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Abstract 

We generalise the notions of supersymmetry and superspace by allowing generators and co- 
ordinates transforming according to more general Lorentz representations than the spinorial and 
vectorial ones of standard lore. This yields novel S0(3 ,  1 )-covariant superspaces, which we call 
hyperspaces, having dimensionality greater than (414) of traditional super-Minkowski space. As 
an application, we consider gauge fields on complexifications of these superspaces; and extending 
the concept of self-duality, we obtain classes of completely solvable equations analogous to the 
four-dimensional self-duality equations. (~) 1997 Elsevier Science B.V. 

PACS: l l .15-q; ll.30.Ly; ll.10.Kk 

1. Introduction 

1.1. Hyperspaces  

Supersymmetry  and self-duality have both yielded very fruitful geometric concepts for 

recent developments  in field theory, string physics and differential geometry. It seems 

that generalisations o f  both these ideas provide a broader framework for possible further 
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applications, both mathematical and physical. The purpose of this paper is to describe 
certain generalisations of these notions. Specifically, we consider generalised super- 
spaces, which we in general call hyperspaces, coordinated by some finite subset from 

• " 1 1 the set of general Lorentz tensors {Y~' .... z~,~ .... ~ } with a = 0, ~ . . . .  and a = 0, ~ . . . . .  
in standard two-spinor notation. These tensors are separately symmetrical in their 2a 

undotted and 2/t dotted indices and transform according to the (a,/~) representation of 
the Lorentz group. This is a method of parametrising spaces of arbitrary dimensionality 

in a manifestly four-dimensional Lorentz-covariant fashion. We introduce gauge fields 

on such hyperspaces and, on complexifications of these spaces, extend the notion of self- 
duality by requiring certain irreducible components of the curvature tensor to vanish, 

just as the familiar self-duality condition is tantamount to the vanishing of the (0, 1) 

component of the field strength tensor. 

1.2. Construction of  hyperspaces 

Our construction of hyperspaces is modeled on standard superspace. The latter is 
constructed as a coset space: the super-Poincar6 group over the Lorentz group. This 

follows the description of Minkowski space as the coset of the Poincar6 group by the 
Lorentz group. Now, factoring out the Lorentz group from the super-Poincar6 group 

yields a space of dimension (4[4) with four odd (fermionic) coordinates Y~, ya trans- 

forming according to the spinorial (½,0), (0, ½) representations of the Lorentz group 
in addition to the four even (bosonic) vectorial i l y,~a ( 3, ~) coordinates of standard 

Minkowski space. A representation of the super-Poincar6 algebra is given by vector 
fields on superspace. The super translation vector fields (X,~, X#, X,~B), built with the 

same odd ( (½,0) and (0, ½) ) and even ( (½, ½) ) representations as the corresponding 
coordinates, realise the superalgebra 

{ X~,, Xfi } = 2iX,~fi, (1) 

with all other supercommutators (i.e. commutators between two even tensors and be- 

tween one even and one odd tensor and anticommutators between two odd tensors) equal 
to zero. These vector fields together with the elements of the Lorentz algebra realise 
the super-Poincar6 algebra. In the standard coordinate basis, they have the following 
non-zero supercommutation relations with the superspace coordinates: 

= 16,~Y , ( 2 )  

in virtue of  which, the X's can be realised in terms of a holonomic basis of partial 
derivatives with respect to the Y's thus: 

a a a a a 
x ~# = x~ = + iF # - ,  X [3 = - ~  + iY" - -  (3) 
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Now, in the standard case [ 1 ] of the super-Poincar6 algebra, one insists that the 
1 commutator of an odd element ( ( 1 , 0 )  or (0, ½)) with the even element ( (7 ,½) )  

vanishes. In particular, no ( 1, ½) element X a# is allowed to appear in the fashion 

[Xa,Xtcfi] = X,,~B + . . .  (4) 

This restriction, however, can be lifted and we may indeed think of the (½,0) and (0, 5 ) 
elements as generating successively higher-spin elements of a generalised superalgebra. 
So, for instance, the further action of the (5 ,0)  element on the ( 1, ½) can yield a ( 3,5 ) 
element, 

= + . . .  (5) 

and so on. The new elements X,,#fi, X,,flr o . . . .  may be realised as vector fields on a 

generalised superspace, with coordinates y,~t3a, y~tCra . . . .  beyond the traditional (5 ,0 ) ,  
(0, ½) and (½, ½) representations. These coordinates are interpreted as coordinates of 
extra dimensions (in possibly a Kaluza-Klein sense) of a higher-dimensional super- 
space. The Lorentz invariance, however, remains that of four-dimensional space. This 
is therefore a way of going to a higher-dimensional space whilst maintaining the four- 
dimensional Lorentz structure fixed to the coordinate system. For instance, the simple 
bosonic extension of four-dimensional space with coordinates (Y'~'~, y,,t~,,~) has dimen- 
sion 4 + 8 = 12, or one with coordinates (y~a, y,,~afi) has dimension 4 + 9 = 13. 

We thus consider generalised superalgebras ..4, with elements X taken as a finite subset 
of the set of general Lorentz tensors of the form {X,,, .... ~a~...,~z~} with a = 0, 5 . . . .  

l and /t = 0, 7 . . . .  ; the same representations possibly appearing more than once. These 
tensors are, like the corresponding coordinates Y, separately symmetrical in their 2a 
undotted and 2/t dotted indices and transform according to the (a,/t)  representation of 
the Lorentz group. Thus including elements of higher Lorentz spin, represented by vector 
fields on correspondingly generalised superspaces, we generalise the idea of standard 
superspace. More precisely, our superalgebras .A can be represented by vector fields 
on hyperspaces AA with coordinates in one-to-one correspondence with the elements of 
.A modulo perhaps the Lorentz generators, analogously to the realisation of superspace 
with coordinates (Yaa, ya, ya) in one-to-one correspondence with the elements of the 
super-Poincar6 algebra modulo the Lorentz algebra. 

We shall assume that all Lorentz tensors {T(a , /0  = T,, t .... ~,~p..az~} take values in a 
Z2-graded (super-) vector space. The degree or parity of a tensor with respect to the 
Z2-grading, d (T ) ,  is defined by 2 ( a + a )  mod 2 and T will be called bosonic (and taken 
to be grassmann-even) if d(T)  = 0 and fermionic (and taken to be grassmann-odd) if 
d(T)  = 1. The supercommutator or graded bracket between two tensors is defined by 

[A(a ,~ t ) ,B(b ,b ) ]  = A ( a , h ) B ( b , b )  - ( - - l )a(a)d(B)B(b ,b)A(a ,  it). (6) 

It is automatically graded skew-symmetric, 

[A(a, i l ) ,B (b ,b ) ]  = - ( - 1 )  d(a)d(B) [ B ( b , b ) , A ( a ,  tt)] , (7) 
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and satisfies the super-Jacobi identity 

[A(a, &), [B(b ,b) ,C(c ,~)]]  

+ ( - 1 )  d(A)(d(B)+d(C)) [B(b,b),  [C(c ,~) ,A(a ,  it) ]] 

+ ( - 1  )e(C)(d(a)+a(e)) [C(c, (:), [ a(a,  il), B( b, b) ]] = O. (8) 

When both A and B are known to be odd, we shall follow the custom of denoting this 

bracket by the anticommutator {A, B}. Although our framework is rather more general 

than that in which the spin-statistics theorem is valid, we assume that objects with an odd 
(resp. even) number of (dotted plus undotted) indices are Grassmann-odd or fermionic 

(resp. Grassmann-even or bosonic). We note that this is not necessarily the case. For 
instance Lie- (rather than super-) algebra extensions of the d-dimensional Poincar6 
algebra acting on spaces with Grassmann-even spinorial coordinates have recently been 

classified [2]. 
The (Lorentz-invariant) structure constants of the algebra .,4 encode the non-holo- 

nomic nature (torsion) of the vector fields X on A,4. By solving the super-Jacobi 
identities for the X's, we shall construct some explicit examples of higher-spin algebras 

and corresponding superspaces. We shall not a priori insist on Poincar6 symmetry, but 

consider the most general associative superalgebras generated by these Lorentz tensors. 
The action of the X's on the Y's is given by supercommutation relations generalising 

(2) and consistent choices of coordinate bases afford determination by solving the 
super-Jacobi identities involving supercommutations of X's with Y's. 

Our consideration is more general than that of [ 1 ] in that we allow the appearance of 
vector fields of spin greater than one and although our construction is Lorentz-covariant, 

we moreover do not, a priori, demand four-dimensional Poincar6 invariance. The clas- 
sification of [ 1 ], which was restricted to extensions of Poincar6 symmetry in four di- 
mensions, was generalised in [ 3 ] to higher dimensions, where the supersymmetrisations 

of higher-dimensional Poincar6 (and de Sitter) symmetry were considered. Our gener- 
alisation to higher dimensions, on the other hand, maintains manifest four-dimensional 
Lorentz covariance. In that we allow the existence of generators of spin greater than 
one, our consideration is close in spirit to that of Fradkin and Vasiliev [4], who were 
concerned with realising higher-spin superalgebras ,,4 on fields in four-dimensional de 
Sitter space. They considered the higher-spin generators as giving rise to higher-spin 
fields, whose consistent dynamics in the curved de Sitter space described by the spin 2 
field, however, required .,4 to be infinite-dimensional, with an action on a chain of fields 
having spins all the way up to infinity. We however interpret the higher-spin generators 
of ..4 as momenta in extra dimensions coordinated by higher-spin coordinates. We do not 
make any a priori field theoretical or dynamical requirements. In particular, we realise 
our algebra in flat space. The super-Jacobi identities therefore afford any number of 
finite-dimensional solutions and the maximal spin can be chosen at will. 
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1.3. Self-duali ty 

In this paper we do not pursue the interesting possibilities for Lagrangian field theories 
on our hyperspaces .A4, nor do we attempt to describe higher-spin dynamics using the 
algebras .4. There are many such exciting possibilities for future work, extending, for 
instance, the early considerations of Fierz [5] on higher-spin dynamics, or the more 
recent investigations of Fradkin and Vasiliev [4,6] on the realisation of higher-spin 
superalgebras .A on interacting fields including gravity. We restrict ourselves here to 

one simple field-theoretical application: We consider gauge fields on the hyperspaces 
.A4. Since the vector fields X act as superderivations on functions of Y, they can 
be gauge-covariantised by adding a gauge potential A transforming according to the 
same representation of the Lorentz group as X. Commutators of gauge-covariantised 
vector fields, i.e. of the .A-covariant derivatives, then yield curvatures which decompose 
into irreducible representations of the Lorentz group. Without pursuing the question of 

Lagrangian field theories for such generalised gauge fields, we presently investigate the 
possibility of generalising the very fruitful notion of self-duality to hyperspaces .A4. This 
yields interesting classes of solvable gauge-invariant systems in superspaces of basically 
arbitrary dimensionality. 

Euclidean space self-duality equations have played a central role in the search for 
classical solutions to gauge theories in virtue of transforming the second-order field 
equations into simpler first-order ones. Originally introduced in four-dimensional spaces, 
the idea of considering algebraic curvature constraints as a means to solving the second- 
order Yang-Mills equations was extended in a natural way to Euclidean spaces of higher 
dimensions in [7],  where systems of first-order equations for the gauge potential were 
constructed, which imply the second-order Yang-Mills equations and which are invariant 
under some subgroup H of the d-dimensional rotation group S O ( d ) .  This generalisation 
of self-duality concerned the construction of a fourth-rank H-invariant tensor T~,,p,~ 
which could be used instead of the four-dimensional SO(4)-invariant tensor Eg,p~. 
Then, the eigenvalue equations for the tensor T, namely 

T#~po, F p~r = AF#p, (9) 

generalise four-dimensional self-duality in that they are algebraic curvature constraints 
which imply the Yang-Mills equations in virtue of the Bianchi identities. Projections 
to distinct eigenspaces of T, with eigenvalues {A}, correspond to generalisations of 
self- and anti-self-dual parts of the curvature. This construction therefore generalises the 
role of the four-dimensional Hodge-duality operator as an endomorphism of the space 
of two-forms with self- and anti-dual eigenspaces. In the present paper, however, we 
generalise four-dimensional self-duality in another direction. 

In two-spinor notation the commutator of two covariant derivatives manifestly displays 
the irreducible representation content of the gauge field: 

Z) ae¢ , Z) /3fi ] = ~ a$Fafl + e a[3 F a[ 3. (10 )  
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The imposition of self-duality (resp. anti-self-duality) is just a statement of the vanishing 

of the (0, 1) component Fai i (resp. the (1,0)  component Fail). Equivalently, one can 
say that the self-dual curvature contains only the (1,0)  Lorentz representation, i.e. 

[D~a,D~fi]=,afiF~ ~ ¢~ F,~ = 0, (11) 

and analogously for the anti-self-dual case. As these equations show, the use of two- 
spinor notation is not only a very convenient way of manifestly displaying the irreducible 
parts of the field-strength tensor, but this decomposition is also revealed to be equivalent 
to the decomposition in eigenstates of the Hodge-duality operator. This equivalence is 
central to many of the wonderful mathematical properties of the self-duality equations. 
So instead of using the above-mentioned T-tensor construction of [7], we could equally 
generalise the alternative notion that self-duality corresponds to the absence of certain 
irreducible representations in the decomposition of generalised curvature tensors on .A4. 
The imposition of such 'coherent' curvature constraints on .AA thus maintains the usual 
four-dimensional rotation group SO(4) as a basic symmetry of the equations. It is this 
generalisation of self-duality which we pursue in this paper; this generalisation being 
more immediately applicable to superspaces with both odd and even parts than the 
T-tensor construction. 

Self-duality equations have recently drawn renewed attention as unifying systems for 
lower-dimensional integrable equations [8] and it has been suggested that the twistor 
transform could be the 'mother' of lower-dimensional transforms which render the latter 
completely integrable (like the inverse scattering transform). Many coherent curva- 
ture constraints on .M also arise as integrability conditions for linear systems and the 
advantage of manifest four-dimensional covariance is that a generalised twistor-type 
transformation is easily constructed. We shall discuss some interesting classes of linear 
systems, generalising not only those for the self-duality and anti-self-duality equations, 
but also the linear system for the conventional supercurvature constraints of superspace 
Yang-Mills theories. The latter, for the N = 3 extension, we recall, are equivalent to 
the full super-Yang-Mills equations [9]. Our discussion of linear systems for coher- 
ent curvature constraints generalises Ward's approach to completely solvable curvature 
constraints in dimensions greater than tbur [ 10]. 

1.4. Plan of paper and notation 

The plan of this paper is as follows. In Section 2 we introduce coordinates and 
A-covariant translation vector fields on .M, which satisfy, for consistency, the super- 
Jacobi identities discussed in Section 3. An explicit novel example of a hyperspace 
.A//, containing coordinates and covariant derivatives with spins up to 3 is presented 
in Section 4. The introduction of gauge fields on such superspaces is discussed in 
Section 5. Curvature constraints generalising self-duality and integrability conditions for 
them are discussed in Section 6 and explicit examples are given. We deal mainly with 
'N = 1' superspaces .h4, with coordinates of any given Lorentz type appearing only 
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once. Some details of the extension to examples with certain Lorentz representations 

appearing multiply is given in Appendix A. The analogues of self-duality discussed in 
Section 6 are soluble in the sense that the familiar self-duality equations are: in virtue 
of a twistor transform to freely specifiable holomorphic data. 

We use two-spinor language with dotted and undotted indices raised and lowered by 
the skew-symmetric symplectic invariant tensors ca/3, caB, c a#, caB, with c~2 = 1 = c 21 . 

The generators of Lorentz transformations satisfy 

[ Ma~, M~,6] = cayM ~,~ + casM ~y + c ~,M,~,~ + c ~,~M,~y, 
l 

M = + + cZ M + 
I 

cflS mOt~ ' ' 
I 

with M ~  and M aB acting respectively on undotted and dotted indices. The 2-spinor 
notation is particularly suited to the description of half-integer spin representations. In 
fact, it brings to light the fact that when the algebra of the Lorentz group is extended 
by allowing combinations of generators with complex coefficients, rather than real ones, 
the algebra can be split formally into two commuting SU(2)'s, i.e. that the complex 
extension of the Lorentz group, S0(4 ,  C), is locally isomorphic to SL(2, C) x SL(2, C). 
For physical applications, care needs to be taken in imposing appropriate hermiticity 
conditions at the end so that the theory transforms according to the appropriate real 
form of S0(4 ,  C). In particular, in the Lorentzian case, when the four-dimensional y,~a_ 
subspace, A/t4, has (3, 1) signature, the real form is the simple group SL(2,C)  and 
dotted and undotted indices are related by complex conjugation. This relation no longer 
holds if the Lorentz group is taken to be either of the other possible cases SO(4) = 
SU(2) x SU(2) (for - / ~ 4  having Euclidean (4,0)  signature) or SL(2,I~) × SL(2,R)  
(corresponding to an .A,'[ 4 with a kleinian (2,2)  signature). We shall, however, deal 
mainly with the complex extension. In particular, complexification lifts the Minkowski 
space conjugation between dotted and undotted spinor representations and allows the 
imposition of constraints like the above FaB = 0, leaving the choice of hermiticity 
conditions to be decided later according to the physical application being considered. 

We shall use the multi-index notation [A], [B],  [A] and [B] to denote sets of, 
respectively, 2a,2b, 2/~ and 2b symmetrized indices (a,b,/~ and b being integers or 
half-integers), 

[A] - - - - ~ 1 ~ 2 ' ' ' ~ 2 a ,  [B] = fllfl2" " "~2b, 

[fi~] = d l d 2 " "  "&2a, [B] = ~1~2""  "/~2b" (13) 

Similarly [Ap] (resp. [Ap]) will denote the set [A] (resp. [A]) with the index a t, 
(resp. &p) missing. Using the o's we also define multi-index epsilon tensors 

c[a,/3,1 = eaiBlea2B: "" "ca,B,, e la*B*l ---- C&lalC a2B2 ' " -C  gq/)~, (14) 

where e l'*°B°l = el,,oBol = c [a0B°l = ClaoBol = l, and their inverses 
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which satisfy e lfl''*' l el,~,B ,1 = 2s. Moreover, we shall denote by S[ A ], the symmetrisation 
operator which symmetrically sums over all the (2a)!  permutations of the indices in 
[A]. 

Using this notation, an irreducible tensor T(a, a) =_ TI21 ~, symmetric in its 2a undotted 
and 2ti dotted indices transforms under (12) as 

2a 2a 

,-" l, IApl~ '+ .d . .a  ~,ap [Apl/3' 
p=l p=l 

2a 2a 

= Z "[A] -~- Z "}'&"TIIAAf 1/~, 
p=l p=l 

(16) 

and corresponds to an irreducible (a,/t)  representation of the Lorentz group having 
dimension (2a + 1 ) (2/1 + 1 ). When using the multi-indices, we shall write, for visual 
clarity, the undotted ones lowered and the dotted ones raised. Spinor indices can of 
course always be raised or lowered Lorentz-covariantly using the epsilon tensors. The 
'spin' content of a tensor T(a, ig) (i.e. its behaviour under 'space rotation', the diagonal 
su(2) algebra of (12)) ,  is given by the decomposition 

a ® / t =  ( a + a )  @ ( a + / ~ -  1) @... ® ]a-/~l. (17) 

2. The higher-spin superalgebra .4 and the hyperspace .A4 

2.1. Hypersymmetries 

We consider a set of Lorentz tensors {X(a , /0} ,  transforming according to (16). 
Incorporating the non-holonomy (1) of the super-Poincar6 algebra, we postulate, as 
defining relations for hypersymmetry algebras .A, the most general Lorentz-covariant 
super-commutation relations having a right-hand side linear in the X's: 

min(2a,2b) min(2/i,2b) 

A[BIJ= Z ~ t ( a , i ~ ; b , b ; a + b - s , i ~ + b - ~ )  
s-~O S-=O 

xS[A] S[ A] S[B] S[B] E[ o,,~,.j e I a.~,ad ylg'ts) l (18) "'[C(s) l, 

where t(a, i~; b, b; c, d) are structure constants (the torsion, or more precisely anholon- 
omy, coefficients) depending on six half-integers and we choose the convention that 
t(a,/~; b, b; c, ~) = 0 when c, d are outside the range of the summation. Here we have 
introduced the multi-indices (for 0 ~< s ~< min(2a, 2b) and 0 ~< ~ ~ min(2ti, 2b) ) 

[ C ( s )  ] = a s + l a s + 2 . . ,  a2a /~s+ l /~s+2" ' ' t~2b ,  

[(~ ( ~)] = a~+] &g+2 • " " &2afis+l fi~+2 " " "~2b'  ( 1 9 )  
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and we use the fact that the tensor product of irreducible Lorentz representations, 
(a, ix) @ (b, b) = (a ® b, ix ® b), decomposes according to the Clebsch-Gordan rules, 

a ® b =  ( a +  b) @ ( a + b  - 1) @ . . . @  la -  bl, 
a ® b =  (ix+ b) • ( i x + b -  1) @...@ lix- bl, (20) 

with the Clebsch-Gordan coefficients for these spinor representations being representable 
by the multi-index e's. The right-hand side of (18) clearly needs to have the symmetry 
properties of the left under the interchange of the indices [A], [A] with [B], [B]. 
Taking into account the antisymmetry of the • factors, this leads to the following 
restrictions on the t parameters 

t (a ,  ix; b,b; a + b -  s, ix + b -  ~) 

----- ( - -  l ) 4 ( a + / 0  (b+b)+s+*+l t( b, b; a, ix; a + b - s, ix + b - ~). (21) 

We obtain, in particular, that 

if 2(a + ix) is even and s + ~ is even, 
t ( a , & a , & ; a - s , ? t - ~ ) = O ,  if 2(a + ix) is odd and s + ~ is odd. (22) 

Apart from the appropriate symmetry properties, associativity requires the satisfaction 
of the relevant super-Jacobi identities, which will be given in the next section. The 
operators X then form a Z2-graded superalgebra A, with even (resp. odd) elements 
having even (resp. odd) 2(a + ix). 

We note that the natural identifications X~,t~ = M,,t~, X e'~ = M a~, with the Lorentz 
generators may be made, though these are by no means necessary requirements. Further, 
elements X ( a ,  ix) transforming according to any specific representation (a, ix) could, in 
principle, occur multiply. 

2.2. Hyperspaces 

The simplest realisations of algebras .A are as infinitesimal translation vector fields 
on generalisations of standard superspace. To this end, we enlarge Minkowski space to 
hyperspace .M,  with coordinates Y(a ,  ix) corresponding to the algebra elements X ( a ,  ix) 

and also transforming according to (16). For any given finite set { (a, ix)}, we interpret 
the (correspondingly even or odd) coordinates { Y(a, ix) } as coordinates of (2a+ 1 ) (2ix+ 
1)-dimensional (even or odd) subspaces of .M. Standard superspace, therefore, with 
coordinates Y( ½, ½), Y(½,0) and Y(0, ½), of subspaces of respectively 4 bosonic and 
2 + 2 fermionic dimension, has total dimension (414); and the super-Poincar6 algebra 
has a manifestly covariant action on it. On the other hand, N = 4 extended superspace, 
with four copies of the odd subspaces, has dimension (4116) and a covariant action 
of the N = 4 extended super-Poincar6 algebra. For the simplicity of our exposition, 
we relegate discussion of analogous spaces .hal, with certain representations appearing 
multiply, to Appendix A. 



636 C. Devchand, J. Nuyts/Nuclear Physics B 503 [PM] (1997) 627-656 

As is usual for coordinates, we assume that they supercommute amongst themselves, 
i.e. 

We now proceed to specify the action of the superalgebras .4 on superspaces .Ad 
with coordinates Y. The vector fields X C ,4 clearly need to act as superderivations on 

functions of Y. To fulfill, in particular, that the X's map functions of Y to functions 
of Y, we postulate, as the simplest possibility, that the action of an X on a Y is a 
linear combination of the Y's, i.e. the hypersymmetry transforms the coordinates at most 

linearly among themselves. The X's together with the Y's therefore combine to form an 
enlarged superalgebra, with additional supercommutation relations 

min(2a,2b) min(2a,2b) 

~"lal'~l~l I = Z ~ u(a,  i t ; b , b ; a + b - s ,  i t + b - ~ )  
.~=o ,~--o 

xS[A] S[ A ] S[ B ] S[ B ] el,~,fl,1 e l~fi~l vle{~)l ~[C(s) l 

+ c ( a, it) 6,,bb~6 S [ A ] S [ A ] e t ,~z~z4 e l a~ ~z~ l . (24) 

Additional structure constants have been labeled u(a,  it; b, b; c, ~) and essential central 
parameters c(a ,  iz) have been introduced. If any of the latter are non-zero, they can 
always be renormalised to I by multiplying the X's and/or the Y's by an appropriate 
factor. Super-Jacobi identities yield quadratic consistency relations among the structure 
constants t(a,iz; b,b; c ,~) ,u(a, i~;  b,b; c,~) and c(a,  iz). These are discussed in the 
next section. 

Given any particular set of X's generating an algebra ..4 with relations (18), the span 
of Y's satisfying (23), (24) and the relevant Jacobi identities, can be thought of as the set 
of coordinates of a Z2-graded superspace .M. For usual Minkowski space, the algebra .,4 
is generated by the Lorentz generators together with the operators X(½, ½), which are 
simply realised as partial derivatives O/3Y '~a. They commute among themselves (the t 
parameters are zero) and their commutators with the coordinates involve only the central 
term c( ½, ½), with the u parameters being zero. Now just as Minkowski space can be 
thought of as the coset space (Poincar6 group)/(Lorentz group), we can consider the 
span of Y's to be basically the coordinates of the supergroup corresponding to the 
algebra .A. 

Given a coordinate basis {Y}, we clearly have a holonomic (supercommuting) basis 
of infinitesimal translation vector fields constructed from the partial derivatives 

oIAI = S [ A ] S [ A ]  3 [A] 0 y[[A]""'~ ' (25) 

satisfying (24) with all t's and u's set to zero and all c's put to unity 

[01~]] , Y[]~]' ] = (~ab~bS[ A ]S[,4],[o,2,,,02,,1 e I a~'8~'4 (26)  
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The relations (24) may be realised by .A-covariant or hypercovariant derivatives, using 

the notation (19), 

XtA} =c(a,a) e(al IA] 

min(2a,2b) min(2a,2b) 

+ ~  ~ ~ u (a , i~ ;b ,b ;a+b- s , i~+b-~ )  
b=O b=O s---O ~--0 

xS[ A ]S[ A]el~,~slela~B*lvld(~)l ~ l~1 "lC(s)l ~IBI" (27) 

This coordinate realisation yields (24) straightaway. However, requiring that these X's 
satisfy (18) implies quadratic relationships between the t's, the u's and the c's; relation- 
ships which, in the abstract setting, arise from the super-Jacobi identities among the X's 
and Y's. These relations do not necessarily have unique solution and particular solutions 
correspond to particular choices of coordinate bases: the standard non-chiral and chiral 

bases for superspace being the simplest example (see Section 4). 
The algebra (18), (23), (24) is formally invariant under the following Z2 'chiral' 

transformations 

dotted upper index ~ undotted lower index, 

dotted lower index ~-~ undotted upper index, 

t(a,/~; b,b; c,~) ~ t(it, a; b,b; ~,c), 

u(a,i~; b,b; c,~) ~ u(i~,a; b,b; ~,c), 

c(a,&) +-+ c(a,a). (28) 

In particular, the number of independent structure constants and central parameters t, 
u, and c can be roughly halved by imposing the maximal non-chirality condition of Z2 
chiral symmetry, i.e. 

t(a,it; b,b; c,~) = t(/t ,a; b,b; ~,c), 

u(a,/~; b,b; c,~) =u(gt, a; b,b; ~,c),  

c(a,&) = c(/t, a) .  (29) 

We note that the choice of the set of Y's for a given .A (or more generally of the 
X's and the Y's) is possibly not unique, since non-linear transformations amongst the 
generators, preserving their tensorial nature as well as the linearity of the right-hand 
sides, can be envisaged. We shall not pursue details of such equivalences; rather, we 
obtain the consistency conditions defining all algebras having a given number of X's 
and Y's. Linear transformations among the generators, on the other hand, are ruled out 
by Lorentz covariance in the 'N = 1' cases of at most one element for each Lorentz 
behaviour. 

It is straightforward to extend the algebra to the case where the multiplicity of certain 
Lorentz representations is greater than one. Then the structure constants t and u depend 



638 C. Devchand, J. Nuyts/Nuclear Physics B 503 [PM] (1997) 627-656 

on three extra multiplicity indices and the central terms c on two extra indices (i.e. they 

are matrices in the multiplicity space). In these extended cases the elements are defined 
up to linear transformations amongst the elements transforming similarly under Lorentz 
transformations. Such transformations can, moreover, be used to diagonalise the central 

terms. Details are given in Appendix A. 

3. The super-Jacobi identities 

We now derive the conditions implied by the super-Jacobi identities in order that 

the vector fields X and coordinates Y form a super-Lie algebra• Since the coordinates 
commute or anticommute, their Jacobi identities, involving three Y's, are trivially satis- 

fied. Similarly, the super-Jacobi identities involving two Y's and one X are also trivially 

satisfied• 
We first consider the Jacobi identities involving three X's. For the vector fields 

X ( a , / 0 ,  X(b,b) and X(c,4), all three double-supercommutators yield linear com- 

binations of vector fields X(f ,  f ) ,  with (f ,  f )  belonging to the set obtained in the 
decomposition of (a ® b ® c,/t ® b ® 4), multiplied by products of e 's  (realising the 

Clebsch-Gordan coefficients) and quadratic in the t's. They have terms of the form 

t(a, iT; b,b; d,d) t(d,d; c,4; f , f )  S[A]S[A]S[B]S[B]S[C]S[C]e.. . .  - ,,,IFJ • e . . A [ F  ] • 

(3O) 

,: yIF] The vanishing of the coefficients of the linearly independent tensors e . . . . . ~  .... [FI' are 
quadratic consistency conditions for the t structure constants, which we consider to be 
the defining relations for algebras ,.4. In constructing the linearly independent tensors, 

Fierz-type identities based on the spinorial identity e•#T r + et~rT~ + er,~T ~ = 0 need 
to be taken into account• For each a,/z, b, b, c, 4, f ,  f and for each linearly independent 
tensor, we obtain a relation of the form 

~-~(Rl(d,d)  t(a,/z; b,b; d ,d) t (d ,d;  c, 4; f , f )  
d,d 

+ ( - 1 )  m R2(d,d) t(b,b; c,e; d,d) t(d,d; a, iz; f , f )  

1 )P3R 3 (d,  d)  t(C, ~; a, iz; d, d) t(d, d; b, b; f, f ) )  = O, (31 ) +( 

where the numerical constants R i ( i  = 1,2,3) depend on the relation involved and 
where the range of the summation over d, d is given by representations occurring in the 
tensor products ( a , / 0  ® (b,b), (b,b) @ (c,4) and (c, 6) ® ( a , / 0 ,  for the three terms 
respectively. Here, P2 = 4(a  ÷ a) (b + b + c + ~) mod 2 is the parity of the permutation 
from (a,/~; b,b; c, 4) to (b,b; c,~; a , / 0  while P3 = 4(c ÷ 4 ) ( a  ÷ a ÷ b + b) mod 
2 is the parity of the permutation from (a ,a ;  b,b; c,~) to (c, 4; a ,a ;  b,b). For three 
bosons, three fermions, or two bosons and one fermion in (a,/z; b, b; c, ~) this parity is 
always 0. For two fermions and one boson, one of them is 0 and the other is 1. 
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In practice and for simple examples, the linearly independent tensors and the cor- 
responding constant coefficients R i afford direct determination, using for instance RE- 
DUCE. In more generality, a more precise form of (31) may be obtained using 6j 
coefficients. Denoting the individual eigenstates of a Lorentz representation T(a, a) by 

T(a,  a3;/t,&3), - a  ~< a3 <~ a, - a  ~< &3 ~</z, (32) 

where a3,/t3 label the eigenstates, the super-commutation relations between say X(a, a3; 
a,/~3) and X(b, b3; b, b3) then read 

[X(a, a3; it, i t3),X(b, b3; b, b3)] 

a+b i~+b 

= ~ ~ ~'(a,a; b,b; c,e) 
c=-Ia-bl /'=-Ia-bl 

X C(a,  a3,b, b3; c, a3 + b3)C(a,  iz3,b, b3; c,&3 +b3) 

x X(c,  a3 + b3; ~,/z3 + b3), (33) 

where C (a, a3, b, b3; c, a3 -t- b3 ) is the su (2) Clebsch-Gordan coefficient coupling the 
state (a, a3) with the state (b, b3) to form the state (c, c3) (where c3 = a3 q- b3 and 
analogously for the dotted indices) and the ?'s are renormalised t's. This is an alternative 
form of the commutation relations (18). Now, the 6j recoupling coefficients are defined 
by the relations 

C (a, a3, b, b3; d, a3 --S b3 ) C (d, a3 -b b3, c, c 3 ; f ,  a3 n t- b3 -b c3 ) 

= ~- -~R(a ,b , c ,d , k , f )  C(a,  a3,c, c3; k, a3 +c3) 
k 

x C(k ,  a3 + c3,b, b3; f ,  a3 + b3 + c3). (34) 

If the Clebsch-Gordan coefficient has the symmetry 

C(a,  a3,b, b3; d, d3) =C(b ,  b3,a, a3; d, d3), (35) 

then the 6j symbol satisfies 

R ( a , b , c , d , k , f )  = R ( b , a , c , d , k , f ) .  (36) 

The super-Jacobi identities are given by 

[ (a ,a ;  b,b; d ,d)  ?(d,d; c,~; f , f )  

+(-1)PZ ~ R(b,c,a,k,d,f) R(b,~,a,k,d,f) [(b,b; c,~; k,k) 
k,k 

x?(k,k;  a ,a;  f , f )  

+ ( - 1 )  p~ ~-"R(a,c,b,k,d,f) R(a,e,b,k,d,f) ~'(c,e; a,a; k,k) 
k,k 

x?(k,k; b,b; f , f )  =0. (37) 
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For given a,/t ,  b, b, c, d, i.e. the starting three X operators and the final X operator f ,  f 

there are as many relations as there are allowed d, d sets. This is the precise form of 

the more schematic relations (31). 
The Jacobi identities involving two X's and one Y, say X(a, it), X(b, b) and Y(c, ~), 

imply two classes of conditions. One class involves the structure constants t and u and 

is linear but inhomogeneous in t and the other involves t, u and c and is strictly linear 
in c. Amongst t, u we obtain, for each linearly independent combination of tensors for 

the Y's, a condition of the form 

~-~(s~(a,d) t(a,i~; b,b; d,d) u(d,d; c,~; f , f )  
d,d 

-S2(d ,d)  u(b,b; c,e; d,d) u(a, it; d,d; f ,  f )  

+( - 1 )q3 $3 (d, d)  u(a, it; c, d; d, d)  u(b, b; d, d; f, f ) )  = 0, (38) 

where the numerical coefficients Si (i = 1,2, 3) depend on the relation involved. Here 

q3 = 4 (a  + / 0 ( b +  b) rood 2 is the parity of the permutation from (a,/z; b,b) to 
(b,b; a, it) and the allowed values of the summation indices (d,d) are the same as 

in (31). 
Finally, between t, u and c we obtain the conditions 

Tlt(a,i~; b,b; c,d) c(c,~) - T2u(b,b; c,d; a, iz) c(a, it) 

+(--1)q3~u(a,~t; c,d; b,b) c(b,b) = 0, (39) 

with the numerical coefficients T/ (i = 1,2, 3). A more explicit form of relations (38) 

and (39), in terms of 6j coefficients, may be derived analogously to (37). 
Conditions (31), (38), (39) are the only restrictions amongst the structure constants 

arising from the super-Jacobi identities. If  some representations occur multiply, then 
these conditions of course need to be modified, in order to accommodate the extra 
labelling indices of t, u and c, as described in Appendix A. 

4. Explicit examples of solutions to the Jacobi identities 

In this section we present some simple examples of solutions to the conditions (31), 
(38), (39) and thereby provide explicit examples of hyperspaces 3.[. 

Two natural, though by no means necessary, assumptions are: 
(a) that the Lorentz generators M,~t~ and M aB are identical to the generators X( I ,  0) 

and X(0, I)  respectively; and 
(b) that X(0, 0), which is basically a dilatation-type operator, and its corresponding 

coordinate Y(0,0) are absent. 
The latter may be implemented in the relations for the structure constants (31), (38) 

and (39) either by ignoring the two operators from the beginning or equivalently by 
imposing, for all a,/t ,  b, b, the constraints 
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t(0, 0; a,/t; b, b) = t(a,/z; b, b; 0, 0) = c(0, 0) = 0, 

u(0,0;  a ,& b,b) = u ( a , &  0,0; b,b) = u(a ,& b,b; 0,0) =0.  (40) 

Using (12), assumption (a) fixes unambiguously the following structure constants, for 
all a,&,b,b, 

t ( a ,&  0,1; b,b) = t ( a , &  1,0; b,b) = t(0,1; a ,& b,b) = t(1,0; a ,& b,b) 

u(0, l; a ,&  b,b)=u(1,0; a ,& b,b) = 8~b8~/,, 

c ( 0 , 1 ) = c ( l , 0 ) = 0 .  (41) 

A further natural constraint consistent with (a) is that 

t(a,/ t ;  b,b; 0, 1) = 6aO6al6bOSbl, t(a,&; b,b; 1,0) = 8alSdO~blSbO. (42) 

4.1. General 

Of course, any number of abelian examples of .,4 may be constructed, with arbitrary 
set of vector fields {X}, representable in a corresponding coordinate basis {Y} by partial 
derivatives (25). All t's and u's are then zero; and all c's are 1, apart from the vanishing 
c(0, 1) and c ( l , 0 ) .  

4.2. Restrictions 

If, apart from the Lorentz generators, the set of operators is restricted to {X(5,0) ,  
X(0, 5 ) 'X(17,St) 'Y(5,0) 'Y(0,  ½), Y(5' 5)} and the corresponding set of non-zero 
structure constants is restricted to {t(0,½" 5,0,1 . ½,5) ,u(0  ' 1. 1 1. I 0) ,u(½,0;  i 1 

' 2 '  2 ' 2 '  2 '  2 ' 2 '  

O, ½),¢(½, 5 ) , c (0 ,  5 ) , c (½,0)}  together with those in (42) and (41), the associativity 
requirements of the previous section correspond to a single relationship amongst the 
non-zero structure constants, viz. 

,(o, ½, ½)c(5, 5) --¢(o, ½).(½,o; 5,½; o,5) +c(½,o) 
xu(0,½; 5,5; 5 ,0).  (43) 

If we choose c(½, 5) = c(0,½) = c(½,0) = 1, we obtain a simple relation for the 
determination of a coordinate basis consistent with the super-Poincar6 relation ( 1 ). 

4.2.1. Explicit solution 
One explicit solution 

• ~ l" u ( O ,  ½; 1 t(0,½, 5 , 0 ; ½ , ½ ) = 2 i ,  u ( 5 , 0 ; ~ , 7 , 0 , ½ ) =  -2,5;½ ' 0 ) = i '  (44) 

corresponds to the standard super-Poincar6 basis (3) with relations (2) and is maximally 
non-chiral (29). 
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4.2.2. Other solution 
Another solution 

1. ½,0;1 1 t (0 ,7 ,  ~,7) =2i, 
1 . 1  1. ~ u ( 0 , ~ , 2 , 2 ,  , 0 ) = 0 ,  

I ½ ; 0 , 1  u(½,0; 7, 7) =2i, 

corresponds to the chiral basis for super-Poincar6 space 

(45) 

X ~ -  ,9 ,9 0 0 
3Y'~ B , Xa = - ~  + 2iY[~oyc------- ~, XI3 = Oy----B" (46) 

4.2.3. General solution 
The general solution to (43) clearly interpolates between these two bases for the 

super-Poincar6 algebra: 

1,0; 1 ½ ; 0 , 1 ) = i ( l + r )  t(o, ½; ½,o;1, ½) =2i, 
1 1. 1 0 ) = i ( l - r ) ,  u(0, ½; ~, ~, ~, (47) 

and can be realised as 

Xa,8 = A 0y,~B, o--y-- g + i (1  + r )  y/~ 0___~ 

+ i(1 - r) Y ' ~ - -  ,gy,~" (48) 

4.3. Simple example 

To find a simple example of a non-trivial extension of the super-Poincar6 algebra, 
we have written, using REDUCE, the set of all the conditions when we start with the 
set of all X's and Y's transforming according to (a,/~) representations, with a +/~ ~< 3. 
Even for this simplest extension of the super-Poincar6 algebra, the number of algebraic 
relations among the structure constants is rather large. Using REDUCE, we find, for all 
representations with a + t~ ~< 3, a total of 397 relations of the form (31 ), 1224 relations 
of the form (38) and 61 relations of the form (39), which we call, respectively, T'I', TU 
and TC relations. The complete discussion of all allowed possibilities is a formidable 
task, however, the imposition of certain natural requirements yields a simple specific 
solution depending on a small number of arbitrary parameters. Imposing 

(i) the absence of X(0,0) and Y(0,0), i.e. (40); 
(ii) the Lorentz identifications X,~# = M,~#, X a/~ = M ~/3 tantamount to (41), together 

with (42); 
(iii) the condition that the essentially dummy variables Y(1,0) and Y(0, 1) are zero; 
(iv) the normalisations: 

: (o,  ½) : c ( ½ , o )  2'-) -- +) : c (½,  l) = c(o, +) =c(+ ,o )  : 
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considerably reduces the number of relations to be satisfied by the non-zero structure 
constants, though this is still quite large. However, if we in addition insist on the 
following super-Poincar6 properties: 

(v) t(O, 5; 5,0; ½'5) 4: O; 
,. ½, 5) = u(o, ½; , .½,1) o; (v i )  u ( 5 , o ;  0,  ~, ~ , 0 ,  = 

(vii) u(5, 5; a,/z; b, b) = 0, for all (b, b) when 2(a +/z) is odd; 
then the TT-relations imply that X( ½, ½) necessarily commutes with all fermionic X's, 
(viii) t(1 1. ~, ~, a,/z; b, b) = 0, for all (b, b) when 2(a +/z) is odd; 
as a consequence of which, all further Tr-relations are automatically satisfied. Similarly, 
the TC-relations imply that 

(ix) u(a,iz; b,b; 5'½) =0, for all (b,b) when 2 ( a + / 0  is odd; 
as a consequence of which all TU-relations are resolved. The only conditions then 
remaining are the following TC-relations amongst the non-zero structure constants (all 
other structure constants being zero, except of course for the non-zero ones in (41), 
(42)): 

t(O, 1. 1 . 1 2 '  2 ' 2 '  2 . . . .  , ~,o, ~,½)=u(½,o; ½,};o, ½) +u(O,'- 1- ' - .  '- o~ 

t(½,0; 1,½; ½, ½) =u(1, ½; ½,½; 1 ,0 ) -u (½,0 ;  ½,½; 1,½), 
1. 1. 1 1. 1 ~(o,½ ½,1; 1, ½) =u(½,1; ½, ~, o,½) - u(O, l) , ~, ~, ~, ~, , 

f ( l ,  1; l,:,l" 1, 21_) =U(1 1 ; 1 ,1 ,  ½,1)+u(½,1; ½,½; 1,½) 

t(l,:,l" 3,0; ½,1) =u( l ,  ½; ½,½; 3,0 ) + u ( 3 ' 0 ;  ½,½; 1,1) 

t(0,-~; ':,l," 5, ½) =u(½,1' ' , ~ ,½;0 ,~ )+u(0 ,~ ;  5'½'½'1)" 

Denoting the 12 arbitrary parameters 

~(½,o;½,½;o,½)=u,,  u(l, ½; ½, 5; ½,O) =u2, 
u(O, ½; ½,½; ½,0)=51, u(½,1; ½,5;0 ,1)=52,  

U(1,½; 5 ,1  , 3 ,0)  =U4, / t (3,0;  ½,½; 1,½) =//5, 

/,/( ½, l; l ,  ½; 0, 3) = U4, U(0, 3. 1 : ,  2' 2'1" 12, 1)=55, 

(49) 

u(½,o; ~,½; 1,~)=u~, 
u(O,1; ½,~; ½,1)--5~, 

u(1,½; ½,½; ½,1)--U6, 

u(½,1; ½,½; 1,½)=56, 

(50) 

we obtain a super-algebra with non-zero commutation relations among the X's (apart 
from the obvious relations involving the Lorentz generators X ( 1 , 0 )  and X ( 0 ,  1 ) ) ,  

{Xa,Xfl} = (Ul .-~.- 51)X~, 

{ X ~ ' X~ ~/~2 

{ X~,,,~, X~ '~ 
{Xc,,,,~,,,,x~,~2 

= (U2 -- u3)3(/~1/~2) eafl, X~2, 

= (52 - 53) s(B,/~2) E~' x~ 2, 

= (u6 + 56)S(ala2) S(fll/32) e,~,C~ea#lX~, 

= (u4 + 2us)S(altz2a3) e~,t~,e,~2&X~3, 
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{ X:l&2, X/)1/)2/)3 } = (/~4 "Jr- 2/~5) S(~I/~2/~3)'&1/)1E&2/J2Xa ~3 . (51)  

This algebra clearly has the symmetry corresponding to the Z2 'chiral' transformations 
(28) which in this case reduce to 

dotted upper index +--+ undotted lower index, 

dotted lower index +-+ undotted upper index, 

ui ~ ui. (52) 

The non-zero commutators between the X's and the Y's are 

{ x` ,  , r e }  = 6`,/3, 

{ X2, a2, Y~,8/3}2 = S(oq "2)  e-a,~s, Eol2/32 E`,/3 , 

{Xa,a2a3, Y~,'82/33 } = S( oq c1'2 ~, 3 ) Ea,,8, 6`,2/32 Ea3/33, 

[X`,, Y~] = u,E`,'SY' + u3Y,~, 

[X`,al`,2 , Y~] = u2S(l~'l °~2)"`,,'8~f/)Y`,2 "1- u4~:a~SY`,lot2,8 "1- u6S(l~' °~2)"`,1'8Y~2/~, 

together with the six further independent relations obtained by performing the transfor- 

mations (52). 
A coordinate representation of this algebra may be found in terms of a holonomic basis 

of vector fields cg~a~ = S[ A ] S[ ,4] e/cgYlI~l, having commutation relations corresponding 
to (51) and (53) with all the u's put to zero. This representation is given by 

X`, = a,~ + ul eaBYaa ~ + u3e a • 6/33`Y£ O p , '8 /3v 

X~,/3 = O ,̀a'8 + ueS( oel3) Y ,̀O~3 + u4e3`aY`,'svO~ + u6S(°68) " vaBa~' 

X,,/3r = 0,,/33, + usS(oeBT) ea*Y2/3O~, (54) P 

with realisations for the remaining generators, X a, X•/3, X abe, being given by the latter 
three expressions on performing transformations (52). 

This example clearly has the super-Poincar6 algebra as a subalgebra. 

5. Hyperspace gauge fields 

We would like to consider gauge fields on the spaces .A4. To this end we postulate 
gauge potentials A. These depend on the set of coordinates {Y} and are in one-to- 
one correspondence with the hypercovariant derivatives X, whose Lorentz indices and 
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corresponding transformation properties they carry, allowing the definition of gauge- 

covariant derivatives, 

z)[A} = y[A] .a_ a[ A] 
[a] "'[a] " "~[A]" ( 5 5 )  

The gauge potentials take values in some, for instance semi-simple, Lie algebra, with 
generators {Ak; k = 1 . . . . .  N}, satisfying 

[ak, at] = fktmam, tr(A~Al) = 8kt, (56) 

where fkt"' are the structure constants. We can expand the gauge potentials in this Lie 
algebra basis 

N 
A[A] ~-"A[AI,k~ A] = ~ [al ,~k, (57) 

k=l 

with coefficients being extractable thus: 

Ala],~ ( [ A ] A k ) .  (58) IAI = tr A LAI~ ~ 

The covariant transformation law 

)[AI .__+--IIAI = II.F)[A]II-I [a] "./.3 [a] V~[A] ~ , (59) 

yields the standard inhomogeneous gauge transformations 

AIAI .~IAI ira[All1-1 Iv[A] ] Ia] ~ A [a] . . . .  [a]"' -- L--IAI,U U- l ,  (60) 

where the (grassmann-even) gauge-group-valued function U depends on the coordinates 
Y. The infinitesimal version (U = 1 + ~- + O(r2))  of this transformation, 

AIAI ~ al[Al atAI ~D[A], T (61) "'IAI "1 [A1 =''IA1 -- 

where the components of the gauge potential are linear in a dimensionless coupling 
constant (absorbed into their definition), reveals them to have the same scaling dimen- 
sion and the same bosonic or fermionic nature as the corresponding X's. Although these 
potentials have general spin, the gauge transformations remain completely analogous to 
the usual gauge transformations corresponding to a spin-one gauge degree of freedom, 
with Lorentz-scalar transformation parameter ~" taking values in the gauge algebra. So 

although the potentials ,~[AI have, in general, higher than spin-one content, no higher- "~[A] 
spin gauge invariances and no coupling constants apart from the Yang-Mills ones are 
introduced. 

It is now natural to define generalised gauge fields (curvatures) P (corresponding to 
the sets [A],  [A] and [B],  [B] by the equation 

min(2a,2b) rnin(2a,2b) 
pl,~]ta] FDt A] ~[B]I [AIIBI=L [A] ,--IB]] -- ~ ~ t(a, t t ; b , b ; a + b - s ,  i T + b - ~ )  

s=0 .~=0 

×S[ A ]S[ A ]S[ B IS[ B ] at,~,/3sl a['~'Bs] 791 ccl:l ]. (62) 
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On the right-hand side the second term ensures that the fields ~" are free of differential 
operators in a gauge-covariant manner. The thus defined curvatures are manifestly gauge- 
covariant, 

p[IAI[B] ~tlAlla} = I /~ IAI[BIu - I  ' 
ALIBI ~ (63) -- IAIIB1 ~--[AI[B] 

and decompose under the action of the Lorentz group into irreducible Lorentz represen- 
tations thus: 

min(2a,2b) min(2a,2b) 
plaJl,l 

[A][B] = Z Z S[ A I S[ A ] S[ B I S[ B ] e I " ' #Ae la ' a ' ]F Ie ( sOI  ICes)l" (64) 
s=0 ~--0 

L-le/s')l (which obviously depend on [ a ] ,  [B] [A], [B])  The irreducible components "lC(s) l 
transforming according to the (a + b -  s, tt + b -  ~) Lorentz representations may be 
projected out by contracting the curvatures/~ with the inverse epsilon tensors e {~'~' J and 
el/~a~ I in (15) and symmetrising over the remaining multi-indices [C(s ) ]  and [d'(k)] 
in (19) :  

FI Ic(s)I = K(s,~) S[C(s)IS[C, ,j I/~,a,J IallB], (65) C(s)] C ~-~ 161/3,a,16 j~[AIIB] 

where K( s, ~) are combinatorial factors. The gauge algebra components of the irreducible 
fields F may be extracted by taking traces as in (58). 

For instance, corresponding to the first two commutation relations in (51), we have 

P,~3= { D ~ , , D ~ } - ( u ,  + fi,)D,~3 = F,~#, (66) 

which is irreducible and 

= { ~)ot, ~D/31,82/) } -- ( u2 -- U3 )S(/~1/~2 ) ,or/3, ~D 

= S(a f l ] f l2 )  Fo,~a, th~ O + S(~I~B2) e,~#, Fth #. (67) 

6. Curvature  constraints  and integrabil i ty condit ions 

Having the basic ingredients of the previous section, we could now proceed to consider 
the possibility of constructing consistent Lagrangian gauge field theories on the hyper- 
spaces .A,4. We leave this for future work, concentrating here on systems of equations 
for gauge fields on A//, which generalise the idea of the standard four-dimensional self- 
duality equations. We shall consider imposing 'coherent' curvature constraints, setting 
some sets of irreducible gauge fields to vanish. One important class of such constraints 
arises from demanding that some subset of the commutation relations of the superalgebra 
..4 are preserved under the covariantisation X ~ D. This yields relations for higher-spin 
potentials in terms of lower-spin ones. The simplest example is the 'conventional con- 
straint' of standard super-Yang-Mills theory, 

F,~,O = D,~Aa + DBA,~ - (u I + / i  1 )A,~B = 0, (68) 
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which determines the vector potential A~,~ in terms of the spinor ones (A~, A~) and 

yields an irreducible representation of the supersymmetry algebra• Another class of 
constraints are generalisations of the standard four-dimensional self-duality equations. 
In particular, the self-duality conditions are integrability conditions for a linear system, 
the starting point for the twistor transform, which establishes formal solubility• The 
crucial feature is the possibility of writing the constraints, with the non-zero curvature 
components representing obstructions to Frobenius integrability, in the form of some set 
of commuting operators. 

In order to define linear systems we introduce two commuting spinors, v @" and 
u +~. Our notation for these spinors is explained in Appendix B. Let us take a set of 
representations {(a,/1) } of the Lorentz group and associate to each representation two 

freely specifiable integers: r ( a ) ,  0 <. r ( a )  ~ 2 a  and f(/1), 0 ~< f(/1) ~< 2/1. We 
consider the linear systems 

v @crl • • • v @ar(") u +&l • • • u +6<e(~)~Dal...a~6tl...&~ ~P = O. (69) 

When r ( a )  = 0 (resp. /'(/1) = 0), we mean that v's (resp. u's) do not appear. 
The integrability of these linear systems for a r b i t r a r y  c h o i c e s  of u's and o's is equiv- 

alent to Lorentz-covariant curvature constraints. Now, for field theories in dimensions 
greater than two, there is no clear-cut definition of 'complete integrability', but for 
the cases where this notion has any meaning, four-dimensional self-duality being the 
paradigm, the existence of a linear system is crucial• In particular, it is central to solution 
generating transforms. 

Of particular significance amongst the systems (69), are those with r (a) taking values 
0 or 2a only and f(/1) taking values 0 or 2il only. In other words, if, for any (a,/1), 
u- or o-type spinors exist, they saturate a l l  the corresponding indices on 79[a llA]. These 
linear systems therefore correspond to representations with indices (a,/1) falling into 
four disjoint sets A i j , i , j  = 0, 1 (where i = r (a )  mod 2a and j = f(/1) mod 2/1) 

Aoo = {(a,/1) IDa, ..-,~Zaa,...,~,';O = 0}, (70) 

A0,={(a , /1)  12/1>~ 1, u +a' -+a~79 - 0} (71) • " " / 4  O , l . . . O / 2 a t ~ / l . . . t ~ t 2 a ~  ~ , 

Am0= {(a,/1) 12a/> 1, v ~a' • - v ° ~ D  - =0}  (72) 
• Otl "" " a 2 a & l  " "  "'ff2a ~ 

All = {(a,/1) I 2a  >1 1, 2/1 >1 1, v @'' . .  . v @ ' ~ u  +~' . .  .u+ '~V, , . . . , ,~ , . . .~  =0}.  
(73) 

The constraints which arise as integrability conditions for these systems may be formally 
solved following the generalised twistor construction given in the appendix of [ 10]. The 
harmonic space description of solutions may also be given on the lines of the construction 
reviewed for instance in [ 11-13]. The integrability conditions for (70) - (73)  therefore 
provide classes of systems which are completely solvable in the sense of the standard 
self-duality equations and generalise the systems of higher-dimensional solvable gauge 
field constraints classified in [ 10]. They fall into two broad classes: 
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(I) with either only u-type or only c-type spinors present, which are exact analogues 
of self-dual or respectively anti-self-dual systems on .At. 

(II) with both u-type and c-type spinors present, which are analogues of light-like 
integrable systems. 

Class L Generalised self-duality 

For gauge fields on an arbitrary hyperspace .L4, we define self-duality as the condition 
that the only non-zero irreducible curvatures are those appearing in (64) with a coeffi- 
cient including at least one e-tensor with dotted indices, i.e. those in the decomposition 

min(2a,2b) min(2a,2b) 
f-,l[ All BI ALIBI = E E S[A]S[A]S[B]S[B]el~#'lela~¢~lL'IO(s)l"fCCs)l" (74) 

.~ -'=0 .4 = 1 

The vanishing of the curvatures appearing in (64) but not in (74) is a natural 
generalisation of the self-duality equations. 

For a given superspace AA, with coordinates enumerated by some set of Lorentz 
indices A = {(a, a)}, the vanishing of these curvatures are integrability conditions for 
linear systems containing equations of the form (70) with 2/t = 0 and (71) only. 
The prototypical examples are standard self-duality and super-self-duality. Obviously 
analogous anti-self-dual systems containing equations of the form (70) with 2a = 0 and 
(72) only can also be considered. In the following examples we restrict ourselves to 
the former self-dual systems. 

Example 1-1. A0, = {(½, ½)}, with commutative algebra of the four components of 
X~a (i.e..A is the Poincar6 algebra). The linear system (r  = 0, ~ = 1) 

u+aD~a~o = 0 (75) 

is precisely the Belavin-Zakharov-Ward linear system for the self-duality equations. 
The consistency conditions are 

If we insist that these hold for any choice of u, which is tantamount to requiring their 
Lorentz covariance, we obtain 

[D,a,D#fi]:eaBF~ # ¢~ F~# : 0, (77) 

i.e. the self-duality constraints. 

Example I-2. A0o = {(½,0)}, A0, = {(0, ½), (½, ½)}, with algebra of the vector fields 
(X~, Xa, X~a ) having non-zero supercommutator, {X,, Xa} = 2X,,a (i.e..A is the super- 
Poincar6 algebra). The system 

79~  = O, u+fiDfi~o = O, u+~D~fi~o = 0 (78) 
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implies the super-self-duality constraints. 
N-extended supersymmetrisations, on superspaces with odd coordinates having multi- 

plicity N, {y,,a, Ym, yma; m = 1 . . . . .  N}, and vector fields {X,~e~X m, Xm6t, m = 1 . . . . .  N} 
satisfying the algebra 

X m ~," \ = 26".'X,~, (79) 

with all other supercommutators amongst the X's vanishing and Jacobi-allowed X, Y 
supercommutators exist for arbitrary N [ 15] and the linear system 

D~'~ = O, u+~D.,[~o = O, u+~D,~o = 0 ( 8 0 )  

implies the following curvature constraints equivalent to the N-extended super-self- 
duality equations: 

{~Dn~', 79~} = 0 ¢* Fan~ =0, Finn=O, 

{79"a',79.a}=28"n'D,~ a ¢* F~'aa=O, 

[., ] = 0  m m 79~,79~3 F;3#-O, F ~ = 0 ,  

0, 

where, by construction, F,,n and F m" are distinct curvatures. 

Example 1-3. A01 = { (½, ~)}, for fixed odd integer n > 1, with commutative algebra 
of the elements X,a,...a,,. In the bosonic space of dimension 2(n + 1) with coordinates 
y,e,...a,,, the irreducible parts of the gauge curvature are given by 

[~ot&l'"&,,~/3/)l.../),,] =S(~l " ' '~n) S(/~,'"/~n) 
½(.-l) 

x (  e'~3 Z eta2.,#z.,lFa2.,~,ia.#z.,+,'"#,, 
m=O 

½(n-l) 

+ Z e[a2.,-,,&.,+,lV,~3a2.,~2""a.32.,+2""#,,)' (82) 
m--0 / 

where at the upper limit in the second sum F,~e,,+,...a.[~,,+,...B. simply stands for F,~ 3, 
The linear system [ 10] 

u +a~ • .. u+e'"D,~,~, ...a,Ao = 0 (83) 

yields the Lorentz-covariant constraint 

Va,...a,,B,...B, ' = 0, (84) 
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which Ward considered as an example of  a soluble system generalising self-duality [ lO]. 

We note that the linear systems 

u +a~ ...u+a~79,~a~...~,,q~ = 0 ,  for some fixed /', 0 < /"  < n, (85) 

yield integrability conditions with more of the irreducible pieces of  the curvature in the 

decomposition (82) vanishing. These gauge field constraints are however not amenable 

to the twistor transform, the mapping to twistor space variables not being invertible for 

0 < s < n. It is therefore unclear to what extent such equations, arising as integrability 

conditions for linear systems, are actually ' integrable'.  They do not appear to be exactly 
solvable in the sense of  the standard self-duality equations. 

Example I-4. 
mirror image of  the previous one. The irreducible parts of  the gauge curvature are 

[79a, ...... Ot , 79 /31...t3,,fl ] = S(  oQ " " ° i n )  S(  fll " " fln ) 

½ ~ 1 )  ( × ~ea B el ,~2.,&., 1F,~2,., i-.,~.&,.+l ".-/3. 
\ m=0 

½(n-l) 

+ Z eI'~2.,+'&'.,'lF,~2.,~z ...... &.,~z.../3,,a~)" 
m=O 

The linear system [10] 

U+&79 ^ oq---a,,&~ = 0 

yields the constraints 

A01 = {(~,  ½)}, for fixed odd integer n > 1. This example is clearly a 

Da,  ...a,,a, 79/3, .../3,,/~] = S ( a l  " ' "  an ) S(f l l  ' ' "  fin) e&8 

(86) 

(87) 

which are equivalent to 

F,~ = 0, 

together with 

F,~2.,. ..... &.,...~,,a~ = 0, 

½(n--1) 

× ~ e[.2.,/3~,jF~2o,+, ...... &.,~,.../3,,, (88) 
m=0 

for all m = 1 . . . . .  ½(n - 1). 

(89) 

(90) 

Example 1-5. This example provides self-duality conditions for the hyperspace .A4 of  
Section 4.3. We take a00 = { ( ½ , 0 ) , ( 3 , 0 ) }  and Aol = { ( 0 , ½ ) , ( ½ , ½ ) , ( 1 , ~ ) , ( ~ , l ) , l  l 
(0,3)). 
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The seven equations of the corresponding linear system have 28 consistency conditions 

which imply that all the curvatures vanish except for 19 curvatures appearing with a 
coefficient consisting of at least one e with dotted indices. 

Class II. Light-like integrable systems 

Including u and v spinors simultaneously, we may consider linear systems of the form 
(70) - (73) ,  with all spinorial indices saturated, 

Dcp =0, 

u +a' ...u+~Dm...a~q~=O, for 2/t ) 1, 

v e'~'.., v~'~D,~...,~o=O, for 2a ~> 1, 

V t~Ofl ' " ' V(~l~f2au -~-~'1 " ' "  U- l -a2 /JDO/l . . .O,2a l~/ i . . .o ,2~@ = 0 ,  for 2a ) 1, 2/z ) 1. (91) 

Their consistency conditions express integrability along certain lines in .M, analogues 
of 'super null lines' in Minkowski space. These correspond to the vanishing of all 
curvatures which appear in the decomposition (64) with a coefficient including at least 
one e-tensor (with either dotted or undotted indices). In other words, the only non-zero 
irreducible curvatures are those appearing in 

min(2a,2b) min(2&2b) 
plAI[BI ( 9 2 )  [AIlB] Z ~ S[AIS[AIS[B]S[BleI~'~'Ieta'~*I~[C(s)] = ' [C(s)] ,  

s=0 ~=1 

or in 

min(2a,2b) min(2a,2b) 

[A][B] ----" ~ 
s=-I k=0 

S[ a ] S[ AI S[ B] S[ B ] ei~s#,] e [a*B*l ~.[d(.~) 1 • [C(s)l (93) 

and the zero curvatures are those appearing in (64) but not in (92) or in (93). 

Example H-1. The linear equations in standard Minkowski space 

ve'~u+~D,~B~ = 0 (94) 

clearly imply 

[D,~a,D~B ] = e~t~Fa, + ea~F,~ (95) 

and hence impose no constraints on the curvature. More generally, this conclusion 
follows from (91) whenever A contains only one bosonic representation. 

Example H-2. The linear equations on N-extended super-Minkowski space correspond- 

ing to algebra (79), 

v D,~cp = O, u+PDn~o = O, v~"u+~D,~[~ = 0, (96) 
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have as integrability conditions the conventional superspace constraints for N = 1,2, 3 
super-Yang-Mills theories [ 16], 

{7)"J,7)~}=ea#F m" ¢:> F ~  = 0, 

{D"~', 79.c, } = 26",'D,a ¢* F2" a = O, 

[ ]_ m 

{ D m a , D , B } = e a ,  Fm,, ¢=~ Fmn,~, = 0, 

[Dma,D#B]=ea,Fm ~ ¢:~ Fm/3aB = 0, 

[D,~,~, 79,B ] =e~#Fa B + eaBF~#. (97) 

These are needed in order that the superfield carries an irreducible representation of 
the supersymmetry algebra. For N = 1,2 these constraints do not have any dynamical 

consequences, but for N = 3 they turn out to be equivalent to the full (second-order) N = 
3 Yang-Mills  equations for the component fields in ordinary Minkowski space [ 16,9]. 

For N = 4, a further constraint is necessary to have an irreducible supermultiplet, viz. 

1 _ ijkl E" 
F ij  = ~ e  r k l  (98) 

and these together with (97) are similarly equivalent to the full super-Yang-Mills 
equations for the N = 4 Yang-Mills multiplet. This further constraint does not arise 

as an integrability condition of  the type considered here, so this is one example of  an 

interesting set of  constraints which is not a consequence of  (69) .  

Example II-3. A1, = {(½, ~)}, for fixed even integer n > 1. The curvatures in this 

purely fermionic space are given by 

{~o~, ~,,, ~ ,  ~,,)= s(,~, ... ~ ) ~ ( ~ ,  ... ~o) 

½(n-2) / 

x(~,~ ~ ~ .  F • [a2.,, ~#2.,+11 eL.,~2...a,,#2.,.~2...~. 
m=0 

X 
+ Z ,  ~ . . . .  ) 

[a2mfl2m ] •3•2m41 ""an32m+l " "3"  ' 
.1-----0 / 

where at the upper limit in the second sum F~3,~,+,...,~,,~,,~,...~, stands for F,~3. 
The linear system 

v ~  u + a j  • .  • u+a"Dac~j  . . .a.  ~o = 0 

yields the Lorentz-covariant constraint 

F,~,~I " " ~ n a l ' " ~ n  = O, 

similarly to (84) .  

(99) 

(lOO) 

(1o1)  
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7. Conduding remarks and outlook 

653 

We have considered generalised supersymmetry algebras, including elements trans- 
forming according to general Lorentz representations (a,/t)  possibly having spin greater 
than one. 

As an application of our analysis, we have generalised the notion of self-duality, the 
paradigm of solvability for systems with four independent variables, to the hyperspaces 
.A4. We have thus obtained a hierarchy of solvable systems in an arbitrarily large number 
of variables. 

There are several directions in which our considerations afford generalisation. 
(a) In the complex setting, having in mind physical considerations, we have worked 

with representations (a, &) of the algebra su(2) • su(2) ~ sp(1)  ® sp( 1 ) of the 
group SO(4). As a possible generalisation, this basic algebra could be extended to 
the direct sum of two algebras g ® h, for example, sp(1) ® sp(n).  Generalisations 
involving algebras which are not direct sums may also be considered. 

(b) We have worked with supercommuting coordinates satisfying (23). Our formalism 
suggests generalisations to either non-commutative geometry and/or to quantum 
type (deformed) commutation relations, i.e. appropriate deformations of the super- 
algebra of the X's and Y's and of the gauge group. 

(c) We could extend the superalgebra of X's and Y's to associative algebras containing 
suitable non-linear terms in the right-hand sides of the supercommutators. However, 
non-linear terms in the algebra ,,4 yield hyperspaces on which the minimal coupling 
of gauge fields is not well defined. 

(d) We have restricted ourselves to flat spaces. A generalisation to curved spaces using 
diffeomorphism-covariant derivatives may also be considered, with the X's in ,A 
interpreted as vector fields spanning the tangent space. 
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Appendix A. Multiplicities 

A. 1. First case 

In this appendix we give the main formulas of the text modified in such a way as to 
allow for multiplicities of the different operators corresponding to the coordinates and 
the vector fields. Let N~Za be the multiplicity of the operators Z = Y or Z = X of given 
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behaviour a,/1 under the Lorentz algebra. The set of coordinates y[~l (m) (resp. the set 

of differential vector operators yI A] l . [ a  I ( m ) )  is indexed by an integer m with 1 ~< m ~< N~,a 
(resp. 1 <~ m <~ NXa). We expect that in the interesting cases NaXa = Nra i.e. that 
the number of coordinates is exactly equal to the number of generalised derivatives 
(except perhaps for the Lorentz generators themselves which don't necessarily need 
their coordinate counterparts). 

Using this notation, (23) becomes 

[yiIAll(m),YlIffll(n) ] =0,  (A.l)  

and (18) becomes 

,,,A, [B/(n)] AIA 1 (m),X[B ] 

min(2a,2b) min(2&2b) (NX~b-s,a~$-,) 
i 

~_~ ~_~ ~_~ ,(a, it, m; b,b,n; a + b - s,& + b -  $,p) 
n i 

s=0 ~--0 p=l 

x S[A]S[.iI]S[B]S[B]e[,~ # le[a~/3~l~lc(s)] (p) ,  (A.2) 

where the structure constants t not only have the Lorentz labels of the three tensors 
involved but also on their multiplicity indices. Finally, (24) becomes 

[AI [XIAI(m),y[IBll(n) ] 

min(2a.2b) min(2a,2b) (N~r~o .... ~b_~ ) 

= ~ ~ ~ u(a, it, m ; b , b , n ; a + b - s ,  i t + b - ~ , p )  
s--0 .¢--0 p=l 

x S[AIS[A]S[BIS[Ble ~',~,, e(~'~s]Y'le(~)l'lc(s)l tp)" 

+ c(a, it; m, n) 6ab~abS[A] S[Alel,z,~,le [a~z~] , (A.3) 

where the structure constants u depend also on the multiplicity indices involved. For a 
given a and a given/t, the central term parameters c(a,i~; m,n) form an NXa x Nra 
matrix. We expect that in the interesting cases this matrix is square and non-singular and 
that it can be brought to the unit matrix 8mn by redefining suitable linear combinations 
of the X's and of the Y's as the basic operators. 

As far as the Jacobi identities are concerned, the multiplicity indices have to be taken 
into account. In particular, a summation on the 'internal' multiplicity index has to be 
included in the generalisation of, for instance, (31). 

A.2. Second case 

When a certain Lorentz representation (a,/t)  occurs multiply, the corresponding ten- 
sors can be linearly combined. Using the matrices A E GL(NX~,C) for the X~s and 
B c GL(Nraa, C) for the Y's, the allowed transformations are 
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X'(m') = A(m', m) X(m),  Y'(n') = B(n', n) Y(n), (A.4) 

where we have indicated only the multiplicity index. (Note that, in the real setting, the 
field ]~ should be used rather than C). 

We may use this freedom, for instance, to put the, a priori complex, matrix c (a ,a ;  
m, n), which transforms as 

c'(m', n') = A(m', m) B(n I, n) c(m, n) ¢~, c' = AcB t, (A.5) 

in the canonical form 

?(m,n) = ( l(r,r) O(r,s)) (A.6) 
~ O(t,r) O(t,s) ' 

where l(r,r) is the unit r × r matrix and O(p,q) is the zero matrix with p rows and q 
columns. The number of X's, i.e. ( r  + t),  can be different from the number of Y's, i.e. 
( r  + s). The stability group of this canonical ~(m, n) has matrices of the form 

alo(t,r) a)t,t ) ) ( BI B2 ) ' Blt A = ( ( r , r )  A~r,t) ) - I  B = (r,r) B(4r, s) = (A l , (A.7) 
\ ' \ 0(s, r) (s,s) 

where A l, A 4 and B 4 are arbitrary invertible matrices. 

This stability group can be used to put the t's and/or the u's which transform as 
(only indicating the multiplicity index) 

t '(m',n',p') =A(m',m) A(n'n) A-l(p~,p) t(m,n,p), 

u' (m',n~,p ') = A(m',m) B(n' n) B-l (p',p) u(m,n,p), (A.8) 

into some canonical form. 

We could also consider non-linear transformations among the X's or the Y's which 
preserve the Lorentz transformation properties. However we feel that such transforma- 
tions have little physical significance. 

Appendix B. The SU(2) ® SU(2) harmonics 

In this appendix we outline the harmonic space notation [ 14]. We use two sets 
of harmonics parametrising auxiliary spaces. These are commuting spinors u a+, u~ and 
ve ve which satisfy the constraints 5 '  Or' 

u+au~ = 1, ~" e~.,e~ = 1. (B.1) 

In the Euclidian case, an SU(2) matrix can be written 

_#,) O~ 

U = fl a* ' 

Let 

( e ; d a )  V= 0 
e-ida 

with [al 2 + Ifll 2 = 1. (B.2) 

(B.3) 
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be a U ( 1 )  subgroup o f  S U ( 2 ) .  The  quot ient  S U ( 2 ) / U ( 1 )  given by the equiva lence  

classes is a 2-sphere  and can be described by the spinors 

(;) u+'~= and ua-= u +'~* ¢¢. u - " =  , (B.4) 

up to their  respect ive phases u +a - exp(i~b)u +~ and u - ~  - e x p ( - i c k ) u  - a .  

Vector fields on these auxil iary spaces are g iven by 

9 8 
D ++ = u  + a _  D e e  = v e  a _  

8 u - a  ' 8ue~  ' 

a a 
D - -  = u - a  D e e  

8u+---- i f ,  = v e'~ 8 v e ~  , 

9 ,9 8 
D + -  = u  + a -  _ u - a _ _  D e e  = v ¢  a _  _ 

8u +a a u - a  ' ave,~ 

and they satisfy two  c o m m u t i n g  S U ( 2 )  algebras. 

v e  a a 
8 r e ,  ~ , ( B .5  ) 
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