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Canonical Quantization of Cylindrical Gravitational Waves with Two Polarizations
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The canonical quantization of the minisuperspace model describing cylindrically symmetric gravita-
tional waves with two polarizations is presented. A Fock space-type representation is constructed. It is
based on a complete set of quantum observables. Physical expectation values may be calculated in ar-
bitrary excitations of the vacuum. Our approach provides a nonlinear generalization of the quantization
of the collinearly polarized Einstein-Rosen gravitational waves. [S0031-9007(97)04861-8]
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The quantization of dimensionally reduced models ofwith x> = z, x3 = ¢, radial coordinatep, and time
4D Einstein gravity serves as interesting testing ground. The symmetric2 X 2 matrix g is restricted by the
for many issues of quantum gravity. The physical outputtondition deg = 1.
of this approach to an understanding of characteristic The essential part of the Einstein field equations is
features of the full theory, however, strongly depends omiven by the Ernst equation for the matigxor, equiva-
the complexity of the model under consideration. lently, for the2 X 2 matrix ¢ which carries the dualized

Probably, the simplest and best understood examplgsotentials of the Ernst picture [5];
are the minisuperspace models [1] which contain only a fi- ~1 _ ~1 _
nite number of physical degrees of freedom and thus hide 9p(pg "0p8) = 9:(pg 9-8) = 0. (2)
the field effects of quantum gravity. A more complicated The conformal factof (p, 7) is then a functional of. At
example of steady interest is given by the minisuperspacgpatial infinity,p = o it is given by
model of cylindrically symmetric gravitational waves with 1 (=
one polarization [2,3]. This model already involves anin- T'» = — f pdptrl(g~'a,8)" + (g7'9,)°]. ()
L 2 Jo
finite number of degrees of freedom. It becomes treatable

with the methods of flat space quantum field theory, peJhis factor generates evolution with respect to the time

cause the Einstein field equations essentially reduce to ttRoOrdinater; its exponential measures the total energy per
axisymmetric 3D wave equation. This underlying linear-unit length in thez _d|rect|onH and the deficit angle in
ity, on the other hand, may conceal typical nonlinear fealN® asymptotic regiom,,

tures of quantum gravity. 1

2
. . . r— - _ “ 1 _ L2
It is the purpose of this Letter to generalize the results H TG (I —e ). (4)

of Refs. [2,3] to cylindrical gr_avita_tional waves with  The reduction of the metric to the form (1) can be
two polarizations, where the Einstein equations becomﬁerformed within the canonical formalism, such that

nonlinear. We achieve a consistent canonical quantizatiofhe poisson bracket of the reduced model is the Dirac
in terms of a complete set of quantum observablesyracket of the original structure after appropriate gauge
Creation and annihilation operators are constructed in fixing [3]. The resulting canonical Poisson structure
type of Fock space representation of these observableg oasily extracted from the effectively two-dimensional
The full space of physical quantum states is then b“'"i_agrangian density. @ that comes from reduction via

frolm Ie;<cit'ation_s pfl the”v¢'a\r(]:utfm-I This taltl_ows cine O Killing symme)tries and gauge fixing of the original
calculate, in principle, all physical expectation values in . @ _ T pd).
arbitrary quantum states. LagrangianLey = (1/G)VIguw| R™:
We start from a general space-time with cylindrical ©) _ 1 -1 2 -1 2
symmetry, i.e., we assume the existence of two commut- L%, 7) 2G ptrlls™,8) (s7'9:8)°].
ing Killing vector fields, one of which has closed orbits. |n matrix componentg,;, the Poisson brackets read
We choose coordinates such that the Killing vector fields G
are given byd, andd, associated with the axis of sym- {g.,(p), (g7 0,88 Dea(p")} = — 8.465:8(p — p').
metry z and the azimuthal angle, respectively. Further p
gauge fixing brings the metric into the standard form [4], The restrictions of symmetry and the unit determinant
2 _ Tl 3.2 2 - a b of g require some additional technical effort and have
ds € (=d7 + dp7) + p&ap(p, 7)dx"dx ’(l) been taken into account in the derivation of the following
a,b =23, results.
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Collinear polarizations—Among the simplest nontriv- Ernst equation [8], we define
ial metrics of this model are the collinearly polarized o 2,15 1,
gravitational waves discovered by Einstein and Rosenr. (w,r) = Texp] dp2<7 § %8 Y8 Tg>,
0

[6]. They correspond to a diagonal form of the matrix L=y L=y
g = diage?,e %), i.e., the number of degrees of free- forw € H-, (9)
dom reduces to one. The Ernst equation (2) in this case
R » R complex plane, respectively and= —(1/p)[w — 7 +
—0zp tp 0t 9,0 =0, Jow — 7)2 = p?]. For diagonak, this definition indeed
with the general solution reduces to (7) above. The variablBs are still constants
B ’ of motion, i.e.,
b = [ DA WIOp 0T (w.7) = 0. (10)
+ A_(MJo(Ap)e ], They turn out to be holomorphic iH -+, respectively, and

. . _ generically do not coincide on the reataxis. Definition

where J, denotes Bessel functions of the first kind. The(g) further implies deT- = 1 andT (w) = T_(w).
coefficients A = A_ build a complete set of observ-  |nterestingly, it may be shown that the matrix product
ables with canonical Poisson brackets, M = T.T" on the real axis has a well-defined physical

(AL (A),A_ (W)} = GS(A — A'). (5) mga_ming, na}mely, it coincides with the values of the

original matrixg on the symmetry axis:

Thus, quantization of this structure is straightforward [3] _ ,
and gives rise to a representation in terms of creation anf w € R) = T-(W)TZ(w) = g(p = 0,7 = w), (11)

annihilation operators, In particular, it is symmetric and real:
A0y =0 with A = AT (6) M(w) = M'(w) and M(w)=M(w). (12)

In particular, coherent quantum states may be constructegice ther. contain the initial values of the metric and
in the same way as in flat space quantum field theoryy o grnst potential on the symmetry axis= 0, they

Recent discussion, however, has shown that these statggniain sufficient information to recovey everywhere

do not provide coherence of all essential physical quangy means of (2) [note that, ¢(p = 0) = 0 for solutions
tities [7]. "

! which are regular on the symmetry axis]. Thus, the set of
As the first step towards the general case, we ca

; A #‘i(w) builds acompleteset of observables for the Ernst
the truncated model of collinear polarization into a formequation.

that will allow proper generalization. We introduce new Continuing the program of canonical quantization,

variables, we next calculate the Poisson algebra to subsequently
B * A quantize it. A direct but lengthy calculations reveals a
Ti(w) = eprO dAA=(N)e=™", (7)  quadraticPoisson algebra for the matrix entrigg’ (w):
which build an equivalent complete set of observables. |, ., d G ad b
In the Fock space representation (@), (w) is repre- T2 W), TE W)} = v —w [T )T (w)
sented as identity, whereds (w) generates the coherent R ad
state associated with a classical field that, on the sym- TE@rsw)l. (13
metry axisp = 0, is peaked as & function atry = w.
In terms of these new variables, the Poisson structure (5) {74 (y), 7¢4(y)} = [T (v)T< (w)
becomes v —w
= T )T (w)

G
{T-(), T+(w)} = — v —w T-(v)T+(w). (8) _ Bdefm(v)Tim(W)].

We shall see in the sequel that it is this quadratic form of (14)
Poisson brackets which generically appears in the case of
two polarizations. Linearization to (5) is a special featurewhich consistently encloses the scalar algebra (8) in
of the truncated model but not possible in the generathe componentd™!!(w). Quantization of this quadratic
case. structure is rather more subtle than that of a linear algebra,
Two polarizations—In general, the Ernst equation (2) sincea priori there appear ambiguities on the right-hand
does not admit explicit solution. However, it is possibleside (rhs.) due to different orderings of the quadratic
to construct the analog of the quantitiBs defined above. expressions. Fortunately, the proper quantum analog of
Inspired by the auxiliary linear system associated with thehe Poisson brackets (13) is known in the theory of
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integrable systems [9] as the so-called SL(2)-Yangian algebra,

(72 (), T540n)] = — 2 [T 00 T2(w) = T2 T2 0], (15)

The problem is to translate the Poisson brackets (14) and the symmetry relation (12) into the quantum picture since both
involve nonlinear expressions in the fieldils. Their consistent quantization is uniquely given by the following set of
mixed relations:

_inG
v—w+ihG
th(U _ W) a c cm am
(v —w + ihG) (v — w — ihG) [THWT ) + 8% T )T ()]
(ihG)?

bd am cm _ cm am
T TG 0 = g O T IT W) = TR WT W), (16)

[T (), TS (w)] = TS (W) T (v)

and the symmetry condition | These excitations are not independent but obey the rela-
p . p p tions (15), (17), and (19) fdF;. The intuitive idea that the
Ty (W)TZ(w) = [T+ ()T ()] (17) T¢"(w) generate the complete spectrum of states is not only
Apart from the proper ordering of the quadratic expres-supported by the exactly solved scalar case from above, but
sions and the quantum corrections of ordérin (16), even stronger by the fact that the conserved chafgés )
the essential content of these equations is the shift of theanonically Poisson generate the Geroch group [11] which,
denominator on the rhs. in (16). This provides a centrahs a symmetry group, acts transitively among the classical
extension of (14), which is required for consistency of thesolutions of the field equations [12].
quantum model. It is straightforward to further extract the relevant
Classically, M (w) contains the essential physical ob- physical information from the quantum model. The
jects according to (11). In the quantum model, the definihermiticity relations (18), together with the commutation
tion M(w) = T+(w)TL(w) ensures that the commutation relations (16), allow one to calculate the expectation
relations (15) and (16) actually yieldddosedcommutator ~ values of arbitrary polynomials in tHE¢? (w) in arbitrary
algebra of the matrix entries dif(w). Moreover, these excitations of the vacuum. Indeed, the commutation
are Hermitian operators, provided that relations (16) show that th@“’(w) may be shuffled
ab _ reaby- through to the right in any sequence of operators, where
T (w) = [T @)1", (18) they finally “annihilate” the vacuum according to (20).
in accordance with the classical relations. Finally, theThe rhs. of (16) may be viewed accordingly as a normal
classical condition of unit determinant det(w) = 1 re-  ordering of the quadratic expressions.
guires quantum corrections because of the nonlinear terms We can also derive expectation values of the conformal
and is substituted by the “quantum determinant” [10],  factor . and its exponentiad'~, related to energy, deficit
1 . 2 12 . 21 angle, and metric components at infinity (4). Namely,
Ti(w + ihG)TE (W) — T (w + ihG)TE (w) = (11’9) classically one may calculate the Poisson brackets

which is indeed compatible with the relations (15) and e, T ()} = GouwT(w). (22)
(16) and may as such be imposed as an operator identityn the quantum theory, the conformal factor can thus
In summary, we have formulated the consistent quanturbe represented as derivation operai@G 9/dw; its
algebra in terms of the operatof’(w), subject to the exponentiale!= becomes the shift operator — w +
commutation relations (15) and (16), as well as to unitjiG. These operators may be shown to be Hermitian
quantum determinant (19), hermiticity (18), and symmetryin the representations (18), (20), and (21). It is an
(17). We are now in a position to introduce a Fock spaceelementary exercise to calculate their matrix elements
type representation of this algebra, inspired by the scaldfetween arbitrary quantum states. In particular, the
case (6). Therefore, 1@t (w) act trivially on the vacuum, conformal factor I'.. exhibits a positive spectrum in
ab _ sab accordance with its classical form (3); e.g., its eigenstates
T=(w)0) = 5710), (20) of the first level are of the form
andT(w) generate the Fock space spanned by the basic

states, ] dw exp(—iAw/hG)T+(w) |0y,
R

- al b[ . . ==
il:[l T+ (wi) [0), wi & H, m=01.... such that, due to holomorphy @f. (w) in H., the integral
(21)  vanishes for negativa.
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