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Abstract. We quantize the generators of the little subgroup of the asymptotic Péigcaup
of Lorentzian four-dimensional canonical quantum gravity in the continuum.

In particular, the resulting ADM energy operator is densely defined on an appropriate Hilbert
space, symmetric and essentially self-adjoint.

Moreover, we prove a quantum analogue of the classical positivity of the energy theorem
due to Schoen and Yau. The proof uses a certain technical restriction on the space of states at
spatial infinity which is suggested to us given the asymptotically flat structure available. The
theorem demonstrates that several of the speculations regarding the stability of the theory, spelled
out recently by Smolin, are false once a quantum version of the pre-assumptions underlying the
classical positivity of the energy theorem is imposed in the quantum theory as well.

The quantum symmetry algebra corresponding to the generators of the little group faithfully
represents the classical algebra.

PACS number: 0460D

1. Introduction

Following the canonical approach to a quantum theory of gravity, a (Dirac) observable
is by definition a self-adjoint operator on the full Hilbert space (not only on the Hilbert
space induced from the full Hilbert space by restricting to the space of solutions of the
guantum constraints) which weakly commutes with the constraint operators. Equivalently,
an observable leaves the physical Hilbert space of solutions to the quantum constraints
invariant and is self-adjoint with respect to the physical inner product.

At this point no Dirac observables are known for pure general relativity (the situation
improves when adding matter), neither for classical nor for quantum gravity. An exception
is given by the asymptotically flat case where it is well known that the P@nganerators
at spatial infinity form a closed Dirac classical observable algebra.

In the present paper we address the question of how to quantize these generators. We
work with the real version of the originally complex connection formulation of Lorentzian
general relativity [1] which was first considered in [2] (a real-valued connection formulation
for Euclidean gravity was earlier considered in [3]). The associated real connection
representation has been made into a solid foundation for quantum theory in the series
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of papers [4-10]. This rigorous mathematical framework which is based on the earlier
pioneering work on loop variables, for instance [11, 12] for gauge theories and gravity,
respectively (the latter of which was designed for the complex variables and thus was
lacking an appropriate inner product), equips us with the tools necessary to ask the question
of whether the various operators constructed are densely defined, symmetric, self-adjoint,
diffeomorphism invariant and so forth.

But even though this kinematical framework is available, it is still quite surprising that
something like an ADM energy operator can actually be constructed. The reason for this is
that in the representation under consideration the ADM energy function turns out to be a
rather non-polynomial function of the canonical momenta and thus it is far from clear how
to define it. It turns out that the same technique that enabled one to define the Wheeler—
DeWitt operator for 3+ 1 Lorentzian gravity [13-15], the Wheeler—DeWitt operator for
2+ 1 Euclidean gravity [16], length operators [17] and matter Hamiltonians when coupled
to gravity [18] can be employed to define Poireguantum operators.

The present paper is organized as follows. In section 2 we review the necessary
mathematical background from [4-10, 19]. In section 3 we regularize the ADM energy
operator. There are at least two natural orderings, one in which the operator becomes
densely defined on the full physical Hilbert space as defined in [19] and one in which it
is not. Nevertheless, the latter operator should be the physically relevant one because
when restricting the Hilbert space to a subspace which is suggested to us given the
asymptotically flat structure available, then this operator turns out to be positive-semidefinite
by inspection and essentially self-adjoint on the physical Hilbert space. This result reveals
that several of the speculations spelled out in [20] and which were based on several
unproved assumptions were premature: after taking the quantum dynamics of the theory
and the quantum asymptotic and regularity conditions on the Hilbert space appropriately
into account, the quantum positivity of energy theoremas violated.

It should be said from the outset, however, that the ‘quantum positivity of energy
theorem’ that we provide rests, besides on a quite particular regularization procedure of the
ADM energy operator which exploits the fall-off behaviour of the fields at spatial infinity
quite crucially, on one additional technical assumption (dregle assumptignsee below)
whose physical significance is unclear. Although it can be motivated also given the structure
available at spatial infinity, it should be stressed that without this assumption the positivity
theorem would not hold.

In section 4 we naturally extend the unitary representation of the diffeomorphism group
to include asymptotic translations and rotations and compute the symmetry algebra between
time translations and the spatial Euclidean group, that is, we verify the algebra of the little
group of the Poinc& group. We find no anomaly. As is well known, the little group suffices
to induce the unitary irreducible representations of the Poingawup. In this paper we do
not, however, address the more difficult problem of how to define a boost quantum operator.

2. Preliminaries

We begin with a compact review of the relevant notions from [10, 19]. The interested reader
is urged to consult these papers and references therein.

We assume that spacetime is of the fobh= R x ¥ whereX has an asymptotically
flat topology, that is, there is a compact getc ¥ such that — B is homeomorphic
with R? with a compact ball cut out. We also assume thatis homeomorphic with the
2-sphere. The case of more than one componeritibfie.g. several asymptotic ends or
horizons, etc) can be treated in a similar way.
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Denote bya, b, c, ... spatial tensor indices and by j, k, ... su(2) indices. The
gravitational phase space is described by a canonica(pgerf//c) whereA! is anSU (2)
connection on the hypersurfagg E{ is an adSU(2)) transforming vector density and
is the gravitational coupling constant. This means that the symplectic structure is given by
{AL(x), Ejl?(y)} = k8(x, y)82’8;. The relation with the co-triad’, the extrinsic curvature
K.y and the 3-metrig,, = !¢} is Ef = e"€;j e; ek andAl, = Fé+sgn(det((eﬁ)))Kab¢f
wheree“* is the metric-independent, completely skew tensor density of weightItnis,
the spin connection of, ande? is the inverse of the matrix’ .

By y we will denote in the following a closed, piecewise analytic graph embedded into
a d-dimensional smooth manifol@ (the case of interest in general relativity ds= 3).

The set of its edges will be denoted l5y(y) and the set of its verticeg (y). By suitably
subdividing edges into two halves we can assume that all of them are outgoing from a
vertex (the remaining endpoint of the so divided edges is not a vertex of the graph because
it is a point of analyticity). LetA be aG connection for a compact gauge grotpthe case

of interest in general relativity i& = SU(2)). We will denote byk,.(A) the holonomy of

A along the edge. Let xr; be the (once and for all fixed representative of the equivalence
class of the set of)th irreducible representations 6f (in general relativity; is just a spin
guantum number) and label each edgef y with a labelj,. Let v be ann-valent vertex

of y and letey, ..., e, be the edges incident at Consider the decomposition of the tensor
product®;_,m;, into irreducibles and denote by, (1) the linearly independent projectors
onto the irreducible representationsthat appear.

Definition 2.1. An extended spin-network state is defined by
Ty;{(A) = tr(®vEV(y)[nCp(1) ' ®e€E(y),vEe7Tjg (he(A))]) (21)

where] = {Je}ecE(y)> ¢ = {Colvev(y)- In what follows we will use a compound label
I = (y(I), j(I),c¢)). An ordinary spin-network state is an extended one with all vertex
projectors corresponding to singlets.

Thus, a spin-network state is a particular function of smooth connections restricted to
a graph with definite transformation properties under gauge transformations at the vertices.
Their importance is that they form an orthonormal basis for a Hilbert space H,,.,
called the auxiliary Hilbert space. Orthonormality means that
(T, T, ) =(T T, 5 2 )aux = 8,87 78z (2.2)

v Ly e yog.é Ly jre Yy rjjrec

Another way to describe{ is by displaying it as a space of square-integrable
functions L»(A/G, duo). Here A/G is a space of distributional connections modulo
gauge transformations, typically non-smooth anglis a rigorously definedg-additive,
diffeomorphism-invariant probability measure ofyG. The spaceA/G is the maximal
extension of the spacd/G of smooth connections such that (the Gel'fand transform of)
spin-network functions are still continuous. The inner product can be extended, with the
same orthonormality relations, to any smooth (rather than analytic) graph with a finite
number of edges and to non-gauge-invariant functions. It is only the latter description of
which enables one to verify that the inner produgct) is the unique one that incorporates
the correct reality conditions that, E are in fact real valued. The inner product (2.2) was
postulated earlier (see remarks in [31]) for tmmplexconnection formulation. But it was

not until the construction of the Ashtekar—Lewandowski meaguy¢hat one could show
that this inner product is actually the correct one for the real connection formulation only.
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We will denote by® the finite linear combinations of spin-network functions and call
it the space of cylindrical functions. A functiofi, is said to be cylindrical with respect
to a graphy whenever it is a linear combination of spin-network functions on that graph
such thatrz;, is not the trivial representation for ne € E(y). The spaced can be
equipped with one of the standard nuclear topologies induced &énbecause on each
graphy every cylindrical functionf, becomes a functiorf, on G* wheren is the number
of edgese of y through the simple relatiorf, (A) = f,(h.,(A), ..., h., (A)). This turns
it into a topological vector space. B$’ we mean the topological dual @b, that is,
the bounded linear functionals ab. General theorems on nuclear spaces show that the
inclusion® c H C ¢’ (Gel'fand triple) holds.

So far we have dealt with solutions to the Gauss constraint only, that is, we have
explicitly solved it by dealing with gauge-invariant functions only. We now turn to the
solutions to the diffeomorphism constraint (we follow [19]).

Roughly speaking one constructs a certain subsgagg, of &’ by ‘averaging spin-
network states over the diffeomorphism group’ by following the subsequent recipe: take
a spin-network stat&; and consider its orbit7;} under the diffeomorphism group. Here
we mean orbit under asymptotically identity diffeomorphisms only! Then construct the
distribution

[T]:= ) T (2.3)
Te(T;}
which can be shown explicitly to be an element®f Any other vector is averaged by
first decomposing it into spin-network states and then averaging those spin-network states
separately. Certain technical difficulties having to do with superselection rules and graph
symmetries [10] were removed in [19].
An inner product on the space of the thus constructed states is given by

(Lf1. [eD) pirr :==[f1(g) (2.4)

where the brackets stand for the averaging process and the right-hand side means evaluation
of a distribution on a test function. The completion ®f, s, with respect to(-, -) p; ¢ is
denoted byH p; .

Finally, the Hamiltonian constraint is solved as follows [15]: one can explicitly write
down an algorithm of how to construct the most general solution. It turns out that one
can construct ‘basic’ solutions, € ® which are mutually orthonormal with respect to
(-, Ypigs (in @ generalized sense) and diffeomorphism invariant. The span of these solutions
is equipped with the natural orthonormal basjs (in the generalized sense). One now
defines a ‘projector’

Af=10= ) sulsu [ Doirs (2.5)

for eachf € ® and so obtains a subspadg,,,, C ®'. The physical inner product [19] is
defined by

(LA (gl phys == [LA1(LED- (2.6)
Finally, the physical Hilbert space is just the completiordgf,,, with respect to(-, ) gam-

3. Regularization of the ADM Hamiltonian

There are many ways to write the ADM Hamiltonian which are all classically weakly
identical. We are going to choose a form which is a pure surface integral and which
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depends only orE¢ because in this case the associated operator will be almost diagonal
in a spin-network basis so that we can claim that spin-network states really do provide a
nonlinear Fock representation for quantum general relativity as announced in [13, 14].

The appropriate form of the classical symmetry generators was derived in [21, 22].
Although that paper was written for theomplex Ashtekar variables, all results can be
taken over by carefully removing factors of i at various places. We find for the surface
part of the Hamiltonian (expression (4.31) in [21], we use tNat N/./detlg), D,N =

(D,N)/+/detlg) whereN is the scalar lapse function)
E(N) = —Ef dSaL
K Joz  /deiq)
It is easy, instructive and for the sign of the ADM energy crucial to see that (3.1) really
equals the classical expressian(1l/«) faz dS, (gav.r — qor.a) due to ADM: using that

E¢ = Levee; elek we have the chain of identities

EYOE?. (3.1)

2€
_ d;q)E;*abEf’ — sgn(detie))ef e eijifelef]
= —2sgrdete))efe Meljkeg'ef,,b
=2 Sgr(dei(e))q”febc‘ieijke}egesqb = —Zq”fedeMefceeZe;h
44][“5 \/FT(C])‘V’ edb
= 4,/detlq) ¢“q*'ele], ,, = 2\/delq) ¢“q"e}[el, — e}, ]
det(q) ¢“¢ bd[Ze(deC) »+ Ze[ded b Ze(deb),c — Zefde;',].c]
det(q) ¢“q"[(qea.o — qoa.c) + 2¢j4€ly,]- (3.2
Now we expande’(x) = &, + fi(x/r)/r + o(1/r?) where r? = §,,x"x" defines

the asymptotic Cartesian frame. The functigii(x/r) only depends on the angular
coordinates of the asymptotic sphere and is related to the analogous expap$ion=
Sab + fan(x/r)/r +0(1/r?) by f.,67 = fi. Consider now the remainder in the last line of
(3.2). Its d1/r?) part vanishes becausg,;) = 0 and this concludes the proof.

In the following we focus on the energy function&lypy, = E(N = 1). We will
guantize it in two different ways corresponding to two quite different factor orderings.
Each of the orderings has certain advantages and certain disadvantages which we will point
out.

3.1. Ordering I: no state space restriction

In this subsection we will derive a form of the operator which is densely defined on the
whole Hilbert spacelt (and extends to the spaceésy; s, H,uys defined above) without
imposing any further restriction that corresponds to asymptotic flatness.
Using again thatz¢ = el]ke’”’ceéek we can write it as
1 o

E = lim E S where E §)=—= | ———€*eI AekO,EY (3.3

Apy = Jim apm(S) Apm(S) - /s Jaeis) bE; (3.3)
and S is a closed 2-surface which is topologically a sphere. The idea is to point-split
expression (3.3) and to use that

1
[ sgrdete))el]x) = 5 {45 0). V(x. o))
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where V(x,e) = f2 &2y x(x, y)4/detg)(y) and y. is the (smoothed out) characteristic
function of a box of coordinate volume. Since

lim % =8(x,y) so that ”mV(xg, 2 Vdet(g)(x)

e—0 e—0 €
we have
Eapu(S) = lim —E/;Eijkej(x)/\ek(x)f A2y xe (x, V) (HE?) ()
=0k Js €3/detlg)(x) D '
=l@o—éﬁ V:’ke)e"(x)wk(x)/zdgy XeCe, ) (B ET) ()
. 1 €'k .
= E"L“o_ﬁfs T [AT (), Vx, o) A{A ), Vx, o)

desyxe(x,y)(abEf’)(y)
— lim —K—i/e"f"{Af(x),\/m} AMA @), VV(x, 6}
S
x/):dg’y)(g(x,y)(f)hE,'b)(y)

4
= lim F/tr ({A(x), VVx o)} AMfA), VV(x,e) ]

e—0

X/Zd3yxe(x,y)(8bE”)(y)>
=— |im0%/tr<{A(x),,/V(x,e)}/\ {A), VV(x,€)}
€~ Ky

x /X d®y [9,0 xe (x, y>]Eb(y>>
= eli_r)no E5pu(S) (3.4)

where in the second to last step we have taken a trace with respect to generatons(2)
obeying [r;, 7;] = €;xw and in the last step we have performed an integration by parts (the
boundary term abX does not contribute for finit§ and e sufficiently small). Thus, we
absorbed the /1,/det(g) into a square root within a Poisson bracket and simultaneously the
singular Ve into a volume functional. Classically we could have dropped thgdetlq)
(although the integrand would then no longer be a density of weight one and is strictly
speaking not the boundary integral of a variation of the Hamiltonian constraint) due to the
classical boundary conditions which tell us that(ggttends to 1.

We now quantizeE< ,,,(S). This consists of two parts: in the first we focus on the
volume integral in (3.4) and replacg by Ef = —ihk8/8AL. In the second step we
triangulate S exactly as the hypersurface of421 gravity in [16], replace the volume
functional by the volume operator and Poisson brackets by commutators tjfihes 1

So let f, be a function cylindrical with respect to a graph Since we are only interested
in the limit § — 90X we may assume that

(i) v lies entirely within the closed ball whose boundarySisbut
(il) y may intersectS at an endpoint of one of its edges and may even have edges that lie
entirely insides.
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Furthermore, we can label the edgesyofn such a way that an edge either intersects
S transversally (with an orientation outgoing from the intersection point ithor lies
entirely within S.

Coming to the first step we have for theintegral involved inES ,,,,(S):

fz &y [0axe (x. DIEL () £y = =ik Y / &y [3xe (x, )]

ecE(y)Y X

1
X/O dr é“(1) 8(y, e(t)) X.(t) f,

1
L M KGR RE S POy

ecE(y) Y0
— ' rd i
= —ihk Z /0 dt[axe(x,e(t))]Xé(l)fy
e€E(y)

n

= —ihic Y lim Y [xe(x,e(t)) = xe(r, eI Xe (1) £y (35)

ecE(y) k=1

where E(y) is the set of edges of, Xi(t) := [h.(0, 1) 7; he(t, 1)]459/3[h.(0, )] 4p and
O=1<n <---<t, =1is an arbitrary partition of the interval [Q].

It is important for what follows that for eache, i X.(z) f, is still a function cylindrical
with respect toy.

We now come to the second step. This involves, first of all, a triangulation of the
two-dimensionalsurfacesS in adaption to the grapl. Besides the prescription explained
in detail in [16] which deals with the triangulation &fin the neighbourhood of a vertex
formed by edges of that lie entirely withinS we just need to deal with the case that
a vertexv of y also has edges incident at it which lie entirely inside the open ball with
boundaryS except for the one point. In the case where there are at lesh edgeses, e;
of y incident atv such thate;, e, C S we can still take over the triangulation from [16].
However, if there is onlyone or nosuch edge (indeed, since we do not allow for gauge
transformations at spatial infinity we can allow for open edges that lie entirely within or end
at § without ruining gauge invariance) we need an additional prescription: in the case where
there is only one edge C S incident atv, choose an arbitrary edgé not intersectingy
except atv such that the tangents of the edgeg’, ¢’ are positively oriented at where
¢” is any of the edges of incident atv but transversal tc.

In the case where there is no edge S incident atv, choose two arbitrary edgese’
not intersectingy except atv such that the tangents of the edgeg’, ¢’ are positively
oriented atv wheree” is any of the edges of incident atv but transversal t&. These
arbitrary edges will disappear from the stage again at the end of the calculation.

Given this set-up, at each vertexof y that lies insideS we have now at least two
edgese;, e, incident at it that are insid§ and we can define the triangles associated
with pairs of edges incident at and insideS exactly as in [16]. As in [16] we then have
two segments(A), s2(A) for each triangleA which are actually segments of edgesyof
incident atv and that lie insideS. Now observe that

g hytay V@, OYhga (b iay, V0, )}
= 6% §{(0) 7 (0 {Au(v), VV (v, €) }{Ap(v), VV (v, €) } 4 0(8%)
= 2vol(A)e“’{A.(v), V'V (v, ) H{A(), vV (v, €) } (3.6)
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wheres is a small parameter corresponding to the parameter length of(thg ande® the
metric independent totally skew tensor density of weight on&.0Altogether we therefore

conclude that the surface integril {A(x), vV (x,€) } A {A(x), vV (x,€)} involved in
E4pu(S) can be quantized by

1 4 ’ - ~
o 3 F) > guhs‘,(m[h;(lm,\/V(v,e)]hsj(A)[h;(lA),\/V(v,e)]fy. (3.7)

veV(y) v(A)=v

We do not wish to give a full derivation of (3.7) for which the reader should consult [16],
however, a few remarks are in order which intuitively explain (3.7):

(i) First of all as has already been mentioned, we do not work with a fixed triangulation
but with a whole finite family of triangulations that depend on the grapif the state
that we act on. More precisely, a particular member of the family of triangulations is
defined such that for each vertexof y which lies in S we (i) pick one paires, e;
of edges ofy incident at it which are such thab is next toe; to its right while the
tangents ofe;, e, enclose an angle less than or equalrtdwith respect tod,;); (i)
take proper subsegmentgA) C e; incident atv; (iii) construct two more segments
s7(1) = 2v —s;(1); (iv) construct four obvious triangles from, s; which saturate and
(v) choose a triangulation which embeds those four triangles for eadhbasic ones
and is otherwise arbitrary only subject to the restriction that none of the remating
has its basepoint on.

(i) Next, each of the four triangled1,, A,i, Aj3, Az, contributes classically the same to
the surface integraf, = >, [, as the trianglea;» so that we can classically replace
these four terms by ﬂAlz. This explains the factor of 4 in (3.7).

(iif) Now, since we do not want to distinguish one particular pair of edges as compared
to any other, we average over the choice of pairs which explains the factorEgh L
where E(v) = n(v) or E(v) = n(v) — 1 is the possible number of pairs depending on
whether the angles less than or equaktadd up to 2 (with respect tas,;) or not and
n(v) is the valence ob.

(iv) Finally, the fact that we sum over vertices pfonly comes from the presence of the
volume operator which has non-trivial action at vertices only. Therefore the contribution
of all other triangles which define the triangulation drop out (all triangles such that there
is no edge ofy transversal taS at its basepoint since the three-dimensional volume
operator annihilates co-planar vertices).

It should be mentioned that any of the so-defined ‘averaged family of triangulatiofis of
adapted toy’ has as classical continuum limit the original integyal
Putting (3.5) and (3.7) together we obtain as the final result

4( 1\ 4
ES8 (S f, = F<—ﬁ>(—|h,c) > 0

veV(y)
x Y €l (hsi(A)[hSiélA),M}th(A)[hygA)’M}
v(A)=v
x ) Z[xe(v,em))—xe(v,e(rk_m]Xi(rk_l))fy' (38)

ecE(y) k=1
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Now we perform the limitn — oo ande — 0 in reverse orddr keepingn fixed, for

small enoughe only the term withk = 1 in the sum survives provided that{0) =
Therefore also the sum ovérand with it then dependence drops out. Also the operator
V(v,e) actually has a limit ax — O which we call V, and which is defined by
lim_o V (v, ef, = (V) fy for all y. That the limit exists relies on the fact that either

hasv as a vertex or it does not. In the latter case the limit just vanishes, in the former case
for sufficiently smalle the e box aroundv does not include any other vertex pfother than

v and so there is only one contributiqjﬁv)yfy which is constant as — 0. The family of

operators(f/,,)], is consistently defined becau$eis. For a more explicit formula in terms
of analytic germs of edges see [16].

Now, the limitn — oo is trivial and the resulting operator derived for arbitrary but
finite S can be extended tdx. The result is

EADMfy th Z E(v) Z Gijtr <h5f(A)|:hs_;(1A)’VV(U’E)]th(A)

veV(y) v(A)=v

|:hs(lA),\/\A/(v,e):| > x;>fy (3.9)

ecE(y),e(0)=v

where X (0) = X! = X'(h,) and X' (g) is the right invariant vector field at € SU(2).

The virtue of (3.9) is that it displays the ADM energy operator as a densely defined
operator on all of the Hilbert space. Also, the dependence on the ‘arbitrarily short edges’
s;(A) drops out at the end of the calculation because of gauge invariance as explained in
[17]. The disadvantage is that the operator (3.9) is not a manifestly positive semi-definite
operator. This is, however, not surprising because even the classical ADM energy is not
a positive semi-definite functional on the full phase space of general relativity. It is only
when evaluating it on (i) asymptotically flat, (ii) solutions of the Einstein equations which
(ii) satisfy an energy condition for allowed matter and (iv) allow for a regular initial data
set, that the positive energy theorem has been proved [23, 24] and, in fact, one can easily
produce negative ADM energy when one of these conditions is violated. As we did not
impose any (quantum analogue of) such restrictions we cannot expect to find a manifestly
non-negative operator.

In the next subsection we will derive another quantization of the ADM energy which
is only densely defined on a subspace of the Hilbert space, however, the definition of
that subspace is a quite natural quantum translation of the classical condition that there be
an asymptotically flat regular initial data set. The virtue will be that the ADM operator
acquires non-negative discrete spectrum on that subspace of the Hilbert space thus proving
a ‘quantum positivity of the energy theorem’.

3.2. Ordering lI: restrictions on the state space

In order to make sense of the operator to be defined in this section we need to give
some definition of ‘asymptotically flat state’. The following definition is a first attempt

1 One can also makey dependent in (3.4) in a state-dependent way which then leads to a depeadencg/n).

If one then takes — oo one gets classically back to the original expression for the ADM energy. If one ftakes
large but finite then one arrives at the same result as below on the quantum level without an interchange of limits
being necessary. Therefore the calculations that follow are justified. The state dependence of the regularization
drops out in the final expression because before actually taking the:liritoo the operator will ber-independent.

The family of operators thus obtained for each state is consistently defined as we will see. See [16, 18] for a more
detailed explanation.
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towards a precise notion of ‘quantum asymptotic flatness’ to be considerably refined in
future publications.

Definition 3.1. An asymptotically flat stat& on the Hilbert spacé{ is a distribution in
@' satisfying the following conditions:

(i) ¥ is a normalized solutioré to all quantum constraint&/(¢) — 1 = 0, H(N) = 0
(the diffeomorphism and Hamiltonian constraint) of general relativity wher¥ are
arbitrary 3-diffeomorphisms and lapse functions subject to the condition that they be
pure gauge, that igy(x) — id and N(x) — 0 asx — 3% and wherej is the operator
[19] that maps elements @ to solutions to all constraints.

(i) ¥ = n& is asymptotically flat. That is, consider any compact regigrsurfaceS and
loop @ (which is embedded in the graph underlying the definitiorépfof ¥ — 9%
and which are large as compared to Planck volume, area and length, respectively, as
measured by the Euclidean metlzj(d‘?]) = 84. Then, asRk,S,a tend todX, the
quantitiesW ([V (R) — Vo(R)]€), W([A(S) — Ao(S)]E), W([tr(hy) — 2)€), respectively,
are of ordert3, (3, £,/L(c), respectively, wherd/o(R), Ao(S), Lo(e) are the volume,
area and length oR, S, o as measured byég).

(i) W transforms according to an unitary, irreducible representation of the Peigoanp
at spatial infinity.

(iv) W satisfies the dominant energy condition: I _...(N) be the dual of the matter
part of the Hamiltonian constraint (not the Hamiltonian!) ayg,,., (N) be the dual of
the matter part of the diffeomorphism constraint.

The 4-vectorN* = (N, 1\7) is said to be a future-directed timelilfe vector in a stéte
if (@) N > 0 and (b) there exists > 0 such that->N?(x) + \P[i(c(N, x,1))%] <0 for
each O<t < e wrlerei(c) is the length operator [17] andl\7, x, 1) is the segment of the
integral curve ofN beginning inx and ending after a parameter distamce

¥ is said to satisfy the dominant energy condition provided that for every 4-vattor
which is future-directed and timelike fob then there is ar > 0 such that the 4-vector
Prx, 1) i= (A, 0r(Ne) + V! (Ny.)., 0) is either zero or future-directed and timelike

matter( atter
for everyx € ¥ and O< t < € in the statel whereN, ,(y) = x,(x, y) N(y) and likewise
for N.,(y) (x:(x,y) is the characteristic function of a box of coordinate volurieand
centrex). In other words W ([ Hasrer (Nx.c) + Vinarrer (Ni.)]€) > O for eachx, 0 < ¢ < e.
Here we have adopted the convention that the signature of the Lorentz metricthet, +.
The subspace df in 7 satisfying these conditions will be calléd,; where ‘af’ stands

for asymptotically flat.

Condition (i) makes sure tha¥ is a solution of the ‘quantum Einstein equations’.
Condition (ii) is a possible way of defining asymptotic flatnegs — 8.4, Kap — O
(although not very carefully, no fall-off and parity conditions were imposed [21, 22] and
certainly this condition needs to be refined in future publications. For instance, one might
imagine that the error otf(V(R)g)/Vo(R) —1is even smaller thaﬁ;ﬁ/ Vo(R) in the sense
that it could depend on some negative power of the value of the radjwéth respect to
34») at the centre oR). Condition (iii) makes contact with physics and allows us to identify
certain states with elementary particles. In particular, in the present context of pure gravity
we should be able to isolate the graviton (spin-2, massless) states. Notice that in order to
allow for non-trivial representations of the little subgroup of the Lorentz group we must
specify the appropriate diffeomorphism group in the group averaging process in order to
arrive at the diffeomorphism-invariant states [10] which means, roughly speaking, that we
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include only those diffeomorphisms in the averaging process that approach iderdtiy at
Finally, condition (iv) is the most imprecise one and attempts at defining a possible quantum
analogue for the dominant energy condition: recall that the classical energy—momentum
tensor 7, is said to satisfy the dominant energy condition if for every future-directed
timelike vector fieldv*, the vector field7/v" is zero or future-directed and timelike.
Now if t* = Nn* + N is the future-directed timelike foliation vector field underlying
the splitM = R x ¥ andnr* the normal vector field o then we may pick a frame
such thatn”T,,t" = NHuan + N*(Vian)q 1S the only non-vanishing component of the
vector 7,,,t" and so we need to ask that it be non-negative, in particularNfee 0, we

ask that the matter Hamiltonian densities be non-negative. This condition is, of course,
incomplete since it is frame dependent and needs to be improved in the future. Notice
that (1%g,.,1"1")(x) = —t2N?(x) + t?(quN*N?)(x) ~ —N?(x)t? + L(c(N, x, 1))*> which
motivates our definition of future directedness:6f We conclude with the remark that
condition (iv) is certainly satisfied in the vacuum case that we are interested in here.

One might think that a state satisfying all those conditions is rather hard to construct.
Let us pause for a moment to argue that it is rather simple.

Consider for simplicity a~ with topology of R® and distribute a countable number of
verticesv, randomly intoX with an average next-neighbour distance of a Planck length as
measured by;j,?. Make v, the only vertex of a graphy, which is 4-valent and non-co-
planar (for instancey, = «, N B, wherew,, 8, are two kinks with vertex,). The graphs
¥. are supposed to be contained in a Rxof ¢©@ volumekﬁf; for some positive numbér
and theB, are mutually non-intersecting. Consider normalized vecj@ra/hich are finite
linear combination of spin-network states definedjygnand which are eigenstates of the
volume operatorV/ (R) for any regionR, all with the same eigenvalug,£3 = A5 > 0

if v, € R. Thus we haveV(Bm)f,, = Mﬁsmﬂfn. Consider the infinite product state

& = []2, f» which is a regular (non-cylindrical) spin-network state on the infinite graph

y = U, ¥, and which is in fact normalized| = 1 thanks to the disjointness of the graphs

¥» because of whichi&|| = [T, Il f.ll due to the properties of the Ashtekar—Lewandowski
measure. We now chooge:= 2 and find that for any macroscopi, that is, anyR

that contains many of the boxes,, it holds thatV (R)é = Vo(R)[1 4 o(£3/ Vo(R))&.

Now, since no state which is cylindrical with respect to any of the graptsan be in the
image of the Hamiltonian constraint [13—-15] it follows from its definition [19] that 4he
operator reduces to group averaging with respect to the diffeomorphism group because of
which the group-averaged diffeomorphism-invariant stte- [§] = n& is normalized as

well with respect to the physical inner product [19¥[[5, . = W(§) = [|§]|* = 1. Thus
indeed W ([V(R) — Vo(R)]§) = o(£3/Vo(R)) is satisfied. It is clear that the construction

can be repeated for the surface operator as well because most of the intersections of the
macroscopic surfacg with the y,, will not be in vertices of the/, so thatV (R), A(S) can

be simultaneously diagonalized up to errors of ordeffngo(S). Thus, almost every,

can be chosen as a simultaneous eigenvect&(ﬁ), V(S). Finally, any macroscopic, for
simplicity non-self-intersecting (any loop is a product of these), leam our particulary

is of the product formy = o”aﬁ", o, C Vu, kq € {0, 1} where k, = 0 except for finitely
many. TheSU (2) Mandelstam algebra is too complicated as to exhibit an explicit solution
for SU(2) so let us argue with afy (1) substitute that the condition stated in definition 3.1

is reasonable. Fot/(1) we haveh, = ]_[kn:1 he,. Now, if we choose for simplicity

a, =y, then f,, = S0 ah, where x,(g) = g* is the character of the irreducible
representation ot/ (1) with weightk. SinceT = xyx; = xx the condition stated in the
definition amounts to asking that (fér(1)) 1= [T, _;1 > laxl®* =], _s S a1 Gkarsn
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up to some corrections. Indeed, if we could chooseaplto be equal £1/+/2N + 1)

then the error would be *+ nk,,:l[l — 1/(2N + 1)] which is small provided that
-1l = 0(L(@)/t,) < N. For instance, we may choogé = [L/¢,]? where L is

the bound on the length of a macroscopic loop that we wish to consider. This will suffice
to motivate definition 3.1. Obviously one has to refine it but this seems impossible without
the notion of coherent states and will be left for future publications [25].

We will now show that on an asymptotically flat state the ADM energy operator as
defined below is non-negative. We will not show that vanishing energy corresponds to
Minkowski space. Our definition of asymptotically flat states as of yet is not restrictive
or precise enough for that. As we will see, in order for the ADM operator to be densely
defined we need the following stronger condition:

(ii)" A statew = 7¢ is said to be asymptotically flat provided (ii) of definition 3.1 holds
and, in addition:

Let y be the (infinite) graph on whicl§ depends,p a point indx N V(y) and
B;, t € [0, 1] any homotopy of regions it such thatp € B, for eacht and By = {p}.
Then we require that for each sughthere exists > 0 such that is, for each O< ¢ < ¢,

a finite linear combination of eigenstates with non-vanishingsaimdlependent eigenvalues
of the volume operator7(B,).

It is not clear that condition (ii) impliegii)’ and if that should not be the case then we
must add the requiremexii)’ stated as an additional restriction &f) ;! Notice, however,
that (i)’ is not unreasonable in the asymptotically flat context.

It will turn out in the course of the derivation that the positivity of energy theorem then
holds if we impose one additional condition on the thus already restricted space of states.

We write expression (3.4) this time in the form (settifig= X right from the beginning)

Eapy = lim 2 gs EF’(x);/ &y xe(x, y) (BE?) ()
0« Jyx TS Aetp) Jy 0T ’
I 2 a 1 3 b
_!'Lno . ds, E (x)v(x’e)/zd Y xe(x, y) (3 E) ()
i 2 N S ) - ap Al E:
—!ILnO—K/aZ ds, (x) E (x)v(x’e)/zdyxe(x,y)[G,(y)—el]kAb(y)Ek(y)]
=t lim ESpy (3.10)

whereG; = 8,E{ + [A,. E“], is the Gauss law constraint. Recall th@t = 0 only needs

to hold in the interior ofY because the Lagrange multipliaf of the Gauss constraint falls

off like 1/r2 so that at ¥ every function ofE?, Al is gauge invariant. More precisely we
have the following: it is of interest by itself to derive the quantum Gauss law operator on
a function ofsmoothconnections cylindrical with respect to a graph

/d3x Al(x) Gi(x)fy = —ihk Z /d3x Al (%)
z ecE(y)
1
x [ dre o[+ apal]se. ) (X0 f,)
0
= —ihk Z /d3x Al(x)
ecE(y)

1 d )
/O dt([—a&'k + eijké“(t)AZ,(x)]Mx, e(t))> (XE 1)
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= _im{ Z /d3x A"(x)[—a(x,e(l))xg(l)+5(x,e(0))xg(0)
ecE(y)
1
+ / dr 8 (x, e(1)) (XL(t) + €iju ¢ (1) A (x) X’;(r))}fy}
0

z_m{ Z |:—Ai(e(1)) X{(1) + A’ (e(0)) X (0)

ecE(y)
1
+ / dr Al (e(t))(XE(t) + €iju (1) Al (e(t)) XE (z))} fy } (3.11)
0
Here we have made use 8f§(x, y) = —9,8(x, y) in the third step which holds on spaces

of test functions of rapid decrease. But since for smooth connectigist + §t)** =
14 é%(1) 81 Au(e(r)) 4 0(51%) we have

XI(t +8t) — X (t) = tr(he (0, t + 81)7; ho(t + 81, 1) I 0.0)) — X' (1)
=1tr(h.(0, 1) h(t,t +81) T; h;l(t, t+6t)he(t, 1) 0p,001) — X' (1)
= 8t ¢“(t) tr(he (0, )[Au(e(r)), Tilhe(t, 1) 3, 0,1) + 0(51%)
= —e€ij 8t ¢°(t) AL (e()) tr(ho (0, 1) T ho(t, 1) 3j,0,0)) + O(81%)
= —¢;jx 81 (1) AlL(e(t)) XK (1) + 0(517). (3.12)

This shows that the integral in (3.11) vanishes identically for smooth connections. Now
X (0) = X'(h,) =: X! where X'(g) is the right invariant vector field a¢ € SU(2) and

X! (1) = —X'(h;Y). Thus, when splitting each edge into two halves e;oe,* where both

e1, e are outgoing at the vertex different from their intersection point #@h= ¢,(0) and

the right invariance oX now impliesX (h.) = X (h.,), —X(h;l) = X (h.,). Summarizing
we find that the quantum Gauss constraint is given by

G f, =—ihk Y A(e)X.f, =—ihk Y  A@X.f, (3.13)

ecE(y) veV(y)

where—iX, = —i}_,_, X. is the total ‘internal’ angular momentum operator. Notice that
(3.13) can be extended from smooth to distributional connections and that no assumption on
asymptotic behaviour or smoothness/fhad to be made. The quantum Gauss constraint

is obviously a self-adjoint operator oK and anomaly free: it is trivial to check that
[G(A), G(A/)] = G([A, A']) precisely mirroring the classical constraint algebra. Moreover,
the quantum Gauss law constraint is identically satisfied &sds tod X because\ys = 0,

that is, there are no internal charges in general relativity [1]. This allows quantum states
of distributional connections to be non-gauge invariant at spatial infinity, a fact that we are
going to exploit in the following.

Now let the stat& € H,r be considered as a functiof) cylindrical with respect to a
graphy which is a finite subgraph of the graph on whighdepends and which intersects
0X. Becaus€ < H,; we know thatf, is afinite linear combination of eigenstates of the
volume operatorV (R) with non-zero eigenvalue for sufficiently small regioRsand such
that RNV (y)sx # @. Consider first the volume integral in (3.10). Settifigy) = xc(x, y)
there is an obvious gquantization for the term proportionabtdan view of (3.13). However,
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for the remainder we have, again on functions of smooth connections only to begin with

eijk/ By x (x, V) AL EL ) f,
>z

= _m’CEi]k /d Y Xe(x, y)A’(y)/ dr (1) 8(y, e(r)) X4 (1) f,

ecE(y)

= —ifep Y / dr (1) AL(e(n)) xe (x, (D) XA (1) f,

ecE(y)

= 2ihk Y lim Z Xe (6, e(t-) tr(zi[he (-1, 1) — DX, (1) fr -

ecE() ' C k=1
(3.14)

Now recall thatx € 9% and thaty ¢ B(dX). Pick a particular edge in (3.14). Then
for sufficiently smalle the corresponding term either vanishese@®) = x and the term
becomes fr;[/2.(0, 1 (¢)) — 1D X! f, + 0(e?) wheret(e) is the largest value of such that
xe(x, e(t)) = 1. Now for a classical, smooth connection which approaches infinity a& 1
the termh. (0, t(¢)) — 1 is at most of ordee/r (the ‘length’ ofe(¢) is at most of order)
and so vanishes even at finiebecauser — 9X. Therefore expression (3.14) vanishes
and the volume integral contribution @4, becomes

/ &y xe (¥, ) B EL(3) fy = —ihic Y xelx,v) X fy (3.15)
z veV(y)
which one can extend to non-smooth connections.

We turn to the surface integral of (3.10) and wrjte, = X! f,,. We have, ordering the

1/V (x, €) to the left

f xe(x, v) dS, ———— 5 E“fyv:—lh/c > / dr ¢%(t)
D)

ecE(y)

< [ dsu) 80, e L ”)) X0 £

EM) Vix,e

o xe(e(0), v) _;
— il SO, €)% C LKL
eeE(y)Ze(:O)Ei?Z V(e(0),¢€) s

= ik %O,V yi o (3.16)

ecE(y),e(0)€dX,e ¢ 9% V(e(0), €)
where sgis, ¢) is the sign of the intersection ef with the surfaceS (which is outward
oriented) ak(0) which is thus—1 because all edgesare outgoing from a vertex(0) and,
because ofy C B(0X), they are thus running away fro&x (there is no contribution from
edges that run insideX because sgadX, ¢).;, = O for all r as was shown in [26]). Thus,
only edges which run transversally ind& contribute to the sum in (3.16).

We can take now the limit — 0. Notice that for small enouglk we have
xe(e(0),v) = 1 ase — 0 provided thate(0) = v is a vertex ofy. Moreover, for small
enoughe, v is the only vertex of/ in thee box aroundv. Thus, we may replac (v, €) by
V, interpreting the operator/Y, by its spectral resolution. Now the only critical point is
whether the two operators!, X! that are to the right of /lV will leave the crucial property
of f, intact, namely, thatf, = YN, f; with V, f; = A f;, .; # 0. But this is easily seen
to be the case provided we impose the following additional restrictiofign
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Tangle property. An asymptotically flat state is a linear combination of diffeomorphism
group-averaged elements of the kinematical Hilbert sgdge each of which depends on
an (infinite) graphy all of whose intersections with> are transversal, that is, there are
no edges ofy which lie insidedX. Thus, any path along between two distinct points
of y N 9% is a generalized tangle [27], that is, a piecewise analytic path interseriing
transversally and points of non-analyticity are vertices piequivalently, intersections of
tangles. The subspace &f,; having the tangle property will be calléd, ..

The tangle property is a rather natural assumption about statescause curves of
non-zero parameter length runningdi themselves between vertices automatically have
infinite length with respect té,,. This is not the case for curves between vertices which
just approactd > but otherwise lie in the interior.

Under this additional assumption, we have in the liemit> 0, putting (3.13), (3.16)
and the remaining pre-factor 6f2/« from (3.10) together

N 1 . .
Eapu(S)fy =—2% Y =XiX.f,. (3.17)

veIXUV (y) VU

But recognizing—iX, = J, as the total angular momentum ¢f at v we finally find

Eapufy =20 ) ij; Jif,. (3.18)
ved XUV (y) Vv
Expression (3.18) defines a self-consistent family of opera@)@M,y} of operators which
can be extended to infinite graphs and thugtig,,;. provided that the number of punctures
of y with 89X is finite. This defines the domain & apy.
A number of remarks are in order.

e The operatorf,ﬁ is the infinitesimal generator of gauge transformationsand therefore
commutes withV, because the volume operator is gauge invariant proving that (3.18) is
densely defined on the restricted state space. If we would not require the tangle property
then while the volume integral in (3.10) gives essentidly the surface integral does
not, rather it givesX, = X, — >, 0=, .cax X» Which does not commute with, and so
may mapy, into a linear combination of states some of which may acquire zero volume
and so (3.18) would blow up. Thus, the tangle propertgufficientfor Eapy to be a
densely defined operator. Although we do not have a proof, it is almost granted that
X, f, will contain zero-volume eigenstates in its expansion and so the tangle property
would also benecessary

e As a striking bonus of the tangle property we easily see that (3.18) indeed defines a
positive-semidefinite self-adjoint operator on the Hilbert sgdgg,,.: first of all, since
the volume operator and the/ are defined in terms of the operato¥$ it follows that
the family of operators (3.18) is consistently defined becauseXthare. Next, since
[xi, V,] = 0 we see that we may order (3.18) symmetrically involving only terms of
the form fj(l/Vv)fj and so (3.18) defines a symmetric operator because it leaves the
graphy invariant [5-7]. Finally, the LaplaciarA, := J!J! has non-negative discrete
spectrumyj, (j, +1) wherej, is the spin of the contractor of the generalized (non-gauge-
invariant) spin-network states into whigfy can be decomposed. Moreover, sired,
andV, commute, they can be simultaneously diagonalized. Thus,ig the eigenvalue
of the volume operator then the simultaneous eigengiate an eigenstate of the ADM
energy with eigenvalug_, j,(j, +1)/4,. This provides an explicit diagonalization of
Eapy OnN Hiangte @and demonstrates that it is a self-adjoint operatofop,,;.. Now,
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since states i,z are not diffeomorphism averaged at spatial infinity the part of
the graph which is responsible for the spectrum of the ADM energy is untouched by
the diffeomorphism-group averaging. Next, the migphat makes a diffeomorphism-
invariant state a solution of the Hamiltonian constraint is a generalized projector at each
vertex of the graph separately [13-15,19]. Therefore, it is the identity map at those
vertices ofy that lie indX because for a gauge transformativn— 9% the action of
the constraint at those vertices is trivially zero. Thus the part of the state responsible for
the spectrum and the adjointness relations:qf,), is unchanged by the mapand is
thus preserved when we go to the physical Hilbert sgdgg, = 1Hange. Moreover,
the spectrum is entirely discrete and non-negative, thus we have peoge@ntum
positivity energy theorem

e Astonishingly, the proof of this theorem turned out to be surprisingly simple: the proof
of the classical positivity theorem is much more complicated and uses the boundary
conditions and the Einstein equations at various stages. Why did we not need (a quantum
analogue of) these assumptions? The answer is that we actually did use them: we used
them in the definition of an asymptotically flat state, in particular, that the volume of
the state be non-vanishing and that it be a solution of the quantum Einstein equations.
Since the energy functional is really given B N) = H(N) + Eapu(N) where the
Hamiltonian constraint only vanishes on a solution, likewise the ADM energy operator
Eapy only represents energy if we apply it to a solutignof H'(N)¥ = 0. Here
we have written the duali’(N) on @' of H(N) because, as stated above, solutigns
actually lie in®’ [10, 15]. Finally, we used a regularization of the operator consisting (i)
of the restriction of the space of states to functions of classical connections (this means
here that they are smooth and decay at infinity as’JLland then (i) in the extension
of the expression for the operator obtained to alldofIn the derivation of the operator
we made crucial use of the fact that a classical connection decays at infinity.
Now a subtle issue is the following: by definition a solutiénsatisfiesA’'(N) ¥ = 0
for any N which vanishes a8 . But how about lapse function¥ that approach a
constant value a8Xx? It is now not a consequence of the formalism any longer that
H'(N) ¥ = 0 should hold, very much like in the case of the Gauss constraint. The only
guideline of what to do is the classical theory and there it is indeed true that on classical
solutions (Ao, Ep) to the Einstein equation&(N) just equalSE apy (N)a=a, E=E, SO
that we will require thatd’(N) ¥ = 0 even for asymptotically constant lapse.
Now, by definition the operataof acts like the identity operator at<. Therefore we
conclude that any physical state has the property that it is annihilated’by) even
for N = constant and, moreover, it is a linear combination of eigenstates with non-zero
eigenvalue of the volume operatty for each vertex of the graph on whiché depends
(with 7¢ = W) such thatv € 9. One might suspect that the number of states that
satisfy this condition is rather tiny but the opposite is the case: the volume operator has
the particular property that it does not change the graph or the labelling of that graph
with spin quantum numbers. Now there exist an infinite number of states which are
annihilated byH’(N) just because the graph or its labellings are of a particular type
(see [15] where such states were labelled by ‘spin-webs’, more precisely, ‘sources’ of
spin-webs) and so one can construct eigenstates of the volume operator of such states
while they are still annihilated by?’'(N). As an aside, this might shed some light on
the issue of how to interpret those special solutions of the Hamiltonian constraint.
These remarks are sufficient to show that thgf),,, (N) = Eapu (N).

e The fact that the ADM energy operator is essentially diagonal on spin-network states
can be interpreted as saying that the spin-network representationri®nlirear Fock
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representationof quantum general relativity. Namely, if we compare the spin that the
edges of a spin-network carry with the occupation number of momentum modes of,
say, the free Maxwell field then we may interpret this spin essentially as the occupation
number of a gravitational mode which is not labelled by a momentum but by an edge.
Notice that each vertex of which lies indX must be at least 3-valent (not 4-valent
because the function does not need to be gauge invariant at infinity) in order that it can
have non-vanishing volume. Also notice that the gravitational energy is quantized in
quanta of the Planck mass: the eigenvalues of the volume operator are muItib}jemof

the eigenvalues of energy, according to (3.18) are multipld&?;o;fﬁf, = JVh/k =m,.

Notice, however, that the spectrum dowest just consist of integers times,,: in fact,

we can arrange, by appropriate choice of the spins of the edges that meet at spatial
infinity in a vertex, that the volume operator assigns arbitrarily high volume to that
vertex, while we can choose the total (non-vanishing) spin of that vertex to be as low
as we wish, for instance%. This follows from simple Clebsh—Gordan theory. Thus,
while the spectrum is discrete, the value 0 is certainly an accumulation point. This is
important because we expect that in a low-energy approximation the theory correctly
describes scattering of low-frequency gravitons. The fact that the spectrum contains
such quanta is a first hint (although no proof) that the theory might have the expected
low-energy (large-distance) limit.

On the other hand, the spectrum is certainly unbounded from above because we may
have an arbitrary number of vertices at spatial infinity. Even the ‘spectrum per vertex’,
is unbounded: we can choose the spins of vertices meeting at a vertex of given valence
n to add up to highest weight = j; 4+ --- + j, and we can choose them to be equal

ji = j. The volume eigenvalue then is bounded from abové (ay j%? wherek(n) is

some constant depending on the valence: afhile the total spin squared is bounded
from below byn?;? so that for any fixed: the asymptotic behaviour is j/2.

For a classical connection every functionad is gauge invariant because it decays
like 1/72 which results in a holonomy of order epr) — 1, i.e. a trivial holonomy.

In quantum theory this is lifted by the distributional nature of a connection, smooth
connections are assigned zero volume by the Ashtekar—Lewandowski measure in the
space of distributional connections and are unimportant.

Gauge-invariant states a& correspond to vanishing energy eigenvalue. Thus, energy
seems to sit at non-gauge-invariant vertices. We may interpret this observation as
follows: the gravitational energy in a state labelled by an (infinite) graplis
concentrated at the vertices pf and energy flows from vertex to vertex along the
edges ofy in quantized packages labelled by the spin of those edges. Non-zero energy
at a vertex corresponds to lack of gauge invariance at this vertex meaning that the spins
that flow out or into a vertex do not add up to zero. Now in the interiozothe
quantum Gauss constraint requires that all spins add up to zero. We interpret this as
the connection dynamics version of the geometrodynamics result that there is no energy
location in general relativity in the interior at, gravitational energy can be gauged
away locally, it is pure gauge. However, while it can be pushed around at one’s will,
one cannot entirely delete it, one can push it all the way to spatial infinity where it
eventually shows up in the form of a non-zero net spin flow at the verticgsatf’o X.

The fact that (representations of) tl§é&/(2) gauge group of general relativity should
play an essential role in the energy is very unexpected from a geometrodynamics point
of view where one never even talks about #1¢(2) gauge freedom. Even the classical
ADM expressionfa2 dS, (gab.r — qub.a) 1S Manifestly gauge invariant, so how did the
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SU (2) gauge group enter the stg@e The answer is the following: notice that while

the classical ADM expression is manifestly gauge invariant, it is not at all covariant;
the derivatives that appear ifiy dS, (g.s., — guv.a) @re not covariant derivatives (in
fact, if they were covariant derivatives then the energy would vanish identically). This
does not need to concern us because Atthe diffeomorphisms that underlie the
diffeomorphism constraint must die off. Now as we showed in (3.2), when writing
faz dS. (Gabs — gbs.a) In terms of EY this lack of 3-diffeomorphism covariance, by
means of the boundary conditions, gets translated into non-gauge invariance, while
installing covariance because in (3.2) a correction term drops out due to the boundary
conditions which explains why one and the same function can be written in a manifestly
gauge invariant or diffeomorphism covariant way but not both. Indeed, the expression
—2 [, dS, Ef0,E? //delq) is manifestly 3-diffeomorphism covariant but it fails to be
gauge invariant. This is not unexpected: after all the triad formulation reduces the local
diffeomorphism gauge freedom to local rotation freedom. In conclusion, the fact that
states with non-zero energy are not gauge invariant is in fact very natural, the more so
as gauge transformations at spatial infinity are not allowed as follows from the classical
theory [1] so that any manifestly gauge-invariant function is in fact gauge invariant.

e Another function for whichSU (2) gauge transformations and diffeomorphisms get
mixed up is the classical vector constraiit = tr(F,,E?). Strictly speaking this
constraint function does not generate diffeomorphisms but only on gauge-invariant
functions.

e Notice that although-2 [, dS, Ef9,E?/+/detlg) is not gauge invariant the quantum
expression (3.18) in fact is. The reason why that is possible lies in the structure of
quantum theory: in the classical theory we only have functions on phase space. In
quantum theory those functions get translated into operators on a Hilbert space, but
values of those functions really correspond to expectation values. Thus non-gauge-
invariant functions correspond to expectation values of either a gauge-invariant operator
in a non-gauge-invariant state or vice versa. The quantization (3.18) picks the latter
possibility.

e In principle, we have now solved the ‘problem of time: since we have a true
Hamiltonian we can introduce th&chiodinger time parametersr and our state
vectors¥ € &', being distributions which are invariant under asymptotically identity
diffeomorphisms, are supposed to satisfy tiom-stationary Scladinger equation

Eapu(N = DU = —ifi3, V. (3.19)

Notice that, as we showed above, the ADM energy operator is its own dual so that
(3.19) makes sense.

e In the next section the operator (3.18) will be shown to commute with all quantum
constraints of general relativity and it is thereforsteong quantum Dirac observable
for quantum gravity in the strict sense of the word. This is not unexpected because it
is built purely from momentum operators.

t This question actually arises already in connection with the spectrum of the geometrical operators volume, area
and length [17, 28-32], however, since irreducible representations also carry gauge-invariant information the fact
that these operators have a spectrum which is determined by spin-quantum numbpeugeinvariant statess

maybe not that surprising. Whast surprising for the energy operator is that it is the spins of non-gauge-invariant
states which determine the spectrum.
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4. The Poincag algebra

We now wish to define the rest of the quantum generators of the little group of the asymptotic
Poincaé group and check whether their algebra is anomalous dr ridiis is enough to
construct particle states since the irreducible unitary representations of the little group induce
a unique unitary irreducible representation of the full Poiaogmoup. So far we have not
constructed an operator corresponding to a boost generator which is more difficult to obtain
than the ADM energy operator.

First of all we must clarify on which space to represent the Potngaoup (respectively
its generators). To that end it is helpful to remember how the classical Peigeaerators
are realized as a subalgebra of the Poisson algebra [21, 22].

Let H(N), V(N) be the Hamiltonian and diffeomorphism constraint functional,
respectively. Both functionals are integrals owerof local densities and both converge
and are functionally differentiable only if the lapse and shift functidghsV vanish ato X.

In order to be able to describe the Poiricagroup corresponding to the asymptotically
constant or even diverging functions“(is a Cartesian frame at spatial infinit}f =
a+ xax“, N = a® + e**¢px¢ where (a,a") is a 4-translationg® are rotation angles
and x“ are boost parameters, one proceeds as followsS Ile¢ a bounded 2-surface that
is topologically a sphere and l&(S) be the (intersection o with the) closed ball
such thatdB(S) = S. For eachS one definesE(N, S) := H(N,S) + Eapu(N, S) +
B(N, S), P(N,S) := V(N,S) + Pspu(N, S) where the parametef means that volume
integrals are restricted t8(S) only (a classical regularization of the divergent integrals) and
the ‘counter-terms’E py (N, S), B(N, S), Papu(N, S) are the surface integrals defined
in [21] and correspond to ADM energy, boost and momentum. One can_show that
limg_ s E(N,S), limg_ s P(N S) exist. Moreover, for each finit§, E(N, S), P(N S)

are functionally differentiable so that it is meaningful to compute the Poisson brackets

{E(M, S), E(M, $)} = P(¢°* (MN, — M,N), S)
{E(M,S), PN, S)} = E(LiM, S) (4.1)
{P(M,S), P(N, S)} = P(L;N, S).

The crucial point is that one computes the Poisson brackets (i) at findted (ii) on the

full phase space and then takes the lifiit> 9% or restricts to the constraint surface of
the phase space (whef&(N, S) = V(1\7, S) = 0). Notice that the numerical value of, say,
E(N, S) equalsH (N, S) for a gauge transformation for whicN — 0 asS — 9%. On

the other hand, on the constraint surface for a symmetry for which> 0 asS — 9%

it equals a time translation or a boost, respectively. A similar remark hold® o, S).
One therefore interprets (4.1) as follows: Mf, N are both pure gauge then the constraint
algebra closes. 1M is a symmetry andV pure gauge then energy (or boost generator)
are gauge invariant. I#, N are both symmetry then time translations commute with each
other, time translations and boosts give a spatial translation and a boost with a boost gives
a rotation, in other words the symmetry algebra closes.

1 By little group of the Poincd group we mean the group generated by the 4-translations and the little subgroup
of the connected component of the Lorentz group. The latter, as is well known, is the stabilizator subgroup of the
Lorentz group associated with a standard 4-vegtdn the massive cas€ > 0 the standard vector is associated

with the spin of the particle in the rest frame and the covering group of the stabilizator group is givsén(By

In the massless case the standard vector is associated with the helicity of the particle (spin in the momentum
direction) and the covering group of the stabilizator group is give/lb$), physically important representations

being 2-valued. Thus, the rotations at spatial infinity determine the unitary irreducible representation of the particle
state in question.
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In quantum theory we will therefore proceed as follows. Recall [13-15,19] that
the Hamiltonian constraintd (N) (for asymptotically vanishingV) is only well defined
on the subspace o®’ corresponding to distributions o® which are invariant under
diffeomorphisms that approach identity @E. Thus we can expect the symmetry algebra
to hold only on such distributions as well. In fact, we will just chodséo be a solution
to all constraints.

Next, in view of the fact that even the classical symmetry algebra only holds provided
one first computes Poisson brackets at firfiteand then takes the limit, we will check
the quantum algebra first by evaluatiig on E(Ns) fs for functions fs € ® which are
cylindrical with respect to a graph which lies in the interior BfS) (it may intersectS in
such a way that the volume operator does not vanish at the intersection point for none of
the eigenvectors into whiclis may be decomposed) and lapse functidfiiswhich grow at
infinity like symmetries but which are supported #(S) U S including S, and then to take
the limit § — 9% (the support fills all ofE asS — 9% in this process).

We come to the definition of (N) and ﬁ(ﬁ). First we treat the spatial Euclidean
group. The unitary representation of the diffeomorphism group definela(bwyfy = fo
which was for matters of solving the diffeomorphism constraint so far only defined for
diffeomorphisms that approach the identity asymptotically, can easily be extended to 3-
diffeomorphisms which correspond to asymptotic spatial translations or rotations. Instead
of defining the generata? (N) though (which does not exist ¢ [10]) we content ourselves
with the exponentiated versioi (p(N)) whereg(N) is the diffeomorphism generated by
the six-parameter shift vector fieltV* = a + €,,.¢"x¢ for some Cartesian frame®
possibly corrected by an asymptotically vanishing vector field corresponding to a gauge
transformation. It is trivial to check that

U(p(N) Up(N") Ulp(N) 1T (p(N)) "t = Ulp(LyN")) (4.2)
where £ denotes the Lie derivative so that there are no anomalies coming from the spatial
Euclidean group. This expression was derived by applying it to any fungiaylindrical
with respect to a graph with support B(S).

We now turn to the time translations. As already mentioned we will not consider boosts

in this paper so that, = 0 in the four parameter family of lapse functioNs= a + yx,x*
(modulo a correction which vanishes &L). Define the operator ofi

E(N):= H(N) + Eapu(N) (4.3)

where ﬁ(N) is the Lorentzian Hamiltonian constraint. Notice thétN) just as the
Hamiltonian constraint in [13-15,19] carries a certain prescription dependence which is
removed by evaluating its dual abp;sr. We will not repeat these details here and refrain
from indicating this prescription dependence in (4.3), however, the prescription dependence
has consequences for the commutator algebra that we will discuss below in great detail.

Let us verify the commutators between the time translations among themselves and
between time translations and spatial translations and rotations. We have

W([EM), E(N)f,) = Y((HM), HNIf,) + Y Eapu(M), Eapu(N)]f,)
Y {[Eapu(M), H(N)] + [H(M), Expp (N1} £,) (4.9

The first term vanishes for the same reason as in [13-15, 19] although one needs one
additional argument: the Hamiltonian constraint does not act at vertices that it creates.
Therefore, it can be written as a double sum over vertices of y alone and each of these
terms is of the form

(M) N@W') — M) NO)Y(Hy o) Hoy — oy Ho )1 )
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where the notation means thﬁl;,,y is a family of consistently defined operators each of
which acting on cylindrical functions which depend on the grgpand y (v) is a graph
on which ﬁv,yfy depends. This expression is clearly non-vanishing only # " but
then it can be shown that the operatdi‘au and FIU actually commute. Now this still
does not show that the term above vanishes, however, it can be show,that A, , £,
and ﬁv,y(v/)lflvg,,fy are related by a diffeomorphism [14]. Now in [14] that was enough
to show that the commutator vanishes because we were dealing there only with vertices
which do not intersecS as otherwise both lapse functions vanish identically for a pure
gauge transformation. Thus the diffeomorphism that relates the two terms above could be
chosen to have a support insi@&S) and W is invariant under such diffeomorphisms. In
the present context that does not need to be true. However, the crucial point is now that by
the tangle property all edges pfthat intersectS must intersect§ transversally. Therefore
the arcs that the Hamiltonian constraint attacheg #nd whose position is the only thing
by which the two above vectors diffdéie inside B(S) and do not intersectS. Therefore,
again the two vectors are related by a diffeomorphism which has support iB&ije that
is, they are related by a gauge transformation and therefore the commutator vanishes.

We turn to the second term in (4.4). Now we obtain a double sum over verticgs of
which lie in § and each term is of the form

(M) N@') = M) N)Y(Ey apms Ev apml fy)

which is significantly simpler than before becathgADM does not alter the graph. Notice
that the commutator makes sense becaﬁ],ng,v leaves the span of non-zero volume
eigenvectors invariant. Now far # v’ the commutator vanishes trivially, this time without
employing diffeomorphism invariance df.

Finally the last term in (4.4) is a double sum over vertioes’ of y, wherev must lie
in S, of the form

(M) N@') = M) N@)W(Hy,, Eyapml f)- (4.5)

The fact thatt 4y does not alter the graph was used to write (4.5) as a commutator without
employing diffeomorphism invariance @f. Now it may happen that, althougf) is in the
domain ofEU,ADM, that ﬁv,yf), is not any longer in the domain and so (4.5), fo= v’,

is in danger of being a meaningless product of something that blows up times zero while
that cannot happen far £ v'. However, sinceV is a solution we conclude first of all that
(4.5) equals

—~(M) N(') = M) NO)Ey apu¥](Hy, f) (4.6)

and sinceV is also in the domain of4py both £, 4py¥ and A, ,, f, are well defined
elements ofd’ and @, respectively, we conclude that in case= v’ equation (4.5) does
indeed vanish. On the other hand, the same argument as before shows that the commutator
trivially vanishes forv # v'.

Let us now check the commutator between time translations and spatial translations and
rotationsp. We have

Y([U@) T EWN)Up) — E(N)]f,)
= Z [N (@) qj(l}(‘pil) Hyw).00) fotn) = N() W(H,, )l

veV(y)
+ > [Ne)¥(U (0™ Eapmgwy forn) = N W (Hapuo f)]-
veV(y)Nns

4.7)
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SJnceEixDM does not change the graph on which a function depends we have identically
U@ ™Y Eapm.pw fo) = Eapmu fy-

Now, as explained in more detail in [14], the operafé(N) depends on a certain
prescription of how to attach loops to graphs. Since in the interioB¢f) there is
no background metric available, this prescription can only be topological in nature and
therefore graphs differing by a diffeomorphispare assigned graphs Hy(N) which are
diffeomorphic by a diffeomorphisngp’ which may not coincide withp. That is, in the
interior of B(S), H(N) is only covariant up to a diffeomorphism. On the other hand, since
one has the fixed background metéig at S one can maked (N) precisely covariant at
S, that is, the prescription satisfiggs = ¢|g. Therefore, with this sense of covariance of

H(N) itis true thatU (¢ Hyw) 4) foiy) @and H, ,, f, differ at most by a diffeomorphism
with support in the interior oB(S).
In conclusion we obtain

W(IEWN), U@]f,) = ¥(E@'N - N) f,)

which is what we were looking for.
We conclude that the little algebra of the Poiricatgebra is faithfully implemented.

Acknowledgment

This research project was supported in part by DOE-grant DE-FG02-94ER25228 to Harvard
University.

References

[1

Ashtekar A 1986Phys. Rev. Lettc7 2244
Ashtekar A 1987Phys. RevD 36 1587
Ashtekar A1991INon-Perturbative Canonical GravitgSingapore: World Scientific) (Lectures notes prepared
in collaboration wih R S Tate)
Ashtekar A 1995Gravitation and Quantizatiored B Julia (Amsterdam: Elsevier)
[2] Barbero F 199%hys. RevD 51 5507
[3] Ashtekar A 1987Mathematics and General RelativitfProvidence, RI: American Mathematical Society)
[4] Ashtekar A and Ishan C J 1992Class. Quantum Gra 1433
[5] Ashtekar A and Lewandowski J 1994 Representation theory of analytic holo@ngigebrasKnots and
Quantum Gravityed J Baez (Oxford: Oxford University Press)
Ashtekar A and Lewandowski J 1995 Differential geometry on the space of connections via graphs and
projective limitsJ. Geo. Phys17 191
[7] Ashtekar A and Lewandowski J 1996 Math. Phys36 2170
[8] Marolf D and Mou&o J M 1995 On the support of the Ashtekar—Lewandowski meaSaremun. Math.
Phys.170583-606
[9] Ashtekar A, Lewandowski J, Marolf D, Mo@io J and Thiemann T 1994 A manifestly gauge invariant
approach to quantum theories of gauge figBometry of Constrained Dynamical SysteaeasJ Charap
(Cambridge: Cambridge University Press)
Ashtekar A, Lewandowski J, Marolf D, Mo&o J and Thiemann T Constructive quantum gauge field theory
in two space-time dimensiorGGPG Preprint
[10] Ashtekar A, Lewandowski J, Marolf D, Mo&ao J and Thiemann T 1995 Quantization for diffeomorphism
invariant theories of connections with local degrees of freedoiath. Phys36 519-51
[11] Gambini R and Trias A 198@hys. RevD 22 1380
Di Bartolo C, Nori F, Gambini R and Trias A 1983:tt. Nuovo Ciment38 497
[12] Rovelli C and Smolin L 199MNucl. Phys.331 80
[13] Thiemann T Anomaly-free formulation of non-perturbative, four-dimensional, Lorentzian quantum gravity
Harvard University PreprintHUTMP-96/B-350, gr-qc/960688
Thiemann T 1996 hys. Lett.380B 257-64

[6



[14]
[15]

[16]
(17]
(18]
[19]
[20]
[21]
[22]
(23]
[24]

[25]
[26]

[27]
(28]
[29]

(30]
[31]

(32]

Quantum spin dynamics (QSD): VI 1485

Thiemann T 1998 Quantum spin dynamics (QSIMss. Quantum Gravl5 839-73

Thiemann T 1998 Quantum spin dynamics (QSD): Il. The kernel of the Wheeler—DeWitt constraint operator
Class. Quantum Gravl5 875-905

Thiemann T 1998 Quantum spin dynamics (QSD): I\4-2 Euclidean quantum gravity as a model to test
3+ 1 Lorentzian quantum gravitglass. Quantum Gravl5 1249-80

Thiemam T A length operator for canonical quantum grawitgirvard University PreprintHUTMP-96/B-354,
gr-qc/9606092 J. Math. Physin press)

Thiemann T 1998 Quantum spin dynamics (QSD): V. Quantum gravity as the natural regulator of the
Hamiltonian constraint of matter quantum field theoi@ass. Quantum Graw5 1281-314

Thiemann T 1998 Quantum spin dynamics (QSD): lll. Quantum constraint algebra and physical inner product
in quantum general relativitZlass. Quantum Graw5 1207-47

Smolin L The classical limit and the form of the Hamiltonian constraint in quantum general rel&ejyint
gr-qc/9609034

Beig R and Murchadha O 198%nn. Phys., NY174 463

Thiemann T 199%Class. Quantum Gravl2 181-98

Schoen R and YaS T 1981Commun. Math. Phy/9 231-60

Witten E 1980Commun. Math. Phy€0 381-402

Thiemann T Coherent states for quantum graftgprint HUTMP, ESI (in preparation)

Ashtekar A and Lewandowski J Quantum theory of geometry I: area operBtepsint CGPG-96/2-4,
gr-qc/9602046

Ashtekar A and Lewandowski J 19%ass. Quantum Gravl4 A55-81

Baez J 199%lass. Quantum Gravi0 673-94

Rovelli C and Smolin L 1995 Discreteness of volume and area in quantum gidwély PhysB 442593

Rovelli C and Smolin L 1993Nucl. PhysB 456 734 (erratum)

Lewandowski J Volume and quantizatioRgeprint gr-qc/9602035

Lewandowski J 199Tlass. Quantum Gravi4 71-6

Ashtekar A and Lewandowski J Quantum theory of geometry Il: volume operBtegsint gr-qc/9711031

De Pietri R and Rovelli C 1996 Geometry eigenvalues and scalar product from recoupling theory in loop
quantum theoryPhys. RevD 54 2664

Thiemann T Complete formula for the matrix elements of the volume operator in canonical quantum gravity
Preprint HUTMP-96/B-353, gr-qc/96060911( Math. Physin press)



