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On Solutions of the Schlesinger Equations

in Terms of Θ-functions

A. V. Kitaev and D. A. Korotkin

1 Introduction

The Schlesinger equations (see [18]) arise in the context of the following Riemann-Hilbert

(inverse monodromy) problem:

For an arbitrary g ∈ N and distinct 2g + 2 points λj ∈ C, construct a function

Ψ(λ): CP1 \ {λ1, . . . , λ2g+2} → SL(2,C) which has the following properties:

(1) Ψ(∞) = I;
(2) Ψ(λ) is holomorphic for all λ ∈ CP1 \ {λ1, . . . , λ2g+2};
(3) Ψ(λ) has regular singular points at λ = λj, j = 1, . . . ,2g + 2, with given mon-

odromy matrices, Mj ∈ SL(2,C).

In the case where the monodromy matrices are independent of the parameters

λ1, . . . , λ2g+2, the function Ψ ≡ Ψ(λ) solves the matrix differential equation

dΨ

dλ
=

2g+2∑
j=1

Aj

λ− λj Ψ, (1.1)

where the sl(2,C)-valued matrices Aj solve the system of Schlesinger equations

∂Aj

∂λi
= [Ai,Aj]

λi − λj , i 6= j , ∂Ai

∂λi
= −

∑
j6=i

[Ai,Aj]

λi − λj . (1.2)

Obviously, the eigenvalues of Aj,which will be denoted by tj/2 and −(tj/2) in the sequel,

are integrals of motion of system (1.2).
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The important object associated with system (1.2) is the so-called τ-function—the

function generating Hamiltonians of the Schlesinger system (see [17], [9], [8]); it can be

defined as the solution to the system of equations

∂ ln τ

∂λj
≡
∑
i6= j

trAjAi
λj − λi

(see Sec. 2 for details).

For g = 1, the Schlesinger system may equivalently be rewritten in terms of a

single function of one variable, the position y(t) of the zero of the (12) matrix element of

the function A1/λ+A2/λ− 1+A3/λ− t in the λ-plane. The equation for y(t) turns out to

coincide with the sixth Painlevé equation,

d2y

dt2
= 1

2

(
1

y
+ 1

y− 1
+ 1

y− t
)(

dy

dt

)2

−
(

1

t
+ 1

t− 1
+ 1

y− t
)
dy

dt

+ y(y− 1)(y− t)
t2(t− 1)2

(
α+ β t

y2
+ γ t− 1

(y− 1)2
+ δ t(t− 1)

(y− t)2
)
, (1.3)

where

α ≡ (t1 − 1)2

2
, β ≡ −t

2
2

2
, γ ≡ t

2
3

2
, δ ≡ 1

2
− t

2
4

2
. (1.4)

K. Okamoto showed in [16] that the general solution to the sixth Painlevé equation

can be written explicitly in terms of elliptic functions, provided that the set of the param-

eters tj satisfies one of the following conditions: ti ∈ Z, t1+ · · · + t4 ∈ 2Z, or ti+ 1/2 ∈ Z.

More recently, the algebro-geometric aspects of the sixth Painlevé equation have once

again attracted attention; see the papers [6], [14] (some details which are relevant to our

work are given in the Appendix).

Our interest in the problem of finding explicit solutions to the Schlesinger system

in algebro-geometric terms was initiated, on one hand, by the work of Okamoto, and, on

the other hand, by our papers [11], [13], [12], [10], devoted to the study of solutions to the

Ernst equation arising as a partial case of the vacuum Einstein equations; in particular, it

turns out that some of the elliptic solutions of the Ernst equation studied in [12] may also

be described by the sixth Painlevé equation [10]: in fact, being rewritten in appropriate

variables, these solutions give a certain one-parameter sub-family of Okamoto’s solutions

with tj = 1/2.

In this paper we solve, in terms of theta-functions, the inverse monodromy prob-

lem formulated at the beginning of the Introduction for an arbitrary g and an arbitrary

set of antidiagonal monodromy matrices. Our approach originated from the so-called

finite-gap integration method for the integrable systems (see [4]). The solution of the in-

verse monodromy problem allows us, in turn, to express in terms of theta functions the



Schlesinger Equations in Terms of Θ-functions 879

2g-parameter family of solutions to the Schlesinger system for tj = 1/2 and calculate the

corresponding τ-function. The τ-function (up to multiplication by an arbitrary constant)

is given by the expression

τ({λj}) = Θ[p,q](0 | B)√
det A

∏
j<k

(λj − λk)−(1/8), (1.5)

where the vectors p ∈ Cg, q ∈ Cg are parameters corresponding to parameters of the

monodromy matrices, B is the matrix of b-periods of the hyperelliptic curve

w2 =
2g+2∏
j=1

(λ− λj),

and

Ak j ≡ 2
∫λ2 j+2

λ2 j+1

λk−1dλ

w
, j, k = 1, . . . , g.

For the elliptic case g = 1, applying a conformal transformation of the λ-plane, one can

always map the points λ1, . . . , λ4 to 0,1, t, and∞, respectively (t is equal to the cross-ratio

of the points λ1, . . . , λ4). Then (again up to an arbitrary constant) the τ-function (1.5) can

be rewritten in the form

τ(t) = θp,q(0 | σ)
8
√
t(t− 1)

[∫1

0

dλ√
λ(λ− 1)(λ− t)

]−(1/2)

, (1.6)

where θp,q(0 | σ) is the elliptic theta-function with characteristic [p, q]: here, the module

σ(t) of the curve w2 = λ(λ− 1)(λ− t) is chosen so that t = θ4
4(0 | σ)/θ4

2(0 | σ).

The latter τ-function defines a new representation of the solution to the sixth

Painlevé equation with the parameters tj = 1/2; i.e.,

α = 1

8
, β = −1

8
, γ = 1

8
, δ = 3

8
: (1.7)

y(t) = t− t(t− 1)

[
D

(
d
dt
D(τ)

d
dt
D
(

8
√
t(t− 1)τ

))+ t(t− 1)

D2
(

8
√
t(t− 1)τ

)]−1

, (1.8)

where the operator D is defined as

D(·) ≡ t(t− 1)
d

dt
ln(·).

As a corollary of the sixth Painlevé equation (1.3) with coefficients (1.7), the func-

tion

ζ(t) ≡ D(τ),
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where the τ-function τ(t) is given by (1.6), satisfies the equation

[t(t− 1)ζ′′]2 = ζ′
[(
ζ′ + 1

4

)2

− ((2t− 1)ζ′ − ζ)2
]
. (1.9)

One more form of solution (1.8), namely,

y(t) = tu(σ2 | σ)

u
(
σ
2 , | σ

)+ (1− t)u ( 1
2 | σ

) , where u(z | σ) =
∂
∂z

ln ∂
∂z

ln θp,q(z|σ)
θ1(z|σ)

∂
∂σ

ln θp,q(z|σ)
θ1(z|σ)

, (1.10)

may be obtained from our construction by a straightforward calculation of the position

of the zero of the (12) component of the matrix ΨλΨ−1 in the λ-plane.

This paper is organized as follows. In Section 2,we recall some basic facts about

isomonodromy deformations and Schlesinger equations. In Section 3, we begin with the

solution of an inverse monodromy problem with an arbitrary even number of singular

points and antidiagonal monodromy matrices. In Section 4,we find the related τ-function,

and finally, in Section 5, we apply the results of the previous sections to the g = 1 case,

i.e., to the sixth Painlevé equation.

It is also worth mentioning that the solution of some inverse monodromy prob-

lems, including singularities of regular and irregular type in the framework of the finite-

gap integration technique, were given by M. Jimbo and T. Miwa [8]. However, their con-

struction cannot be applied to solve the inverse monodromy problems considered here.

In the case of 2 × 2 monodromy problems with only regular singularities, say, the con-

struction by Jimbo and Miwa leads to an analytic function with 3g+ 2 regular singular

points whose 2g + 2 monodromy matrices, after a proper normalization (see Section 2),

equal iσ1, and g monodromy matrices are just equal to −I. Therefore, the solution of the

Schlesinger system, which can be obtained from the construction of Jimbo and Miwa,

does not contain any parameters in contrast to the construction presented in this paper.

Simultaneously with the present work, a solution of the same Riemann-Hilbert

problem was given in the paper of P. Deift, A. Its, A. Kapaev, and X. Zhou [2] in rather

different terms. The problem of calculating the corresponding τ-function (1.5) was not

considered there.

2 The Schlesinger equations

In this section, we recall the basic notation and definitions related to isomonodromy

deformations of the 2× 2 matrix linear ordinary differential equation,

d

dλ
Ψ = A(λ)Ψ, (2.1)
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where A(λ) ∈ sl2(C) is a rational function of λ with 2g+ 2 poles of the first order,

A(λ) =
2g+2∑
j=1

Aj

λ− λj , i 6= j⇒ λi 6= λj, d

dλ
Aj = 0. (2.2)

We suppose that λ = ∞ is not a pole,which means that the following condition is fulfilled:

2g+2∑
j=1

Aj = 0. (2.3)

To fix a fundamental solution of equation (2.1), choose a point λ0 ∈ CP1 \ {λ1, . . . , λ2g+2}
and impose the following normalization condition:

Ψ(λ0) = I. (2.4)

Since trA(λ) = 0, this means that detΨ(λ) = 1 for λ ∈ C. Now one defines the monodromy

matrices,

Mj = Ψ(λ0)
∣∣∣γj , j = 1, . . . ,2g+ 2,

as analytic continuations of the fundamental solution normalized by condition (2.4) along

the generators, lk, of the fundamental group π1(CP1 \ {λ1, λ2, . . . , λ2g+2}, λ0) defined in Fig-

ure 1. The monodromy matrices satisfy the cyclic relation

M2g+2 · . . . ·M1 = I, (2.5)

and generate a subgroup of SL(2,C), i.e.,

detMj = 1, j = 1, . . . ,2g+ 2. (2.6)

Matrix elements of Mj and eigenvalues ±(tj/2) of the matrices Aj, j = 1, . . . ,2g + 2, are

called the monodromy data of the function Ψ. The monodromy data are locally analytic

functions of the variables A1, . . . , A2g+2 and λ0, λ1, . . . , λ2g+2. The condition

dtj

dλl
= 0 and

dMj

dλl
= 0, for j, l = 1, . . . ,2g+ 2, (2.7)

is called the isomonodromy condition. In the generic situation,when the numbers tj are

noninteger, the isomonodromy condition (2.7) is equivalent to the following system of

linear differential equations for the function Ψ:

dΨ

dλj
=
(

Aj

λ0 − λj −
Aj

λ− λj

)
Ψ, j = 1, . . . ,2g+ 2. (2.8)
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Figure 1 Generators of π1(CP1 \ {λ1, λ2, . . . , λ2g+2}, λ0)

Following [18], we choose the normalization point λ0 = ∞ to exclude the nonessential

parameter λ0. In this case, the compatibility condition of system (2.8), (2.1) reads as the

following system of nonlinear ODE’s, the Schlesinger equations:

j 6= i: ∂Aj
∂λi
= [Ai,Aj]

λi − λj , (2.9)

j = i: ∂Ai
∂λi
= −

2g+2∑
j=1
j6=i

[Ai,Aj]

λi − λj . (2.10)

Solutions of these equations define isomonodromy deformations of the matrix elements

of Aj. Note that system (2.9), (2.10) is equivalent to system (2.9), (2.3).

Proposition 2.1. If a set {A1, . . . , A2g+2} is a solution of system (2.9), (2.10), then the mon-

odromy data of the functionΨ,which solves equation (2.1) with the corresponding matrix

A(λ) given by equation (2.2), are independent of λ1, . . . , λ2g+2.

The set of the monodromy data, {t1, . . . , t2g+2, M1, . . . ,M2g+2} ∈ C2g+2 × M2g+2,

where the variety M2g+2 ≡ M2g+2(t1, . . . , t2g+2) is defined via equations (2.5) and (2.6), is

known to be in one-to-one correspondence with the solutions of the system of Schlesinger

equations (2.9), (2.10) in the generic case of noninteger tj. The nontrivial part of this

statement follows from the solvability of the inverse monodromy problem (see [1], [3]).

In this paper, we consider the case when all tj = 1/2, so that the matrices Aj and

Mj can be represented in the form

Aj = 1

4
Gjσ3G

−1
j , Mj = iC−1

j σ3Cj, (2.11)
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and λ-independent matrices Gj and Cj are defined via the asymptotic behavior of the

function Ψ in the neighborhood of the points λj,

Ψ =
λ→λj

(Gj + O(λ− λj))(λ− λj)(1/4)σ3Cj; (2.12)

detGj = detCj = 1.

In the isomonodromy case, one can always choose Cj to be independent of λ1, . . . , λ2g+2.

Hereafter, we use the standard notation for the Pauli matrices:

σ1 =
(

0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

One can formulate the following proposition.

Proposition 2.2. Let Ψ∗(Q) be a holomorphic function on the universal covering, pr: X→
CP1 \ {λ1, . . . , λ2g+2}, which has the asymptotic behavior as λ = prQ → λj prescribed

by equation (2.12) and normalized as Ψ∗(Q0) = I at some point Q0, prQ0 = λ0. Then

the function Ψ(λ) = Ψ∗(Q)|prQ=λ has the monodromy data corresponding to the variety

M2g+2(±(1/2), . . . ,±(1/2)),with the matricesMj defined via the second equation (2.11), and

solves the system of differential equations (2.1), (2.8),where the matrix A(λ) is defined by

equations (2.1) and (2.2).

If a set of matrices {A1, . . . , A2g+2} is a solution of system (2.9), (2.10), then for

any matrix K ∈ SL(2,C) independent of λ1, . . . , λ2g+2, the new set {Anew
j = KAjK−1, j =

1, . . . ,2g + 2} is also a solution of the system. This gauge transformation on the set of

the solutions of the Schlesinger system corresponds to the gauge transformation of the

function Ψ(λ),

Ψnew = KΨK−1, (2.13)

which leaves the normalization condition (2.4) invariant and acts on M2g+2 in the same

way as on the space of the solutions,

Mnew
j = KMjK

−1. (2.14)

By choosing K = C0C1, where C1 is given by (2.12) for j = 1 and C0 = (i/
√

2)(σ3 + σ1), we

use this gauge transformation to fix

M1 = iσ1. (2.15)
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Since we have one more parameter in our gauge transform, C0 → C0κ
σ3 , we can use the

remaining freedom to remove one more parameter from M2g+2. More exactly, by making

one more gauge transform (2.13) with the matrix K = C0κ
σ3C−1

0 , we, by choosing appro-

priately the parameter κ, fix the next monodromy matrix M2:

If tr (M2σ1)2 6= −2, then

M2 =
(

0 m2

−m−1
2 0

)
, m2 ∈ C∗ ≡ C \ {0,∞}; (2.16)

if tr (M2σ1)2 = −2 but M2 6= ±iσ1, then M2 = ±i(σ3 + σ1 + iσ2); and, finally, if M2 = ±iσ1,

then we can use the parameter κ to fix analogously the structure of the next matrix, M3.

The variety M2g+2(±(1/2), . . . ,±(1/2)) contains the following subvariety, C∗2g ∼=
T2g × R2g:

Mj =
(

0 mj

−m−1
j 0

)
, j = 1, . . . ,2g+ 2, (2.17)

where

m1 = i, mj ∈ C∗, j = 2, . . . ,2g+ 2;

g+1∏
j=1

m2 j = (−1)g+1
g+1∏
j=1

m2 j−1. (2.18)

Note that if the matricesM1 andM2 are fixed by equations (2.15) and (2.16) correspondingly,

then dimCM2g+2(±(1/2), . . . ,±(1/2)) = 4g−2 and dimC C∗2g = 2g; in fact, for g = 1, the sub-

variety C∗2g constitutes almost all the variety M2g+2(±(1/2), . . . ,±(1/2)). More precisely,

one can formulate the following proposition.

Proposition 2.3 ([6]). If g = 1, then the variety M4(±(1/2), . . . ,±(1/2)) coincides, up to the

conjugation defined by equation (2.14) with arbitrary matrix K ∈ SL(2,C), with the union

of the following two sets of the monodromy matrices:

(1) Mk =
(

0 mk

− 1
mk

0

)
, k = 1, . . . 4, m1 = i, mk ∈ C∗, m4m2 = im3; (2.19)

(2) M1 = −iσ3, M2 = iε2

(
−1 a− 1

0 1

)
,

M3 = iε3

(
−1 a

0 1

)
, M4 = iε4

(
−1 1

0 1

)
, (2.20)

where εk = ±1, ε2ε3ε4 = 1, a ∈ C.
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Isomonodromy deformations of equation (2.1), in the case when the matrix A(λ)

has four poles, are governed by solutions to the sixth Painlevé equation (1.3). We rewrite

the corresponding relation given by M. Jimbo and T. Miwa [8] in the notation which more

suits our basic construction as follows.

Denote by Egpj the p-th column of the matrixGj from equation (2.11), and introduce

new matrices Gpqi j
def= (Egpi Egqj ); in particular, G12

j j ≡ Gj.

Proposition 2.4. The functions

Â12
j = tj

detG12
j1 detG22

1 j

detG12
11 detG12

j j

, j = 1, . . . ,4, (2.21)

depend on the variables {λk} only through their cross-ratio,

t = λ3 − λ1

λ3 − λ2

λ4 − λ2

λ4 − λ1
. (2.22)

Moreover, the function

y(t) = − t

1+ (1− t)Â12
4 /Â

12
2

= − 1

1− 1−t
t
Â12

3 /Â
12
2

(2.23)

is the solution of the sixth Painlevé equation (1.3) with the parameters given by equa-

tion (1.7).

Proof. If the set {Aj} is a solution of the system (2.9), (2.3), then the monodromy data

of the function Ψ, which solves the corresponding equation (2.1), are independent of {λj}
and λ. Define the new variable

µ = λ3 − λ1

λ3 − λ2

λ− λ2

λ− λ1
(2.24)

and consider

Ψ̂ = G−1
1 ΨC

−1
1 (2.25)

as a function of µ. In the complex µ-plane, the function Φ has singularities only at the

points 0, 1, t, and ∞ with the behavior prescribed by equations (2.25) and (2.12): it is

normalized at µ = ∞ by the condition

Ψ̂ =
µ→∞

(
I+ O

(
µ−1))µ(1/4)σ3 ,
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and its monodromy data are independent of {λj}. Such a function is uniquely defined and

depends on {λj} only via the cross-ratio t. It means that the logarithmic derivative,

dΨ̂

dµ
Ψ̂−1 = Â2

µ
+ Â3

µ− 1
+ Â4

µ− t
def= Â(µ), (2.26)

and, in particular, the matrices

Âj = tj2G
−1
1 Gjσ3G

−1
j G1,

also depend on {λj} only via the variable t. The matrices Âj can be rewritten as

Âj = −tj4 Ĝ
−1
j σ3Ĝj,

where

Ĝj =
(

detG11
j1 detG12

j1

detG21
j1 detG22

j1

)
, det Ĝj = detGj detG1. (2.27)

To complete the proof, one has to recall that according to [8], the function y(t), which

solves the equation Â12(y) = 0, where A12(·) is the corresponding matrix element of Â(·)
(see (2.26)), is the solution of the sixth Painlevé equation.

Remark 2.1. Proposition 2.4 is valid not only for the present case, when all coefficients

tj equal 1/2, but also in the case of arbitrary complex tj (assuming that all matrices Aj

are diagonalizable). In the latter case, the function y(t) (1.3) solves the sixth Painlevé

equation with the coefficients

α = 1

2
(t1 − 1)2, β = −1

2
t22, γ = 1

2
t23, δ = 1

2
(1− t24).

The object playing the important role in applications of isomonodromy deforma-

tions in differential geometry and mathematical physics is the so-called tau function

τ({λj}). We recall here the definition of the τ-function given in [8], [17], [9].

The Schlesinger equations (2.9), (2.10) can be rewritten in the Hamiltonian form,

dAj

dλk
= {Hk, Aj}, (2.28)

where the Poisson bracket is defined as

{(Ai)ab, (Aj)cd} = δi j
(
(Ai)adδcd − (Ai)bcδad

)
, (2.29)

and the Hamiltonians are given by

Hj = 1

2
Res
λ=λj

TrA2(λ) = − Res
λ=λj

detA(λ) ≡
2g+2∑
i6= j

trAjAi
λj − λi . (2.30)
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Figure 2 Branch cuts and canonical basis of cycles on the hyperelliptic curve, L.
Continuous and dashed paths lie on the first and the second sheet of L, respectively.

One proves that

{Hk, Hj} = 0,
∂Hk

∂λj
= ∂Hj
∂λk

, (2.31)

which implies the compatibility of system (2.28). Taking into account the previous equations,

one can correctly define the τ-function τ ≡ τ(λ1, . . . , λ2g+2) generating Hamiltonians Hj by

d

dλj
ln τ = Hj, (2.32)

which is holomorphic outside of the hyperplanes λj = λi, i, j = 1, . . . ,2g+ 2.

3 Solutions of the Schlesinger system

Consider the hyperelliptic curve L of genus g defined by the equation

w2 =
2g+2∏
j=1

(λ− λj) (3.1)

with arbitrary noncoinciding λj ∈ C, and the basic cycles (aj, bj) chosen according to

Figure 2.

Let us denote the fundamental polygon of L by L̂. The basic holomorphic 1-forms

on L are given by

dU0
k =

λk−1dλ

w
, k = 1, . . . , g. (3.2)
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Let us define g× g matrices of a- and b-periods of these 1-forms by

Ak j =
∮
aj

dU0
k, Bk j =

∮
bj

dU0
k. (3.3)

Then the holomorphic 1-forms

dUk = 1

w

g∑
j=1

(A−1)k jλ
j−1dλ (3.4)

satisfy the normalization conditions
∮
aj
dUk = δjk.

The matrices A and B define the symmetric g×gmatrix of b-periods of the curve

L:

B = A−1B.

Let us now introduce the theta function with characteristic [p,q] (p ∈ Cg, q ∈ Cg) by the

following series:

Θ[p,q](z | B) =
∑

m∈Zg
exp{πi〈B(m+ p),m+ p〉 + 2πi〈z+ q,m+ p〉}, (3.5)

for any z ∈ Cg. It possesses the following periodicity properties:

Θ[p,q](z+ ej) = e2πipjΘ[p,q](z), (3.6)

Θ[p,q](z+ Bej) = e−2πiqje−πiBj j−2πizjΘ[p,q](z), (3.7)

where

ej ≡ (0, . . . ,1, . . . ,0) (3.8)

(1 stands in the j-th place).

Denote the universal covering of L by Γ . The multi-valued on L, and single-valued

on Γ , map U(P) ∈ Cg is defined by the contour integral Uj(P) = ∫P
λ1
dUj. The vector of

Riemann constants corresponding to our choice of the initial point of the map reads as

follows [5]:

K = 1

2
B(e1 + . . .+ eg)+ 1

2
(e1 + 2e2 . . .+ geg). (3.9)
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The characteristic with components p ∈ Cg/2Cg, q ∈ Cg/2Cg is called the half-

integer characteristic: the half-integer characteristics are in one-to-one correspondence

with the half-periods Bp + q. If the scalar product 4〈p,q〉 is odd, then the related theta

function is odd with respect to its argument z and the characteristic [p,q] is called odd.

If this scalar product is even, then the theta function Θ[p,q](z) is even with respect to z

and the characteristic [p,q] is called even.

The odd characteristics which will be of importance for us in the sequel corre-

spond to any given subset S = {λi1 , . . . , λig−1} of g − 1 arbitrary noncoinciding branch

points. The odd half-period associated to the subset S is given by

BpS + qS = U(λi1 )+ . . .+U(λig−1 )− K. (3.10)

Analogously, we shall be interested in the even half-periods which may be represented

as

BpT + qT = U(λi1 )+ . . .+U(λig+1 )− K, (3.11)

where T = {λi1 , . . . , λig+1} is an arbitrary subset of g+ 1 branch points.

Theorem 3.1. Let the 2× 2 matrix-valued function Φ(P) be defined on the universal cov-

ering Γ of L by the formula

Φ(P) =
(
ϕ(P) ϕ(P∗)

ψ(P) ψ(P∗)

)
, (3.12)

where

ϕ(P) = Θ[p,q](U(P)+U(Pϕ))Θ[pS,qS](U(P)−U(Pϕ)), (3.13)

ψ(P) = Θ[p,q](U(P)+U(Pψ))Θ[pS,qS](U(P)−U(Pψ)), (3.14)

with arbitrary (possibly {λj}-dependent) Pϕ,ψ ∈ L and arbitrary constant characteristic

[p,q]; ∗ is the involution on L interchanging the sheets. The odd theta characteristic

[pS,qS] corresponds to an arbitrary subset S of g− 1 branch points via equation (3.10).

Then the functionΦ(P) is holomorphic and invertible outside of the branch points

λ1, . . . , λ2g+2 and transforms as follows with respect to the tracing along the basic cycles

of L:

Taj [Φ(P)] = Φ(P)e
2πi(pj+pSj )σ3 , Tbj [Φ(P)] = Φ(P)e

−2πi(qj+qSj )σ3e−2πiBj j−4πiU(P), (3.15)
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where by Tl we denote the operator of analytic continuation along the contour l. Moreover,

the function Φ has the following asymptotic behaviour in the neighborhood of point λj:

Φ(P) =
λ→λj

{
Fj +O(

√
λ− λj)

}( (λ− λj)1/2+δj 0

0 (λ− λj)δj

)(
1 1

1 −1

)
, (3.16)

with some λ-independent matrices Fj, j = 1, . . . ,2g + 2; δj = 1 for λj ∈ S and δj = 0 for

λj 6∈ S.

Proof. Let us first check the announced monodromy properties ofΦ(P) around the basic

cycles of L. From the periodicity properties of the theta function given by equations (3.6),

(3.7), we deduce the following transformation laws for ϕ:

Taj [ϕ(P)] = e2πi(pj+pSj )
ϕ(P), (3.17)

Tbj [ϕ(P)] = e−2πi(qj+qSj )
e−2πiBj j−4πiU(P)ϕ(P), (3.18)

and we deduce the same transformation laws for ψ. Taking into account the action of the

involution ∗ on the basic cycles and holomorphic differentials,

a∗j = −aj, b∗j = −bj, dUj(P
∗) = −dUj(P); (3.19)

we get the transformation laws for the function ϕ(P∗),

Taj [ϕ(P∗)] = e−2πi(pj+pSj )
ϕ(P∗), (3.20)

Tbj [ϕ(P∗)] = e2πi(qj+qSj )
e−2πiBj j−4πiU(P)ϕ(P∗), (3.21)

which coincide with the transformation laws for the function ψ(P∗). Altogether, this im-

plies relations (3.15) for the function Φ(P).

The holomorphy of the function Φ follows from the holomorphy of the theta

function. Let us show that detΦ does not vanish outside of the branch points λj. Since

the transformations (3.15) preserve the positions of the zeros of detΦ, it makes sense

to speak about the positions of the zeros of detΦ in the fundamental polygon L̂. First,

notice that detΦ(P) vanishes at the branch points λj, where two columns of the matrix Φ

coincide. Moreover, detΦ has, at the points λj ∈ S, zeros of order 3. This can be seen if
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we rewrite the second theta function in equation (3.13) up to a nonvanishing exponential

factor as

Θ(U(P)−U(Pϕ)−
∑
S

U(λj)− K).

Thus we know altogether 3(g− 1)+ g+ 3 = 4g zeros of detΦ, taking into account

their multiplicities. To check that detΦ does not vanish outside of λj, we integrate the

function ∂/∂λ ln detΦ(P) along the boundary of the fundamental polygon ∂L̂. From the

transformation properties (3.15), we deduce

Taj [detΦ(P)] = detΦ(P), Tbj [detΦ(P)] = e−4πiBj j−8πiUj(P) detΦ(P). (3.22)

Now one can check that this integral equals 4g in the same way as in the standard cal-

culation of the number of zeros of the theta-function of dimension g (see [15]). Therefore,

detΦ(P) does not have any zeros outside of the branch points λj.

The form of the asymptotic expansion (3.16) is a direct consequence of the holo-

morphicity ofϕ andψ, the structure (3.12) of the functionΦ, and the previous discussion

of the zeros of detΦ.

Starting from the function Φ(P) on Γ constructed in Theorem 3.1, we shall now

define a new function Ψ(Q) on the universal covering X of C \ {λ1, . . . , λ2g+2}. Let us denote

by Ω ⊂ C an arbitrary neighborhood of∞ on C which does not overlap with the points

λj and the projections of all basic cycles of L on C. Let us fix some sheet X0 of X choosing

the branch cuts between the points λj to lie outside of domain Ω. Let us also fix some

sheet L̂ of the universal covering Γ of L; then L̂ will contain two nonintersecting copies of

Ω. Choose one of them and denote it byΩ1. The domainΩ1 contains the point at infinity,

which we call∞1. Now we are in position to define

Ψ(λ ∈ Ω) =
√

detΦ(∞1)

detΦ(λ)
Φ−1(∞1)Φ(λ) (3.23)

(by λ, we denote the projection of Q ∈ X as well as of P ∈ Γ on C). On the rest of X, the

function Ψ(Q) is defined via the analytic continuation along the contours lj (Fig. 1).

Theorem 3.2. Let p,q ∈ Cg be an arbitrary set of 2g constants such that [p,q] is not a half-

integer characteristic. Then the function Ψ(Q ∈ X) defined by (3.23), (3.12) is independent

of the choice of the points Pϕ,ψ ∈ L and the choice of the set S = {λi1 , . . . , λig−1}. Moreover,

Ψ is holomorphic outside of the branch points λ1, . . . , λ2g+2, satisfies the normalization

conditions detΨ(λ) = 1 andΨ(λ = ∞) = I, and has the antidiagonal monodromiesMj given
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by equation (2.17) along the contours lj (Fig. 1). The matrix elements of the monodromies

(2.17) are given by the expressions

m1 = i, m2 = i(−1)g exp

{
−2πi

g∑
k=1

pk

}
,

m2 j+1 = i(−1)g+1 exp

2πiqj − 2πi
g∑
k= j

pk

 ,

m2 j+2 = i(−1)g exp

2πiqj − 2πi
g∑

k= j+1

pk

 , (3.24)

for j = 1, . . . , g, where pj and qj are components of the vectors p and q, respectively. The

asymptotic expansion of Ψ(Q) in the neighborhood of λj is of the form (2.12) with some

Gj and

Cj = 1√
2imj

(
1 imj

−1 imj

)
. (3.25)

Proof. The nontrivial part is to calculate the monodromiesMj ofΨ(P) along the contours

lj.

Combining the transformations (3.15) of function Φ along the basic cycles of L

with the jumps of Φ,

Φ(P)→ Φ(P)σ1,

on the branch cuts [λ2 j+1, λ2 j+2], which follow directly from definition (3.12), we come to

the following relations:

Ψ(P)M2 j+2M2 j+1 =
Tl2 j+1◦l2 j+2 [

√
detΦ(P)]√

detΦ(P)
Ψ(P)e

2πi(pj−pSj )σ3 , (3.26)

Ψ(P)M2 j+1M2 j =
Tl2 j◦l2 j+1 [

√
detΦ(P)]√

detΦ(P)
Ψ(P)e

2πi(qj−qj−1+qSj −qSj−1
)σ3 , (3.27)

j = 1, . . . , g. Furthermore, taking into account that

U(λ1) = 0, U(λ2) = 1

2

g∑
k=1

ek,
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U(λ2 j+1) = 1

2
Bej + 1

2

g∑
k= j

ek, U(λ2 j+2) = 1

2
Bej + 1

2

g∑
k= j+1

ek, j = 1, . . . , g, (3.28)

we get

pSj =
1

2
(δ2 j+1 + δ2 j+2 + 1), qSj+1 − qSj =

1

2
(δ2 j+2 + δ2 j+3 + 1), (3.29)

where δj are the same as in equation (3.16).

The function
√

detΦ(P) transforms in the following way with respect to the tracing

along the cycles lj:

Tl2 j+1◦l2 j+2 [
√

detΦ(P)] = eπi(δ2 j+1+δ2 j+2+1)
√

detΦ(P), (3.30)

Tl2 j◦l2 j+1 [
√

detΦ(P)] = eπi(δ2 j+2+δ2 j+3+1)
√

detΦ(P). (3.31)

To prove relations (3.30), (3.31), it is enough to notice that in the λ-plane, the function√
detΦ(P) has at the point λj: a zero of degree 3/4 if λj ∈ S; and a zero of degree 1/4 if

λj 6∈ S.

Altogether, we get

M2 j+2M2 j+1 = exp{2πipjσ3},

M2 j+1M2 j = exp{2πi(qj − qj−1)σ3},

which imply (3.24), taking into account that m1 = i and the monodromy around infinity

is trivial (2.18).

Now the independence of the function Ψ of the choice of the divisor S and the

points Pϕ,ψ follows from the uniqueness of the solution to the Riemann-Hilbert problem

with fixed monodromy data.

Existence of the local expansion (2.12) of the functionΨ(Q) at the points λj follows

from the related statement (3.16) for the function Φ which was proved in Theorem 3.1.

The form (3.25) of the matrices Cj follows from the relation (2.11) between the matrices

Mj and Cj.

Remark 3.1. The assumption made in Theorem 3.2 that [p,q] does not coincide with any

half-integer characteristic is nothing but the nontriviality condition; namely, if [p,q] is

a half-integer characteristic, all monodromiesMj become proportional to σ1:Mj = ±iσ1;

therefore, they can be simultaneously diagonalized by the transformation

Ψ→ Ψ̃ ≡ Ψ
(

1 1

1 −1

)
.
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The function Ψ̃ has diagonal monodromies ±iσ3, and, therefore, can be chosen to be

diagonal itself. Thus, we are in the framework of the scalar Riemann-Hilbert problem:

the related matrices Aj are diagonal, and, therefore, λj-independent, as follows from the

Schlesinger equations.

By the special choices Pϕ = ∞2 and Pψ = ∞1 in the formulas of Theorem 3.1, we

can simplify the previous expression for the function Ψ to get the following corollary.

Corollary 3.1. The function Ψ(λ) defined by equation (3.23) may alternatively be repre-

sented as follows:

Ψ(λ ∈ Ω) = 1√
detΦ∞(λ)

Φ∞(λ), (3.32)

where

Φ∞(P) =
(
ϕ∞(P) ϕ∞(P∗)

ψ∞(P) ψ∞(P∗)

)
, (3.33)

ϕ∞(P) = Θ[p,q](U(P)+U(∞2))Θ[pS,qS](U(P)−U(∞2))

Θ[p,q](0)Θ[pS,qS](−2U(∞2))
, (3.34)

ψ∞(P) = Θ[p,q](U(P)+U(∞1))Θ[pS,qS](U(P)−U(∞1))

Θ[p,q](0)Θ[pS,qS](−2U(∞1))
. (3.35)

From the Taylor series of the function Φ∞(P) at the points λj, we can now construct

solutions to the Schlesinger system.

Theorem 3.3. The solution to the Schlesinger system (2.9), (2.10) corresponding to the

monodromy matrices (2.17), (3.24) is given by

Aj = 1

4
F∞j σ3(F∞j )−1, (3.36)

where

(F∞j )11 = Θ[p,q](U(λj)+U(∞2))Θ[pSj ,qSj ](U(λj)−U(∞2))

Θ[p,q](0)Θ[pSj ,qSj ](−2U(∞2))
, (3.37)

(F∞j )12 =
g∑
k=1

∑g
l=1(A−1)lkλ

l−1
j∏

l 6= j(λj − λl)1/2

× ∂

∂zk

{
Θ[p,q](z+U(∞2))Θ[pSj ,qSj ](z−U(∞2))

Θ[p,q](0)Θ[pSj ,qSj ](−2U(∞2))

}
(z = U(λj)), (3.38)
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and ∂/∂zk means the derivative of the theta function (3.5) with respect to its k-th variable;

matrix A is given by equation (3.3); Sj are arbitrary 2g+2 sets of g−1 branch points such

that λj 6∈ Sj. The solution (3.36) is independent of the choice of the sets Sj as long as these

conditions are fulfilled.

The formulas for the matrix elements (F∞j )21 and (F∞j )22 may be obtained from the

formulas for (F∞j )11 and (F∞j )12, respectively, by interchanging∞1 and∞2.

Proof. In the neighborhood of the point λj, we have

ϕ∞j (P) = (F∞j )11 +√λ− λj(F∞j )12 +O(λ− λj), (3.39)

ψ∞j (P) = (F∞j )21 +√λ− λj(F∞j )22 +O(λ− λj), (3.40)

with Fj given by equations (3.37), (3.38); the functions ϕ∞j (P) and ψ∞j (P) are defined by

equations (3.13), (3.14), with Pϕ = ∞2, Pψ = ∞1, and [pS,qS] substituted by [pSj ,qSj ].

Therefore,

detΦ∞j (P) = √λ− λj{det F∞j +O(λ− λj)}, (3.41)

and

[detΦ∞j (P)]−1/2ϕ∞j (P) = [det F∞j ]−1[(F∞j )11 +√λ− λj(F∞j )12 +O(λ− λj)],

[detΦ∞j (P)]−1/2ψ∞j (P) = [det F∞j ]−1[(F∞j )21 +√λ− λj(F∞j )22 +O(λ− λj)].

We conclude that the matrices Gj, from the asymptotic expansions (2.12) of the function

Ψ(Q) at the points λj, are given by

Gj = (det F∞j )−1F∞j , (3.42)

which proves equation (3.36).

Remark 3.2. The matrices F∞j from Theorem 3.3 are related to the coefficients Fj of the

Taylor series (3.16) of function Φ(P) at the points λj as follows:

F∞j = Φ−1(∞1)Fj.

Therefore, using equation (3.42), we get the following relation between the matrices Fj

from the Taylor series (3.16) of functionΦ(P), and the matricesGj from the Laurent series

(2.12) of function Ψ(Q):

F−1
k Fjσ3F

−1
j Fk = G−1

k Gjσ3G
−1
j Gk, (3.43)

for any j and k.
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4 Tau function for the Schlesinger system

Here we calculate the τ-function which corresponds to the solution (3.36), (3.37), (3.38)

of the Schlesinger system. The remainder is devoted to the proof of the following main

theorem.

Theorem 4.1. The τ-function corresponding to the solution (3.36), (3.37), (3.38) of the

Schlesinger system (with arbitrary p,q ∈ Cg such that [p,q] is not a half-integer charac-

teristic) is given by

τ = Θ[p,q](0)(det A)−1/2
∏
j<k

(λj − λk)−1/8, (4.1)

where the g × g matrix A of a-periods of holomorphic 1-forms on L is defined by equa-

tion (3.3).

Proof. According to the definition of the τ-function (2.32), (2.30), let us first calculate

(1/2)tr(ΨλΨ−1)2 for the function Ψ given by equation (3.23). We have

1

2
tr(ΨλΨ

−1)2 ≡ −det(ΨλΨ
−1) = −det(Φλ)

detΦ
+ 1

4

(
(detΦ)λ
detΦ

)2

. (4.2)

Together with the function Ψ, the function det(ΨλΨ−1) is independent of Pϕ and Pψ;

moreover, function Ψ does not undergo any modification if we multiply ψ(P) with an

arbitrary λ-independent factor Cψ. So, we can choose the parameters Pϕ, Pψ, and Cψ at

our disposal to simplify the calculation. Our choice will be the following: first we put

Cψ = λψ − λϕ (λϕ denotes the projection of the point Pϕ in the λ-plane), and then take the

limit Pψ→ Pϕ. We get

ψ(P) = ϕ(P)+ ∂ϕ(P)

∂λϕ
. (4.3)

Since the function Ψ(P) is independent of the remaining parameter Pϕ, we can calculate

det(ΨλΨ−1) assuming Pϕ = P. Intermediate results of this calculation are as follows:

(detΦ)λ
detΦ

= 2
∂

∂λ

{
lnΘ[pS,qS](−2U(P))

}
,

and

det(Φ)λ
detΦ

= 1

Θ[p,q](0)

∂2

∂λ∂λϕ
{Θ[p,q](U(P)−U(Pϕ))}Pϕ=P

+ 1

Θ[pS,qS](−2U(P))

∂2

∂λ∂λϕ

{
Θ[pS,qS]((−U(P)−U(Pϕ))

}
Pϕ=P ;
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therefore,

1

2
tr(ΨλΨ

−1)2(λ) = − ∂2

∂λ∂λϕ

{
lnΘ[pS,qS]((−U(P)−U(Pϕ))

}
Pϕ=P

− 1

Θ[p,q](0)

∂2

∂λ∂λϕ
{Θ[p,q](−U(P)+U(Pϕ))}Pϕ=P . (4.4)

To find the asymptotic behaviour of this expression as λ → λj, we shall use the well-

known asymptotic behaviour which is valid for any odd theta-characteristic [pS,qS]:

∂2

∂x(P1)∂x(P2)

{
lnΘ[pS,qS](U(P1)−U(P2))

} = 1

(x(P1)− x(P2))2
+ F(P)+ o(1) (4.5)

as P1, P2 → P, where x is a local parameter in the neighborhood of P. The function F(P) is

independent of the choice of the set S; it is given by the expression (see [5, p. 20])

F(P) ≡ 1

6
{λ, x}(P)+ 1

16

(
d

dx
ln

g+1∏
k=1

λ− λik
λ− λjk

)2

(P)

−
g∑

i, j=1

∂2

∂zi∂zj
Θ[pT ,qT ](0)

dUi

dx
(P)
dUj

dx
(P), (4.6)

where {λ, x} denotes the Schwarzian derivative of λ with respect to x,

λ′′′

λ′
− 3

2

(
λ′′

λ′

)2

,

and [pT ,qT ] is an even characteristic corresponding to an arbitrary set T ≡ {λi1 , . . . , λig+1}
of g+1 branch points via equation (3.11). The remaining g+1 branch points are denoted

by λj1 , . . . , λjg+1 . Expression (4.6) is independent of the choice of the set T .

Applying equation (4.6) for P = λj, we get the following asymptotic behaviour:

1

2
tr(ΨλΨ

−1)2(λ) =
λ→λj

1

16(λ− λj)2 +
Hj

λ− λj +O(1), (4.7)

where

Hj = 1

8

∑
k6= j

njnk

λj − λk −
1

4Θ[pT ,qT ](0)

g∑
l,k=1

∂2Θ[pT ,qT ]

∂zl∂zk
(0)
dUl

dxj
(λj)

dUk

dxj
(λj)

+ 1

4Θ[p,q](0)

g∑
l,k=1

∂2Θ[p,q]

∂zl∂zk
(0)
dUl

dxj
(λj)

dUk

dxj
(λj), (4.8)

and xj ≡
√
λ− λj; nk = 1 for λk ∈ T and nk = −1 for λk 6∈ T . Now, to integrate equa-

tions (2.32), we have to use the heat equations

∂2Θ[p,q](z | B)

∂zl∂zk
= 4πi

∂Θ[p,q](z | B)

∂Blk
(4.9)
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which are valid for theta functions with arbitrary characteristic [p,q], and the following

lemma.

Lemma 4.1. The dependence of the matrix of b-periods on the branch points is described

by the equations

∂Bkl
∂λj
= πidUl

dxj
(λj)

dUk

dxj
(λj). (4.10)

Proof. The dependence of the nonnormalized 1-forms dU0
k (3.2) on λj is

∂

∂λj
{dU0

k(λ)} = 1

2(λ− λj)dU
0
k(λ).

Now, calculation of the integral∮
∂L̂

U0
l (λ)

∂

∂λj
dU0

k(λ) =
∮
∂L̂

1

2(λ− λj)U
0
l (λ)dU0

k(λ)

by means of the residue theorem gives the following result:

πi
dU0

l

dxj
(λj)

dU0
k

dxj
(λj) ≡ πi

[
A
dUl

dxj
(λj)

dUk

dxj
(λj)A

t

]
kl

.

On the other hand, standard arguments used, for example, in the proof of the Riemann

bilinear identities (see [7]), show that the same integral equals
g∑

m=1

Alm

∂Bkm

∂λj
− ∂Akm

∂λj
Blm;

therefore,

∂B

∂λj
At − ∂A

∂λj
Bt = πiAdUl

dxj
(λj)

dUk

dxj
(λj)A

t,

which leads to the statement of the lemma after taking into account the symmetry of the

matrix B ≡ A−1B.

Now, using equations (4.8), (4.9), and (4.10), we can rewrite the Hamiltonians Hj

as follows:

Hj ≡ ∂

∂λj
ln τ = 1

8

∑
k6= j

njnk

λj − λk +
∂

∂λj
ln
{
Θ[p,q](0)

Θ[pT ,qT ](0)

}
.

Finally, applying the classical Thomae formula (see [19], [15])

Θ4[pT ,qT ](0) = ± (det A)2

(2πi)2g

g+1∏
l<k, l,k=1

(λil − λik )
g+1∏

l<k l,k=1

(λjl − λjk ),

we get the τ-function in the form (4.1) up to multiplication by an arbitrary {λj}-independent

constant of integration. The ambiguity in the choice of this constant allows, in particular,

to arbitrarily choose the branch cuts in the formula (4.1).
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5 The elliptic case and the sixth Painlevé equation

In this section, we show how the solution of the sixth Painlevé equation in terms of

elliptic functions can be derived from the results of the previous sections.

Put g = 1. Then the equation of the curve L is given by

w2 = (λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4). (5.1)

The matrix of b-periods, B, turns into the module σ, and Θ[pS,qS] becomes the Jacobi

theta-function ϑ1; to shorten all the formulas, we shall denote Θ[p,q] by ϑp,q.

Parameters mj of the monodromy matrices are, according to (3.24), given by

m1 = i, m2 = −ie−2πip, m3 = ie2πi(q−p), m4 = −ie2πiq.

The formulas (3.13) and (3.14) now read as follows:

ϕ(P) = ϑp,q(U(P)+ uϕ)ϑ1(U(P)− uϕ), (5.2)

ψ(P) = cψϑp,q(U(P)+ uψ)ϑ1(U(P)− uψ), (5.3)

where uϕ,ψ ≡ U(Pϕ,ψ) ∈ C are arbitrary parameters, and, in analogy to the previous

section,we introduced an arbitrary multiplier cψ({λj}) which obviously does not influence

the function Ψ(λ).

Again, since the function Ψ(λ) does not depend on cψ, uϕ, and uψ,we can freely fix

these parameters to simplify our calculations. First, it is convenient to put uϕ = 0 (i.e.,

Pϕ = λ1), which leads to

ϕ(P) = ϑp,q(U(P))ϑ1(U(P)). (5.4)

The most convenient choice for the parameters of the function ψ is the following: We put

cψ = u−1
ψ and take the limit uψ→ 0. Then we get

ψ(P) = ϕ(P)+ ∂ϕ(P)

∂uϕ
(uϕ = 0), (5.5)

and the components of matrices Fj from equation (3.16) are given by

F11
j = ϑp,q(uj)ϑ1(uj),

F12
j = fj{ϑ′p,q(uj)ϑ1(uj)+ ϑp,q(uj)ϑ′1(uj)},
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F21
j = F11

j + ϑ′p,q(uj)ϑ1(uj)− ϑp,q(uj)ϑ′1(uj),

F22
j = F12

j + fj{ϑ′′p,q(uj)ϑ1(uj)− ϑp,q(uj)ϑ′′1(uj)}. (5.6)

Here

fj ≡
∏
l 6= j

(λj − λl)1/2
∮
a

dλ√
(λ− λ1) . . . (λ− λ4)


−1

, (5.7)

and

u1 = 0, u2 = 1

2
, u3 = 1

2
+ σ

2
, u4 = σ2 . (5.8)

In particular, for j = 1 we have

F11
1 = 0, F21

1 = ϑp,q(0)ϑ′1(0), F12
1 = F22

1 = f1F21
1 . (5.9)

In accordance with equations (3.43), (2.23), to obtain the solution of the sixth Painlevé

equation, we have to calculate the (12) elements of the matrices

Âj = 1

4
F−1

1 Fjσ3F
−1
j F1, j = 2,3,4 (5.10)

(obviously Â1 = I). Substitution of the matrix elements (5.6) into equation (5.10) leads to

the following result:

Â12
j = −f1

((ln ϑp,q)′ − (ln ϑ1)′)(ϑ′′p,q/ϑp,q − ϑ′′1/ϑ1)

(ln ϑp,q)′′ − (ln ϑ1)′′
(z = uj), (5.11)

where ϑ′ denotes ∂ϑ(z | σ)/∂z. Finally, choosing λ1 = ∞, λ2 = 0, λ3 = 1, and λ4 = t, and

making use of the “heat” equation for the theta-function,

∂ϑp,q(z, σ)

∂σ
= 1

4πi

∂2ϑp,q(z, σ)

∂z2
,

we get, according to equation (2.23), the following theorem.

Theorem 5.1. The function

y = − t

1+ (1− t)y1
, (5.12)
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where t is the cross-ratio of the points {λj} given by equation (2.22), and

y1 =
∂
∂z

ln ∂
∂z

ln{ϑp,q/ϑ1}
(

1
2

)
∂
∂σ

ln{ϑp,q/ϑ1}
(
σ
2

)
∂
∂z

ln ∂
∂z

ln{ϑp,q/ϑ1}
(
σ
2

)
∂
∂σ

ln{ϑp,q/ϑ1}
(

1
2

) , (5.13)

where p, q ∈ C are arbitrary constants such that [p, q] 6= [1/2,0] and [p, q] 6= [0,1/2], solves

the sixth Painlevé equation (1.3),with coefficients (1.7). Here the module σ of elliptic curve

L is chosen such that t = θ4
4(0 | σ)/θ4

2(0 | σ).

Expression (5.13) is a combination of derivatives of the function ln(ϑp,q/ϑ1) with

respect to both arguments of the theta functions.

One more representation for solution (5.12) of the sixth Painlevé equation may be

obtained by using the following relation between y(t) and the τ-function, τ(t), valid for

tj = 1/2:

y(t) = t− t(t− 1)

[
D

(
d
dt
D(τ)

d
dt
D
(

8
√
t(t− 1)τ

))+ t(t− 1)

D2
(

8
√
t(t− 1)τ

)]−1

, (5.14)

where operator D acts on functions f(t) as follows: D(f) ≡ (d/dt) ln f. The τ-function for

the g = 1 case can be obtained from the general formula (4.1) simply by assuming that

λ1, . . . , λ4 coincide with 0,1, t, and∞, respectively. Then, up to an arbitrary constant, we

get

τ(t) = θp,q(0 | σ)
8
√
t(t− 1)

[∫1

0

dλ√
λ(λ− 1)(λ− t)

]−(1/2)

.

Remark 5.1. It seems that it is not easy to check directly (by applying appropriate iden-

tities for the theta functions) the coincidence of the different forms of the same solution

(5.13), (5.14). It is also not easy to check directly the coincidence of our formulas to other

forms of this solution given by Okamoto (A.6) and Hitchin (A.7). However, we can explic-

itly see the relationship of our construction to the construction by Hitchin on the level of

the functionsϕ and ψ from Theorem 3.1; namely, the choice of the rows of the functionΦ

made in [6] corresponds to the choice uϕ ≡ −(1/2)(pσ+q)+ (σ+ 1)/4. The variable c from

[6] is given by −uϕw1,wherew1 is the first full elliptic integral on L. The parameter uψ is

fixed in [6] to coincide with one of the zeros of the Weierstrass ℘-function, ℘[w1(U(P)+uϕ)],

with the periods w1 and w2 = w1σ. Constants c1 and c2 from [6] are related to our p and

q as follows: c1 = p+ 1/2, c2 = q+ 1/2.

Remark 5.2. Here we discuss only the generic two-parametric family of elliptic solu-

tions of the sixth Painlevé equation with coefficients (1.7), which corresponds to mon-

odromy matrices (2.19). An additional one-parametric family of solutions corresponding

to monodromy matrices (2.20) was constructed in [6].
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Appendix: Elliptic solutions of the sixth Painlevé equation

In his studies of the Painlevé equations, K. Okamoto has shown in [16] that the function

y = y(t), the general solution of the sixth Painlevé equation, (1.3), can be explicitly written

in terms of the elliptic functions, provided that the set of the parameters satisfies one of

the following conditions:

ti ∈ Z, t1 + . . .+ t4 ∈ 2Z, (A.1)

or

ti + 1

2
∈ Z. (A.2)

The major ingredients of Okamoto’s construction are:

(1) the so-called Picard solution,

y0(t) = ℘̃(c1ω1(t)+ c2ω2(t)), (A.3)

of equation (1.3) with the coefficients

α = 0, β = 0, γ = 0, δ = 1

2
. (A.4)

In equation (A.3), ℘̃(·) is the elliptic function satisfying the equation ℘̃
′ 2 = 4℘̃(℘̃− 1)(℘̃− t),

with the primitive periods 2ω1(t) and 2ω2(t); c1, c2 ∈ C are the constants of integration,

so that the function y(t) is the general solution;

(2) the subgroup of transformations of solutions of equation (1.3) which acts on

the space of coefficients {tj} as: (a) reflections: for any j = 1, . . . ,4 there is a transformation

which transforms tj→−tj and leaves all tk for k 6= j unchanged; (b) permutations of the

set {tj}; (c) the shifts: tj 7→ tj + nj, where
∑4

j=1 nj = 0(mod 2);

(3) more nontrivial transformation,

O: (t1, t2, t3, t4)↔
(
t1 + t2 − t3 − t4

2
,
t1 + t2 + t3 + t4

2
,

−t1 + t2 + t3 − t4
2

,
−t1 + t2 − t3 + t4

2

)
. (A.5)

It is important to mention that all the transformations described above, as well as their

inversions, are given by explicit formulas, so that “new” solutions can be explicitly written

in terms of the “old” ones as rational functions of the “old” solution and its derivative
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(see [16]). In particular, the solution of equation (1.3) with the coefficients (1.7) obtained

via Okamoto’s transformations reads

y(t) = y0 + y2
0(y0 − 1)(y0 − t)

t(t− 1)y′0 − y0(y0 − 1)
, (A.6)

where y0 = y0(t) is given by equation (A.3).

N. Hitchin, in the work [6] devoted to the study of SU(2)-invariant anti-self-dual

Einstein metrics, rediscovered the case (1.7) of integrability of equation (1.3) in elliptic

functions. He got the following representation for the solution (A.6) in the parametric

form:

y1(σ) = θ
′′′
1(0)

3π2θ4
4(0)θ

′
1(0)
+ 1

3

(
1+ θ

4
3(0)

θ4
4(0)

)

+ θ
′′′
1(ν)θ1(ν)− 2θ

′′
1(ν)θ

′
1(ν)+ 2πic1(θ

′′
1(ν)θ1(ν)− θ′1

2
(ν))

2π2θ4
4(0)θ1(ν)(θ

′
1(ν)+ πic1θ1(ν))

,

t(σ) = θ
4
3(0)

θ4
4(0)

, ν = c1σ+ c2, (A.7)

where θk(·) = θ(· | σ), k = 1, . . . ,4, are the Jacobi theta functions (see [20]).

Yu. I. Manin [14] noticed that the well-known uniformization of equation (1.3) in

terms of the Weierstrass ℘-function can be further converted into the beautiful form:

y(σ) = ℘(z(σ), σ)− e1(σ)

e2(σ)− e1(σ)
, t(σ) = e3(σ)− e1(σ)

e2(σ)− e1(σ)
,

ej(σ) = ℘
(

1

2
Tj, σ

)
, (T1, T2, T3, T4) ≡ (0,1, σ,1+ σ),

d2z

dσ2
= 1

(2πi)2

4∑
j=1

αj℘
′
(
z+ Tj

2
, σ

)
, (α1, α2, α3, α4) ≡

(
α,−β, γ, 1

2
− δ

)
, (A.8)

where ℘(·, σ) is the Weierstrass elliptic function with the primitive periods 2 and 2σ;

℘
′
(·, σ) denotes the partial derivative of the ℘-function with respect to its first argument.

By applying to equation (A.8) the Landin transform for the Weierstrass elliptic functions,

Manin found a new transformation for solutions of equation (1.3). In terms of the Manin

variables, z and σ, this transformation reads: if z(σ) is any solution of equation (A.8)

with the coefficients α1 = α3, α2 = α4, then z(2σ) is the solution of equation (A.8) for

αnew1 = 4α1, α
new
2 = 4α2, α

new
3 = αnew4 = 0. The converse statement is, of course, also true.

Schematically, for the constants, tj (1.4), we can write

M: (t1, t2, t3 = t1 − 1, t4 = t2)↔ (2t1 − 1, 2t2, 0,0). (A.9)
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In the case (A.4), the Manin form of the sixth Painlevé equation (A.8) immediately re-

produces the Picard solution (A.3). In terms of the parameters tj, equations (A.4) read:

t1 = 1, t2 = 0, t3 = 0, and t4 = 0. After the permutation, we get the set t1 = 0, t2 =
1, t3 = 0, and t4 = 0, therefore, by setting the formal monodromies t1 = 1/2, t2 = −(1/2)

in the right-hand side of (A.9); and, choosing the left arrow in the Manin transformation

M, one finds the second basic case of the integrability (1.7). The corresponding explicit

formula can be written as the composition of the transformation corresponding to the

permutation (see [16]) and M.
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