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a 

Abstract 

We construct M-theory curves associated with brane configurations of SU( N ), SO(N) and Sp(2 N) 5D supersymmetric 
gauge theories compactified on a circle. From the curves we can account for all the existing different SU( N) field theories 
with Nf 5 2 N. This is the correct bound for N 2 3. We remark on the exceptional case SU(2). The bounds obtained for 
SO(N) and Sp(2N) are Nf< N - 4 and Nf< 2 N + 4, respectively. 0 1997 Elsevier Science B.V. 

1. Introduction 

Recently many interesting result in field theory 
and string theories were obtained using branes in 

superstring theories. In particular, brane configura- 
tions based on the construction of Hanany and Wit- 

ten [l] led to realizations of various aspects of SUSY 
gauge theories. In this note we follow [2] (see also 
[3]) and focus on the brane configurations which are 
relevant to five dimensional N = 1 supersymmetric 
gauge theories and five dimensional theories com- 
pactified on a circle. 

’ Research supported in part by: the German-Israeli Foundation 
for Scientific Research, the Israel Academy of Sciences and 

Humanities - Centers of Excellence Program, the European Com- 

mission TMR Programme ERBFMRX-CT964045 in which S.T. 

is associated to HU-Berlin, the US-Israel Binational Science 

Foundation and by the Israel Science Foundation. 

We briefly review the brane construction of 5D 
gauge theories and then discuss 5D theories com- 
pactified on a circle. As in the 4D case [4] it is 

possible to describe these theories using a smooth 
brane configuration in M theory given by a holomor- 
phic curve [5]. The curves for SU(N) theories can be 
determined using symmetries, periodicity and requir- 
ing their 4D limits R, + 0 to be the Seiberg-Witten 
curves. For N > 2 we find agreement with field 
theory results [6]. In particular, we find the same 
bound on Nf for consistent theories and are able to 
identify for fixed N and Nf the different theories 
which are classified in the field theory picture by the 
coefficient c,, of the Chern-Simons term in the 
prepotential [6]. Also in the M-theory approach one 
does not find the field theories with Nf = 5,6,7,8 for 
N = 2. The curves we find can (for some values of 
c,,) be identified with the spectral curves of integral 
models which were conjectured in Ref. [7] to be 
relevant for the non-perturbative solution of 5D theo- 
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ries compactified on a circle. We also discuss the 
generalizations to SO(N) and Sp(2 N > gauge groups. 

2. 5D field theories and type IIB description 

We begin this section with a brief review of some 

of the results for five dimensional gauge theories 
with eight supercharges and simple gauge group. 
This analysis was initiated by Seiberg [B] and gener- 
alized in [9,6,10]. The two possible multiplets are: 
the vector multiplet with a real scalar in the adjoint 
representation of the gauge group G, denoted by $“, 
and a set of hypermultiplets. We will only discuss 
matter in the fundamental representation. This might 
be a limitation of the brane set-up, but not of the 

field theory. The Coulomb branch is parameterized 
by the scalars 4’ in the Cartan subalgebra of G. 
i= I . . . r = rank(G). The moduli space is 

Rr/Y(G), where W(G) is the Weyl group of G. 
An important quantity is the quantum prepotential 
which is of the general form 

The sums are over the roots and fundamental weights, 
respectively. The necessary condition for the exis- 
tence of a non-trivial UV fixed point (in the limit 
g, + CQ) is that the prepotential be a convex function 
over the Coulomb branch. Note that the third rank 
symmetric tensor dijk only exist for SU(N) with 
N > 2. In all other cases c,, = 0. We now summarize 
the relevant results of [6]: For SU(N) there is a 
quantization condition c,, + Nf/2 E Z and only N, + 
21 c,r 1 I 2 N are allowed. By integrating out massive 
matter an effective c,rf = c,, - (n, - n_ I/2 is gen- 
erated where n, (n _ I denotes the number of hyper- 
multiplets whose mass m, was sent to + m( - m>. For 
SO(N) (Sp(2N)) we have c,, = 0 and the condition 
is Nf<N-4(Nf<2N+4). 

In [7] supersymmetric 5D gauge theories compact- 
ified on a circle of radius R were studied. The 
contributions to the perturbative prepotential from 

Kaluza-Klein states was found, which exhibits the 
correct limits at small and large radius of the fifth 
dimension. The non-perturbative corrections were 

conjectured to be encoded in the spectral curves of 

relativistic Toda systems. 
The brane description of N = 1 5D gauge theories 

[2] is related to the configurations in [l] by T-duality. 
The world-volume of the NS 5-branes spans the 

.Y~,x’,.x~,x~,.x~ and x5 directions and the D5 branes 
are along the x”,x’,x~,x~,x~ and x6 directions. The 
coordinates x0,x1,x2,x3,x4 which are common to 
the NS 5-branes and D5 branes are the coordinates 
of the 5D field theory. Actually, as pointed out in 
Ref. [ 11, the naive configurations obtained by T-dual- 
ity should be reconsidered taking charge conserva- 
tion into account. In addition to NS and D five- 

branes, there are, more generally, (n,m) five-branes 
with tension 

1 n* rn’ 
Vrn) = (2,$& 2 + 7 ’ 

n is the NS charge and m the R charge; A is the IIB 
string coupling constant. ’ Charge conservation im- 
plies that when a (O,m) brane ends on a (n,O) brane, 
a (n,m) brane is formed. The zero force condition 

implies that it satisfies [2,5] IsI = I$b. This (n,m> 
brane with this orientation in the (x5,x ) plane does 

not break the supersymmetry any further. 
The brane configuration is expected to be related 

to the 5D gauge theories when A +Z 1. Then (n,m> 
branes with IZ # 0 are much heavier then the D5 

fivebranes, hence they can be treated as a classical 
background. 

3. M theory description 

The M-theory origin of the type IIB 5D theories 
was discussed in [5]. In the usual type IIA picture we 
start with NS branes (012345) corresponding to un- 
wrapped M-theory fivebranes (M5) and D4-branes 
(01236) corresponding to MS-branes wrapped on 

’ This expression is valid if the RR scalar vanishes. This 

corresponds to taking a torus with rectangular unit cell in the next 
section. 
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x lo. To obtain the description of the type IIB 5D 
theories we further compactify the x4 direction on a 
circle of radius R,. Thus we consider M-theory on a 
torus. Type IIB string theory is obtained in the limit 

of a zero area torus R, R,, + 0 while keeping the 
string coupling A - 2 fixed. In view of the relation 

[ 111 (I,, is the 1 l-dimensional Planck length) R, 
_1;L 

N RIORA R, --f 0~) in this limit; it becomes the new 

tenth type IIB dimension. Note that in effect we are 
performing here the usual T-duality transformation 
with R, N d/R, and CY’ N 1:,/R,,. 

In the M-theory description there is a SL(2,Z) 

acting on the complex structure of the two-torus on 
which we compactify and thus also on the doublet of 
winding numbers, (p,q), of the M5 brane which 
wraps around the torus. This involves the coordinates 
x4 and .x1’. The fact that (p,q) specifies the winding 

of the M5 brane on T’ as well as the orientation of 
the resulting (p,q) branes in the (x5,x6) plane, 

means that SL(2,Z) acts on the complex coordinates 
L’ = (x4 + ix5>/R, and s = (x6 + ix”)/R,,, which 

transform as a doublet. 
We are, therefore, considering the type EIA theory 

for which an M-theory description exists with com- 
pactified x4 and recover the 5D theories in the limit 
R, -+ 0 or, equivalently, R, -+ 00. 

4. SU(N) gauge theories 

In [4] a description of brane configurations which 
are relevant to N = 2 gauge theories in four dimen- 
sional space-time was given via a smooth curve in M 

theory 

F( u,t) = 0, (3) 

where t = exp( - s/R,, ). The brane configurations 
which we consider in the present paper are related to 
the brane configuration of [l] by T duality along the 
x3,x“ directions, taking into account charge conser- 
vation as mentioned in the previous section. It is 
possible therefore to describe them via a curve in M 
theory [5]. Before we continue we should note that 
the curve which was used to describe the four di- 
mensional theories is smooth in the M theory limit. 
To be more precise the maximal curvature (at the 

ends of the DCbranes on the NS fivebrane) is of the 
order of 1 /RF0 [ 121. The M theory description of the 
type IIB theory is singular. Therefore one might 

expect that for the brane configuration which is 
relevant to describe five dimensional gauge theories 
the curve is singular in the type IIB limit R, -+ ~0. 

Indeed, using the curve (which is defined below) 

one can find that the maximal curvature (at the ends 
of the D5 branes on the NS fivebrane) is propor- 

tional to Ri Rf,/(Ri + RF,>’ , so by going to the 
type IIB limit a curvature singularity appears. Never- 
theless the M theory description will provide some 

insight into the relation between the brane configura- 
tions and 5D field theories compactified on a circle 
of radius R,. In the four-dimensional case by going 
from the type IIA brane configuration to the smooth 
brane configuration in M theory we obtained all 

non-perturbative corrections. The holomorphic curve 
turned out to be the Seiberg-Witten curve and the 

condition that the BPS states come from supersym- 
metry preserving M2 branes which end on the holo- 
morphic curve lead to the Seiberg-Witten differential 
[ 131 For recent discussions within the context of M 
theory, see also [ 14- 161. Together they contain the 

information about the full IR dynamics of the N = 2 
gauge theory including all instanton corrections [17]. 
The situation we encountered in the present work is 
quite similar. If we consider the 5D case the M 

theory description becomes singular and the type IIB 
brane configuration receives no corrections. There 
are no instanton corrections in five dimensions [81. 

However, as we compactify this five dimensionai 
theory on a circle the situation changes. To the usual 
4D one-loop prepotential, we have to add corrections 
coming from an infinite tower of Kaluza-Klein states 
and instanton corrections [7]. Both types of correc- 
tions are again found by going to the M theory 
description where they are encoded in the explicit 
form of a complex curve which is uniquely fixed by 
the asymptotic behavior of the hranes and the condi- 
tion of supersymmetry, i.e. holomorphic embedding 
in the (u,s) space. Some of the curves we find agree 
with the spectral curves of relativistic Toda systems, 
which were used in Ref. [7] to study the non-per- 
turbative solution of 5D theories compactified on a 
circle. The meromorphic differential, which one also 
needs to specify the theory, is the same the on in 

[131. 
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After compactifying x4 on a circle, u is no longer 
single-valued. Following [5] we introduce 

Ll 
w=exp -i- 

i 1 R, 
(4) 

and describe the curve by 

F(w,t) =o. (5) 

We are interested in finding all inequivalent theories. 

The S generator of ,X(2,2) interchanges the NS5 
and D5 branes. It, thus, rotates the corresponding 
brane configuration by 90 degrees taking A + 
- 1 /A. Therefore, in the new configuration the (new) 
NS5 branes will be the lighter ones and we shall 

consider the effective field theory on them. This is 
precisely the same theory as the original one. We 
can, therefore, limit ourselves to SL(2,Z) transforma- 
tions which keep the D5 branes lighter than the NS 
branes. Since we look at theories with only one 
gauge factor we restrict ourselves to configurations 
with two NS5 branes i.e. the polynomial should be 
quadratic in t. This leaves SL(2,Z) transformations 
of the form 7”. Matter is introduced via semi-infinite 
D5 branes. 

P,(w)t’+P,(w)t+P,(w) =o. (6) 

Moreover, we always have the freedom to move the 
semi-infinite D5 branes to one side keeping the 
coefficient of t’ normalized to one. This can be 
achieved by the transformation t + P,(w)/t (such a 
transformation moves all semi-infinite four branes to 
the right hand side of the NS branes) which yields 

t2+P2(w)t+Pa(w) =o, (7) 

where P4 = P, P,. If we express the curves as van- 
ishing conditions in w and t, as opposed to v and t, 
we have to take into account that w = x and w = 0 
correspond to the asymptotic region (whereas L! = 0 
does not). That means that the multiplicity of the 
zero roots of the polynomials P, and P4 will be 
relevant. We therefore write them in the following 
general form: 

N 

P?(W) =c~w”JJ(w-iii). 
i= I 
N, 

P4(w) =c4wm,(w-.J. 
j= I 

(8) 

The integers n, m characterize the underlying field 
theory, as will become explicit below. To specify the 

field theory which is described by the brane configu- 

ration associated with a given curve we need to 
study the asymptotic behavior of the branes. 

Let us first consider w --f cc). To leading order we 

get (after a resealing) 

$ + CWN+nt + WN/+m = 0. 

The asymptotic behavior is therefore 

(9) 

I,-w 
N+n N +m-N-n 

, t,-W’ 

when 2(N+n) >Nf+m, 

t,., - w N+” when 2(N+n) =Nf+m, 

t, 2 -w (N,+“)/2 when 2(N+n) <Nf+m. 

(10) 

For 2( N + n) < Nf + m the asymptotic behavior of 
the branes depends only on Nf. The type IIB descrip- 
tion of such theories leads to crossing of the NS 
fivebranes and hence new massless excitations will 
appear. The analog case in [4] leads to gauge theories 
with positive beta function. In the case of finite R, 
no singularity associated with brane crossing appears 

in the curve. The branes do not really cross but they 
approach each other asymptotically. It would be 
interesting to further investigate this range since it 
may lead to new theories as was conjectured by [2]. 
One does not expect these theories to be SU(N) 
field theories with N,. flavors since those do not lead 
to non-trivial fixed points for N, > 2 N (N 2 3) [6]. 
For ordinary SlJ(N) theories we should focus on 
2( N + n) 2 N, + m. In four dimensions they corre- 
spond to asymptotically free theories, whereas in five 
dimensions they will lead to non-trivial IR fixed 

points. The case 2( N + n> = Nf- + m corresponds to a 
situation where in the IIB picture there are two 
parallel five branes which go off to x5 = +a at a 
finite distance apart. In the 4D limit this corresponds 
to the superconformal theories where the distance 
between the parallel fivebranes amounts to a choice 
of the gauge coupling r. 

Consider now PV j 0 (x’ --) - m) the leading or- 
der polynomial is 

t’ + c’w”t + wm = 0 (11) 
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and the asymptotic behavior is 

t, 1 N M, m/2 when 2n >m, 

I, 2 - W’l when 2n=m, 

t, - VP, fZ - w m--n when 2n Cm. (12) 

CCurves with 2n > m correspond to type IIB config- 

urations with crossing semi-infinite fivebranes (or 
asymptotically approaching fivebranes for finite Rs). 
Thus we concentrate on curves with 2n I m. As 
mentioned above, the only SL(2,Z) transformations 
which are not yet fixed by the Ansatz (7) are T’. 
Such a transformation acts as f + tw’, w -+ w 

which takes m --f m + 2 I and n --f n + 1. Since 2 n s 
m one can set n = 0, m 2 0. We are thus left with 
the single constraint 

2N2Nf+m, (13) 

which means that m = O,l, . . . ,2 N - N,. The parity 
operator w -+ 1 /w (P -+ -u) takes 

m+2N-Nj-m. (14) 

Therefore the number of allowed values for m which 
yields different curves is [(2 N - Nf + 1)/2]. For N 
> 2 this result is in agreement with the field theory 
result [6] where it was found that the number of 

allowed values for Ic,,I is [(2 N - Nf + 1)/2]. Recall 
that c,, is the numerical coefficient of the bare cubic 
term in the prepotential which characterizes the the- 

ory. We have thus found that the brane configura- 
tions we have obtained from M theory simply repro- 
duce the known superconformal field theories. 

To find the relation between (c,, I and m we note 
that the parity transformation w + I/w acts as 
charge conjugation as it reverses the orientation of 
the elementary strings. Since charge conjugation 
takes c,, -+ - c,, [6] we identify, using Eq. (14) 

c,, = N - m - Ni/2, (15) 

Below we show, using the M theory approach, that 
the brane description agrees with the field theory 
result [6] (this was already shown using the type IIB 
description [3]). The one exceptional case is SU(2) 
were it was argued that theories with Nf= 5,6,7 are 
also consistent [8] while no consistent brane configu- 
ration could be constructed [2]. 

The SU(2) theories with Nr= 5,6,7 correspond to 
interacting fixed points with global symmetry groups 

E6, E,, E, [8]. Nr = 8 is also consistent but does not 

lead to an interesting fixed point. But these theories 
are outside the range Nr < 2 N of allowed brane 
configuration. In Ref. [2] it was explained that by 
going beyond this bound two semi-infinite branes 

necessarily cross and this crossing would induce 
additional massless states. In our M theory configu- 
rations (7) this singularity does not occur but the two 

branes approach each other asymptotically. Never- 
theless also in this setup we expect additional light 
states which have no conventional field theory inter- 

pretation. 
After having given the general form for the curves 

in Eq. (8), we will now rewrite them in a form that 

allows us to go to the d = 4 limit by taking R, -+ 0 
or, equivalently, R, + ~0. By an appropriate choice 
of the constants c2 and cq one obtains 

N 

t2 + 2twN/2 n R,sin 3 
i= I ( ) A 

+ WN,/2+m (16) 

ai are the positions of the finite D branes in L‘ space 

and m,, the bare masses of the hypermultiplets, are 
the positions of the semi-infinte D branes. Note that 
whereas in the five-dimensional theories the masses 
are real, they are complex in the compactified the- 
ory. The parameters are related to those in Eq. (8) 
via 2; = ~-‘</RA, /Tzi = e -iml/R~. For R, + co or R 

B 

- 0 this becomes 

12+2ffi(o-ai) + fi(u-mj) =O. (17) 
i=l j=l 

which agrees with the curves for SU(N) N = 2 
SQCD with Nf flavors of [ 18,191 

On the other hand we can study the large R, 
region of these curves and integrate out hypermulti- 
plets by sending their masses to infinity. There are 
two possibilities m + k ~0 which leads to two differ- 
ent curves which correspond to two theories with 
equal matter content but different values of c,,. 
Starting from the unique curve for Nf = 2 N the flow 
pattern of the curves reproduces all possible theories 
labeled by c,,. Also the relation of c,, to the number 
of quarks with positive and negative masses has an 
explanation in the M theory picture. 
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In the 4D case one can obtain the effective gauge 
coupling by considering the asymptotic bending of 
the NS branes which can be read directly from the 
associated M-theory curve. This does not hold in the 

5D case. It is reflected by the fact that calculating 

log(t,/t,) where t,., are the two roots associated 

with the curve (16) does not give the effective gauge 
coupling in the limit R, + a. This bending calcula- 
tion reflects, however, the Nf< 2 N bound. The 
correct way to define and obtain the 5D effective 

gauge coupling is by calculating some BPS mass as 
is explicitly demonstrated in Ref. [2]. It would be 
important to rederive it geometrically via the M-the- 

ory approach. 

5. SO(N) and Sp(2N) gauge theories 

The M theory description of SO(N) and Sp(2 N) 
gauge theories in four dimensions was given in 

[14,21]. A subtlety in d = 4 was how the orientifold 
planes, which are present in the type IIA formulation 
would appear in the M theory description. Here we 
will determine curves which have the correct behav- 
ior in the four dimensional limit and which respect 

the symmetries, i.e. they must be symmetric under ’ 
w + l/w, corresponding to u -+ -c’, and be peri- 
odic in u. We first note that the first of these 
conditions does not allow for the introduction of the 
parameter m which distinguished different theories 
in the SlJ( N) case. For SO(2 N 1 we thus arrive at 
the curve 

i’(sin~j’+21fisin( zjsin( zj 

+c(sin,,I$sin(z)sin(?) =O. 

By appropriate choice of c and resealing of t one 
can take the limit R, + CC and arrives at the well 

3 As in the four-dimensional case. for SO(2n + I) we must at 

the same time transform t * - I; cf. 1211. Also. a shift u + L + 
2rR,, must be accompanied by a shift .r + s + aR,,. 

known Seiberg-Witten curves for SO(2N) with Nt 
fundamental hypermultiplets. 

Note that mi and -mi enter in the curve symmet- 
rically due to the reflection symmetry L: * -u. In 

particular, this implies that c,, = 0 in this case since 
the flows m + +m and m + --CC are equivalent (in 
contrast to the SU(N) case). This is also in agree- 
ment with field theory results [6]. This will also carry 
over to the SO(2 N + 1) and Sp(2 N) theories to be 
discussed below. This curve has the expected behav- 

ior as we go to R, + 00 i.e. it turns into the four-di- 
mensional curve (after a resealing of t and v). On 
the other hand if we investigate the curve for large 

R, and study the behavior for 1 ul z+ la, I,lmjl one 
should reproduce the bending (tilting) of the five 
dimensional brane configurations. Indeed we find 

t2exp(21L:I/RA) + texp(Nlul/R,) 

+ exp((2 + Nf)Iul/R,) = 0. 

For 

( 19) 

2N-4>N, 

one finds 

(20) 

log( t,/r?) N R&N - 8 - 2N’)lcI, (21) 

i.e. in the asymptotic region there are two branes 
which diverge from each other or move off to infin- 
ity at a finite distance. For 4N - 8 < 2 N,, on the 

other hand, they asymptotically approach one an- 
other. The condition (20) agrees with Ref. [3]. Note 
that it differs from the condition for asymptotically 
free SO(2 N) theories in four dimensions (2 N - 2 > 
NJ 1. 

The discussion for SO(2N + 1) and Sp(2 N) is 
analogous, so we will be very brief. 

For Sp(2 N) gauge groups the curve is 

i’+2~(sin~j2fisin(~)sin(~) 

+ccsin(zjsin(z) =O. (22) 

The allowed range of theories is now 2N + 4 2 Nf, 
in agreement with field theory results [6]. 

Finally, the SO(2 N + 1) curve follows from the 
SO(2 N) curve by realizing that one of the ai should 
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vanish and that this zero should be simple. This 
gives 

11 

i i 

2 

t2 sinF 
A 

+2tsin( -&-)fisin( z)sin( z) 

+c(sin~)*$sin(~)sin($) 

= 0, (23) 
which leads to the expected bound 2N - 3 2 Nf. 

Note that the limits on Nf for orthogonal and 
symplectic groups can be interpreted from the brane 
configuration in the same way as in the four dimen- 
sional case if one takes into account that an 05 

plane now has (minus) the charge of a D5 plane, so 
that by the combined arguments of Refs. [20,25,21] 
one needs to add twice as many semi-infinite (SO) 

or finite (Sp) D5 branes at the position of the 
orientifold plane. 

6. Summary 

The M-theory approach can be extended to dis- 

cuss type IIB configurations and their corresponding 
(compactified) 5D field theories. From the M-theory 
point of view we still have just one M5 brane 
embedded in R3-’ X R 2 X T 2 where the torus corre- 
sponds the (x4,x”) subspace. We have constructed 
the curves which account for SU(N), SO(N) and 
Sp(2 N) 5D supersymmetric gauge theories compact- 
ified on a circle. In particular, for the SU(N) case 
we account for all 5D theories with Nf < 2 N and 
identify the parameter in the curve corresponding to 
c,,. Recall that from the field theory point of view it 
is c,, that characterizes the theory [6]. Here we find 
the curves associated with these theories. The bound 
Nt I 2 N is correct for N 2 3. However for N = 2 it 
is known [8] that there exist theories for Nf = 5,6,7 
which lead to non-trivial fixed points with excep- 
tional global symmetries E6,7,8. We note that for 
these theories also no brane construction is known 
(but they can be realized using branes as probes [8]). 
It seems that whenever there are theories with excep- 

tional symmetries it is difficult to get them using flat 
brane constructions or in the related M-theory ap- 
proach. These theories can however be constructed 

within the geometric engineering approach in which 
a compactification on some curved (non-compact) 
manifold is considered [22]. 

The curves which we have found are intimately 
related to the curves which were considered in the 
discussion of integrable 5D models compactified on 
a circle [7]. In our analysis we have considered only 
curves leading to theories with classical gauge groups 
and N, flavors. We have found in all cases the 
known bounds on Nf. In the analysis of the different 
inequivalent curves we have discarded curves which 
do not lead to such theories. It corresponds in the 

brane picture to brane configurations with Nf outside 
this bound ( Nf 2 2 N for the SU(N) case) which 
necessarily involve more intersections of the five- 

branes than the ones which exist on the Coulomb 
branch within the bound. It would be important to 
further investigate these curves and see whether they 

correspond to new interesting superconformal theo- 
ries in the IR limit as was conjectured in [2]. 

We want to close with a comment on an altema- 
tive way of introducing matter in the five dimen- 
sional systems. For the brane description of three and 
four dimensional gauge theories this was also possi- 

ble via infinite D5 and D6 branes, respectively. This 
way of introducing fundamental matter multiplets 
allows for the discussion of the Higgs branches of 
these theories. One might now try to extend this to 
the five-dimensional theories discussed in this letter 
and arrive at the appropriate brane configuration via 
T duality. This is however not straightforward, for 
the following reasons. First we recall that the type 
IIB brane configurations discussed here are not the 
naive T duals of the ones discussed in d = 3 and 
d = 4, since T duality would not automatically lead 
to the polymeric brane configurations, but rather to a 

network of straight branes. Also, the five and six 
branes necessary to discuss the Higgs branches in 
d = 3 and d = 4 would, under T duality, turn into D7 
branes, which, since their transverse space-time is 
2 + 1 dimensional, would be expected to lead to a 
deficit angle. Indeed, the 7 branes constructed in [23] 
give a constant deficit angle of i. However, they 
are not related to lower dimensional D branes via 
T-duality. For IIB theory compactified on a circle, 
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there exists a seven brane solution which is T-dual to 
the six brane of IIA [24]. It reduces, however, in the 

decompactification limit to flat 10 dimensional 
Minkowski space-time, i.e. there is no deficit angle. 
This issue needs further study. 
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