ R

1 .
+0 =2 M~ +hR?, (6.33
thooit2 1 MT—M~)— =——4A7R§7+ R
=T aridRe )~ 3171 AmRITHY
1 .
+0 5 M*+hR?, (6.39
or because o§R+hR?=4R?,
AP I+1 -1 1
=" :Jr =3 2 - +
k="k="k=aR+ 5 M o M7 | gz ¢
b A7RSG 6.3
T 21 O (6.35
Finally, we need the derivatives
frog it M*—M-~ P
2|+19R3( M) =5 4790
1
+t9-29 s M, (6.36
tke=(1+1 1+2 M*—M" + o1 |+1 7460
=( )mgﬁ( ) oo
1
+g—29§g|\/|+. (6.37)

PHYSICAL REVIEW D 59 024005

In the equation for the radial motion, we need
21(1-1) M+
2i+1 R Y

_2+)(+) M- 4nss
2Iv1 . R I 271

k' +tk =29+

(6.38

Now we insert Eq(6.35 into Eq. (6.16 for the tangential
motion (6p= 6pY)

GR+AREH S e 2L g 2
o9 21+ 1 21+ 1 rR2 Y
-5 147TR50)+5;3 (6.39

Similarly, we put Eq.(6.38 into Eq. (6.22 for the radial
motion:

21(1—-1) M+
21+1 RS9

47d0\

2041)(1+2) M~
R YT o+1/)¢

21+1

+g %[2—I(I+1)]E+[(M++M‘)R‘2

—2aR 165= (6.40
We can replace the background pressuie the radial equa-
tion by

4p _M M~
R 7T R
We can integrate Eq6.15), the continuity equation, to

so+a[2s—I(I+1)a]=0, (6.41)
because the value af(t) at some time is arbitrary. Thus we
can eliminateso from Egs. (6.39, (6.40 and obtain two
linear second-order equations fgft) anda(t). The coeffi-
cients are determined by *, M~, anda, which character-
ize the equation of state of the perturbed shell.

We write these equations explicitly for the cade =0:

= 4mRéo | + 6p=

(6.42)

A7 do\

( 20— M*
21+1)7

211 r 9T

+g 2 [2-1(1+1)]p+(MTR 2=2aR 1) 65=0
R? p

(6.43

Insertingp and 6o, we get
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~ MT[1+1 2aR tonian theory. We assume that the reader is familiar with the
at —7r 577w+ |9 frame theory[9].
R*|21+1 M - - . .
The conditions of continuity of the time and space metrics
M* I(1=1) 1(I+1)aR at>, imply that, is a smooth hypersurface in the usuk()
A=l R e e —y a=0 (649  coordinates of Newtonian theory. From E@®.4), (2.5 we

concludeAk,z=4mot,tg. Hence the second-fundamental
and forms of X, the intersection oE with the Newtonian time
slices, coincide from both sides. Suppose tki§t,a®) are

‘s M*[17-3I-2 N 2—1(1+1) N 4aR the integral curves of the fluid flow which spah Then
"R 211 4 M+ |9 u®a,= d,+x'd; is the fluid flow vector. The definition of the
. ) second-fundamental form implies
M*1(1+1)2 2I(1+1)aR o
TRz T w20 649 KogUeUB= b U, = (K + 0N, (AL)

These two equations are Eq86) and(87) in [11] if we put where we used the form of the Newtonian connection in
np=a and é&=g. They describe the Newtonian oscillations. Standard coordinates:

As linear ordinary differential equations with constant coef- o« _caBg t A2)
ficients, they can be integrated in closed form[1d] it is ¥ Bryd:

shown tha_t l_\Iev_vtonlan nonradial oscillations are _al\_/vays UNRelation(2.7) is

stable. This indicates that there should be relativistic normal

modes because it seems unlikely that the damping by gravi- U(+kaﬁ+ ‘kaﬁ)u“u3+(+kaﬁ+ ‘kaﬁ)p(saﬁ—n?nﬁ)=0
tational waves could overcompensate the exponential growth (A3)

of the Newtonian mode.
or
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In Sec. Il a fluid shell was defined in the frame theory. |
want to show that this way we really obtain a shell in New- AP=4mody,. (AS)

APPENDIX A:  THE NEWTONIAN SHELL

APPENDIX B: THE LINEARIZED CONNECTION AND RICCI TENSOR

From the thesis of Kindl12], we have the linearized connection
ST Trr=[k+ce® 2d’ 5]Y,
ST T, =K'Y,
ST 11=c2e® @~ MK +2d" (k— )Y +ce® A yY,
ST r=[in—ce® 2D’ 5]v,
OTT, =c 22 MY —c e® Ay + D' p)Y,
S =u'Y,
ST Tr=KY 4
Ol Pr1=c?r 2e?®kY p+cr le®[é—ce® A D' w]Y ,,
ST yr=5Y+AY 4,
ST Tyy=r2c" 2 22[SY+AY 4o —rc e PLe MY+ EY 44l
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ST T14=0,
o ¢71=0,
oI ?4r=5Y+acot oY ,,
ST 4 ,=r%c % ?®sirg[SY+a cot 9Y ,]—rc~te Psitole " nY + £ cot OY 4],
S y=[u—e twlY 4,
Or % = —r" 26?2 uY g+r leMo' +r o]y,
ST =s"Y+a'Y 4,
ST yo=—r%e 2M(s'+2r )Y+ (a' +2r )Y yol+re Me M2uY+wY 4,
ST"4=0,
6re.,.=0
oT?,=s'Y+a'cot 0Y ,
ST 4= —r2e  2Asir?o[(s' +2r "1s)Y+(a’' +2r ta)cot gY 4] +re” Asirfdle *2uY + w cot Y 4],
ST y=—(2c) 1e* PpY p—r(2c) le [+ (@' —r Y —c et PalY ,,

1 1
olMre=5 ce Y - > rce? Mg+ @ +r H—c et Paly,,

1
STl =— > cr2eM Py ptc(2r) e[ +E(r - ) +c et T Pw]Y

and the linearized Ricci tensor

SRrr={—jit—28+1(1+1)a+ce® A7 + (@' +2r H]—cePr U1+ 1)[¢—ce® D' w]
+c22 P NK K (20— A +2r 1 +28' D' —p' p' —1(1+1)a' P 2(k—p)(P"+ D' D' —D'A'+2r 1d")]
—c2e®®r 2 (1+1)k}Y,

SRy =1 =25 +25(@' —r H+2r Lp+l(+Da 11+ Da@ —r 1
1
—ce? ("'~ A +2r D) — S celr (I DL+ E(r =) et To—r et p] 1Y,

SR, ={c2e? A P —c M (' + D' ) -k —28"+I(I+1)a"+k' (A —2d")
+u' (@ +2r H—I(I+1)(A'=2r H—e Mr U+ 1) (0" +r tw)+e® r U+ 1) u}Y,

P I W 1 o-a -1
OR7p= a-p—ste rlow'+w(3r —gF’)]+§ce r[E"+& (' —A'+2r %)

+HE(@" D A +5r D —r I Y,

SRip={a'—k' —s' —k(®'—r Y)+r(2c) te [ ¢ +&(r -d ) +c et Pat+eltr iglte to(A =D —r Y ,,
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ORpp=(c % 2%r%—c te Pryp—e Mg+ (O —A'+4r H+r k' —u' —I(I+1)a’]
+(s—w)2r Y —A'+r H+1(1+1)(s—e tw))Y
x{c 2e 2®r2a—c le Pré—e M a’+a/ (@' —A'+2r H+a2r D' —A'+r 1]
+2a—k—pte Mo +o(® +r 1LY ,,,
SR, s={-"}sIPOY +{---}sin @ cos OY ,.

In the bracketq: - -} the same expressions appear ashy,.

APPENDIX C: GAUGE TRANSFORMATIONS M:MO—e_AB’, (C5)
A general gauge transformation of an even perturbation 1 1
with Y,(#) angular behavior is determined by w:wo—eA( vy = T 'y) o B, (C6)
f,=—ce’ay, 1
0_ oA
s=s'—e * — 8, C
f,=e'BY, =B (C7)
= 1
f0 r 7Y,0 ’ (Cl) a= a.O_ ? Y. (CS)
where «, B, andy depend onT,r. The metric perturbations
(3.1) change according to The Regge-Wheeler gauge is characterized byw=a=0,
as a consequence of the field equatikrs— w. The follow-
1 in transformation leads f G to th
L0 T D A g gauge transformation leads from a Gauss gauge to the
k=k e Tame TO'p, (€2 Regge-Wheeler gauge:
o 1 4 N y=rag,
=p—-—e °B+re Na' —d'a), (C3
e F B=—e Mrag),
P S 1 o2
E=&-ce Tyt a (CH a=—rés+ e "riag. (C9
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