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Pseudospectral apparent horizon finders: An efficient new algorithm
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We review the problem of finding an apparent horizon in Cauchy d&tg.(,K,,) in three space dimen-
sions without symmetries. We describe a family of algorithms which includes the pseudospectral apparent
horizon finder of Nakamurat al. and the curvature flow method proposed by Tod as special cases. We suggest
that other algorithms in the family may combine the speed of the former with the robustness of the latter. A
numerical implementation for Cauchy data given on a grid in Cartesian coordinates is described, and tested on
Brill-Lindquist and Kerr initial data. The new algorithm appears faster and more robust than previous ones.
[S0556-282(98)01502-1

PACS numbd(s): 04.25.Dm

I. INTRODUCTION times without any apparent horizof]. For numerical pur-
poses one simply hopes that this case is unusual and that the

An important task in numerical relativity is locating black apparent horizon gives a reasonable indication of the event
holes in numerically generated spacetimes, both for technicddorizon.
purposes and for extracting physical information. A black A wide variety of numerical algorithms for finding AHs
hole is a region of spacetime out of which no null geodesicshave been explored or suggested. For the purpose of excising
escape to infinity. The boundary of the black hole, the eventhe black hole region, one needs to find the apparent horizon
horizon, is formed by those outward-going, future-directedfrequently, perhaps at each time step. When two black holes
null geodesics which neither fall into the singularity nor es-collide, a new AH enveloping the two separate ones appears
cape to null infinity. The event horizon contains importantsuddemy_ Therefore the main requirements are speed and
geometric information about the spacetime. It is a globakjnging the AH from scratch, without a good initial guess.
construction and can in principle only be determined wherpgision is less important for black hole excision, although

the gntlre Spf?‘cett'_me Its ktnhown. In frﬁCt.'Ce' on_ethgan ok;_ta_ltn g safe error estimate is, so that one can be sure not to excise
good approximation 1o the event nhorizon within a TNnite 4, 1,01y ang inject unphysical boundary conditions.

spacetime region, once the_ _black hole has settlgd down to & In spherical symmetry, the AH problem reduces to an
stationary state. By definition, the event horizon repels laebrai tion. | " trv. it red ¢ di
future-directed null geodesics, but attracts past ones. One cay. ebraic equation. In axisymmetry, It reguces to an ordinary
then evolve past-directed null geodesics back through th |'ferent|al equation with periodic boundar_y cond!tlons. In
spacetime, and find the event horizon as the surface to whicty'> P2Per we shall be conlcerned exclusively ,W'th t'he 8-
they are attracteftL]. dlme_n5|onal(3D)_ problem without any sym_metrle_s, either
Locating black holes is crucial in numerical relativity also continuous or discrete, where one deals with a highly non-
for a technical reason: Spacetime slicings which avoid blacikinear elliptic problem on a closed 2-surface. In practice this
holes rapidly become singular. Instead one would like toWill always be the 2-sphere, or several disconnected 2-
excise a spacetime region just inside the event horizon froriPhereg4], which can be treated separately.
the numerical domain during the numerical evolution, using All 3D AH finder algorithms proposed so far can be clas-
the fact that it cannot influence events outside the black holesified according to a few key choices, which can be made
During the time evolution, however, one does not yet knowindependently one from another. How are candidate AHs
where the event horizon is. Instead one needs to use the pompresented? One can parameterize an embedded 2-surface
man’s event horizon, the apparent horizon. either by introducing coordinates on it, or as a level set of a
An apparent horizofAH) is defined within a single time  function on the 3-dimensional slice in which it is embedded.
slice, or spacelike hypersurfags namely as a smooth em- How is the curvature of the candidate AH calculated? One
bedded 2-surface whose outgoing normal null geodesicsan discretize the necessary spatial derivatives by finite dif-
have zero expansion. There may be one such surface enclderencing, finite elements, or pseudospectral methods. A
ing another one, in which case the outermost one is the aphird fundamental choice is between solving the elliptic
parent horizon. If one combines the apparent horizon on eaghroblem directly, or converting it into a parabolic problem,
time slice into a 3-dimensional surface, this world tube willin which the solution of the elliptic problem is approached
depend on the slicing, and can be discontinuous. Nevertheturing an evolution in an unphysical time parameter. The
less one can show that if an apparent horizon exists on distinction between these last two approaches is not sharp in
given time slice, it must be inside a black hd2]. The practice. On the one hand one always solves a nonlinear
converse is not true: there are slicings of black hole spaceelliptic problem by iteration. On the other, numerical imple-
mentation of any parabolic approach requires an implicit
“time” step for stability, thus posing a new elliptic problem
*Electronic address: gundlach@aei-potsdam.mpg.de that becomes equivalent to the original one in the limit of an
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infinitely large time step. We now discuss previous AH find- cate points on the 2-surface on a squadgp( grid, interpo-

ers in terms of these choices. lating data from the 3-dimensional Cartesian grid used in the
Nakamura, Koshima and Oohdra] represent the AH in  3+1 time evolution. _ _ _ _ _
spherical coordinates as=h(6,¢). We note that this re- In this paper we review different previous algorithms in

quires the surface to be a 2-sphere, and star-shaoedex one common, fully covariant notation. This analysis suggests
around the point=0. The shape functiom(6,¢) is ex- 10 us anew algorithm which combines essential ideas of the
panded in spherical harmonics. This spectral decompositio!gorithms of Tod and Nakamue al. From our analysis we

is used to calculate the derivatives fofin formulating the ~ €XPect this algorithm to be as fast as that of Nakanetral.
elliptic problem. The orthonormality and completeness of thd@nd therefore much faster than existing implementations of

spherical harmonics is used to subtract the linear elliptic opJ ©d'S @lgorithm, while being as robust in practice as that of
eratorL? from the nonlinear elliptic problem and invert it. Tod. We describe the details of a numerical implementation

This gives rise to an iteration prescription. We shall see thaf this algorithm, and some initial tests. The results are en-
this iteration can also be described as the discretization if0uraging. ,
unphysical time of a parabolic problem. It remains unclear 1€ Paper is organized as follows. In Sec. Il we set up the

from [5] by what method the spectral decomposition back_mathema_tical fo_rmalism _of the problem._We begin by deriv-
and forth is carried out for Cauchy data which are omylng the differential equation that determines an apparent ho-

known in numerical form and on a grid. The Nakamataal. rizon in Il A. In Il B we discuss different ways of parameter-

algorithm has been independently coded and tested, and el¢iN9 apparent horizon candidates, that is, smooth embedded
tended in various directions by Kemball and BishEg. 2-surfaces, and in Il C we provide tools for spectral methods

They report exponential convergence, good robustness, aftf t_he 2-sphere. In Sec. lll we review various algorithms for
high precision unless the point=0 is close to the AH. finding AHs, namely the pseudospectral algorithm of Naka-

Tod [7] has proposed a geometrically defined flow undefmUraet al. [5], Jacobi's method, and the generalized mean
which a trial 2-surface evolves to the AH. For time- curvature flow suggested by T¢d]. We then build on this

symmetric slices, the AH problem reduces to that of finding™€Vi€W by presenting a family of algorithm which contains
a minimal surface, and Tod’s prescription to mean curvaturdn€ Previous algorithms as limiting cases, and suggesting that
flow. This is well-known to converge to minimal surfaces. in the middle of the family there are algorithms that perform

On non-time-symmetric slices, only lower order terms areP€tter than the limiting members. In Sec. IV we describe a
added to the problem, so that one may hope that Tod's flofpumerical |mplementat|on of.our prpposed algorlthm.. In Sep.
also converges for such data in practice. Tod's algorithm ig/ W€ test its performance in finding apparent horizons in
parabolic, without specifying how the surface is representegrlII-Lln_dqwst and Kerr data given in Cartesian coordinates
or differenced. Tod’s algorithm has been implemented nu®n @ 9rid.

merically by Bernstein8] using finite differencing in coor-

dinates introduced on the surface. He discusses stable extrin- Il. MATHEMATICAL PRELIMINARIES
sic algorithms for parabolic problems, and reports good
results in axisymmetry using one of them, but technical
problems to do with finite differencing on the sphere in the Here we give a brief derivatiortsee also[15]) of the
genera| case. Pasd_lg] has imp|emented mean curvature differential equation that we try to solve in the remainder of
flow representing the test surface as a level set. This allowte paper, both to give a complete presentation of the prob-
for a change of topology during the evolution. He has suclem and to fix notation. Throughout the paper, lower-case
cessfully tested the algorithm using Brill-Lindquist data for Latin indices from the beginning of the alphabet indicate
1, 2 or 3 black holes, using a fast |mp||c|t time evolution abstract index notation. Indices from the middle of the alpha—
package, and finite differencing on a Cartesian grid in théet indicate 3-dimensional tenscomponentsOur signature
embedding space. convention is ¢+ + +).

Thornburg[10] attacks the elliptic problem directly using ~ We begin with a series of definitions. La¥i(“)g,) be a
finite differencing on a squaref(¢) grid, and Newton’s spacetime, an& (" the covariant derivative associated with
method to solve the discretized equations. He calculates th€)g,,. (We use this notation to reserve the symtmls and
Jacobian required for Newton’s method by first linearizingV, for 3 dimensions.Let 3 be a smooth spacelike hyper-
the differential equations, then finite differencing the result.surface, and leh® be the future-pointing unit timelike nor-
This is more efficient than numerical differentiation. He findsmal to 3. Then *)g,,, gives rise to Cauchy data
high precision results, but a nonlinear instability in high-
frequency modes. HuffL1] has extended Newton’s method Gab=""Gapt NNy, Kap=—02V"np=—=Vany, (1)
to data without symmetries in Cartesian-type coordinates.

The NCSA/WashU algorithrfil2,13 uses the parameter- 0n 2, whereg,, is the positive definite 3-metric induced on
ization r =h(#6,¢), and a spectral decomposition to param-= andK,, is the extrinsic curvature . V, is the covariant
eterizeh and calculate its derivatives. The discretized ellipticderivative associated wit,,. Let S be a closed smooth
problem is solved by applying a standard minimization algo-hypersurface of, which means it is two-dimensional and
rithm to the sum oH? over all surface points. The spectral spacelike, ancs® its unit outward pointing normal ir¥,
basis is not required to be orthonormal for this purposewhich is also spacelike, and normal 3. g, induces a
Baumgarteet al. [14] have implemented the NCSA/WashU positive definite 2-metric
algorithm independently, with the difference that they use
the true spherical harmonics as a basis. Both algorithms lo- Map=Jap—SaS="Gapt Nalp—SaSb 2

A. The apparent horizon equation
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on S. Let k? be the future-pointing null geodesic congruence A different way of parameterizing is as a level set
whose projection ofX, is orthogonal tdS, that is _
F(x")=0. @
KVIKP=0, k.k?=0, m,k?s=0. 3)
a ) ) ) As long as the form of (x') is not restricted, this has the
Then k* describes light rays leavin§ normally from the 44y antage of allowing to have arbitrary topology. In par-
point of view of an observer whose instantaneous S'm““a”eﬁcular S can be disconnected. Again, many different func-

ity is %. Clearlyk® depends not only on the spacetime and ony;q 4 F(x') describe the same abstract surf&es long as
S, but also or>. LetH be the expansion of that CONGruence, they have the one level se(x')=0 in common.

H=v®a 4) It is straightforward to expresd as a function o and
a e its derivatives. The unit normdlvith respect to the 3-metric

We would like to express! in terms of the Cauchy data Yab) Of any level set of is

(2,9an.Kap), and the normas? to S. The crucial step is to

note that, up to an overall factor, s*=|VF|"'g?V,F, where |VF|=(g*"VFV,F)"2
)

k3 g=s?+n2. (5)

. " a a Direct substitution now gives

Clearly this obeys the conditioma,,k*=0 andk,k®*=0 on

S. We continuek? away fromS by the remaining condition . ab roarob 1

k2V{YkP=0. We also continue? away fromS in 3 assum- H=(g™—|VF|"*VEFVPF)(|VF| ™ VaVbF —Kap)

ing that it retains unit length, but otherwise in an arbitrary :mab(|v|:|—lvavb|:_|<ab)_ 9)

manner. Then we have, &)

H =<4>gabvg4)kb= (92— nanb)Vf.f)kb H is therefore a quasilinear second order differential operator

acting onF.
=02V (¥ (s, +np) — (k2— ) (kP—s?) V Pk, ~ Now we come back to the problem that different func-
tions F(x,y,z) describe the same abstract surf&eA pos-
=gV ¥s, + g2V n,— (kP—sP)[kaV Pk, ] sible gauge condition would be to make harmonic with

respect to a background metrig,,, or with respect to the
physical 3-metricg,,. Then its value everywhere depends
=V, K+5%°K ,, (6)  only on its value on a suitable two-dimensional surface, such
as the boundary of the numerical domain. Here, instead, we
where K=®#g3%K . =g3°K,,, is the trace of the extrinsic follow several previous authors in restrictifigto the form
curvature. All terms in square brackets vanish individually
by definition. FO<)=r(x)=h[8(x),(x)], (10
A smooth embedded closed surface with outward pointing
unit nprmalsa that obeysH =0 everywhere oiS is called a o0 (.6,¢) are related to a set of Cartesian coordinates
margmglly outer trapped'su.rfac'e. The outermost of such SUEL the usual way, namely=rsinfcoss, y=rsinésing and
faces, if one or more exist i, is called the apparent hori-

. . S z=rcos). The overall sign oF has been chosen so thsit
zon in [2]. O_n the one hand this def|n|t|on IS g'o_b?")h given in(8) points outward. This parameterization is equiva-
which makes finding an apparent horizon a nontrivial prob

b ~E TenttoX'(6,¢)=x[r=h(6,¢),0,¢]. The obvious disadvan-
lem. On the other, it is local in time, &% depends only on g :
. . . t f trict to this f that the t I &
the Cauchy datagj,p,K,p) 0On a single slices. If one fixes ages of restricting" to this form are that the topology

o . . must beS?, and thatS must be star-shaped around the coor-
the slicing of a given spacetime, calculates the apparent h%’inate originr =0. The advantages are that surfagesor-

rizon on each slice, and then combines the apparent horizo?éspond uniquely to functionl, and that we can use the
on each slice to obtain a timelike; 21 dimensional world- natural basigY,,} for expanding the functioh.

::’J;S?.‘, tt(?Ifhvevoerl\(/je-:’]l:;bl’e]o?iigﬁnc:;h?:htgee Sgﬁ'é‘g -IrgtIJZIIIS Ignc?r?_ Considered as a quasilinear differential operator acting on
entire spacetime, but is independent gf the s?icing y eF(x'), H is not elliptic in three dimensions, because one of
’ ' the three eigenvalues afd,, the one with eigenvecta?, is

zero. Considered as a differential operator in two dimensions
acting onh(#6,¢), it is elliptic. In this two-dimensional in-

Before we can discuss solving the apparent horizon equderpretation it is nonlinear not only through the explicit ap-
tion H=0 in practice, we need to parameterize candidatgearance ofV,F in the coefficients ofV,V,F, but also
apparent horizons, that is, two-dimensional, smooth, closethrough its dependence on the point where the tensor fields
surfacesS embedded irk. Oap @andK,, are evaluated, which depends Bnitself. This

Let x' be coordinates ol,. One way of parameterizin§ = means thag,, andK,, play the same role in the apparent
is then to introduce coordinaté$ on S (at least locally, and  horizon equation as the internal metric of a nonlinear
give a mapx'=X'(£"). In this case, the topology @ is o-model does in its equation of motion. Because the coeffi-
fixed in advance. Furthermore, different functioks de-  cients of the elliptic equation contaig,, and K, as free
scribe the same abstract surf&;eorresponding to a change functions, it appears unlikely that one can prove existence of
of coordinates” on S. solutions for sufficiently general,, andK ..

+skPV Pk, ]— s PV Psy]— s2sPV n,

B. Characterizing closed two-surfaces
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C. Geometric characterization of theL* operator r “2(gap— Var V). (In spherical coordinates this reduces to
and spherical harmonics the standard measud) =sinédéde.) From this it follows
In this subsection we introduce in geometric terms soméhat

tools that we need later on to discuss spectral methods on the —
2-sphere. The key idea of any pseudospectral method for rV,Yim=0. (15
solving a nonlinear elliptic problem is to subtract from the i . )
nonlinear one a simple linear elliptic operator that can bd!n spherical coo_rdmatesf,m:Y,m(ze, ¢).] We also require
inverted explicitly by spectral methods. In our problem, thethat theY,, are eigenfunctions of*:
principal part of the operatdid acting onh is the Laplacian o
with respect to the 2-dimensional metrit,;, induced on the LN im==10+1)Ym, (16
surfaceF =0 by the metricg,,. As F=0 is topologically a for 1=0,1,2
2-sphere, a natural candidate for subtraction is the Laplaci A
L2 on the round 2-sphere. It can be inverted using the sph
cal harmonics.

..andm=-—1,... |. We do not definen as

Ahe eigenvalue oL, (d/d¢ in spherical coordinates but

€Bnly use it as a label on the orthonormal basis. This leaves us
free to combineY|, andY, _, of the standard complex defi-

. 2 . . . .
W:. could definel gnhE bé’ ffl_rs_t m_troduc_mg sphencall nition to obtain a real orthonormal basis more convenient for
coordinates I(, 8,¢), and then defining its action on a scalar numerical purposes.

f as the usual combination of partial derivatives with respect

to those coordinates, that is, lll. ALGORITHMS FOR SOLVING THE APPARENT

L2f=f 4o+ cotdf ,+sin 26f . (11 HORIZON EQUATION

. . o A. The Nakamura et al. algorithm
Setting up these coordinates also has the effect of lifting the

spherical harmonics from the 2-sphere to all b
pher! ! P Bt by reviewing the algorithm of Nakamura, Kojima and Oohara

smoothly identifying points on different spheres const. e .
The minimal geometric structure which allows us to make[5] (NKO) for finding an apparent horizon. NKO character-
ize Shyr=h(6,¢) in spherical coordinates, and expamth

the same definitions without reference to preferred coordi- X :
. — ; spherical harmonics:

nates is a flat background metnig;,, on % (independent of

the physical metrig,;,), together with a preferred poii@. Imax !

Let the covariant derivative associated wigh, be V,, and h(a,cp)=|_20 mZ | AmYim(6,¢). (17)

let g2° be the inverse ofy,,. We foliate3, into level sur-

faces of the scalar field, wherer(p) is the geodesic dis- (A finite value of |, is required in any numerical imple-

tance with respect t@,, between the pointp andO. The = mentation. We begin our description of the algorithm with

vectorr®= g2V, is the unit normal with respect tg,, on  the trivial observation thati=0 is equivalent to

the surfa}c§ of constant The flat metricg,, then induc.es pH+L2h=L2h, (18

the metricg,,— Var Vpr on the surfaces of constant This

induced metric has a constant curvature rof, so that wherep is any strictly positive function. In the NKO algo-

r ?(gap— Var Vpr) is a metric of unit curvature on the 2- rithm, the weight functiorp is specified by demanding that

spheres =const. We now defink? as the Laplacian of this the coefficient of the partial derivativi 4, cancels in the

We now use our covariant notation fbf and theY,, in

2-dimensional metric: combinationpH + L2h. (The notationp is ours, not that of
o NKO. We introduce it here because we want to consider
L2=r?(g2°—rar%)V V,—2rrav,. (12)  other choices ofp later on) Integrating over theY, and

using (14) and (16), we obtain

By direct substitution one verifies that, df,,, is given as
J E(pH+L2h)dQ=—1(1+1)ay,. (19
ds®=dr?+r?(d6?+sinf6de?), (13) S
] o ] NKO now use this equation in an iteration procedure,
this reduces to Eq(11). Our definition (12), however, is {3 M —{a,, "D, where () labels iteration steps, of the
covariant, and can be used to define the actiorLdfon form
arbitrary tensors, and in arbitrary coordinate systems.
For our purposes we characterize the spherical harmonics 1
Y, as a set of scalar functions dh with two properties: ajp=— I +1)f Yia(pH+L2)MdQ,  (20)
They are orthonormal in the sense that s

where the right-hand side is evaluated from {ag,}(". As
fYrmYl’m’dQ: S Smir s (14) f[h|s fprmula does not Covedgg, Ago IS determined at each
s iteration step by solving

whereS is any smooth surface that is star-shaped araund f (pH+L2h)dQ=0 (21)
=0, and wheredQ) is the measure induced o8 by s
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for agg (note Y§,= const). Now we recognize an important ingredient of the NKO
We now try to understand what makes the NKO methodalgorithm, its smoothing property. Putting the individual

work. For this purpose we expreBgh) in terms of the flat components,, back together again, we can writ20) as

background derivatiolV, : h( D =(L2)"L(pH+L2)h™, (29)

S
UV, V,F— §9°d(Vagcb+ Vi 9ac (This is only formal because of the special roleagf: L?

does not have an invergéAny iterative algorithm for solv-

H=(gab—sasb)[VF

- ing an elliptic problem runs the danger of being unstable to
—chab)VdF}—Kab], (220  the growth of high-frequency numerical noise. Wherehs
acts onh as a second-order differential operator, thus in-
creasing unsmoothnessH + L2 has thelL? part taken out,
and therefore creates less high-frequency noise. Moreover,
(L?) ! acts as a smoothing operator. One therefore expects
L2h=r2(ga— rar®)V_V h. 23) h("*1) to be smoother thah(™. This is a necessary property
for any iterative algorithm that can converge from a rough
Putting Eqs(22) and(23) together, and keeping in mind that initial guess without blowing up through high-frequency
F=r—h, we obtain noise on the way.

whereF=r—h(0,¢), ands? is defined by Eq(8). Because
r2v,h=0 by definition, we have

pH+L2%h=M abV_aV_bh +W, (24 B. Jacobi's method, and stability

In order to see how the NKO algorithm is related to other

whereM?2? andW depend explicitly on first derivatives of , X
P pricrtly algorithms, we rewrit€29) once more, as

and implicitly on h through the point in® whereg,, and
K,p are evaluated. We have quietly assumed thdbes not A1 — h(M = (L2)=1(pH)™ (30)
depend on second or higher derivativeshgfso thatpH '
+L?h, like H itself, acts orh as a quasilinear second-order |t is now tempting to go from the discrete algorithm to a
differential operator. This is indeed the case for hef  continuous flow in an unphysical “time” parametgt
NKO and the other choices we explore later on. The princi-
al symbolM?3® is ah(6,¢,N) _
e = (L) YpH(h). (30
M2P= — p|VF|~1(g?P—s2sP) +r2(g2P—r2rP). (25
The NKO algorithm proper, namely
The principal symbol of a quasilinear differential operator
does not depend on the choice of derivation, Hége We (n+1)_ A(n— _ 1 (n) >
can verify this for the case at hand. im Am (I +1)(pH)|m » 1>0, (32

We see thaM? is a difference between two projectors: o . .
the first one onto surfaces of constémtand with respect to 1S formally recovered from this differential equation by
the physical metrig,,, the other onto surfaces of constant forward-differencing 'tZW'th respect ta, with a step size
coordinater, and with the respect to the background metricAN = 1a_a”d '”‘(’je:'ﬂ”g- by tlhe |ps:,;()jozptﬁcna:jl-?eth®e
— - . again disregard the special role afp). er differencing
Gap- In the trivial case wherg,, is conformally related to methods, such as centered differencing, and using a different
9ap (conformally fla}, and where surfaces of constdfit  «ime step, give rise to obvious alternative algorithms.
coincide with surfaces of constant(spherical s%mme:\tr)y Some of these have been examined by Kemball and Bishop
one can choosg so as to make the entire tenddf® vanish.  1¢]. Kemball and Bishop also consider different methods of
In general, one can impose only one condition on its SiXgnforcing the constrain®1) on ag, and of coupling it to the
components. The choice of NKO is, in our notation, iteration method for the otheg, .

Any flow method can be considered as an example of
Jacobi's method. This is the recipe of solving an elliptic
We prefer a coordinate-independent choice, and impose ~ €quationE(h) =0 by transforming it into a parabolic equa-

tion oh/axn=E(h). If E is the Laplace operator, then the
Mab(a\b—v_afv—br):O- (27)  resulting equation is the heat equation, and Jacobi’s method
is known to converge. ABl acting onh resembles- L2, one
The motivation of either choice is to cancel, as far as posmight try the flow

sible, that part oMV ,V, which looks likeL2. Our choice h
does not introduce a preferred direction within the tangent an_ H(h). (33

M9=0. (26)

space ofS, which may be an esthetic more than a practical 2N
advantage. Solving our condition fpr, we obtain

We have implemented this numerically in the pseudospectral
p=2r2|VF|[(g?"— Sasb)(gb_v_arv_br)]—1§|VF|o_’ framework and find empirically that its high frequency noise
(28) blows up unless one chooses a very small step size.
The origin of this instability is clear from the analogy
where the second equation defines with the heat equation. The heat equationS3ris
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f\=L>f. (34)  AH (although it can approach it asymptoticallifhis is true

not only for generalized mean curvature flow, but for all
We decompose into spherical harmonics, as(6,¢,\) flows of the form @/d\)2= —s?pH, as long a9 is strictly
=3f,m(N)Yim(0,¢). For the spectral components we obtain positive. This property allows us to start the algorithm on a
df,,/dh\=—1(1+1)f,,. All spectral components decrease large surface far out and evolve it inwards, thus making sure
exponentially. Discretizing this equation in time, however,we find the true AH.
for example by forward differencing, we obtaif{"®) ~ We note that Eq(36) does not only specify the deforma-
=f{W—ANI(1+1)f(V . This is stable only fof1—AXI(I ~ tion of S as an abstract surface, but also identifies any point
+1)|<1, that is forAA<2/I(1+1). In all explicit methods, ©N S with a point on its deformation. That information is not
the time step is limited by order of magnitude to essential to the method, and we get rid of it if we definas

the level seF=0. Thens? is again given by8). Consider a

family of moving surfacesS(\) given by F(x',\)=0. On

AN= D) (35  the surfaceF =const we must have

o . . . o dF oF d\@
The same limit arises if one discretize$ by finite differ- = _+(_> V. F=0, (37
encing, where it takes the fortn < (A 6)2= (A ¢)2. Similar dx o on - LoA
stability limits exist for all parabolic equations. The NKO
algorithm does not have this instability problem. It replacesand therefore
H=0 by (L?) (pH)=0 as the elliptic problem to be IE g \a
solved, and clearly(?) " acts a smoothing operator that X:_(ﬁ V. F=s*HV F=|VF|[H. (38

keeps high frequency noise down. An appropriate choice of
p makes this even more effective by makiplg as similar to

5 ) We note that(36) is a geometric prescription: It specifies a
—L< as possible.

vector field onS only in terms of the geometry & and>
and the tensor fiel&k,,, independently of hov® is param-
C. Mean curvature flow eterized. As we have just shown, the parabolic equaB&n
From considering an iterative approach as the discretizdS equivalent to it. We conclude that a flow parameterized by,
tion of a flow on the space of surfaces, one is led to thdor example,dF/dx=H, without the factor] VF|, does not
generalized mean curvature flow algorithm of Ti@ and _have such a geometric interpretation, but must depend on
other geometrically motivated flows. Tod proposes deformin @ more general way than only through the shape of its

ing a trial surfaceS embedded ir® by means of the flow level setS. On the other hand, dd is a scalar function of
Oap, S andK,, (evaluated orS), we can replace it by any

d\@ a other scalar and still obtain a flow with geometric meaning.
DN H, (38 Any flow of the form
wheres® is again the outward-pointing normal & [Tod £=|VF|><any scalaiK 4y ,9ap,5%) (39
uses the notatiordx'/d\ for the left-hand side, but we I\

wanted to stress here that/¢\)? is a vector field and inde-
pendent of coordinatgsFor time-symmetric Cauchy data,
K,p=0, we haveH =V ,s?, which is simply the trace of the
extrinsic curvature of induced by its embedding iB, also
called the mean curvaturkl=0 is then equivalent t& hav-
ing extremal area, ansfH is the gradient of the area. In this
case, mean curvature flow is guaranteed to converge to a
surface ofH=0, or extremal area, also called a minimal 5=—|V(r—h)|><any scalaiKap,0ap,5%) (40
surface. There is an extended literature on mean curvature
flo_w and minimal surfacefl6]. Tod's idea is to gegefa"ze is again geometric in nature. The naive Jacobi method, Eq.
this method fromH=V_s? to H=V s — K+ K,s%s". For (33), however, is not
Kap#0, this flow is no longer guaranteed to converge, but ’ '
one may hope that it does, as the additional terms are of
lower order.

One essential strength of generalized mean curvature flow Before we propose our own AH finding algorithm, we
is that it cannot move a test surfattgoughan AH, even for summarize the strengths and weaknesses of the existing
Kap#0. The argument is simplel7]: Assume that the test ones. We have not discussed algorithms which attack the
surface is about to move through the true AH, that is, itelliptic problem directly via Newton’s method or a minimi-
touches it at one point. At that point both surfaces see theation iteration. Their main drawback, however, is a small
samed,,, K,p ands?. Of the quantities which go into the range of convergence, that is, they require a very good initial
expression(6) for H, only the Vs differ on the two sur- guess. NKO is a lot more robust, but the need to tegat
faces. Keeping track of the signs, one sees that the test swseparately is an important disadvantage. Equatin is by
face must then always back away from the true AH at thano means trivial: Solving it by any iterative method like
point. Therefore, a smooth test surface can never cross dsewton’s method is as computationally expensive as many

is therefore geometric in nature. Such a general equation,
replacingH by any function of the curvature &, has al-
ready been given by Osher and Sethiafl].

If we now restrictF to the formF(x',\)=r—h(6,¢,\),
we havedF/dN=—dh/dN. Therefore, any flow of the form

D. “Fast flow” methods
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04 ' ' ' cross the apparent horizon. As we have seen, however, flow

methods are slow because explicit discretizations in time of
parabolic methods require very small time steps for stability.
An implicit time step may be possible, but introduces a new
elliptic problem which a priori is not simpler than the under-
lying elliptic problem one wants to solve.

We are not bound to geometrically motivated flows, how-
ever. Instead, we heuristically consider all flow methods as
variants of the Jacobi method for solvihkly=0. Then we are

T
X2 -1 %+1)*3 —

03

02

01

o1 b - free to combine the best features of the curvature flow and
NKO methods. From curvature flow we would like to keep
02 . the properties thady, is not treated specially, and that the
change of ap, should be proportional toHg,, not
03 ] dHgo/dagg. From NKO we would like to adopt the idea of
subtracting and then invertirlg?, in order to suppress high-
4 . 2 3 . 5 frequency noise. This leads us to the following family of
fl :
FIG. 1. Plot of the horizon functiohl(r_) versusr , in units of ows
the black hole massy, as given in Eq(41). Jh
Xz—A(l—BLz)*lpH, (42)

steps of the main iteration loop. Furthermore, for given data

(dan.Kap) and givenayy,, >0, there may be several roots whereA andB are free positive constants, and wherés a
agp of this equation, or none. Kemball and Bishfl pro-  strictly positive weight depending dmthrough at most first
pose investigating each root of the equation separately, or Herivatives. The differential operator-IBL? is invertible,
there are none, each minimum of the right-hand side. Clearlyjth positive eigenvalues, f@=0, and forB>0 its inverse
this makes the algorithm even more expensive. is a smoothing operator. When we discretizeinwe can
Most importantly, Newton’s method for solving2l)  apsorbAX into A. For simplicity we also restrict ourselves to

tends to go off into the wrong direction. As an example forfonyard differencing. In spectral components, we obtain
this problem[19], we consider time-symmetric Cauchy data

for the Kruskal spacetime of massin isotropic coordinates. (1) () A -
[This is the special case,=0 of Eq.(61) below] As a trial Qm T8y =~ m(PHMm - (43
surface we take a sphere of coordinate radiusentered on
the black hole. The expansion of outgoing null rays is For p we consider three choices=1 (“H flow” ), p=|VF|
_ (“C flow” ), and p=|VF|o with o defined in(28) (“N
.~ 8r(2r—-m) flow”). With A>0 andB=0, H flow is the Jacobi method,
H=H(r)= (2r +m)3 (41) and C flow is the curvature flow method. N flow formally

becomes the NKO methodompare Eq(32)] in the limit

From a mathematical point of view, this example is degenA=B—. The limit is singular because the NKO method is
erate in the sense thet=0 is a reduced from a differential "ot @ flow and has to update the componegyseparately.

to a purely algebraic equation by the spherical symmetry of For determining the optimal values AfandB, it is con-
the trial surface(There is only one spatial direction, and this Venient to reparameterize them with new parameteasd
is the degenerate direction of the elliptic operatbleverthe-  as

less, any problems that arise in this toy equation also arise in N

a more reaLstic situation. From a plot bf(r_), Fig. 1, we A= |x(|—+1)+ﬂ’ B= g, (44)
see that forr =1.87m Newton’s method wanders off to in- ma T max

finity, and forrio.li'?m goes towards =0, instead of find- A andB now scale withl max IN such a way that we expect
ing the zero atr =m/2. All algorithms which use Newton’s the optimal values ofr and g to be independent of the value
method, or a minimization method using derivatives, for anyof | ... @ parameterizes anindependent contribution to the
or all of thea,,,, that is, the direct elliptic algorithms, share effective step size ot/[| a{lmaxt1)], While 8 adds an
this problem. |-dependent speedup which is zerdat ., and increases to
The curvature flow method is sensitive only to the sign ofg atl=0.
H, not its derivative. Applied to this problem, it goes towards It is clear that the fast flow methods have the potential to
smallerr for positiveH, and towards largar for negativeH, be much faster than curvature flow, while still being numeri-
and always finds the apparent horizon. We have already se@ally stable and robust against bad initial guesses. They are
that it cannot accidentally walk through the AH. In these twonot really flows of the form{40) because they are not local.
properties lies its robustness. Any flow wiilid instead ofH In some situations, theffectiveweight p can become nega-
on the right-hand side, wherg is strictly positive and a tive on parts of the surface, and in these situations, the “fast
scalar, shares the fundamental advantages of the generalizéow” can move through the true AH. Fast flow methods
mean curvature method: a trial surface far outside the appashould be considered dgood compromises between the
ent horizon always moves in, and can never accidentallyobustness of curvature flow and the speed of NKO. Further-
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more, one can trade robustness for sp_eed by increﬁing VP=E|°(COS9), YTm‘=\EPTm‘(COS9)cosmqo,
and vice versa, and so adapt the algorithm to the situation.

We have obtained the best results using N flow, with1.0
and 8=0.5 in (44). We note thata=1.0, for anyB, means
that the algorithm treats high frequency components like th
NKO algorithm does.

Y, M= 2P["(cosh)sinme. (48)

ei’he reaIY_|m obey the same conditiori$4)—(16) as the stan-
dard complexY,,,, but they are not eigenfunctions &f,

=3lde. At each pointx'=(x,y,z) we calculate
IV. NUMERICAL IMPLEMENTATION

OF PSEUDOSPECTRAL APPARENT HORIZON FINDERS cos#=1z/r, sind=plr, cosp=x/p, sinp=Yylp,
49
The algorithm we suggest in this paper is formally defined 49
by Eq. (43) with p defined by(28) andA=B=0.5. where
In order to implement this or any other pseudospectral
algorithm, we need to calculate the spectral components r=\x*+y?+2z%, p=x’+y- (50

(pH)m from the spectral coefficients,, . In this section we o ] _ _ ] ] )
give details of an algorithm for doing this, givefi, K; and No explicit evaluation of trigonometric functions is required.
gij x On a Cartesian grid. We expect that there is scope fofhen cose and sime are calculated as polynomials in
increasing the speed and reducing the discretization error if0Sp and sirp from the recursion relations

this low-level part of the algorithm, without changing the

top-level part given by43). cosne=cogm—1)¢ cosp—sinm—1)¢ sine,

sinme=cogm—1)¢ sing+sin(im—1)¢ cosp. (51)
A. The background structure

The parameterization of the surfaethrough spherical The Pim are given explicitly form=1 by
harmonics and the introduction of the differential operator

require the introduction of a flat metrig,;, . We do this by Pl(coss) = ! N [+ %)(Zl)!(_sing)l, (52)
introducing auxiliary Cartesian coordinates= f'(x!), and Vam 21!

then setting the components g, in the coordinate’ 10,14 for 0<m<| —1 are calculated from the recursion rela-
be &;;. The corresponding metric derivatiovi, is then  {gng

dlax1, andr?=8;x"xJ. In these coordinateis? is given by

the expression _ 21+1 ] _
P P"(cos9) = \/m V2l —1 cog P|" ;(cosd)

Jd 9 — J i

L2=(r?2 81— x'x))— ——-2x' —. (45)
I ] I (I_l) —M—
ax' ax d —\/—2|_3 P" ,(cosd)

While more complicated choices are possible, we define

. (53

(They are not needed fon<<0.) In order to calculate the first
o and second partial derivatives with respeckiy andz, we

T=x—xJ), (46)  calculate the partial derivatives df,, with respect tog and
¢, and those off and ¢ with respect tox, y and z, and

wherex! are the Cartesian coordinates in which the Cauch)ﬁXpliCitIy code_all terms arising from the chain rule. The
data are presented to our algorithm. The freedom to shift th@erivatives ofP,(cos) with respect to¢ are obtained re-
origin r =0 around is necessary because any trial surface wilgursively after differentiating Eqg52) and (53). The rela-
have to be star-shaped around 0, that is aroundi =x,.  tions(15) and(16) are then obeyed to machine precision by

Therefore we have to make sure thkt x}) is inside the AH. the numerically calculated quantities. _
We are aware of two other algorithms for calculating

Y,m(x') and their first and second partial derivatives. The

algorithm of Baumgartet al. calculates them recursively as
We need to calculate thé,,(x') and their first two par- Polynomials of ther ;. We have coded this algorithm di-

tial derivatives for arbitrary X'). Speed is important, be- rectly from the detailed formulae ifil4], and find that it

. . 4 . .
cause our algorithm spends most of its time in these calc gCIES in time aky,, and in storage requirement B, The

B. Calculating the Y,

lations. The standard spherical harmonics are NCSA/WashU apparent horizon findgr2,13 does not cal-
culate theY,,,, but a related basis of smooth functions. This
Y"=P"(cosy)e'™®, (47)  basis is not orthogonal, and it is not independentr cdt

constanté and ¢. For the NCSA/WashU algorithm these
_ properties of the basis functions are not necessary. The cal-
where theP[" are associated Legendre functions times a conculation of this basis scales as approximatély, in time,
stant depending ohandm. Instead of the compleX,, we  and ad?,,in storagg20]. In common with both algorithms,
introduce the real basi¥,,,, as ours is recursive, and does not require trigonometric function
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TABLE I. Maximal deviation of the overlap matrid,, from the unit matrix as a function of the linear
grid size, the integration surfac@and| ..

Surface parameters grid size I max= 4 I max=8 | max= 16
agp=1.0 16 0.053 0.159 0.284
32 0.016 0.037 0.069
64 0.011 0.026 0.040
agp=10,a,_,=0.4 32 0.039 0.069 0.178
64 0.047 0.047 0.053
ago=1.0,a,=0.4 32 0.052 0.087 0.274
64 0.050 0.056 0.075

evaluations. The difference is that it breaks up ¥jg into  where the sum is over all collocation points. L&t be the
the product of a function ob times a function ofe. In ynijt normal onS with respect to the flat background metric
consequence it scaldﬁm in time (it is faster already for —

I ma=2), and aslﬁqax in storage requirement. This optimal o

scaling comes at a price: the algorithm breaks down on the — 12 G

axis xiyzo, WhereF::anceIIationgs between theand ¢ de- =18 = h(ry—h 1280 (r j=h). (89
pendent factors in the analytic expressions fail to take place ) ) _ )

numerically. In practice, one can evade the problem by movJhe integration weight is then given by

ing any collocation points that come very close to thaxis

a small distance away from it, resulting in a small error at dQ dO dA dQ f,i? dN |§|

that point, and a negligible one in the integrals o%enn- W= dN_ dAdN’' dA r_2 d_A:m
corporating the cancellations into the code properly requires

mixing the # and ¢ dependency by going through an inter- |?| |?|

mediate, over-complete basis called “symmetric trace-free t—_—t (56)
tensors,” which is precisely the approach of Baumgarte Ax*'Ax?®  Ax'Ax?

et al.

whereA x' are the grid spacings on the three axes. Hkpe
C. Interpolating and integrating over S is the solid angle with respect to the flat metgg, around

) ) . r=0, that isdQ) =sinédéde, dA is the surface element &
We need to discretize the integiald(). We take as col- induced by@b, anddN is the number of intersections of

location points org all those points wher8 intersects a link . 79 .
of the three-dimensional Cartesian grid. A link is the straight(ej@ \mteh ggggzg& N;tiﬁgaégfe?ﬂesﬁf?nfdar\rl,/ de'f(‘ T((:)i?-sum
line between two neighboring points on the Cartesian grid. Py 9 P

The links which intersecE are those on whicl changes over_ the three grid directions. The suf) is a good ap-

sign. The advantage of this choice of collocation points igPfoximation to the integral whes' changes little from one

that one only needs to interpolate in one dimension. Further€ollocation point to its neighbors. .

more the number of collocation points @scales with the As a test of the discrete approximation to integrals over

number of nearby points on the Cartesian grid, that is, withe surface, we calculate the overlap integr@é) numeri-

the available numerical information. cally. Let us combine the indicdsand m of the spherical
To find the surfac& =0 the algorithm calculates on all harmonics into one index. The numerical approximation to

Cartesian grid poits. For this t needs tigy on all orid_ S YEREE B8 P P iear L B B oeaton
points. Although these are required again and again, presem '

technology does not allow us to storg,(l maxt 1) 3D ar- points.

rays for reasonablk, ., so that they have to be recomputed One could arrange the weights such thatA,, comes
each time. Then the algorithm flags all links on whigh out right for a given set of collocation points, but that would

! . . require putting the collocation points in fixed, special posi-
changes sign. Both operations scaleNds whereN is the tions with respect t@ and ¢, for example on a square grid in

linear grid size. We determine by inverse linear interpolationa and o. In our algorithm. however. we let the position of
where on the link the intersection point is, then interpolate @- M ' . ' P .
i ) . : : . the collocation points be dictated by the underlying Cartesian
9", gij x andKj; to the intersection point by cubic interpola- ="~ "— ) -
. ' . i . grid x', and rely on a number of collocation points much
tion. We calculatd- ; andF ;; directly at thex' of the inter- - .
: ! larger than the numben ;= ma! maxt 1) of basis func-

section point. For this purpose we need theand theY\mi  tions in order to keep the error down. Table | shows how the
and Yy ;. error in A, increases witH for a surfaceS created under
The integralf sd() is now approximated by the sum realistic conditions by the apparent horizon finder. In prac-
tice, the size of the 3-dimensional grids is limited by the
f fdQ:MTE_Wf (54) available computer storage, so that we have to chégge
s w small enough for the spectral error to remain small.
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We can reduce this error in the following way. Let us SH2w 2~
denote byH,,=H,(a,’) the true spectral components of the (Hime?= Sw - E AnrHHm,
function H on the surface parameterized by the expansion W n=1m=1
coefficientsa,,. Let H,, be their numerical, slightly incorrect and
value. Clearly we have
nmax
- H?= >, AZ. (60)
Ho= 2 AsHo (57) n=

After this work was carried out, we became aware of a
Without much additional numerical work, we can calculate aglfferent, p?crhap_s more efficient aI_gonthhm _forl %omg back
finite square piece of the infinite matixwhen we calculate etween a function of) and ¢ gnd Its shherical harmonic
~ ) o component$21]. One puts a grid of$ which is rectangular
Hp up tonpay. LetB be the inverse of that finite part & 5nq equally spaced i and ¢, and then uses fast Fourier

Then we havefor n<np,,) transforms ind and ¢. In a second step, one has to discard
those linear Fourier components which are not sufficiently
o Nmax ~ Mmax * regular at the poleg=0,m, which is rather complicated. In
Ho= 2 BuwHy=Hy+ X Bnn’( > An,n,,Hn,,) order to evaluatay;; etc. at the collocation points required
n'=1 n'=1 " =Nmayt1 now, one has to interpolate in three dimensions from the
% given Cartesian grid, instead of in one dimension. Neverthe-
=H,+ > A, Hp,. (58) less, there may be scope for a more efficient algorithm here.
N’ =Nmaxt1
V. TESTS
In F|n the unwanted aliasing among the lowstn,,,,) fre- A. Brill-Lindquist data

guencies has been eliminated, and the remaining deviation The NCSA/WashU algorithm appears to be the only one
fequencies 1o low anes. One would assume s to pe 10 1Ve been tested on numercally evolved da. Tests
) ) ) _ ) ] that use data given in closed form avoid interpolation from
better approximation tél, than theH, in normal situations.  ymerical data on a grid, which poses an additional source of
In practice, however, this assumption is difficult to test, as Ngyymerical error and even instability in realistic situations. In
cheap estimate of the errét,—H, is available. the present paper we test our algorithm with data given in
Still, there are some indications of the remaining error inclosed form, but passed to the algorithm only on the points

the Hn: The spectral components of ther,, are by defi- of a numerical grid of realistic size. The input into the code
nition identical toa.. . We find that the .. are much closer to &€ the numerical values of the inverse metric and extrinsic
n- n

~ . _.__curvature components and of the first partial derivatives of
a, than ther ,, but do not converge to them. The remaining P P

error can only be due to the fact that the collocation oints:[he metric components on the grid. A performance test with
. y . P data derived both from numerical initial data algorithms and
do not lie exactly on the true surfaGparameterized by the

. . i o numerical time-evolutions is left to a future publication.
a,, due to the interpolation used to find them. This failure to As a first test of the complete AH finder, we use Brill-

find the true surfac& is the only source of error for thg,, | indquist time-symmetric initial data. For two black holes,
but appears to be also the dominant source of error for thghese are
H,, or any other nontrivial function oi$. In practice we

proceed as f(_)llows: We ude, as our t_)est approximation to Kij=0, gj=|1+ +
H,. We monitor convergence of the final resajtof the AH 2|x=xq| = 2[x—xq]
finder with| ., and the grid spacing of the underlying Car-

tesian grid. We also monitdr,—a,|. Finally, and perhaps

most importantly, we find that the algorithm usihg, con- known explicitly: it is a coordinate sphere of rading2.

Verges bet.ter, and its error 1S considerably rgducgd Whel?‘here are a number of possible convergence criteria for the
tested against data for which the apparent porlzon IS Imo""ﬂerative algorithm, none of which fits all possible situations.
in closed form. Therefore we always use g and other  One such criterium iH,,e>2|H|. [These measures were
hatted quantities in the algorithm. defined in(60).] This means that the residual bff( 6, ¢) is
In order to estimate the quantity mainly in the high frequencies that we do not resolve. Table
Il shows the performance of the algorithm for this conver-
* gence criterium. We chose a grid spacing such that there are
f H2dOQ= >, H2, (59  roughly 16 grid points across the interior of the AH. By the
S n=1 standards of a 3D single grid numerical relativity code on a
current supercomputer that is already as much resolution as
which indicates to what precision the algorithm has foundone can hope for. We chosdg,,— 6, which is roughly the
the apparent horizon, we use the two numerically availabl@ptimal value for that resolution. The initial data are always
guantities a0= 0.8, while the horizon radius is 0.5-or convenience,

4

my my s

ij- (61)

The generalization ttN black holes is clear.
We begin with a single black hole, where the AH is
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TABLE Il. Root-mean-square residuals bf and maximal er- TABLE Ill. Root-mean-square residuals Bif on the inner and
rors in the position of the numerically calculated AH, for Schwarzs-outer numerically calculated minimal surface in Brill-Lindquist data
child data offset from the coordinate origin. The coordinate radiugfor two black holes of equal mass. “No convergence” is the un-
of the AH is 0.5. aided return status of the algorithm. It means that the residual value
of H given in brackets is not due to a lack of numerical resolution.

Offset iterations Hims (Ar) max
0.0 10 o104 75104 Separation inneH s outerH, s
0.1 10 gx 1074 7x10°4 0.0 only one surface 191075
0.2 11 X103 8x10°4 0.4 8x10 2 1.8x10°°
0.3 12 2x10°3 1x10°3 0.8 9x10°° 1.8x10°°
0.4 10 6x10 2 2x10°2 1.2 3.0<10°* 1.5x1074
1.4 2.6x10°4 2.0x10°3
1.6 2.8<10°4 no convergence (3010 ?)
we usea,, rescaled by a factor off4m, so thatay, is the 1.8 2.4x1074 no convergence (3:910 1)
average coordinate radius of the AH. 2.0 7% 1074 (not attemptey

We have varied the offset of the center of the spherical
harmonics from the center of the AH\r is the error in
locating the AH in coordinate space. It is calculated directly

in those points where the AH is collocated by the algorithm,™ JXZ+yZ. The fact that they all fall on one curve shows

not from thea,,,. The result is roughly independent of the that the Code represents an axisvmmetric surface well in soite
direction of the offset. We see that if the surface is very ep anaxisy Icsu wellin spi
of the underlying Cartesian grid.

eccentric around the origin of coordinates, precision suffers: In the data61) one can always find two minimal surfaces
Fortunately, there is a simple remedy: If the dipole momemssurroundingxl and x,. If x; and x, are close enough to-

0,+1 . .
a;” " are large, the algorithm automatically uses them tQyether, there is a third minimal surface surrounding both of

obtain a better value for the origiy of coordinates, and them. Determining the maximal separation at which this hap-
restarts. This source of error is totally eliminated by the propens is not an easy test. Assume that the two centers are just
cedure. The same remedy applies if the surface touches thgr enough apart that there no longer is a common horizon.
origin of coordinates at any stage during the flow. By continuity there will still be a smooth surface on whidh

The next test is Brill-Lindquist data for two uncharged is small, but not zero, everywhere. Numerically, this cannot
black holes of equal mass. We can position the two centerise distinguished from a true horizon.
X1 andx, so that the metric is symmetric with respect to the In the test, the two black holes have equal mass param-
x=0,y=0 andz=0 planes. This allows us to work numeri- etersm;=m,=1. The total ADM mass is 2. We look for
cally on an octant of the full grid, and save time and storageboth inner and outer surfaces. In Table Il we show, for the
The situation is in fact axisymmetric, but the code does nosame numerical parameters, the root-mean-squared value of

know that. In Fig. 2all points on the discretely represented
surface are plotted, giving coordinatez versus p

14 T T T T T T T T T
’8.35* o
+ + 4 ’ . !: +
12F ©  ° e a4 T, 1
. e ul s s
* T N*% KKk ey .20 o FIG. 2. Shape of the AH in the
Tr L8 Bmga KK 140"+ A axisymmetric z-reflection-
By “2aa, R ! .
“a symmetric situation. The algo-
rithm assumes x, y and z-
7 reflection symmetry, but not
axisymmetry. The plot showg
versusyx?+ y2 for all grid points
] on the AH in one octant of the full
%A grid. The small half circles are the
A“AAA | inner horizons, for a separation of
% % a d=0.4,0.8, 1.2 and 1.4 of the two
o % a black holes, from bottom to top.
A The large quarter circles are the
© ¢ outer horizons, from right to left,
@ * 2 or bottom to top.
© E 3 A
© b3 A
_02 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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H on the trial surface after our algorithm has stopped, against

the (coordinat¢ separatiord of the two centerx; and x,.

The axisymmetric numerical algorithm of Brill and Lindquist
does not find an outer minimal surface fbr1.56. From our

calculations we can say with confidence that the limit lies
between 1.4 and 1.6. We should stress again that this pre

CARSTEN GUNDLACH 57

VI. CONCLUSIONS

Numerical general relativity requires a fast and robust al-
gorithm for finding apparent horizons in Cauchy data with-
out symmetries in three dimensions given on a grid. In this

daper we have described a new apparent horizon finder al-

sion is limited by the resolution of the Cartesian grid on9orithm which appears to be as fast but more robust than its
which we give the Cauchy data. An algorithm specialized td?€St predecessor.

axisymmetry could of course determine this limit with much

higher precision.

B. Kerr data in Cartesian coordinates

In order to test our code on analytic data with nonvanish
ing extrinsic curvature, we consider Kerr data. Cauchy dat
for the Kerr spacetime have been given by Brandt and Seid
[22]. We transform these to Cartesian coordinates by defin,
ing x‘x"b‘ij = r 2, wherer is the radial coordinate which gen-
eralizes the isotropic radial coordinate for the Schwarzs-

We began from a general classification of possible ap-
proaches to the problem. Any approach which poses the
problem as a nonlinear elliptic equation on a topological
two-sphere and then attacks that equation directly will fail
unless provided with a very good initial guess, because the

groblem is nonlocal in nature. While we have disregarded
€

uch approaches here, they will be ideal as a second stage
Whenever the apparent horizon needs to be determined to
high precision. We concluded that for robustness the best
algorithm is probably thégeneralizelmean curvature flow

suggested by Tod7], where an arbitrary initial surface

child spacetime. For testing our algorithm it is useful if we gyglves in an unphysical “time” towards the apparent hori-
do not restrict the angular momentum vector, or symmetry, oy tyrning the problem from an elliptic into a parabolic

axis, to thez-axis, but give its direction as a unit vectot,
n'n’§;=1. The transformed expressions are

= i aA—1 ii .
9y =+ Bowy). =AY o= el

KijZUin"r‘Win ) (62)
v'=€*nx,, w=Cx+D(n'—co®x’), (63

where coﬁznkxk/r_,where all indices are moved with; ,
and where the coefficients are
(64)

A=p2r__2, B=(p%+ 2mr)a2p‘2r_‘4,

C=[(r?+a?%?—Aa’sirf0] Y2am[ 2r3(r?+a?) + p?(r?

—a?)]p~°r 74, (65)

D:[(I’Z—I— a2)2_AaZSinza]_]'/zZasmrAl/Zcoagp—Sr —4,
(66)

p’=r?+a’cos0, A=r2-2mr+a?

 m?—a2
r=m+r+ —.
4r

(67)

The apparent horizon is the coordinate spheE

=m?—a?/2. Fora=0 these data reduce to Brill-Lindquist
data for a single black hole. Whil€,, does not vanish, the

data are still special in that the two contributiondHoV ,s?

one. The algorithm is guaranteed to converge at least for
time-symmetric K,,=0) data, and we have argued that it
must be at least very robust also fdg,#0 data. Unfortu-
nately, numerical implementations of this algorithm face a
numerical stability problem common to all parabolic equa-
tions, which make them slow, and increasingly so with in-
creasing resolution, in practice.

This stability or speed problem is not present in the algo-
rithm of Nakamuraet al. (NKO) [5]. It is motivated by a
standard way of solving nonlinear elliptic problems numeri-
cally, namely subtracting a simple linear elliptic operator
from the nonlinear one, inverting it by pseudo-spectral meth-
ods and iterating. Here we have thrown more light on how
NKO works, by making explicit the background metric it
introduces, and by characterizing the iteration procedure as a
specific finite differencing, in unphysical time, of a parabolic
problem. This parabolic problem itself is the singular limit of
a certain family of flows which are governed by a mixture of
the physical geometry of the Cauchy data and an unphysical
background geometry. Tod’s flow is a different limiting case
of that family, one in which no background metric appears.

Once we have recognized the existence of a continuum of
possible algorithms between Tod and NKO, it is plausible
that an algorithm somewhere in the middle of the continuum
may be better than the extremes. By trial and error, we have
determined the optimal member of the family of algorithms.
This intermediate algorithm evolves the high-frequency
componentgthe fine details of the trial AH essentially like
the NKO algorithm, but it evolves the low frequency com-
ponents(the rough shapeby a variant of generalized mean
curvature flow. We therefore call it “fast flow.”

and m?’K ,,,, vanish separately on the AH. We have tested We have given details of a numerical implementation of

our algorithm on these data for different ratiosadim, dif-

the pseudo-spectral methods which are needed for imple-

ferent offsetsc, between the center of the black hole and thementing both the original NKO and our new algorithm. Such
center of spherical harmonics, and for different orientationgletails have not been published before. It should be stressed
n' of the black hole symmetry axis relative to the sphericalthat the formal analysis of the algorithm in Sec. Il is inde-
harmonics. The results are essentially the same as for thgendent from its implementation in Sec. IV, and there may
single Brill-Lindquist black hole, giving an indication that be different and more efficient implementations.

the presence of the extrinsic curvature term does not make a We have not made direct performance comparisons with

gualitative change to the performance of the algorithm.

other algorithms, and the tests we have described are viabil-
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ity rather than performance tests. Nevertheless, we anticipate The only existing algorithm directly accessible to the au-
the following: thor is that of the NCSA/WashU grodfi2,13. Direct com-

By construction, the new algorithm is as fast as that ofparisons are planned in future realistic applications. The new
NKO: The iteration steps are very similar, and there is thealgorithm seems to be more robust, though: it made the tran-
same small number of them. NKO, however, updaags sition from two AHs to a single one in the family of Brill-
(the overall radius of the trial AHby a special procedure. Lindquist data summarized in Table | without external input.
According to how this is dong6], the additional overhead This ability will be crucial for applying AH boundary con-
may be large. More importantly, the separate updatesgf ditions in the merger of two black holes when the computer
has the potential to reduce the robustness of NKO:(Ef). code is on its own during a very large run. The NCSA/
may have several solutions, in which case all should be inWashU code has not been tested on a similar sequence of
vestigated, or none, in which case minima should be invesanalytic initial data, but in some situations involving evolved
tigated instead[6]. This requires some decision-taking, black holes it presently requires some care in finding the
which will be hard to automate, or instead an infinitely correct horizor{23].
branching search. We have also argued that zeros of2&p. Finally, the source code of the new spectral AH finder
are hard to find. Either NKO or fast flow should be far morewill be published early in 1998 in conjunction with the
tolerant of initial guesses than the elliptic methods. “Cactus” numerical relativity infrastructurg24].

The method of choice for robustness and elegance is
clearly Tod’s mean curvature flow. The only guestion here is ACKNOWLEDGMENTS
speed. We have argued that as a parabolic method this would
be slow in the possible implementations known to us, but a | am grateful to Bernd Bruegmann and Steve Brandt for
guantitative comparison with the implementation of Paschelpful discussions on all aspects of this paper, and to Ed

[9] would be interesting. Seidel for a critical reading.
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