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Pseudospectral apparent horizon finders: An efficient new algorithm

Carsten Gundlach*
Max-Planck-Institut fu¨r Gravitationsphysik, Albert-Einstein-Institut, Schlaatzweg 1, 14473 Potsdam, Germany

~Received 23 July 1997; published 19 November 1997!

We review the problem of finding an apparent horizon in Cauchy data (S,gab ,Kab) in three space dimen-
sions without symmetries. We describe a family of algorithms which includes the pseudospectral apparent
horizon finder of Nakamuraet al.and the curvature flow method proposed by Tod as special cases. We suggest
that other algorithms in the family may combine the speed of the former with the robustness of the latter. A
numerical implementation for Cauchy data given on a grid in Cartesian coordinates is described, and tested on
Brill-Lindquist and Kerr initial data. The new algorithm appears faster and more robust than previous ones.
@S0556-2821~98!01502-1#

PACS number~s!: 04.25.Dm
k
ic
ck
ic
e
te
s
n
ba
e
in
ite
to
el
c
th

hi

o
ac
t

ro
in
ol
ow
p

-
si
cl
a
a
il
th
n

c

t the
ent

s
ising
izon
oles
ars
and
s.
gh
cise

an
ary
In
3-
r

on-
his

2-

s-
de
Hs
rface
f a
d.
ne
dif-
. A
tic

,
ed
he
p in
ear

e-
icit

an
I. INTRODUCTION

An important task in numerical relativity is locating blac
holes in numerically generated spacetimes, both for techn
purposes and for extracting physical information. A bla
hole is a region of spacetime out of which no null geodes
escape to infinity. The boundary of the black hole, the ev
horizon, is formed by those outward-going, future-direc
null geodesics which neither fall into the singularity nor e
cape to null infinity. The event horizon contains importa
geometric information about the spacetime. It is a glo
construction and can in principle only be determined wh
the entire spacetime is known. In practice, one can obta
good approximation to the event horizon within a fin
spacetime region, once the black hole has settled down
stationary state. By definition, the event horizon rep
future-directed null geodesics, but attracts past ones. One
then evolve past-directed null geodesics back through
spacetime, and find the event horizon as the surface to w
they are attracted@1#.

Locating black holes is crucial in numerical relativity als
for a technical reason: Spacetime slicings which avoid bl
holes rapidly become singular. Instead one would like
excise a spacetime region just inside the event horizon f
the numerical domain during the numerical evolution, us
the fact that it cannot influence events outside the black h
During the time evolution, however, one does not yet kn
where the event horizon is. Instead one needs to use the
man’s event horizon, the apparent horizon.

An apparent horizon~AH! is defined within a single time
slice, or spacelike hypersurfaceS, namely as a smooth em
bedded 2-surface whose outgoing normal null geode
have zero expansion. There may be one such surface en
ing another one, in which case the outermost one is the
parent horizon. If one combines the apparent horizon on e
time slice into a 3-dimensional surface, this world tube w
depend on the slicing, and can be discontinuous. Never
less one can show that if an apparent horizon exists o
given time slice, it must be inside a black hole@2#. The
converse is not true: there are slicings of black hole spa
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times without any apparent horizons@3#. For numerical pur-
poses one simply hopes that this case is unusual and tha
apparent horizon gives a reasonable indication of the ev
horizon.

A wide variety of numerical algorithms for finding AH
have been explored or suggested. For the purpose of exc
the black hole region, one needs to find the apparent hor
frequently, perhaps at each time step. When two black h
collide, a new AH enveloping the two separate ones appe
suddenly. Therefore the main requirements are speed
finding the AH from scratch, without a good initial gues
Precision is less important for black hole excision, althou
a safe error estimate is, so that one can be sure not to ex
too much and inject unphysical boundary conditions.

In spherical symmetry, the AH problem reduces to
algebraic equation. In axisymmetry, it reduces to an ordin
differential equation with periodic boundary conditions.
this paper we shall be concerned exclusively with the
dimensional~3D! problem without any symmetries, eithe
continuous or discrete, where one deals with a highly n
linear elliptic problem on a closed 2-surface. In practice t
will always be the 2-sphere, or several disconnected
spheres@4#, which can be treated separately.

All 3D AH finder algorithms proposed so far can be cla
sified according to a few key choices, which can be ma
independently one from another. How are candidate A
represented? One can parameterize an embedded 2-su
either by introducing coordinates on it, or as a level set o
function on the 3-dimensional slice in which it is embedde
How is the curvature of the candidate AH calculated? O
can discretize the necessary spatial derivatives by finite
ferencing, finite elements, or pseudospectral methods
third fundamental choice is between solving the ellip
problem directly, or converting it into a parabolic problem
in which the solution of the elliptic problem is approach
during an evolution in an unphysical time parameter. T
distinction between these last two approaches is not shar
practice. On the one hand one always solves a nonlin
elliptic problem by iteration. On the other, numerical impl
mentation of any parabolic approach requires an impl
‘‘time’’ step for stability, thus posing a new elliptic problem
that becomes equivalent to the original one in the limit of
863 © 1997 The American Physical Society
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864 57CARSTEN GUNDLACH
infinitely large time step. We now discuss previous AH fin
ers in terms of these choices.

Nakamura, Koshima and Oohara@5# represent the AH in
spherical coordinates asr 5h(u,w). We note that this re-
quires the surface to be a 2-sphere, and star-shaped~convex!
around the pointr 50. The shape functionh(u,w) is ex-
panded in spherical harmonics. This spectral decompos
is used to calculate the derivatives ofh in formulating the
elliptic problem. The orthonormality and completeness of
spherical harmonics is used to subtract the linear elliptic
eratorL2 from the nonlinear elliptic problem and invert i
This gives rise to an iteration prescription. We shall see t
this iteration can also be described as the discretizatio
unphysical time of a parabolic problem. It remains uncle
from @5# by what method the spectral decomposition ba
and forth is carried out for Cauchy data which are on
known in numerical form and on a grid. The Nakamuraet al.
algorithm has been independently coded and tested, and
tended in various directions by Kemball and Bishop@6#.
They report exponential convergence, good robustness,
high precision unless the pointr 50 is close to the AH.

Tod @7# has proposed a geometrically defined flow und
which a trial 2-surface evolves to the AH. For tim
symmetric slices, the AH problem reduces to that of find
a minimal surface, and Tod’s prescription to mean curvat
flow. This is well-known to converge to minimal surface
On non-time-symmetric slices, only lower order terms a
added to the problem, so that one may hope that Tod’s fl
also converges for such data in practice. Tod’s algorithm
parabolic, without specifying how the surface is represen
or differenced. Tod’s algorithm has been implemented
merically by Bernstein@8# using finite differencing in coor-
dinates introduced on the surface. He discusses stable ex
sic algorithms for parabolic problems, and reports go
results in axisymmetry using one of them, but techni
problems to do with finite differencing on the sphere in t
general case. Pasch@9# has implemented mean curvatu
flow representing the test surface as a level set. This all
for a change of topology during the evolution. He has s
cessfully tested the algorithm using Brill-Lindquist data f
1, 2 or 3 black holes, using a fast implicit time evolutio
package, and finite differencing on a Cartesian grid in
embedding space.

Thornburg@10# attacks the elliptic problem directly usin
finite differencing on a square (u,w) grid, and Newton’s
method to solve the discretized equations. He calculates
Jacobian required for Newton’s method by first linearizi
the differential equations, then finite differencing the res
This is more efficient than numerical differentiation. He fin
high precision results, but a nonlinear instability in hig
frequency modes. Huq@11# has extended Newton’s metho
to data without symmetries in Cartesian-type coordinates

The NCSA/WashU algorithm@12,13# uses the parameter
ization r 5h(u,w), and a spectral decomposition to para
eterizeh and calculate its derivatives. The discretized ellip
problem is solved by applying a standard minimization alg
rithm to the sum ofH2 over all surface points. The spectr
basis is not required to be orthonormal for this purpo
Baumgarteet al. @14# have implemented the NCSA/Wash
algorithm independently, with the difference that they u
the true spherical harmonics as a basis. Both algorithms
-
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cate points on the 2-surface on a square (u,w) grid, interpo-
lating data from the 3-dimensional Cartesian grid used in
311 time evolution.

In this paper we review different previous algorithms
one common, fully covariant notation. This analysis sugge
to us a new algorithm which combines essential ideas of
algorithms of Tod and Nakamuraet al.From our analysis we
expect this algorithm to be as fast as that of Nakamuraet al.
~and therefore much faster than existing implementations
Tod’s algorithm!, while being as robust in practice as that
Tod. We describe the details of a numerical implementat
of this algorithm, and some initial tests. The results are
couraging.

The paper is organized as follows. In Sec. II we set up
mathematical formalism of the problem. We begin by der
ing the differential equation that determines an apparent
rizon in II A. In II B we discuss different ways of paramete
izing apparent horizon candidates, that is, smooth embed
2-surfaces, and in II C we provide tools for spectral metho
on the 2-sphere. In Sec. III we review various algorithms
finding AHs, namely the pseudospectral algorithm of Nak
mura et al. @5#, Jacobi’s method, and the generalized me
curvature flow suggested by Tod@7#. We then build on this
review by presenting a family of algorithm which contain
the previous algorithms as limiting cases, and suggesting
in the middle of the family there are algorithms that perfo
better than the limiting members. In Sec. IV we describe
numerical implementation of our proposed algorithm. In S
V we test its performance in finding apparent horizons
Brill-Lindquist and Kerr data given in Cartesian coordinat
on a grid.

II. MATHEMATICAL PRELIMINARIES

A. The apparent horizon equation

Here we give a brief derivation~see also@15#! of the
differential equation that we try to solve in the remainder
the paper, both to give a complete presentation of the pr
lem and to fix notation. Throughout the paper, lower-ca
Latin indices from the beginning of the alphabet indica
abstract index notation. Indices from the middle of the alp
bet indicate 3-dimensional tensorcomponents. Our signature
convention is (2111).

We begin with a series of definitions. Let (M ,(4)gab) be a
spacetime, and¹a

(4) the covariant derivative associated wi
(4)gab . ~We use this notation to reserve the symbolsgab and
¹a for 3 dimensions.! Let S be a smooth spacelike hype
surface, and letna be the future-pointing unit timelike nor
mal to S. Then (4)gab gives rise to Cauchy data

gab5 ~4!gab1nanb , Kab52ga
c¹c

~4!nb52¹anb , ~1!

on S, wheregab is the positive definite 3-metric induced o
S andKab is the extrinsic curvature ofS. ¹a is the covariant
derivative associated withgab . Let S be a closed smooth
hypersurface ofS, which means it is two-dimensional an
spacelike, andsa its unit outward pointing normal inS,
which is also spacelike, and normal tona. gab induces a
positive definite 2-metric

mab5gab2sasb5 ~4!gab1nanb2sasb ~2!
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on S. Let ka be the future-pointing null geodesic congruen
whose projection onS is orthogonal toS, that is

ka¹a
~4!kb50, kaka50, mabk

auS50. ~3!

Then ka describes light rays leavingS normally from the
point of view of an observer whose instantaneous simulta
ity is S. Clearlyka depends not only on the spacetime and
S, but also onS. Let H be the expansion of that congruenc

H5¹a
~4!ka. ~4!

We would like to expressH in terms of the Cauchy dat
(S,gab ,Kab), and the normalsa to S. The crucial step is to
note that, up to an overall factor,

kauS5sa1na. ~5!

Clearly this obeys the conditionsmabk
a50 andkaka50 on

S. We continueka away fromS by the remaining condition
ka¹a

(4)kb50. We also continuesa away fromS in S assum-
ing that it retains unit length, but otherwise in an arbitra
manner. Then we have, onS,

H5 ~4!gab¹a
~4!kb5~gab2nanb!¹a

~4!kb

5gab¹a
~4!~sb1nb!2~ka2sa!~kb2sb!¹a

~4!kb

5gab¹a
~4!sb1gab¹a

~4!nb2~kb2sb!@ka¹a
~4!kb#

1sa@kb¹a
~4!kb#2sa@sb¹a

~4!sb#2sasb¹a
~4!nb

5¹asa2K1sasbKab , ~6!

where K5 (4)gabKab5gabKab is the trace of the extrinsic
curvature. All terms in square brackets vanish individua
by definition.

A smooth embedded closed surface with outward point
unit normalsa that obeysH50 everywhere onS is called a
marginally outer trapped surface. The outermost of such
faces, if one or more exist inS, is called the apparent hori
zon in S @2#. On the one hand this definition is global inS,
which makes finding an apparent horizon a nontrivial pro
lem. On the other, it is local in time, asH depends only on
the Cauchy data (gab ,Kab) on a single sliceS. If one fixes
the slicing of a given spacetime, calculates the apparent
rizon on each slice, and then combines the apparent hori
on each slice to obtain a timelike, 211 dimensional world-
tube, this world-tube depends on the slicing. This is in c
trast to the event horizon, which depends globally on
entire spacetime, but is independent of the slicing.

B. Characterizing closed two-surfaces

Before we can discuss solving the apparent horizon eq
tion H50 in practice, we need to parameterize candid
apparent horizons, that is, two-dimensional, smooth, clo
surfacesS embedded inS.

Let xi be coordinates onS. One way of parameterizingS
is then to introduce coordinatesjA on S ~at least locally!, and
give a mapxi5Xi(jA). In this case, the topology ofS is
fixed in advance. Furthermore, different functionsXi de-
scribe the same abstract surfaceS, corresponding to a chang
of coordinatesjA on S.
e-
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A different way of parameterizingS is as a level set

F~xi !50. ~7!

As long as the form ofF(xi) is not restricted, this has th
advantage ofS allowing to have arbitrary topology. In par
ticular, S can be disconnected. Again, many different fun
tions F(xi) describe the same abstract surfaceS, as long as
they have the one level setF(xi)50 in common.

It is straightforward to expressH as a function ofF and
its derivatives. The unit normal~with respect to the 3-metric
gab) of any level set ofF is

sa5u¹Fu21gab¹bF, where u¹Fu[~gab¹aF¹bF !1/2.
~8!

Direct substitution now gives

H5~gab2u¹Fu22¹aF¹bF !~ u¹Fu21¹a¹bF2Kab!

5mab~ u¹Fu21¹a¹bF2Kab!. ~9!

H is therefore a quasilinear second order differential opera
acting onF.

Now we come back to the problem that different fun
tions F(x,y,z) describe the same abstract surfaceS. A pos-
sible gauge condition would be to makeF harmonic with
respect to a background metricḡ ab , or with respect to the
physical 3-metricgab . Then its value everywhere depend
only on its value on a suitable two-dimensional surface, s
as the boundary of the numerical domain. Here, instead,
follow several previous authors in restrictingF to the form

F~xi !5r ~xi !2h@u~xi !,w~xi !#, ~10!

where (r ,u,w) are related to a set of Cartesian coordinatesxi

in the usual way, namelyx5rsinucosw, y5rsinusinw and
z5rcosu. The overall sign ofF has been chosen so thatsa

given in ~8! points outward. This parameterization is equiv
lent toXi(u,w)5xi@r 5h(u,w),u,w#. The obvious disadvan
tages of restrictingF to this form are that the topology ofS
must beS2, and thatS must be star-shaped around the co
dinate originr 50. The advantages are that surfacesS cor-
respond uniquely to functionsh, and that we can use th
natural basis$Ylm% for expanding the functionh.

Considered as a quasilinear differential operator acting
F(xi), H is not elliptic in three dimensions, because one
the three eigenvalues ofm b

a , the one with eigenvectorsa, is
zero. Considered as a differential operator in two dimensi
acting onh(u,w), it is elliptic. In this two-dimensional in-
terpretation it is nonlinear not only through the explicit a
pearance of¹aF in the coefficients of¹a¹bF, but also
through its dependence on the point where the tensor fi
gab andKab are evaluated, which depends onF itself. This
means thatgab and Kab play the same role in the appare
horizon equation as the internal metric of a nonline
s-model does in its equation of motion. Because the coe
cients of the elliptic equation containgab and Kab as free
functions, it appears unlikely that one can prove existence
solutions for sufficiently generalgab andKab .
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C. Geometric characterization of theL 2 operator
and spherical harmonics

In this subsection we introduce in geometric terms so
tools that we need later on to discuss spectral methods on
2-sphere. The key idea of any pseudospectral method
solving a nonlinear elliptic problem is to subtract from t
nonlinear one a simple linear elliptic operator that can
inverted explicitly by spectral methods. In our problem, t
principal part of the operatorH acting onh is the Laplacian
with respect to the 2-dimensional metricmab induced on the
surfaceF50 by the metricgab . As F50 is topologically a
2-sphere, a natural candidate for subtraction is the Lapla
L2 on the round 2-sphere. It can be inverted using the sph
cal harmonics.

We could defineL2 on S by first introducing spherica
coordinates (r ,u,w), and then defining its action on a scal
f as the usual combination of partial derivatives with resp
to those coordinates, that is,

L2f 5 f ,uu1cotu f ,u1sin22u f ,ww . ~11!

Setting up these coordinates also has the effect of lifting
spherical harmonics from the 2-sphere to all ofS, by
smoothly identifying points on different spheresr 5const.

The minimal geometric structure which allows us to ma
the same definitions without reference to preferred coo
nates is a flat background metricḡ ab on S ~independent of
the physical metricgab), together with a preferred pointO.
Let the covariant derivative associated withḡ ab be ¹̄a , and
let ḡ ab be the inverse ofḡ ab . We foliateS into level sur-
faces of the scalar fieldr , wherer (p) is the geodesic dis
tance with respect toḡ ab between the pointsp andO. The
vectorr a[ ḡ ab¹̄br is the unit normal with respect toḡ ab on
the surfaces of constantr . The flat metricgab then induces
the metricḡ ab2¹̄ar ¹̄br on the surfaces of constantr . This
induced metric has a constant curvature ofr 22, so that
r 22( ḡ ab2¹̄ar ¹̄br ) is a metric of unit curvature on the 2
spheresr 5const. We now defineL2 as the Laplacian of this
2-dimensional metric:

L25r 2~ ḡ ab2r ar b!¹̄a¹̄b22rr a¹̄a . ~12!

By direct substitution one verifies that, ifḡ ab is given as

ds25dr21r 2~du21sin2udw2!, ~13!

this reduces to Eq.~11!. Our definition ~12!, however, is
covariant, and can be used to define the action ofL2 on
arbitrary tensors, and in arbitrary coordinate systems.

For our purposes we characterize the spherical harmo
Ylm as a set of scalar functions onS with two properties:
They are orthonormal in the sense that

E
S
Ylm* Yl 8m8dV5d l l 8dmm8, ~14!

whereS is any smooth surface that is star-shaped arounr
50, and wheredV is the measure induced onS by
e
he
or

e

an
ri-

t

e

i-

ics

r 22( ḡ ab2¹̄ar ¹̄br ). ~In spherical coordinates this reduces
the standard measuredV5sinududw.! From this it follows
that

r a¹̄aYlm50. ~15!

@In spherical coordinatesYlm5Ylm(u,w).# We also require
that theYlm are eigenfunctions ofL2:

L2Ylm52 l ~ l 11!Ylm , ~16!

for l 50,1,2, . . . andm52 l , . . . ,l . We do not definem as
the eigenvalue ofLz (]/]w in spherical coordinates!, but
only use it as a label on the orthonormal basis. This leave
free to combineYlm andYl ,2m of the standard complex defi
nition to obtain a real orthonormal basis more convenient
numerical purposes.

III. ALGORITHMS FOR SOLVING THE APPARENT
HORIZON EQUATION

A. The Nakamura et al. algorithm

We now use our covariant notation forL2 and theYlm in
reviewing the algorithm of Nakamura, Kojima and Ooha
@5# ~NKO! for finding an apparent horizon. NKO characte
ize S by r 5h(u,w) in spherical coordinates, and expandh in
spherical harmonics:

h~u,w!5(
l 50

l max

(
m52 l

l

almYlm~u,w!. ~17!

~A finite value of l max is required in any numerical imple
mentation.! We begin our description of the algorithm wit
the trivial observation thatH50 is equivalent to

rH1L2h5L2h, ~18!

wherer is any strictly positive function. In the NKO algo
rithm, the weight functionr is specified by demanding tha
the coefficient of the partial derivativeh,uu cancels in the
combinationrH1L2h. ~The notationr is ours, not that of
NKO. We introduce it here because we want to consi
other choices ofr later on.! Integrating over theYlm and
using ~14! and ~16!, we obtain

E
S
Ylm* ~rH1L2h!dV52 l ~ l 11!alm . ~19!

NKO now use this equation in an iteration procedu
$alm%(n)→$alm%(n11), where (n) labels iteration steps, of the
form

alm
~n11!52

1

l ~ l 11!
E

S
Ylm* ~rH1L2h!~n!dV, ~20!

where the right-hand side is evaluated from the$alm%(n). As
this formula does not covera00, a00 is determined at each
iteration step by solving

E
S
~rH1L2h!dV50 ~21!
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for a00 ~noteY00* 5const).
We now try to understand what makes the NKO meth

work. For this purpose we expressH(h) in terms of the flat
background derivation¹̄a :

H5~gab2sasb!H U¹FU21F ¹̄a¹̄bF2
1

2
gcd~¹̄agcb1¹̄bgac

2¹̄cgab!¹̄dF G2KabJ , ~22!

whereF[r 2h(u,w), andsa is defined by Eq.~8!. Because
r a¹̄ah50 by definition, we have

L2h5r 2~ ḡ ab2r ar b!¹̄a¹̄bh. ~23!

Putting Eqs.~22! and~23! together, and keeping in mind tha
F5r 2h, we obtain

rH1L2h5Mab¹̄a¹̄bh1W, ~24!

whereMab andW depend explicitly on first derivatives ofh,
and implicitly on h through the point inS wheregab and
Kab are evaluated. We have quietly assumed thatr does not
depend on second or higher derivatives ofh, so thatrH
1L2h, like H itself, acts onh as a quasilinear second-ord
differential operator. This is indeed the case for ther of
NKO and the other choices we explore later on. The prin
pal symbolMab is

Mab52ru¹Fu21~gab2sasb!1r 2~ ḡ ab2r ar b!. ~25!

The principal symbol of a quasilinear differential opera
does not depend on the choice of derivation, here¹̄a . We
can verify this for the case at hand.

We see thatMab is a difference between two projector
the first one onto surfaces of constantF, and with respect to
the physical metricgab , the other onto surfaces of consta
coordinater , and with the respect to the background met
ḡ ab . In the trivial case wheregab is conformally related to
ḡ ab ~conformally flat!, and where surfaces of constantF
coincide with surfaces of constantr ~spherical symmetry!,
one can chooser so as to make the entire tensorMab vanish.
In general, one can impose only one condition on its
components. The choice of NKO is, in our notation,

M uu50. ~26!

We prefer a coordinate-independent choice, and impose

Mab~ ḡ ab2¹̄ar ¹̄br !50. ~27!

The motivation of either choice is to cancel, as far as p
sible, that part ofMab¹̄a¹̄b which looks likeL2. Our choice
does not introduce a preferred direction within the tang
space ofS, which may be an esthetic more than a practi
advantage. Solving our condition forr, we obtain

r52r 2u¹Fu@~gab2sasb!~ ḡ ab2¹̄ar ¹̄br !#21[u¹Fus,
~28!

where the second equation definess.
d

i-

r

x

-

t
l

Now we recognize an important ingredient of the NK
algorithm, its smoothing property. Putting the individu
componentsalm back together again, we can write~20! as

h~n11!5~L2!21~rH1L2!h~n!. ~29!

~This is only formal because of the special role ofa00: L2

does not have an inverse.! Any iterative algorithm for solv-
ing an elliptic problem runs the danger of being unstable
the growth of high-frequency numerical noise. WhereasH
acts onh as a second-order differential operator, thus
creasing unsmoothness,rH1L2 has theL2 part taken out,
and therefore creates less high-frequency noise. Moreo
(L2)21 acts as a smoothing operator. One therefore exp
h(n11) to be smoother thanh(n). This is a necessary propert
for any iterative algorithm that can converge from a rou
initial guess without blowing up through high-frequenc
noise on the way.

B. Jacobi’s method, and stability

In order to see how the NKO algorithm is related to oth
algorithms, we rewrite~29! once more, as

h~n11!2h~n!5~L2!21~rH !~n!. ~30!

It is now tempting to go from the discrete algorithm to
continuous flow in an unphysical ‘‘time’’ parameterl:

]h~u,w,l!

]l
5~L2!21rH~h!. ~31!

The NKO algorithm proper, namely

alm
~n11!2alm

~n!52
1

l ~ l 11!
~rH ! lm

~n! , l .0, ~32!

is formally recovered from this differential equation b
forward-differencing it with respect tol, with a step size
Dl51, and invertingL2 by the pseudospectral method~we
again disregard the special role ofa00). Other differencing
methods, such as centered differencing, and using a diffe
‘‘time’’ step, give rise to obvious alternative algorithm
Some of these have been examined by Kemball and Bis
@6#. Kemball and Bishop also consider different methods
enforcing the constraint~21! on a00 and of coupling it to the
iteration method for the otheralm .

Any flow method can be considered as an example
Jacobi’s method. This is the recipe of solving an ellip
equationE(h)50 by transforming it into a parabolic equa
tion ]h/]l5E(h). If E is the Laplace operator, then th
resulting equation is the heat equation, and Jacobi’s met
is known to converge. AsH acting onh resembles2L2, one
might try the flow

]h

]l
52H~h!. ~33!

We have implemented this numerically in the pseudospec
framework and find empirically that its high frequency noi
blows up unless one chooses a very small step size.

The origin of this instability is clear from the analog
with the heat equation. The heat equation onS2 is
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f ,l5L2f . ~34!

We decomposef into spherical harmonics, asf (u,w,l)
5( f lm(l)Ylm(u,w). For the spectral components we obta
d flm /dl52 l ( l 11) f lm . All spectral components decreas
exponentially. Discretizing this equation in time, howev
for example by forward differencing, we obtainf lm

(n11)

5 f lm
(n)2Dl l ( l 11) f lm

(n) . This is stable only foru12Dl l ( l
11)u,1, that is forDl,2/l ( l 11). In all explicit methods,
the time step is limited by order of magnitude to

Dl&
1

l max~ l max11!
. ~35!

The same limit arises if one discretizesL2 by finite differ-
encing, where it takes the formDl&(Du)2.(Dw)2. Similar
stability limits exist for all parabolic equations. The NK
algorithm does not have this instability problem. It replac
H50 by (L2)21(rH)50 as the elliptic problem to be
solved, and clearly (L2)21 acts a smoothing operator th
keeps high frequency noise down. An appropriate choice
r makes this even more effective by makingrH as similar to
2L2 as possible.

C. Mean curvature flow

From considering an iterative approach as the discret
tion of a flow on the space of surfaces, one is led to
generalized mean curvature flow algorithm of Tod@7# and
other geometrically motivated flows. Tod proposes defor
ing a trial surfaceS embedded inS by means of the flow

S ]

]l D a

52saH, ~36!

where sa is again the outward-pointing normal toS. @Tod
uses the notationdxi /dl for the left-hand side, but we
wanted to stress here that (]/]l)a is a vector field and inde
pendent of coordinates.# For time-symmetric Cauchy data
Kab50, we haveH5¹asa, which is simply the trace of the
extrinsic curvature ofS induced by its embedding inS, also
called the mean curvature.H50 is then equivalent toS hav-
ing extremal area, andsaH is the gradient of the area. In thi
case, mean curvature flow is guaranteed to converge
surface ofH50, or extremal area, also called a minim
surface. There is an extended literature on mean curva
flow and minimal surfaces@16#. Tod’s idea is to generalize
this method fromH5¹asa to H5¹asa2K1Kabs

asb. For
KabÞ0, this flow is no longer guaranteed to converge,
one may hope that it does, as the additional terms are
lower order.

One essential strength of generalized mean curvature
is that it cannot move a test surfacethroughan AH, even for
KabÞ0. The argument is simple@17#: Assume that the tes
surface is about to move through the true AH, that is
touches it at one point. At that point both surfaces see
samegab , Kab and sa. Of the quantities which go into the
expression~6! for H, only the ¹asa differ on the two sur-
faces. Keeping track of the signs, one sees that the test
face must then always back away from the true AH at t
point. Therefore, a smooth test surface can never cros
,

s

of

a-
e

-

a

re

t
of

w

t
e

ur-
t
an

AH ~although it can approach it asymptotically!. This is true
not only for generalized mean curvature flow, but for
flows of the form (]/]l)a52sarH, as long asr is strictly
positive. This property allows us to start the algorithm on
large surface far out and evolve it inwards, thus making s
we find the true AH.

We note that Eq.~36! does not only specify the deforma
tion of S as an abstract surface, but also identifies any po
on S with a point on its deformation. That information is no
essential to the method, and we get rid of it if we defineS as
the level setF50. Thensa is again given by~8!. Consider a
family of moving surfacesS(l) given by F(xi ,l)50. On
the surfaceF5const we must have

dF

dl
[

]F

]l
1S ]

]l D a

¹aF50, ~37!

and therefore

]F

]l
52S ]

]l D a

¹aF5saH¹aF5u¹FuH. ~38!

We note that~36! is a geometric prescription: It specifies
vector field onS only in terms of the geometry ofS andS
and the tensor fieldKab , independently of howS is param-
eterized. As we have just shown, the parabolic equation~38!
is equivalent to it. We conclude that a flow parameterized
for example,]F/]l5H, without the factoru¹Fu, does not
have such a geometric interpretation, but must depend oF
in a more general way than only through the shape of
level setS. On the other hand, asH is a scalar function of
gab , sa andKab ~evaluated onS), we can replace it by any
other scalar and still obtain a flow with geometric meanin
Any flow of the form

]F

]l
5u¹Fu3any scalar~Kab ,gab ,sa! ~39!

is therefore geometric in nature. Such a general equat
replacingH by any function of the curvature ofS, has al-
ready been given by Osher and Sethian@18#.

If we now restrictF to the formF(xi ,l)5r 2h(u,w,l),
we have]F/]l52]h/]l. Therefore, any flow of the form

]h

]l
52u¹~r 2h!u3any scalar~Kab ,gab ,sa! ~40!

is again geometric in nature. The naive Jacobi method,
~33!, however, is not.

D. ‘‘Fast flow’’ methods

Before we propose our own AH finding algorithm, w
summarize the strengths and weaknesses of the exis
ones. We have not discussed algorithms which attack
elliptic problem directly via Newton’s method or a minim
zation iteration. Their main drawback, however, is a sm
range of convergence, that is, they require a very good in
guess. NKO is a lot more robust, but the need to treata00
separately is an important disadvantage. Equation~21! is by
no means trivial: Solving it by any iterative method lik
Newton’s method is as computationally expensive as m
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steps of the main iteration loop. Furthermore, for given d
(gab ,Kab) and givenalm , l .0, there may be several roo
a00 of this equation, or none. Kemball and Bishop@6# pro-
pose investigating each root of the equation separately,
there are none, each minimum of the right-hand side. Cle
this makes the algorithm even more expensive.

Most importantly, Newton’s method for solving~21!
tends to go off into the wrong direction. As an example
this problem@19#, we consider time-symmetric Cauchy da
for the Kruskal spacetime of massm in isotropic coordinates
@This is the special casem250 of Eq.~61! below.# As a trial
surface we take a sphere of coordinate radiusr̄ centered on
the black hole. The expansion of outgoing null rays is

H5H~ r̄ !5
8 r̄ ~2 r̄ 2m!

~2 r̄ 1m!3
. ~41!

From a mathematical point of view, this example is deg
erate in the sense thatH50 is a reduced from a differentia
to a purely algebraic equation by the spherical symmetry
the trial surface.~There is only one spatial direction, and th
is the degenerate direction of the elliptic operator.! Neverthe-
less, any problems that arise in this toy equation also aris
a more realistic situation. From a plot ofH( r̄ ), Fig. 1, we
see that forr̄ *1.87m Newton’s method wanders off to in
finity, and forr &0.13m goes towardsr̄ 50, instead of find-
ing the zero atr̄ 5m/2. All algorithms which use Newton’s
method, or a minimization method using derivatives, for a
or all of thealm , that is, the direct elliptic algorithms, shar
this problem.

The curvature flow method is sensitive only to the sign
H, not its derivative. Applied to this problem, it goes towar
smallerr for positiveH, and towards largerr for negativeH,
and always finds the apparent horizon. We have already
that it cannot accidentally walk through the AH. In these tw
properties lies its robustness. Any flow withrH instead ofH
on the right-hand side, wherer is strictly positive and a
scalar, shares the fundamental advantages of the genera
mean curvature method: a trial surface far outside the ap
ent horizon always moves in, and can never accident

FIG. 1. Plot of the horizon functionH( r̄ ) versus r̄ , in units of
the black hole massm, as given in Eq.~41!.
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cross the apparent horizon. As we have seen, however,
methods are slow because explicit discretizations in time
parabolic methods require very small time steps for stabil
An implicit time step may be possible, but introduces a n
elliptic problem which a priori is not simpler than the unde
lying elliptic problem one wants to solve.

We are not bound to geometrically motivated flows, ho
ever. Instead, we heuristically consider all flow methods
variants of the Jacobi method for solvingH50. Then we are
free to combine the best features of the curvature flow
NKO methods. From curvature flow we would like to kee
the properties thata00 is not treated specially, and that th
change of a00 should be proportional toH00, not
dH00/da00. From NKO we would like to adopt the idea o
subtracting and then invertingL2, in order to suppress high
frequency noise. This leads us to the following family
flows:

]h

]l
52A~12BL2!21rH, ~42!

whereA andB are free positive constants, and wherer is a
strictly positive weight depending onh through at most first
derivatives. The differential operator 12BL2 is invertible,
with positive eigenvalues, forB>0, and forB.0 its inverse
is a smoothing operator. When we discretize inl, we can
absorbDl into A. For simplicity we also restrict ourselves t
forward differencing. In spectral components, we obtain

alm
~n11!2alm

~n!52
A

11Bl~ l 11!
~rH ! lm

~n! . ~43!

For r we consider three choices:r51 ~‘‘H flow’’ !, r5u¹Fu
~‘‘C flow’’ !, and r5u¹Fus with s defined in ~28! ~‘‘N
flow’’ !. With A.0 andB50, H flow is the Jacobi method
and C flow is the curvature flow method. N flow formal
becomes the NKO method@compare Eq.~32!# in the limit
A5B→`. The limit is singular because the NKO method
not a flow and has to update the componenta00 separately.

For determining the optimal values ofA andB, it is con-
venient to reparameterize them with new parametersa andb
as

A5
a

l max~ l max11!
1b, B5

b

a
. ~44!

A andB now scale withl max in such a way that we expec
the optimal values ofa andb to be independent of the valu
of l max. a parameterizes anl -independent contribution to th
effective step size ofa/@ l max( l max11)#, while b adds an
l -dependent speedup which is zero atl 5 l max and increases to
b at l 50.

It is clear that the fast flow methods have the potentia
be much faster than curvature flow, while still being nume
cally stable and robust against bad initial guesses. They
not really flows of the form~40! because they are not loca
In some situations, theeffectiveweight r can become nega
tive on parts of the surface, and in these situations, the ‘‘
flow’’ can move through the true AH. Fast flow method
should be considered as~good! compromises between th
robustness of curvature flow and the speed of NKO. Furth
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more, one can trade robustness for speed by increasinb,
and vice versa, and so adapt the algorithm to the situat
We have obtained the best results using N flow, witha51.0
andb50.5 in ~44!. We note thata51.0, for anyb, means
that the algorithm treats high frequency components like
NKO algorithm does.

IV. NUMERICAL IMPLEMENTATION
OF PSEUDOSPECTRAL APPARENT HORIZON FINDERS

The algorithm we suggest in this paper is formally defin
by Eq. ~43! with r defined by~28! andA.B.0.5.

In order to implement this or any other pseudospec
algorithm, we need to calculate the spectral compone
(rH) lm from the spectral coefficientsalm . In this section we
give details of an algorithm for doing this, givengi j , Ki j and
gi j ,k on a Cartesian grid. We expect that there is scope
increasing the speed and reducing the discretization erro
this low-level part of the algorithm, without changing th
top-level part given by~43!.

A. The background structure

The parameterization of the surfaceS through spherical
harmonics and the introduction of the differential operatorL2

require the introduction of a flat metricḡ ab . We do this by
introducing auxiliary Cartesian coordinatesx̄ i5 f i(xj ), and
then setting the components ofḡ ab in the coordinatesx̄ i to
be d i j . The corresponding metric derivation¹̄a is then
]/] x̄ i , andr 25d i j x̄ i x̄ j . In these coordinatesL2 is given by
the expression

L25~r 2 d i j 2 x̄ i x̄ j !
]

] x̄ i

]

] x̄ j
22 x̄ i

]

] x̄ i
. ~45!

While more complicated choices are possible, we define

x̄ i[xi2x0
i , ~46!

wherexj are the Cartesian coordinates in which the Cau
data are presented to our algorithm. The freedom to shift
origin r 50 around is necessary because any trial surface
have to be star-shaped aroundr 50, that is aroundxi5x0

i .
Therefore we have to make sure thatxi5x0

i is inside the AH.

B. Calculating the Ylm

We need to calculate theYlm( x̄ i) and their first two par-
tial derivatives for arbitrary (x̄ i). Speed is important, be
cause our algorithm spends most of its time in these ca
lations. The standard spherical harmonics are

Yl
m5 P̄l

m~cosu!eimw, ~47!

where theP̄l
m are associated Legendre functions times a c

stant depending onl andm. Instead of the complexYlm , we
introduce the real basisȲlm as
n.

e
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Ȳl
05 P̄l

0~cosu!, Ȳl
umu5A2P̄l

umu~cosu!cosmw,

Ȳl
2umu5A2P̄l

umu~cosu!sinmw. ~48!

The realȲlm obey the same conditions~14!–~16! as the stan-
dard complexYlm , but they are not eigenfunctions ofLz

5]/]w. At each pointx̄ i5(x,y,z) we calculate

cosu5z/r , sinu5r/r , cosw5x/r, sinw5y/r,
~49!

where

r 5Ax21y21z2, r5Ax21y2. ~50!

No explicit evaluation of trigonometric functions is require
Then cosmw and sinmw are calculated as polynomials i
cosw and sinw from the recursion relations

cosmw5cos~m21!w cosw2sin~m21!w sinw,

sinmw5cos~m21!w sinw1sin~m21!w cosw. ~51!

The P̄lm are given explicitly form5 l by

P̄l
l~cosu!5

1

A4p
A~2l 11!~2l !!

2l l !
~2sinu! l , ~52!

and for 0<m< l 21 are calculated from the recursion rel
tions

P̄l
m~cosu!5A 2l 11

l 22m2FA2l 21 cosu P̄l 21
m ~cosu!

2A~ l 21!22m2

2l 23
P̄l 22

m ~cosu!G . ~53!

~They are not needed form,0.! In order to calculate the firs
and second partial derivatives with respect tox, y andz, we
calculate the partial derivatives ofȲlm with respect tou and
w, and those ofu and w with respect tox, y and z, and
explicitly code all terms arising from the chain rule. Th
derivatives ofP̄lm(cosu) with respect tou are obtained re-
cursively after differentiating Eqs.~52! and ~53!. The rela-
tions ~15! and~16! are then obeyed to machine precision
the numerically calculated quantities.

We are aware of two other algorithms for calculatin
Ylm( x̄ i) and their first and second partial derivatives. T
algorithm of Baumgarteet al. calculates them recursively a
polynomials of ther ,i . We have coded this algorithm di
rectly from the detailed formulae in@14#, and find that it
scales in time asl max

4 and in storage requirement asl max
3 . The

NCSA/WashU apparent horizon finder@12,13# does not cal-
culate theYlm , but a related basis of smooth functions. Th
basis is not orthogonal, and it is not independent ofr at
constantu and w. For the NCSA/WashU algorithm thes
properties of the basis functions are not necessary. The
culation of this basis scales as approximatelyl max

4 in time,
and asl max

4 in storage@20#. In common with both algorithms
ours is recursive, and does not require trigonometric funct
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TABLE I. Maximal deviation of the overlap matrixAnn8 from the unit matrix as a function of the linea
grid size, the integration surfaceS and l max.

Surface parameters grid size l max54 l max58 l max516

a0051.0 16 0.053 0.159 0.284
32 0.016 0.037 0.069
64 0.011 0.026 0.040

a0051.0, a1,2150.4 32 0.039 0.069 0.178
64 0.047 0.047 0.053

a0051.0, a1050.4 32 0.052 0.087 0.274
64 0.050 0.056 0.075
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evaluations. The difference is that it breaks up theYlm into
the product of a function ofu times a function ofw. In
consequence it scalesl max

2 in time ~it is faster already for
l max52), and asl max

2 in storage requirement. This optima
scaling comes at a price: the algorithm breaks down on
axis x5y50, where cancellations between theu andw de-
pendent factors in the analytic expressions fail to take pl
numerically. In practice, one can evade the problem by m
ing any collocation points that come very close to thez axis
a small distance away from it, resulting in a small error
that point, and a negligible one in the integrals overS. In-
corporating the cancellations into the code properly requ
mixing theu andw dependency by going through an inte
mediate, over-complete basis called ‘‘symmetric trace-f
tensors,’’ which is precisely the approach of Baumga
et al.

C. Interpolating and integrating over S

We need to discretize the integral*SdV. We take as col-
location points onS all those points whereS intersects a link
of the three-dimensional Cartesian grid. A link is the straig
line between two neighboring points on the Cartesian g
The links which intersectS are those on whichF changes
sign. The advantage of this choice of collocation points
that one only needs to interpolate in one dimension. Furth
more the number of collocation points onS scales with the
number of nearby points on the Cartesian grid, that is, w
the available numerical information.

To find the surfaceF50 the algorithm calculatesF on all
Cartesian grid points. For this it needs theȲlm on all grid
points. Although these are required again and again, pre
technology does not allow us to storel max( l max11) 3D ar-
rays for reasonablel max, so that they have to be recompute
each time. Then the algorithm flags all links on whichF
changes sign. Both operations scale asN3, whereN is the
linear grid size. We determine by inverse linear interpolat
where on the link the intersection point is, then interpol
gi j , gi j ,k andKi j to the intersection point by cubic interpola
tion. We calculateF ,i andF ,i j directly at thex̄ i of the inter-
section point. For this purpose we need ther ,i and theȲlm,i

and Ȳlm, j .
The integral*SdV is now approximated by the sum

E
S
f dV.4p

(w f

(w
, ~54!
e

e
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e

t
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e

where the sum is over all collocation points. Lets̄ i be the
unit normal onS with respect to the flat background metr
ḡ ab :

s̄ i5@dkl~r ,k2h,k!~r ,l2h,l !#
21/2d i j ~r , j2h, j !. ~55!

The integration weightw is then given by

w5
dV

dN
5

dV

dA

dA

dN
,

dV

dA
5

r ,i s̄
i

r 2
,

dN

dA
5

u s̄1u

D x̄ 2D x̄ 3

1
u s̄2u

D x̄ 1D x̄ 3
1

u s̄3u

D x̄ 1D x̄ 2
, ~56!

whereD x̄ i are the grid spacings on the three axes. HeredV

is the solid angle with respect to the flat metricḡ ab around
r 50, that isdV5sinududw, dA is the surface element onS
induced by ḡ ab , and dN is the number of intersections o
dA with grid links. Note that the expression fordN/dA mod-
els the anisotropy of the Cartesian grid in an explicit su
over the three grid directions. The sum~54! is a good ap-
proximation to the integral whens̄ i changes little from one
collocation point to its neighbors.

As a test of the discrete approximation to integrals o
the surface, we calculate the overlap integrals~14! numeri-
cally. Let us combine the indicesl and m of the spherical
harmonics into one indexn. The numerical approximation to
the symmetric matrixAnn85*YnYn8dV is not exactly equal
to the unit matrix, because of the finite number of collocati
points.

One could arrange the weightsw such thatAnn8 comes
out right for a given set of collocation points, but that wou
require putting the collocation points in fixed, special po
tions with respect tou andw, for example on a square grid i
u and w. In our algorithm, however, we let the position o
the collocation points be dictated by the underlying Cartes
grid x̄ i , and rely on a number of collocation points muc
larger than the numbernmax5 l max( l max11) of basis func-
tions in order to keep the error down. Table I shows how
error in Ann8 increases withl for a surfaceS created under
realistic conditions by the apparent horizon finder. In pra
tice, the size of the 3-dimensional grids is limited by t
available computer storage, so that we have to choosel max
small enough for the spectral error to remain small.



s
e
io
t

ti
h
e

n

in

ng
nt

to

th

o

r-

he
w

n
b

f a
ck

r
rd
tly

d
the
he-
ere.

ne

m
e of
In
in

nts
de
sic
of
ith
nd

ll-
s,

is

the
s.
e

ble
r-
are
e
a

n as

ys

872 57CARSTEN GUNDLACH
We can reduce this error in the following way. Let u
denote byHn5Hn(an8) the true spectral components of th
function H on the surface parameterized by the expans
coefficientsan . Let H̃n be their numerical, slightly incorrec
value. Clearly we have

H̃n5 (
n851

`

Ann8Hn8. ~57!

Without much additional numerical work, we can calculate
finite square piece of the infinite matrixA when we calculate
H̃n up to nmax. Let B be the inverse of that finite part ofA.
Then we have~for n<nmax)

Ĥn[ (
n851

nmax

Bnn8H̃n85Hn1 (
n851

nmax

Bnn8S (
n95nmax11

`

An8n9Hn9D
.Hn1 (

n85nmax11

`

Ann8Hn8. ~58!

In Ĥn the unwanted aliasing among the low (n<nmax) fre-
quencies has been eliminated, and the remaining devia
from the true valueHn comes only from the aliasing of hig
frequencies to low ones. One would assume this to b
better approximation toHn than theH̃n in normal situations.
In practice, however, this assumption is difficult to test, as
cheap estimate of the errorĤn2Hn is available.

Still, there are some indications of the remaining error
the Ĥn : The spectral components ofr , the r n , are by defi-
nition identical toan . We find that ther̂ n are much closer to
an than ther̃ n , but do not converge to them. The remaini
error can only be due to the fact that the collocation poi
do not lie exactly on the true surfaceS parameterized by the
an , due to the interpolation used to find them. This failure
find the true surfaceS is the only source of error for ther̂ n ,
but appears to be also the dominant source of error for
Ĥn , or any other nontrivial function onS. In practice we
proceed as follows: We useĤn as our best approximation t
Hn . We monitor convergence of the final resultan of the AH
finder with l max and the grid spacing of the underlying Ca
tesian grid. We also monitoru r̂ n2anu. Finally, and perhaps
most importantly, we find that the algorithm usingH̄n con-
verges better, and its error is considerably reduced w
tested against data for which the apparent horizon is kno
in closed form. Therefore we always use theĤn and other
hatted quantities in the algorithm.

In order to estimate the quantity

E
S
H2dV5 (

n51

`

Hn
2 , ~59!

which indicates to what precision the algorithm has fou
the apparent horizon, we use the two numerically availa
quantities
n

a

on

a

o

s

e

n
n

d
le

~H rms!
2[

(H2w

(w
5 (

n51

`

(
m51

`

AnmHnHm ,

and

uHu2[ (
n51

nmax

Ĥn
2 . ~60!

After this work was carried out, we became aware o
different, perhaps more efficient algorithm for going ba
between a function ofu and f and its spherical harmonic
components@21#. One puts a grid onS which is rectangular
and equally spaced inu and w, and then uses fast Fourie
transforms inu andf. In a second step, one has to disca
those linear Fourier components which are not sufficien
regular at the polesu50,p, which is rather complicated. In
order to evaluategi j etc. at the collocation points require
now, one has to interpolate in three dimensions from
given Cartesian grid, instead of in one dimension. Nevert
less, there may be scope for a more efficient algorithm h

V. TESTS

A. Brill-Lindquist data

The NCSA/WashU algorithm appears to be the only o
to have been tested on numerically evolved data@13#. Tests
that use data given in closed form avoid interpolation fro
numerical data on a grid, which poses an additional sourc
numerical error and even instability in realistic situations.
the present paper we test our algorithm with data given
closed form, but passed to the algorithm only on the poi
of a numerical grid of realistic size. The input into the co
are the numerical values of the inverse metric and extrin
curvature components and of the first partial derivatives
the metric components on the grid. A performance test w
data derived both from numerical initial data algorithms a
numerical time-evolutions is left to a future publication.

As a first test of the complete AH finder, we use Bri
Lindquist time-symmetric initial data. For two black hole
these are

Ki j 50, gi j 5S 11
m1

2ux2x1u
1

m2

2ux2x2u D
4

d i j . ~61!

The generalization toN black holes is clear.
We begin with a single black hole, where the AH

known explicitly: it is a coordinate sphere of radiusm/2.
There are a number of possible convergence criteria for
iterative algorithm, none of which fits all possible situation
One such criterium isH rms.2uHu. @These measures wer
defined in~60!.# This means that the residual ofH(u,w) is
mainly in the high frequencies that we do not resolve. Ta
II shows the performance of the algorithm for this conve
gence criterium. We chose a grid spacing such that there
roughly 16 grid points across the interior of the AH. By th
standards of a 3D single grid numerical relativity code on
current supercomputer that is already as much resolutio
one can hope for. We chosel max56, which is roughly the
optimal value for that resolution. The initial data are alwa
a0050.8, while the horizon radius is 0.5.~For convenience,
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we usealm rescaled by a factor ofA4p, so thata00 is the
average coordinate radius of the AH.!

We have varied the offset of the center of the spher
harmonics from the center of the AH.Dr is the error in
locating the AH in coordinate space. It is calculated direc
in those points where the AH is collocated by the algorith
not from thealm . The result is roughly independent of th
direction of the offset. We see that if the surface is ve
eccentric around the origin of coordinates, precision suff
Fortunately, there is a simple remedy: If the dipole mome
a1

0,61 are large, the algorithm automatically uses them
obtain a better value for the originx0

i of coordinates, and
restarts. This source of error is totally eliminated by the p
cedure. The same remedy applies if the surface touches
origin of coordinates at any stage during the flow.

The next test is Brill-Lindquist data for two uncharge
black holes of equal mass. We can position the two cen
x1 andx2 so that the metric is symmetric with respect to t
x50, y50 andz50 planes. This allows us to work numer
cally on an octant of the full grid, and save time and stora
The situation is in fact axisymmetric, but the code does

TABLE II. Root-mean-square residuals ofH and maximal er-
rors in the position of the numerically calculated AH, for Schwar
child data offset from the coordinate origin. The coordinate rad
of the AH is 0.5.

Offset iterations Hrms (Dr )max

0.0 10 931024 731024

0.1 10 931024 731024

0.2 11 131023 831024

0.3 12 231023 131023

0.4 10 631022 231022
l

y
,

y
s.
ts
o

-
the

rs

.
t

know that. In Fig. 2all points on the discretely represente
surface are plotted, giving coordinatesz versus r
5Ax21y2. The fact that they all fall on one curve show
that the code represents an axisymmetric surface well in s
of the underlying Cartesian grid.

In the data~61! one can always find two minimal surface
surroundingx1 and x2. If x1 and x2 are close enough to
gether, there is a third minimal surface surrounding both
them. Determining the maximal separation at which this h
pens is not an easy test. Assume that the two centers are
far enough apart that there no longer is a common horiz
By continuity there will still be a smooth surface on whichH
is small, but not zero, everywhere. Numerically, this can
be distinguished from a true horizon.

In the test, the two black holes have equal mass par
etersm15m251. The total ADM mass is 2. We look fo
both inner and outer surfaces. In Table III we show, for t
same numerical parameters, the root-mean-squared valu

-
s

TABLE III. Root-mean-square residuals ofH on the inner and
outer numerically calculated minimal surface in Brill-Lindquist da
for two black holes of equal mass. ‘‘No convergence’’ is the u
aided return status of the algorithm. It means that the residual v
of H given in brackets is not due to a lack of numerical resolutio

Separation innerH rms outerH rms

0.0 only one surface 1.931025

0.4 831022 1.831025

0.8 931025 1.831025

1.2 3.031024 1.531024

1.4 2.631024 2.031023

1.6 2.831024 no convergence (3.031022)
1.8 2.431024 no convergence (3.931021)
2.0 731024 ~not attempted!
-
-

f

.
e

FIG. 2. Shape of the AH in the
axisymmetric, z-reflection-
symmetric situation. The algo
rithm assumes x, y and z
reflection symmetry, but not
axisymmetry. The plot showsz
versusAx21y2 for all grid points
on the AH in one octant of the full
grid. The small half circles are the
inner horizons, for a separation o
d50.4, 0.8, 1.2 and 1.4 of the two
black holes, from bottom to top
The large quarter circles are th
outer horizons, from right to left,
or bottom to top.
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H on the trial surface after our algorithm has stopped, aga
the ~coordinate! separationd of the two centersx1 and x2.
The axisymmetric numerical algorithm of Brill and Lindqui
does not find an outer minimal surface ford.1.56. From our
calculations we can say with confidence that the limit l
between 1.4 and 1.6. We should stress again that this p
sion is limited by the resolution of the Cartesian grid
which we give the Cauchy data. An algorithm specialized
axisymmetry could of course determine this limit with mu
higher precision.

B. Kerr data in Cartesian coordinates

In order to test our code on analytic data with nonvani
ing extrinsic curvature, we consider Kerr data. Cauchy d
for the Kerr spacetime have been given by Brandt and Se
@22#. We transform these to Cartesian coordinates by de
ing xixkd i j 5 r̄ 2, where r̄ is the radial coordinate which gen
eralizes the isotropic radial coordinater̄ for the Schwarzs-
child spacetime. For testing our algorithm it is useful if w
do not restrict the angular momentum vector, or symme
axis, to thez-axis, but give its direction as a unit vectorni ,
ninjd i j 51. The transformed expressions are

gi j 5A~d i j 1Bv iv j !, gi j 5A21S d i j 2
B

11vkvkB
v iv j D ,

Ki j 5v iwj1wiv j , ~62!

v i5e i jknjxk , wi5Cxi1D~ni2cosuxi !, ~63!

where cosu5nkxk / r̄ , where all indices are moved withd i j ,
and where the coefficients are

A5r2 r̄ 22, B5~r212mr!a2r22 r̄ 24, ~64!

C5@~r 21a2!22Da2sin2u#21/2am@2r 2~r 21a2!1r2~r 2

2a2!#r23 r̄ 24, ~65!

D5@~r 21a2!22Da2sin2u#21/22a3mrD1/2cosur23 r̄ 24,
~66!

r25r 21a2cos2u, D5r 222mr1a2,

r 5m1 r̄ 1
m22a2

4 r̄
. ~67!

The apparent horizon is the coordinate spherer̄
5Am22a2/2. Fora50 these data reduce to Brill-Lindquis
data for a single black hole. WhileKab does not vanish, the
data are still special in that the two contributions toH, ¹asa

and mabKab , vanish separately on the AH. We have tes
our algorithm on these data for different ratios ofa/m, dif-
ferent offsetsx0

i between the center of the black hole and t
center of spherical harmonics, and for different orientatio
ni of the black hole symmetry axis relative to the spheri
harmonics. The results are essentially the same as for
single Brill-Lindquist black hole, giving an indication tha
the presence of the extrinsic curvature term does not ma
qualitative change to the performance of the algorithm.
st
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VI. CONCLUSIONS

Numerical general relativity requires a fast and robust
gorithm for finding apparent horizons in Cauchy data wi
out symmetries in three dimensions given on a grid. In t
paper we have described a new apparent horizon finde
gorithm which appears to be as fast but more robust than
best predecessor.

We began from a general classification of possible
proaches to the problem. Any approach which poses
problem as a nonlinear elliptic equation on a topologi
two-sphere and then attacks that equation directly will f
unless provided with a very good initial guess, because
problem is nonlocal in nature. While we have disregard
such approaches here, they will be ideal as a second s
whenever the apparent horizon needs to be determine
high precision. We concluded that for robustness the b
algorithm is probably the~generalized! mean curvature flow
suggested by Tod@7#, where an arbitrary initial surface
evolves in an unphysical ‘‘time’’ towards the apparent ho
zon, turning the problem from an elliptic into a parabo
one. The algorithm is guaranteed to converge at least
time-symmetric (Kab50) data, and we have argued that
must be at least very robust also forKabÞ0 data. Unfortu-
nately, numerical implementations of this algorithm face
numerical stability problem common to all parabolic equ
tions, which make them slow, and increasingly so with
creasing resolution, in practice.

This stability or speed problem is not present in the alg
rithm of Nakamuraet al. ~NKO! @5#. It is motivated by a
standard way of solving nonlinear elliptic problems nume
cally, namely subtracting a simple linear elliptic operat
from the nonlinear one, inverting it by pseudo-spectral me
ods and iterating. Here we have thrown more light on h
NKO works, by making explicit the background metric
introduces, and by characterizing the iteration procedure
specific finite differencing, in unphysical time, of a parabo
problem. This parabolic problem itself is the singular limit
a certain family of flows which are governed by a mixture
the physical geometry of the Cauchy data and an unphys
background geometry. Tod’s flow is a different limiting ca
of that family, one in which no background metric appea

Once we have recognized the existence of a continuum
possible algorithms between Tod and NKO, it is plausib
that an algorithm somewhere in the middle of the continu
may be better than the extremes. By trial and error, we h
determined the optimal member of the family of algorithm
This intermediate algorithm evolves the high-frequen
components~the fine details! of the trial AH essentially like
the NKO algorithm, but it evolves the low frequency com
ponents~the rough shape! by a variant of generalized mea
curvature flow. We therefore call it ‘‘fast flow.’’

We have given details of a numerical implementation
the pseudo-spectral methods which are needed for im
menting both the original NKO and our new algorithm. Su
details have not been published before. It should be stre
that the formal analysis of the algorithm in Sec. III is ind
pendent from its implementation in Sec. IV, and there m
be different and more efficient implementations.

We have not made direct performance comparisons w
other algorithms, and the tests we have described are via
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ity rather than performance tests. Nevertheless, we antici
the following:

By construction, the new algorithm is as fast as that
NKO: The iteration steps are very similar, and there is
same small number of them. NKO, however, updatesa00
~the overall radius of the trial AH! by a special procedure
According to how this is done@6#, the additional overhead
may be large. More importantly, the separate update ofa00
has the potential to reduce the robustness of NKO: Eq.~21!
may have several solutions, in which case all should be
vestigated, or none, in which case minima should be inv
tigated instead@6#. This requires some decision-takin
which will be hard to automate, or instead an infinite
branching search. We have also argued that zeros of Eq.~21!
are hard to find. Either NKO or fast flow should be far mo
tolerant of initial guesses than the elliptic methods.

The method of choice for robustness and elegance
clearly Tod’s mean curvature flow. The only question here
speed. We have argued that as a parabolic method this w
be slow in the possible implementations known to us, bu
quantitative comparison with the implementation of Pas
@9# would be interesting.
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The only existing algorithm directly accessible to the a
thor is that of the NCSA/WashU group@12,13#. Direct com-
parisons are planned in future realistic applications. The n
algorithm seems to be more robust, though: it made the t
sition from two AHs to a single one in the family of Brill
Lindquist data summarized in Table I without external inp
This ability will be crucial for applying AH boundary con
ditions in the merger of two black holes when the compu
code is on its own during a very large run. The NCS
WashU code has not been tested on a similar sequenc
analytic initial data, but in some situations involving evolve
black holes it presently requires some care in finding
correct horizon@23#.

Finally, the source code of the new spectral AH find
will be published early in 1998 in conjunction with th
‘‘Cactus’’ numerical relativity infrastructure@24#.
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