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Quantum spin dynamics (QSD): VI. Quantum Poincaŕe
algebra and a quantum positivity of energy theorem for
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Abstract. We quantize the generators of the little subgroup of the asymptotic Poincaré group
of Lorentzian four-dimensional canonical quantum gravity in the continuum.

In particular, the resulting ADM energy operator is densely defined on an appropriate Hilbert
space, symmetric and essentially self-adjoint.

Moreover, we prove a quantum analogue of the classical positivity of the energy theorem
due to Schoen and Yau. The proof uses a certain technical restriction on the space of states at
spatial infinity which is suggested to us given the asymptotically flat structure available. The
theorem demonstrates that several of the speculations regarding the stability of the theory, spelled
out recently by Smolin, are false once a quantum version of the pre-assumptions underlying the
classical positivity of the energy theorem is imposed in the quantum theory as well.

The quantum symmetry algebra corresponding to the generators of the little group faithfully
represents the classical algebra.

PACS number: 0460D

1. Introduction

Following the canonical approach to a quantum theory of gravity, a (Dirac) observable
is by definition a self-adjoint operator on the full Hilbert space (not only on the Hilbert
space induced from the full Hilbert space by restricting to the space of solutions of the
quantum constraints) which weakly commutes with the constraint operators. Equivalently,
an observable leaves the physical Hilbert space of solutions to the quantum constraints
invariant and is self-adjoint with respect to the physical inner product.

At this point no Dirac observables are known for pure general relativity (the situation
improves when adding matter), neither for classical nor for quantum gravity. An exception
is given by the asymptotically flat case where it is well known that the Poincaré generators
at spatial infinity form a closed Dirac classical observable algebra.

In the present paper we address the question of how to quantize these generators. We
work with the real version of the originally complex connection formulation of Lorentzian
general relativity [1] which was first considered in [2] (a real-valued connection formulation
for Euclidean gravity was earlier considered in [3]). The associated real connection
representation has been made into a solid foundation for quantum theory in the series
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of papers [4–10]. This rigorous mathematical framework which is based on the earlier
pioneering work on loop variables, for instance [11, 12] for gauge theories and gravity,
respectively (the latter of which was designed for the complex variables and thus was
lacking an appropriate inner product), equips us with the tools necessary to ask the question
of whether the various operators constructed are densely defined, symmetric, self-adjoint,
diffeomorphism invariant and so forth.

But even though this kinematical framework is available, it is still quite surprising that
something like an ADM energy operator can actually be constructed. The reason for this is
that in the representation under consideration the ADM energy function turns out to be a
rather non-polynomial function of the canonical momenta and thus it is far from clear how
to define it. It turns out that the same technique that enabled one to define the Wheeler–
DeWitt operator for 3+ 1 Lorentzian gravity [13–15], the Wheeler–DeWitt operator for
2+ 1 Euclidean gravity [16], length operators [17] and matter Hamiltonians when coupled
to gravity [18] can be employed to define Poincaré quantum operators.

The present paper is organized as follows. In section 2 we review the necessary
mathematical background from [4–10, 19]. In section 3 we regularize the ADM energy
operator. There are at least two natural orderings, one in which the operator becomes
densely defined on the full physical Hilbert space as defined in [19] and one in which it
is not. Nevertheless, the latter operator should be the physically relevant one because
when restricting the Hilbert space to a subspace which is suggested to us given the
asymptotically flat structure available, then this operator turns out to be positive-semidefinite
by inspection and essentially self-adjoint on the physical Hilbert space. This result reveals
that several of the speculations spelled out in [20] and which were based on several
unproved assumptions were premature: after taking the quantum dynamics of the theory
and the quantum asymptotic and regularity conditions on the Hilbert space appropriately
into account, the quantum positivity of energy theorem isnot violated.

It should be said from the outset, however, that the ‘quantum positivity of energy
theorem’ that we provide rests, besides on a quite particular regularization procedure of the
ADM energy operator which exploits the fall-off behaviour of the fields at spatial infinity
quite crucially, on one additional technical assumption (thetangle assumption, see below)
whose physical significance is unclear. Although it can be motivated also given the structure
available at spatial infinity, it should be stressed that without this assumption the positivity
theorem would not hold.

In section 4 we naturally extend the unitary representation of the diffeomorphism group
to include asymptotic translations and rotations and compute the symmetry algebra between
time translations and the spatial Euclidean group, that is, we verify the algebra of the little
group of the Poincaré group. We find no anomaly. As is well known, the little group suffices
to induce the unitary irreducible representations of the Poincaré group. In this paper we do
not, however, address the more difficult problem of how to define a boost quantum operator.

2. Preliminaries

We begin with a compact review of the relevant notions from [10, 19]. The interested reader
is urged to consult these papers and references therein.

We assume that spacetime is of the formM = R× 6 where6 has an asymptotically
flat topology, that is, there is a compact setB ⊂ 6 such that6 − B is homeomorphic
with R3 with a compact ball cut out. We also assume that∂6 is homeomorphic with the
2-sphere. The case of more than one component of∂6 (e.g. several asymptotic ends or
horizons, etc) can be treated in a similar way.
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Denote bya, b, c, . . . spatial tensor indices and byi, j, k, . . . su(2) indices. The
gravitational phase space is described by a canonical pair

(
Aia, E

a
i /κ

)
whereAia is anSU(2)

connection on the hypersurface6, Eai is an ad(SU(2)) transforming vector density andκ
is the gravitational coupling constant. This means that the symplectic structure is given by{
Aia(x), E

b
j (y)

} = κδ(x, y)δbaδij . The relation with the co-triadeia, the extrinsic curvature

Kab and the 3-metricqab = eiaeib isEai = 1
2ε
abcεijke

j

be
k
c andAia = 0ia+sgn

(
det

((
e
j
c

)))
Kabe

b
j

whereεabc is the metric-independent, completely skew tensor density of weight one,0ia is
the spin connection ofeia andeai is the inverse of the matrixeia.

By γ we will denote in the following a closed, piecewise analytic graph embedded into
a d-dimensional smooth manifold6 (the case of interest in general relativity isd = 3).
The set of its edges will be denoted byE(γ ) and the set of its verticesV (γ ). By suitably
subdividing edges into two halves we can assume that all of them are outgoing from a
vertex (the remaining endpoint of the so divided edges is not a vertex of the graph because
it is a point of analyticity). LetA be aG connection for a compact gauge groupG (the case
of interest in general relativity isG = SU(2)). We will denote byhe(A) the holonomy of
A along the edgee. Let πj be the (once and for all fixed representative of the equivalence
class of the set of)j th irreducible representations ofG (in general relativityj is just a spin
quantum number) and label each edgee of γ with a labelje. Let v be ann-valent vertex
of γ and lete1, . . . , en be the edges incident atv. Consider the decomposition of the tensor
product⊗nk=1πjek into irreducibles and denote byπcv (1) the linearly independent projectors
onto the irreducible representationscv that appear.

Definition 2.1. An extended spin-network state is defined by

Tγ, Ej,Ec(A) := tr(⊗v∈V (γ )[πcv (1) · ⊗e∈E(γ ),v∈eπje (he(A))]) (2.1)

where Ej = {je}e∈E(γ ), Ec = {cv}v∈V (γ ). In what follows we will use a compound label
I ≡ (γ (I ), Ej(I ), Ec(I )). An ordinary spin-network state is an extended one with all vertex
projectors corresponding to singlets.

Thus, a spin-network state is a particular function of smooth connections restricted to
a graph with definite transformation properties under gauge transformations at the vertices.
Their importance is that they form an orthonormal basis for a Hilbert spaceH ≡ Haux ,
called the auxiliary Hilbert space. Orthonormality means that

〈Tγ, Ej,Ec, Tγ ′, Ej ′,Ec′ 〉 ≡ 〈Tγ, Ej,Ec, Tγ ′, Ej ′,Ec′ 〉aux = δγ γ ′δ Ej, Ej ′δEc,Ec′ . (2.2)

Another way to describeH is by displaying it as a space of square-integrable
functions L2(A/G, dµ0). Here A/G is a space of distributional connections modulo
gauge transformations, typically non-smooth andµ0 is a rigorously defined,σ -additive,
diffeomorphism-invariant probability measure onA/G. The spaceA/G is the maximal
extension of the spaceA/G of smooth connections such that (the Gel’fand transform of)
spin-network functions are still continuous. The inner product can be extended, with the
same orthonormality relations, to any smooth (rather than analytic) graph with a finite
number of edges and to non-gauge-invariant functions. It is only the latter description ofH
which enables one to verify that the inner product〈·, ·〉 is the unique one that incorporates
the correct reality conditions thatA,E are in fact real valued. The inner product (2.2) was
postulated earlier (see remarks in [31]) for thecomplexconnection formulation. But it was
not until the construction of the Ashtekar–Lewandowski measureµ0 that one could show
that this inner product is actually the correct one for the real connection formulation only.
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We will denote by8 the finite linear combinations of spin-network functions and call
it the space of cylindrical functions. A functionfγ is said to be cylindrical with respect
to a graphγ whenever it is a linear combination of spin-network functions on that graph
such thatπje is not the trivial representation for noe ∈ E(γ ). The space8 can be
equipped with one of the standard nuclear topologies induced fromGn because on each
graphγ every cylindrical functionfγ becomes a functionfn onGn wheren is the number
of edgese of γ through the simple relationfγ (A) = fn(he1(A), . . . , hen(A)). This turns
it into a topological vector space. By8′ we mean the topological dual of8, that is,
the bounded linear functionals on8. General theorems on nuclear spaces show that the
inclusion8 ⊂ H ⊂ 8′ (Gel’fand triple) holds.

So far we have dealt with solutions to the Gauss constraint only, that is, we have
explicitly solved it by dealing with gauge-invariant functions only. We now turn to the
solutions to the diffeomorphism constraint (we follow [19]).

Roughly speaking one constructs a certain subspace8Diff of 8′ by ‘averaging spin-
network states over the diffeomorphism group’ by following the subsequent recipe: take
a spin-network stateTI and consider its orbit{TI } under the diffeomorphism group. Here
we mean orbit under asymptotically identity diffeomorphisms only! Then construct the
distribution

[TI ] :=
∑
T ∈{TI }

T (2.3)

which can be shown explicitly to be an element of8′. Any other vector is averaged by
first decomposing it into spin-network states and then averaging those spin-network states
separately. Certain technical difficulties having to do with superselection rules and graph
symmetries [10] were removed in [19].

An inner product on the space of the thus constructed states is given by

〈[f ], [g]〉Diff := [f ](g) (2.4)

where the brackets stand for the averaging process and the right-hand side means evaluation
of a distribution on a test function. The completion of8Diff with respect to〈·, ·〉Diff is
denoted byHDiff .

Finally, the Hamiltonian constraint is solved as follows [15]: one can explicitly write
down an algorithm of how to construct the most general solution. It turns out that one
can construct ‘basic’ solutionssµ ∈ 8′ which are mutually orthonormal with respect to
〈·, ·〉Diff (in a generalized sense) and diffeomorphism invariant. The span of these solutions
is equipped with the natural orthonormal basissµ (in the generalized sense). One now
defines a ‘projector’

η̂f := [[f ]] :=
∑
µ

sµ〈sµ, [f ]〉Diff (2.5)

for eachf ∈ 8 and so obtains a subspace8Ham ⊂ 8′. The physical inner product [19] is
defined by

〈[[f ]] , [[g]] 〉phys := [[f ]]([g]). (2.6)

Finally, the physical Hilbert space is just the completion of8Ham with respect to〈·, ·〉Ham.

3. Regularization of the ADM Hamiltonian

There are many ways to write the ADM Hamiltonian which are all classically weakly
identical. We are going to choose a form which is a pure surface integral and which
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depends only onEai because in this case the associated operator will be almost diagonal
in a spin-network basis so that we can claim that spin-network states really do provide a
nonlinear Fock representation for quantum general relativity as announced in [13, 14].

The appropriate form of the classical symmetry generators was derived in [21, 22].
Although that paper was written for thecomplex Ashtekar variables, all results can be
taken over by carefully removing factors of i at various places. We find for the surface
part of the Hamiltonian (expression (4.31) in [21], we use thatN∼ = N/

√
det(q), DaN∼ =

(DaN)/
√

det(q) whereN is the scalar lapse function)

E(N) = −2

κ

∫
∂6

dSa
N√

det(q)
Eai ∂bE

b
i . (3.1)

It is easy, instructive and for the sign of the ADM energy crucial to see that (3.1) really
equals the classical expression+(1/κ) ∫

∂6
dSa (qab,b − qbb,a) due to ADM: using that

Eai = 1
2ε
abcεijke

j
ae
k
b we have the chain of identities

− 2√
det(q)

Eai ∂bE
b
i = − sgn(det(e))eai ε

bcdεijk
[
ejc e

k
d

]
,b

= −2 sgn(det(e))eai ε
bcdεijke

j
c e
k
d,b

= −2 sgn(det(e))qaf εbcdεijke
i
f e

j
c e
k
d,b = −2qaf εbcd

√
det(q) εf cee

e
ke
k
d,b

= −4qacδb[cδ
d
e]

√
det(q) eei e

i
d,b

= 4
√

det(q) qacqedeide
i
[c,e] = 2

√
det(q) qacqbdeid

[
eic,b − eib,c

]
=
√

det(q) qacqbd
[
2ei(de

i
c),b + 2ei[de

i
c],b − 2ei(de

i
b),c − 2ei[de

i
b],c

]
=
√

det(q) qacqbd
[
(qcd,b − qbd,c)+ 2ei[de

i
c],b

]
. (3.2)

Now we expandeia(x) = δia + f ia (x/r)/r + o
(
1/r2

)
where r2 = δabx

axb defines
the asymptotic Cartesian frame. The functionf ia (x/r) only depends on the angular
coordinates of the asymptotic sphere and is related to the analogous expansionqab(x) =
δab + fab(x/r)/r + o

(
1/r2

)
by fabδbi = f ia . Consider now the remainder in the last line of

(3.2). Its o
(
1/r2

)
part vanishes becausef[ab] = 0 and this concludes the proof.

In the following we focus on the energy functionalEADM = E(N = 1). We will
quantize it in two different ways corresponding to two quite different factor orderings.
Each of the orderings has certain advantages and certain disadvantages which we will point
out.

3.1. Ordering I: no state space restriction

In this subsection we will derive a form of the operator which is densely defined on the
whole Hilbert spaceH (and extends to the spacesHDiff ,Hphys defined above) without
imposing any further restriction that corresponds to asymptotic flatness.

Using again thatEai = 1
2εijkε

abce
j

be
k
c we can write it as

EADM = lim
S→∂6

EADM(S) where EADM(S) = −2

κ

∫
S

1√
det(q)

εijkej ∧ ek∂bEbi (3.3)

and S is a closed 2-surface which is topologically a sphere. The idea is to point-split
expression (3.3) and to use that[

sgn(det(e))eia
]
(x) = 1

2κ

{
Aia(x), V (x, ε)

}
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whereV (x, ε) = ∫
6

d3y χε(x, y)
√

det(q)(y) and χε is the (smoothed out) characteristic
function of a box of coordinate volumeε3. Since

lim
ε→0

χε(x, y)

ε3
= δ(x, y) so that lim

ε→0

V (x, ε)

ε3
=
√

det(q)(x)

we have

EADM(S) = lim
ε→0
−2

κ

∫
S

1

ε3
√

det(q)(x)
εijkej (x) ∧ ek(x)

∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0
−2

κ

∫
S

εijk

V (x, ε)
ej (x) ∧ ek(x)

∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0
− 1

2κ3

∫
S

εijk

V (x, ε)

{
Aj(x), V (x, ε)

} ∧ {Ak(x), V (x, ε)}
×
∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0
− 2

κ3

∫
S

εijk
{
Aj(x),

√
V (x, ε)

} ∧ {Ak(x),√V (x, ε) }
×
∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0

4

κ3

∫
tr

({
A(x),

√
V (x, ε)

} ∧ {A(x),√V (x, ε) }
×
∫
6

d3y χε(x, y)
(
∂bE

b
)
(y)

)
= − lim

ε→0

4

κ3

∫
S

tr

({
A(x),

√
V (x, ε)

} ∧ {A(x),√V (x, ε) }
×
∫
6

d3y
[
∂ybχε(x, y)

]
Eb(y)

)
= lim

ε→0
EεADM(S) (3.4)

where in the second to last step we have taken a trace with respect to generatorsτi of su(2)
obeying [τi, τj ] = εijkτk and in the last step we have performed an integration by parts (the
boundary term at∂6 does not contribute for finiteS and ε sufficiently small). Thus, we
absorbed the 1/

√
det(q) into a square root within a Poisson bracket and simultaneously the

singular 1/ε3 into a volume functional. Classically we could have dropped the 1/
√

det(q)
(although the integrand would then no longer be a density of weight one and is strictly
speaking not the boundary integral of a variation of the Hamiltonian constraint) due to the
classical boundary conditions which tell us that det(q) tends to 1.

We now quantizeEεADM(S). This consists of two parts: in the first we focus on the
volume integral in (3.4) and replaceEai by Êai = −ih̄κδ/δAia. In the second step we
triangulateS exactly as the hypersurface of 2+ 1 gravity in [16], replace the volume
functional by the volume operator and Poisson brackets by commutators times 1/ih̄.

So letfγ be a function cylindrical with respect to a graphγ . Since we are only interested
in the limit S → ∂6 we may assume that

(i) γ lies entirely within the closed ball whose boundary isS, but
(ii) γ may intersectS at an endpoint of one of its edges and may even have edges that lie

entirely insideS.
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Furthermore, we can label the edges ofγ in such a way that an edge either intersects
S transversally (with an orientation outgoing from the intersection point withS) or lies
entirely within S.

Coming to the first step we have for they integral involved inEεADM(S):∫
6

d3y [∂aχε(x, y)]Ê
a
i (y)fγ = −ih̄κ

∑
e∈E(γ )

∫
6

d3y [∂aχε(x, y)]

×
∫ 1

0
dt ėa(t) δ(y, e(t))Xie(t) fγ

= −ih̄κ
∑
e∈E(γ )

∫ 1

0
dt ėa(t)[∂yaχε(x, y)y=e(t)]Xie(t) fγ

= −ih̄κ
∑
e∈E(γ )

∫ 1

0
dt

[
d

dt
χε(x, e(t))

]
Xie(t) fγ

= −ih̄κ
∑
e∈E(γ )

lim
n→∞

n∑
k=1

[χε(x, e(tk))− χε(x, e(tk−1))]X
i
e(tk−1) fγ (3.5)

whereE(γ ) is the set of edges ofγ , Xie(t) := [he(0, t) τi he(t, 1)]AB∂/∂[he(0, 1)]AB and
0= t0 < t1 < · · · < tn = 1 is an arbitrary partition of the interval [0, 1].

It is important for what follows that for eacht, e, i Xie(t)fγ is still a function cylindrical
with respect toγ .

We now come to the second step. This involves, first of all, a triangulation of the
two-dimensionalsurfaceS in adaption to the graphγ . Besides the prescription explained
in detail in [16] which deals with the triangulation ofS in the neighbourhood of a vertex
formed by edges ofγ that lie entirely withinS we just need to deal with the case that
a vertexv of γ also has edges incident at it which lie entirely inside the open ball with
boundaryS except for the one pointv. In the case where there are at leasttwo edgese1, e2

of γ incident atv such thate1, e2 ⊂ S we can still take over the triangulation from [16].
However, if there is onlyone or nosuch edge (indeed, since we do not allow for gauge
transformations at spatial infinity we can allow for open edges that lie entirely within or end
atS without ruining gauge invariance) we need an additional prescription: in the case where
there is only one edgee ⊂ S incident atv, choose an arbitrary edgee′ not intersectingγ
except atv such that the tangents of the edgese, e′, e′′ are positively oriented atv where
e′′ is any of the edges ofγ incident atv but transversal toS.

In the case where there is no edgee ⊂ S incident atv, choose two arbitrary edgese, e′

not intersectingγ except atv such that the tangents of the edgess, e′, e′′ are positively
oriented atv wheree′′ is any of the edges ofγ incident atv but transversal toS. These
arbitrary edges will disappear from the stage again at the end of the calculation.

Given this set-up, at each vertexv of γ that lies insideS we have now at least two
edgese1, e2 incident at it that are insideS and we can define the triangles1 associated
with pairs of edges incident atv and insideS exactly as in [16]. As in [16] we then have
two segmentss1(1), s2(1) for each triangle1 which are actually segments of edges ofγ

incident atv and that lie insideS. Now observe that

εijhsi (1)
{
h−1
si (1)

, V (v, ε)
}
hsj (1)

{
h−1
sj (1)

, V (v, ε)
}

= δ2εij ṡai (0) ṡ
b
j (0)

{
Aa(v),

√
V (v, ε)

}{
Ab(v),

√
V (v, ε)

}+ o
(
δ2
)

= 2 vol(1)εab
{
Aa(v),

√
V (v, ε)

}{
Ab(v),

√
V (v, ε)

}
(3.6)
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whereδ is a small parameter corresponding to the parameter length of thesi(1) andεab the
metric independent totally skew tensor density of weight one onS. Altogether we therefore
conclude that the surface integral

∫
S

{
A(x),

√
V (x, ε)

} ∧ {A(x),√V (x, ε) } involved in
EADM(S) can be quantized by

− 1

2h̄2

∑
v∈V (γ )

4

E(v)

∑
v(1)=v

εijhsi (1)

[
h−1
si (1)

,

√
V̂ (v, ε)

]
hsj (1)

[
h−1
sj (1)

,

√
V̂ (v, ε)

]
fγ . (3.7)

We do not wish to give a full derivation of (3.7) for which the reader should consult [16],
however, a few remarks are in order which intuitively explain (3.7):

(i) First of all as has already been mentioned, we do not work with a fixed triangulation
but with a whole finite family of triangulations that depend on the graphγ of the state
that we act on. More precisely, a particular member of the family of triangulations is
defined such that for each vertexv of γ which lies in S we (i) pick one paire1, e2

of edges ofγ incident at it which are such thate2 is next toe1 to its right while the
tangents ofe1, e2 enclose an angle less than or equal toπ (with respect toδab); (ii)
take proper subsegmentssi(1) ⊂ ei incident atv; (iii) construct two more segments
sī(t) = 2v− si(t); (iv) construct four obvious triangles fromsi, sī which saturatev and
(v) choose a triangulation which embeds those four triangles for eachv as basic ones
and is otherwise arbitrary only subject to the restriction that none of the remaining1

has its basepoint onγ .
(ii) Next, each of the four triangles112,121̄,11̄2̄,12̄1 contributes classically the same to

the surface integral
∫
S
=∑1

∫
1

as the triangle112 so that we can classically replace
these four terms by 4

∫
112

. This explains the factor of 4 in (3.7).
(iii) Now, since we do not want to distinguish one particular pair of edges as compared

to any other, we average over the choice of pairs which explains the factor of 1/E(v)

whereE(v) = n(v) or E(v) = n(v) − 1 is the possible number of pairs depending on
whether the angles less than or equal toπ add up to 2π (with respect toδab) or not and
n(v) is the valence ofv.

(iv) Finally, the fact that we sum over vertices ofγ only comes from the presence of the
volume operator which has non-trivial action at vertices only. Therefore the contribution
of all other triangles which define the triangulation drop out (all triangles such that there
is no edge ofγ transversal toS at its basepoint since the three-dimensional volume
operator annihilates co-planar vertices).

It should be mentioned that any of the so-defined ‘averaged family of triangulations ofS

adapted toγ ’ has as classical continuum limit the original integral
∫
6

!
Putting (3.5) and (3.7) together we obtain as the final result

Ê
ε,n
ADM(S)fγ =

4

κ3

(
− 1

2h̄2

)
(−ih̄κ)

∑
v∈V (γ )

4

E(v)

×
∑
v(1)=v

εij tr

(
hsi(1)

[
h−1
si (1)

,

√
V̂ (v, ε)

]
hsj (1)

[
h−1
sj (1)

,

√
V̂ (v, ε)

]

×
∑
e∈E(γ )

n∑
k=1

[χε(v, e(tk))− χε(v, e(tk−1))]X
i
e(tk−1)

)
fγ . (3.8)



Quantum spin dynamics (QSD): VI 1471

Now we perform the limitn → ∞ and ε → 0 in reverse order†: keepingn fixed, for
small enoughε only the term withk = 1 in the sum survives provided thate(0) = v.
Therefore also the sum overk and with it then dependence drops out. Also the operator
V̂ (v, ε) actually has a limit asε → 0 which we call V̂v and which is defined by
limε→0 V̂ (v, ε)fγ =: (V̂v)γ fγ for all γ . That the limit exists relies on the fact that eitherγ
hasv as a vertex or it does not. In the latter case the limit just vanishes, in the former case
for sufficiently smallε theε box aroundv does not include any other vertex ofγ other than
v and so there is only one contribution(V̂v)γ fγ which is constant asε → 0. The family of
operators(V̂v)γ is consistently defined becauseV̂ is. For a more explicit formula in terms
of analytic germs of edges see [16].

Now, the limit n → ∞ is trivial and the resulting operator derived for arbitrary but
finite S can be extended to∂6. The result is

ÊADMfγ = 2i

h̄κ2

∑
v∈V (γ )

4

E(v)

∑
v(1)=v

εij tr

(
hsi(1)

[
h−1
si (1)

,

√
V̂ (v, ε)

]
hsj (1)

×
[
h−1
sj (1)

,

√
V̂ (v, ε)

] ∑
e∈E(γ ),e(0)=v

Xie

)
fγ (3.9)

whereXie(0) = Xie = Xi(he) andXi(g) is the right invariant vector field atg ∈ SU(2).
The virtue of (3.9) is that it displays the ADM energy operator as a densely defined

operator on all of the Hilbert space. Also, the dependence on the ‘arbitrarily short edges’
si(1) drops out at the end of the calculation because of gauge invariance as explained in
[17]. The disadvantage is that the operator (3.9) is not a manifestly positive semi-definite
operator. This is, however, not surprising because even the classical ADM energy is not
a positive semi-definite functional on the full phase space of general relativity. It is only
when evaluating it on (i) asymptotically flat, (ii) solutions of the Einstein equations which
(iii) satisfy an energy condition for allowed matter and (iv) allow for a regular initial data
set, that the positive energy theorem has been proved [23, 24] and, in fact, one can easily
produce negative ADM energy when one of these conditions is violated. As we did not
impose any (quantum analogue of) such restrictions we cannot expect to find a manifestly
non-negative operator.

In the next subsection we will derive another quantization of the ADM energy which
is only densely defined on a subspace of the Hilbert space, however, the definition of
that subspace is a quite natural quantum translation of the classical condition that there be
an asymptotically flat regular initial data set. The virtue will be that the ADM operator
acquires non-negative discrete spectrum on that subspace of the Hilbert space thus proving
a ‘quantum positivity of the energy theorem’.

3.2. Ordering II: restrictions on the state space

In order to make sense of the operator to be defined in this section we need to give
some definition of ‘asymptotically flat state’. The following definition is a first attempt

† One can also makeε y dependent in (3.4) in a state-dependent way which then leads to a dependenceε = o(1/n).
If one then takesn→∞ one gets classically back to the original expression for the ADM energy. If one takesn

large but finite then one arrives at the same result as below on the quantum level without an interchange of limits
being necessary. Therefore the calculations that follow are justified. The state dependence of the regularization
drops out in the final expression because before actually taking the limitn→∞ the operator will ben-independent.
The family of operators thus obtained for each state is consistently defined as we will see. See [16, 18] for a more
detailed explanation.
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towards a precise notion of ‘quantum asymptotic flatness’ to be considerably refined in
future publications.

Definition 3.1. An asymptotically flat state9 on the Hilbert spaceH is a distribution in
8′ satisfying the following conditions:

(i) 9 is a normalized solution̂ηξ to all quantum constraintŝU(ϕ) − 1 = 0, Ĥ (N) = 0
(the diffeomorphism and Hamiltonian constraint) of general relativity whereϕ,N are
arbitrary 3-diffeomorphisms and lapse functions subject to the condition that they be
pure gauge, that is,ϕ(x)→ id andN(x)→ 0 asx → ∂6 and whereη̂ is the operator
[19] that maps elements of8 to solutions to all constraints.

(ii) 9 = η̂ξ is asymptotically flat. That is, consider any compact regionR, surfaceS and
loop α (which is embedded in the graph underlying the definition ofξ ) of 6 − ∂6
and which are large as compared to Planck volume, area and length, respectively, as
measured by the Euclidean metricq(0)ab := δab. Then, asR, S, α tend to ∂6, the
quantities9([V̂ (R) − V0(R)]ξ),9([Â(S) − A0(S)]ξ),9([tr(hα) − 2]ξ), respectively,
are of order̀ 3

p, `
2
p, `p/L(c), respectively, whereV0(R),A0(S), L0(α) are the volume,

area and length ofR, S, α as measured byq(0)ab .
(iii) 9 transforms according to an unitary, irreducible representation of the Poincaré group

at spatial infinity.
(iv) 9 satisfies the dominant energy condition: letĤ ′matter (N) be the dual of the matter

part of the Hamiltonian constraint (not the Hamiltonian!) andV̂ ′matter ( EN) be the dual of
the matter part of the diffeomorphism constraint.

The 4-vectorNµ = (N, EN) is said to be a future-directed timelike vector in a state9

if (a) N > 0 and (b) there existsε > 0 such that−t2N2(x)+9[L̂(c( EN, x, t))2ξ] < 0 for

each 0< t < ε whereL̂(c) is the length operator [17] andc( EN, x, t) is the segment of the
integral curve of EN beginning inx and ending after a parameter distancet .

9 is said to satisfy the dominant energy condition provided that for every 4-vectorNµ

which is future-directed and timelike for9 then there is anε > 0 such that the 4-vector
P̂ µ(x, t) := (Ĥ ′matter (Nx,t )+ V̂ ′matter ( ENx,t ), 0) is either zero or future-directed and timelike
for everyx ∈ 6 and 0< t < ε in the state9 whereNx,t (y) = χt(x, y)N(y) and likewise
for ENx,t (y) (χt(x, y) is the characteristic function of a box of coordinate volumet3 and
centrex). In other words,9([Ĥmatter (Nx,t ) + V̂matter ( ENx,t )]ξ) > 0 for eachx, 0 < t < ε.
Here we have adopted the convention that the signature of the Lorentz metric be−,+,+,+.

The subspace ofξ in H satisfying these conditions will be calledHaf where ‘af’ stands
for asymptotically flat.

Condition (i) makes sure that9 is a solution of the ‘quantum Einstein equations’.
Condition (ii) is a possible way of defining asymptotic flatnessqab → δab,Kab → 0
(although not very carefully, no fall-off and parity conditions were imposed [21, 22] and
certainly this condition needs to be refined in future publications. For instance, one might
imagine that the error of9(V̂ (R) ξ)/V0(R)−1 is even smaller thaǹ3

p/V0(R) in the sense
that it could depend on some negative power of the value of the radiusr (with respect to
δab) at the centre ofR). Condition (iii) makes contact with physics and allows us to identify
certain states with elementary particles. In particular, in the present context of pure gravity
we should be able to isolate the graviton (spin-2, massless) states. Notice that in order to
allow for non-trivial representations of the little subgroup of the Lorentz group we must
specify the appropriate diffeomorphism group in the group averaging process in order to
arrive at the diffeomorphism-invariant states [10] which means, roughly speaking, that we
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include only those diffeomorphisms in the averaging process that approach identity at∂6.
Finally, condition (iv) is the most imprecise one and attempts at defining a possible quantum
analogue for the dominant energy condition: recall that the classical energy–momentum
tensorTµν is said to satisfy the dominant energy condition if for every future-directed
timelike vector fieldvµ, the vector fieldT µν v

ν is zero or future-directed and timelike.
Now if tµ = Nnµ + Nµ is the future-directed timelike foliation vector field underlying
the splitM = R × 6 and nµ the normal vector field of6 then we may pick a frame
such thatnµTµνtν = NHmatt + Na(Vmatt )a is the only non-vanishing component of the
vectorTµνtν and so we need to ask that it be non-negative, in particular, forEN = 0, we
ask that the matter Hamiltonian densities be non-negative. This condition is, of course,
incomplete since it is frame dependent and needs to be improved in the future. Notice
that

(
t2gµνt

µtν
)
(x) = −t2N2(x) + t2(qabNaNb

)
(x) ≈ −N2(x)t2 + L(c( EN, x, t))2 which

motivates our definition of future directedness oftµ. We conclude with the remark that
condition (iv) is certainly satisfied in the vacuum case that we are interested in here.

One might think that a state satisfying all those conditions is rather hard to construct.
Let us pause for a moment to argue that it is rather simple.

Consider for simplicity a6 with topology ofR3 and distribute a countable number of
verticesvn randomly into6 with an average next-neighbour distance of a Planck length as
measured byq(0)ab . Make vn the only vertex of a graphγn which is 4-valent and non-co-
planar (for instance,γn = αn ∩ βn whereαn, βn are two kinks with vertexvn). The graphs
γn are supposed to be contained in a boxBn of q(0) volumek`3

p for some positive numberk
and theBn are mutually non-intersecting. Consider normalized vectorsfn which are finite
linear combination of spin-network states defined onγn and which are eigenstates of the
volume operatorV̂ (R) for any regionR, all with the same eigenvalueλn`3

p = λ`3
p > 0

if vn ∈ R. Thus we haveV̂ (Bm)fn = λ`3
pδm,nfn. Consider the infinite product state

ξ := ∏∞n=1 fn which is a regular (non-cylindrical) spin-network state on the infinite graph
γ = ∪nγn and which is in fact normalized,‖ξ‖ = 1 thanks to the disjointness of the graphs
γn because of which‖ξ‖ = ∏n ‖fn‖ due to the properties of the Ashtekar–Lewandowski
measure. We now choosek := λ and find that for any macroscopicR, that is, anyR
that contains many of the boxesBn, it holds thatV̂ (R)ξ = V0(R)

[
1 + o

(
`3
p/V0(R)

)]
ξ .

Now, since no state which is cylindrical with respect to any of the graphsγn can be in the
image of the Hamiltonian constraint [13–15] it follows from its definition [19] that theη̂

operator reduces to group averaging with respect to the diffeomorphism group because of
which the group-averaged diffeomorphism-invariant state9 = [ξ ] = η̂ξ is normalized as
well with respect to the physical inner product [19]‖9‖2

phys = 9(ξ) = ‖ξ‖2 = 1. Thus

indeed9([V̂ (R) − V0(R)]ξ) = o
(
`3
p/V0(R)

)
is satisfied. It is clear that the construction

can be repeated for the surface operator as well because most of the intersections of the
macroscopic surfaceS with the γn will not be in vertices of theγn so thatV̂ (R), Â(S) can
be simultaneously diagonalized up to errors of order of`2

p/A0(S). Thus, almost everyfn
can be chosen as a simultaneous eigenvector ofV̂ (R), V̂ (S). Finally, any macroscopic, for
simplicity non-self-intersecting (any loop is a product of these), loopα on our particularγ
is of the product formα = ◦nαknn , αn ⊂ γn, kn ∈ {0, 1} where kn = 0 except for finitely
many. TheSU(2) Mandelstam algebra is too complicated as to exhibit an explicit solution
for SU(2) so let us argue with anU(1) substitute that the condition stated in definition 3.1
is reasonable. ForU(1) we havehα =

∏
kn=1 hαn . Now, if we choose for simplicity

αn = γn then fn =
∑N

k=−N akh
k
αn

whereχk(g) = gk is the character of the irreducible
representation ofU(1) with weight k. SinceT = χkχl = χk+l the condition stated in the
definition amounts to asking that (forU(1)) 1=∏kn=1

∑
k |ak|2 =

∏
kn=1

∑N
k=−N+1 ākak+1
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up to some corrections. Indeed, if we could choose allak to be equal (=1/
√

2N + 1)
then the error would be 1− ∏

kn=1[1 − 1/(2N + 1)] which is small provided that∑
kn=1 1 = o(L(α)/`p) � N . For instance, we may chooseN = [L/`p]2 whereL is

the bound on the length of a macroscopic loop that we wish to consider. This will suffice
to motivate definition 3.1. Obviously one has to refine it but this seems impossible without
the notion of coherent states and will be left for future publications [25].

We will now show that on an asymptotically flat state the ADM energy operator as
defined below is non-negative. We will not show that vanishing energy corresponds to
Minkowski space. Our definition of asymptotically flat states as of yet is not restrictive
or precise enough for that. As we will see, in order for the ADM operator to be densely
defined we need the following stronger condition:

(ii)′ A state9 = η̂ξ is said to be asymptotically flat provided (ii) of definition 3.1 holds
and, in addition:

Let γ be the (infinite) graph on whichξ depends,p a point in ∂6 ∩ V (γ ) and
Bt, t ∈ [0, 1] any homotopy of regions in6 such thatp ∈ Bt for eacht andB0 = {p}.
Then we require that for each suchp there existsε > 0 such thatξ is, for each 0< t < ε,
a finite linear combination of eigenstates with non-vanishing andt-independent eigenvalues
of the volume operator̂V (Bt).

It is not clear that condition (ii) implies(ii)′ and if that should not be the case then we
must add the requirement(ii)′ stated as an additional restriction onHaf ! Notice, however,
that (ii)′ is not unreasonable in the asymptotically flat context.

It will turn out in the course of the derivation that the positivity of energy theorem then
holds if we impose one additional condition on the thus already restricted space of states.

We write expression (3.4) this time in the form (settingS = ∂6 right from the beginning)

EADM = lim
ε→0
−2

κ

∫
∂6

dSa E
a
i (x)

1

ε3
√

det(q)(x)

∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0
−2

κ

∫
∂6

dSa E
a
i (x)

1

V (x, ε)

∫
6

d3y χε(x, y)
(
∂bE

b
i

)
(y)

= lim
ε→0
−2

κ

∫
∂6

dSa(x)E
a
i (x)

1

V (x, ε)

∫
6

d3y χε(x, y)
[
Gi(y)− εijkAjb(y)Ebk (y)

]
=: lim

ε→0
EεADM (3.10)

whereGi = ∂aEai +
[
Aa,E

a
]
i

is the Gauss law constraint. Recall thatGi = 0 only needs
to hold in the interior of6 because the Lagrange multiplier3i of the Gauss constraint falls
off like 1/r2 so that at∂6 every function ofEai , A

i
a is gauge invariant. More precisely we

have the following: it is of interest by itself to derive the quantum Gauss law operator on
a function ofsmoothconnections cylindrical with respect to a graphγ :∫
6

d3x 3i(x) Ĝi(x)fγ = −ih̄κ
∑
e∈E(γ )

∫
d3x 3i(x)

×
∫ 1

0
dt ėa(t)

([
∂xa δik + εijkAja(x)

]
δ(x, e(t))

)(
Xke (t)fγ

)
= −ih̄κ

∑
e∈E(γ )

∫
d3x 3i(x)

∫ 1

0
dt

([
− d

dt
δik + εijkėa(t)Aja(x)

]
δ(x, e(t))

)(
Xke (t)fγ

)
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= −ih̄κ

{ ∑
e∈E(γ )

∫
d3x 3i(x)

[
−δ(x, e(1))Xie(1)+ δ(x, e(0))Xie(0)

+
∫ 1

0
dt δ(x, e(t))

(
Ẋie(t)+ εijk ėa(t) Aja(x)Xke (t)

)]
fγ

}
= −ih̄κ

{ ∑
e∈E(γ )

[
−3i(e(1))Xie(1)+3i(e(0))Xie(0)

+
∫ 1

0
dt 3i(e(t))

(
Ẋie(t)+ εijk ėa(t) Aja(e(t))Xke (t)

)]
fγ

}
. (3.11)

Here we have made use of∂xδ(x, y) = −∂yδ(x, y) in the third step which holds on spaces
of test functions of rapid decrease. But since for smooth connectionshe(t, t + δt)±1 =
1± ėa(t) δt Aa(e(t))+ o

(
δt2
)

we have

Xie(t + δt)−Xie(t) = tr(he(0, t + δt)τi he(t + δt, 1) ∂he(0,1))−Xi(t)
= tr(he(0, t) he(t, t + δt) τi h−1

e (t, t + δt) he(t, 1) ∂he(0,1))−Xi(t)
= δt ėa(t) tr(he(0, t)[Aa(e(t)), τi ]he(t, 1) ∂he(0,1))+ o

(
δt2
)

= −εijk δt ėa(t) Aja(e(t)) tr(he(0, t) τk he(t, 1) ∂he(0,1))+ o
(
δt2
)

= −εijk δt ėa(t) Aja(e(t))Xke (t)+ o
(
δt2
)
. (3.12)

This shows that thet integral in (3.11) vanishes identically for smooth connections. Now
Xie(0) = Xi(he) =: Xie whereXi(g) is the right invariant vector field atg ∈ SU(2) and
Xie(1) = −Xi(h−1

e ). Thus, when splitting each edge into two halvese = e1◦e−1
2 where both

e1, e2 are outgoing at the vertex different from their intersection point thene(1) = e2(0) and
the right invariance ofX now impliesX(he) = X(he1), −X(h−1

e ) = X(he2). Summarizing
we find that the quantum Gauss constraint is given by

Ĝ(3)fγ = −ih̄κ
∑
e∈E(γ )

3i(e(0))Xiefγ = −ih̄κ
∑
v∈V (γ )

3i(v)Xivfγ (3.13)

where−iXv = −i
∑

e(0)=v Xe is the total ‘internal’ angular momentum operator. Notice that
(3.13) can be extended from smooth to distributional connections and that no assumption on
asymptotic behaviour or smoothness of3 had to be made. The quantum Gauss constraint
is obviously a self-adjoint operator onH and anomaly free: it is trivial to check that
[Ĝ(3), Ĝ(3′)] = Ĝ([3,3′]) precisely mirroring the classical constraint algebra. Moreover,
the quantum Gauss law constraint is identically satisfied asγ tends to∂6 because3|∂6 = 0,
that is, there are no internal charges in general relativity [1]. This allows quantum states
of distributional connections to be non-gauge invariant at spatial infinity, a fact that we are
going to exploit in the following.

Now let the stateξ ∈ Haf be considered as a functionfγ cylindrical with respect to a
graphγ which is a finite subgraph of the graph on whichξ depends and which intersects
∂6. Becauseξ ∈ Haf we know thatfγ is a finite linear combination of eigenstates of the
volume operatorV̂ (R) with non-zero eigenvalue for sufficiently small regionsR and such
that R∩V (γ )|∂6 6= ∅. Consider first the volume integral in (3.10). Setting3(y) = χε(x, y)
there is an obvious quantization for the term proportional toGi in view of (3.13). However,
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for the remainder we have, again on functions of smooth connections only to begin with

εijk

∫
6

d3y χε(x, y)A
j
a(y) Ê

a
k (y) fγ

= −ih̄κεijk
∑
e∈E(γ )

∫
6

d3y χε(x, y)A
j
a(y)

∫ 1

0
dt ėa(t) δ(y, e(t))Xke (t) fγ

= −ih̄κεijk
∑
e∈E(γ )

∫ 1

0
dt ėa(t) Aja(e(t)) χε(x, e(t))X

k
e (t) fγ

= 2ih̄κ
∑
e∈E(γ )

lim
n→∞

n∑
k=1

χε(x, e(tk−1)) tr(τi [he(tk−1, tk)− 1])Xie(tk−1) fγ .

(3.14)

Now recall thatx ∈ ∂6 and thatγ ⊂ B(∂6). Pick a particular edgee in (3.14). Then
for sufficiently smallε the corresponding term either vanishes ore(0) = x and the term
becomes tr(τi [he(0, t (ε)) − 1])Xiefγ + o

(
ε2
)

wheret (ε) is the largest value oft such that
χε(x, e(t)) = 1. Now for a classical, smooth connection which approaches infinity as 1/r2

the termhe(0, t (ε))− 1 is at most of orderε/r (the ‘length’ of e(ε) is at most of orderr)
and so vanishes even at finiteε becausex → ∂6. Therefore expression (3.14) vanishes
and the volume integral contribution of̂EADM becomes∫

6

d3y χε(x, y) ∂aÊ
a
i (y) fγ = −ih̄κ

∑
v∈V (γ )

χε(x, v)X
i
vfγ (3.15)

which one can extend to non-smooth connections.
We turn to the surface integral of (3.10) and writefγ,v = Xivfγ . We have, ordering the

1/V̂ (x, ε) to the left∫
∂6

χε(x, v)dSa
1

V̂ (x, ε)
Êai fγ,v = −ih̄κ

∑
e∈E(γ )

∫ 1

0
dt ėa(t)

×
∫
∂6

dSa(x) δ(x, e(t))
χε(x, v)

V̂ (x, ε)
Xie(t)fγ,v

= −ih̄κ
∑

e∈E(γ ),e(0)∈∂6
sgn(∂6, e)

χε(e(0), v)

V̂ (e(0), ε)
Xiefγ,v

= ih̄κ
∑

e∈E(γ ),e(0)∈∂6,e 6⊂ ∂6

χε(e(0), v)

V̂ (e(0), ε)
Xiefγ,v (3.16)

where sgn(S, e) is the sign of the intersection ofe with the surfaceS (which is outward
oriented) ate(0) which is thus−1 because all edgese are outgoing from a vertexe(0) and,
because ofγ ⊂ B(∂6), they are thus running away from∂6 (there is no contribution from
edges that run inside∂6 because sgn(∂6, e)|e(t) = 0 for all t as was shown in [26]). Thus,
only edges which run transversally into∂6 contribute to the sum in (3.16).

We can take now the limitε → 0. Notice that for small enoughε we have
χε(e(0), v) = 1 asε → 0 provided thate(0) = v is a vertex ofγ . Moreover, for small
enoughε, v is the only vertex ofγ in theε box aroundv. Thus, we may replacêV (v, ε) by
V̂v interpreting the operator 1/V̂v by its spectral resolution. Now the only critical point is
whether the two operatorsXie,X

i
v that are to the right of 1/V̂v will leave the crucial property

of fγ intact, namely, thatfγ =
∑N

i=1 fi with V̂vfi = λifi, λi 6= 0. But this is easily seen
to be the case provided we impose the following additional restriction onHaf :
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Tangle property. An asymptotically flat state is a linear combination of diffeomorphism
group-averaged elements of the kinematical Hilbert spaceHaf each of which depends on
an (infinite) graphγ all of whose intersections with∂6 are transversal, that is, there are
no edges ofγ which lie inside∂6. Thus, any path alongγ between two distinct points
of γ ∩ ∂6 is a generalized tangle [27], that is, a piecewise analytic path intersecting∂6

transversally and points of non-analyticity are vertices ofγ , equivalently, intersections of
tangles. The subspace ofHaf having the tangle property will be calledHtangle.

The tangle property is a rather natural assumption about statesξ because curves of
non-zero parameter length running in∂6 themselves between vertices automatically have
infinite length with respect toδab. This is not the case for curves between vertices which
just approach∂6 but otherwise lie in the interior.

Under this additional assumption, we have in the limitε → 0, putting (3.13), (3.16)
and the remaining pre-factor of−2/κ from (3.10) together

ÊADM(S)fγ = −2h̄2κ
∑

v∈∂6∪V (γ )

1

V̂v
XivX

i
vfγ . (3.17)

But recognizing−iXv = Ĵv as the total angular momentum offγ at v we finally find

ÊADMfγ = 2h̄2κ
∑

v∈∂6∪V (γ )

1

V̂v
Ĵ iv Ĵ

i
vfγ . (3.18)

Expression (3.18) defines a self-consistent family of operators{ÊADM,γ } of operators which
can be extended to infinite graphs and thus toHtangle provided that the number of punctures
of γ with ∂6 is finite. This defines the domain of̂EADM .

A number of remarks are in order.

• The operatorĴ iv is the infinitesimal generator of gauge transformations atv and therefore
commutes withV̂v because the volume operator is gauge invariant proving that (3.18) is
densely defined on the restricted state space. If we would not require the tangle property
then while the volume integral in (3.10) gives essentiallyXv, the surface integral does
not, rather it givesX′v = Xv−

∑
e(0)=v,e⊂∂6 Xv which does not commute witĥVv and so

may mapfγ into a linear combination of states some of which may acquire zero volume
and so (3.18) would blow up. Thus, the tangle property issufficient for ÊADM to be a
densely defined operator. Although we do not have a proof, it is almost granted that
X′vfγ will contain zero-volume eigenstates in its expansion and so the tangle property
would also benecessary!

• As a striking bonus of the tangle property we easily see that (3.18) indeed defines a
positive-semidefinite self-adjoint operator on the Hilbert spaceHtangle: first of all, since
the volume operator and theXiv are defined in terms of the operatorsXie it follows that
the family of operators (3.18) is consistently defined because theXie are. Next, since
[Xiv, V̂v] = 0 we see that we may order (3.18) symmetrically involving only terms of
the form Ĵ iv (1/V̂v)Ĵ

i
v and so (3.18) defines a symmetric operator because it leaves the

graphγ invariant [5–7]. Finally, the Laplacian−1v := J ivJ iv has non-negative discrete
spectrumjv(jv+1) wherejv is the spin of the contractor of the generalized (non-gauge-
invariant) spin-network states into whichfγ can be decomposed. Moreover, since−1v

andV̂v commute, they can be simultaneously diagonalized. Thus, ifλv is the eigenvalue
of the volume operator then the simultaneous eigenstatefγ is an eigenstate of the ADM
energy with eigenvalue

∑
v jv(jv + 1)/λv. This provides an explicit diagonalization of

ÊADM on Htangle and demonstrates that it is a self-adjoint operator onHtangle. Now,



1478 T Thiemann

since states inHtangle are not diffeomorphism averaged at spatial infinity the part of
the graph which is responsible for the spectrum of the ADM energy is untouched by
the diffeomorphism-group averaging. Next, the mapη̂ that makes a diffeomorphism-
invariant state a solution of the Hamiltonian constraint is a generalized projector at each
vertex of the graph separately [13–15, 19]. Therefore, it is the identity map at those
vertices ofγ that lie in ∂6 because for a gauge transformationN → ∂6 the action of
the constraint at those vertices is trivially zero. Thus the part of the state responsible for
the spectrum and the adjointness relations ofÊADM is unchanged by the map̂η and is
thus preserved when we go to the physical Hilbert spaceHphys = η̂Htangle. Moreover,
the spectrum is entirely discrete and non-negative, thus we have proveda quantum
positivity energy theorem!

• Astonishingly, the proof of this theorem turned out to be surprisingly simple: the proof
of the classical positivity theorem is much more complicated and uses the boundary
conditions and the Einstein equations at various stages. Why did we not need (a quantum
analogue of) these assumptions? The answer is that we actually did use them: we used
them in the definition of an asymptotically flat state, in particular, that the volume of
the state be non-vanishing and that it be a solution of the quantum Einstein equations.
Since the energy functional is really given byE(N) = H(N) + EADM(N) where the
Hamiltonian constraint only vanishes on a solution, likewise the ADM energy operator
ÊADM only represents energy if we apply it to a solution9 of Ĥ ′(N)9 = 0. Here
we have written the dual̂H ′(N) on8′ of Ĥ (N) because, as stated above, solutions9

actually lie in8′ [10, 15]. Finally, we used a regularization of the operator consisting (i)
of the restriction of the space of states to functions of classical connections (this means
here that they are smooth and decay at infinity as 1/r2) and then (ii) in the extension
of the expression for the operator obtained to all ofĀ. In the derivation of the operator
we made crucial use of the fact that a classical connection decays at infinity.
Now a subtle issue is the following: by definition a solution9 satisfiesĤ ′(N)9 = 0
for any N which vanishes at∂6. But how about lapse functionsN that approach a
constant value at∂6? It is now not a consequence of the formalism any longer that
Ĥ ′(N)9 = 0 should hold, very much like in the case of the Gauss constraint. The only
guideline of what to do is the classical theory and there it is indeed true that on classical
solutions(A0, E0) to the Einstein equationsE(N) just equalsEADM(N)A=A0,E=E0 so
that we will require thatĤ ′(N)9 = 0 even for asymptotically constant lapse.
Now, by definition the operator̂η acts like the identity operator at∂6. Therefore we
conclude that any physical state has the property that it is annihilated byĤ ′(N) even
for N = constant and, moreover, it is a linear combination of eigenstates with non-zero
eigenvalue of the volume operatorV̂v for each vertex of the graphγ on whichξ depends
(with η̂ξ = 9) such thatv ∈ ∂6. One might suspect that the number of states that
satisfy this condition is rather tiny but the opposite is the case: the volume operator has
the particular property that it does not change the graph or the labelling of that graph
with spin quantum numbers. Now there exist an infinite number of states which are
annihilated byĤ ′(N) just because the graph or its labellings are of a particular type
(see [15] where such states were labelled by ‘spin-webs’, more precisely, ‘sources’ of
spin-webs) and so one can construct eigenstates of the volume operator of such states
while they are still annihilated bŷH ′(N). As an aside, this might shed some light on
the issue of how to interpret those special solutions of the Hamiltonian constraint.
These remarks are sufficient to show that thenÊ′ADM(N) = ÊADM(N).

• The fact that the ADM energy operator is essentially diagonal on spin-network states
can be interpreted as saying that the spin-network representation is thenonlinear Fock
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representationof quantum general relativity. Namely, if we compare the spin that the
edges of a spin-network carry with the occupation number of momentum modes of,
say, the free Maxwell field then we may interpret this spin essentially as the occupation
number of a gravitational mode which is not labelled by a momentum but by an edge.

• Notice that each vertex ofγ which lies in ∂6 must be at least 3-valent (not 4-valent
because the function does not need to be gauge invariant at infinity) in order that it can
have non-vanishing volume. Also notice that the gravitational energy is quantized in
quanta of the Planck mass: the eigenvalues of the volume operator are multiples of`3

p so
the eigenvalues of energy, according to (3.18) are multiples of ¯h2κ/`3

p =
√
h̄/κ = mp.

Notice, however, that the spectrum doesnot just consist of integers timesmp: in fact,
we can arrange, by appropriate choice of the spins of the edges that meet at spatial
infinity in a vertex, that the volume operator assigns arbitrarily high volume to that
vertex, while we can choose the total (non-vanishing) spin of that vertex to be as low
as we wish, for instance,12. This follows from simple Clebsh–Gordan theory. Thus,
while the spectrum is discrete, the value 0 is certainly an accumulation point. This is
important because we expect that in a low-energy approximation the theory correctly
describes scattering of low-frequency gravitons. The fact that the spectrum contains
such quanta is a first hint (although no proof) that the theory might have the expected
low-energy (large-distance) limit.
On the other hand, the spectrum is certainly unbounded from above because we may
have an arbitrary number of vertices at spatial infinity. Even the ‘spectrum per vertex’,
is unbounded: we can choose the spins of vertices meeting at a vertex of given valence
n to add up to highest weightJ = j1 + · · · + jn and we can choose them to be equal
ji = j . The volume eigenvalue then is bounded from above byk(n)j3/2 wherek(n) is
some constant depending on the valence ofn while the total spin squared is bounded
from below byn2j2 so that for any fixedn the asymptotic behaviour is∝j1/2.

• For a classical connection every function at∂6 is gauge invariant because it decays
like 1/r2 which results in a holonomy of order exp(i/r)→ 1, i.e. a trivial holonomy.
In quantum theory this is lifted by the distributional nature of a connection, smooth
connections are assigned zero volume by the Ashtekar–Lewandowski measure in the
space of distributional connections and are unimportant.

• Gauge-invariant states at∂6 correspond to vanishing energy eigenvalue. Thus, energy
seems to sit at non-gauge-invariant vertices. We may interpret this observation as
follows: the gravitational energy in a state labelled by an (infinite) graphγ is
concentrated at the vertices ofγ , and energy flows from vertex to vertex along the
edges ofγ in quantized packages labelled by the spin of those edges. Non-zero energy
at a vertex corresponds to lack of gauge invariance at this vertex meaning that the spins
that flow out or into a vertex do not add up to zero. Now in the interior of6 the
quantum Gauss constraint requires that all spins add up to zero. We interpret this as
the connection dynamics version of the geometrodynamics result that there is no energy
location in general relativity in the interior of6, gravitational energy can be gauged
away locally, it is pure gauge. However, while it can be pushed around at one’s will,
one cannot entirely delete it, one can push it all the way to spatial infinity where it
eventually shows up in the form of a non-zero net spin flow at the vertices ofγ at ∂6.

• The fact that (representations of) theSU(2) gauge group of general relativity should
play an essential role in the energy is very unexpected from a geometrodynamics point
of view where one never even talks about theSU(2) gauge freedom. Even the classical
ADM expression

∫
∂6

dSa (qab,b − qbb,a) is manifestly gauge invariant, so how did the
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SU(2) gauge group enter the stage†? The answer is the following: notice that while
the classical ADM expression is manifestly gauge invariant, it is not at all covariant;
the derivatives that appear in

∫
∂6

dSa (qab,b − qbb,a) are not covariant derivatives (in
fact, if they were covariant derivatives then the energy would vanish identically). This
does not need to concern us because at∂6 the diffeomorphisms that underlie the
diffeomorphism constraint must die off. Now as we showed in (3.2), when writing∫
∂6

dSa (qab,b − qbb,a) in terms ofEai this lack of 3-diffeomorphism covariance, by
means of the boundary conditions, gets translated into non-gauge invariance, while
installing covariance because in (3.2) a correction term drops out due to the boundary
conditions which explains why one and the same function can be written in a manifestly
gauge invariant or diffeomorphism covariant way but not both. Indeed, the expression
−2

∫
∂6

dSa Eai ∂bE
b
i /
√

det(q) is manifestly 3-diffeomorphism covariant but it fails to be
gauge invariant. This is not unexpected: after all the triad formulation reduces the local
diffeomorphism gauge freedom to local rotation freedom. In conclusion, the fact that
states with non-zero energy are not gauge invariant is in fact very natural, the more so
as gauge transformations at spatial infinity are not allowed as follows from the classical
theory [1] so that any manifestly gauge-invariant function is in fact gauge invariant.

• Another function for whichSU(2) gauge transformations and diffeomorphisms get
mixed up is the classical vector constraintVa = tr(FabEb). Strictly speaking this
constraint function does not generate diffeomorphisms but only on gauge-invariant
functions.

• Notice that although−2
∫
∂6

dSa Eai ∂bE
b
i /
√

det(q) is not gauge invariant the quantum
expression (3.18) in fact is. The reason why that is possible lies in the structure of
quantum theory: in the classical theory we only have functions on phase space. In
quantum theory those functions get translated into operators on a Hilbert space, but
values of those functions really correspond to expectation values. Thus non-gauge-
invariant functions correspond to expectation values of either a gauge-invariant operator
in a non-gauge-invariant state or vice versa. The quantization (3.18) picks the latter
possibility.

• In principle, we have now solved the ‘problem of time’: since we have a true
Hamiltonian we can introduce theSchrödinger time parametert and our state
vectors9 ∈ 8′, being distributions which are invariant under asymptotically identity
diffeomorphisms, are supposed to satisfy thenon-stationary Schr¨odinger equation

ÊADM(N = 1)9 = −ih̄∂t9. (3.19)

Notice that, as we showed above, the ADM energy operator is its own dual so that
(3.19) makes sense.

• In the next section the operator (3.18) will be shown to commute with all quantum
constraints of general relativity and it is therefore astrong quantum Dirac observable
for quantum gravity in the strict sense of the word. This is not unexpected because it
is built purely from momentum operators.

† This question actually arises already in connection with the spectrum of the geometrical operators volume, area
and length [17, 28–32], however, since irreducible representations also carry gauge-invariant information the fact
that these operators have a spectrum which is determined by spin-quantum numbers ofgauge-invariant statesis
maybe not that surprising. Whatis surprising for the energy operator is that it is the spins of non-gauge-invariant
states which determine the spectrum.
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4. The Poincaŕe algebra

We now wish to define the rest of the quantum generators of the little group of the asymptotic
Poincaŕe group and check whether their algebra is anomalous or not†. This is enough to
construct particle states since the irreducible unitary representations of the little group induce
a unique unitary irreducible representation of the full Poincaré group. So far we have not
constructed an operator corresponding to a boost generator which is more difficult to obtain
than the ADM energy operator.

First of all we must clarify on which space to represent the Poincaré group (respectively
its generators). To that end it is helpful to remember how the classical Poincaré generators
are realized as a subalgebra of the Poisson algebra [21, 22].

Let H(N), V ( EN) be the Hamiltonian and diffeomorphism constraint functional,
respectively. Both functionals are integrals over6 of local densities and both converge
and are functionally differentiable only if the lapse and shift functionsN, EN vanish at∂6.
In order to be able to describe the Poincaré group corresponding to the asymptotically
constant or even diverging functions (xa is a Cartesian frame at spatial infinity)N =
a + χaxa, Na = aa + εabcφbxc where

(
a, aa

)
is a 4-translation,φa are rotation angles

andχa are boost parameters, one proceeds as follows: letS be a bounded 2-surface that
is topologically a sphere and letB(S) be the (intersection of6 with the) closed ball
such that∂B(S) = S. For eachS one definesE(N, S) := H(N, S) + EADM(N, S) +
B(N, S), P (N, S) := V ( EN, S) + PADM(N, S) where the parameterS means that volume
integrals are restricted toB(S) only (a classical regularization of the divergent integrals) and
the ‘counter-terms’EADM(N, S), B(N, S), PADM( EN, S) are the surface integrals defined
in [21] and correspond to ADM energy, boost and momentum. One can show that
limS→∂6 E(N, S), limS→∂6 P ( EN, S) exist. Moreover, for each finiteS, E(N, S), P ( EN, S)
are functionally differentiable so that it is meaningful to compute the Poisson brackets

{E(M, S), E(M, S)} = P (qab(MN,b −M,bN), S
)

{E(M, S), P ( EN, S)} = E(L ENM, S)
{P( EM,S), P ( EN, S)} = P(L EM EN, S).

(4.1)

The crucial point is that one computes the Poisson brackets (i) at finiteS and (ii) on the
full phase space and then takes the limitS → ∂6 or restricts to the constraint surface of
the phase space (whereH(N, S) = V ( EN, S) = 0). Notice that the numerical value of, say,
E(N, S) equalsH(N, S) for a gauge transformation for whichN → 0 asS → ∂6. On
the other hand, on the constraint surface for a symmetry for whichN 9 0 asS → ∂6

it equals a time translation or a boost, respectively. A similar remark holds forP( EN, S).
One therefore interprets (4.1) as follows: ifM,N are both pure gauge then the constraint
algebra closes. IfM is a symmetry andN pure gauge then energy (or boost generator)
are gauge invariant. IfM,N are both symmetry then time translations commute with each
other, time translations and boosts give a spatial translation and a boost with a boost gives
a rotation, in other words the symmetry algebra closes.

† By little group of the Poincaré group we mean the group generated by the 4-translations and the little subgroup
of the connected component of the Lorentz group. The latter, as is well known, is the stabilizator subgroup of the
Lorentz group associated with a standard 4-vectors̄. In the massive casēs2 > 0 the standard vector is associated
with the spin of the particle in the rest frame and the covering group of the stabilizator group is given bySU(2).
In the massless case the standard vector is associated with the helicity of the particle (spin in the momentum
direction) and the covering group of the stabilizator group is given byU(1), physically important representations
being 2-valued. Thus, the rotations at spatial infinity determine the unitary irreducible representation of the particle
state in question.
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In quantum theory we will therefore proceed as follows. Recall [13–15, 19] that
the Hamiltonian constraintĤ (N) (for asymptotically vanishingN ) is only well defined
on the subspace of8′ corresponding to distributions on8 which are invariant under
diffeomorphisms that approach identity at∂6. Thus we can expect the symmetry algebra
to hold only on such distributions as well. In fact, we will just choose9 to be a solution
to all constraints.

Next, in view of the fact that even the classical symmetry algebra only holds provided
one first computes Poisson brackets at finiteS and then takes the limit, we will check
the quantum algebra first by evaluating9 on Ê(NS) fS for functionsfS ∈ 8 which are
cylindrical with respect to a graph which lies in the interior ofB(S) (it may intersectS in
such a way that the volume operator does not vanish at the intersection point for none of
the eigenvectors into whichfS may be decomposed) and lapse functionsNS which grow at
infinity like symmetries but which are supported inB(S)∪ S including S, and then to take
the limit S → ∂6 (the support fills all of6 asS → ∂6 in this process).

We come to the definition ofÊ(N) and P̂ ( EN). First we treat the spatial Euclidean
group. The unitary representation of the diffeomorphism group defined byÛ (ϕ)fγ = fϕ(γ )
which was for matters of solving the diffeomorphism constraint so far only defined for
diffeomorphisms that approach the identity asymptotically, can easily be extended to 3-
diffeomorphisms which correspond to asymptotic spatial translations or rotations. Instead
of defining the generator̂P( EN) though (which does not exist onH [10]) we content ourselves
with the exponentiated version̂U(ϕ( EN)) whereϕ( EN) is the diffeomorphism generated by
the six-parameter shift vector fieldNa = aa + εabcφbxc for some Cartesian framexa

possibly corrected by an asymptotically vanishing vector field corresponding to a gauge
transformation. It is trivial to check that

Û (ϕ( EN)) Û(ϕ( EN ′)) Û(ϕ( EN))−1 Û (ϕ( EN ′))−1 = Û (ϕ(L EN EN ′)) (4.2)

whereL denotes the Lie derivative so that there are no anomalies coming from the spatial
Euclidean group. This expression was derived by applying it to any functionfS cylindrical
with respect to a graph with support inB(S).

We now turn to the time translations. As already mentioned we will not consider boosts
in this paper so thatχa ≡ 0 in the four parameter family of lapse functionsN = a + χaxa
(modulo a correction which vanishes at∂6). Define the operator onH

Ê(N) := Ĥ (N)+ ÊADM(N) (4.3)

where Ĥ (N) is the Lorentzian Hamiltonian constraint. Notice thatÊ(N) just as the
Hamiltonian constraint in [13–15, 19] carries a certain prescription dependence which is
removed by evaluating its dual on8Diff . We will not repeat these details here and refrain
from indicating this prescription dependence in (4.3), however, the prescription dependence
has consequences for the commutator algebra that we will discuss below in great detail.

Let us verify the commutators between the time translations among themselves and
between time translations and spatial translations and rotations. We have

9([Ê(M), Ê(N)]fγ ) = 9([Ĥ (M), Ĥ (N)]fγ )+9([ÊADM(M), ÊADM(N)]fγ )
+9({[ÊADM(M), Ĥ (N)] + [Ĥ (M), ÊADM(N)]}fγ ). (4.4)

The first term vanishes for the same reason as in [13–15, 19] although one needs one
additional argument: the Hamiltonian constraint does not act at vertices that it creates.
Therefore, it can be written as a double sum over verticesv, v′ of γ alone and each of these
terms is of the form

(M(v)N(v′)−M(v′)N(v))9([Ĥv′,γ (v) Ĥv,γ − Ĥv,γ (v′) Ĥv′,γ ]fγ )
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where the notation means that̂Hv,γ is a family of consistently defined operators each of
which acting on cylindrical functions which depend on the graphγ and γ (v) is a graph
on which Ĥv,γ fγ depends. This expression is clearly non-vanishing only ifv 6= v′ but
then it can be shown that the operatorsĤv,... and Ĥv′,... actually commute. Now this still
does not show that the term above vanishes, however, it can be shown thatĤv′,γ (v)Ĥv,γ fγ

and Ĥv,γ (v′)Ĥv′,γ fγ are related by a diffeomorphism [14]. Now in [14] that was enough
to show that the commutator vanishes because we were dealing there only with vertices
which do not intersectS as otherwise both lapse functions vanish identically for a pure
gauge transformation. Thus the diffeomorphism that relates the two terms above could be
chosen to have a support insideB(S) and9 is invariant under such diffeomorphisms. In
the present context that does not need to be true. However, the crucial point is now that by
the tangle property all edges ofγ that intersectS must intersectS transversally. Therefore
the arcs that the Hamiltonian constraint attaches toγ and whose position is the only thing
by which the two above vectors differlie inside B(S) and do not intersectS. Therefore,
again the two vectors are related by a diffeomorphism which has support insideB(S), that
is, they are related by a gauge transformation and therefore the commutator vanishes.

We turn to the second term in (4.4). Now we obtain a double sum over vertices ofγ

which lie in S and each term is of the form

(M(v)N(v′)−M(v′)N(v))9([Êv′,ADM, Êv,ADM ]fγ )

which is significantly simpler than before becauseÊv,ADM does not alter the graph. Notice
that the commutator makes sense becauseÊADM,v leaves the span of non-zero volume
eigenvectors invariant. Now forv 6= v′ the commutator vanishes trivially, this time without
employing diffeomorphism invariance of9.

Finally the last term in (4.4) is a double sum over verticesv, v′ of γ , wherev must lie
in S, of the form

(M(v)N(v′)−M(v′)N(v))9([Ĥv′,γ , Êv,ADM ]fγ ). (4.5)

The fact thatÊADM does not alter the graph was used to write (4.5) as a commutator without
employing diffeomorphism invariance of9. Now it may happen that, althoughfγ is in the
domain ofÊv,ADM , that Ĥv,γ fγ is not any longer in the domain and so (4.5), forv = v′,
is in danger of being a meaningless product of something that blows up times zero while
that cannot happen forv 6= v′. However, since9 is a solution we conclude first of all that
(4.5) equals

−(M(v)N(v′)−M(v′)N(v))[Êv,ADM9](Ĥv′,γ fγ ) (4.6)

and since9 is also in the domain of̂EADM both Êv,ADM9 and Ĥv′,γ fγ are well defined
elements of8′ and8, respectively, we conclude that in casev = v′ equation (4.5) does
indeed vanish. On the other hand, the same argument as before shows that the commutator
trivially vanishes forv 6= v′.

Let us now check the commutator between time translations and spatial translations and
rotationsϕ. We have

9
([
Û (ϕ)−1 Ê(N) Û(ϕ)− Ê(N)]fγ )

=
∑
v∈V (γ )

[
N(ϕ(v))9

(
Û
(
ϕ−1

)
Ĥϕ(v),ϕ(γ ) fϕ(γ )

)−N(v)9(Ĥv,γ fγ )]
+

∑
v∈V (γ )∩S

[
N(ϕ(v))9

(
Û
(
ϕ−1

)
ÊADM,ϕ(v) fϕ(γ )

)−N(v)9(ĤADM,vfγ )].
(4.7)
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SinceÊADM does not change the graph on which a function depends we have identically
Û (ϕ−1)ÊADM,ϕ(v)fϕ(γ ) = ÊADM,vfγ .

Now, as explained in more detail in [14], the operatorĤ (N) depends on a certain
prescription of how to attach loops to graphs. Since in the interior ofB(S) there is
no background metric available, this prescription can only be topological in nature and
therefore graphs differing by a diffeomorphismϕ are assigned graphs bŷH(N) which are
diffeomorphic by a diffeomorphismϕ′ which may not coincide withϕ. That is, in the
interior ofB(S), Ĥ (N) is only covariant up to a diffeomorphism. On the other hand, since
one has the fixed background metricδab at S one can makeĤ (N) precisely covariant at
S, that is, the prescription satisfiesϕ|S = ϕ′|S . Therefore, with this sense of covariance of

Ĥ (N) it is true thatÛ (ϕ−1) Ĥϕ(v),ϕ(γ )fϕ(γ ) andĤv,γ fγ differ at most by a diffeomorphism
with support in the interior ofB(S).

In conclusion we obtain

9([Ê(N), Û(ϕ)]fγ ) = 9(Ê(ϕ?N −N) fγ )
which is what we were looking for.

We conclude that the little algebra of the Poincaré algebra is faithfully implemented.
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