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Pathologies of hyperbolic gauges in general relativity and other field theories
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We present a mathematical characterization of hyperbolic gauge pathologies in electrodynamics and general
relativity. We show analytically how non-linear gauge terms can produce a blow-up of some fields along
characteristics. We expect similar phenomena to appear in any other gauge field theory. We also present
numerical simulations where such blow-ups develop and show how they can be properly identified by per-
forming a convergence analysis. We stress the importance of these results for the particular case of numerical
relativity, where we offer some cures based on the use of non-hyperbolic ga8§656-282198)50208-1
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During the last decades, gauge field theories have becomergence properties of computational simulations. Finally,
the paradigm of fundamental physics. In such theories, gaugae propose some “cures” for these pathologies based on
invariance implies that the “physics” is independent of our changing the hyperbolic nature of the gauge condition.
choice of gauge. Yet in some cases, of which general relaFhough we only study the cases of ED and GR, we expect
tivity (GR) is a very good example, it can be difficult to Similar phenomena to appear in any other gauge field theory.
separate the gauge from the physical degrees of freedom. Electrodynamics-Surprisingly, gauge effects can pro-
This is of particular importance in numerical simulations of duce blow-ups along characteristics even in simple systems
non-linear field theories, where one needs to distinguistpuch as ED. We are not aware of any previous analysis of
physical singularities from pure gauge pathologies. In suci§auge pathologies in ED, probably because well behaved
cases, exact solutions are not available, and the simple idé@uge choices are intuitively clear there. In the following, we
of a change of gauge can become a daunting task. BecauseWi! follow closely the notation of Refs[.1,2].
this, understanding the properties of particular gauge choices We will write the equations of ED as a first order initial
becomes an issue of great relevance. value problem in the following way:

In a recent papdr] it was shown, to the surprise of many
in the numerical relativity community, that certain gauge dA=—(Ei+ i), (1a)
choices(throughout we use the term ‘“gauge” applied to
relativity to mean only slicing conditiofnsin relatively
simple scenarios could lead to the development of what were
there called “coordinate shocks.” Here we will show that HE;=d, tr D— 2, ;D
the term “shock” used in that paper is misleading and will j
refer to them instead as gauge pathologies. The recent Bona- . R
Massohyperbolic formulation of the Einstein equatiof®]  where ¢ and A are the scalar and vector potentias,the
allowed the author of Ref.1] to study the structure of the electric field, and where we have introduced the quantities
gauge condition and how its non-linearity could cause gaug®;;:=d;A; and ;=d;¢». We also have one constraint which
pathologies. It was shown numerically that these pathologieg, vacuum takes the forriy - E=0.

seemed to occur, but no proof that they were real disconti- \e are now free to decide hofw, ;! will evolve, i.e.

nuities was given. This work left some basic questions unwe are free to choose the gauge. Here we make a choice

answered: How can we characterize these pathologies matBimilar to the one we will make later in relativity

ematically and numerically? How generic are they? Do

similar phenomena occur in other gauge theories? dyp=—T(¢)tr D, 2
Here we give for the first time a mathematical character-

ization of hyperbolic gauge pathologiéshere by hyper- with f(¢)>0, but otherwise arbitraryf=1 corresponds to

bolic gauge we mean choices where the gauge is evolveithe familiar Lorentz gaugelt is through the gauge function

using a hyperbolic equatigptased on the theory of nonlinear f that we introduce a non-linearity into ED, which is other-

waves[3]. We focus our attention on two cases: electrody-wise a completely linear theory.

namics (ED) and spherically symmetric general relativity = The resulting system of equations can be shown to be

(GR). We analyze the structure of the equations and shovinyperbolic (in the sense of having a complete family of

how non-linear gauge terms can produce a blow-up of someigenfield$. For a given directiox we find the characteristic

fields along characteristid8]. Such a blow-up indicates a structure: four fields propagate along the physical light cones

gauge singularity and corresponds to the ‘“coordinate(speed*1)

shocks” of Ref.[1]. The blow-ups described here are much

stronger singularities than shocks, since some of the propa- wp, =(Ep+¢p)EDyp,  PEX, (©)

gating fields become in fact infinite. We also show how the

blow-ups can be identified numerically by analyzing the con-and 2 fields propagate with the “gauge speeds”/f

Dij=—ai(Ej+ i), (1b)

i (10
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FIG. 1. Numerical simulation of a gauge wave in electrodynamics. The first two plots show the(doti@d ling and final(solid line)
values att =20 of the scalar potentiab and its derivativey, . The lower plots show the convergence rates as a function of time.

Wy = E Jf tr D. (4) solve numerically. As an example, one of the key successes

- of numerical relativity has been the discovery of critical phe-

The remaining 13 fields move along the time lines. nomenal4]. Confidence in these results required advanced
Let us now definngt: \/?“’9: _We find adaptive mesh refinement and the careful use of convergence

tests[5]. Here we have performed similar convergence stud-

£ ies: we consider a series of different resolutions and find the

g = \/?aXQ%: tE(QzﬂLQngf). (5) rate at which a global measure of their relative errors con-
- - - verges to zerdthe “self-consistent” convergence rateéOur

For /0, the quadratic term if),can produce a blow-up code uses a second order accurate scheme, so we expect the
* convergence rate of our solutions to be 2. The lower two

along a characteristic in a finite time. We can predict the time)|;:s of Fig. 1 show the convergence rates fbrand i
when this will happen, if we restrict ourselves to the cas€ piqined frdm runs at three resolutiof&000, 10000 aﬁd
_ _ a(b . . . . L X
{1y =0, and takef=e". Along a characteristic we will 54400 points As expected, fot< 20 the convergence rate is
have close to 2, while after that it drops dramatically indicating
loss of convergence. Moreover, the spikesin become

ng+ B aﬂz 6 larger and larger with increased resolution. We then con-
dt 47794 (6) clude that they correspond to a real infinity and not just a
large gradient. The lesson is clear: we can characterize nu-
which can be easily integrated to find merically the appearance of a blow-up using convergence
analysis.
Q. - Qo ) It is important to consider the effect that the choice of
9+ 1—-aQt/4’ finite difference method has on the results described above.
When we used standard methods such as a leapfrog scheme,
For a()y>0, a gauge pathologfa blow-up of(), ) will the simulations crashed very soon after the spikegin
appear at a finite tim& given by started to develop. Using instead shock captufiBigtech-
nigues, we were able to follow the evolution much further,
T=4/a,. (8)  which allowed us to determine more precisely the time of the

blow-up. Notice that this further evolution is non-physical:
We have constructed a numerical code to evolve this systhe shock capturing techniques help to maintain the simula-
tem of equations and reproduce this blow-up. Figure 1 showgon stable, but this is of no physical relevance, since the true
the results of a one-dimensional simulation for which asolution is not really a shock wave. A real infinity has devel-
shock is expected dt=19.92. The first two plots show the oped and no numerical method will converge after that.

initial (dotted ling and final(solid line) values at =20 of ¢ Spherically symmetric general relativityLet us now
and ¢, . A sharp gradient has developeddnwhile a large  consider the case of GR in spherical symmetry. The basic
spike has appeared if,. variables are the lapse functien the spatial metric compo-

Now, if we had not performed the mathematical analysisnents {g,, ,gy,} and the extrinsic curvature components
of the system, we could ask ourselves how can we know thelK,, ,K ,,}. Since we are interested in hyperbolic gauges, we
these features correspond to a real blow-up and not to thwill use the following gauge conditiof2]:
development of large, but smooth gradients. After all, non-
linear systems may develop features that are difficult to re- da=—a?*f(a)tr K, 9
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FIG. 2. Numerical simulation of a spherically symmetric black hole spacetime. The first two plots show thédpitiadl ling and final
(solid line) values at=15M of the lapsex and the conformal metric functiagy, . The lower plots show the convergence rates for the lapse
and the Hamiltonian constraint.

with f(a)>0, but otherwise arbitrarff=1 now corre- metric functiong,, is monotonic, then we will have: Q) ..
sponds to harmonic slicinglt can be shown that with this >0. This means that no blow-ups can develop for outgoing
gauge condition, the evolution equations of GR can be writimodes: Only ingoing modes can produce a gauge pathology.

ten in first order hyperbolic forrf2]. Of course, whether they will or not depends on the precise
The particular form of the equations for spherical symme-form of the initial data.
try and its characteristic structure can be foun@lih There In Ref.[1] it was shown that pathologies appeared for a

it was shown that there are two families of travelling modes particular choice of initial data in a black hole spacetime.
one that moves with the speed of light, and one that moveklere we give another example of how pathologies can form
with a “gauge speed” that depends on the value of the funcfrom apparently simple initial data. We choose the standard
tion f and that reduces to the speed of light for harmonicinitial data for the metric and extrinsic curvature that has
slicing. In general, both types of travelling modes can de-been successfully used for most black hole simulations to
velop gauge pathologies. Here we will concentrate in thedate [8—10. It corresponds to an isotropically sliced
particular case of harmonic slicing€1), where only one Schwarzschild black hole with time symmetry. The key dif-
type of pathology appears. Note that this gauge is the preerence is that, instead of choosing an initial lapse that satis-
ferred choice for many of the new hyperbolic formulations offies the maximal slicing condition, we choose the following
the Einstein equationg7]. The analysis of the system for “Gaussian” profile:

other forms off will be considered elsewhefé2].

We will start by defining 1- A expl[(r—rg)/]P) 12
a=1— —Io)lO .

Q. =algyy(K st D, gelgt?), 10
- 900(K o= Dros/0r") (10 We have used three independent numerical codes to

evolve the system, one based on the standard Arnowitt-
WherEDrg(}::l/ZHrge(;- From the form of the evolution equa- Deser'l\/“Sner(ADM) formulation [ll] that uses a Slmp|e

tions given in[1], it is easy to show that, foi=1, we will  leapfrog scheme, and two based on the Bona-Magger-
have bolic formulation[2] that use shock capturing methold.

All three codes produce similar results with one important
Q. *algt?9.0.=0,0_—0%+a%g,. (11) difference: the ADM code crashes soon after the pathologies

start to develop, while the other two codes are capable of
We see that th€) .. represent outgoing+) and ingoing(—)  continuing past this point.
modes travelling with the speed of light. Unfortunately, the We report the results of a particular simulation obtained
last term on the right hand side of the above equations makassing one of the hyperbolic codes. The first plot in Fig. 2
it impossible to separate them, and so prevents one frorahows the initialdotted ling and final(solid line) values of
predicting when a blow-up caused by the quadratic sourcéhe lapse at timeé=15M for the case{A=1, ro=M/2, o
terms might occur. Nevertheless, one can see that the qua=6M, p=2}, with M the mass of the black hole. The next
dratic term in().. appearing in Eqg(11) is only dangerous for plot shows the same for the conformal metric funct@gp.
negative values of).. . Moreover, it is easy to see that if Notice how both the lapse and the radial metric develop
Q. is initially positive, it will not change sign. Now, if our large spikes, the sizes of which increase with resolution. The
initial data is time-symmetric K;=0) and such that the bottom plots show the global convergence rate of the lapse
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and the Hamiltonian constraint obtained from runs at 4000solve the problem. Both involve changing the character of

8000 and 16000 grid points, with the outer boundary locatedhe equations for thgauge only all other equationgthe

at 40M. Clearly, we have a gauge pathology, whose blow-up‘physics™) remain hyperbolic.

time seems to be=(14=1)M. The first approach implies using an elliptic gauge condi-
Although the simulation presented here corresponds t§on of which maximal slicing is the best known example.

harmonic slicing, gauge pathologies also develop with othefPne can then either use an elliptic gauge always or, in cases

hyperbolic gauge choices. An important difference is that invhere it might be of interest, use a hyperbolic gauge for

the harmonic case, the lapse becomes infinite, which indi$°mMe time and then switch to an elliptic gauge when a pa-

cates that the time slicing becomes null. In the other case&010Y is about to form. We have tested this idea and found

the lapse becomes discontinuous, but remains finite, and tﬁgat it works very well in pract'|cé12]. : L
time slicing develops a kink instead. We have performed The second approach consists of adding dissipation to our

manv simulations studving the parameter s \ and gauge condition. We will then have a parabolic equation and
y simu ying the p pﬁm})p . intuition tells us that this should prevent the pathologies. We
found similar results. Details of all these studies will be

given elsewher12). then propose the gauge condition

Another crucial aspect of the problem is that of the nu- ) )
merical resolution of the gauge pathologies. We have found da=—a [ f(a)tr K—&(a)Va], (13
that if we evolve the previous system with only 200 grid

points, the p_athologit_as do not seem to for_m. The lapse 9rOWRith f,£>0 but otherwise arbitrary. Notice that the numeri-
until a certain value is reached and then it propagates out Ify yreatment of the diffusion term requires either a very
a smeared manner due to the large numerical viscosity. Thgingent Courant condition or the use of implicit techniques.
solution “looks good,” although it is non-physical, as a Note also that this term should be kept with the same coef-
proper convergence test reveals. _ _ ficient for all resolutions of a given simulation, as it does not
The impact of these results on three dimensiof®D)  cqrrespond to a simple “artificial viscosity["10], but rather
numencal r_eIat|V|ty should not be underestimated. Note tha{o an explicit change of the character of the gauge condition.
in the previous examples we have used thousands of poin{ge have tried this condition in spherically symmetric GR

to be able to show very sharp fall-offs of the convergenceyq found that it also prevents the development of gauge
rate and have a good estimate of the blow-up time. Even 'bathologies[lZ].

this sharpness will not be possible at the resolutions currently |, conclusion. we have presented for the first time a char-
a_lva|lable for 3D computations, at medium and low_resom'acterization of hyperbolic gauge pathologies in ED and GR.
tions one can already see that the convergence fails at la{§e nave shown how the coupling of characteristic gauge
times. _ speeds to the dynamics produces a nonlinear blow-up
We should stress again the fact that the development ghechanism, and how a careful convergence analysis can in-
these pathologies depends crucially on the form of the initialjicate the appearance of such a blow-up in numerical simu-
data..For different ch.0|ce_s_of t_he initial lapse function, one|5iions. The origin of these pathologies is in the finite speed
can f!nd thgt harmonic sl|c_|ng is perfectly well behaved, asys propagation of the gauge modes, and therefore a way to
the simulations presented in Rg€] show. In fact, one can 4yqid them is the use of elliptic or parabolic gauges with
even find explicitly a harmonic slicing of a black hole in jqfinite gauge speeds.
which the metric is stati€13]. _ _ Though we have concentrated in the cases of ED and GR,
Cures—The appearance of gauge pathologies mightye expect similar pathologies to arise in any other gauge
seem o put into question the practical value of non-lineakig|q theory. Because of this we feel that further mathemati-
hyperbolic gauges in numerical studies of gauge field theog,) study of these phenomena will be of fundamental impor-

ries. After all, in a general situation it might be very difficult (once for future numerical simulations of non-linear field
to know a priori if our initial data will develop such a pa- heories.

thology.

For ED, the solution is clear: use a gauge that decouples We would like to thank Gabrielle Allen, Carles Bona,
the characteristic speeds from the dynamiesuse the Lor- Bernd Brigmann, Carsten Gundlach, Ed Seidel, Joan Stela,
entz gauge. Unfortunately, this will not work in relativity Wai-Mo Suen and Paul Walker for helpful discussions. Spe-
where the characteristic speeds cannot be decoupled from tle@l thanks to Bernard Schutz and Richard Matzner for a very
dynamics. We can think of at least two different ways tocareful and critical revision of the original manuscript.
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