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SELF-CONSISTENT SOLUTIONS FOR LOW-FREQUENCY

GRAVITATIONAL BACKGROUND RADIATION
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Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Schlaatzweg 1, 14473 Potsdam, Germany

We study in a Brill-Hartle type of approximation the back-reaction of a superposition of

linear gravitational waves in an Einstein-de Sitter background up to the second order in

the small wave amplitudes hik. The wave amplitudes are assumed to form a homogeneous

and isotropic stochastic process. No restriction for the wavelengths is assumed. The

effective stress-energy tensor T e
µν is calculated in terms of the correlation functions of

the process. We discuss in particular a situation where T e
µν is the dominant excitation of

the background metric. Apart from the Tolman radiation universe, a solution with the

scale factor of the de Sitter universe exists with p = −ρ as effective equation of state.

While the description of cosmic gravitational radiation in linearized relativity
is fairly well known, a study of its nonlinear aspects is much harder. Numerical
relativity3 is one way, but there are also some analytical and semianalytical ap-
proaches. Already in 1964 Brill and Hartle4 proposed a scheme which takes the
back-reaction of linear gravitational waves into account. As it stands, the Brill-
Hartle method is considered as a high-frequency approximation for gravitational
radiation. Thus its application to early inflationary stages of the Universe is ques-
tionable, since low-frequency modes may be present, which turn into high-frequency
modes (with wavelengths smaller than the temporary horizon) only at later time.
As shortly discussed in this note, a slight modification of the Brill-Hartle approach
can remove this shortcoming. The detailed calculations will be published elsewhere.
The wave perturbations are considered as random variables, forming a stochastic
process, which shares the symmetries of the background metric. The method is sim-
ilar to the Monin-Yaglom7 approach to statistical fluid dynamics, and is also used
in optical coherence theory6. For simplicity, an Einstein-de Sitter model is cho-
sen as background metric. Tensor perturbations are added in synchronous gauge,
assuming g00 = −a2, g0i = 0, gik = a2δik + hik, as well as the gauge conditions
hii = 0, hik,k = 0. a(η) is the scale factor. The Einstein tensor may be expanded
in powers of hik. Retaining terms up to second order and performing a stochastic
(ensemble) average on the field equations, they split into linear wave equations for
the hik and the back-reaction equations. The back-reaction equations relate the
Einstein tensor for the background metric to the effective stress-energy tensor of
the waves, which is represented as stochastic average over bilinear expressions in
hik and derivatives of hik. As well known, the effective stress-energy tensor is not
gauge invariant in general . However, as shown by Abramo, Brandenberger and
Mukhanov1 (see also 2, 5), the gauges change the background geometry to second
order, and these changes just compensate the change of the stress-energy tensor.
Representing the hik as stochastic Fourier integrals

∫
γik(k, η)eikxdk+conj.compl.,

the amplitudes γik satisfy an ordinary differential equation. The symmetry proper-
ties of the problem allow a simple representation of expressions which are bilinear

1

http://de.arXiv.org/abs/gr-qc/9712042v1


in hik, e.g.

〈hikhlm〉 =
16πa2

15
(3δilδkm + 3δimδkl − 2δikδlm)

∫
dkk2f, (1)

in terms of a single spectral density f(k, η). f satisfies a nonlinear differential
equation (ǫ0 depends only on k = |k|, and a prime denotes the differentiation with
respect to η)

2ff ′′ − f ′2 + 4f2(k2 − a′′

a
) − 4ǫ0 = 0. (2)

For high-frequency waves kη ≫ 1, f =
√

ǫ0/k follows as solution (”high-frequency
approximation”). It is convenient to write ρ and p in the effective stress-energy ten-
sor in terms of four frequency-independent, but in general time-dependent integrals
(”moments”) over the spectral density f(k, η):

f0 =

∫
dk k2

ǫ0(k)

f
, f1 =

∫
dk k2

f ′2

f
, f2 =

∫
dk k2f, f4 =

∫
dk k4f. (3)

For a general scale factor one obtains (g = f0 + f1/4)

ρg =
1

2Ga4
(f4 + g + 3

a′

a
f ′

2
− 7

a′2

a2
f2), (4)

3pg =
1

2Ga4
(7f4 − 5g + 5

a′

a
f ′

2
− 5

a′2

a2
f2). (5)

In the high-frequency approximation 3Ga4pg = Ga4ρg =
∫

dkk3
√

ǫ0, energy density
and pressure are positive. If low-frequency modes are present, their contribution can
be negative, and also the equation of state can deviate considerably from the high-
frequency relation p = ρ/3. If pressure and density of gravitational waves cannot be
neglected compared to other forms of matter, the back-reaction on the scale factor
must be taken into account. Taking a pure gravitational radiation universe, one has
to solve the field equations

6
a′2

a4
= 16πGρg, (6)

a′′

a
+

a′2

a2
= 4πGa2(ρg − pg), (7)

with ρg, pg taken from (4) and (5). Note the further equations

g′ = −f ′

4
+

a′′

a
f ′

2
, (8)

f ′′

2
= 2g + 2

a′′

a
f2 − 2f4, (9)

which follow from differentiating f1, f2 and using the differential equation for f .
The four equations (6)-(9) give the relation

(2a′f2 − af ′

2
) (aa′′ − 2a′2) = 0. (10)
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Vanishing of the first factor leads to the Tolman radiation universe, vanishing of
the second factor gives the scale factor of the de Sitter cosmos. It is easy to find the
moments f2, f4, g from the corresponding differential equations. Self-consistency
however requires, that the moments found in this way must be compatible with
the expressions following directly from (3), if the solution of the wave equation
is inserted. Compatibility can be achieved indeed, it however requires singular
infrared components for some spectral quantities. The general solution of (2) for
the radiation (s = 0, a ∼ η) and de Sitter (s = 1, a ∼ 1/η) cosmos is known to be

f = 2npp∗ + (l + im)p2 + (l − im)p∗2, (11)

where l, m, n are three functions of k, connected with ǫ0 by ǫ0 = 4k2(n2 − l2 −m2),
p(x) = (1+is/x)eix is a complex function of x = kη. Whereas n(k) is not restricted,
the spectral functions l(k) and m(k) should be understood as generalized functions8

and have the form (b is a constant)a

l(k) = − b

2

δ′′(k)

k2
− 2n2

δ(k)

k2
, (12)

m(k) = 0, (13)

where δ(k) is the Dirac delta function and n2 =
∫

dkk2n(k). The spectral densities
for the energy density and the pressure are then (again in the Tolman case)

a4Gρ(k, η) = n(k)(k2 − 7

2η2
) + δ(k)(

7n2

η2
− b), (14)

3a4Gp(k, η) = n(k)(k2 − 5

2η2
) + δ(k)(

5n2

η2
− b). (15)

These quantities show infrared singularities, part of the effective energy density
and pressure resides in infrared (k = 0) modes. It is so far not clear whether the
singularities result from using only a second-order approximation. The integrated
quantities are finite, however.
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afor the Tolman cosmos, the condition is different for the de Sitter case.
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