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1. Introduction

Matrix theory is conjectured to be M-theory in the large N limit [1]. Therefore, it

should contain eleven dimensional supergravity at low energies. Even prior to this

conjecture, it was argued that the leading order scattering amplitude of two gravitons

can be calculated using the ten dimensional gauge theory of the string zero modes

dimensionally reduced to the world lines of D0-particles, i.e. Matrix theory [2]. The

spin independent interaction of D0-branes,proportional to v4/r7, has been calculated

and was shown to be in agreement with eleven dimensional supergravity up to the two

loop level [3, 4, 5].

There should be other terms related to the bosonic v4/r7 term by supersymmetry

[6, 7]. Indeed, the power counting of the Matrix theory allows one to trade θ2/r for

each power of v, where θ is the relative spin degree of freedom. The first of these

terms, v3θ2/r8, is a spin-orbit interaction and was calculated in [8], where agreement

with supergravity was found. It has been argued, by comparing massless open string

loops to massless closed string exchange, that all of these terms will agree [6]. In this

paper we calculate the static force between D0-branes, expected to go like θ8/r11.

Recently, discrepancies between näıve matrix predictions and supergravity were

found for three graviton scattering [9], for Matrix theory on ALE spaces [10] and for

R4 terms in supergravity that arise from one loop divergences [11]. These discrepancies
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are argued to be due to the fact that these are finite N calculations and that these

should be compared to the compactification of eleven dimensional supergravity on a

light-like circle [12, 13, 14]. We have little to add to this debate. The exact numerical

agreement that was miraculously found for the two graviton amplitude is expected to

persist in our calculation since it is simply a supersymmetric extension of that earlier

calculation. It is our hope that the techniques presented in this paper will eventually

prove useful for calculations involving more than two particles. These results could

help clarify the relation between eleven dimensional supergravity and Matrix theory.

Calculating the effective potential is equivalent to calculating the effective action for

a static configuration. There are two techniques for calculating the effective action. One

is to treat the classical field (defined to be the expectation value of the quantum field)

as a background field [15, 4]. Quantum corrections come from one-particle-irreducible

vacuum diagrams. The other is to treat the classical field as a perturbation, expanding

in powers of the field [16]. In this method the quantum corrections to the nth coefficient

in the expansion are one-particle-irreducible diagrams with n external lines. In this pa-

per we use both methods. The classical bosonic fields, representing the positions of the

particles, are treated as a background while the fermionic fields, representing the parti-

cles’ spin, are treated as perturbations. This is fairly natural since the fermionic degrees

of freedom are anticommuting and therefore their power series expansion terminates

after a finite number of terms (at least for finite N).

Following this philosophy we find the Feynman rules for the component fields of

N = 2 Matrix theory. We show that all terms with 4k+ 2 background fermions vanish.

This is related by supersymmetry to the vanishing of odd powers of velocity in the spin

independent case. Then, we work out the θ4/r5 potential. This vanishes in agreement

to the vanishing of the corresponding bosonic term v2/r3. Finally, we find the first

nonvanishing static contribution, which is proportional to θ8/r11.

2. The bosonic background

We start from the Matrix theory action

SMatrix =
1

gsls

∫
dtTr

(
−(DtX

i)2 +
1

2l4s

[
Xi,Xj

]2
− iΘDtΘ +

i

l2s
Θγi

[
Xi,Θ

])
, (2.1)

where DtX
i = ∂tX

i + [A,Xi].

Following the strategy outlined in the introduction, we split the bosonic fields into

a classical part (obeying the classical equations of motion) and quantum fluctuations.

The gauge invariance of the background field can be used to set Acl = 0. The gauge

fixing condition for Aq comes from requiring the background covariant divergence of

the gauge fields to vanish.

l2s∂tAq −
1

l2s

[
Xi

cl,X
i
q

]
= 0 .
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This leads to a gauge fixing term.

Lgf =
1

gsls
Tr

(
l2s∂tAq −

1

l2s

[
Xi

cl,X
i
q

])2

. (2.2)

The Lagrangian for the Faddeev-Popov ghosts can be found in [4]. However, it is

not needed for the problem under consideration since the ghosts do not couple to the

fermions at 1-loop order.

We separate the Lagrangian into classical and quantum parts.

L =
1

gs
(Lcl + LX + LA + LΘ + Lghost) . (2.3)

We require the background fields satisfy the classical field equations, so all terms con-

taining a single quantum field vanish. We also use the identity

Tr
[
Xi

cl,X
j
q

] [
Xi

q,X
j
cl

]
+ Tr

[
Xi

cl,X
i
q

]2
= Tr

[
Xi

cl,X
j
cl

] [
Xi

q,X
j
q

]
,

which can be derived from TrA [B,C] = Tr [A,B]C and the Jacobi identity.

LX = Tr

(
−(∂tX

i
q)2 +

[
Xi

cl,X
j
q

]2
+ 2

[
Xi

cl,X
j
cl

] [
Xi

q,X
j
q

]
+ 2

[
Xi

cl,X
j
q

] [
Xi

q,X
j
q

]
+

1

2

[
Xi

q,X
j
q

]2)
LA = Tr

(
(∂tA)2 − 4i∂tX

i
cl

[
A,Xi

q

]
−
[
A,Xi

cl

]2
− 2i∂tX

i
q

[
A,Xi

q

]
− 2

[
A,Xi

cl

] [
A,Xi

q

]
−
[
A,Xi

q

]2)
LΘ = Tr

(
−iΘ∂tΘ− iΘ [A,Θ] + iΘγi

[
Xi

cl,Θ
]

+ iΘγi
[
Xi

q,Θ
])
.

(2.4)

2.1. Component fields for N = 2

We are interested in the static force between two D0-branes in the center of mass system.

Therefore we consider only a static background of fields in the Cartan subalgebra.

Xi
cl =

i

2

[
ri 0

0 −ri

]
Xi

q =
i

2

[
X i

√
2 Y

i

√
2Y i −X i

]

A =
i

2

[
A
√

2B√
2B −A

]
Θ =

i

2

[
θ
√

2ψ√
2ψ −θ

]
.

The bar represents complex conjugation. All of the fields on the diagonals are real,

while the off diagonal fields are complex.

The Lagrangian can be written in terms of these real and complex fields. Only

interactions involving fermions will be necessary for this calculation, so purely bosonic
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interactions are left out of the Lagrangians.

LX = −1
2
X i∂2

tX
i − Y

i
(∂2
t + r2)Y i + (interactions)

LA = 1
2
A∂2

tA+B(∂2
t + r2)B + (interactions) (2.5)

LΘ = 1
2
θi∂tθ + ψ(i∂t − r/)ψ + Y iψγiθ + Y

i
θγiψ − Bψθ − Bθψ −X iψγiψ + Aψψ

We will integrate out the off diagonal fields to get an effective action for the diagonal

fields. The background has given a mass to the off diagonal fields, which will prevent

infrared divergences.

2.2. Feynman rules

The Feynman rules can easily be read off of the Lagrangian. The off diagonal fields

will be integrated out, so only their propagators are needed.

〈
Y
i
Y j
〉

= j i =
iδij

ω2 − r2 + iε

〈
BB

〉
= =

−i

ω2 − r2 + iε

〈
ψψ
〉

= β α = i
(ω + r/)αβ
ω2 − r2 + iε

.

The spin of the D0-branes enters the calculation through the interaction of the

above massive fields with the θ field. The vertices (with the external θ attached, as

explained below) are

i α
= iγiαβθβ

α i
= iθβγ

i
βα

α
= −iθα

α
= −iθα .

3. The expansion in θ

As described in the introduction, we expand the effective action in powers of θ.

Γ(r, θ) =
∑
n

∫
dt1 · · ·dtn Γ(n)

α1,...,αn
(r; t1, . . . , tn) θα1(t1) · · · θαn(tn) . (3.1)

It turns out that iΓ
(n)
α1,...,αn(r; t1, . . . , tn) is the sum of all one-particle-irreducible dia-

grams with n external fermion lines. In frequency space, the effective potential is just
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minus the effective action evaluated at zero momentum:

Veff(r, θ) = −
∑
n

Γ̃(n)
α1,...,αn

(r; 0, . . . , 0) θα1 · · · θαn

= i
∑
n

(diagrams) ,
(3.2)

where the diagrams are the one-particle-irreducible diagrams with n, zero-frequency

external lines with θ’s attached.

3.1. Terms proportional to θ4k+2

The θ2 term is easy, since θθ = θγiθ = 0. First, the diagram with the gauge field.

=

∫ ∞
−∞

dω

2π

−θ(ω + r/)θ

(ω2 − r2 + iε)2
= 0 . (3.3)

In fact any diagram that has a fermion between two gauge fields vanishes. Next, the

one with the Y fields.

=

∫ ∞
−∞

dω

2π

θγi(ω + r/)γiθ

(ω2 − r2 + iε)2
= 0 . (3.4)

Both of the above diagrams are traversed by only one fermion. We will call any series of

fermion traversals connected by vectors (Y fields) a chain. A chain is ended by scalars

(B fields), or it connects back on its self (when the loop contains no scalars). As an

example, there are four θ6 diagrams:

.
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The first contains three chains with only a single fermion traversing each (one link

chains). The second contains a one link and a two link chain. The last two contain

three link chains.

Here we prove that any diagram containing a chain with an odd number of links is

zero. First, consider a closed chain with n links. Before doing the integral over ω, it

will contain a factor

θγi1(ω + r/)γi2θ θγi2(ω + r/)γi3θ · · · θγin−1(ω + r/)γinθ θγin(ω + r/)γi1θ .

Each fermion bilinear is antisymmetric in its vector indices. Since there are an odd

number of these factors, swapping the indices on all of them produces an overall minus

sign.

−θγi2(ω + r/)γi1θ θγi3(ω + r/)γi2θ · · · θγin(ω + r/)γin−1θ θγi1(ω + r/)γinθ .

The factors can then be reordered,

−θγi1(ω + r/)γinθ θγin(ω + r/)γin−1θ · · · θγi3(ω + r/)γi2θ θγi2(ω + r/)γi1θ ,

to reproduce the original expression, but with a minus sign (and the indices renamed).

This implies that the term is zero. Chains ended by scalars contribute a factor

θr/γi1θ θγi1(ω + r/)γi2θ · · · θγin−2(ω + r/)γin−1θ θγin−1r/θ ,

which vanishes for similar reasons. Therefore, any diagram containing a chain with

an odd number of links is zero. All diagrams that are order 2 (mod 4) in θ have an

odd number of fermions traversing them, so they must contain a chain with an odd

number of links. For a diagram to give a nonvanishing contribution, the number of

external θ lines must be a multiple of four. The diagrams with θ4k+2 are related by

supersymmetry to bosonic diagrams with v2k+1, which are required to vanish by time-

reversal symmetry.

3.2. The vanishing θ4 term

The θ4 term is also zero, but demonstrating this is more difficult. There is one diagram

that vanishes because it contains odd chains.

= 0 .
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The cancellation of the remaining two diagrams requires two identities, (A.3) and (A.4),

which are derived in the appendix.

= −

∫ ∞
−∞

dω

2π

θ(ω + r/)γiθ θγi(ω + r/)θ

(ω2 − r2 + iε)4

= −

∫ ∞
−∞

dω

2π

θr/γiθ θγir/θ

(ω2 − r2 + iε)4

(3.5)

=
1

2

∫ ∞
−∞

dω

2π

θγi(ω + r/)γjθ θγj(ω + r/)γiθ

(ω2 − r2 + iε)4

=
1

2

∫ ∞
−∞

dω

2π

ω2θγiγjθ θγjγiθ + θγir/γjθ θγjr/γiθ

(ω2 − r2 + iε)4

=
1

2

∫ ∞
−∞

dω

2π

θγir/γjθ θγjr/γiθ

(ω2 − r2 + iε)4

=

∫ ∞
−∞

dω

2π

θr/γiθ θγir/θ

(ω2 − r2 + iε)4
.

(3.6)

Again, the vanishing of this term is related via supersymmetry to the vanishing of a

purely bosonic term, namely v2/r5.

3.3. The θ8 term

The θ8 term should give the first non-zero contribution since it corresponds to the well

known v4/r7 term. There are three diagrams that vanish due to odd chains:

= = = 0 .
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To calculate the remaining diagrams we will need the following integrals.

∫ ∞
−∞

dω

2π

1

(ω2 − r2 + iε)8

ε→0
=

429i

4096r15∫ ∞
−∞

dω

2π

ω2

(ω2 − r2 + iε)8

ε→0
= −

33i

4096r13∫ ∞
−∞

dω

2π

ω4

(ω2 − r2 + iε)8

ε→0
=

9i

4096r11
.

The first diagram contains two B and two Y i fields in the loop.

=
1

2

∫ ∞
−∞

dω

2π

(θr/γiθ θγir/θ)
2

(ω2 − r2 + iε)8

=
429i

8192r15

(
θr/γiθ θγir/θ

)2
.

(3.7)

To simplify the two final diagrams we employ identities (A.7), (A.8), (A.9) and

(A.11) from the appendix. With these we obtain

= −

∫ ∞
−∞

dω

2π

θr/γiθ θγi(ω + r/)γjθ θγj(ω + r/)γkθ θγkr/θ

(ω2 − r2 + iε)8

=
33i

4096r13
θr/γiθ θγiγjθ θγjγkθ θγkr/θ

−
429i

4096r15
θr/γiθ θγir/γjθ θγjr/γkθ θγkr/θ

= −
99i

1024r13
θr/γiθ θγiγjθ θγjγkθ θγkr/θ

+
429i

1024r15

(
θr/γiθ θγir/θ

)2

(3.8)
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and, finally,

=

=
1

4

∫ ∞
−∞

dω

2π

θγi(ω + r/)γjθ θγj(ω + r/)γkθ θγk(ω + r/)γlθ θγl(ω + r/)γiθ

(ω2 − r2 + iε)8

=
9i

16384r11
θγiγjθ θγjγkθ θγkγlθ θγlγiθ

−
33i

4096r13
θγiγjθ θγjr/γkθ θγkr/γlθ θγlγiθ

−
33i

8192r13
θγir/γjθ θγjγkθ θγkr/γlθ θγlγiθ

+
429i

16384r15
θγir/γjθ θγjr/γkθ θγkr/γlθ θγlr/γiθ

=
15i

1024r11
θγiγjθ θγjγkθ θγkγlθ θγlγiθ

−
231i

1024r13
θr/γiθ θγiγjθ θγjγkθ θγkr/θ

+
4719i

8192r15

(
θr/γiθ θγir/θ

)2
.

(3.9)

4. Conclusion

Summing the above diagrams as in (3.2) we find the effective potential at order θ8/r11:

Veff(r, θ) = −
15

(2r)11

(
2θγiγjθ θγjγkθ θγkγlθ θγlγiθ

−
44

r2
θr/γiθ θγiγjθ θγjγkθ θγkr/θ

+
143

r4

(
θr/γiθ θγir/θ

)2

)
= −

5

43,008

(
θ∂/ γiθ θγi∂/ θ

)2 1

r7
.

(4.1)

There may be terms higher order in θ. Since θ only has sixteen components, the only

two terms that could remain would be proportional to θ12/r17 and θ16/r23. These are

not related to the v4/r7 term but to higher order v6/r11 and v8/r15 terms respectively.
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It is remarkable that the contributions from the diagrams conspire to give exactly the

coefficient that one gets from acting on 1/r7 with four gradients.

In order to make contact with supergravity we take the Fourier transform.

Veff(q, θ) = −
π4

252

(qiJ ijJ jkqk)2

q2
, (4.2)

where we have put in the the relative angular momentum of the D0-branes, J ij =
i
2
θγiγjθ [8]. The q2 in the denominator is characteristic for an exchanged graviton,

and the structure is the same as the (eight dimensional) static supergravity result in [7].

We would like to thank J. Harvey for many useful discussions and P. Pouliot for a

discussion of supersymmetry’s role in relating the various potentials. After the comple-

tion of this work, a similar question was addressed using string scattering theory [17].

A. SO(9) spinor identities

Using the Clifford algebra relation {γi, γj} = 2δij one immediately obtains{
r/, γi

}
= 2ri r/r/ = r2

γiγj1j2...jnγi = (−1)n(9− 2n)γj1j2...jn ,

where γi1i2...in ≡ γ[i1γi2 · · · γin].

We use a representation of the SO(9) Clifford algebra with real, symmetric Dirac

matrices [18]. Therefore, antisymmetrized products of two and three γ-matrices are

antisymmetric in the spinor indices whereas products of 0,1,4, and 5 are symmetric.

From this it follows

θθ = 0 θγiθ = 0

θγiγjθ = θγijθ θγiγjγkθ = θγijkθ (A.1)

θγiγjγkγlθ = δijθγklθ − δikθγjlθ + δilθγjkθ + δjkθγilθ − δjlθγikθ + δklθγijθ .

We also make frequent use of the following Fierz identity, which can be derived from

the fact that γij and γijk form a complete basis for 16× 16 matrices antisymmetric in

α and β:

θαθβ =
1

32
θγiγjθ (γiγj)αβ +

1

96
θγiγjγkθ (γiγjγk)αβ . (A.2)

There are two identities, quartic in θ, used to show that the θ4 terms cancel.

θγiγjθ θγjγiθ =
1

32
θγaγbθ θγiγjγaγbγjγiθ +

1

96
θγaγbγcθ θγiγjγaγbγcγjγiθ

=
25

32
θγaγbθ θγaγbθ +

9

96
θγaγbγcθ θγaγbγcθ

=
25

32
θγaγbθ θγaγbθ −

9

32
θγaγbθ θγaγbθ

= −
1

2
θγiγjθ θγjγiθ

= 0 ,

(A.3)
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where we have used (A.2) twice. Similarly,

θγir/γjθ θγjr/γiθ = θr/γiγjθ θγjγir/θ

=
1

2
θγaγbθ θr/γaγbr/θ

= 2θr/γiθ θγir/θ .

(A.4)

Calculating the θ8 term requires a number of identities. First, some more that are

quartic in θ.

θγir/γjθ θγjr/γkθ =
5

32
θγabθ θγir/γabr/γkθ −

3

96
θγabcθ θγir/γabcr/γkθ

=
1

4
θγabθ θγir/γabr/γkθ − 3θγir/θ θr/γkθ

= r2θγiaθ θγakθ − θr/γaθ θγir/γaγkθ − 3θγir/θ θr/γkθ

= r2θγiaθ θγakθ − 5θγir/θ θr/γkθ + θr/γaθ θγar/θ δik

− ri θr/γaθ θγaγkθ − θγiγaθ θγar/θ rk .

(A.5)

Multiplying (A.5) by δik gives (A.4). Finally,

θγiγjθ θγjr/γkθ = θγabθ θγiγabr/γkθ = θγir/γjθ θγjγkθ − θr/γaθ θγiγaγkθ . (A.6)

Now some that are octic in θ:

θr/γiθ θγir/γjθ θγjr/γkθ θγkr/θ = θr/γiθ
(
r2θγiaθ θγakθ − 5θγir/θ θr/γkθ + θr/γaθ θγar/θ δik

− ri θr/γaθ θγaγkθ − θγiγaθ θγar/θ rk
)
θγkr/θ

= r2θr/γiθ θγiaθ θγakθθγkr/θ − 4(θr/γiθ θγir/θ)2 .

(A.7)

Similarly,

θγiγjθ θγjr/γkθ θγkr/γlθ θγlγiθ = r2θγiγjθ θγjaθ θγalθθγlγiθ

− 7θr/γiθ θγiγjθ θγjγkθ θγkr/θ,
(A.8)

θγir/γjθ θγjr/γkθ θγkr/γlθ θγlr/γiθ = r4θγiγjθ θγjaθ θγalθθγlγiθ

− 12r2θr/γiθ θγiγjθ θγjγkθ θγkr/θ

+ 22(θr/γiθ θγir/θ)2 .

(A.9)

The identity

θγiγjθ θγjr/γkθ θγkγaγiθ θr/γaθ = −θγkγjθ θγjr/γiθ θγiγaγkθ θr/γaθ

− θr/γbθ θγiγbγkθ θγkγaγiθ θr/γaθ

= −
1

2
θr/γbθ θγiγbγkθ θγkγaγiθ θr/γaθ

= θr/γbθ θγbγkθ θγkγaθ θγar/θ

(A.10)

is needed for

θγiγjθ θγjr/γkθ θγkγlθ θγlr/γiθ = r2θγiγjθ θγjaθ θγalθθγlγiθ

− 8θr/γiθ θγiγjθ θγjγkθ θγkr/θ .
(A.11)
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