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1. INTRODUCTION

One of the ways in which to begin to study the behavior of solutions of
complicated partial differential equation systems like the Einstein equations is to
focus on families of solutions with some prescribed symmetry. This has long been
a practice in general relativity, and hence, much has been learned about solutions
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of the Einstein equations which are spherically symmetric [4], which are spatially
homogeneous [10, 19], which are axisymmetric and stationary [20], or have
various other prescribed isometries [6, 13].

One of the more extensively studied families of solutions are the Gowdy
spacetimes [11]. Long time existence (in an appropriate sense) has been proven for
them [15], strong cosmic censorship has been proven for Gowdy spacetimes which
are polarized [9], and much is known about the small (but infinite dimensional)
set of Gowdy spacetimes which admit extension across a Cauchy horizon [16, 8].

The Gowdy spacetimes are characterized primarily by their admittance of a
spatially-acting T 2-isometry group, but certain other restrictions are imposed as
well (see Section 2) [11]. In this paper, we examine spacetimes which retain the
spatial T 2-isometry, but which do not satisfy these other restrictions [5]. Our main
result is that, for this wider class of spacetimes, long-time existence (in a sense
similar to that proven for Gowdy T 3 spacetimes) holds.

While the notion of global long-time existence is clear for partial differential
equations formulated on a given background spacetime, its meaning is less evident
when the spacetime itself is the object of study as in general relativity. Here what
one means by long�time, or global existence, is a theorem that characterizes the
maximal Cauchy development of given Cauchy data sets. To prove such a theorem
one often needs to choose a time function which extends to the maximal develop-
ment of every solution under consideration. To accomplish this one tries to find a
geometrically natural time function. For the Gowdy spacetimes, as considered in
[15], there is such a geometric time choice, defined (up to proportionality con-
stant) to be the area R of the orbits of the T 2 isometry group. Now the spacetimes
considered in [15] form only a small subset of the set of T 2-symmetric spacetimes
with T 3 spatial topology. Here we show that for all such spacetimes the following
holds: Except for some Kasner spacetimes in which the T 2 subgroup of the full T 3

isometry group has been chosen in a rather inconvenient way, there is always a
global R=*t foliation, with R # (R0 , �) for some R0�0 and some constant *>0.
(We note that for the spacetimes considered in [15] we have R0=0; that will not
be true in general for the spacetimes considered in this paper, as can be seen by
considering some Kasner solutions.)

The bulk of this paper is devoted to the proof of this result, which we state as
Theorem 1 in Section 3. Before stating this theorem, we define (in Section 2) our
family of spacetimes and write the general parametrization for the metrics as well
as the corresponding expressions for the field equations in two different coordinate
choices which we find useful. We divide our discussion of the proof into three parts.
In the first part (carried out in Section 4), we focus on the ``contracting (Rz0)
direction.'' We establish the necessary estimates and prove a global existence result
for this direction in terms of an auxiliary choice of time��``conformal coordinate''
time. In the second part (Section 5), we prove a number of geometric results which
relate R to the maximal globally hyperbolic region of a spacetime and to the con-
formal coordinate representation. Using these results, we show that we have an
R=t foliation covering the contracting direction. Then in the third part (Section 6),
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we focus on the ``expanding (R � �) direction.'' Working directly with R=t coor-
dinates, we establish some estimates and then combine these with results from
Section 4 to prove the existence of a global R=t foliation in the expanding direc-
tion. This completes the proof of our main result. We conclude in Section 7 with
a discussion of questions concerning these spacetimes which we plan to explore
further.

2. DESCRIPTION AND FIELD EQUATIONS FOR THE
T 2-SYMMETRIC SPACETIMES

The Gowdy spacetimes all admit a T 2 isometry group with spacelike orbits. The
additional condition which characterizes the Gowdy spacetimes is that the ``twists''
associated to the T 2 isometry group must vanish. More specifically, the twist
quantities

K
(X )

:==+&\* X +Y & { \X * and K
(Y )

:==+&\* X +Y & { \Y *, (2.1)

where X and Y are any pair of Killing vector fields generating the T 2 group action,
must both be zero (as a defining characteristic) in a Gowdy spacetime.

In this paper we wish to analyze spacetimes in which this condition on the twists
is relaxed: we shall assume that at least one of the quantities K

(X )
or K

(Y )
is nonzero.

It is interesting and important to note that in any spacetime with a T 2 isometry,
one can always replace X and Y by constant linear combinations of themselves, X�
and Y� , and thereby cause one or the other of the twist quantities K

(X� )
or K

(Y� )
to be

zero. The vanishing of both twist quantities is, however, independent of such mixing
of Killing vector fields, so the Gowdy spacetimes are unambiguously distinguished.
It is also useful to note that, while the Gowdy spacetimes are compatible with
S3_R1, S2_S 1_R1, as well as T 3_R1 spacetime manifolds, if one of the twists is
nonvanishing, then the manifold must be T 3_R1. Hence, we shall restrict our
attention to T 2 symmetric spacetimes on T 3_R1.

There are two choices of coordinates we will find useful for specifying the form
of the metric and the form of the field equations for these spacetimes.1 Both sets of
coordinates are chosen to be compatible with the Killing vector fields in the sense
that X=a(���x)+b(���y) and Y=c(���x)+d(���y), for a set of constants a, b, c, d
with det( a

c
b
d){0, and both use % # S 1 to label the remaining spatial coordinate. The

two sets differ mainly in the choice of time slicing. In the first set, which we call the
``areal coordinate system,'' we set t=R, where R is proportional to the geometric
area function of the orbits of the isometry group. In terms of these coordinates
(x, y, %, t), we have the following general form for the metric and for the vacuum
field equations.

1 The field equations were obtained with the assistance of S. Christensen and L. Parker's, mathtensor
package in Mathematica (Wolfram Research, Inc.).
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Areal Coordinates

Metric

g=e2(&&U )(&: dt2+d%2)+*e2U[dx+A dy+(G
1

+AG
2

) d%+(M
1

+AM
2

) dt]2

+*e&2Ut2[dy+G
2

d%+M
2

dt]2. (2.3)

(Here U, A, &, :, G
1

, G
2

, M
1

, and M
2

are functions of % # S 1 and t # R+, and * is a

strictly positive constant.)

Einstein Constraint Equations

&t=t _(U 2
t +:U 2

%)+
e4U

4t2 (A2
t +:A2

%)&+*
e2&

4t3 :K2, (2.4a)

&%=t _2UtU%+
e4U

2t2 At A%&&
:%

2:
, (2.4b)

:t=&*
e2&

t3 (:K )2, (2.4c)

K%=0, (2.4d)

Kt=0. (2.4e)

Einstein Evolution Equations

Utt&:U%%=&
Ut

t
+

:%U%

2
+

:tUt

2:
+

e4U

2t2 (A2
t &:A2

%), (2.5a)

Att&:A%%=
At

t
+

:%A%

2
+

:t At

2:
&4AtUt+4:A%U%, (2.5b)

&tt&:&%%=
:%&%

2
+

:t &t

2:
&

:2
%

4:
+

:%%

2
&U 2

t +:U 2
%

+
e4U

4t2 (A2
t &:A2

%)&*
3e2&:
4t4 K2. (2.5c)

Auxiliary Equations

M
1

%=G
1

t+A(G
2

t&M
2

%), (2.6a)

M
2

%=G
2

t&
e2&

t3 :1�2K. (2.6b)
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(Note that here and below, we use t and % as subscripts on U, A, &, :, etc.
exclusively to indicate partial derivatives of these functions. Note also that, without
loss of generality, we have set the twist quantity K

(X )
equal to zero, and we have used

``K '' to label the remaining twist quantity K
(Y )

.)

The other coordinate system we use here chooses t and % so that, if we forget the
``shift''-type metric components G

1
, G

2
, M

1
, and M

2
, then the induced Lorentz metric

on the (%, t)-labeled space of orbits of the T 2 isometry group is conformally flat.
Doing this allows us to remove the function :(%, t) from the metric, but it requires
that we let the orbital area R be a function of % and t. So in this system of coor-
dinates, which we call ``conformal coordinates,'' the metric and the field equations
take the following form.

Conformal Coordinates

Metric

g=e2(&&U )(&dt2+d%2)+*e2U[dx+A dy+(G
1

+AG
2

) d%+(M
1

+AM
2

) dt]2

+*R2e&2U[dy+G
2

d%+M
2

dt]2. (2.7)

(Here, as before, U, A, &, R, M
1

, G
1

, G
2

, and M
2

are functions of % and t.)

Einstein Constraint Equations

0=U 2
t +U 2

%+
e4U

4R2 (A2
t +A2

%)+
R%%

R
&

&t Rt

R
&

&%R%

R
+*

e2&

4R4 K2, (2.8a)

0=2UtU%+
e4U

2R2 AtA%+
R%t

R
&

&%Rt

R
&

&t R%

R
, (2.8b)

K%=0, (2.8c)

Kt=0. (2.8d)

Einstein Evolution Equations

Utt&U%%=
R%U%

R
&

Rt Ut

R
+

e4U

2R2 (A2
t &A2

%), (2.9a)

Att&A%%=
Rt At

R
&

R%A%

R
+4(A%U%&AtUt), (2.9b)
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Rtt&R%%=*
e2&

2R3 K2, (2.9c)

&tt&&%%=U 2
%&U 2

t +
e4U

4R2 (A2
t &A2

%)&*
3e2&

4R4 K2. (2.9d)

Auxiliary Equations

M
1

%=G
1

t+A(G
2

t&M
2

%), (2.10a)

M
2

%=G
2

t&
e2&

R3 K. (2.10b)

(Our conventions regarding subscripts and our handling of the twist quantities are
the same here as above.)

It has been proven in earlier work [5] that, at least locally, any globally hyper-
bolic T 2-symmetric spacetime on T 3_R1 admits each of these coordinate forms
(unless the spacetime is flat). Since our notion of long-time existence is tied to the
orbital area function R, the statement of our main result focuses on R and the
areal coordinate system (with R=t). Indeed it establishes that areal coordinates
cover any globally hyperbolic T 2-symmetric spacetime. To prove this in the
expanding direction, areal coordinates are used directly. However to prove this in
the contracting direction, we find that the conformal coordinate form is the most
useful for carrying out the analysis.

3. THE LONG-TIME EXISTENCE THEOREM

Let us call (#, ?) T 2-symmetric initial data on T 3 if (a) # is a Riemannian metric
on T 3, invariant under an effective T 2 action; (b) ? is a symmetric 2-tensor on T 3,
also invariant under the same T 2 group action; and (c) (#, ?) together satisfy the
Einstein constraint equations.

To avoid unnecessary details, we will assume that (#, ?) are smooth (C�) on T 3.
Our result holds for weaker differentiability conditions imposed on (#, ?), but we
will not state those conditions here. Our main result is the following

Theorem 1. Let (#, ?) be a set of smooth T 2 symmetric initial data on T 3. For some
nonnegative constant c there exists a globally hyperbolic spacetime (M4, g) such that

(i) M4=T 3_(c, �),

(ii) g satisfies the vacuum Einstein equations,
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(iii) M4 is covered by areal coordinates (x, y, %, t), with t # (c, �), so the
metric globally takes the form (2.3),

(iv) (M4, g) is isometrically diffeomorphic to the maximal globally hyperbolic
development of the initial data (#, ?).

Outline of Proof. As noted in the Introduction, we carry out our proof of
Theorem 1 in Sections 4, 5, and 6. The logic of the proof is as follows: First (in
Section 4), working in terms of conformal coordinates, we look at the evolution of
a solution from the data (#, ?) toward the contracting direction. (Without loss of
generality, we may choose the time-orientation so that this is towards the past.)
Using the field equations and light cone arguments to establish a number of
estimates for various components of the metric, we go on to prove (using results
from, e.g., [14]) a global existence result in the following sense: So long as R stays
bounded away from zero, the past maximal development of (#, ?) in terms of
conformal coordinates��let us label it D&

conf (#, ?)��has t � &�. The evolution (in
terms of conformal coordinates) stops only if R approaches zero.

Next (in Section 5) we prove a number of geometric results, most of which con-
cern the behavior of the orbital area function R in a globally hyperbolic spacetime
such as D&

conf (#, ?). The first of these, a Killing vector argument, shows that R is
positive everywhere in the globally hyperbolic region of a T 2 symmetric spacetime.
The next one shows that along any past inextendible timelike path in D&

conf (#, ?),
R approaches a limit R0�0 (to be identified with ``c'' in Theorem 1). Moreover,
one has the same limit along all such paths. Combining this result with another
(proven in Section 5) which shows that for any \ # (R0 , R1)��where R1 is the
minimum value of R on the initial surface with data (#, ?)��the R=\ level set in
D&

conf (#, ?) is a Cauchy surface, we can argue that D&
conf (#, ?) admits areal coor-

dinates, at least to the past of the hypersurface with constant R=R1 . To show that
D&

conf (#, ?) is isometrically diffeomorphic to the maximal [2] globally hyperbolic
past development D&(#, ?) of (#, ?) on T 3, we need two further geometric results.
We show that if t � &� in D&

conf (#, ?), then D&
conf (#, ?)rD&(#, ?), and we show

that if R � 0 in D&
conf (#, ?), then D&

conf (#, ?)rD&(#, ?). This completes the argu-
ment that to the past of the hypersurface with R=R1 , D&(#, ?) can be covered by
areal coordinates. Note, that we also prove in Section 5 that if R � � in any future
development of (#, ?), then that future development is maximal.

Our proof is more direct for the expanding, future direction. Based on results
from Section 5, we have an R= constant Cauchy surface��say R=R2��to the past
of our original Cauchy surface. Let us call the data on this surface (#1 , ?1). Then
working in areal coordinates, we can use the field equations and light cone
arguments to establish a collection of estimates, and from these (and, again, results
from [14]) we prove a global existence result which says that the future maximal
development of (#1 , ?1) in terms of areal coordinates��D+

areal(#, ?)��has t=R � �.
As shown in Section 5, it follows that D+

areal(#1 , ?1)rD+(#1 , ?1). This completes
the proof of Theorem 1.
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Note that since Theorem 1 is known to be true in the Gowdy case [15] (cf. also
[5]), we will henceforth presume that the twist quantity K is not zero. Note also
that in both areal and conformal coordinates, the constraint equations require that
K be constant on spacetimes.

4. ANALYSIS IN THE CONTRACTING DIRECTION

As noted above in the outline of the proof of Theorem 1, our goal in this section
is to show that, so long as the orbit area function R stays bounded away from zero,
the past (contracting direction) development of (#, ?) in terms of conformal coor-
dinates��the spacetime region we call D&

conf (#, ?)��has t � &�. Our argument for
this begins by recalling the local existence result for T 2-symmetric solutions of the
Einstein equations in conformal coordinate form. This result (see Lemma 4.2 in
[5]) tells us that for any T 2-symmetric initial data (#, ?) on T 3, we can always find
an interval (t1 , t2) and real valued C� functions R, U, A, &, G

1
, G

2
, M

1
, and M

2
on

T 3_(t1 , t2) such that (1) these functions satisfy the Einstein equations (2.8)�(2.10)
in conformal coordinate form; and (2) for some t0 # (t1 , t2), the spacetime metric g
constructed from (R, U, A, &, G

1
, G

2
, M

1
, M

2
) according to Eq. (2.7) induces initial

data on the t0 -slice which is smoothly spatially diffeomorphic to (#, ?).
With this established, it follows as a consequence of standard long-time existence

theorems from PDE theory (see, e.g., Theorems 2.1 and 2.2, and Corollaries 1 and
2 in Chapter 2 of [14]), that to show that these fields extend to t � &� as a
solution of (2.8)�(2.10), it is sufficient to verify the following: For any globally
hyperbolic subset of the (t, %) cylinder on which they exist as a solution to
(2.8)�(2.9), the functions (R, U, A, &) and their first and second derivatives are
uniformly bounded.

So that is our task here: to establish these C2 bounds. We do this in a series of
steps:

Step 1 (Monotonicity of R and bounds on its first derivatives). A key first
step here is the verification that the function R and its first derivatives are
controlled. The argument for this control starts with Theorem 4.1 of [5], where it
is shown that it follows from the constraint equations in conformal coordinate form
(2.8) that {R is timelike (i.e., g({R, {R)<0). Note that if {R is timelike
everywhere, one must have Rt nonzero everywhere. One could have Rt>0 or
Rt<0, but our choice of time-orientation��the past corresponds to contracting T 2

orbits��dictates Rt>0. Thus, along any past directed causal path, R monotonically
decreases.

To show that the first derivatives of R are bounded along any such path, one
uses the wave equation (2.9c) for R, which takes the form

�*R!=*
e2&

4R3 K2, (4.1a)
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or equivalently,

�!R*=*
e2&

4R3 K2, (4.1b)

in terms of null2 coordinates

*=
1

- 2
(t+%), !=

1

- 2
(t&%). (4.2)

Since the right-hand side of (4.1a) is positive, it follows that if we start at any point
(%0 , t0) on the initial surface and follow back along the path (%0+s, t0&s)
generated by �* , then for any s>0, we have

R!(%0+s, t0&s)<R!(%0 , t0). (4.3a)

Similarly, we obtain (from (4.1b))

R*(%&s, t0&s)<R*(%0 , t0). (4.3b)

While it does not follow that R! and R* decrease with decreasing t for fixed %0 , it
does follow from (4.3) that R! and R* are bounded into the past in the sense

R!(%� , t̂)<max
% # S1

R!(%, t0), R*(%� , t̂)<max
% # S1

R*(%, t0) (4.4)

for any t� <t0 and for any %� . Since Rt=(1�- 2)(R!+R*), we therefore have

Rt(%� , t̂)<max
% # S1

(R!+R*)(%, t0) (4.5)

for any t̂<t0 and for any %� .
There is no equivalent result for R% . But since {R is timelike, we have |R% |<|Rt |

everywhere. Thus we find that |R% |, as well as Rt , is bounded into the past, and we
conclude that R is uniformly C1-bounded to the past of the initial data surface.

Step 2 (Bounds on U, U% , Tt , and A, A% , At). The method we use to argue
that quantities like U and A��which satisfy nonlinear coupled wave-type evolution
equations��are controlled to the past of the initial data surface for all t # ({, t0) is
called the ``light cone estimate'' method [15]. The basic idea of this method is to first
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show that the evolution equations for the quantities of interest��say U and
A��imply that U and A satisfy equations of the form

n(E+P)=J, (4.6a)

l(E&P)=L, (4.6b)

where E and P are quadratic functions in the first derivatives of U and A, where
J and L are composed of functions which are bounded on the region of interest,
and possibly of first derivatives of U and A as well, and where n and l are a pair
of independent null tangent vectors. One then formally integrates these Eqs. (4.6)
along null paths generated by n and l; using Gromwall's lemma as in [5], one
thereby derives estimates for the first derivatives of U and A for any value of
t # ({, t0) in terms of their values at t0 .

To obtain equations of the form (4.6) for U and A, it is useful to first rewrite
their evolution equations in terms of a wave map. So we consider a base Lorentzian
manifold (2M{ , 2') with the two-dimensional manifold 2M{ corresponding to the
past conformal coordinate development of (#, ?)��with coordinates (%, t) in S 1_R,
or a subset thereof��and with the metric

2' :=&dt2+d%2; (4.7a)

and we consider a family of target Riemannian manifolds (R, h(%, t)) with

h(%, t) :=R(%, t) dU 2+
e4U

4R(%, t)
dA2. (4.7b)

(Note the explicit (%, t)-dependence of the target manifold metric; this makes our
setup slightly different from a standard wave map, but the difference is easily
handled.) The maps we consider take the form

8 : 2M � R2,
(4.8)

(%, t) [ 8(%, t)=(U(%, t) A(%, t))

with h(%, t) providing an inner product on their tangents; e.g.,

(8% , 8t)=hab8a
%8b

t =RU%Ut+
e4U

4R
A%At . (4.9)

There is a covariant derivative D compatible with 2' and semi-compatible with
h(%, t). Using Greek indices for the base (+ W %, t) and Latin indices for the target
(a W U, A), we express the action of D as

D&8a
+=�&8a

++1 a
bc 8b

+8c
&&1 *

+& 8a
* , (4.10)
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with the base Christoffel coefficients 1 *
+& vanishing (in Section 6, we will work with

a wave map for which these are not zero) and with the target Christoffel coefficients
taking the values

1 U
UU=0, 1 U

UA=0, 1 U
AA=&

e4U

2R2

(4.11)

1 A
AA=0, 1 A

AU=2, 1 A
UU=0.

As noted, D is compatible with the flat metric 2g, but not with h(%, t) , because of the
explicit % and t dependence (through R); we have

D+ hab=R+ \$U
a $U

b &
e4U

4R2 $A
a $A

b + . (4.12)

The covariant derivative D defines a wave operator g :=g+& D+ D& on our maps.
Using this operator, the evolution equations (2.9a)�(2.9b) for U and A take the
form

gU=
Ut Rt

R
&

U%R%

R
, gA= &

AtRt

R
+

A%R%

R
(4.13)

which we may write jointly as

g8a=�a, (4.14a)

where

�a=\
UtRt

R
&

U%R%

R

&
AtRt

R
+

A% R%

R + . (4.14b)

To derive equations of the form (4.6) from the wave equations (4.14), we now
define an ``energy-momentum tensor'' for the maps 8:

T+& :=(8+ , 8&)&
1
2

g+& g:;(8: , 8;)

=RU+U&+
e4U

4R
A+A&+

1
2

g+& _R(U 2
t &U 2

%)+
e4U

4R
(A2

t &A2
%)& . (4.15)
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One notes the components of T+& ,

Ttt=
1
2

R(U 2
t +U 2

%)+
e4U

8R
(A2

t +A2
%), (4.16a)

T%t=RUt U%+
e4U

4R
At A% , (4.16b)

T%%=Ttt . (4.16c)

Ttt will be our quantity E in (4.6) while Tt% will be P. One also notes the formula
for the covariant divergence of T+& ,

D&T+
&=(�+ 8, �)+U+U &(�&R)&

1
2

U :U:(�+ R)

+
e4U

4R \1
2

A:A:(�+R)&A+A&(�&R)+ , (4.17)

where � is defined in (4.14b) and where all but the first term on the right-hand side
of (4.17) appear because of the % and t dependence of h(%, t) (see Eq. (4.12)).

Since the base metric 2' is flat, one readily identifies null vectors and the corre-
sponding null coordinates: We use * and ! as in (4.2) for the coordinates and n=�!

and l=�* for the corresponding vectors. It is now straightforward to show that

D&T &
n=&Dl Tnn , D&T &

l=&DnTll . (4.18)

Then combining (4.17) and (4.18), we obtain the formulas

�!T**=n(T**)=&
R*

2 - 2 _(U 2
t &U 2

%)+
e4U

4R2 (&A2
t +A2

%)& , (4.19a)

�*T!!=l(T**)=&
R!

2 - 2 _(U 2
t &U 2

%)+
e4U

4R2 (&A2
t +A2

%)& . (4.19b)

Now, since we note that T**=Ttt+Tt% and T!!=Ttt&Tt% and since we note
that the expressions on the right-hand side of (4.19) involve only terms quadratic
in the first derivations of U and A, along with quantities (first derivatives of R)
which are bounded in 2M, we see that if we set E=Ttt , P=Tt% , and J=(the right-
hand side of (4.19a)) and L=(the right-hand side of (4.19b)), then (4.19) matches
(4.6).

We now describe how one uses Eqs. (4.19) to obtain estimates for E=Ttt at any
(%� , t̂) # 2M{ , in terms of E and other controlled quantities on the initial surface.
Such estimates control the derivatives of U and A in terms of the data at t0 .
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We start by formally integrating both Eqs. (4.19)��in the form �!(E+P)=J and
�*(E&P)=L of (4.6)��along null paths which start at (%� , t̂) and end back on the
initial data surface. Adding the results of these integrations, we have

E(%� , t̂)=E(%� +(t0& t̂), t0)+E(%� &(t0& t̂), t0)

+P(%� +(t0& t̂), t0)&P(%� &(t0& t̂), t0)

+|
t̂

t0

[{(%� +(s& t̂), s)+L(%� &(s& t̂), s)] ds. (4.20)

We next take supremums3 over all values of the space coordinate % on both sides
of (4.20). Carefully noting the explicit forms of J and L (see Eqs. (4.19)) and using
various straightforward inequalities, we obtain

sup
%

E(%, t̂)�2 sup
%

E(%, t0)+2 sup
%

P(%, t0)

+|
t̂

t0

;(s) sup
%

E(%, s ) ds, (4.21)

where ;(s) is a bounded function (related to the bounds of Rt and R%). We now
apply Gromwall's lemma (see, e.g., Lemma 3.23 in [5]) to (4.21); we get the
inequality

sup
%

E(%, t̂)�[2 sup
%

E(%, t0)+2 sup
%

P(%, t0)] exp \|
t̂

t0

;(s) ds+ . (4.22)

Since ;(t) and therefore exp(�t̂
t0

;(s) ds) are bounded, (4.22) provides the desired
bounds on |U% |, |Ut |, |(e2U�2R) A% | and |(e2U�2R) At | for all t # ({, t0].

Once we have bounds on the first derivatives of U, it immediately follows (by
integration over appropriate paths in 2M{) that U is bounded for t # ({, t0] as well.
Then, so long as R is bounded away from zero on 2M{ , we obtain bounds on A%

and At and consequently on A. We thus have uniform C1 bounds on U and A in
2M{ , so long as R is bounded away from zero.

Step 3 (Bounds on &, &% , &t). With the first derivatives of U and A bounded
as argued in Step 2, it appears as if the evolution equation (2.9d) for & might imply
that & and its first derivatives can be controlled by applying a light cone estimate.
This cannot be done directly, however, because the last term on the right-hand side
of Eq. (2.9d)��*(e2&�4R4) K2��is not controlled by previous estimates.

To handle this, we consider the quantity

; :=&+ 3
2 ln R. (4.23)
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Using the evolution equations for + and R, we readily derive one for ;:

;tt&;%%=U 2
%&U 2

t +
e4U

4R2 (A2
t &A2

%)&
3

2R2 (R2
t &R2

%). (4.24)

We could apply a light cone estimate argument (as in step 2) to this equation, but
since the right-hand side of (4.24) contains nothing but controlled quantities (and
does not contain ; or its derivatives), we argue more simply as follows: We first use
the null coordinates ! and * to rewrite (4.24) in the form

�* ;!=Z, (4.25)

where Z is just the right-hand side of (4.24). Choosing an arbitrary point
(%� , t̂) # 2M{ , we obtain ;!(%� , t̂) by integrating up along the null path (%� &s, t̂+s)
which ends at (%� + t̂&t0 , t0). Since Z is bounded in 2M{ (so long as R is bounded
away from zero), ;! is bounded in 2M{ . Similarly we argue from the equation
�! ;*=Z that ;* is bounded in 2M{ . Since ;t=(1�- 2)(;*+;!) and ;%=
(1�- 2)(;*&;!), it follows that ;t and ;% are bounded as well. But &t=;t&
(3�2)(Rt �R) and &%=;%&(3�2)(R%�R), so we have shown that the first derivatives
of &��and consequently & itself��must be uniformly bounded for t # ({, t0]. We now
have uniform C1 bounds on all of the principal quantities.

Step 4 (Bounds on second derivatives of R). The constraint equations (2.8a)
and (2.8b) allow one to express R%% , as well as R%t , algebraically as functions of
R, U, A, and &, and their first derivatives. It follows immediately that R%% and R%t

are bounded, so long as R is bounded away from zero. It then follows from the
wave equation (2.9c) for R that Rtt=R%%+*(e2&�2R3) K2 is also bounded, so long
as R is bounded away from zero.

Step 5 (Bounds on second derivatives of U, A, &). It should be clear from the
forms of the evolution equations (2.9a) and (2.9b) for U and A that if we take time
derivatives of both of these equations we obtain evolution equations for Ut and At

which are of the appropriate form for applying light cone estimates. We thereby
obtain uniform bounds on Utt , Ut% , Att , and At% . Bounds on U%% and A%% then
follow from (2.9a) and (2.9b) directly.

Similarly, if we take the time derivative of Eq. (2.9c), the evolution equation for
&, we obtain a wave equation for &t to which the analysis described in Step 3 can
be applied, giving us bounds on &tt and &t% (note that for these C2 bounds on &, we
can work directly with & rather having to work with ;). We then bound &%% using
Eq. (2.9d).

We could continue to obtain bounds on higher derivatives of these quantities
(along with R); however, to apply the global existence theorem cited in [14], C2

bounds are sufficient. Thus we have shown that so long as R stays bounded away
from zero, the functions R, U, A, and & extend (as solutions of Eqs. (2.8)�(2.9)) to
t � &�.
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Step 6 (Extension of the shift functions). We still need to show that the
``shift'' functions G

1
, G

2
, M

1
, and M

2
extend to D&

conf (#, ?) (which we have defined to

be the maximal subset of T 3_R on which the functions (R, U, A, &) are solutions
of (2.8)�(2.9), with the corresponding spacetime metric assuming initial data (#, ?)).
The only equations in which they appear are the auxiliary constraint equations
(2.10). Recall that in the Cauchy problem for the Einstein equations, the ``shift''
functions have a gauge character corresponding to the freedom of propagating the
coordinate system from the initial value hypersurface to the spacetime. In the
gauges presented above, that freedom of propagating the coordinates xa still
persists. So for an arbitrary choice throughout D&

conf (#, ?) of the ``shift'' functions
M
1

(%, t) and M
2

(%, t), and for any initial data for G
1

and G
2

, we can integrate (2.10)

in time to obtain

G
1

(%, t1)=|
t1

t0
_&

Ae2&K
R3 +M

1
%& (%, {) d{+G

1
(%, t0), (4.26a)

G
2

(%, t1)=|
t1

t0
_e2&K

R3 +M
2

%& (%, {) d{+G
2

(%, t0). (4.26b)

We now have a solution of the full set of Einstein Eqs. (2.8)�(2.10) throughout
D&

conf (#, ?). We shall show in Section 5 that this set is the maximal past develop-
ment of our chosen T 2-symmetric initial data.

5. SOME GEOMETRIC RESULTS CONCERNING R

In Section 4, we have shown that if R stays bounded away from zero, then
D&

conf (#, ?) has t � &�. In this section, we prove a collection of geometric results
which allow us to conclude that, whether or not R stays bounded away from zero,
D&

conf (#, ?) admits a foliation by areal coordinates and also covers the past maximal
globally hyperbolic development D&(#, ?) of (#, ?). The first of these results
concerns zeroes of R.

Proposition 1. Let (M, g) be a globally hyperbolic development of T 2-symmetric
initial data. The T 2 orbital area function R is positive everywhere in (M, g).

Proof. The proof of this proposition depends upon two lemmas, which have
wider application than our T 2-symmetric case.

Lemma 1.1. Let (M, g) be a globally hyperbolic development of initial data
(7 3, #, ?). Assume that the initial data is invariant under the action of a compact
group G. Let X be any Killing vector field on (M, g) which is generated by the action
of G on (M, g). Then wherever X is nonvanishing, it is spacelike.
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Proof of Lemma 1.1. In [7], it is shown that, indeed, the action of the group
G extends from the initial data hypersurface to the spacetime. So (M, g) is
G-invariant, and at least the initial hypersurface is invariant under the action. We now
construct a foliation of (M, g) by spacelike hypersurfaces which is also G-invariant.

Let t be any time function on the globally hyperbolic spacetime (M, g). Then we
may define a new function on M

t̂ :=|
G

t } ,g d+g , (5.1)

where ,g denotes the action of G on M and d+g is the Haar measure. Since the
spacetime metric is invariant under G, we verify that t̂ is also a time function and
its level hypersurfaces 7t̂ are Cauchy surfaces. It follows from the definition of t̂ that
the hypersurfaces 7t̂ are invariant under G. Hence, the Killing vector fields
generated by G are tangent to the spacelike hypersurfaces 7t̂ . The result follows. K

Lemma 1.2. Let (M, g) be a globally hyperbolic spacetime, and let ,* be a
one-parameter group of isometries of (M, g) which leaves a particular Cauchy surface
70 invariant. Let X=(d�d*) ,* |*=0 be the Killing vector field which generates ,* . If
for some point p # 70 one has X( p)=0, then on every Cauchy surface 7� in M there
exists a point p̂ # 7� such that X( p̂)=0.

Proof of Lemma 1.2. Let 1(s) be a maximally extended, affinely parametrized
timelike geodesic such that 1(0)=p and (d�ds) 1(0) is a unit-length vector normal
to 70 . Since 70 is invariant under ,t , the unit-length vector field e=(0) normal to
70 is also invariant under ,t ; it follows that ,*(1 )=1. Since the affine parameter
is invariant under ,* , we further have ,*(1(s))=1(s) for all s and *.

We now pick a Cauchy surface 7� . Since 1(s) is an inextendible timelike path, it
must intersect 7� at some point p̂=1( ŝ). But

,*( p̂)=,*(1( ŝ))=1(ŝ)=p̂, (5.2)

so we have X( p̂)=0. K

Note that Lemma 1.2 tells us that if a spacetime Killing field tangent to a
particular Cauchy surface in a globally hyperbolic spacetime (M, g) has no zeroes
on that surface, then it has no zeroes anywhere.

Proof of Proposition 1. Let (70 , #, ?) be the given initial surface and initial data
for the spacetime Killing vector fields which generate the T 2 group action on 70 .
By definition, X and Y are nonzero everywhere on 70 , and nonparallel everywhere
on 70 as well. It also follows from the definition of areal coordinates and the orbital
area function R that we have

R2=*&2 det \g(X, X )
g(Y, X )

g(X, Y )
g(Y, Y )+

=*&2(g(X, X ) g(Y, Y )&g2(X, Y )). (5.3)
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Note that on 70 ,

R2 |70
=*&2(#(X, X ) #(Y, Y )&#2(X, Y )), (5.4)

and, since X and Y have no zeroes and are nowhere parallel on 70 , R2 has no
zeroes on 70 .

Let us suppose that for some point p # M, R( p)=0. It follows from Lemma 1.1
that there exists a Cauchy surface 7p such that X and Y are tangent to 7p , and so
we have

0=R2( p)=#p(X, X ) #p(Y, Y )&#2
p(X, Y ), (5.5)

where #p is the induced spatial metric on 7p . From (5.5) we see that it must be true
that either X or Y is zero at p, or X is parallel to Y at p. By Lemma 1.2, the first
possibility cannot be true. The second possibility is also ruled out by Lemma 1.2;
we argue this as follows: If X were parallel to Y at p, then we would have
X( p)=;Y( p). We now consider the Killing fields X and Z=X&;Y. On 70 , X and
Z have no zeroes, and are nonparallel. But at p, Z( p)=X( p)&;Y( p)=0, which
contradicts Lemma 1.2.

We conclude that R2 and, hence, R have no zeroes. Since R is continuous and
since we choose the convention R=+- det g, we have R>0 everywhere. K

Our next result concerns limits of R along past directed paths in D&
conf (#, ?),

which we recall is the maximal globally hyperbolic past development of (#, ?), in
which the conformal components of the metric (R, U, A, &, M

1
, M

2
, G

1
, G

2
) exist as a

solution of the Einstein equations (2.8)�(2.10).

Proposition 2. For any choice of T 2-symmetric initial data (#, ?), there exists a
unique nonnegative number R0 such that every past inextendible causal path
1 : (&�, s0) � D&

conf (#, ?) satisfies

lim
s � &�

R b 1(s)=R0 . (5.6)

Proof. There are two cases to consider, depending upon whether D&
conf (#, ?)"70

has a past boundary or not.
We first assume that there is no such boundary. It then follows from the

discussion of Section 4 that D&
conf (#, ?)=S 1_T 2_(&�, t0], with the conformal

coordinates (%, x, y, t) covering D&
conf (#, ?).

Now consider the level sets of R in D&
conf (#, ?):

7\ :=[(%, x, y, t) | R(%, t)=\, with \<inf
70

R]. (5.7)
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We wish to show:

Lemma 2.1. The sets 7\ , if nonempty, are Cauchy surfaces.

Proof of Lemma 2.1. Since the function R is smooth and since {R is timelike
(see Step 1 of Section 4), it follows that the sets 7\ are smooth, embedded,
achronal, spacelike submanifolds of D&

conf (#, ?). Since \<inf70
R, the sets 7\ have

no boundary. Thus if we can show that each set 7\ is compact, then it follows from
[1] that the 7\ 's are Cauchy surfaces.

Since they are closed in D&
conf (#, ?), it suffices to show that each 7\ is bounded.

To do this, we note that, since a given 7\ is spacelike, we can describe it as the
graph of a function:

7\=[(%, x, y, f (%)) | % # S1, (x, y) # T 2]. (5.8)

Now every vector tangent to 7\ must be spacelike. Considering the tangent vector

W= f $�t+�%+Wx�x+Wy �y , (5.9a)

where

Wx=wG
1

&M
1

f $, Wy=&G
2

&M
2

f $, (5.9b)

we see that W is spacelike��i.e., g(W, W )>0 for g from (2.7)��only if | f $|<1. But
if | f $|<1, then since the range of % is 2?, we find that the range of f is less than
or equal to ?; that is,

sup
7\

t&inf
7\

t�?. (5.10)

This condition bounds 7\ , so it must be compact and, consequently, it must be a
Cauchy surface. K

Now consider a past inextendible causal path 1(s) with s, say, in (&�, 0]. Since
R monotonically decreases with decreasing t and since R>0, it follows that
lims � &� R b 1(s) exists; we shall call it R0 . If we consider another such path 1� , we
also have lims � &� R b 1� (s) existing; we call it R� 0 .

Let us assume that R0 {R� 0 , without loss of generality, say R0<R� 0 . Then for
some p # D&

conf , we have R( p)= 1
2 (R0+R� 0)<R� 0 . It follows from Lemma 2.1 that

71�2(R0+R� 0) is a Cauchy surface. But then 1� must intersect 71�2(R0+R� 0) . This is a
contradiction, since we have R b 1� (s)>R� 0 for all s. So we must have R0=R� 0 . This
shows that, in this first case, R has the same limit along all past inextendible causal
paths.

We now consider the case in which D&
conf (#, ?) corresponds to a proper subset of

S1_T 2_(&�, t0]. Since the spacetime D&
conf is globally hyperbolic, we know from

[17] that the boundary, which we shall call 0, is a closed achronal set. We can also
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argue that 0 is bounded and, hence, compact. To argue this, we construct a
smooth, T 2-invariant time function { which goes to zero as one approaches the
boundary. (Such a time function exists, since we know from [12] that one can
construct a smooth time function {̂ on D&

conf which approaches &� near 0; one
can then average {̂ along T 2 and set {=exp({̂).) So 0 is the limit of {=constant
Cauchy surfaces in D&

conf. Now arguing as in Lemma 2.1, we can show that for any
{=constant Cauchy surface 7{ , one has a result equivalent to (5.10):

sup
7{

t&inf
7{

t�?, (5.11)

where t is the conformal coordinate time. It follows by continuity in { that 0 must
be bounded; compactness follows.

The Whitney extension theorem allows one to extend the function R past D&
conf ;

in particular, it guarantees the existence of a Lipschitz continuous function R� on
S1_T 2_(&�, t0) for which R� | D&

conf
=R. (Alternatively, uniform continuity of R in

a neighbourhood of the boundary implies that R has a continuous extension to that
boundary.) Now let us set sup0 R� =R0 . The compactness of 0 guarantees that R0

is attained on 0. If R0=0, then it follows from Proposition 1 and continuity that
R� |0=0. Hence, since all past inextendible paths in D&

conf must approach 0, R must
approach the same value��zero��along every such path.

It remains to show that R0 {0 cannot occur. We will show this by arguing that
if it did occur, then one could extend the conformal coordinate solution of
(2.8)�(2.10) into the past of D&

conf , which by presumption cannot be done.
So we presume that R0 {0, and we consider the set of points

I :=[(%, x, y, t) # 0 | R� (%, x, y, t)=R0] (5.12)

which is nonempty since 0 is compact. Letting ! denote the sup of the time
function t on I, we locate a point p # I with t( p)=!. Such a point exists since I is
compact, and we label its coordinates (%� , x̂, ŷ, !� ) W p.

Now it follows from the definition of p that for sufficiently small =>0, the set

S( p, =) :=[(%, x, y, !) | %� &=<%<%� +=, (x, y) # T 2] (5.13)

is a well-defined subset of D&
conf (#, ?) & 0 which forms a spacelike submanifold and

has R�(R0 �2). Thus, based on our estimates in Section 4 with R bounded away
from zero, we can smoothly extend all of the fields (R, U, A, &, G

1
, G

2
, M

1
, and M

2
) to

S( p, =) and set up a well-posed initial value problem on S( p, =) . Standard existence
results (see, e.g., [3]) then allow us to evolve the fields to the past of p. This
contradicts the definition of D&

conf , and thus tells us that R0=0, completing the
proof of Proposition 2. K

With the uniform limits of the function R along all past inextendible causal paths
in D&

conf (#, ?) established, one easily proves the following key part of the proof of
Theorem 1.

135GLOBAL FOLIATIONS



File: DISTIL 570720 . By:DS . Date:02:10:97 . Time:08:37 LOP8M. V8.0. Page 01:01
Codes: 3394 Signs: 2584 . Length: 46 pic 0 pts, 194 mm

Proposition 3. Let (70 , #, ?) be T 2-symmetric initial data. Define R1 as inf70
R,

and R0 as the past limit of R along past inextendible paths in D&
conf (#, ?). For every

\ # (R0 , R1), the R=\ level set 7\ (see Eq. (5.7)) is a Cauchy surface, and these 7\

foliate the spacetime region D&
conf (#, ?) & I &(7R1

). Further, this spacetime region
admits areal coordinates.

Proof. The proof that 7\ /D&
conf (#, ?) & I&(7R1

) is a Cauchy surface is essen-
tially that given in Lemma 2.1 for a slightly more restricted situation. The
generalization here is that D&

conf (#, ?) may have a boundary. However, as shown in
Proposition 2, if the boundary 0 exists, then all past inextendible causal paths must
approach it, with R approaching 0 on 0. Hence for R=\>0 in this case, 7\ is
bounded away from the boundary. Compactness then follows; hence as a conse-
quence of [1], 7\ is a Cauchy surface.

Since R is smooth and monotonically decreasing along past causal paths, all
values of R between R0 and R1 are realized in order. Thus we verify that
D&

conf (#, ?) & I &(7R1
) is foliated by the 7R .

Once we have an R=const foliation, it readily follows from arguments of the
form surrounding equation (4.15) in [5] that the region D&

conf (#, ?) & I &(7R1
)

admits areal coordinates with the metric taking the form (2.3) and satisfying
(2.4)�(2.6). K

We now know that D&
conf (#, ?) & I &(7R1

) admits an R foliation and areal coor-
dinates. To finish the proof of Theorem 1 for the contracting direction, it remains
to show that D&

conf (#, ?) covers the past maximal globally hyperbolic development
D&(#, ?) of the initial data. We show this separately for two different cases: First,
in the case that t � &� (and R0{0), and then in the case that R0=0.

Proposition 4. If D&
conf (#, ?) has t � &�, then D&

conf (#, ?) is diffeomorphic to
D&(#, ?).

Proof. Let us for convenience designate the conformal coordinate spacetime
region D&

conf (#, ?) as (M, g), and the maximal past development as (M� , ĝ). We now
suppose that (M, g) is not diffeomorphic to (M� , ĝ); then there must be an isometric
embedding

� : M � M� (5.14)

and �(M ) must have a nonempty boundary ��(M ) in M. Note that it follows from
our choice of time convention that ��(M) is a past boundary of �(M) in M.

Since the spacetimes M and M� , as well as the embedding �, are all T 2-invariant,
those orbits of the action of T 2 which intersect �(M ) are contained in �(M ). We
consider a point p # ��(M ) and its corresponding T 2 orbit Op/��(M). The main
idea of the proof is to obtain a contradiction regarding the causal future J+(Op) of
this orbit and its intersection with nearby Cauchy surfaces in �(M ).
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We work with two families of Cauchy surfaces. One family is 7t , where the 7t 's
are level sets of the conformal time coordinate t in �(M ). The other family is given
by 7t̂ , where the 7t̂ 's are level sets of any T 2-invariant time coordinate t̂ in M� (see
Lemma 1.1). Note that since both time functions are T 2-invariant, we have
t(r)=t( p) and t̂(r)= t̂( p) for all r # Op , so that we can refer unambiguously to t(Op)
and t̂(Op).

We use the t̂ time function to prove the following.

Lemma 4.1. (a) There exists a a sufficiently small =>0 such that for
| t̂& t̂(Op)|<= we have J+(Op) & 7t̂{7t̂ .

(b) For any Cauchy surface 7/J&(7t̂1
) & �(M) such that | t̂1& t̂(Op)|<=, one

has J+(Op) & 7{7.

Proof of Lemma 4.1. Consider a point w which is contained in the Cauchy
surface 7t̂(Op) , but is not contained in the orbit Op . It follows from T 2-invariance
that Op & Ow is empty, and it follows from the acausality of 7t̂( Op) that no path
between a point in Op and a point in Ow is causal.

Using the t̂ function we can construct a neighbourhood of 7t̂(Op) which is dif-
feomorphic to 7t̂(Op)_(t(Op)&$, t(Op)+$) for some $>0. Let tk be a monotoni-
cally decreasing sequence converging to t(Op) and let wk=(w, tk). If the lemma were
false, then for every value of k there would be a causal path #k from wk to a point
in Op . By global hyperbolicity there exists a causal path # at which a subsequence
of the #k 's accumulates. It follows that # is a causal path between Op and Ow , so we
have a contradiction, and point (a) follows.

To establish point (b), let us fix a value t̂1 such that J+(Op) & 7t̂1
{7t̂1

, and let
7 be any Cauchy surface for which 7/J&(7t̂1

) & �(M ). Through every point
r # 7t̂1

there is a past�directed causal path which intersects 7. Hence, if J +(Op) &
7=7, then there would be a past-directed causal path from every point in 7t̂1

to
a point in Op . But we know this is false, so we must have J+(Op) & 7{7. K

We now use the conformal time t to show that for all Cauchy surfaces 7 con-
tained in J&(7t̂1

) & �(M ) we actually have J+(Op) & 7=7, thus contradicting
Lemma 4.1 if we assume that M is extendible. To do this, we first note that for any
Cauchy surface 7 which intersects �(M ), it must be true that 7 is entirely
contained in �(M), and also one must have

sup
7�

t&inf
7�

t�?, (5.15)

where t is the conformal coordinate. The proof of these two claims is essentially a
local version of the proof of Lemma 2.1. That is, starting at a point p in the inter-
section of 7 with �(M ), we write 7 locally as a graph of a function f (%) (see
Eq. (5.8)), and then note that the spacelike character of 7 implies that | f $|<1.
Since the conformal coordinate time t has a finite value at p and since t � &� in
�(M ), it follows from | f $|<1 and from the conformal coordinate metric form (2.7)
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that t is bounded on 7 and therefore 7 cannot escape �(M ). Then choosing the
graph representation (5.8) of 7 globally, one verifies (5.15) as in Lemma 2.1.

We now consider a point q contained in the past set J&(7, �(M )) such that

sup
7

t&t(q)�?. (5.16a)

Such a point exists, since the compact set 7 has finite t and t � &� as one
approaches ��(M). Moreover, since t(Oq)=t(q), we have

sup
7

t&t(Oq)�?. (5.16b)

We claim that for any q and corresponding Oq , the set J+(Oq) & 7 is equal to 7.
To show this, let us label the coordinates of q as (%0 , x0 , y0 , t0), so that (%0 , t0)
labels the orbits Oq as we vary q, and let us consider the one-parameter family,
labeled by :, of paths, labeled by s, of T 2 orbits [ 1

[:]
(s) | : # [&1, +1], s>0] given

by

1
[:]

(s)=[(%0+:s, x, y, t0+s), x, y # T 2]. (5.17a)

We note two important features of this family of paths of T 2 orbits: First, the set
of all points in these orbits is contained in the future set J+(Oq). Second,

S
[:]

=[ 1
[:]

(?) | : # [&1, +1]]

=[ %
[:]

=%0+:?, (x, y) # T 2, t
[:]

=t0+? | : # [&1, +1]]

=7t0+? . (5.18)

Hence we have J+(Oq) & 7=7.
To finish the proof of Proposition 4, we consider the Cauchy surface 7t̂1

, defined
in Lemma 4.1. Since 7t̂1

intersects �(M ), it must be contained in �(M) and, hence,
T :=inf7t̂1

t is finite. It then follows from Lemma 4.1 that for t<T we have
J+(Op) & 7t{7t .

Now let us consider a sequence of points pi such that pi # J&(7t̂1
) & �(M),

pi+1 # I &( pi), pi # J+( p), and pi � p, where p is the point we have chosen on
��(M). Since the points pi do not have an accumulation point in �(M ) we have
limi � � t( pi)=&�. This tells us that for any fixed i there is some i? such that if
j>i? then t( pj)<t( pi)&?. It then follows, as shown above, that J +(Opj

) & 7tpi
=

7tpi
. Since t( pi)<T, we have a contradiction, from which it follows that

�(M )=M� . K
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Proposition 4 shows that D&
conf (#, ?)rD&(#, ?) if t � &� in D&

conf . To show
that D&

conf (#, ?)rD&(#, ?) if R0=0, we rely on a more general result, part of which
we will need to complete the proof for the expanding direction.

Proposition 5. Let (M, g) be any globally hyperbolic development of T 2-sym-
metric initial data. If R � 0 along every past inextendible causal path, then (M, g)
covers the past maximal development of (#, ?). If R � � along every future inex-
tendible causal path, then (M, g) covers the future maximal development of (#, ?).

Proof. If (M, g) is not maximal to the past, then there exists a globally hyper-
bolic spacetime (M� , ĝ), with a smooth proper embedding �(M )/M� , and with
��(M) containing a portion �&�(M ) to the past of �(M ). Let p # �&�(M ). If
R � 0 along every past inextendible causal path, then R( p)=0. This disagrees with
Proposition 1, so (M, g) must be maximal to the past.

If (M, g) is not maximal to the future, then similarly there is a spacetime (M8 , g� )
with a smooth proper embedding �(M )/M8 , and with a portion �+�(M) of the
boundary to the future of �(M ). Letting q # �+�(M ), we see that if R � � along
every future inextendible causal path, then R blows up near q. But since the Killing
vector fields in (M8 , g� ) are at least C1 everywhere, it follows that R must be bounded
everywhere. Hence (M, g) must be maximal to the future. K

6. ANALYSIS IN THE EXPANDING DIRECTION

The proof of Theorem 1 for the expanding��R increasing��direction is more
direct than for the contracting direction, since we work directly with the areal coor-
dinate components of the metric (see Eq. (2.3)) To do this, we need to start with
data on an R=const Cauchy surface. Let R0 and R1 be as in Proposition 3; then
as shown in Sections 4�5, such surfaces exist for all R # (R0 , R1)��they lie to the
past of the initial surface 70 with data (#, ?) from the hypotheses of Theorem 1. Let
us pick one such surface with, say, R=R2 . The spacetime D&(#, ?) induces initial
data for the areal component fields (U, A, &, :, G

1
, G

2
, M

2
, M

1
) on 7t2=R2

, and we

have local existence for the initial-value problem for these fields. To prove global
existence��i.e., to show that we can evolve the fields (U, A, &, :, G

1
, G

2
, M

2
, M

1
) via

the Einstein equations (2.4)�(2.6) to t � ���what we need to do (as shown in
[14]) is to prove that for any finite interval [t2 , T ) on which they exist as a solu-
tion to (2.4)�(2.6) these functions are uniformly C2 bounded. Again, we do this in
a series of steps.

Step 1 (Bounds on :, &, and :t). As in Section 4, we use light cone estimates
here to establish the bounds we need for the fields U and A and their derivatives.
However, since the wave equations (2.5a) and (2.5b) for U and A involve : and its
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derivatives and since the constraint equation (2.4c) for : involves &, we first need
to bound these quantities. The first step towards doing this is an energy
monotonicity result:

Let us define

E(t) :=|
S1 _:&1�2U 2

t +:1�2U 2
%+

e4U

4t2 (:&1�2A2
t +:1�2A2

%)& d%. (6.1)

Using Eqs. (2.4)�(2.6), and integration by parts, we calculate

d
dt

E=
&K2

t3 |
S 1

1
2: _:&1�2U 2

t +:1�2U 2
%+

e4U

4t2 (:&1�2A2
t +:1�2A2

%)& e2&:2 d%

&
1

2t3 |
S1

(e4U:1�2A2
%) d%&

2
t |S1

(:&1�2U 2
t ) d%<0. (6.2)

This shows that E(t) decreases monotonically in t. So in particular, we have

E(t)<E(t2) (6.3)

for all t>t2 .
Now we consider the quantity

&~ :=&&& 1
2 ln :. (6.4)

The spatial derivative of &~ , as a consequence of the constraint (2.4b), is given by

&~ %=&2tUtU%&
e4U

2t
AtA% . (6.5)

It follows readily from the definition of E(t)��and from the algebraic fact that for
any a, b, and c>0 one has |ab|�(1�2c) a2+2cb2��that

|
S1

|&~ % | d%�tE(t). (6.6)

Hence, using the monotonicity of E(t), we find that for all t�t0 ,

|
S 1

|&~ % | d%�tE(t2). (6.7)

As a consequence of (6.7) and the mean value theorem, we can control the
variance of &~ on a given Cauchy surface at areal time t. That is, for any %1 , %2 # S1

and for any t # [t2 , T ) we have
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|&~ (%2 , t)&&~ (%1 , t)|= } |
%2

%1

&~ % d% }
�|

%

%1

|&~ % | d%

�|
S1

|&~ % | d%�tE(t2). (6.8)

We calculate the time derivative of &~ from constraints (2.4a) and (2.4c); we get

&~ t=&t _U 2
t +:U 2

%+
e4U

4t2 (A2
t +A2

%)&+*
e2&

4t3 :K2. (6.9)

It follows immediately from (6.9) that we have two inequalities for &~ t :

&~ t�&t _U 2
t +:U 2

%+
e4U

4t2 (A2
t +:A2

%)& (6.10a)

and

&~ t�*
e&2&~

4t3 K2. (6.10b)

Using (6.10a), we obtain

|
S1

&~ d%=|
t

t2

d
dt \|S1

&~ d%+ d{

=|
t

t2
\|S1

&~ t d%+ d{

�&|
t

t2

{ |
S 1 _U 2

t +:U 2
%+

e4U

4{2 (A2
t +:A2

%)& d% d{

=&|
t

t2

{E({) d{

�&|
t

t2

{E(t2) d{

�&E(t2)(t2&t2
2)�2, (6.11)

which controls �S 1 &~ d% from below. Then if we combine (6.11) and (6.8), we derive
a lower bound on &~ itself. We do this as follows: If we apply (6.11) to the left-hand
side of the identity

|
S 1

&~ =|
S1

[min
S 1

&~ +&~ &min
S 1

&~ ] (6.12)
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we obtain

&E(t2)(t2&t2
2)�2? min

S 1
&~ +|

S 1
(&~ &min

S1
&~ ). (6.13)

Applying (6.8) to the second term on the right-hand side of (6.13), we get

&E(t2)(t2&t2
2)�2? min

S 1
&~ +ct (6.14)

for some constant c. Rearranging (6.14), we have

min
S1

&~ �c(t), (6.15)

where c(t) is a bounded function of t on [t2 , T).
To obtain an upper bound for &~ , we use (6.10b), together with (6.15). Specifically,

we have

&~ t�*
e&2&~

4t3 K2

�*
e&2 minS 1&~

4t3 K2

�*
e&2c(t)

4t3 K2 (6.16)

from which it follows that &~ t is controlled into the future. Control of &~ immediately
follows; so we have upper and lower bounds for &~ on S 1_[t2 , T ).

We now use the bounds just established for &~ to obtain controls for & and :. We
start by noting that the constraint (2.4b), together with the definition of &~ , leads to
the expression

�t(ln :)=&
1
2

*
e&2&~

t3 K2. (6.17)

With &~ bounded above and below on S1_[t2 , T), it follows from (6.17) that
�t(ln :)��and, hence, ln : and :��are as well. Since

&=&&~ & 1
2 ln :, (6.18)

we thus obtain bounds for &. Finally, as a consequence of these bounds on & and
:, Eq. (2.4c) tells us that :t is bounded.

This analysis does not lead to bounds for :% on S 1_[t2 , T). While this might
appear, from Eqs. (2.5a) and (2.5b) to be a potential obstacle to using light cone
estimates for U and A, we will see in the next step that it is not.

142 BERGER ET AL.



File: DISTIL 570727 . By:DS . Date:02:10:97 . Time:08:37 LOP8M. V8.0. Page 01:01
Codes: 2421 Signs: 1113 . Length: 46 pic 0 pts, 194 mm

Step 2 (Bounds on U, U% , Ut and A, A% , At). As with the contracting direc-
tion, to obtain the light cone estimates we use for bounding U and A and their
derivatives in the expanding direction, we find it useful to treat U and A as com-
ponents of a wave map ,. The base geometry and target geometries are different,
but the idea is very much the same. We take for the base geometry (S1_R, 2g) with
the (nonflat) Lorentz metric

2g=&dt2+
1
:

d%2, (6.19)

and for the family of target geometries we use (R2, h(t)), with (t-dependent)
Riemannian metrics,

h(t)=dU 2+
e4U

4t2 dA2. (6.20)

The maps take the component form

, : S1_R1 � R2

(%, t) [ ,a(%, t)=\U(%, t)
A(%, t)+ . (6.21)

Since the base geometry is not flat, the metric-compatible4 covariant derivative D
for these maps has nonvanishing Christoffel coefficients

1 t
tt=0, 1 t

t%=0, 1 t
%%=&

:t

2:
(6.22)

1 %
%%=&

:%

2:
, 1 %

%t=&
:t

2:
, 1 %

tt= 0,

as well as target Christoffel coefficients

1 U
UU=0, 1 U

UA=0, 1 U
AA=&

e4U

2t2

(6.23)

1 A
AA=0, 1 A

AU=2, 1 A
UU=0.

The wave equation for ,=( U
A ) now takes the form

g,a=�a, (6.24a)
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where

�a=\
Ut

t

&
At

t + . (6.24b)

We have the corresponding energy-momentum tensor, defined as in (4.15), taking
the form

T+&=U+U&+
e4U

4t2 A+A&+
1
2

g+& _U 2
t &:U 2

%+
e4U

4t2 (A2
t &A2

%)& .

Since the base metric 2g is not flat and while we can readily choose a pair of
everywhere-independent null vector fields l=(1�- 2)(�t+:1�2�%) and n=(1�- 2)
(�t&:1�2�%) for the base, these do not generally define global null coordinates. The
light cone argument does not really need such coordinates, however. It is sufficient
to work with l, n, and their integral paths, which are well behaved since : is
bounded.

Calculating as in Eqs. (4.17)�(4.18), we derive from (6.25) and (6.22)�(6.23) the
equations

n(Tll)=&
:t

- 2 :
Tll&

1

- 2 \
U 2

t

t
+

e4U

4t3
:A2

%+
:1�2

t
U%Ut+:1�2 e4U

4t3
A%At+ (6.25a)

and

l(Tnn)=&
:t

- 2 :
Tnn&

1

- 2 \
U 2

t

t
+

e4U

4t3 :A2
%&

:1�2

t
U% Ut&:1�2 e4U

4t3 A% At). (6.25b)

It is important here that, while : and :t appear in Eqs. (6.25), :% does not.
Thus we find that the right-hand side of (6.27) involves only terms quadratic in
U% , Ut , (e2U�2t) A% , and (e2U�2t) At , with the coefficients of these terms all bounded
on S 1_[t2 , T ) as a consequence of the estimates from Step 1. Noting this,
and writing Tll=Ttt+:1�2T%t and Tnn=Ttt&:1�2T%t , we see that if we set E=Ttt ,
P=:1�2Tt% , and J=(right-hand side of (6.25a)), and L=(right-hand side of
(6.25b)), then (6.25) matches (4.6).

Since (6.25) has been determined to have the appropriate form, we see that the
rest of the light cone estimate argument goes through more or less as discussed in
Step 2 of Section 4, from Eq. (4.19) on. We need to replace null coordinates by null
paths generated by the null vector fields n and l, but this does not affect the argu-
ment significantly. We thus find that for any point (%, t) # S1_(t2 , T ], we have
E(%, t) bounded by data on the initial hypersurface 7t2

. It immediately follows that
U and A are uniformly C1 bounded on S1_(t2 , T ).
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Step 3 (Bounds on &t , :% , &% , :%t , and :tt). Since the constraint Eq. (2.4a)
expresses &t in terms of Ut , U% , U, At , A% , &, and t and since we have shown (Steps
1 and 2) that these are all bounded, we immediately obtain from (2.4a) bounds on
&t as well.

The same argument does not work for &% , since Eq. (2.4b) involves :% , for which
we do not yet have bounds. However, we recall from Eq. (5.5) that the expression
for &~ % involves only t, Ut , U% , At , A% , and U, so &~ % must be bounded. Then, if we
write (2.4c) in the form

:t=&*
e&2&~

t3 :K 2 (6.26)

and calculate the % derivative of both sides (and use local smoothness), we obtain

�t :%=\&*
e&2&~

t3 K2+ :%+\2*
e&2&~

t3 K2&~ % :+ . (6.27)

Since the quantities in parentheses are controlled, we may integrate this differential
equation for :% in time and thereby obtain bounds for :% .

It then follows from the relation &%=&&~ %& 1
2 (:% �:) that &% is bounded.

We now have uniform C1 bounds on all of the primary fields U, A, &, and :.
Equation (6.27) tells us that :%t is also bounded, and if we calculate the time
derivative of Eq. (2.4c), we get

:tt=*
e2&

t3 :K 2 \&2:&t&2:t+
3
t+ (6.28)

which implies that :tt is bounded as well.
To go any further, we need to use light cone estimates again.

Step 4 (Bounds on second derivatives). If we take time derivatives of the
wave equations (2.5) for U and A, then we get wave equations for Ut and At , which
we can write in the wave map form:

gUt=&
(Ut)t

t
+_1

2
:tt&

:2
t

4:
&

e4U

t2 :A2
%+

1
t2& Ut

+\e4U

t2 :A%At+ U%&:
e4U

2t3 A2
% (6.29a)

gAt=
(At)t

t
+_1

2
:tt&

:2
t

4:
&4:U 2

%&
1
t2& At+4:U% UtA% ; (6.29b)
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jointly, we have

g,a
t =�

1

a. (6.30)

The two components of �
1

a correspondent to the right-hand sides of (6.29).

The important thing to note is that all of the quantities in �
1

a except Utt and Att

have been shown in previous steps to be controlled. More importantly, we find that
we may infer from (6.29) that the quantities

E
1

=
1
2

U 2
tt+

1
2

:U 2
t%+

e4U

4t \
1
2

A2
tt+

1
2

:A2
t%+ (6.31a)

P
1

=UttUt%+
e4U

4t2 AttAt% (6.31b)

satisfy equations of the form

n(E
1

+P
1

)=J
1

(6.32a)

l(E
1

&P
1

)=L
1

, (6.32b)

where J
1

and L
1

involve nothing but controlled quantities, together with terms quad-

ratic in Utt , Ut% , Att , and At% .
Hence, we may repeat the light cone estimate argument as in Step 2 and thereby

verify that Utt , Ut% , Att , and At% are all bounded on S 1_[t0 , T ). Further, using the
wave Eqs. (2.5a)�(2.5b), we get bounds on U%% and A%% ; then, using arguments of
the sort discussed in Step 4, we obtain C2 bounds on & and : as well. Thus we have
uniform C2 bounds on all of the primary fields.

One could repeat this ``boot strap''-type argument step-by-step and obtain
bounds on higher order derivatives. However, C2 bounds are sufficient for the
theorems we cite [14] to establish global existence, so we have proven existence for
t � � of the variables U, A, :, and &.

Step 5 (Extension of the shift functions). It remains to show that the shift
functions G

1
, G

2
, M

1
, and M

2
extend to R=t � �. Since the constraint equations

(2.6) for these functions in areal coordinates are essentially identical to the
constraint equations (2.10) for them in conformal coordinates, the procedure for
proving that they extend is just that found in Step 6 of Section 2.

This completes our proof that the areal coordinate development of the initial
data on 7t2

extends to R � �. As shown in Proposition 5, if R � � in the future
development of a set of initial data, then that development must be maximal. Hence
we have completed the proof of our main result, Theorem 1.
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7. CONCLUSIONS

The primary motivation for this work has been to set up a framework��including
a geometrically based time foliation��for studying strong cosmic censorship and
other global issues in a family of spacetimes which is larger and more complicated
than the Gowdy spacetimes, but which still can be studied via (1+1)-dimensional
PDE analysis. Indeed, by relaxing the Gowdy requirement that the twist quantities
be nonzero, one obtains field equations which are considerably more intricate than
in the Gowdy case.5 Hence the tools we are developing in working with the
T 2-symmetric spacetimes could be more generalizable than those developed in
working with Gowdy spacetimes.

Our work here obtains this framework. While the R=t foliation we have
obtained here should��as evidenced by its importance in the Gowdy spacetimes��
prove to be very useful, there is another geometrically-based foliation of con-
siderable interest for these and other spacetimes: the constant mean curvature
(CMC) foliation. Rendall [18] has studied CMC foliations on T 2-symmetric
spacetimes��for the Einstein�Vlasov and Einstein�wave map equations as well as
for the Einstein vacuum equations��and he has shown that if such a spacetime
admits at least one CMC Cauchy surface 7, then it admits a CMC foliation from
a neighbourhood of 7 back to the singularity. We expect that our areal coordinate
foliation provides the barriers necessary to guarantee the existence of the needed
first CMC Cauchy surface. We also expect that one might be able to use our result
to show that the CMC foliation covers the entire maximal domain of dependence
of the spacetime.
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