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A closed expression of the Euclidean Wilson-loop functionals is derived for pure
Yang—Mills continuum theories with gauge groups 8l(and U(1) and space-

time topologiesR*x R and R*x St. (For the U(1) theory, we also consider the
S'x St topology) The treatment is rigorous, manifestly gauge invariant, manifestly
invariant under area preserving diffeomorphisms and handlepialtewise ana-

lytic) loops in one stroke. Equivalence between the resulting Euclidean theory and
and the Hamiltonian framework is then established. Finally, an extension of the
Osterwalder—Schrader axioms for gauge theories is proposed. These axioms are
satisfied in the present model. €997 American Institute of Physics.
[S0022-24887)00911-7

I. INTRODUCTION

Although the literature on Yang—Mills theories in 2 space—time dimensions is quite rich, a
number of issues have still remained unresolved. The purpose of this paper is to analyze three such
issues. The paper is addressed both to high energy theorists and mathematical physicists. There-
fore, an attempt is made to bridge the two sets of terminologies, techniques and conceptual
frameworks.

The first issue concerns the expectation values of traces of holonomies of the connection
around closed loops in the Euclidean domain, i.e., the Wilson loop functionals. The traces of
holonomies are, arguablihe central observables of thipure Yang—Mills theory. In the classical
regime, they constitute a natural set(oencomplete gauge invariant functions of connections
with rich geometrical and physical content. Hence, their Euclidean vacuum expectation values are
the naturabgauge invariantanalogs of the expectation valugéf): = (expifd"x ¢(x)f(x)) in scalar
field theories which determine all threpoint (i.e., Schwinger functions(via repeated functional
differentiation with respect t6é). From theoretical physics considerations, therefore, one expects
the Wilson loop functionals to completely determine the theory. From a mathematical physics
perspective, the quantum theory is completely determined if one specifies the underlying measure
du—the rigorous analog of the heuristic expression *‘epA]ZA’" — on the space of Euclid-
ean paths. The expectation values of products of traces of holonomies determine the “moments”
of the measur@w. Hence, one expects them to determine the measure completely.
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Over the years, these considerations inspired a number of authors to devise imaginative ways
to explore properties of the Wilson loop functionals. For example, Makeenko and Mifgdal
mulated differential equations that these functions have to satisfhe space of loopand then
introduced physically motivated artza to solve them(See also Refs. 2, BSimilarly, Gross and
co-authoré have used stochastic methods to obtain closed expressions for non-overlapping Wilson
loops. While these methods have yielded a wealth of insights, to the best of our knowledge, a
closed expression for generic Wilson loops has not yet appeared in the litei@uimest the
compuations performed provide us with an expression which is exact but only implicit in the sense
that there have still to be done non-trivial computations for each case at hand; see, e.g\., Ref. 5
The first purpose of this paper is to provide such an expression foNB{Hnd U1)] gauge
theories assuming that the underlying Euclidean space—time has a topoléty &f, or R1x St
(In the U(1) case, we also allow the topology to®le< St.) The final expression is explicit up to
a trivial contraction of group indices for a matrix which we have computed for the general case.

The second issue treated here is the relation between the Euclidean description in terms of
functional integrals and the canonical description in terms of a Hilbert space and a Hamiltonian.
For scalar field theories, there exists a general framework that ensures this equivséeneeg.,

Ref. 6. We extend it to gauge theories and explicitly establish the equivalence between the two
descriptions in the case when the Euclidean topolodytis R* or R1x St. While the extension
involved is rather straightforward, it is quite illuminating to see how the Euclidean framework—
which, a priori, does not know that the system has only a finite number of true degrees of
freedom—reduces to the Hamiltonian framework which, from the very beginning, exploits the fact
that this is a quantum mechanical system, disguised as a quantum field theory.

Our third goal is to suggest an extension of the axiomatic framework of Osterwalder and
Schrader. In that framework, one assumes from the very beginning that the underlying space of
paths is linear, and can be identified with the distributional ddgalof the Schwartz space” of
smooth test functions of rapid decreasee, e.g., Ref.)6 The axioms are restrictions on the
measureuw on .’ formulated as conditions on the functiong{f) = [du(expifd™ ¢(X)f(x)),
introduced above, now interpreted as the Fourier transform of the measurkow, in gauge
theories, it is natural to regard each gauge equivalence class of connections as a distinct physical
path. The space?Z/ & of paths is then a genuinely non-linear space and the standard axioms can
not even be stated unless one introduces, via gauge fixing, an artificial linear structut&<an
(In higher dimensions, due to Gribov ambiguities, such a gauge fixing does noj &estwill
suggest a possible extension of the standard framework to encompass gauge theories in a mani-
festly gauge invariant fashion and show that the axioms are in fact satisfied in the two-dimensional
Yang—Mills theories discussed in sections II-IV. We would like to emphasize, however, that there
is a key difference between the status of the first two sets of results and the third. In the first two
cases, we deal only with two-dimensional Yang—Mills theory and the results are definitive. In the
third part, the general framework is applicable to gauge theories in any space—time dimension and
the discussion is open-ended; it opens a door rather than closing one. In particular, relative to other
attempt$ in the literature, our approach is still very much in the preliminary stage.

The main ideas behind our approach can be summarized as folBawsa more detailed
discussion, see Refs. 8, irst, we will maintain manifest gauge invariance in the sense that we
will work directly on the space#/ <. No attempt will be made to impose a vector space structure
by gauge-fixing; we will face the non-linearities .of/ & squarely. Now, it is well-known that, in
guantum field theory, smooth fields make a negligible contribution to the path integrals; physically
interesting measures tend to be concentrated on distributions. Therefore, in the case of gauge
theories, we need to allow generalized connections. Fortunately, a suitable comp#tiorof
the space 7/ < of smooth physical paths has been available in the literature for somé%the.
Furthermore, this space carrt&s'®a rigorously defined, uniform measuug which can serve as
a fiducial measure—the analog of the heuristic measuhe The idea is to construct the physi-
cally relevant measure by “multiplyindu by exp—S” where S is the Yang—Mills action.

J. Math. Phys., Vol. 38, No. 11, November 1997

Downloaded 08 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Ashtekar et al.: Two dimensioanl SU(N) quantum Yang—Mills theory 5455

As in all constructive quantum field theories, this task is, of course, highly non-trivial. We
proceed in the following steps. First, we consider Wilson’s lattice-regularized veSgjoof S.
Now, it turns out that exp Sy is an integrable function with respect to the measdirg, and,
furthermore, products of traces of holonomiﬁgi- Ty around loopsyq, ...,ay are integrable

on .7l % with respect to the measure exf, duy. We compute these expectation values as a
function of the lattice spacing, used in the Wilson regularization, and then show that the resulting
expressions have a well-defined limit as the spacing goes to zero. These are the required Wilson-
loop functionals in the continuum. General theor&tn¥ from integration theory on#/ < guar-

antee that there exists a genuine, normalized measygeon .2/ < such that the integrals of
products of traces of holonomies with respeclutg, are the Wilson loop functionals computed

by the regularization procedure. This provides a concrete proof of the existence of a consistent
Euclidean theory.

The techniques we use were first developed in the context of a non-perturbative approach to
general relativity* Therefore, our emphasis is often different from that in the literature of Yang—
Mills theories. For instance, we arrive at the final, closed expressions of Wilson loops by a direct
computation of the functional integrals, rather than through differential equations these functionals
satisfy on the loop space. In this sense, our approach is similar to that followed in the mathemati-
cal physics literature. However, in these rigorous approaches, one often tries to exploit methods
which have been successful in kinematically linear theories and, to do so, introduces a vector
space structure aof#/.¢ through gauge fixing. As mentioned above, we work directly on the
non-linear spaceZ/ ¢ and thus avoid gauge fixing in conceptual considerations. Also, our method
respects the invariance of the theory under area preserving diffeomorphisms. In particular, our
Wilson loop functionals — and hence the final, physical measure for the continuum theory — are
manifestly invariant under the action of this group.

The plan of the paper is as follows. In section Il, we review the relevant notions from calculus
on.Z/<. In section Ill, we reformulate lattice gauge theory in a manner that makes the analytic
computation of Wilson loop functionals easier. This formulation constitutes the basis of our
discussion of the continuum theory in section IV. Here, we first derive the general form of the
Wilson loop functionals with ultraviolet and infrared cut-offs provided by the lattice regularization
and then show that the functionals admit well-defined limits as the cut-offs are removed. In the
mathematical physics terminology, these limits are the generating functions for the physical,
Yang—Mills measure on#/%. For simple loops, we recover the well-known area law which is
generally taken to be the signature of confinement. More generally, if we suitably restrict our
choices of loops, our general results reduce to those obtained previously in the mathematical
physics literature. Section 1V reviews the Hamiltonian quantization of Yang—Mills fields in cases
when the underlying Lorentzian space—time has the topology of a 2-plane or a 2-cylinder. The aim
of section V is threefold. We begin with a brief review of the Osterwalder—Schrader framework
for kinematically linear theories and, using the machinery developed in sections l1-IV, propose an
extension to handle gauge theories. We then show that our two-dimensional model, treated in
section |V, satisfies these axioms. Finally, we show that the Hamiltonian framework reviewed in
section IV can be systematically recovered from the Euclidean framework. Section VI summarizes
the main results, compares them with the results available in the literature and suggests some
directions for further work.

A number of technical topics are covered in appendices. Specifically, Young tableaux which
are needed in certain computations of Sec. IV are discussed in Appendix A and the details of the
Euclidean U(1) theory on a torus are presented in Appendix B.

Finally, we wish to emphasize that in most of this paper we have restricted ourselves to
non-compact space—times since it is only in this case that a direct comparison with the Hamil-
tonian theory is possible. In particular, all our results in the non-Abelian case pertain to space—
time topologiesR xR andS'x R and it is only in these cases that we have obtained a complete
solution. In recent years, there has been extensive work on Euclidean Yang—Mills theories on
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compact Riemannian surfacésee, e.g., Refs. 15—1Which has led to a variety of interesting
results. (For reviews, see, e.g., Refs. 18, J1Similarly, interest in the largéN limit of two-
dimensional Yang—Mills theories and coupling to fermions in this limit has also been renewed in
the last few yearqdSee, e.g., Refs. 20—22owever, all these developments lie outside the scope
of the present paper.

Il. PRELIMINARIES

In this section, we will review the basic notions from Refs. 10—13(2@l references thergin
which will be used in this paper. This material will provide the necessary background for our
discussion of the mathematical aspects of functional integration, axiomatic formulation of gauge
theories and the relation between Euclidean and Hamiltonian formulations. A reader who is
interested primarily in the computation of the Wilson loop functionals can skip this material and
go directly to sections Il and IV.

By a loop we will mean a piecewise-analytic embeddingSbfinto the (Euclidean space—
time manifoldM. For technical convenience, we will only consider based loops, i.e., loops passing
through a fixed poinp in M. Denote the set of these loops b,. As indicated already, our
structure group will be either SB) (where N=2) or U(1). Fix any one ofthese groups,
consider a trivial Principal fibre bundi2 on M and denote by-# the space of smooth connections
onB. Given anyAe .7, we can associate with evetye 2, an element of SUN) by evaluating
the holonomy,

h,(A):=2 ex;( - 3£ A), (I.1)

at the base poinp (where, as usualy’ stands for “path orderedj: Let us introduce an equiva-
lence relation onZ,: two loops aq,a,e %4, will be said to be holonomically equivalent,
ay~ay, iff h, (A)=h, (A)VAe. 7. Each of these holonomically equivalent loops will be
called ahoop It is straightforward to verify that the spac&.s of hoops has a natural group
structure. We will call it theHoop group For notational simplicity, in what follows we will not
distinguish between a hoop and a loop in the corresponding equivalence class.

Denote by the group of smooth, local gauge transformatigns., of smooth vertical
automorphisms oB). Of special interest are thg-invariant functionsT , of connections obtained
by taking traces of holonomies:

To(A):= % tr(h,(A)), (11.2)

where the trace is taken with respect to tHedimensional fundamental representation of the
structure group. As is well known, the functiolg suffice to separate points of/.¥ in the sense
that given all theT ,, we can reconstruct the smooth connection modulo gauge transformtions.
This is significant because, in the classical theory, physical paths are represented by elements of
A

To go over to the quantum theory, we need to extend this space of paths appropriately since
the set of smooth paths is, typically, of zero measure in physically interesting theories. One
possible extension has been carried out in the literdftife(For motivational remarks, see Ref.
8.) This extension, 7/ %, can be characterized in three complementary ways, each emphasizing a
different set of its properties. Since// < will play a fundamental role in the quantum theory —
in our approach it represents the space of gauge invariant, physical paths in the Euclidean ap-
proach — we will now sketch all these characterizations:
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(i) Perhaps the simplest characterization is the followirg:¢ is the space o&ll homomor-
phisms from the hoop groupZ¥ to the structure group SB() or U(1), (modulo the
adjoint action of the structure group at the base pp)ntlt is obvious that, given a smooth
connection, the holonomy map @fi.1) provides such a homomorphism. However, it is
easy to construtt examples of more general homomorphisms which, for example, would
correspond to “distributional connections.” In relation to the more familiar scalar field
theories, 77 will play a role which in some ways is similar to that played by the space
of test functions and /¢ is analogous to the spacg”’ of Schwartz distribution. In
particular, just as””’ is the space of paths for scalar fieldg/~ will serve as the space of
paths for gauge theories. The “duality” betwee#s” and. 7/ < is non-linear. However,
just as elements of” serve as labels for cylindrical functions ofi’, elements of7Z< will
serve as labels for cylindrical functions on/ <. L

(i) The second characterization brings out the topological structure/of. Recall first that
in any of the standard Sobolev topologies .off ¢, the functionsT, are continuous.
Furthermore, for gauge groups under consideration, they are bounded. Hencealgebra
they generate is a sub-algebra of tB&-algebraC®(_#/ %) of all continuous bounded
functions on_7/ <. Denote the completion of this-algebra by.7Z_7. This is an Abelian
C*-algebra with identity and is called th®lonomy algebraNow, the Gel'fand represen-
tation theory guarantees that’ 7 is naturally isomorphic with th€*-algebra of all con-
tinuous functions on a compact Hausdorff space. This space — the Gel'fand spectrum of
.4 — is our .2l . Thus, the topology on#/< is the coarsest one which makes the
Gel'fand transforms of the traces of holonomies continuous. Finally, siicé suffices to
separate points of7/ &, it immediately follows that-7/.¢" is densely embedded iw/ <.

(i) The last characterization is in terms of projective linftOne begins with two projective
families labelled by graphs, each consisting of compact Hausdorff manifolds. The projec-
tive limit of the first yields a completionZ of the spaceZ of smooth connections while
the projective limit of the second provides a completion of the the spaad smooth
gauge transformations. One then shows thats=. 7/ <. This characterization is best
suited for analyzing thésurprisingly rich geometric structure of#/ .22

Finally, we note that#/ < admit¢'~*3a natural, normalized, Borel measyrg which, in our
approach, will play the role thatZA” plays in heuristic considerations. We will conclude by
indicating how this measure is defined.

To begin with, let us consider the family of all piecewise analytic, oriented gripimsM.
Denote bym,(I") the fundamental group of the graph Choose a system of generat@s, ...,B,
of 71(I') wheren:=dim(s(I")) is the number of independent generators of the fundamental
group. With this machinery at hand, we can define the notion of “cylindrical functions,” which
will be the simplest functions onZ/ ¢ that we will be able to integrate. Note first that, given any
graphI', we have a natural projection map,

Pri/l5—G" A= (hg (A),...hg (A)), (11.3)

from .7/ < to G", whereG is the structure groupi.e., SUN) or U(1)] under consideration.
Cylindrical functions are obtained by pull-backs of smooth function&8mnder this map. Thus,
given any smooth functiofir on G", f=(pp)* f; is a cylindrical function.

The measurg.y on .7/ % can now be introduced via:
fT/duo(A)f(A)F fGndMH(gl)--d/-LH(gn)fF(gla co8n)- (1.4)
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The proof that this condition does indeed define an infinite dimensionahdgditive) regular,
normalized Borel measure, on .7/ is given in Ref. 23.

lll. LATTICE GAUGE THEORY

In this section, we will recast the standard description of lattice gauge theory in a form that is
better suited for our discussion of the continuum limit in section IV.

Consider finite square latticd¥a,L,,L,) in M with spacinga and lengthL, andL, in the
x andy directions. This lattice containg\¢+1)(N,+1) vertices, wherdN,a:=L,, Nya:=L,.
Note that the use of such a lattice for quantum field theory implies both an infra-red redtHator
finite volume defined by the, andL,) and an ultra-violet regulatddefined by the lattice spacing
a). Our strategy will be to construct a regulated quantum theory in this section and then remove
the regulators in the next section.

Let us denote the open path along an edi) of the lattice from a vertex to an adjacent
vertexj by

|:Ii—‘j
so that we may define the plaquette loops

DOy =1 (_x,ly)a(x,y-*— 1°! (_x,ly+ 1 (x+1y+ 1% o 1y - 1y + 1% iy - (v ) - (n.1)

That is, each plaquette loop starts at the bottom left corner and our convention is such that the
coordinate directions define positive orientation. Here the coordinagesre taken to be integers.
For the planeM =R XR, all of these links are distinct while for the cylindev]=RxS', we
identify I(Ly)ﬁ(lyyﬂ)zl(Nxﬂly)ﬂ(NxﬂvyH). On the torus, we also identifyl 1) (x+1,1)
=I OGNy +1) = (x+ 1Ny +1) -

Next, we introduce a set of closed loops which can serve as generators, i.e., in terms of which
any loop inI" based ap can be expressed via composition:

(i) Let p, , be an open path il from p to the point &,y). The loops

Bx,y:::BD( :px_;o‘:‘(x,y)opx,y (”I-Z)

xy)”
generate all loops on the plane.
(i) On the cylinder, we need an additional loop. We will take it to be the “horizontal” loop

=l Ny +1)— (LN + polin- LNy +1)—(Ny Ny +1)°"° el (INy+1)—(2Ny+1) * (n.3)
(iii ) Similarly, on the torus we need an additional loop,
Yy =lany-aplan-n-an) ey aa - (In.4)

However, the loop$py .y, ¥x, ¥y} are not independent as the logp Lo o Lo Yy° ¥x €an be written
as a composition of thg, , . (An intuitive notion of independence will suffice for our work here.
For a careful definition, see Ref. 1 This constraint will lead to an “interacting” U(1) theory for
the torus in contrast to the plane and the cylinder.

With these preliminaries out of the way, let us now summarize the standard formulation of the
lattice gauge field theory by Wilsdti.For each of the links in the lattice, introduce oBevalued
degree of freedon(the “parallel transport along the link” Let the “lattice Yang—Mills action”
be given by the Wilson expression

: (I11.5)

Swi=> {1—%9% tr(hg)
]
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whereh denotes product of link variables around the plaguettandr tr is the real part of the
trace. Also, letdu,, be the Haar measure @', whereN, is the number of links in the graph.
The regulated Wilson-loop functional is now given by

(T T, T (11.6)

= -B
ay Tak>' Z(a,LX ,Ly) GNIdMW e
whereay, ...,a are loops inl"=I'(a;Ly,L,); the “inverse temperature” is given by

1

B=—F7—
gga ¢

(I1.7)

(d=2 being the dimension oM); and wheregyo=gy(a) is the bare coupling constant. The
partition functionZ=Z(a;Ly,L,) is defined througiT,---T,)=1 wherep denotes the trivial

loop atp. From a mathematical physics perspective, these Wilson loop functionals can also be
regarded as the characteristic functional of the regulated measure. To emphasize this dual inter-
pretation, using the standard notation for characteristic functionals, we will set:

x(ay, . aarby,Ly)=(To - Ta) (111.8)

For our purposes, it will turn out to be more convenient to re-express the characteristic
functional in terms of integrals over the independeipsin the graphl’. To do so, we make use
of the fact that, whenever it is used to integrate gauge invariant functions, the mdasymay
be replaced by the Haar measure®Hl, whereN is the number of independent loop generators
of the graphl". This fact follows immediately from the results of Refs. 13, @6.the language of

these works, it is contained in the statement thdts=. 7% and that the Haar measure od
projects unambiguously to yield the Haar measure-6ti.) Thus, we may write the regulated
characteristic functional as:

k
tr a;(gn) on 2
1 i=1
x(ag, ...a )= ZJGNI;[ dup(gn)expl— BSw) K ,
dun(go Il trai(gn.g0 on Rixst
G =1
(11.9)

where du is the Haar measure o8 and «;(gg) is the expression fow; in terms of the
generatorsB, , with each generatog, , replaced by the integration variabgg , [similarly for
«i(d0,95)]. The corresponding expression for the torus will appear at the end of this section. The
idea of the next section will simply be to evaluate the above integrals for any gi¥gnL, and
then take the limits to remove the ultra-violet and infra-red regulators.

To conclude this section, we will introduce some definitions and collect a few facts about
loops inT". These will be useful in section IV.

Definition 1ll.1: A loop is said to be simple iff there is a holonomically equivalent loop which
has no self-intersections.

Note that any simple loop which is homotopically trivih space—timgdivides space—time into
two regions: an interior which is topologically a 2-disk and an exterior. This is just the Jordan
curve theorem.

Definition 111.2: On the torus, we define the surface enclosed by a simple homotopically trivial
loop to lie on the left as one follows the loop counterclockwise (when the torus is represented as
a two-dimensional rectangle with the standard identifications.)

J. Math. Phys., Vol. 38, No. 11, November 1997
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Definition 111.3: Two distinct simple homotopically trivial loops are said to be non-
overlapping iff the intersection of the surfaces that they enclose has zero area. The homotopically
non-trivial loops B, and B, will both be said not to overlap any other loop.

So, for example, all the loopg, , are simple since they lie in the same hoop class as the
plaquette loopsg]y ). Non-overlapping distinct simple loops are allowed to share whole seg-
ments whence the plaquette generators of our gtlgttice) are mutually non-overlapping.

It will turn out that the following two simple lemmas govern the form of the characteristic
functional in two space—time dimensions.

Lemma IIl.1: Every simple, homotopically trivial loapon T can be written as a particular
composition of the generatoyd, contained in the surface enclosed by with eachB appear-
ing once and only once.

It is readily checked that when two homotopically trivial loapsanda, (enclosing disk®, and
D,) are non-overlapping and such tiatUD,, is also a disk, then either; «, or alagl (or, on
the torus, perhaps the inverse of one of these lpepslosed;UD,. Since every disk is a finite
union of plaquettes, Lemma Ill.1 follows immediately. O

This Lemma allows us to write a simple expression for the generating functional on the torus.
Note that, after ‘ungluing’ the torus to make a rectangle, the lpgpy,° 7;10 y;l is simple and
homotopically trivial, enclosing the entire area of the torus. As a result, it may be written as a
product of the plaquette loop8- in which eachB appears once and only once. We may
therefore pick any one of these loofsay (o)) and write it as a function of the other plaguette
loops and the loopyy, y, . Alternatively, we find a produdf of holonomies along all the loops
B ¥x» vy Which is the identity inG. Inserting aé distribution onG enforcing the constraint
C=1y we find for the generating functional on the torus

1 k
X(ar,..a)=5 fGNfD[ dpen(90)dpan(G) dn(gy)exp — BSW I tr ai(901,0x,9)

1
- ZLI;I dun(90)dun(90dun(gy) 8(C,1y)exp — BSy)

k
><i1:[1 tr ai(90,9x,9y)- (11.10)

Finally, we have:
Lemma lIl.2: Every loop can be written as a composition of simple non-overlapping loops.

This follows from the fact that thg, (together withg,,8, on S'XR andT?) are simple and
non-overlapping and that they generate the graph O

IV. CONTINUUM THEORY

In this section we will derive a closed expression for the Wilson loop functionals — i.e., for
the characteristic functional of the measure — for the continuum theory when the underlying
manifold M is either a 2-plane or a cylindeff-or the torus, we have been able to carry out the
computation to completion only for the Abelian cag&sU(1), andthis theory is discussed in
detail in Appendix B).

In section IV A, we will discuss U(1) theories and in section IV B, Sly(theories. In both
cases, we will show that the lattice-regulated characteristic functional admits a well-defined limit
as the ultra-violet and infrared cut-offs are removed. Furthermore, we will be able to read-off
certain qualitative properties of these functionals. However, the explicit expression involves a
group-dependent constant. This is evaluated in section IV C.
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A. Abelian case (U(1))

Let us first note that, in the U(1) case, products of functibpgan be reduced to a single,,
in the obvious fashion. Therefore, we need to consider only single loops. Fix adoapd
consider its decomposition into non-overlapping simple loops.K,die the effective winding
number of the simple homotopically trivial loag , =1, ...n and letl,,I, be winding numbers
of the homotopically non-trivial loopg, , B, in this decomposition. Definly,| to be the number
of plaquettes enclosed by the simple lo@p. We can then write the characteristic functional as
follows [with G=U(1)]:

1 n K
xw=7[T1 “ cunoressi—pa-nas [ [ T ac|
O G =1

Oeaq

e

Iy |
XJGdMH(gx)gX deuH(gy)gyyé

].—.[ gl:lvl
]

where we could neglect the precise ordering of plaquette varidtilas occurred in the decom-
position of @ in terms of B,B,By) because the gauge group is Abelian. In this formula
Ix=1y=0 on the plane anti,=0 on the cylinder an@=0 for the plane and the cylinder while
e=1 for the torus. Now, foG=U(1), wehave[sduy(9)g"= 8(n,0). Hence, it follows imme-
diately that the characteristic functional is non-zero if and onlly #1,=0. Therefore, we will
focus on this case in the sequel.

Now, let us consider the partition functiod. For the plane and the cylinder, different
plaguette contributions decouple and we obtain:

NxNy
Z= deMH(g)exp(l—%(g)) (IV.1)
For the torus, on other the hand, decoupling does not occur and we are left with
Z:f 1;[ dMH(gm)exq—(l—m(gm)))5<l;[ gD11N>- (IV.2)

Thus, even in the Abelian, U(1) case, the Euclidean theory in two space—time dimensions has
interactions! We will continue the discussion of this case in Appendix B.
Collecting these results, for the plane and the cylinder, we can now reduce the expression of

x(a) to:

n

x(a)=11

I=1

(IV.3)

fed,U«H(g)eXp(—B(l—i)‘i(g)))gk'ya"
Jdpn(g)exp— B(L—R()))

in case wherl,=0 (and y(a)=0 otherwise. We now want to take the continuum limit. The
ultra-violet limit corresponds to letting lattice spacing go to zero, Bex0, and the infrared limit
corresponds to letting the lattice size go to infinity, ilg—c andL,—oo.

Let us set

Jn(ﬂ)i=deMH(g)eXP(—B(l—iﬁ(g)))gn- (Iv.4)

Now, sinceg is simply a complex number of modulus one it is obvious that the fraction
Jn(B)JIo(B) in (IV.3) is a real number of modulus less than or equal to one. Now observe that
|a|=g3BA(e;), WhereA(q,) is the Euclidean area enclosed by. In the limit, B—, the
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integrand of both numerator and denominator become concentratge latwhence we have an
expansion of the fornd,,/Jo=(1—c(1,n)/B)(1+0O(1/8%)), wherec is positive becausé,/J,
approaches the value 1 from below. Thus, it is easy to see that

lim X(a)=exp< —gg|21 c(1k)A(a)) (IV.5)
P =

for 1,=0 and zero otherwise. We will calculate the coefficienfs,n) in section IV C. Finally,
note that the infra-red limit is trivial sincg(«) is independent of ,,L, (assuming of course that
they are large enough for the region under consideration to contain the loop

To summarize, we can arrive at the continuum characteristic functions as follows. Given any
piecewise analytic looa’ in M, we first consider a sufficiently fine and sufficiently large lattice
and approximatexr’ by a loop «a lying in the lattice. Then, we express as a product of non-
overlapping simple loops and compute the regulated characteristic fundgtigndirectly. Finally,
we take continuum limit to arrive at the final expressitvi.5).

We will conclude this sub-section by pointing out that the Abelian case has been discussed in
the literature extensivelisee, e.g., Ref. 5 for an early treatmeand is included here mainly for
completeness.

B. Non-Abelian case (SU (N))

Let us now consider the technically more difficult non-Abelian case. As indicated before, in
this discussion, we will restrict ourselves to the plane and the cylinder.

For SUN), the trace identities only enable one to express traces of products of matrices as
linear combinations of traces of productsrof=N—1 or fewer matrices. Hence, unlike in the
Abelian case, the produ&’tal- "+ T, can not be reduced to a singlg,; we can no longer confine

ourselves to single loops. Fix a multi-loop — i.e., a set dbops — a4, ...,a, and consider its
decomposition into simple, non-overlapping loops. Suppose that, in this decomposition, there are
n homotopically trivial loopsy, andc homotopically nontrivial loopsy; (clearly,c=0 orc=1).
Let|&,| be the number of plaguettes enclosed&kp;and letk;” andl;” be the number of times that
a, and vy, occur (respectively with positive or negative power in this decomposition. Thus,
altogether, there are=3]_,[k,"+k; ]+ =M ,[I;"+1;] factors of holonomles around thg , v,
and their inverses involved in the expansion of the prod[:lplt a These may occur in
arbitrary order, depending on the specific loaps i=1, ...r.

It is then easy to see that we can now wﬂtglmTar explicitly as a product of matrices
representing holonomies around simple loops, with an appropriate contraction of matrix-indices:

n + il b
NTo,To =1 H (hm)BHH (h;, B.]H {H (h,, D.I[ (h,h) D.]H o
I=1 | i

1 Fao”
(IV.6)

Here, we have the following relation between indices that are being contracted:

(Ex, - En)=(AT", . A ATT AL AT AT
1 n

1— 1- 2— 2—
AL ACAT A

n— n—
AL A

cf,...c,+ C2*,. c|+ . ClY LG
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- 1- ~2- 2— - -
Ci....C-.Ci ,..C-,..Cl",...C), (IV.7)
1 2 n

and similarly with the exchanges—F, A—~B, C«—~D; and = is an element of the symmetric
group ofb elements that depends on the loepsand defines the specific contraction involved in
Tapr Ta.

To evaluate the expectation values of this product of traces of holonomies, we need to expand
out the inverses of matrices that appea(li6) explicitly. This can be done easily using the fact
that the matrices in question are all uni-modular. We have:

- 1 I
1A | | F
(g gt = gy €% Bt =18 Fua Funahy ) 0 (hg ) s
B/,L (N 1) ! p., ! /LN 1
I_El l... N-1 N—1
=gt - (h; ) -+ (h )” .
B'H FLyl F'#’N L E' 1 @ El N1

and similarly for the inverse ofhyi. Finally, if we define n :=k +(N—1)k ,
ci:=I"+(N—1)I; we can rewrite(IV.6) using a tensor-product notation as:

n 1+ I+ | | |
H A "Akl*Fl1"'F1N71”'Fk[,1‘”Fk[,N—1
- I+...g' Tl I e
B Bk,*El L R e e VY
i i
c THL CHL eH
LTIN-LTTR T N
xH (®%h ) | i
i D'* DTGl .Gl ---G' Y
1FTLTTRINSL T N

n ok :
xH ope T IL (AM ot MN 1H H (D,_H, 'GHV,N L(V.8)

ﬂ(k: w= #Ml —1i=1 v=1 y,N—1

Next, let us examine the contributions from homotopically trivial loops. Chopse&I for some
| and consider the expression

(®"h,)g! 5" (IV.9)

Label the plaquette loops enclosed #yrom 1 to|y[:=m; thush,=g;- - gy, whereg,:=hg, .
Then the above expression becomes

[(9DE! (G2) %+ (g™ ] --[(gl>éﬂ (825G ]

C C “Chnm—
:[®ngl]civl..‘(2:nyl[®n92]cl; c 2 [® gm] i 1 mm-t

=([®“gl][®”gz]---[®“gm])BiliiB: (IV.10)

where, in the last step we have used the product rule for tensor products of matrices.

With these explicit expressions at hand, we can now consider the functional integral which
yields the Wilson loop functionals. In this evaluation, each ofrtkeld tensor products iflV.10)
has to be integrated with the measure

du(g)=duy(g)exp(B/NR tr(g)). (Iv.11)

To carry out this task, we will use the representation theory reviewed in Appendix A.
According to Appendix A, we have:
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du(@)e"g=0m o1 | du(g)pl) "]
GMQ 9= D (m izlGMg Pim,i® 9

—o e on -t [ duig) (™ ©g])
— Y{m} izl[p{m},i N]d{m} G M(g) r([p{m},i g]

n

(n) 1
=&l e, ©"1ulg | du@xmto

1
— (nN) on
S mlPimy® 1N]d{m}deM(g)X{m}(g)

= @ (ml Pim ® "In Iy (B.N). (IV.12)

Here, in the first step, we have decomposed the matrig into a direct sum of irreducible
representations, with labeling the orthogonal equivalent representations antabeling the
equivalence classes of inequivalent representationsp%’q are the Young symmetrizers; in the
third step, we have used the fact that the trace is a class fungigi l§eing the character of the
representatiofm}); and, in the last step we have simply defined

1
Jimy(B,N):= %Ldu(g)x{m}(g)- (IV.13)

Finally, using the orthogonality of the projectqng;)}@”lN we find that the integral ovdtV.9)
becomes

Al...An
{Em} [piﬂﬁ@”lNJ[J{m}(B.N)]ﬂ) . (IV.14)

B, B,

The integral over the homotopically non-trivial loops is quite similar, the main difference being
that the measure there is the Haar measure and that each of these loops involves just a single
integration variable. According to Appendix A we find that the integral a¥&g with the Haar
measure is given by

[pgV®"1y],

Wherepg‘) is the projector on the trivial representation.
Collecting these results, we can write the vacuum expectation vallig of.,T, as follows.

Set

Jo(N,ﬁ):=deM(g). (IV.15)
Then,
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I I+ I I I
" Im] @l A AR P R R e
n
NrX(Cll,...,a/r):H 2 [ N nIlN]
- J {m}
i1\ {m | Jo BB E g g
e E R R S L
C c|+| H Hi B ...Hi7 ...Hi7
xH (pMema)) |, e e
Dy Dli*Gl “Gin-1 "G|;,1"'G|T,N—1

><H 5% 1] H S B Epn- 3| H KD._H. et (v.16)

m(Ki=1 p=1 /Lul ,,,Nlllvl »,N-1

This is the closed expression for the regulated Wilson loops. Although it seems complicated at
first, its structural form is rather simpléA more elegant derivation gfV.16) uses the notion of
a loop-network stat&however, since products of traces of the holonomy are more familiar to
gauge theorists we have refrained from introducing the associated mathematical apparatus here.
First of all, the lattice spacing and the coupling constant enter this expression only thkgrgh
The rest is all an explicit contraction of indices of a product &ihde number of matrices. For any
given groupG=SU(N), the matrices depend only on the decompositio‘rﬁgqf. . ,Tar in terms of
then holonomies around the homotopically trivial, simple loops anchtht@olonomies around the
homotopically non-trivial simple loops.

To establish the existence of the continuum limit, therefore, we only need to show that
[Jrmy(B)/3o(B) 11! converges to a finite value @s—0. Let us begin by noting that

Xim(9)

gim
dim}

|J{m}(,3,N)|<f du(9) <Jo(B.N).

This estimate implies thatl;y, /Jo| is always a number between 0 and 1 for finiteMoreover,
we have

t
Jedpy exp(—B(L—1INR tr(g))) (;(:TT]—E?T)))

{m}

lim —= 3 = lim
poe 0 g fdMH exp — B(1— UNR tr(g)))

since for B—« the measure in both numerator and denominator becomes concentrated at the
identity for which both integrand are equal to the number one. Therefore, we have an asymptotic
expansion of the form

Im(BN) _ ( L CN{m))

2
Io(BN) 5 arous

where the first order coefficiem(N,{m}) must benon-negativesinceJ;n, /Jo, approaches unity
from below Finally, observing thaka,|—,8g0A(a,) we find that the continuum limit ofiV.16)
is given by replacing theJyy, /301! by

lim

[J{m}(ﬂ,N)
B—o

lev]
= — 2
JO(B,N)} = exp(—c(N,{impgoA(e)). (IV.17)
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This establishes the existence of the continuum limit. To obtain the explicit formula for the Wilson
loops, it only remains to evaluate the consta(td,{m}). We will carry out this task in the next
sub-section.

We will conclude this sub-section with a few remarkSome of these observations have been
made in the context of other approaches but are included here for compléeteness.

(i) The explicit expression of the Wilson loop functionéts the characteristic functional for
the Yang—Mills measure arv/ %) is rather complicated. Note however that the computation only
involves complicated traces and can be performed by algebraic manipulation programs very
quickly. Furthermore, some of the qualitative features can be easily read-out. Note first that if we
have a single, simple loog,, the matrix factors if(IV.16) disappear and the expectation value
collapses to simply:

(Tag)=x(ag)= e C9A(@0), (IV.18)

where Z is the value of the first SU{) Casimir on its fundamental representati@ee the next
subsectiopand whereA(«,) is the Euclidean area enclosed by the legp Thus, the area law —
generally taken to be the signal of confinement — holds. Note that the loop does not have to be
large; the expression is exact. Finally, note from section IV A that this law holds also for the
Abelian theory. Thus, the continuum limit of the lattice U(1) theory provides us the confined
phase of the theory which is different from the phase described by the standard Fock representa-
tion.

(i) More generally, if one restricts oneself t@n-overlappingoops a4, ...,a,, our closed
expressior(IV.16) yields

(mi(ay)® "'®7Tn(han)>:<771(hal)>®'"®<7Tn(han)> (IvV.19)

with (7 (h,))= Tr(lN)e*C(N'")ggA(“) of (IV.17), where as beforer is the irreducible representa-
tion. This result is agreement with the results obtained by BraBepsset al and Klimeket al.

and Kazako#® However, even for this special case, our method of arriving at the result is
different. As explained in the Introduction, we do not break gauge invariance to pass to a “kine-
matically linear” case nor do we use stochastic differential equations.

(i) Note that, as in the Abelian theory, the infra-red limit is trivial since the continuum
expression of the Wilson loop functionals does not depent,oor L, at all (provided of course
the lattice is chosen large enough to encompass the giveops.

(iv) It is interesting to note that we did not have to renormalize the bare coupling coggtant
in the process of taking the continuum limit. This is a peculiarity of two dimensions. Indeed, in
higher dimensions, the bare coupling constant does not have the correct physical dimensions to
allow for an area law which suggests that renormalization would be essential.

(v) In the classical theory in higher dimensions, the Yang—Mills action depends on the space-
time metric and is thus invariant only under the action of the finite dimensional isometry group of
the underlying space—timghe Poincare(respectively, Euclideangroup, if the space—time is
globally Minkowskian(Euclidean]. In two space—time dimensions, on the other hand, one needs
only an area element to write the Yang—Mills action. Thus, the symmetry group is considerably
enlarged; it is thenfinite dimensional group of area preserving diffeomorphisms. A natural ques-
tion is whether the Wilson loop functionals are also invariant under this larger group. Our explicit
expression makes it obvious that it is. Thus, the infinite-dimensional symmetry is carried over
in-tact to the quantum theory. This property is not obvious in many other approaches which use
gauge-fixing to endow7/ < a vector space structure and then employ the standpate—time
metric dependehtGaussian measures in the intermediate steps. In these approaches, special and
somewhat elaborate calculations are needed to verify invariance under all area preserving diffeo-
morphisms.
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(vi) As one can explicitly check, if one performs the—co limit of our continuum theory on
the plane or the cylinder using the above expression then one does not encounter a phase transi-
tion. This seems to contradict certain restilsbtained in a two-dimensional finite, planar lattice
theory. However, there is no contradiction because in two dimensions on the plane or the cylinder
the appearance of thé— oo phase transition is a lattice artefact. In Ref. 17 the authors observe a
third order phase transition in the limM—o also in the continuum. However, those authors
consider the case that the two-dimensional manifold is a sphere rather than a plane or a cylinder
so that again there is no contradiction.

C. Determination of the coefficients  ¢(N,{m})

The main idea behind the calculation is the following; Since for~, the integrand of
Jim(B) is concentrated at the identity, it is sufficient to calculate the integrand it\EG3)
(defining J;;) in @ neighborhood of the identity.

To that effect, writeg=e”, whereA=t'r, e L(G) is in the Lie algebra of5 andt' are real

parameters in a neighborhood of zero. We thus have upon insertirig,+ A+ 3A%+ 0(A%)

1 1 dim(G)
1- Nm tr(g)=— mtr(A2)+o(A3)= 5 > (t)2+0(AY), (IV.20)

where the term of first order il vanishes because it is either purely imaginfthe Abelian
sub-ideal ofl(G)] or trace-fred the semi-simple sub-ideal &f(G)] and where we have used the
normalization trg, 7;) = —N§,; . Similarly, we have an expansion for thm}th irreducible rep-

resentation ofs given by 7 (9) = 1y + X+ 3X+0(X%), whereX=t'X, is the representation
of the Lie algebra elemer in the {m}th irreducible representation. Then we have

Xy (9) = dymy +t tr(X)) + 3t tr(X, X;5) +0(X3). (IV.21)
Now, according to the Baker—Campbell-Hausdorff formUlae have:
el'nes =g S07 wherer!(s,t)=s'+t'— L', S8+ 0(s3,12,83,5%, 583, 13)  (IV.22)

and Wheref'JK are the structure constants of the semi-simple sub-ideb(@f) which therefore
are completely skew. Finally, the Haar measure can be wiftten

ddimG) ddimG)

(IV.23)

d t|T| — —
#u(e) ‘(ar'(s,t)> 1+0(t?)
de
s=0

9s’

since detgr/ds)s_o=det(1+ 3t'R,+0(t?)) =1+ 3 tr(t'R)) + 0(t?) = 1+ o(t?),where R)yx= "\«
is thelth basis vector of the semi-simple sub-idealLdf5) in the adjoint representation which is
trace-free.

We are now ready to carry out the required estimate. There exists a SIJIS&Y™® which
is in one-to-one correspondence withvia the exponential map. L&l be the closure obl, in
RIM©) The setU is compact inR¥™©) becauseG is compact and so the sét, must be
bounded. Furthermore, since the group under consideration has only a finite number of connected
componentgnamely, ong there are also only a finite number of corresponding connected com-
ponents ofU, and therefore the séi — U, has at most dimension dirf@) — 1. It follows that
U—-U, has Lebesgue measure zero, that is, we can replace the integrdl gwéth respect to
d9m©@t by an integral ovelJ. For instance, for U(1) the séi is just given by the interval
[ — 7, 7] while Uy could be chosen ds- 7, 7). Likewise, for SU(2) the sdl is the set of points
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t2+t3+t3< while U, is the set of points?+t5+t53< plus one arbitrary additional point of
radius 7 corresponding to the elementl,. Inserting(IV.19), (1V.20) and(IV.22) into (IV.13)
we can therefore write an expansion in/#/

ddim(G)y 1dim(G)
dim[Im(B) = Jo(B) 1= f1+ o) P(—,BE 21 (t')2+ﬂ0(t3))

| 1 1+ 3
Xt tr(X|)+2tt tr(X;X;) +o(t°)

1 ddim(G)y dlm(G)
_ 2 3
- ,Bdim(G)IZHJ\EUl*'O(tz/,B) exp( - = E (t"2+o(t /\/—)>

x| VBt tr(X,) -4HUMXﬂ+mﬁJU}

1 A 1dim(G)
- Bdim(G)/ZJrIJRdim(G)ddlm<G)t ex;{ 2 ,Zl (tl)z)
x| Bt tr(X|)+%t'tJ tr(X,XJ)+o(t3/\/E)}, (IV.24)

where in the last step the expansion of the scaled doriald, U a compact subset ¢t™©) to
all of R4m(®) also is correct up to a further order in\i8. Now the terms of odd order invanish
due to the symmetry of the exponential under reflection. Therefore, we have:

dim(G)

— :E — 12 2
dim[ Jmy(B) = 3o(B)1= 5 30(B) 51| 2, (X)?| +0(1/82). (IV.25)

B

But =,(X,)%= —NmyLqm is the Casimir invariant anl;y,, is its eigenvalue. Therefore we arrive
finally at

(N, {m})= I\ (- (IV.26)

It is well-knowr?! that the Laplace—Beltrami operaterA has eigenvaluek, on its complete
system of conjugation invariant eigenfunctiopg,(g). These functions are parametrized by
discrete quantum numbers, according to the rant of

V. THE HAMILTONIAN FORMALISM

In this section, we will recall the standard Hamiltonian formulation of Lorentzian Yang—Mills
theory in 1+1 dimensions.(For details, see, e.g., Refs. 32)3#ere we will only consider
topologiesM = R2 andM = S X R since the Lorentzian metric, obtained by analytic continuation,
on the torusS'x St has closed time-like curves. This discussion will be used in section V C to
show the equivalence of our Euclidean framework with the standard Hamiltonian description.

The canonical form of the Yang—Mills actions is given by

S=fdtfdx
R Js

J. Math. Phys., Vol. 38, No. 11, November 1997
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where3 =R or S' and a dot(prime) denotes a derivative with respecttt¢x). HereA=A, is the

the x-component of th& connection and= (l/gg)(ﬁtAx—ﬁxAt'F[At JAL]) is its electric field.
The indiced,J, K run 1, ...dim(G)and are raised and lowered with respect to the Cartan Killing
metric. Note that time componeAﬂ=A' of the connection acts as a Lagrange multiplier, enforc-
ing the Gauss constraint

.Zi:E|/ +[A,E]| . (VZ)

Because the magnetic fields vanish in one spatial dimension, the Hamiltonian takes the form
2
g
Hzf dx—E'E". (V.3)
s 2

However, multiplying the Gauss constraint By yields
S(E'E'=0

so that the Hamiltonian density must be a constant. Thus, the energy on the plane is infinite unless
that constant is zero. This enforces the new first class constElist8. The motions generated by
these constraints are transitive on the whole configuration space éf thed soA, is identified

with the trivial connectionA,=0. The reduced phase space for=R? is therefore zero-
dimensional, it consists only of one point, (0,0), say.

Remark: A more interesting theory results if we weaken the boundary conditions to allow
non-zero electric fields at infinity. For definiteness, let us consider the SU(2) theory and define the
phase space as followsA(,E') belong to the phase spaceAf=0(1/x?) and E'—E.' as
x— + o, whereE, is an arbitrary constant and is a fixed internal vector. It is easy to check that
the symplectic structure is well-defined on this phase space. Physically, the boundary conditions
ensure that we have “an external electric fieldThe previous arguments do imply that the total
Hamiltonian of the system is infinite but the energy per unit length is fjifiee Gauss law again
generates gauge transformations which are asymptotically identity. We can partially fix this gauge
freedom by demanding that the electric field be everywhere paraligl. tdhen the Gauss con-
straint itself implies thaE'=E ' everywhere and tha4, is also parallel ta,. The remaining
gauge freedom can be exhausted by bringingo a standard forma,;=A,f(x)v', wheref(x) is
a fixed function and the value of the constayt is determined by the holonomy of the given
connectionA(x). This exhausts the gauge freedom and solves the Gauss law. The true degrees
thus captured in the paird\(,E,); the reduced phase space is topologic&fy [For the SUN)
theory, it isR?".] We will not treat these cases in any detail here, however, because the modifi-
cations needed to incorporate these “external fields” in the Euclidean description is beyond the
scope of this workas well as of other mathematical physics treatments that we are aware of

On the cylinder, the theory is analogous to the more general case discussed above but the
Hamiltonian is now finite. It is given by

9oLy

H="3

(E'E". (V.4)

By a gauge transformatiotf, we may takeA,E to be constant. By means of a constant gauge
transformation we achieve that lies in a Cartan subalgebra. Since in that gauge the Gauss
constraint implies thaf\,E commute, it follows that there is a gauge in whigtE both lie in a
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Cartan subalgebra. Letbe the rank ot (G); then the maximal Cartan subalgebra has dimension
r and the reduced phase space has dimensiofTBe reduced phase space is then the qudfient
of R?" by a discrete set of residual gauge transformations.
In the quantum theory on a cylinder, the Hamiltonian becomes the Laplace Beltrami operator
on the Cartan subgrou@ ¢t

2
L
H=— 902 A (V.5)

and physical states correspond to conjugation invariant functior.ohhe corresponding inner

product is thel2 inner product given by the Haar measure ®g. As a result, the characters
xmi(A) with {m}={m,,...,m} with m;=m,=---=m,=0 provide a complete set of eigen-
states ofH (with eigenvaluesgSLX)\{m}IZ). For comparison with the classical theory, recall that
the charactery;y, depend only on the Cartan subgroup®f

VI. AXIOMATIC FRAMEWORK AND RELATION TO THE HAMILTONIAN THEORY

In scalar field theories, the Osterwalder—Schrader axiomatic framework provides a compact
formulation of what is often referred to as “the main problem.” Consequently, the framework
plays a central role in constructive quantum field theory. However, as mentioned in the Introduc-
tion, this framework is geared to “kinematically linear” theories because a basic premise of the
axioms is that the space of paths is a vector space, generally taken to be thé’Spafcempered
distributions. In this section, we will use the material presented in sections Il and IV to suggest a
possible generalization of the Osterwalder—Schrader framework to gauge theories, using for the
space of physical paths the non-linear spac¢gs.

The section will be divided into three parts. In the first, we briefly review the aspects of the
Osterwalder—Schrader framework that are relevant for our discussion. In the second, we propose
an extension of the key axioms and verify that they are satisfied by the continuul) Magg—

Mills theories. In the third part we show that the axioms suffice to demonstrate the equivalence
between the Euclidean and the Hamiltonian frameworks.

A. Kinematically linear theories

As mentioned in the Introduction, the basic idea of the Euclidean constructive quantum field
theory is to definea quantum field theory through the measpren the space of pathd—the
rigorous analog of “‘expY®)Z®.” In the Osterwalder—Schrader framework, the space of
paths is taken to be the spagée of tempered distributions on the Euclidean space—titfieand
conditions on permissible measuge®on.” are formulated as axioms on their Fourier transforms
x(f), defined via

X(D: =(exp(iBT1)): = | du(@)exstial ). VI.D)

Heref are test functions in the Schwartz spacethe over-bar is used to emphasize that the fields

are distributional andb[f]= s d%®(x)f(x) denotes the canonical pairing between distribu-
tions and test functions. The generating functiogéf) determines the measure completely.
Furthermore, since” is a nuclear space, Minlos’ theorétrensures that if we begin witany
continuous, positive linear functiongl on.¥’, there exists a regular measygeon.¥”’ such that
(VI.1) holds.

In the Osterwalder—Schrader framework, tharquantum field theory is a normalized mea-
sure u on.””, or, equivalently, a continuous, positive linear functionalon.”” satisfying the
following axioms:

J. Math. Phys., Vol. 38, No. 11, November 1997

Downloaded 08 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Ashtekar et al.: Two dimensioanl SU(N) quantum Yang—Mills theory 5471

(OS-)) Analyticity. This assumption ensures that the meaguteas an appropriate “fall-off.”
It requires thaty (=] ,zf;) is entire analytic ort" for every finite dimensional subspace spanned
by the linearly independent vectofse.”.

(OS-ll) Regularity. These are technical assumptions which, roughly speaking, allow one to
construct Euclidean field operators such that its Schwinger distributions

S(X11 "'1Xn):=<qT(Xl)r ---ra(xn)>

aretempered— rather than less well-behaved — distributions. We will not display them here.

(OS-Ill) Euclidean invariance This condition ensures Poincaievariance of the Wick-
rotated theory. I1gf is the image of a test functiohunder the action of an elemegtof the full
Euclidean groufkE in d dimensions then, one requires:

x(gf)=x(f).

Here the test functions are considered as scalars, thgffj$x): = f(gx).

(OS-1V) Reflection positivityThis is perhaps the key axiom because it enables one to refor-
mulate the theory in terms of more familiar concepts by providing a notion of time, a Hilbert
space, and a Hamiltonian. The precise condition can be formulated as follows. Choose an arbitrary
hyper-plane inR® which we will call the time zero plane. Consider the linear space, dengted
generated by finite linear combinations of the following functionss6n

n
Wiy ry /" =0 D= 2 7 exp( @[,

where z;eC, f;e.”” with support only in the “positive time” part of the space-time
(supp;) ={x=(x%x) e R%; x°>0}). Next, let @(x°,x)=(—x°x) denote the time reflection
operator @ € E). Then, one requires that

(W,E):=<®\I’,E):=f//d,u((?)(@‘lf[a])*ﬁ[a]zo. (VI1.2)

(OS-V) Clustering.This axiom ensures uniqueness of the vacuum. It requires that the measure
has the cluster property, that is,

1t
Iim?f ds(VT(s)E)=(¥)E)
t—oo - J0

for all ¥, = in a dense subspace b§(.”",du). HereT(s) is a representation dn,(.”",du) of
the one-parameter semi-group of time translations define@(byexp(i ® (f)): = exyi 3(T(s)f)
and extended by linearity an@(s)f)(x°,x): =f(x°+s,x) for all fe.”’

With these axioms at hand, one can construct a Hilbert spdad quantum states, a Hamil-
tonianH and a unique vacuum vectér (annihilated byH) as follows:

(1) Consider thenull space./" of norm zero vectors ifV with respect to the bilinear forr)
introduced in(VI1.2) and Cauchy-complete the quotievit /. Then.7Z:=V/./" with scalar
product(,).

(2) The most important theorem now is that, given a probability meagusatisfying reflection
positivity and Euclidean invariance, the time translation oper@{@) acting onV factors
through the quotient construction referred(19, that is, it leaves the null spacé” invariant.
This means that we can represent it.@fand standard Hilbert space techniques now ensure
that T(t) has a positive self-adjoint generatdrsuch thafT (t) = exp(—tH) [note that(due to
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Euclidean invariangeT (t) is unitary with respect td,) but symmetric with respect tQ) due
to the additional time reflection involved; this shows thiét) provides a symmetric contrac-
tion semi-group

(3) The vacuum state turns out to be just the projectiovAmf the function 1 on¥”.

B. A proposal for gauge theories

The discussion of section Il suggests that, in certain gauge theories, it is natural td ifse
as the space of physical paths. Thus, we are led to seek an extension of the Osterwalder—Schrader
framework in which the linear spac€”’ is replaced by the non-linear spacé/ . At first this
goal seems very difficult to reach because the standard framework uses the underlying linearity in
almost every step. However, we will see that one can exploit the “non-linear duality” between
connections and loops — or, more precisely, betweéts” and the hoop group”s — very
effectively to extend those features of the standard framework which are essential to the proof of
equivalence between the Euclidean and the Hamiltonian frameworks.

Let us consider a gauge theory éhEuclidean space—time dimensions with a compact Lie
group G as the structure group. The proposal is to uges as the space of Euclidean paths.
(Even though we are now working in an arbitrary dimension and with more general structure
groups, this space can be again constructed using any one of the three methods discussed in
section Il) Since.#/ < is compact, it admits normalized, regular Borel measures. Furthermore,
the Riesz-Markov theorertiogether with the Gel'fand theonensure¥ that each of these mea-
suresu is completely determined by the “characteristic functional(a, ...,«,), defined by:

x(aq, ...,an)ZZJ du 'vl'al---Ta , (IV.3)

NG n

where,'T’,lk denotes Gel'fand transform dTak, the trace of the holonomy around the closed loop
ay . (There is also a theoreththat ensures the converse, i.e., which states that given a functional
x of multi-loops satisfying certain conditions, there exists a regular measore 4/ % such that
x can be reconstructed vi&I.3). However, since one has to introduce more technical machinery
to state this theorem properly and since this converse is not logically necessary for the construc-
tions that follow, we will not discuss it hepeComparing(VI1.3) and(VI.1), we see that4/ ¢ now
plays the role of”’ and multi-loops, the role of test functions, and traces of holonomies, the role
of expi®d(f). Thus, we have extended the Fourier transfqiih1l) to a non-linear space by
exploiting the fact that the loops and connections can be regarded as “dual objects” in the
expression of the trace of the holonomy. Our strategy now is to introduce a set of axioms on
measureg through their characteristic functionais

Let us begin with an observation. The discussion of the previous section brings out the fact
that while all five axioms are needed to ensure that the resulting theory is complete and free of
pathologies, it is the last three axioms — the Euclidean invariance and the reflection positivity —
that play the central role in the reconstruction of the Hamiltonian theory. We will therefore begin
with these axioms. L

A quantum gauge field theory is a probability measyren .7/ < satisfying the following
axioms:

(I) Euclidean invarianceu is invariant under the full Euclidean group if the space—time
topology isRY, and under the full isometry group of the flat Euclidean metric in more general
context. In terms of characteristic functign we thus have:

x(ga)=x(a), (IV.4)
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where « stands for a generic multi-loop, ...,«,) andga denotes the image af under the
action of an isometryg.

(Il Reflection positivityChoose, as before, an arbitrary “hyper-plane” and regard it as the
time-zero slice. Consider the linear spatgenerated by finite linear combinations of functionals
on .7l < of the form

r

n
Wi ey A 5= 0 A2 7

Tay (A,
=1 !

where the loopsy,; have support in the positive half space. Then we must have:

(\If,E):=<xp,E>:=f du(A)(OP[A]D*E[A]=0, (VI.5)

A

where, as befor® is the time-reflection operator.
(1) Clustering.The requirement is the same in formulae as for the kinematically linear field
theories, namely,

1 (t
nm?quwn95y4wxa>
t—o 0

for all ¥, E in a dense subspacelof(.4/<,du). HereT(s)Tal- “To=Tr()a, " TT(s)a, where

(T(s)a)°(7):=a’(7) +5s,(T(s)a)(7): = a(7) and 7 is a parameter along the loop.

We will see in the next section that these axioms suffice to reconstruct the Hamiltonian theory.
However, this set of axioms is clearly incomplésee e.g. reference.Me will now indicate how
one might impose additional conditions and point out some subtleties.

Let us begin with the analyticity axiom of Osterwalder and Schrader. In that case, we could
take complex linear combinatior®z; f; because the spacé of test functions is a vector space. In
the present case, we can only compose Id@psmore precisely, hoopso obtain

a=a210---0a2”, i=1---r,

with integer winding numbers;, and, more generally, a full subgroup of the hoop group gener-
ated by a finite number of independent hodie notion of “strong independencé: of hoops
being the substitute for “linear independence” of test functidns) One could also include
complex winding numbers and this may lead us to the notion of “extended loSis.’any case,
it may be natural to require that

x({ei})

be “in some sense analytic” in the winding numbexs (we will leave a more precise formulation
of this notion for future work Recall, however, that in the Osterwalder—Schrader framework, the
analyticity axiom is needed to ensure the existence of Schwinger functions. In the present case, on
the other hand, since the anala@s(x,), ...,A(X,)) of the Schwinger functions fail to be gauge
invariant, from our perspective, it is unnatural to require that they be well-behaved in the quantum
theory. So, at this stage of our understanding,rttison d’etreof the analyticity condition is not
as compelling in our framework. Therefore, a definitive formulation of this axiom must await
further development of the framework.

The situation with the Regularity axiom is similar. In the Osterwalder Schrader framework, it
prescribes certain bounds on the characteristic fungtidn which are needed to ensure that the
Schwinger functions can be continued analytically to obtain the Wightman functions in the
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Lorentzian regime. In the present context, neither the Schwinger nor the Wightman functions are
gauge invariant. Nonetheless, suitable regularity condittzesieeded to ensure that the Lorent-
zian Wilson loopsare well-defined. The precise form of these conditions will become clear only
after the issue of analytic continuation of Wilson loops is explored in greater detail.

Finally, the space#/< is very large: In a well-defined sense, it serves as the “universal
home” for measures in theories in which the traces of holonomies are well-defined op&rators.
From general considerations, one would expect that the measures that come from physically
interesting gauge theories should have a much smaller sufguoxtided, of course, that traces of
holonomies are measurable functipna further investigation of this issue would suggest addi-
tional restrictions on the characteristic functions.

To conclude this section, let us consider the key question that any set of axioms must face:
Are they consistent? That is, do they admiin-trivial examples? Fortunately, results in section IV
immediately imply that the answer is in the affirmative. To see this, let usNake be either a
2-plane or a 2-cylinder and the structure group to beMUgr U(1). Thecharacteristic functional
is then given by(1V.16). Let us begin with Euclidean invariance. Since the characteristic func-
tionals depend only on the areas of the various loops involved, they are invariant under all area
preserving diffeomorphisms and, in particular, under the isometry groups of the underlying space—
times. Reflection positivity is also satisfied because, as we will see in the next sub-section, after
dividing by ./~ we obtain a scalar product which is positive definite. Furthermore, since the
measure is non-interacting, clustering is immed{ate next subsectiprFinally, we can also test
if the “obvious” restrictions of analyticity and regularity are met. By inspection, the characteristic
functionals(IV.16) are formally analytic irkli and Iii. Since the winding numbers; are linear
combinations of these, the generating functions are formally analytic in the winding humbers as
well. Finally, the generating functionals are boundby 1).

C. Reconstruction of the Hamiltonian theory

Let us now construct a Hilbert space, a Hamiltonian and a vacuum via the Osterwalder
Schrader algorithfhand verify that, for cases treated in sections 1V, this description is equivalent
to the one obtained directly using Hamiltonian methods in section V. Since this algorithm uses, in
essence, only reflection positivity, it is directly applicable to our formulation of gauge theories.

The first step is to construct the null spa¢€ in V. Let us fix one of the¥’s considered in
axiom (Il). Then we have

(VW)= 7'z |—du(A) I (Toa,)-LAD (T4, [AD,
i,j=1 AT 1,J=1

whereu is the physical measure obtained by taking the continuum limit\afL6), and where we
we have used the fact that, sinGeis unitary, (7,)*=T,-1, wherex denotes complex conjuga-
tion.

We now need to express this equation in termg of et us begin by considering the decom-
position of a multi-loop{ a4, ...,as}, S<r. In this decomposition, it is convenient to separate the
homotopically trivial loops from the non-trivial ones. In the cade=RX R, there is no homo-
topically non-trivial loop. On the cylinder we can choose the horizontal lpogit t=0 as the
fiducial non-trivial loop and write every homotopically non-trivial logpoccurring in the multi-
loop {ay, ...,ass as p=[n°y 1]ey, where the loop in brackets is homotopically trivial. The
result will be a multi-loopa;, ...,as whose homotopically trivial contribution comesly from
v. Finally write HS=1T0(| as a linear combination of terms of the fofas in(IV.6)]

tr(Qym(as, ....a3) mm(h,)), (VL.6)
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where mm, is the{mjth irreducible representation & andgy, is some matrix which depends
only on the homotopically trivial loopg; and which is projected from both sides lay; (1),

that is, gym 7my(In) = 7(my(1n) 9y - LOOPS @; arise frome; by taking the simple loop decom-
position of ¢; as in(IV.6) and taking out they’s and its inverses. Since every multi-loop func-

tional can be so expanded, it is sufficient to consider the scalar product among these functionals
which we will now write as

Fim(B):=Fmy(B1, ---.Bs): =tr(@Qqmy(B1, ---,Bs) mmy(N,)), (VL.7)

where B; are homotopically trivial and enclose surfaces in the positive half-space. Note that
OF;m(B8) =Fm(0p) since® y=y. We can therefore alternatively writé in the form

‘I’={§m:} Zymy Fmy(Bymy) - (V1.8)
Now, using the formufy{
— , [ -
deMH(g)ﬂ'AB(g)@WCD(g): d—TfAc(l)WBD(l) (V1.9)

we find

_ 0 ' —
f—dMF{m}(®:8{m})F{m’}(B{m’}): {gi{r}n }f—dﬂg{m}(®B{m})ABg{m}(ﬁ{m})BA
m

AT AT

_ Omyqmy —
~dim tr({f_dﬂg{m}(ﬁ{m})HJ’—dﬂg{m}(ﬁ{m})D

AT AT

2

5 ,
— AmpAm’} . (V1.10)

2
dimy

j////f/fd’u tr( W{m}( 1N)g{m}(:8{m}))

Here, in the third step we have used the fact gt ,© B, are supported in disjoint domains
of space—time, the time reflection invariance of the measure and its maximal clustering property of
the measurénon-overlapping loops are non-interactinm the last step we used the fact that the
integral overgm(Bym) as results in a constant matrid g say, which, by inspection atVv.12)
is a linear combination of projectors onto representation spaces of irreducible representations,
partially contracted as to match the index structuremgfy. SoM is a linear combination of
matrices of the formr,g=o¢ a.c.8(1n), Whereo is an irreducible projector. Now using the fact
thato’ 7 (1n) = mmy(1n) o', thatmy, is irreducible and that the contraction of tensor products
of Kroneckers is again proportional to a tensor product of Kroneckers it followsMhatr
X(Ltr(M)/d -

Formula(VI.10) says that

1
- Z{m}d—[ f d e tr(7m i (1n) Qg Bymp)) | X gy () (VI.11)
{m} {m}| J .25

is a null vector. Therefore, our Hilbert spacg is the completion of the linear span of the states
xgm(h,) with respect to the Haar measudg., . On the plane, since there is no homotopically
non-trivial loopy, the only state is the constant functidh=1 which corresponds precisely to the
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trivial quantum theory as obtained via the Hamiltonian formalism. On the cylinder we obtain

J7=L,(C(G),duy), whereC(G) is the Cartan subgroup @& and uy is the corresponding
effective measure o€(G) induced by the Haar measure, .

Finally, note that, in the final picture, the logpprobes the connectioA at timet=0 only.

This is is completely analogous to the corresponding construction for the free massless scalar
field® where the Hilbert space construction can be reduced to the fields at time zero.

Having constructed the Hilbert space, let us now turn to the Hamiltonian. As indicated in
section VI A, the Hamiltonian can be obtained as the generator of the Euclidean time translation
semi-group. Denote by(t):=T(t)y the horizontal loop at timé. Now let a(t):=y(t)ey 1,
then we have by the representation property

Ximy(Ny) = tr(mm iy (Mo 7y (h,)) (VI.12)

so that according t0lV.16) we have that

x{m}mym):{ |——au xqmta X{%(m?) (v1.13)
Hence, according tdlV.14)
(xgmey s T(O X qmy) = exp( — %)\{m}gngt)ﬁ{m'},{m}!: (xqmey - €XR—tH) xqmy)
and the completeness of thg,, allows us to conclude that
Hz—%ngA (VI.14)

is the configuration representation of the Hamiltonian.

Finally, let us consider the vacuum state. By inspection, it is giveflbyl. It is the unique
vector annihilated by the Hamiltonian. We therefore expect that the measure is clusieerigef.
6, Theorem 19.7)1 Indeed, notice first that finite linear combinations of products of traces of the
holonomy around loops form a dense sein L,(.#/ %,du) by construction of 2/ <. Now recall
once again that the measure is not interacting in the sense tadfare two elements of/
defined through multi-loops lying in disjoint regions of the plane or the cylinder then it follows
immediately from(1V.16) that (W E)=(W¥)(E). Even if ¥,E are defined through multi-loops
which intersect or overlap then there exists a time parangtich that the multi-loops involved
in ¥ andT(t)ZE lie in disjoint regions of the plane or the cylinder for &#t,. It then follows
from the invariance of the measure under time translations thatftg we have

t t
[asterioz)= [“astwmom+ -t

and since the first term is finite, clustering is immediate.

Thus, as in scalar field theories, Euclidean invariance and reflection positivity have enabled us
to construct the Hamiltonian description from the Euclidean. Furthermore, from sections IV and V
it follows that for SUN) and U(1) Yang—Mills theories oR X Rl andS!x RI, the Hamiltonian
theory constructed through this procedureeisctlythe same as the standard one, constructed
ab-initio via canonical quantization.
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VIl. SUMMARY

The new results of the present paper can be summarized as follows:

(1) We successfully employed the new integration techniques developed in Refs. 11-13 to
compute a closed expression for the Wilson loop functionals for Yang—Mills theory in two
Euclidean dimensions.

(2) We proposed an extension of the Osterwalder—Schrader framework for gauge theories and
showed how to recover the Hilbert space, the Hamiltonian and the vacuum for the Lorentzian
theory starting from our Euclidean framework. For two-dimensional Yang—Mills theories on
RXR and onS*X R, the resulting quantum theory completely agrees with the one obtained via
canonical quantization. Therefore, two-dimensional Yang-Mills theory constitutes another model
theory in the framework of constructive quantum field theory.

(3) Our results are manifestly gauge-invariant, geometrically motivated, require only simple
mathematical techniques and the resulting quantum theory is manifestly invariant under the clas-
sical symmetry generated by area-preserving diffeomorphisms.

How do these results compare with those available in the literature? Let us begin with the
Makeenko—Migdal approach. While they formulated differential equations that the Wilson loops
have to satisfy, we have derived a general expression for Wilson loops themselves by directly
computing the functional integrals. In the intermediate steps we used a lattice regularization.
However, in contrast to the more common practice lattice gauge theorigof seeking fixed
points of the renormalization group, our results for the continuum theories were then obtained by
explicitly taking the limits to remove the regulators. Indeed, our general procedure is rather similar
to that used in constructive quantum field theory: we began with a fiducial meaguoa our
space._z/ < of Euclidean paths, introduced an infra-red and an ultraviolet cutoff, evaluated the
characteristic functional of the measure and then removed the regulators. Thus, in the end, we
were able to show rigorously that the theory exists in the continuum. In particular, our mathemati-
cal framework guarantees the existence of the physical measure for the continuum (fbeory
which the “fixed point” arguments of numerical lattice theory do not sufjice.

While the spirit of our approach is the same as that of the mathematical physics literature on
the subject, there are some differences as well. Most of these approaches mimic techniques that
have been successful in scalar field theories. Thus, generally, one fixes gauge right in the begin-
ning to introduce a vector space structure. et (see, e.g., Ref.)4 Gauge fixing also brings
considerable technical simplifications. However, proofs of invariance of the final expressions
under gauge transformations and area preserving diffeomorphisms are then often long. Also, in
most of this literature, the Wilson loops are computed for non-overlapping loops. Our results are
perhaps closest to those of Klimek and Kondr&€Kkiheir framework is also manifestly invariant
under gauge transformations and area preserving diffeomorphisms. Furthermore, thei(assults
well as those of the second paper in Refimply that their expressions of Wilson loops in the
non-overlapping case admit consistent extensions to all loops. However, they restrict themselves
to the structure group SU(2) and the relation to lattice gauge theory — and hence to the conven-
tional Yang—Mills theory — is somewhat obscure.

There are several directions in which our results can be extended. We will conclude by
mentioning some examples. First, now that closed expressions for Wilson loops are available, it
would be very interesting to check if they satisfy the Makeenko—Migdal equations rigorously.
Second, our axiomatic framework is incomplete and it would be very desirable to supplement it,
e.g., with techniques from Ref. 7. Another direction is suggested by the fact that, for theories
discussed here in detail, we expect that the support of the final physical measure is significantly
smaller than the full spaceZ/ < with which we began. Rigorous results that provide a good
control on the support would be very useful in refining our axiomatic framework. Finally, it would
be interesting to extend our Euclidean methods to closed topologies and compare the resulting
framework with the gauge fixed framework of Sengufta.
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APPENDIX A: YOUNG TABLEAUX

In the main text we encountered the following issue: We had to integrate a tensor product of
group factors®"g with a measuredu=duy(g)exp(B/NR tr(g)) which is invariant under con-
jugation. The representation & corresponding to tha-fold tensor product of the fundamental
representation is not irreducible, so let us decompose it into irreducibles

®"g=;m"(g)

which is possible sinc& is compact. Now we have that

m(h) Ldﬂ(g)ﬂ(g) = deM(g)W(hgh_l) m(h)

7T(h)=[Ldﬂ(g)#(g)

so the integral overr(g) commutes with the representatiome have used conjugation invariance
of the measure in the last siep\ccordingly, by Schur's lemma, we conclude that the integral is
proportional to the identity sincer was supposed to be an irreducible representation. We can
compute the constant of proportionality by taking the trace. Therefore we conclude that

1
[ dn@m@=52 [ auwx(@). where x(g)=titr() (A1)

is the character of the representation. This simplifies the group integrals significantly since we
only need the character integrals.

Note that what we are doing here is different from what is usually done in the liter3ttfre:
Because we want to evaluate the integral non-perturbatively, we cannot use the stronger property
of translation invariance of the Haar measure. In case of the Haar measure we simpfy have

| @ me)=5,gm1y). (A2)

where 0 denotes the trivial representation.

The solution to the problem of how to decompose an arbitrary tensor product of fundamental
representations of SM) into irreducibles can be found, e.g., in Ref. 39 and we just recall the
necessary parts of the theory.

Given ann-fold tensor product of the fundamental representation of a g@uponsider all
possible partitiongm} of n into positive integers of decreasing value,

n=m;+my+---+mg, wherem;=my,=---=m,>0.
J. Math. Phys., Vol. 38, No. 11, November 1997
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Such a partition defines a so-callsedmeY (Young diagram composed of s horizontal rows with
m; boxes in theth row.

Associated with each frame we construct a certain operator acting on the n-fold tensor product
representation as follows: Fill the boxes arbitrarily with numb&sgsB,, ...,.B,, where B;
e{1,2,...N}. Such a filling of the frame is called &bleau Let P denote the subset of the
symmetric group of n elemeng, which only permutes the indicésf the labelsB; of each row
among themselves and similarly Q denotes the subgro$y pérmuting only the indices in each
column among themselves of the given frame. The relevant operator is now given by

efn) = >, sgna)q > p,
qeQ peP

wherei labels the filling and sguj denotes the sign of the permutatign The action ofp, say,
is

~ Al An_ Al An

PO, " 98,7 98y, Teyny

that is, it permutes thendices of the subscript labels B;. Because of the complete anti-
symmetrization in the columns, no diagram has a row longer thémxes,s<N.

It turns ouf® that each of thessymmetrizersorresponds to an irreducible representation of
GL(N), U(N), and SU{N). Symmetrizers corresponding to different frames give rise to inequiva-
lent representations all of those that correspond to different fillings of the same frame are equiva-
lent. However, not all of the symmetrizers for a given frame are linearly independent, a linearly
independent set of tableaux, the so-cabezhdard tableauxan be constructed as follows: let the
indicesi of a filling always increase in one row from left to right and in each column from top to
bottom. The number of these standard tableaux is given by the for(ifute=1, replace the
numerator of the fraction by)1

Miciicd(li—1

fi”m)}:=n!1'<;—5("), where l;:=m+s—i, i=1, ...s (A3)
I, (i)

and it is the number of times that tm}th irreducible representation occurs in the decomposition

of ®"g into irreducibles. Now let

("
fm

efmy = 2,1 efmi (A4)

i.e., the sum of the symmetrizers corresponding to the standard tableaux. This object is called the
Young symmetrizeof the frame{m}. One can show that the standard symmetrizers obey the
following (quas) projector property:

n)
e{mi

(M on M oy
[e(my,i ®"In]l€m, ;@ "In]= 6i,;0{m},.{m"}) fi”)}
m

that is, the sum ifA4) is actually direct and

(n) £
m} _(n) (n ._ Am} _(n)

pi”m)},i =t Embi andpyp, : = T Eim)
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are projectors onto the representation space ofitheof the equivalent irreducible standard
representations given by the frame and on their direct sum, respectively.

In particular we have the resolution of the identity

®"1\= &l Py ® "1n]. (A5)

Let us focus on the unitary groups from now on. For the groupsNgUy(e have the following
formula for the dimension of thém!th irreducible representatith
yci<j<n(ki—kj)

T hay(l))

dim;= , where ki=mj+N—i, m:=0 fori>s. (A6)

APPENDIX B: U(1) ON THE TORUS

According to the formulas developed in sections Ill and IV A it is easy to see that the
characteristic functional simply becomes

JUgdpn(90)dun(g0dun(gy)exp( — BEo[1- m(gD)])Ta(gDlgxagy)g(HDngl)
T dup(go)exp( — BEo[1-R(gn)]) 8(Magn,.1)

N k [
I\ NNy (|n+k|/|0)
n—ZN (G) |1:[1 Ih/lo

x(a)=

5| 05| Ollm N | Ny, , (Bl)
N— o0 x
>, [7)
n=-—N 0
where we have employed in the second step the Dirichlet fofthula
sgl= 2 ¢ (B2)

and we could interchange the processes of taking the limit and integration since the Wilson action
satisfies all the regularity assumptions for the application of that formula.
In(B)=[T"_d¢l(2m)ef ©s¥)+n¢ i thenth modified Bessel function.

Let us WriteNXNy=,Bg(2)Vand|a, | =,8g(2)A(a,) (V is the volume or total area of the torus and
A =A(«,) are the areas of the simple non-overlapping homotopically trivial loops of whiish
composedi and use the well-known asymptotic properties of the modified Bessel funtiions
taking the continuum limif3—o. The result is

N 2 k
Y
_ZN exp — > nzv—zl A,([n+k,]2—n2)D
x(@)=8i o olim N 72
N > exp — =vn?
n==N 2

iexp< vzgg sk \1/Ak|))
R

K k
0 1
=3,00,08 2 > Al"%‘V(E kIAI) ]
=1 =1
(B3)
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Note that the series in numerator and denominator converge absolutely and uniformly to a non-
vanishing limit.

Formula(B3) is the exact and complete result. If we could replace the sums by integrals over
the real axis then the fraction involved (@3) would give just the number 1 and we would be left
with the exponential factor only. Note that becase A, =2 ;.,A;, exponent in the exponential
is non-negative:

1<J

2
VY, Alklz_(E kIAI) = D KEAA—2 kikAA=D AAk—k)?=0 (B4
| [ 1,J41 1<J

so that this pre-factor alone could possibly be the generating functional of a positive measure
(According to the Riesz-Markov theorem one needed to verify that it is a positive linear functional
on.7z.4%).

The characteristic function&B3) has several interesting features, for example:

(1) While the non-interacting measures had exponents that were linear in the areas of the simple
loops, for the interacting theory on the torus we obtain a quadratic dependence on the area,
thusviolating the area lawlt is an interesting speculation that the interactive nature of the
measure is related to the fact that functional integrals with compact time direction are sup-
posed to describe finite temperature field theories. The interaction then comes from the back-
ground heat bath and the characteristic functional is the free energy of a canonical ensemble.

(2) The interactive nature of the continuum measure for compact two-dimensional manifolds such
as the torus considered here lets us expect that one would observe a phase transition as in Ref.
17 in the limitN—o. However, the larg®\ limit of (B3) is beyond the scope of the present
paper and we leave a corresponding analysis for future research.

(3) Notice that expressio(B4) is invariant under taking complementbat is,A—V—A) if there
is only one simple loop, otherwise the simple loop decomposition of the complemented
surfaces is different from the original one.
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