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A closed expression of the Euclidean Wilson-loop functionals is derived for pure
Yang–Mills continuum theories with gauge groups SU(N) and U(1) and space-
time topologiesR13R1 and R13S1. ~For the U(1) theory, we also consider the
S13S1 topology.! The treatment is rigorous, manifestly gauge invariant, manifestly
invariant under area preserving diffeomorphisms and handles all~piecewise ana-
lytic! loops in one stroke. Equivalence between the resulting Euclidean theory and
and the Hamiltonian framework is then established. Finally, an extension of the
Osterwalder–Schrader axioms for gauge theories is proposed. These axioms are
satisfied in the present model. ©1997 American Institute of Physics.
@S0022-2488~97!00911-0#

I. INTRODUCTION

Although the literature on Yang–Mills theories in 2 space–time dimensions is quite ri
number of issues have still remained unresolved. The purpose of this paper is to analyze thr
issues. The paper is addressed both to high energy theorists and mathematical physicists
fore, an attempt is made to bridge the two sets of terminologies, techniques and conc
frameworks.

The first issue concerns the expectation values of traces of holonomies of the conn
around closed loops in the Euclidean domain, i.e., the Wilson loop functionals. The trac
holonomies are, arguably,thecentral observables of the~pure! Yang–Mills theory. In the classica
regime, they constitute a natural set of~over!complete gauge invariant functions of connectio
with rich geometrical and physical content. Hence, their Euclidean vacuum expectation valu
the naturalgauge invariantanalogs of the expectation valuesx( f ):5^exp i*dnx f(x)f(x)& in scalar
field theories which determine all then-point ~i.e., Schwinger! functions~via repeated functiona
differentiation with respect tof ). From theoretical physics considerations, therefore, one exp
the Wilson loop functionals to completely determine the theory. From a mathematical ph
perspective, the quantum theory is completely determined if one specifies the underlying m
dm—the rigorous analog of the heuristic expression ‘‘exp2S@A#DA’ ’ — on the space of Euclid-
ean paths. The expectation values of products of traces of holonomies determine the ‘‘mom
of the measuredm. Hence, one expects them to determine the measure completely.
0022-2488/97/38(11)/5453/30/$10.00
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Over the years, these considerations inspired a number of authors to devise imaginativ
to explore properties of the Wilson loop functionals. For example, Makeenko and Migdal1 for-
mulated differential equations that these functions have to satisfyon the space of loopsand then
introduced physically motivated ansa¨tze to solve them.~See also Refs. 2, 3.! Similarly, Gross and
co-authors4 have used stochastic methods to obtain closed expressions for non-overlapping W
loops. While these methods have yielded a wealth of insights, to the best of our knowle
closed expression for generic Wilson loops has not yet appeared in the literature.~At best the
compuations performed provide us with an expression which is exact but only implicit in the
that there have still to be done non-trivial computations for each case at hand; see, e.g., R!.
The first purpose of this paper is to provide such an expression for SU(N) @and U~1!# gauge
theories assuming that the underlying Euclidean space–time has a topology ofR13R1, or R13S1.
~In the U(1) case, we also allow the topology to beS13S1.) The final expression is explicit up to
a trivial contraction of group indices for a matrix which we have computed for the general

The second issue treated here is the relation between the Euclidean description in te
functional integrals and the canonical description in terms of a Hilbert space and a Hamilt
For scalar field theories, there exists a general framework that ensures this equivalence~see, e.g.,
Ref. 6!. We extend it to gauge theories and explicitly establish the equivalence between th
descriptions in the case when the Euclidean topology isR13R1 or R13S1. While the extension
involved is rather straightforward, it is quite illuminating to see how the Euclidean framewo
which, a priori, does not know that the system has only a finite number of true degree
freedom—reduces to the Hamiltonian framework which, from the very beginning, exploits th
that this is a quantum mechanical system, disguised as a quantum field theory.

Our third goal is to suggest an extension of the axiomatic framework of Osterwalde
Schrader. In that framework, one assumes from the very beginning that the underlying sp
paths is linear, and can be identified with the distributional dualS 8 of the Schwartz spaceS of
smooth test functions of rapid decrease~see, e.g., Ref. 6!. The axioms are restrictions on th
measurem on S 8,formulated as conditions on the functionalx( f )5*dm„exp i*dnx f(x)f(x)…,
introduced above, now interpreted as the Fourier transform of the measurem. Now, in gauge
theories, it is natural to regard each gauge equivalence class of connections as a distinct p
path. The spaceA/G of paths is then a genuinely non-linear space and the standard axiom
not even be stated unless one introduces, via gauge fixing, an artificial linear structure onA/G .
~In higher dimensions, due to Gribov ambiguities, such a gauge fixing does not exist.! We will
suggest a possible extension of the standard framework to encompass gauge theories in
festly gauge invariant fashion and show that the axioms are in fact satisfied in the two-dimen
Yang–Mills theories discussed in sections II–IV. We would like to emphasize, however, that
is a key difference between the status of the first two sets of results and the third. In the fir
cases, we deal only with two-dimensional Yang–Mills theory and the results are definitive.
third part, the general framework is applicable to gauge theories in any space–time dimensi
the discussion is open-ended; it opens a door rather than closing one. In particular, relative t
attempts7 in the literature, our approach is still very much in the preliminary stage.

The main ideas behind our approach can be summarized as follows.~For a more detailed
discussion, see Refs. 8, 9.! First, we will maintain manifest gauge invariance in the sense tha
will work directly on the spaceA/G . No attempt will be made to impose a vector space struc
by gauge-fixing; we will face the non-linearities ofA/G squarely. Now, it is well-known that, in
quantum field theory, smooth fields make a negligible contribution to the path integrals; phys
interesting measures tend to be concentrated on distributions. Therefore, in the case of
theories, we need to allow generalized connections. Fortunately, a suitable completionA/G of
the spaceA/G of smooth physical paths has been available in the literature for some time10,11

Furthermore, this space carries11–13a rigorously defined, uniform measurem0 which can serve as
a fiducial measure—the analog of the heuristic measureDA. The idea is to construct the phys
cally relevant measure by ‘‘multiplyingdm0 by exp2S,’’ where S is the Yang–Mills action.
J. Math. Phys., Vol. 38, No. 11, November 1997

8 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



We

s a
ulting

Wilson-

f
d
sistent

ach to
ng–
direct
ionals
emati-
ethods
vector
the
thod
r, our

are

culus
alytic
f our
f the
tion
In the
sical,
is

t our
atical

ases
e aim

work
se an
ted in
ed in
arizes
s some

which
of the

es to
amil-

pace–
lete

ies on

5455Ashtekar et al.: Two dimensioanl SU(N) quantum Yang–Mills theory

Downloaded 0
As in all constructive quantum field theories, this task is, of course, highly non-trivial.
proceed in the following steps. First, we consider Wilson’s lattice-regularized versionSW of S.
Now, it turns out that exp2SW is an integrable function with respect to the measuredm0 and,
furthermore, products of traces of holonomies,Ta1

••• Tak
, around loopsa1 , ...,ak are integrable

on A/G with respect to the measure exp2SW dm0. We compute these expectation values a
function of the lattice spacing, used in the Wilson regularization, and then show that the res
expressions have a well-defined limit as the spacing goes to zero. These are the required
loop functionals in the continuum. General theorems10–12 from integration theory onA/G guar-
antee that there exists a genuine, normalized measuremYM on A/G such that the integrals o
products of traces of holonomies with respect tomYM are the Wilson loop functionals compute
by the regularization procedure. This provides a concrete proof of the existence of a con
Euclidean theory.

The techniques we use were first developed in the context of a non-perturbative appro
general relativity.14 Therefore, our emphasis is often different from that in the literature of Ya
Mills theories. For instance, we arrive at the final, closed expressions of Wilson loops by a
computation of the functional integrals, rather than through differential equations these funct
satisfy on the loop space. In this sense, our approach is similar to that followed in the math
cal physics literature. However, in these rigorous approaches, one often tries to exploit m
which have been successful in kinematically linear theories and, to do so, introduces a
space structure ofA/G through gauge fixing. As mentioned above, we work directly on
non-linear spaceA/G and thus avoid gauge fixing in conceptual considerations. Also, our me
respects the invariance of the theory under area preserving diffeomorphisms. In particula
Wilson loop functionals — and hence the final, physical measure for the continuum theory —
manifestly invariant under the action of this group.

The plan of the paper is as follows. In section II, we review the relevant notions from cal
on A/G . In section III, we reformulate lattice gauge theory in a manner that makes the an
computation of Wilson loop functionals easier. This formulation constitutes the basis o
discussion of the continuum theory in section IV. Here, we first derive the general form o
Wilson loop functionals with ultraviolet and infrared cut-offs provided by the lattice regulariza
and then show that the functionals admit well-defined limits as the cut-offs are removed.
mathematical physics terminology, these limits are the generating functions for the phy
Yang–Mills measure onA/G . For simple loops, we recover the well-known area law which
generally taken to be the signature of confinement. More generally, if we suitably restric
choices of loops, our general results reduce to those obtained previously in the mathem
physics literature. Section IV reviews the Hamiltonian quantization of Yang–Mills fields in c
when the underlying Lorentzian space–time has the topology of a 2-plane or a 2-cylinder. Th
of section V is threefold. We begin with a brief review of the Osterwalder–Schrader frame
for kinematically linear theories and, using the machinery developed in sections II–IV, propo
extension to handle gauge theories. We then show that our two-dimensional model, trea
section IV, satisfies these axioms. Finally, we show that the Hamiltonian framework review
section IV can be systematically recovered from the Euclidean framework. Section VI summ
the main results, compares them with the results available in the literature and suggest
directions for further work.

A number of technical topics are covered in appendices. Specifically, Young tableaux
are needed in certain computations of Sec. IV are discussed in Appendix A and the details
Euclidean U(1) theory on a torus are presented in Appendix B.

Finally, we wish to emphasize that in most of this paper we have restricted ourselv
non-compact space–times since it is only in this case that a direct comparison with the H
tonian theory is possible. In particular, all our results in the non-Abelian case pertain to s
time topologiesR3R andS13R and it is only in these cases that we have obtained a comp
solution. In recent years, there has been extensive work on Euclidean Yang–Mills theor
J. Math. Phys., Vol. 38, No. 11, November 1997
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compact Riemannian surfaces~see, e.g., Refs. 15–17! which has led to a variety of interestin
results.~For reviews, see, e.g., Refs. 18, 19.! Similarly, interest in the largeN limit of two-
dimensional Yang–Mills theories and coupling to fermions in this limit has also been renew
the last few years.~See, e.g., Refs. 20–22.! However, all these developments lie outside the sc
of the present paper.

II. PRELIMINARIES

In this section, we will review the basic notions from Refs. 10–13, 23~and references therein!
which will be used in this paper. This material will provide the necessary background fo
discussion of the mathematical aspects of functional integration, axiomatic formulation of g
theories and the relation between Euclidean and Hamiltonian formulations. A reader w
interested primarily in the computation of the Wilson loop functionals can skip this materia
go directly to sections III and IV.

By a loop we will mean a piecewise-analytic embedding ofS1 into the ~Euclidean! space–
time manifoldM . For technical convenience, we will only consider based loops, i.e., loops pa
through a fixed pointp in M . Denote the set of these loops byLp . As indicated already, ou
structure group will be either SU(N) ~where N>2) or U(1). Fix any one ofthese groups,
consider a trivial Principal fibre bundleB on M and denote byA the space of smooth connection
on B. Given anyAPA, we can associate with everyaPLp an element of SU(N) by evaluating
the holonomy,

ha~A!:5P expS 2 R
a
AD , ~II.1!

at the base pointp ~where, as usual,P stands for ‘‘path ordered’’!. Let us introduce an equiva
lence relation onLp : two loops a1 ,a2PLp will be said to be holonomically equivalen
a1;a2 , iff ha1

(A)5ha2
(A);APA. Each of these holonomically equivalent loops will b

called ahoop. It is straightforward to verify that the spaceHG of hoops has a natural grou
structure. We will call it theHoop group. For notational simplicity, in what follows we will no
distinguish between a hoop and a loop in the corresponding equivalence class.

Denote byG the group of smooth, local gauge transformations~i.e., of smooth vertical
automorphisms ofB). Of special interest are theG -invariant functionsTa of connections obtained
by taking traces of holonomies:

Ta~A!:5
1

N
tr~ha~A!!, ~II.2!

where the trace is taken with respect to theN-dimensional fundamental representation of t
structure group. As is well known, the functionsTa suffice to separate points ofA/G in the sense
that given all theTa , we can reconstruct the smooth connection modulo gauge transformatio24

This is significant because, in the classical theory, physical paths are represented by elem
A/G .

To go over to the quantum theory, we need to extend this space of paths appropriately
the set of smooth paths is, typically, of zero measure in physically interesting theories
possible extension has been carried out in the literature.10,11 ~For motivational remarks, see Re
8.! This extension,A/G , can be characterized in three complementary ways, each emphasi
different set of its properties. SinceA/G will play a fundamental role in the quantum theory —
in our approach it represents the space of gauge invariant, physical paths in the Euclide
proach — we will now sketch all these characterizations:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~i! Perhaps the simplest characterization is the following:A/G is the space ofall homomor-
phisms from the hoop groupHG to the structure group SU(N) or U(1), ~modulo the
adjoint action of the structure group at the base pointp). It is obvious that, given a smoot
connection, the holonomy map of~II.1! provides such a homomorphism. However, it
easy to construct11 examples of more general homomorphisms which, for example, w
correspond to ‘‘distributional connections.’’ In relation to the more familiar scalar fi
theories,HG will play a role which in some ways is similar to that played by the spaceS

of test functions andA/G is analogous to the spaceS 8 of Schwartz distribution. In
particular, just asS 8 is the space of paths for scalar fields,A/G will serve as the space o
paths for gauge theories. The ‘‘duality’’ betweenHG andA/G is non-linear. However,
just as elements ofS serve as labels for cylindrical functions onS 8, elements ofHG will
serve as labels for cylindrical functions onA/G .

~ii ! The second characterization brings out the topological structure ofA/G . Recall first that
in any of the standard Sobolev topologies onA/G , the functionsTa are continuous.
Furthermore, for gauge groups under consideration, they are bounded. Hence, the!-algebra
they generate is a sub-algebra of theC!-algebraC0(A/G ) of all continuous bounded
functions onA/G . Denote the completion of this!-algebra byHA. This is an Abelian
C!-algebra with identity and is called theholonomy algebra. Now, the Gel’fand represen
tation theory guarantees thatHA is naturally isomorphic with theC!-algebra of all con-
tinuous functions on a compact Hausdorff space. This space — the Gel’fand spectr
HA — is our A/G . Thus, the topology onA/G is the coarsest one which makes t
Gel’fand transforms of the traces of holonomies continuous. Finally, sinceHA suffices to
separate points ofA/G , it immediately follows thatA/G is densely embedded inA/G .

~iii ! The last characterization is in terms of projective limits.25 One begins with two projective
families labelled by graphs, each consisting of compact Hausdorff manifolds. The pr
tive limit of the first yields a completionĀ of the spaceA of smooth connections while
the projective limit of the second provides a completion of the the spaceG of smooth
gauge transformations. One then shows thatA/G 5Ā/Ḡ . This characterization is bes
suited for analyzing the~surprisingly rich! geometric structure ofA/G .12,26

Finally, we note thatA/G admits11–13a natural, normalized, Borel measurem0 which, in our
approach, will play the role that ‘‘DA’’ plays in heuristic considerations. We will conclude b
indicating how this measure is defined.

To begin with, let us consider the family of all piecewise analytic, oriented graphsG in M .
Denote byp1(G) the fundamental group of the graphG. Choose a system of generatorsb1 , ...,bn

of p1(G) wheren:5dim„p1(G)… is the number of independent generators of the fundame
group. With this machinery at hand, we can define the notion of ‘‘cylindrical functions,’’ wh
will be the simplest functions onA/G that we will be able to integrate. Note first that, given a
graphG, we have a natural projection map,

pG :A/G→Gn A→„hb1
~A!, ...,hbn

~A!…, ~II.3!

from A/G to Gn, whereG is the structure group@i.e., SU(N) or U(1)] under consideration
Cylindrical functions are obtained by pull-backs of smooth functions onGn under this map. Thus
given any smooth functionf G on Gn, f 5(pG)* f G is a cylindrical function.

The measurem0 on A/Ḡ can now be introduced via:

E
A/Ḡ

dm0~A! f ~A!:5E
Gn

dmH~g1!..dmH~gn! f G~g1 , ...,gn!. ~II.4!
J. Math. Phys., Vol. 38, No. 11, November 1997
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The proof that this condition does indeed define an infinite dimensional, (s-additive! regular,
normalized Borel measurem0 on A/G is given in Ref. 23.

III. LATTICE GAUGE THEORY

In this section, we will recast the standard description of lattice gauge theory in a form t
better suited for our discussion of the continuum limit in section IV.

Consider finite square latticesG(a,Lx ,Ly) in M with spacinga and lengthLx andLy in the
x andy directions. This lattice contains (Nx11)(Ny11) vertices, whereNxa:5Lx , Nya:5Ly .
Note that the use of such a lattice for quantum field theory implies both an infra-red regulato~the
finite volume defined by theLx andLy) and an ultra-violet regulator~defined by the lattice spacin
a). Our strategy will be to construct a regulated quantum theory in this section and then re
the regulators in the next section.

Let us denote the open path along an edge~link! of the lattice from a vertexi to an adjacent
vertex j by

l 5 l i→ j

so that we may define the plaquette loops

h ~x,y! :5 l ~x,y!→~x,y11!
21 + l ~x,y11!→~x11,y11!

21 + l ~x11,y!→~x11,y11!+ l ~x,y!→~x11,y! . ~III.1!

That is, each plaquette loop starts at the bottom left corner and our convention is such th
coordinate directions define positive orientation. Here the coordinatesx,y are taken to be integers
For the planeM5R3R, all of these links are distinct while for the cylinder,M5R3S1, we
identify l (1,y)→(1,y11)[ l (Nx11,y)→(Nx11,y11) . On the torus, we also identifyl (x,1)→(x11,1)

[ l (x,Ny11)→(x11,Ny11) .
Next, we introduce a set of closed loops which can serve as generators, i.e., in terms of

any loop inG based atp can be expressed via composition:
~i! Let rx,y be an open path inG from p to the point (x,y). The loops

bx,y :5bh~x,y!
:5rx,y

21+h ~x,y!+rx,y ~III.2!

generate all loops on the plane.
~ii ! On the cylinder, we need an additional loop. We will take it to be the ‘‘horizontal’’ lo

gx :5 l ~Nx ,Ny11!→~1,Ny11!+ l ~Nx21,Ny11!→~Nx ,Ny11!+•••+ l ~1,Ny11!→~2,Ny11! . ~III.3!

~iii ! Similarly, on the torus we need an additional loop,

gy :5 l ~1,Ny!→~1,1!+ l ~1,Ny21!→~1,Ny!+•••+ l ~1,1!→~1,2! . ~III.4!

However, the loops$bx,y ,gx ,gy% are not independent as the loopgy
21+gx

21+gy+gx can be written
as a composition of thebx,y . ~An intuitive notion of independence will suffice for our work her
For a careful definition, see Ref. 11.! This constraint will lead to an ‘‘interacting’’ U(1) theory fo
the torus in contrast to the plane and the cylinder.

With these preliminaries out of the way, let us now summarize the standard formulation
lattice gauge field theory by Wilson.27 For each of the links in the lattice, introduce oneG-valued
degree of freedom~the ‘‘parallel transport along the link’’!. Let the ‘‘lattice Yang–Mills action’’
be given by the Wilson expression

SW :5(
h

F12
1

N
R tr~hh!G , ~III.5!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherehh denotes product of link variables around the plaquetteh andR tr is the real part of the
trace. Also, letdmW be the Haar measure onGNl, whereNl is the number of links in the graph
The regulated Wilson-loop functional is now given by

^Ta1
•••Tak

&:5
1

Z~a;Lx ,Ly!
E

GNl

dmW e2bSWTa1
•••Tak

, ~III.6!

wherea1 , ...,ak are loops inG5G(a;Lx ,Ly); the ‘‘inverse temperature’’ is given by

b5
1

g0
2a42d

~III.7!

(d52 being the dimension ofM ); and whereg05g0(a) is the bare coupling constant. Th
partition functionZ5Z(a;Lx ,Ly) is defined througĥTp•••Tp&51 wherep denotes the trivial
loop at p. From a mathematical physics perspective, these Wilson loop functionals can a
regarded as the characteristic functional of the regulated measure. To emphasize this dua
pretation, using the standard notation for characteristic functionals, we will set:

x~a1 , ...,ak ;a;Lx ,Ly!:5^Ta1
•••Tak

&. ~III.8!

For our purposes, it will turn out to be more convenient to re-express the characte
functional in terms of integrals over the independentloopsin the graphG. To do so, we make use
of the fact that, whenever it is used to integrate gauge invariant functions, the measuredmW may
be replaced by the Haar measure onGN, whereN is the number of independent loop generato
of the graphG. This fact follows immediately from the results of Refs. 13, 26.~In the language of
these works, it is contained in the statement thatĀ/Ḡ 5A/G and that the Haar measure onĀ

projects unambiguously to yield the Haar measure onA/G .) Thus, we may write the regulate
characteristic functional as:

x~a1 , ...,ak!5
1

ZEGN)h dmH~gh!exp~2bSW!5 )
i 51

k

tr a i~gh! :on R2

E
G

dmH~gx!)
i 51

k

tr a i~gh ,gx! :on R13S1

,

~III.9!

where dmH is the Haar measure onG and a i(gh) is the expression fora i in terms of the
generatorsbx,y with each generatorbx,y replaced by the integration variablegx,y @similarly for
a i(gh ,gx)]. The corresponding expression for the torus will appear at the end of this section
idea of the next section will simply be to evaluate the above integrals for any givena,Lx ,Ly and
then take the limits to remove the ultra-violet and infra-red regulators.

To conclude this section, we will introduce some definitions and collect a few facts a
loops inG. These will be useful in section IV.

Definition III.1: A loop is said to be simple iff there is a holonomically equivalent loop wh
has no self-intersections.

Note that any simple loop which is homotopically trivial~in space–time! divides space–time into
two regions: an interior which is topologically a 2-disk and an exterior. This is just the Jo
curve theorem.

Definition III.2: On the torus, we define the surface enclosed by a simple homotopically t
loop to lie on the left as one follows the loop counterclockwise (when the torus is represen
a two-dimensional rectangle with the standard identifications.)
J. Math. Phys., Vol. 38, No. 11, November 1997
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Definition III.3: Two distinct simple homotopically trivial loops are said to be no
overlapping iff the intersection of the surfaces that they enclose has zero area. The homoto
non-trivial loopsbx and by will both be said not to overlap any other loop.

So, for example, all the loopsbx,y are simple since they lie in the same hoop class as
plaquette loopsh (x,y) . Non-overlapping distinct simple loops are allowed to share whole
ments whence the plaquette generators of our graph~lattice! are mutually non-overlapping.

It will turn out that the following two simple lemmas govern the form of the characteri
functional in two space–time dimensions.

Lemma III.1: Every simple, homotopically trivial loopa on G can be written as a particular
composition of the generatorsbh contained in the surface enclosed bya, with eachbh appear-
ing once and only once.

It is readily checked that when two homotopically trivial loopsa1 anda2 ~enclosing disksD1 and
D2) are non-overlapping and such thatD1øD2 is also a disk, then eithera1a2 or a1a2

21 ~or, on
the torus, perhaps the inverse of one of these loops! enclosesD1øD2 . Since every disk is a finite
union of plaquettes, Lemma III.1 follows immediately. h

This Lemma allows us to write a simple expression for the generating functional on the
Note that, after ‘ungluing’ the torus to make a rectangle, the loopgx+gy+gx

21+gy
21 is simple and

homotopically trivial, enclosing the entire area of the torus. As a result, it may be written
product of the plaquette loopsbh in which eachbh appears once and only once. We m
therefore pick any one of these loops~sayb (0,0)) and write it as a function of the other plaquet
loops and the loopsgx ,gy . Alternatively, we find a productC of holonomies along all the loop
bh ,gx ,gy which is the identity inG. Inserting ad distribution onG enforcing the constrain
C51N we find for the generating functional on the torus

x~a1 , ...,ak!5
1

ZEGN)h dmH~gh!dmH~gx!dmH~gy!exp~2bSW!)
i 51

k

tr a i~gh ,gx ,gy!

5
1

ZEG
)
h

dmH~gh!dmH~gx!dmH~gy!d~C,1N!exp~2bSW!

3)
i 51

k

tr a i~gh ,gx ,gy!. ~III.10!

Finally, we have:
Lemma III.2: Every loop can be written as a composition of simple non-overlapping loo

This follows from the fact that thebh ~together withbx ,by on S13R and T2) are simple and
non-overlapping and that they generate the graphG. h

IV. CONTINUUM THEORY

In this section we will derive a closed expression for the Wilson loop functionals — i.e.
the characteristic functional of the measure — for the continuum theory when the unde
manifold M is either a 2-plane or a cylinder.~For the torus, we have been able to carry out
computation to completion only for the Abelian case,G5U(1), andthis theory is discussed in
detail in Appendix B.!

In section IV A, we will discuss U(1) theories and in section IV B, SU(N) theories. In both
cases, we will show that the lattice-regulated characteristic functional admits a well-defined
as the ultra-violet and infrared cut-offs are removed. Furthermore, we will be able to rea
certain qualitative properties of these functionals. However, the explicit expression invol
group-dependent constant. This is evaluated in section IV C.
J. Math. Phys., Vol. 38, No. 11, November 1997
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A. Abelian case „U„1……

Let us first note that, in the U(1) case, products of functionsTa can be reduced to a singleTa8
in the obvious fashion. Therefore, we need to consider only single loops. Fix a loopa and
consider its decomposition into non-overlapping simple loops. LetkI be the effective winding
number of the simple homotopically trivial loopa I , I 51, ...,n and letl x ,l y be winding numbers
of the homotopically non-trivial loopsbx ,by in this decomposition. Defineua I u to be the number
of plaquettes enclosed by the simple loopa I . We can then write the characteristic functional
follows @with G5U(1)]:

x~a!5
1

ZE )
h

F E
G

dmH~gh!exp~2b„12R~gh!…!)
I 51

n S )
hPa I

ghD kIG
3E

G
dmH~gx!gx

l xE
G

dmH~gy!gy
l ydS)

h
gh,1D e

,

where we could neglect the precise ordering of plaquette variables~that occurred in the decom
position of a in terms of bh ,bx ,by) because the gauge group is Abelian. In this form
l x5 l y50 on the plane andl y50 on the cylinder ande50 for the plane and the cylinder whil
e51 for the torus. Now, forG5U(1), wehave*GdmH(g)gn5d(n,0). Hence, it follows imme-
diately that the characteristic functional is non-zero if and only ifl x5 l y50. Therefore, we will
focus on this case in the sequel.

Now, let us consider the partition function,Z. For the plane and the cylinder, differen
plaquette contributions decouple and we obtain:

Z5F E
G

dmH~g!exp„12R~g!…GNxNy

. ~IV.1!

For the torus, on other the hand, decoupling does not occur and we are left with

Z5E )
h

dmH~gh!exp~2„12R~gh!…!dS)
h

gh,1ND . ~IV.2!

Thus, even in the Abelian, U(1) case, the Euclidean theory in two space–time dimensio
interactions! We will continue the discussion of this case in Appendix B.

Collecting these results, for the plane and the cylinder, we can now reduce the expres
x(a) to:

x~a!5)
I 51

n F*GdmH~g!exp~2b„12R~g!…!gkI

*GdmH~g!exp~2b„12R~g!…! G ua I u

~IV.3!

in case whenl x50 ~and x(a)50 otherwise.! We now want to take the continuum limit. Th
ultra-violet limit corresponds to letting lattice spacing go to zero, i.e.,b→`, and the infrared limit
corresponds to letting the lattice size go to infinity, i.e.,Lx→` andLy→`.

Let us set

Jn~b!:5E
G

dmH~g!exp~2b„12R~g!…!gn. ~IV.4!

Now, since g is simply a complex number of modulus one it is obvious that the frac
Jn(b)/J0(b) in ~IV.3! is a real number of modulus less than or equal to one. Now observe
ua I u5g0

2bA(a I), whereA(a I) is the Euclidean area enclosed bya I . In the limit, b→`, the
J. Math. Phys., Vol. 38, No. 11, November 1997
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integrand of both numerator and denominator become concentrated atg51, whence we have an
expansion of the formJn /J05„12c(1,n)/b…„11O(1/b2)…, wherec is positive becauseJn /J0

approaches the value 1 from below. Thus, it is easy to see that

lim
b→`

x~a!5expS 2g0
2(

I 51

n

c~1,kI !A~a I !D ~IV.5!

for l x50 and zero otherwise. We will calculate the coefficientsc(1,n) in section IV C. Finally,
note that the infra-red limit is trivial sincex(a) is independent ofLx ,Ly , ~assuming of course tha
they are large enough for the region under consideration to contain the loop!.

To summarize, we can arrive at the continuum characteristic functions as follows. Give
piecewise analytic loopa8 in M , we first consider a sufficiently fine and sufficiently large latti
and approximatea8 by a loopa lying in the lattice. Then, we expressa as a product of non-
overlapping simple loops and compute the regulated characteristic functionx(a) directly. Finally,
we take continuum limit to arrive at the final expression~IV.5!.

We will conclude this sub-section by pointing out that the Abelian case has been discus
the literature extensively~see, e.g., Ref. 5 for an early treatment! and is included here mainly fo
completeness.

B. Non-Abelian case (SU „N…)

Let us now consider the technically more difficult non-Abelian case. As indicated befor
this discussion, we will restrict ourselves to the plane and the cylinder.

For SU(N), the trace identities only enable one to express traces of products of matric
linear combinations of traces of products ofr :5N21 or fewer matrices. Hence, unlike in th
Abelian case, the productTa1

•••Tan
can not be reduced to a singleTa ; we can no longer confine

ourselves to single loops. Fix a multi-loop — i.e., a set ofr loops —a1 , ...,a r and consider its
decomposition into simple, non-overlapping loops. Suppose that, in this decomposition, the
n homotopically trivial loopsâ I andc homotopically nontrivial loopsg i ~clearly,c50 or c51).
Let uâ I u be the number of plaquettes enclosed byâ I and letkI

6 andl i
6 be the number of times tha

â I and g i occur ~respectively! with positive or negative power in this decomposition. Thu
altogether, there areb5( I 51

n @kI
11kI

2#1( i 51
m @ l i

11 l i
2# factors of holonomies around theâ I ,g i

and their inverses involved in the expansion of the productTa1
•••Tar

. These may occur in
arbitrary order, depending on the specific loopsa i , i 51, ...,r .

It is then easy to see that we can now writeTa1
•••Tar

explicitly as a product of matrices
representing holonomies around simple loops, with an appropriate contraction of matrix-in

NrTa1
•••Tar

5)
I 51

n F )
m51

kI
1

~hâ I
!

B
m
I 1

Am
I 1

)
m51

kI
2

~hâ I

21
!

B
m
I 2

Am
I 2G)

i 51

c F )
n51

l i
1

~hg i
!

D
n
i 1

Cn
i 1

)
n51

l i
2

~hg i

21!
D

n
i 2

Cn
i 2G)

k51

b

dFp~k!

Ek .

~IV.6!

Here, we have the following relation between indices that are being contracted:

~E1 , ...,Eb![~A1
11 , ...,Ak

1
1

11
,A1

21 , ...,Ak
2
1

21
, ...,A1

n1 , ...,Ak
n
1

n1
,

A1
12 , ...,Ak

1
2

12
,A1

22 , ...,Ak
2
2

22
, ...,A1

n2 , ...,Ak
n
2

n2
,

C1
11 , ...,Cl

1
1

11
,C1

21 , ...,Cl
2
1

21
, ...,C1

n1 , ...,Cl
n
1

c1
,
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C1
12 , ...,Cl

1
2

12
,C1

22 , ...,Cl
2
2

22
, ...,C1

n2 , ...,Cl
n
2

c2
!, ~IV.7!

and similarly with the exchangesE↔F, A↔B, C↔D; and p is an element of the symmetri
group ofb elements that depends on the loopsa i and defines the specific contraction involved
Ta1

,•••Tar
.

To evaluate the expectation values of this product of traces of holonomies, we need to e
out the inverses of matrices that appear in~IV.6! explicitly. This can be done easily using the fa
that the matrices in question are all uni-modular. We have:

~hâ I

21
!

B
m
I 2

Am
I 2

5
1

~N21!!
eAm

I 2Em,1
I •••Em,N21

I
eBm

I 2Fm,1
I •••Fm,N21

I
~hâ I

!
E

m,1
I

Fm,1
I

•••~hâ I
!

E
m,N21
I

Fm,N21
I

5:E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

~hâ I
!

E
m,1
I

Fm,1
I

•••~hâ I
!

E
m,N21
I

Fm,N21
I

,

and similarly for the inverse of hg i
. Finally, if we define nI :5kI

11(N21)kI
2 ,

ci :5 l i
11(N21)l i

2 we can rewrite~IV.6! using a tensor-product notation as:

NrTa i
•••Tar

5)
I 51

n

~ ^
nIha I

!
B

1
I 1•••B

kI
1

I 1
E

1,1
I •••E

1,N21
I •••E

kI
2,1

I
•••E

kI
2 ,N21

I

A1
I 1 •••A

kI
1

I 1
F1,1

I •••F1,N21
I •••F

kI
2,1

I
•••F

kI
2 ,N21

I

3)
i 51

c

~ ^
cihg i

!
D

1
i 1 •••D

l i
1

i 1
G

1,1
i •••G

1,N21
i •••G

l i
2,1

i
•••G

l i
2 ,N21

i

C1
i 1•••C

l i
1

i 1
H1,1

i •••H1,N21
i •••H

l i
2,1

i
•••H

l i
2 ,N21

i

3)
k51

b

dFp~k!

Ek )
I 51

n

)
m51

kI
2

E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

)
i 51

c

)
n51

l i
2

E
D

n
i ,2H

n,1
i •••H

n,N21
i

Cn
i 2Gn,1

i •••Gn,N21
i

. ~IV.8!

Next, let us examine the contributions from homotopically trivial loops. Chooseh:5â I for some
I and consider the expression

~ ^
nhh!B1 •••Bn

A1 •••An. ~IV.9!

Label the plaquette loops enclosed byh from 1 to uhu:5m; thushh5g1•••gm , wheregk :5hhk
.

Then the above expression becomes

@~g1!C1,1

A1 ~g2!C1,2

C1,1•••~gm!B1

C1,m21#•••@~g1!Cn,1

An ~g2!Cn,2

Cn,1•••~gm!Bn

Cn,m21#

5@ ^
ng1#C1,1•••Cn,1

A1•••A2 @ ^
ng2#C1,2•••Cn,2

C1,1•••Cn,1•••@ ^
ngm#B1•••Bn

C1,m21•••Cn,m21

5~@ ^
ng1#@ ^

ng2#•••@ ^
ngm# !B1•••Bn

A1•••An ~IV.10!

where, in the last step we have used the product rule for tensor products of matrices.
With these explicit expressions at hand, we can now consider the functional integral

yields the Wilson loop functionals. In this evaluation, each of then-fold tensor products in~IV.10!
has to be integrated with the measure

dm~g!5dmH~g!exp„b/NR tr~g!…. ~IV.11!

To carry out this task, we will use the representation theory reviewed in Appendix A.
According to Appendix A, we have:
J. Math. Phys., Vol. 38, No. 11, November 1997

8 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



e

eing
a single

5464 Ashtekar et al.: Two dimensioanl SU(N) quantum Yang–Mills theory

Downloaded 0
E
G

dm~g! ^
ng5 % $m% %

i 51

f $m%
~n! E

G
dm~g!@p$m%,i

~n!
^

ng#

5 % $m% %
i 51

f $m%
~n!

@p$m%,i
~n!

^
n1N#

1

d$m%
E

G
dm~g! tr~@p$m%,i

~n!
^

ng# !

5 % $m%@ %
i 51

f $m%
~n!

@p$m%,i
~n!

^
n1N##

1

d$m%
E

G
dm~g!x$m%~g!

5 % $m%@p$m%
~n!

^
n1N#

1

d$m%
E

G
dm~g!x$m%~g!

5 % $m%@p$m%
~n!

^
n1N#J$m%~b,N!. ~IV.12!

Here, in the first step, we have decomposed the matrix^
ng into a direct sum of irreducible

representations, withi labeling the orthogonal equivalent representations andm labeling the
equivalence classes of inequivalent representations, andp$m%,i

(n) are the Young symmetrizers; in th
third step, we have used the fact that the trace is a class function (x$m% being the character of the
representation$m%); and, in the last step we have simply defined

J$m%~b,N!:5
1

d$m%
E

G
dm~g!x$m%~g!. ~IV.13!

Finally, using the orthogonality of the projectorsp$m%
(n)

^
n1N we find that the integral over~IV.9!

becomes

S (
$m%

@p$m%
~n!

^
n1N#@J$m%~b,N!# uhu D

B1•••Bn

A1•••An

. ~IV.14!

The integral over the homotopically non-trivial loops is quite similar, the main difference b
that the measure there is the Haar measure and that each of these loops involves just
integration variable. According to Appendix A we find that the integral over^

ng with the Haar
measure is given by

@p0
~n!

^
n1N#,

wherep0
(n) is the projector on the trivial representation.

Collecting these results, we can write the vacuum expectation value ofTa1
,...,Tar

as follows.
Set

J0~N,b!:5E
G

dm~g!. ~IV.15!

Then,
J. Math. Phys., Vol. 38, No. 11, November 1997

8 Jan 2008 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



ted at

r to
s here.

that

at the
ptotic

5465Ashtekar et al.: Two dimensioanl SU(N) quantum Yang–Mills theory

Downloaded 0
Nrx~a1 , ...,a r !5)
I 51

n S (
$m%

FJ$m%

J0
G uâ I u

@p
$m%
~nI ! ^

nI1N# D
B

1
I 1•••B

kI
1

I 1
E

1,1
I •••E

1,N21
I •••E

kI
2,1

I
•••E

kI
2 ,N21

I

A1
I 1 •••A

kI
1

I 1
F1,1

I •••F1,N21
I •••F

kI
2,1

I
•••F

kI
2 ,N21

I

3)
i 51

m

~@p0
~mi ! ^

mi1N# !
D

1
i 1 •••D

l i
1

i 1
G

1,1
i •••G

1,N21
i •••G

l i
2,1

i
•••G

l i
2 ,N21

i

C1
I 1 •••Ci 1 l i

1H1,1
i •••H1,N21

i •••H
l i
2,1

i
•••H

l i
2 ,N21

i

3)
k51

b

d Fp~k!

E1 )
I 51

n

)
m51

kI
2

E
B

m
I 2F

m,1
I •••F

m,N21
I

Am
I 2Em,1

I •••Em,N21
I

)
i 51

m

)
n51

l i
2

E
D

n
i ,2H

n,1
i •••H

n,N21
i

Cn
i 2Gn,1

i •••Gn,N21
i

. ~IV.16!

This is the closed expression for the regulated Wilson loops. Although it seems complica
first, its structural form is rather simple.~A more elegant derivation of~IV.16! uses the notion of
a loop-network state,9 however, since products of traces of the holonomy are more familia
gauge theorists we have refrained from introducing the associated mathematical apparatu!
First of all, the lattice spacing and the coupling constant enter this expression only throughJ$m% .
The rest is all an explicit contraction of indices of a product of afinite number of matrices. For any
given groupG5SU(N), the matrices depend only on the decomposition ofTa1

,...,Tar
in terms of

then holonomies around the homotopically trivial, simple loops and them holonomies around the
homotopically non-trivial simple loops.

To establish the existence of the continuum limit, therefore, we only need to show
@J$m%(b)/J0(b)# ua I u converges to a finite value asa→0. Let us begin by noting that

uJ$m%~b,N!u<E
G

dm~g!Ux$m%~g!

d$m%
~n! U<J0~b,N!.

This estimate implies thatuJ$m% /J0u is always a number between 0 and 1 for finiteb. Moreover,
we have

lim
b→`

J$m%

J0
5 lim

b→`

*GdmH exp~2b„121/NR tr~g!…!
tr„p~g!…

dim~p!

E
G

dmH exp~2b„121/NR tr~g!…!

51

since for b→` the measure in both numerator and denominator becomes concentrated
identity for which both integrand are equal to the number one. Therefore, we have an asym
expansion of the form

J$m%~b,N!

J0~b,N!
5S 12

c~N,$m%!

b D „11O~1/b2!…,

where the first order coefficientc(N,$m%) must benon-negativesinceJ$m% /J0 approaches unity
from below. Finally, observing thatua I u5bg0

2A(a I), we find that the continuum limit of~IV.16!
is given by replacing the@J$m% /J0# ua I u by

lim
b→`

FJ$m%~b,N!

J0~b,N! G ua I u

5exp„2c~N,$m%…g0
2A~a I !!. ~IV.17!
J. Math. Phys., Vol. 38, No. 11, November 1997
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This establishes the existence of the continuum limit. To obtain the explicit formula for the W
loops, it only remains to evaluate the constantsc(N,$m%). We will carry out this task in the nex
sub-section.

We will conclude this sub-section with a few remarks.~Some of these observations have be
made in the context of other approaches but are included here for completeness.!

~i! The explicit expression of the Wilson loop functionals~or the characteristic functional fo
the Yang–Mills measure onA/G ) is rather complicated. Note however that the computation o
involves complicated traces and can be performed by algebraic manipulation program
quickly. Furthermore, some of the qualitative features can be easily read-out. Note first tha
have a single, simple loopa0 , the matrix factors in~IV.16! disappear and the expectation val
collapses to simply:

^Ta0
&[x~a0!5e2cg0

2A~a0!, ~IV.18!

where 2c is the value of the first SU(N) Casimir on its fundamental representation~see the next
subsection! and whereA(a0) is the Euclidean area enclosed by the loopa0 . Thus, the area law —
generally taken to be the signal of confinement — holds. Note that the loop does not have
large; the expression is exact. Finally, note from section IV A that this law holds also fo
Abelian theory. Thus, the continuum limit of the lattice U(1) theory provides us the confi
phase of the theory which is different from the phase described by the standard Fock repr
tion.

~ii ! More generally, if one restricts oneself tonon-overlappingloops a1 , ...,an , our closed
expression~IV.16! yields

^p1~a1! ^ ••• ^ pn~han
!&5^p1~ha1

!& ^ ••• ^ ^pn~han
!& ~IV.19!

with ^p(ha)&5p(1N)e2c(N,p)g0
2A(a) of ~IV.17!, where as beforep is the irreducible representa

tion. This result is agreement with the results obtained by Bralic,5 Grosset al.4 and Klimeket al.
and Kazakov.28 However, even for this special case, our method of arriving at the resu
different. As explained in the Introduction, we do not break gauge invariance to pass to a ‘
matically linear’’ case nor do we use stochastic differential equations.

~iii ! Note that, as in the Abelian theory, the infra-red limit is trivial since the continu
expression of the Wilson loop functionals does not depend onLx or Ly at all ~provided of course
the lattice is chosen large enough to encompass the givenr loops!.

~iv! It is interesting to note that we did not have to renormalize the bare coupling constag0

in the process of taking the continuum limit. This is a peculiarity of two dimensions. Indee
higher dimensions, the bare coupling constant does not have the correct physical dimens
allow for an area law which suggests that renormalization would be essential.

~v! In the classical theory in higher dimensions, the Yang–Mills action depends on the s
time metric and is thus invariant only under the action of the finite dimensional isometry gro
the underlying space–time@the Poincare´ ~respectively, Euclidean! group, if the space–time is
globally Minkowskian~Euclidean!#. In two space–time dimensions, on the other hand, one n
only an area element to write the Yang–Mills action. Thus, the symmetry group is conside
enlarged; it is theinfinite dimensional group of area preserving diffeomorphisms. A natural q
tion is whether the Wilson loop functionals are also invariant under this larger group. Our ex
expression makes it obvious that it is. Thus, the infinite-dimensional symmetry is carried
in-tact to the quantum theory. This property is not obvious in many other approaches whic
gauge-fixing to endowA/G a vector space structure and then employ the standard~space–time
metric dependent! Gaussian measures in the intermediate steps. In these approaches, spec
somewhat elaborate calculations are needed to verify invariance under all area preserving
morphisms.
J. Math. Phys., Vol. 38, No. 11, November 1997
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~vi! As one can explicitly check, if one performs theN→` limit of our continuum theory on
the plane or the cylinder using the above expression then one does not encounter a phas
tion. This seems to contradict certain results29 obtained in a two-dimensional finite, planar lattic
theory. However, there is no contradiction because in two dimensions on the plane or the c
the appearance of theN→` phase transition is a lattice artefact. In Ref. 17 the authors obse
third order phase transition in the limitN→` also in the continuum. However, those autho
consider the case that the two-dimensional manifold is a sphere rather than a plane or a c
so that again there is no contradiction.

C. Determination of the coefficients c „N,ˆm ‰…

The main idea behind the calculation is the following; Since forb→`, the integrand of
J$m%(b) is concentrated at the identity, it is sufficient to calculate the integrand in Eq~IV.13!
~definingJ$m%) in a neighborhood of the identity.

To that effect, writeg5eA, whereA5t It IPL(G) is in the Lie algebra ofG and t I are real

parameters in a neighborhood of zero. We thus have upon insertingg51N1A1 1
2A

21o(A3)

12
1

N
R tr~g!52

1

2N
tr~A2!1o~A3!5

1

2 (
I 51

dim~G!

~ t I !21o~A3!, ~IV.20!

where the term of first order inA vanishes because it is either purely imaginary@the Abelian
sub-ideal ofL(G)] or trace-free@the semi-simple sub-ideal ofL(G)] and where we have used th
normalization tr(t ItJ)52Nd IJ . Similarly, we have an expansion for the$m%th irreducible rep-

resentation ofG given byp$m%(g)51$m%1X1 1
2X

21o(X3), whereX5t IXI is the representation
of the Lie algebra elementA in the $m%th irreducible representation. Then we have

x$m%~g!5d$m%1t I tr~XI !1 1
2 t I tJ tr~XIXJ!1o~X3!. ~IV.21!

Now, according to the Baker–Campbell–Hausdorff formula30 we have:

etIt IesIt I5er I ~s,t !t I, where r I~s,t !5sI1t I2 1
2 f I

JKsJtK1o~s2,t2,s3,s2t,st2,t3! ~IV.22!

and wheref JK
I are the structure constants of the semi-simple sub-ideal ofL(G) which therefore

are completely skew. Finally, the Haar measure can be written30

dmH~etIt I !5
ddim~G!t

detS ]r I~s,t !

]sJ D
s50

5
ddim~G!t

11o~ t2!
~IV.23!

since det(]r /]s)s505det(11 1
2t

IRI1o(t2))511 1
2 tr(t IRI)1o(t2)511o(t2),where (RI)K

J 5 f J
IK

is theI th basis vector of the semi-simple sub-ideal ofL(G) in the adjoint representation which i
trace-free.

We are now ready to carry out the required estimate. There exists a subsetU0,Rdim(G) which
is in one-to-one correspondence withG via the exponential map. LetU be the closure ofU0 in
Rdim(G). The setU is compact inRdim(G) becauseG is compact and so the setU0 must be
bounded. Furthermore, since the group under consideration has only a finite number of con
components~namely, one!, there are also only a finite number of corresponding connected c
ponents ofU0 and therefore the setU2U0 has at most dimension dim(G)21. It follows that
U2U0 has Lebesgue measure zero, that is, we can replace the integral overU0 with respect to
ddim(G)t by an integral overU. For instance, for U(1) the setU is just given by the interval
@2p,p# while U0 could be chosen as@2p,p). Likewise, for SU(2) the setU is the set of points
J. Math. Phys., Vol. 38, No. 11, November 1997
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t1
21t2

21t3
2<p while U0 is the set of pointst1

21t2
21t3

2,p plus one arbitrary additional point o
radiusp corresponding to the element212 . Inserting~IV.19!, ~IV.20! and ~IV.22! into ~IV.13!
we can therefore write an expansion in 1/Ab

d$m%@J$m%~b!2J0~b!#5E
U

ddim~G!t

11o~ t2!
expS 2b

1

2 (
I 51

dim~G!

~ t I !21bo~ t3!D
3F t I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3!G

5
1

bdim~G!/211EAbU

ddim~G!t

11o~ t2/b!
expS 2

1

2 (
I 51

dim~G!

~ t I !21o~ t3/Ab!D
3FAbt I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3/Ab!G

5
1

bdim~G!/211ERdim~G!
ddim~G!t expS 2

1

2 (
I 51

dim~G!

~ t I !2D
3FAbt I tr~XI !1

1

2
t I tJ tr~XIXJ!1o~ t3/Ab!G , ~IV.24!

where in the last step the expansion of the scaled domainAbU, U a compact subset ofRdim(G) to
all of Rdim(G) also is correct up to a further order in 1/Ab. Now the terms of odd order int vanish
due to the symmetry of the exponential under reflection. Therefore, we have:

d$m%@J$m%~b!2J0~b!#5
1

b
J0~b!

1

2
trS (

I 51

dim~G!

~XI !2D 1o~1/b2!. ~IV.25!

But ( I(XI)
252l$m%1$m% is the Casimir invariant andl$m% is its eigenvalue. Therefore we arriv

finally at

c~N,$m%!5 1
2 l$m% . ~IV.26!

It is well-known31 that the Laplace–Beltrami operator2D has eigenvaluesl$m% on its complete
system of conjugation invariant eigenfunctionsx$m%(g). These functions are parametrized byr
discrete quantum numbers, according to the rank ofG.

V. THE HAMILTONIAN FORMALISM

In this section, we will recall the standard Hamiltonian formulation of Lorentzian Yang–M
theory in 111 dimensions.~For details, see, e.g., Refs. 32–34!. Here we will only consider
topologiesM5R2 andM5S13R since the Lorentzian metric, obtained by analytic continuati
on the torusS13S1 has closed time-like curves. This discussion will be used in section V C
show the equivalence of our Euclidean framework with the standard Hamiltonian descriptio

The canonical form of the Yang–Mills actions is given by

S5E
R
dtE

S
dxF ȦIE

I2F2L IG I1
g0

2

2
EIEI G G , ~V.1!
J. Math. Phys., Vol. 38, No. 11, November 1997
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whereS5R or S1 and a dot~prime! denotes a derivative with respect tot (x). HereA5Ax is the
the x-component of theG connection andE5 (1/g0

2)(] tAx2]xAt1@At ,Ax#) is its electric field.
The indicesI ,J, K run 1, ...,dim(G)and are raised and lowered with respect to the Cartan Kil
metric. Note that time componentAt

I5L I of the connection acts as a Lagrange multiplier, enfo
ing the Gauss constraint

G I5EI81@A,E# I . ~V.2!

Because the magnetic fields vanish in one spatial dimension, the Hamiltonian takes the fo

H5E
S
dx

g0
2

2
EIEI . ~V.3!

However, multiplying the Gauss constraint byEI yields

1
2 ~EIEI !850

so that the Hamiltonian density must be a constant. Thus, the energy on the plane is infinite
that constant is zero. This enforces the new first class constraintsEI50. The motions generated b
these constraints are transitive on the whole configuration space of theAI and soAI is identified
with the trivial connectionAI50. The reduced phase space forM5R2 is therefore zero-
dimensional, it consists only of one point, (0,0), say.

Remark:A more interesting theory results if we weaken the boundary conditions to a
non-zero electric fields at infinity. For definiteness, let us consider the SU(2) theory and defi
phase space as follows: (AI ,EI) belong to the phase space ifAI5O(1/x2) and EI°Eov̂ I as
x°6`, whereEo is an arbitrary constant andv I is a fixed internal vector. It is easy to check th
the symplectic structure is well-defined on this phase space. Physically, the boundary con
ensure that we have ‘‘an external electric field.’’~The previous arguments do imply that the to
Hamiltonian of the system is infinite but the energy per unit length is finite.! The Gauss law again
generates gauge transformations which are asymptotically identity. We can partially fix this
freedom by demanding that the electric field be everywhere parallel tov I . Then the Gauss con
straint itself implies thatEI5Eov I everywhere and thatAI is also parallel tov I . The remaining
gauge freedom can be exhausted by bringingAI to a standard form:AI5Aof (x)v I , wheref (x) is
a fixed function and the value of the constantAo is determined by the holonomy of the give
connectionAI(x). This exhausts the gauge freedom and solves the Gauss law. The true d
thus captured in the pairs (Ao ,Eo); the reduced phase space is topologicallyR2. @For the SU(N)
theory, it isR2r .] We will not treat these cases in any detail here, however, because the m
cations needed to incorporate these ‘‘external fields’’ in the Euclidean description is beyon
scope of this work~as well as of other mathematical physics treatments that we are aware!.

On the cylinder, the theory is analogous to the more general case discussed above
Hamiltonian is now finite. It is given by

H5
g0

2Lx

2
~EIEI !. ~V.4!

By a gauge transformation,34 we may takeA,E to be constant. By means of a constant gau
transformation we achieve thatA lies in a Cartan subalgebra. Since in that gauge the G
constraint implies thatA,E commute, it follows that there is a gauge in whichA,E both lie in a
J. Math. Phys., Vol. 38, No. 11, November 1997
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Cartan subalgebra. Letr be the rank ofL(G); then the maximal Cartan subalgebra has dimens
r and the reduced phase space has dimension 2r . The reduced phase space is then the quotie34

of R2r by a discrete set of residual gauge transformations.
In the quantum theory on a cylinder, the Hamiltonian becomes the Laplace Beltrami op

on the Cartan subgroupGC
31

H52
g0

2Lx

2
D ~V.5!

and physical states correspond to conjugation invariant functions onG. The corresponding inne
product is theL2 inner product given by the Haar measure onGC . As a result, the character
x$m%(A) with $m%5$m1 , ...,mr% with m1>m2>•••>mr>0 provide a complete set of eigen
states ofH ~with eigenvaluesg0

2Lxl$m%/2). For comparison with the classical theory, recall th
the charactersx$m% depend only on the Cartan subgroup ofG.

VI. AXIOMATIC FRAMEWORK AND RELATION TO THE HAMILTONIAN THEORY

In scalar field theories, the Osterwalder–Schrader axiomatic framework provides a co
formulation of what is often referred to as ‘‘the main problem.’’ Consequently, the framew
plays a central role in constructive quantum field theory. However, as mentioned in the Intr
tion, this framework is geared to ‘‘kinematically linear’’ theories because a basic premise o
axioms is that the space of paths is a vector space, generally taken to be the spaceS 8 of tempered
distributions. In this section, we will use the material presented in sections II and IV to sugg
possible generalization of the Osterwalder–Schrader framework to gauge theories, using
space of physical paths the non-linear spaceA/G .

The section will be divided into three parts. In the first, we briefly review the aspects o
Osterwalder–Schrader framework that are relevant for our discussion. In the second, we p
an extension of the key axioms and verify that they are satisfied by the continuum SU(N) Yang–
Mills theories. In the third part we show that the axioms suffice to demonstrate the equiva
between the Euclidean and the Hamiltonian frameworks.

A. Kinematically linear theories

As mentioned in the Introduction, the basic idea of the Euclidean constructive quantum
theory6 is to definea quantum field theory through the measurem on the space of pathsF—the
rigorous analog of ‘‘exp2S(F)DF. ’ ’ In the Osterwalder–Schrader framework, the space
paths is taken to be the spaceS 8 of tempered distributions on the Euclidean space–timeRd, and
conditions on permissible measuresm on S 8 are formulated as axioms on their Fourier transfor
x( f ), defined via

x~ f !:5^exp~ i F̄@ f # !&:5E
S 8

dm~F̄!exp~ i F̄@ f # !. ~VI.1!

Here f are test functions in the Schwartz spaceS , the over-bar is used to emphasize that the fie

are distributional andF̄@ f #5*Rd ddxF̄(x) f (x) denotes the canonical pairing between distrib
tions and test functions. The generating functionalx( f ) determines the measure complete
Furthermore, sinceS is a nuclear space, Minlos’ theorem25 ensures that if we begin withany
continuous, positive linear functionalx on S , there exists a regular measurem on S 8 such that
~VI.1! holds.

In the Osterwalder–Schrader framework, then,a quantum field theory is a normalized me
sure m on S 8, or, equivalently, a continuous, positive linear functionalx on S satisfying the
following axioms:
J. Math. Phys., Vol. 38, No. 11, November 1997
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~OS-I! Analyticity.This assumption ensures that the measurem has an appropriate ‘‘fall-off.’’
It requires thatx(( i 51

n zi f i) is entire analytic onCn for every finite dimensional subspace spann
by the linearly independent vectorsf iPS .

~OS-II! Regularity.These are technical assumptions which, roughly speaking, allow on
construct Euclidean field operators such that its Schwinger distributions

S~x1 , ...,xn!:5^F̄~x1!, ...,F̄~xn!&

are tempered— rather than less well-behaved — distributions. We will not display them he
~OS-III! Euclidean invariance.This condition ensures Poincare´ invariance of the Wick-

rotated theory. Ifg f is the image of a test functionf under the action of an elementg of the full
Euclidean groupE in d dimensions then, one requires:

x~g f !5x~ f !.

Here the test functions are considered as scalars, that is (g f)(x):5 f (gx).
~OS-IV! Reflection positivity.This is perhaps the key axiom because it enables one to re

mulate the theory in terms of more familiar concepts by providing a notion of time, a Hi
space, and a Hamiltonian. The precise condition can be formulated as follows. Choose an a
hyper-plane inRd which we will call the time zero plane. Consider the linear space, denoteV,
generated by finite linear combinations of the following functions onS 8

C$zi %,$ f i %
:S 8→C; F̄→(

i 51

n

zi exp~F̄@ f i # !,

where ziPC, f iPS with support only in the ‘‘positive time’’ part of the space–tim
(supp(f i)5$x5(x0,xW )PRd; x0.0%). Next, let Q(x0,xW )5(2x0,xW ) denote the time reflection
operator (QPE). Then, one requires that

~C,J!:5^QC,J&:5E
S 8

dm~F̄!~QC@F̄#!!J@F̄#>0 . ~VI.2!

~OS-V! Clustering.This axiom ensures uniqueness of the vacuum. It requires that the me
has the cluster property, that is,

lim
t→`

1

t E0

t

dŝ CT~s!J&5^C&^J&

for all C,J in a dense subspace ofL2(S 8,dm). HereT(s) is a representation onL2(S 8,dm) of
the one-parameter semi-group of time translations defined byT̂(s)exp„iF( f )…:5exp„i F̄(T(s) f …

and extended by linearity and„T(s) f …(x0,xW ):5 f (x01s,xW ) for all f PS .
With these axioms at hand, one can construct a Hilbert spaceH of quantum states, a Hamil

tonianH and a unique vacuum vectorV ~annihilated byH) as follows:

~1! Consider thenull spaceN of norm zero vectors inV with respect to the bilinear form~,!
introduced in~VI.2! and Cauchy-complete the quotientV/N . ThenH:5V/N with scalar
product~,!.

~2! The most important theorem now is that, given a probability measurem satisfying reflection
positivity and Euclidean invariance, the time translation operatorT(s) acting onV factors
through the quotient construction referred to~1!, that is, it leaves the null spaceN invariant.
This means that we can represent it onH and standard Hilbert space techniques now ens
that T(t) has a positive self-adjoint generatorH such thatT(t)5exp(2tH) @note that~due to
J. Math. Phys., Vol. 38, No. 11, November 1997
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Euclidean invariance! T(t) is unitary with respect tô,& but symmetric with respect to~,! due
to the additional time reflection involved; this shows thatT(t) provides a symmetric contrac
tion semi-group#.

~3! The vacuum state turns out to be just the projection toH of the function 1 onS 8.

B. A proposal for gauge theories

The discussion of section II suggests that, in certain gauge theories, it is natural to useA/G

as the space of physical paths. Thus, we are led to seek an extension of the Osterwalder–S
framework in which the linear spaceS 8 is replaced by the non-linear spaceA/G . At first this
goal seems very difficult to reach because the standard framework uses the underlying line
almost every step. However, we will see that one can exploit the ‘‘non-linear duality’’ betw
connections and loops — or, more precisely, betweenA/G and the hoop groupHG — very
effectively to extend those features of the standard framework which are essential to the p
equivalence between the Euclidean and the Hamiltonian frameworks.

Let us consider a gauge theory ind Euclidean space–time dimensions with a compact
group G as the structure group. The proposal is to useA/G as the space of Euclidean path
~Even though we are now working in an arbitrary dimension and with more general stru
groups, this space can be again constructed using any one of the three methods discu
section II.! SinceA/G is compact, it admits normalized, regular Borel measures. Furtherm
the Riesz-Markov theorem~together with the Gel’fand theory! ensures10 that each of these mea
suresm is completely determined by the ‘‘characteristic functional’’x(a1 , ...,an), defined by:

x~a1 , ...,an!:5E
A/G

dm Ťa1
•••Ťan

, ~IV.3!

where,Ťak
denotes Gel’fand transform ofTak

, the trace of the holonomy around the closed lo
ak . ~There is also a theorem35 that ensures the converse, i.e., which states that given a funct
x of multi-loops satisfying certain conditions, there exists a regular measurem on A/G such that
x can be reconstructed via~VI.3!. However, since one has to introduce more technical machin
to state this theorem properly and since this converse is not logically necessary for the co
tions that follow, we will not discuss it here.! Comparing~VI.3! and~VI.1!, we see thatA/G now
plays the role ofS 8 and multi-loops, the role of test functions, and traces of holonomies, the
of exp iF̄(f). Thus, we have extended the Fourier transform~VI.1! to a non-linear space by
exploiting the fact that the loops and connections can be regarded as ‘‘dual objects’’ i
expression of the trace of the holonomy. Our strategy now is to introduce a set of axiom
measuresm through their characteristic functionalsx.

Let us begin with an observation. The discussion of the previous section brings out th
that while all five axioms are needed to ensure that the resulting theory is complete and
pathologies, it is the last three axioms — the Euclidean invariance and the reflection positiv
that play the central role in the reconstruction of the Hamiltonian theory. We will therefore b
with these axioms.

A quantum gauge field theory is a probability measurem on A/G satisfying the following
axioms:

~I! Euclidean invariance.m is invariant under the full Euclidean group if the space–tim
topology isRd, and under the full isometry group of the flat Euclidean metric in more gen
context. In terms of characteristic functionx, we thus have:

x~ga!5x~a!, ~IV.4!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherea stands for a generic multi-loop (a1 , ...,an) andga denotes the image ofa under the
action of an isometryg.

~II ! Reflection positivity.Choose, as before, an arbitrary ‘‘hyper-plane’’ and regard it as
time-zero slice. Consider the linear spaceV generated by finite linear combinations of functiona
on A/G of the form

C$zi %,$a I i %
:A/G→C; Ā→(

i 51

n

zi)
I 51

r

Ťa I i
~ Ā!,

where the loopsa I i have support in the positive half space. Then we must have:

~C,J!:5^QC,J&:5E
A/G

dm~ Ā!~QC@ Ā# !!J@ Ā#>0 , ~VI.5!

where, as beforeQ is the time-reflection operator.
~III ! Clustering.The requirement is the same in formulae as for the kinematically linear

theories, namely,

lim
t→`

1

t E0

t

dŝ CT~s!J&5^C&^J&

for all C,J in a dense subspace ofL2(A/G ,dm). HereT(s)Ta1
•••Tar

5TT(s)a1
•••TT(s)ar

, where

„T(s)a…

0(t):5a0(t)1s,„T(s)aW )(t…:5aW (t) andt is a parameter along the loop.
We will see in the next section that these axioms suffice to reconstruct the Hamiltonian th

However, this set of axioms is clearly incomplete~see e.g. reference 7!. We will now indicate how
one might impose additional conditions and point out some subtleties.

Let us begin with the analyticity axiom of Osterwalder and Schrader. In that case, we
take complex linear combinations(zi f i because the spaceS of test functions is a vector space. I
the present case, we can only compose loops~or, more precisely, hoops! to obtain

a5a1
n1+•••+an

nn , i 51 ••• r ,

with integer winding numbersnj , and, more generally, a full subgroup of the hoop group gen
ated by a finite number of independent hoops~the notion of ‘‘strong independence,’’11 of hoops
being the substitute for ‘‘linear independence’’ of test functionsf i .) One could also include
complex winding numbers and this may lead us to the notion of ‘‘extended loops.’’36 In any case,
it may be natural to require that

x~$a i%!

be ‘‘in some sense analytic’’ in the winding numbersni j ~we will leave a more precise formulatio
of this notion for future work!. Recall, however, that in the Osterwalder–Schrader framework
analyticity axiom is needed to ensure the existence of Schwinger functions. In the present c
the other hand, since the analogs^A(x1), ...,A(xn)& of the Schwinger functions fail to be gaug
invariant, from our perspective, it is unnatural to require that they be well-behaved in the qua
theory. So, at this stage of our understanding, theraison d’etreof the analyticity condition is not
as compelling in our framework. Therefore, a definitive formulation of this axiom must a
further development of the framework.

The situation with the Regularity axiom is similar. In the Osterwalder Schrader framewo
prescribes certain bounds on the characteristic functionx( f ) which are needed to ensure that t
Schwinger functions can be continued analytically to obtain the Wightman functions in
J. Math. Phys., Vol. 38, No. 11, November 1997
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Lorentzian regime. In the present context, neither the Schwinger nor the Wightman functio
gauge invariant. Nonetheless, suitable regularity conditionsare needed to ensure that the Loren
zian Wilson loopsare well-defined. The precise form of these conditions will become clear
after the issue of analytic continuation of Wilson loops is explored in greater detail.

Finally, the spaceA/G is very large: In a well-defined sense, it serves as the ‘‘unive
home’’ for measures in theories in which the traces of holonomies are well-defined opera8

From general considerations, one would expect that the measures that come from phy
interesting gauge theories should have a much smaller support~provided, of course, that traces o
holonomies are measurable functions!. A further investigation of this issue would suggest ad
tional restrictions on the characteristic functions.

To conclude this section, let us consider the key question that any set of axioms mus
Are they consistent? That is, do they admitnon-trivial examples? Fortunately, results in section
immediately imply that the answer is in the affirmative. To see this, let us takeM to be either a
2-plane or a 2-cylinder and the structure group to be SU(N) or U(1). Thecharacteristic functiona
is then given by~IV.16!. Let us begin with Euclidean invariance. Since the characteristic fu
tionals depend only on the areas of the various loops involved, they are invariant under a
preserving diffeomorphisms and, in particular, under the isometry groups of the underlying s
times. Reflection positivity is also satisfied because, as we will see in the next sub-section
dividing by N we obtain a scalar product which is positive definite. Furthermore, since
measure is non-interacting, clustering is immediate~see next subsection!. Finally, we can also tes
if the ‘‘obvious’’ restrictions of analyticity and regularity are met. By inspection, the character
functionals~IV.16! are formally analytic inkI

6 and l i
6 . Since the winding numbersnj are linear

combinations of these, the generating functions are formally analytic in the winding numbe
well. Finally, the generating functionals are bounded~by 1).

C. Reconstruction of the Hamiltonian theory

Let us now construct a Hilbert space, a Hamiltonian and a vacuum via the Osterw
Schrader algorithm6 and verify that, for cases treated in sections IV, this description is equiva
to the one obtained directly using Hamiltonian methods in section V. Since this algorithm us
essence, only reflection positivity, it is directly applicable to our formulation of gauge theor

The first step is to construct the null spaceN in V. Let us fix one of theC ’s considered in
axiom ~II !. Then we have

~C,C!5 (
i , j 51

n

zi
!zjE

A/G

dm~ Ā! )
I ,J51

r

~ ŤQ~a I i !
21@ Ā# !~ ŤaJ j

@ Ā#…,

wherem is the physical measure obtained by taking the continuum limit of~IV.16!, and where we
we have used the fact that, sinceG is unitary, (Ťa)!5Ťa21, where! denotes complex conjuga
tion.

We now need to express this equation in terms ofx. Let us begin by considering the decom
position of a multi-loop$a1 , ...,as%, s<r . In this decomposition, it is convenient to separate
homotopically trivial loops from the non-trivial ones. In the caseM5R3R, there is no homo-
topically non-trivial loop. On the cylinder we can choose the horizontal loopg at t50 as the
fiducial non-trivial loop and write every homotopically non-trivial looph occurring in the multi-
loop $a1 , ...,as% as h5@h+g21#+g, where the loop in brackets is homotopically trivial. Th
result will be a multi-loopã1 , ...,ã s̃ whose homotopically trivial contribution comesonly from
g. Finally write ) I 51

s Ta I
as a linear combination of terms of the form@as in ~IV.6!#

tr„g$m%~ â1 , ...,â s̃!p$m%~hg!), ~VI.6!
J. Math. Phys., Vol. 38, No. 11, November 1997
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wherep$m% is the $m%th irreducible representation ofG andg$m% is some matrix which depend
only on the homotopically trivial loopsâ i and which is projected from both sides byp$m%(1N),
that is,g$m%p$m%(1N)5p$m%(1N)g$m% . Loopsa î arise fromã i by taking the simple loop decom
position ofa ĩ as in ~IV.6! and taking out theg ’s and its inverses. Since every multi-loop fun
tional can be so expanded, it is sufficient to consider the scalar product among these func
which we will now write as

F $m%~b!:5F $m%~b1 , ...,bs!:5tr„g$m%~b1 , ...,bs!p$m%~hg!…, ~VI.7!

where b i are homotopically trivial and enclose surfaces in the positive half-space. Note
QF $m%(b)5F $m%(Qb) sinceQg5g. We can therefore alternatively writeC in the form

C5(
$m%

z$m%F $m%~b$m%!. ~VI.8!

Now, using the formula37

E
G

dmH~g!p̄AB~g! ^ pCD8 ~g!5
dp,p8
dp

pAC~1!pBD~1! ~VI.9!

we find

E
A/G

dm F̄ $m%~Qb$m%!F $m8%~b$m8%!5
d$m%,$m8%

d$m%
E

A/G

dm ḡ $m%~Qb$m%!ABg$m%~b$m%!BA

5
d$m%,$m8%

d$m%
trS F E

A/G

dm ḡ $m%~b$m%!GF E
A/G

dmg$m%~b$m%!G D
5

d$m%,$m8%

d$m%
2 U E

A/G

dm tr~p$m%~1N!g$m%~b$m%!!U2

. ~VI.10!

Here, in the third step we have used the fact thatb$m% ,Qb$m8% are supported in disjoint domain
of space–time, the time reflection invariance of the measure and its maximal clustering prop
the measure~non-overlapping loops are non-interacting!. In the last step we used the fact that t
integral overg$m%(b$m%)AB results in a constant matrix,MAB say, which, by inspection of~IV.12!
is a linear combination of projectors onto representation spaces of irreducible represent
partially contracted as to match the index structure ofp$m% . So M is a linear combination of
matrices of the formsAB8 5sC,A;C,B(1N), wheres is an irreducible projector. Now using the fa
thats8p$m%(1N)5p$m%(1N)s8, thatp$m% is irreducible and that the contraction of tensor produ
of Kroneckers is again proportional to a tensor product of Kroneckers it follows thatM5p$m%
3(1N)tr(M )/d$m% .

Formula~VI.10! says that

C2(
$m%

z$m%

1

d$m%
F E

A/G

dm tr„p$m%~1N!g$m%~b$m%!…Gx$m%~hg! ~VI.11!

is a null vector. Therefore, our Hilbert spaceH is the completion of the linear span of the stat
x$m%(hg) with respect to the Haar measuredmH . On the plane, since there is no homotopica
non-trivial loopg, the only state is the constant functionC51 which corresponds precisely to th
J. Math. Phys., Vol. 38, No. 11, November 1997
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trivial quantum theory as obtained via the Hamiltonian formalism. On the cylinder we o
H5L2„C(G),dm̃H…, whereC(G) is the Cartan subgroup ofG and m̃H is the corresponding
effective measure onC(G) induced by the Haar measuremH .

Finally, note that, in the final picture, the loopg probes the connectionĀ at time t50 only.
This is is completely analogous to the corresponding construction for the free massless
field6 where the Hilbert space construction can be reduced to the fields at time zero.

Having constructed the Hilbert space, let us now turn to the Hamiltonian. As indicate
section VI A, the Hamiltonian can be obtained as the generator of the Euclidean time trans
semi-group. Denote byg(t):5T(t)g the horizontal loop at timet. Now let a(t):5g(t)+g21,
then we have by the representation property

x$m%~hg~ t !!5tr„p$m%~ha~ t !!p$m%~hg!… ~VI.12!

so that according to~IV.16! we have that

x$m%~hg~ t !!5F E
A/G

dm x$m%„a~ t !…Gx$m%~hg!

d$m%
. ~VI.13!

Hence, according to~IV.14!

„x$m8% ,T~ t !x$m%…5exp~2 1
2 l$m%g0

2Lxt !d$m8%,$m%

!
5

„x$m8% ,exp~2tH !x$m%…

and the completeness of thex$m% allows us to conclude that

H52
g0

2

2
LxD ~VI.14!

is the configuration representation of the Hamiltonian.
Finally, let us consider the vacuum state. By inspection, it is given byV51. It is the unique

vector annihilated by the Hamiltonian. We therefore expect that the measure is clustering~see Ref.
6, Theorem 19.7.1!. Indeed, notice first that finite linear combinations of products of traces o
holonomy around loops form a dense setD in L2(A/G ,dm) by construction ofA/G . Now recall
once again that the measure is not interacting in the sense that ifC,J are two elements ofD
defined through multi-loops lying in disjoint regions of the plane or the cylinder then it foll
immediately from~IV.16! that ^CJ&5^C&^J&. Even if C,J are defined through multi-loop
which intersect or overlap then there exists a time parametert0 such that the multi-loops involved
in C andT(t)J lie in disjoint regions of the plane or the cylinder for allt>t0 . It then follows
from the invariance of the measure under time translations that fort.t0 we have

E
0

t

dŝ CT~s!J&5E
0

t0
dŝ CT~s!J&1^C&^J&~ t2t0!

and since the first term is finite, clustering is immediate.
Thus, as in scalar field theories, Euclidean invariance and reflection positivity have enab

to construct the Hamiltonian description from the Euclidean. Furthermore, from sections IV a
it follows that for SU(N) and U(1) Yang–Mills theories onR3Rl andS13Rl, the Hamiltonian
theory constructed through this procedure isexactly the same as the standard one, construc
ab-initio via canonical quantization.
J. Math. Phys., Vol. 38, No. 11, November 1997
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VII. SUMMARY

The new results of the present paper can be summarized as follows:
~1! We successfully employed the new integration techniques developed in Refs. 11–

compute a closed expression for the Wilson loop functionals for Yang–Mills theory in
Euclidean dimensions.

~2! We proposed an extension of the Osterwalder–Schrader framework for gauge theori
showed how to recover the Hilbert space, the Hamiltonian and the vacuum for the Lore
theory starting from our Euclidean framework. For two-dimensional Yang–Mills theories
R3R and onS13R, the resulting quantum theory completely agrees with the one obtaine
canonical quantization. Therefore, two-dimensional Yang-Mills theory constitutes another m
theory in the framework of constructive quantum field theory.

~3! Our results are manifestly gauge-invariant, geometrically motivated, require only si
mathematical techniques and the resulting quantum theory is manifestly invariant under th
sical symmetry generated by area-preserving diffeomorphisms.

How do these results compare with those available in the literature? Let us begin wi
Makeenko–Migdal approach. While they formulated differential equations that the Wilson
have to satisfy, we have derived a general expression for Wilson loops themselves by d
computing the functional integrals. In the intermediate steps we used a lattice regulariz
However, in contrast to the more common practice~in lattice gauge theories! of seeking fixed
points of the renormalization group, our results for the continuum theories were then obtain
explicitly taking the limits to remove the regulators. Indeed, our general procedure is rather s
to that used in constructive quantum field theory: we began with a fiducial measurem0 on our
spaceA/G of Euclidean paths, introduced an infra-red and an ultraviolet cutoff, evaluated
characteristic functional of the measure and then removed the regulators. Thus, in the e
were able to show rigorously that the theory exists in the continuum. In particular, our mathe
cal framework guarantees the existence of the physical measure for the continuum theo~for
which the ‘‘fixed point’’ arguments of numerical lattice theory do not suffice.!

While the spirit of our approach is the same as that of the mathematical physics literatu
the subject, there are some differences as well. Most of these approaches mimic techniqu
have been successful in scalar field theories. Thus, generally, one fixes gauge right in the
ning to introduce a vector space structure onA/G ~see, e.g., Ref. 4!. Gauge fixing also brings
considerable technical simplifications. However, proofs of invariance of the final expres
under gauge transformations and area preserving diffeomorphisms are then often long. A
most of this literature, the Wilson loops are computed for non-overlapping loops. Our resul
perhaps closest to those of Klimek and Kondracki.28 Their framework is also manifestly invarian
under gauge transformations and area preserving diffeomorphisms. Furthermore, their res~as
well as those of the second paper in Ref. 4! imply that their expressions of Wilson loops in th
non-overlapping case admit consistent extensions to all loops. However, they restrict them
to the structure group SU(2) and the relation to lattice gauge theory — and hence to the c
tional Yang–Mills theory — is somewhat obscure.

There are several directions in which our results can be extended. We will conclud
mentioning some examples. First, now that closed expressions for Wilson loops are availa
would be very interesting to check if they satisfy the Makeenko–Migdal equations rigoro
Second, our axiomatic framework is incomplete and it would be very desirable to supplem
e.g., with techniques from Ref. 7. Another direction is suggested by the fact that, for the
discussed here in detail, we expect that the support of the final physical measure is signifi
smaller than the full spaceA/G with which we began. Rigorous results that provide a go
control on the support would be very useful in refining our axiomatic framework. Finally, it wo
be interesting to extend our Euclidean methods to closed topologies and compare the re
framework with the gauge fixed framework of Sengupta.38
J. Math. Phys., Vol. 38, No. 11, November 1997
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APPENDIX A: YOUNG TABLEAUX

In the main text we encountered the following issue: We had to integrate a tensor prod
group factors^

ng with a measuredm5dmH(g)exp(b/NR tr(g)) which is invariant under con-
jugation. The representation ofG corresponding to then-fold tensor product of the fundamenta
representation is not irreducible, so let us decompose it into irreducibles

^
ng5 % ip i

~n!~g!

which is possible sinceG is compact. Now we have that

p~h!F E
G

dm~g!p~g!G5F E
G

dm~g!p~hgh21!Gp~h!5F E
G

dm~g!p~g!Gp~h!

so the integral overp(g) commutes with the representation~we have used conjugation invarianc
of the measure in the last step!. Accordingly, by Schur’s lemma, we conclude that the integra
proportional to the identity sincep was supposed to be an irreducible representation. We
compute the constant of proportionality by taking the trace. Therefore we conclude that

E
G

dm~g!p~g!5
p~1N!

d~p!
E

G
dm~g!x~g!, where x~g!5tr„p~g!… ~A1!

is the character of the representation. This simplifies the group integrals significantly sin
only need the character integrals.

Note that what we are doing here is different from what is usually done in the literature30,40

Because we want to evaluate the integral non-perturbatively, we cannot use the stronger p
of translation invariance of the Haar measure. In case of the Haar measure we simply hav30

E
G

dmH~g!p~g!5dp,0p~1N!, ~A2!

where 0 denotes the trivial representation.
The solution to the problem of how to decompose an arbitrary tensor product of fundam

representations of SU(N) into irreducibles can be found, e.g., in Ref. 39 and we just recall
necessary parts of the theory.

Given ann-fold tensor product of the fundamental representation of a groupG, consider all
possible partitions$m% of n into positive integers of decreasing value,

n5m11m21•••1ms , where m1>m2>•••>ms.0 .
J. Math. Phys., Vol. 38, No. 11, November 1997
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Such a partition defines a so-calledframeY ~Young diagram! composed of s horizontal rows wit
mi boxes in thei th row.

Associated with each frame we construct a certain operator acting on the n-fold tensor p
representation as follows: Fill the boxes arbitrarily with numbersB1 ,B2 , ...,Bn where Bi

P$1,2, ...,N%. Such a filling of the frame is called atableau. Let P denote the subset of th
symmetric group of n elementsSn which only permutes the indicesi of the labelsBi of each row
among themselves and similarly Q denotes the subgroup ofSn permuting only the indices in eac
column among themselves of the given frame. The relevant operator is now given by

e$m%,i
~n! :5 (

qPQ
sgn~q!q̂ (

pPP
p̂,

wherei labels the filling and sgn(q) denotes the sign of the permutationq. The action ofp̂, say,
is

p̂gB1

A1•••gBn

An5gBp~1!

A1 •••gBp~n!

An ,

that is, it permutes theindices of the subscript labels Bi . Because of the complete ant
symmetrization in the columns, no diagram has a row longer thanN boxes,s<N.

It turns out39 that each of thesesymmetrizerscorresponds to an irreducible representation
GL(N), U(N), and SU(N). Symmetrizers corresponding to different frames give rise to inequ
lent representations all of those that correspond to different fillings of the same frame are e
lent. However, not all of the symmetrizers for a given frame are linearly independent, a lin
independent set of tableaux, the so-calledstandard tableauxcan be constructed as follows: let th
indicesi of a filling always increase in one row from left to right and in each column from to
bottom. The number of these standard tableaux is given by the formula~if s51, replace the
numerator of the fraction by 1!

f $m%
~n! :5n!

P1< i ^ j <s~ l i2 l j !

P i 51
s ~ l i ! !

, where l i :5mi1s2 i , i 51, ...,s ~A3!

and it is the number of times that the$m%th irreducible representation occurs in the decomposit
of ^

ng into irreducibles. Now let

e$m%
~n! :5(

i 51

f $m%
~n!

e$m%,i
~n! ~A4!

i.e., the sum of the symmetrizers corresponding to the standard tableaux. This object is ca
Young symmetrizerof the frame$m%. One can show that the standard symmetrizers obey
following ~quasi! projector property:

@e$m%,i
~n!

^
n1N#@e

$m8%, j
~n!

^
n1N#5d i , jd~$m%,$m8%!

n!

f $m%
~n!

e$m%,i
~n! ,

that is, the sum in~A4! is actually direct and

p$m%,i
~n! :5

f $m%
~n!

n!
e$m%,i

~n! andp$m%
~n! :5

f $m%
~n!

n!
e$m%

~n!
J. Math. Phys., Vol. 38, No. 11, November 1997
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are projectors onto the representation space of thei th of the equivalent irreducible standar
representations given by the frame and on their direct sum, respectively.

In particular we have the resolution of the identity

^
n1N5 % $m%@p$m%

~n!
^

n1N#. ~A5!

Let us focus on the unitary groups from now on. For the groups SU(N) we have the following
formula for the dimension of the$m%th irreducible representation40

d$m%5
P1< i , j <N~ki2kj !

P I 51
N21~ I ! !

, where ki5mi1N2 i , mi :50 for i .s. ~A6!

APPENDIX B: U(1) ON THE TORUS

According to the formulas developed in sections III and IV A it is easy to see that
characteristic functional simply becomes

x~a!5
*PhdmH~gh!dmH~gx!dmH~gy!exp~2b(h@12R~gh!#!Ta~gh ,gx ,gy!d~Phgh,1!

*PhdmH~gh!exp~2b(h@12R~gh!#!d~Phgh,1!

5d l x,0d l y,0 lim
N→`

(
n52N

N S I n

I 0
D NxNy

)
I 51

k S I n1kI
/I 0

I n /I 0
D ua I u

(
n52N

N S I n

I 0
D NxNy

, ~B1!

where we have employed in the second step the Dirichlet formula41

d~g,1!5 (
n52`

`

gn ~B2!

and we could interchange the processes of taking the limit and integration since the Wilson
satisfies all the regularity assumptions for the application of that form
I n(b)5*2p

p df/(2p)eb cos(f)1inf is thenth modified Bessel function.
Let us writeNxNy5bg0

2Vandua I u5bg0
2A(a I) (V is the volume or total area of the torus an

AI5A(a I) are the areas of the simple non-overlapping homotopically trivial loops of whicha is
composed! and use the well-known asymptotic properties of the modified Bessel functions42 in
taking the continuum limitb→`. The result is

x~a!5d l x,0d l y,0 lim
N→`

(
n52N

N

expS 2
g0

2

2 Fn2V2(
I 51

k

AI~@n1kI #
22n2!G D

(
n52N

N

expS 2
g0

2

2
Vn2D

5d l x,0d l y,0e
2

g0
2

2 F(
I 51

k

AIkI
22

1

V S (
I 51

k

kIAI D 2G (
n52`

`

expS 2
Vg0

2

2 S n1
( I 51

k AIkI

V D 2D
(

n52`

`

expS 2
Vg0

2

2
n2D .

~B3!
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Note that the series in numerator and denominator converge absolutely and uniformly to
vanishing limit.

Formula~B3! is the exact and complete result. If we could replace the sums by integrals
the real axis then the fraction involved in~C3! would give just the number 1 and we would be le
with the exponential factor only. Note that becauseV2AI>(J5” IAJ , exponent in the exponentia
is non-negative:

V(
I

AIkI
22S (

I
kIAI D 2

> (
I ,J5” I

kI
2AIAJ22(

I ,J
kIkJAIAJ5(

I ,J
AIAJ~kI2kJ!

2>0 ~B4!

so that this pre-factor alone could possibly be the generating functional of a positive me
~According to the Riesz-Markov theorem one needed to verify that it is a positive linear funct
on HA).

The characteristic functional~B3! has several interesting features, for example:

~1! While the non-interacting measures had exponents that were linear in the areas of the
loops, for the interacting theory on the torus we obtain a quadratic dependence on th
thusviolating the area law! It is an interesting speculation that the interactive nature of
measure is related to the fact that functional integrals with compact time direction are
posed to describe finite temperature field theories. The interaction then comes from the
ground heat bath and the characteristic functional is the free energy of a canonical ens

~2! The interactive nature of the continuum measure for compact two-dimensional manifolds
as the torus considered here lets us expect that one would observe a phase transition a
17 in the limit N→`. However, the largeN limit of ~B3! is beyond the scope of the prese
paper and we leave a corresponding analysis for future research.

~3! Notice that expression~B4! is invariant under taking complements~that is,A→V2A) if there
is only one simple loop, otherwise the simple loop decomposition of the compleme
surfaces is different from the original one.
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