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Canonical Quantization of Cylindrical Gravitational Waves with Two Polarizations
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The canonical quantization of the minisuperspace model describing cylindrically symmetric gravita-
tional waves with two polarizations is presented. A Fock space-type representation is constructed. It is
based on a complete set of quantum observables. Physical expectation values may be calculated in ar-
bitrary excitations of the vacuum. Our approach provides a nonlinear generalization of the quantization
of the collinearly polarized Einstein-Rosen gravitational waves. [S0031-9007(97)04861-8]
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The quantization of dimensionally reduced models o
4D Einstein gravity serves as interesting testing groun
for many issues of quantum gravity. The physical outp
of this approach to an understanding of characteris
features of the full theory, however, strongly depends o
the complexity of the model under consideration.

Probably, the simplest and best understood examp
are the minisuperspace models [1] which contain only a
nite number of physical degrees of freedom and thus hi
the field effects of quantum gravity. A more complicate
example of steady interest is given by the minisuperspa
model of cylindrically symmetric gravitational waves with
one polarization [2,3]. This model already involves an in
finite number of degrees of freedom. It becomes treatab
with the methods of flat space quantum field theory, b
cause the Einstein field equations essentially reduce to
axisymmetric 3D wave equation. This underlying linea
ity, on the other hand, may conceal typical nonlinear fe
tures of quantum gravity.

It is the purpose of this Letter to generalize the resul
of Refs. [2,3] to cylindrical gravitational waves with
two polarizations, where the Einstein equations becom
nonlinear. We achieve a consistent canonical quantizat
in terms of a complete set of quantum observable
Creation and annihilation operators are constructed in
type of Fock space representation of these observab
The full space of physical quantum states is then bu
from excitations of the vacuum. This allows one t
calculate, in principle, all physical expectation values i
arbitrary quantum states.

We start from a general space-time with cylindrica
symmetry, i.e., we assume the existence of two comm
ing Killing vector fields, one of which has closed orbits
We choose coordinates such that the Killing vector field
are given by≠z and ≠w associated with the axis of sym-
metry z and the azimuthal anglew, respectively. Further
gauge fixing brings the metric into the standard form [4]

ds2 ­ eGsr, tds2dt2 1 dr2d 1 rg̃absr, tddxadxb ,

a, b ­ 2, 3 ,
(1)
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with x2 ; z, x3 ; w, radial coordinater, and time
t. The symmetric2 3 2 matrix g̃ is restricted by the
condition det̃g ­ 1.

The essential part of the Einstein field equations i
given by the Ernst equation for the matrixg̃ or, equiva-
lently, for the2 3 2 matrix g which carries the dualized
potentials of the Ernst picture [5];

≠rsrg21≠rgd 2 ≠tsrg21≠tgd ­ 0 . (2)

The conformal factorGsr, td is then a functional ofg. At
spatial infinity,r ­ ` it is given by

G` ­
1
2

Z `

0
rdr trfsg21≠rgd2 1 sg21≠tgd2g . (3)

This factor generates evolution with respect to the tim
coordinatet; its exponential measures the total energy pe
unit length in thez direction Ht and the deficit angle in
the asymptotic regionw0,

Ht ­
1

pG
w0 ­

2
G

s1 2 e2G`y2d . (4)

The reduction of the metric to the form (1) can be
performed within the canonical formalism, such tha
the Poisson bracket of the reduced model is the Dira
bracket of the original structure after appropriate gaug
fixing [3]. The resulting canonical Poisson structure
is easily extracted from the effectively two-dimensiona
Lagrangian densityL s2d that comes from reduction via
Killing symmetries and gauge fixing of the original
LagrangianL

s4d
EH ­ s1yGd

p
jgmnj Rs4d:

L s2dsr, td ­
1

2G
r tr

£
sg21≠rgd2 2 sg21≠tgd2

§
.

In matrix componentsgab , the Poisson brackets read

hgabsrd, sg21≠tgg21dcdsr0dj ­
G
r

daddbcdsr 2 r0d .

The restrictions of symmetry and the unit determinan
of g require some additional technical effort and have
been taken into account in the derivation of the following
results.
© 1997 The American Physical Society
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Collinear polarizations.—Among the simplest nontriv-
ial metrics of this model are the collinearly polarized
gravitational waves discovered by Einstein and Ros
[6]. They correspond to a diagonal form of the matri
g ; diagsef, e2fd, i.e., the number of degrees of free
dom reduces to one. The Ernst equation (2) in this ca
reduces to the cylindrical wave equation,

2≠2
tf 1 r21≠rf 1 ≠2

rf ­ 0 ,

with the general solution,

fsr, td ­
Z `

0
dlfA1sldJ0slrdeilt

1 A2sldJ0slrde2iltg ,

whereJ0 denotes Bessel functions of the first kind. Th
coefficients A1 ­ A2 build a complete set of observ-
ables with canonical Poisson brackets,

hA1sld, A2sl0dj ­ Gdsl 2 l0d . (5)

Thus, quantization of this structure is straightforward [3
and gives rise to a representation in terms of creation a
annihilation operators,

A2j0l ­ 0 with A1 ­ Ay
2 . (6)

In particular, coherent quantum states may be construc
in the same way as in flat space quantum field theo
Recent discussion, however, has shown that these sta
do not provide coherence of all essential physical qua
tities [7].

As the first step towards the general case, we ca
the truncated model of collinear polarization into a form
that will allow proper generalization. We introduce new
variables,

T6swd ; exp
Z `

0
dlA6slde6iwl, (7)

which build an equivalent complete set of observable
In the Fock space representation (6),T2swd is repre-
sented as identity, whereasT1swd generates the coheren
state associated with a classical field that, on the sy
metry axisr ­ 0, is peaked as ad function att0 ­ w.
In terms of these new variables, the Poisson structure
becomes

hT2syd, T1swdj ­ 2
G

y 2 w
T2sydT1swd . (8)

We shall see in the sequel that it is this quadratic form
Poisson brackets which generically appears in the case
two polarizations. Linearization to (5) is a special featur
of the truncated model but not possible in the gener
case.

Two polarizations.—In general, the Ernst equation (2)
does not admit explicit solution. However, it is possibl
to construct the analog of the quantitiesT6 defined above.
Inspired by the auxiliary linear system associated with th
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Ernst equation [8], we define

T6sw, td ; P exp
Z `

0
dr2

µ
g2g21≠rg

1 2 g2
2

gg21≠tg
1 2 g2

∂
,

for w [ H6 , (9)

where H6 denote the upper and lower half of the
complex plane, respectively andg ; 2s1yrd fw 2 t 1p

sw 2 td2 2 r2g. For diagonalg, this definition indeed
reduces to (7) above. The variablesT6 are still constants
of motion, i.e.,

≠tT6sw, td ­ 0 . (10)

They turn out to be holomorphic inH6, respectively, and
generically do not coincide on the realw-axis. Definition
(9) further implies detT6 ­ 1 andT1swd ­ T2swd.

Interestingly, it may be shown that the matrix produc
M ­ T1Tt

2 on the real axis has a well-defined physica
meaning, namely, it coincides with the values of th
original matrixg on the symmetry axis:

Msw [ Rd ; T1swdTt
2swd ­ gsr ­ 0, t ­ wd , (11)

In particular, it is symmetric and real:

Mswd ­ Mtswd and Mswd ­ Mswd . (12)

Since theT6 contain the initial values of the metric and
the Ernst potential on the symmetry axisr ­ 0, they
contain sufficient information to recoverg everywhere
by means of (2) [note that≠rgsr ­ 0d ­ 0 for solutions
which are regular on the symmetry axis]. Thus, the set
T6swd builds acompleteset of observables for the Ernst
equation.

Continuing the program of canonical quantization
we next calculate the Poisson algebra to subsequen
quantize it. A direct but lengthy calculations reveals
quadraticPoisson algebra for the matrix entriesTab

6 swd:

hTab
6 syd, T cd

6 swdj ­
G

y 2 w
fTad

6 sydT cb
6 swd

2 Tcb
6 sydTad

6 swdg , (13)

hTab
2 syd, Tcd

1 swdj ­
G

y 2 w
fTab

2 sydT cd
1 swd

2 T cb
2 sydT ad

1 swd

2 dbdTam
2 sydT cm

1 swdg .

(14)

which consistently encloses the scalar algebra (8)
the componentsT11

6 swd. Quantization of this quadratic
structure is rather more subtle than that of a linear algeb
sincea priori there appear ambiguities on the right-han
side (rhs.) due to different orderings of the quadrat
expressions. Fortunately, the proper quantum analog
the Poisson brackets (13) is known in the theory o
15
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ce both
of
integrable systems [9] as the so-called SL(2)-Yangian algebra,

fTab
6 syd, Tcd

6 swdg ­
ih̄G

y 2 w
fTcb

6 swdT ad
6 syd 2 Tcb

6 sydT ad
6 swdg . (15)

The problem is to translate the Poisson brackets (14) and the symmetry relation (12) into the quantum picture sin
involve nonlinear expressions in the fieldsT6. Their consistent quantization is uniquely given by the following set
mixed relations:

fTab
2 syd, Tcd

1 swdg ­
ih̄G

y 2 w 1 ih̄G
Tcd

1 swdT ab
2 syd

2
ih̄Gsy 2 wd

sy 2 w 1 ih̄Gd sy 2 w 2 ih̄Gd
fTad

1 swdT cb
2 syd 1 dbdT cm

1 swdT amsydg

1
sih̄Gd2

sy 2 w 1 ih̄Gd sy 2 w 2 ih̄Gd
dbd fTam

1 swdT cm
2 syd 2 Tcm

1 swdT am
2 sydg , (16)
la-
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T1swdTt
2swd ­ fT1swdTt

2swdgt . (17)

Apart from the proper ordering of the quadratic expres
sions and the quantum corrections of orderh̄2 in (16),
the essential content of these equations is the shift of t
denominator on the rhs. in (16). This provides a centr
extension of (14), which is required for consistency of th
quantum model.

Classically,Mswd contains the essential physical ob-
jects according to (11). In the quantum model, the defin
tion Mswd ­ T1swdTt

2swd ensures that the commutation
relations (15) and (16) actually yield aclosedcommutator
algebra of the matrix entries ofMswd. Moreover, these
are Hermitian operators, provided that

T ab
1 swd ­ fTab

2 sw̄dgy , (18)

in accordance with the classical relations. Finally, th
classical condition of unit determinant detT6swd ­ 1 re-
quires quantum corrections because of the nonlinear ter
and is substituted by the “quantum determinant” [10],

T11
6 sw 1 ih̄GdT22

6 swd 2 T12
6 sw 1 ih̄GdT21

6 swd ­ 1 ,
(19)

which is indeed compatible with the relations (15) an
(16) and may as such be imposed as an operator identit

In summary, we have formulated the consistent quantu
algebra in terms of the operatorsTab

6 swd, subject to the
commutation relations (15) and (16), as well as to un
quantum determinant (19), hermiticity (18), and symmetr
(17). We are now in a position to introduce a Fock space
type representation of this algebra, inspired by the scal
case (6). Therefore, letT2swd act trivially on the vacuum,

Tab
2 swd j0l ­ dabj0l , (20)

andT1swd generate the Fock space spanned by the ba
states,

mY
i­1

T
ai bi
1 swid j0l, wi [ H1, m ­ 0, 1, . . . .

(21)
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These excitations are not independent but obey the re
tions (15), (17), and (19) forT1. The intuitive idea that the
T ab

1 swd generate the complete spectrum of states is not o
supported by the exactly solved scalar case from above,
even stronger by the fact that the conserved chargesT1swd
canonically Poisson generate the Geroch group [11] whi
as a symmetry group, acts transitively among the classi
solutions of the field equations [12].

It is straightforward to further extract the relevan
physical information from the quantum model. Th
hermiticity relations (18), together with the commutatio
relations (16), allow one to calculate the expectatio
values of arbitrary polynomials in theTab

6 swd in arbitrary
excitations of the vacuum. Indeed, the commutatio
relations (16) show that theT ab

2 swd may be shuffled
through to the right in any sequence of operators, whe
they finally “annihilate” the vacuum according to (20)
The rhs. of (16) may be viewed accordingly as a norm
ordering of the quadratic expressions.

We can also derive expectation values of the conform
factorG` and its exponentialeG` , related to energy, deficit
angle, and metric components at infinity (4). Namel
classically one may calculate the Poisson brackets

hG`, T6swdj ­ G≠wT6swd . (22)

In the quantum theory, the conformal factor can thu
be represented as derivation operatorih̄G ≠y≠w; its
exponentialeG` becomes the shift operatorw ° w 1

ih̄G. These operators may be shown to be Hermiti
in the representations (18), (20), and (21). It is a
elementary exercise to calculate their matrix elemen
between arbitrary quantum states. In particular, t
conformal factor G` exhibits a positive spectrum in
accordance with its classical form (3); e.g., its eigensta
of the first level are of the formZ

R
dw exps2ilwyh̄GdT1swd j0l ,

such that, due to holomorphy ofT1swd in H1, the integral
vanishes for negativel.
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The presented quantum model provides the exact qu
tization of a minisuperspace model of quantum gravi
with nonlinear characteristics. The complete set of qua
tum observables and a complete spectrum of physic
quantum states are at hand. The techniques are su
ciently developed to start exploring the properties of th
spectrum and relevant observables.

It would be of great interest to identify some kind o
coherent states in this model, i.e., quantum states w
certain semiclassical properties. Because of the no
linear setting, it is reasonable to suspect that not all
the standard properties of the usual coherent states can
satisfied. The insufficiency of the traditional framewor
of coherent states for the description of quantized gravi
tional waves is actually supported by recent observatio
in the simpler model of collinear polarizations [7].

Another exciting feature of our quantum model emerge
from the quantum analog of the determinant (19): In vie
of the physical interpretation ofMswd (11), which supplies
the spectral parameterw with a spacetime meaning, it
is tempting to consider (19) as a sign of arising discre
structures and nonlocality of the quantum operators
the Planck scale. Let us recall that we have alrea
encountered two other discrete effects showing up in t
quantum model: The classical singularities in the Poiss
algebra (14) have been shifted away from the real line
an amount ofih̄G in (16). They may hence affect the
holomorphy of the action of the quantum operatorsT6swd
in a corresponding domain of Planck size. Secondl
the Hamiltonian (4) has been shown to be represent
by a discrete Planck length shift operator in the quantu
theory.

Since the presented quantization employs mainly t
group-theoretical properties of the model, it will allow
natural generalization to other and more complicate
models of dimensionally reduced gravity, including highe
dimensional supergravity as well as Einstein-Maxwe
systems [13]. Similarly, it should find application to the
Gowdy model, wherer becomes a timelike variable [14].
The weak field limit of the nonlinear Poisson structur
in this case is isomorphic to the isomonodromic Poisso
structure quantized in [15]. With a different norm o
the reducing Killing vector fields, the whole schem
may futhermore be applied to stationary axisymmetr
spacetimes, providing an exact quantization of the bla
hole solutions in a vast class of models. A detaile
account of the presented results will follow.
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