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Pathologies of hyperbolic gauges in general relativity and other field theories
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~Received 12 September 1997; published 16 March 1998!

We present a mathematical characterization of hyperbolic gauge pathologies in electrodynamics and general
relativity. We show analytically how non-linear gauge terms can produce a blow-up of some fields along
characteristics. We expect similar phenomena to appear in any other gauge field theory. We also present
numerical simulations where such blow-ups develop and show how they can be properly identified by per-
forming a convergence analysis. We stress the importance of these results for the particular case of numerical
relativity, where we offer some cures based on the use of non-hyperbolic gauges.@S0556-2821~98!50208-1#

PACS number~s!: 04.25.Dm, 04.20.Ex
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During the last decades, gauge field theories have bec
the paradigm of fundamental physics. In such theories, ga
invariance implies that the ‘‘physics’’ is independent of o
choice of gauge. Yet in some cases, of which general r
tivity ~GR! is a very good example, it can be difficult t
separate the gauge from the physical degrees of freed
This is of particular importance in numerical simulations
non-linear field theories, where one needs to distingu
physical singularities from pure gauge pathologies. In s
cases, exact solutions are not available, and the simple
of a change of gauge can become a daunting task. Becau
this, understanding the properties of particular gauge cho
becomes an issue of great relevance.

In a recent paper@1# it was shown, to the surprise of man
in the numerical relativity community, that certain gau
choices~throughout we use the term ‘‘gauge’’ applied
relativity to mean only slicing conditions! in relatively
simple scenarios could lead to the development of what w
there called ‘‘coordinate shocks.’’ Here we will show th
the term ‘‘shock’’ used in that paper is misleading and w
refer to them instead as gauge pathologies. The recent B
Massóhyperbolic formulation of the Einstein equations@2#
allowed the author of Ref.@1# to study the structure of the
gauge condition and how its non-linearity could cause ga
pathologies. It was shown numerically that these patholog
seemed to occur, but no proof that they were real disco
nuities was given. This work left some basic questions
answered: How can we characterize these pathologies m
ematically and numerically? How generic are they?
similar phenomena occur in other gauge theories?

Here we give for the first time a mathematical charact
ization of hyperbolic gauge pathologies~where by hyper-
bolic gauge we mean choices where the gauge is evo
using a hyperbolic equation! based on the theory of nonlinea
waves@3#. We focus our attention on two cases: electrod
namics ~ED! and spherically symmetric general relativi
~GR!. We analyze the structure of the equations and sh
how non-linear gauge terms can produce a blow-up of so
fields along characteristics@3#. Such a blow-up indicates
gauge singularity and corresponds to the ‘‘coordin
shocks’’ of Ref.@1#. The blow-ups described here are mu
stronger singularities than shocks, since some of the pro
gating fields become in fact infinite. We also show how t
blow-ups can be identified numerically by analyzing the co
570556-2821/98/57~8!/4511~5!/$15.00
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vergence properties of computational simulations. Fina
we propose some ‘‘cures’’ for these pathologies based
changing the hyperbolic nature of the gauge conditi
Though we only study the cases of ED and GR, we exp
similar phenomena to appear in any other gauge field the

Electrodynamics—Surprisingly, gauge effects can pro
duce blow-ups along characteristics even in simple syst
such as ED. We are not aware of any previous analysis
gauge pathologies in ED, probably because well beha
gauge choices are intuitively clear there. In the following,
will follow closely the notation of Refs.@1,2#.

We will write the equations of ED as a first order initia
value problem in the following way:

] tAi52~Ei1c i !, ~1a!

] tDi j 52] i~Ej1c j !, ~1b!

] tEi5] i tr D2(
j

] jD ji , ~1c!

wheref and AW are the scalar and vector potentials,EW the
electric field, and where we have introduced the quanti
Di j ª] iAj and c i ª] if. We also have one constraint whic
in vacuum takes the form¹•EW 50.

We are now free to decide how$f,c i% will evolve, i.e.
we are free to choose the gauge. Here we make a ch
similar to the one we will make later in relativity

] tf52 f ~f!tr D, ~2!

with f (f).0, but otherwise arbitrary~f 51 corresponds to
the familiar Lorentz gauge!. It is through the gauge function
f that we introduce a non-linearity into ED, which is othe
wise a completely linear theory.

The resulting system of equations can be shown to
hyperbolic ~in the sense of having a complete family
eigenfields!. For a given directionx we find the characteristic
structure: four fields propagate along the physical light co
~speed61!

vp6
ª~Ep1cp!6Dxp , pÞx, ~3!

and 2 fields propagate with the ‘‘gauge speeds’’6Af
R4511 © 1998 The American Physical Society
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FIG. 1. Numerical simulation of a gauge wave in electrodynamics. The first two plots show the initial~dotted line! and final~solid line!
values att520 of the scalar potentialf and its derivativecx . The lower plots show the convergence rates as a function of time.
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ªcx6Af tr D. ~4!

The remaining 13 fields move along the time lines.
Let us now defineVg6

ªAf vg6
. We find

] tVg6
6Af ]xVg6

56
f 8

4 f
~Vg6

2 1Vg1
Vg2

!. ~5!

For f 8Þ0, the quadratic term inVg6
can produce a blow-up

along a characteristic in a finite time. We can predict the ti
when this will happen, if we restrict ourselves to the ca
Vg2

50, and takef 5eaf. Along a characteristic we will
have

dVg1

dt
5

a

4
Vg1

2 , ~6!

which can be easily integrated to find

Vg1
5

V0

12aV0t/4
. ~7!

For aV0.0, a gauge pathology~a blow-up ofVg1
! will

appear at a finite timeT given by

T54/aV0 . ~8!

We have constructed a numerical code to evolve this s
tem of equations and reproduce this blow-up. Figure 1 sh
the results of a one-dimensional simulation for which
shock is expected atT519.92. The first two plots show th
initial ~dotted line! and final~solid line! values att520 of f
andcx . A sharp gradient has developed inf, while a large
spike has appeared incx .

Now, if we had not performed the mathematical analy
of the system, we could ask ourselves how can we know
these features correspond to a real blow-up and not to
development of large, but smooth gradients. After all, no
linear systems may develop features that are difficult to
e
e

s-
s

s
at
he
-
-

solve numerically. As an example, one of the key succes
of numerical relativity has been the discovery of critical ph
nomena@4#. Confidence in these results required advanc
adaptive mesh refinement and the careful use of converg
tests@5#. Here we have performed similar convergence st
ies: we consider a series of different resolutions and find
rate at which a global measure of their relative errors c
verges to zero~the ‘‘self-consistent’’ convergence rate!. Our
code uses a second order accurate scheme, so we expe
convergence rate of our solutions to be 2. The lower t
plots of Fig. 1 show the convergence rates forf and cx
obtained from runs at three resolutions~5000, 10000 and
20000 points!. As expected, fort,20 the convergence rate i
close to 2, while after that it drops dramatically indicatin
loss of convergence. Moreover, the spikes incx become
larger and larger with increased resolution. We then c
clude that they correspond to a real infinity and not jus
large gradient. The lesson is clear: we can characterize
merically the appearance of a blow-up using converge
analysis.

It is important to consider the effect that the choice
finite difference method has on the results described ab
When we used standard methods such as a leapfrog sch
the simulations crashed very soon after the spike incx
started to develop. Using instead shock capturing@6# tech-
niques, we were able to follow the evolution much furth
which allowed us to determine more precisely the time of
blow-up. Notice that this further evolution is non-physica
the shock capturing techniques help to maintain the sim
tion stable, but this is of no physical relevance, since the t
solution is not really a shock wave. A real infinity has dev
oped and no numerical method will converge after that.

Spherically symmetric general relativity—Let us now
consider the case of GR in spherical symmetry. The ba
variables are the lapse functiona, the spatial metric compo
nents $grr ,guu% and the extrinsic curvature componen
$Krr ,Kuu%. Since we are interested in hyperbolic gauges,
will use the following gauge condition@2#:

] ta52a2f ~a!tr K, ~9!



pse

RAPID COMMUNICATIONS

57 R4513PATHOLOGIES OF HYPERBOLIC GAUGES IN GENERAL . . .
FIG. 2. Numerical simulation of a spherically symmetric black hole spacetime. The first two plots show the initial~dotted line! and final
~solid line! values att515M of the lapsea and the conformal metric functiongrr . The lower plots show the convergence rates for the la
and the Hamiltonian constraint.
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with f (a).0, but otherwise arbitrary~f 51 now corre-
sponds to harmonic slicing!. It can be shown that with this
gauge condition, the evolution equations of GR can be w
ten in first order hyperbolic form@2#.

The particular form of the equations for spherical symm
try and its characteristic structure can be found in@1#. There
it was shown that there are two families of travelling mod
one that moves with the speed of light, and one that mo
with a ‘‘gauge speed’’ that depends on the value of the fu
tion f and that reduces to the speed of light for harmo
slicing. In general, both types of travelling modes can
velop gauge pathologies. Here we will concentrate in
particular case of harmonic slicing (f 51), where only one
type of pathology appears. Note that this gauge is the
ferred choice for many of the new hyperbolic formulations
the Einstein equations@7#. The analysis of the system fo
other forms off will be considered elsewhere@12#.

We will start by defining

V6 ªa/guu~Kuu6Druu /grr
1/2!, ~10!

whereDruu ª1/2] rguu . From the form of the evolution equa
tions given in@1#, it is easy to show that, forf 51, we will
have

] tV66a/grr
1/2] rV65V1V22V6

2 1a2/guu . ~11!

We see that theV6 represent outgoing~1! and ingoing~2!
modes travelling with the speed of light. Unfortunately, t
last term on the right hand side of the above equations ma
it impossible to separate them, and so prevents one f
predicting when a blow-up caused by the quadratic sou
terms might occur. Nevertheless, one can see that the
dratic term inV6 appearing in Eq.~11! is only dangerous for
negative values ofV6 . Moreover, it is easy to see that
V6 is initially positive, it will not change sign. Now, if our
initial data is time-symmetric (Ki j 50) and such that the
t-
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metric functionguu is monotonic, then we will have6V6

.0. This means that no blow-ups can develop for outgo
modes: Only ingoing modes can produce a gauge pathol
Of course, whether they will or not depends on the prec
form of the initial data.

In Ref. @1# it was shown that pathologies appeared fo
particular choice of initial data in a black hole spacetim
Here we give another example of how pathologies can fo
from apparently simple initial data. We choose the stand
initial data for the metric and extrinsic curvature that h
been successfully used for most black hole simulations
date @8–10#. It corresponds to an isotropically slice
Schwarzschild black hole with time symmetry. The key d
ference is that, instead of choosing an initial lapse that sa
fies the maximal slicing condition, we choose the followin
‘‘Gaussian’’ profile:

a512A exp$@~r 2r 0!/s#p%. ~12!

We have used three independent numerical codes
evolve the system, one based on the standard Arnow
Deser-Misner~ADM ! formulation @11# that uses a simple
leapfrog scheme, and two based on the Bona-Masso´ hyper-
bolic formulation@2# that use shock capturing methods@6#.
All three codes produce similar results with one importa
difference: the ADM code crashes soon after the patholog
start to develop, while the other two codes are capable
continuing past this point.

We report the results of a particular simulation obtain
using one of the hyperbolic codes. The first plot in Fig.
shows the initial~dotted line! and final~solid line! values of
the lapse at timet515M for the case$A51, r 05M /2, s
56M , p52%, with M the mass of the black hole. The ne
plot shows the same for the conformal metric functiongrr .
Notice how both the lapse and the radial metric deve
large spikes, the sizes of which increase with resolution. T
bottom plots show the global convergence rate of the la



00
te
-u

he
t i
nd
se

t
e

be

u
un
id
ow
t
T
a

ha
in
c
n
n
lu
la

t
itia
ne
a

in

h
ea
eo
lt
-

pl

y

to

of

di-
e.
ses
for
pa-
nd

our
nd
e

ri-
ry

es.
ef-
ot

ion.
R
uge

ar-
R.
ge
-up

in-
mu-
ed

y to
ith

GR,
ge

ati-
or-
ld

a,
ela,
pe-
ery

RAPID COMMUNICATIONS

R4514 57MIGUEL ALCUBIERRE AND JOAN MASSÓ
and the Hamiltonian constraint obtained from runs at 40
8000 and 16000 grid points, with the outer boundary loca
at 40M . Clearly, we have a gauge pathology, whose blow
time seems to bet5(1461)M .

Although the simulation presented here corresponds
harmonic slicing, gauge pathologies also develop with ot
hyperbolic gauge choices. An important difference is tha
the harmonic case, the lapse becomes infinite, which i
cates that the time slicing becomes null. In the other ca
the lapse becomes discontinuous, but remains finite, and
time slicing develops a kink instead. We have perform
many simulations studying the parameter space$A,s,p% and
found similar results. Details of all these studies will
given elsewhere@12#.

Another crucial aspect of the problem is that of the n
merical resolution of the gauge pathologies. We have fo
that if we evolve the previous system with only 200 gr
points, the pathologies do not seem to form. The lapse gr
until a certain value is reached and then it propagates ou
a smeared manner due to the large numerical viscosity.
solution ‘‘looks good,’’ although it is non-physical, as
proper convergence test reveals.

The impact of these results on three dimensional~3D!
numerical relativity should not be underestimated. Note t
in the previous examples we have used thousands of po
to be able to show very sharp fall-offs of the convergen
rate and have a good estimate of the blow-up time. Eve
this sharpness will not be possible at the resolutions curre
available for 3D computations, at medium and low reso
tions one can already see that the convergence fails at
times.

We should stress again the fact that the developmen
these pathologies depends crucially on the form of the in
data. For different choices of the initial lapse function, o
can find that harmonic slicing is perfectly well behaved,
the simulations presented in Ref.@9# show. In fact, one can
even find explicitly a harmonic slicing of a black hole
which the metric is static@13#.

‘‘ Cures’’—The appearance of gauge pathologies mig
seem to put into question the practical value of non-lin
hyperbolic gauges in numerical studies of gauge field th
ries. After all, in a general situation it might be very difficu
to know a priori if our initial data will develop such a pa
thology.

For ED, the solution is clear: use a gauge that decou
the characteristic speeds from the dynamics,i.e. use the Lor-
entz gauge. Unfortunately, this will not work in relativit
where the characteristic speeds cannot be decoupled from
dynamics. We can think of at least two different ways
s.
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solve the problem. Both involve changing the character
the equations for thegauge only: all other equations~the
‘‘physics’’ ! remain hyperbolic.

The first approach implies using an elliptic gauge con
tion of which maximal slicing is the best known exampl
One can then either use an elliptic gauge always or, in ca
where it might be of interest, use a hyperbolic gauge
some time and then switch to an elliptic gauge when a
thology is about to form. We have tested this idea and fou
that it works very well in practice@12#.

The second approach consists of adding dissipation to
gauge condition. We will then have a parabolic equation a
intuition tells us that this should prevent the pathologies. W
then propose the gauge condition

] ta52a2@ f ~a!tr K2j~a!¹2a#, ~13!

with f ,j.0 but otherwise arbitrary. Notice that the nume
cal treatment of the diffusion term requires either a ve
stringent Courant condition or the use of implicit techniqu
Note also that this term should be kept with the same co
ficient for all resolutions of a given simulation, as it does n
correspond to a simple ‘‘artificial viscosity’’@10#, but rather
to an explicit change of the character of the gauge condit
We have tried this condition in spherically symmetric G
and found that it also prevents the development of ga
pathologies@12#.

In conclusion, we have presented for the first time a ch
acterization of hyperbolic gauge pathologies in ED and G
We have shown how the coupling of characteristic gau
speeds to the dynamics produces a nonlinear blow
mechanism, and how a careful convergence analysis can
dicate the appearance of such a blow-up in numerical si
lations. The origin of these pathologies is in the finite spe
of propagation of the gauge modes, and therefore a wa
avoid them is the use of elliptic or parabolic gauges w
infinite gauge speeds.

Though we have concentrated in the cases of ED and
we expect similar pathologies to arise in any other gau
field theory. Because of this we feel that further mathem
cal study of these phenomena will be of fundamental imp
tance for future numerical simulations of non-linear fie
theories.
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Bernd Brügmann, Carsten Gundlach, Ed Seidel, Joan St
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cial thanks to Bernard Schutz and Richard Matzner for a v
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