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Abstract 

We discuss N = 2 supersymmetric type IIA brane configurations within M-theory. This is a 
generalization of the work of Witten to all classical groups. (~) 1997 Published by Elsevier Science 
B.V. 
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1. Introduction 

Our understanding of supersymmetric field theories was greatly advanced by the 

seminal work of Seiberg and Witten [ 1 ]. Very early on it has been suggested that 
there should also be important ramifications for string theory which have then, in due 
course, been found and worked out [2-4].  The relation between string theory and 
supersymmetric field theory has become most transparent in the work of Hanany and 

Witten [5] who turned the brane technology into an efficient and easy tool to engineer 
supersymmetric field theories. Various dualities could be demonstrated this way; they 
are very natural in the brane picture [6-11 ]; see also Refs. [4,12,13] for an alternative 
brane picture of field theory dualities. 
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One of the great surprises of the original work of Seiberg and Witten was that 
the low energy effective action of asymptotically free N = 2 supersymmetric field 
theories could be exactly computed. In this computation, which is possible due to the 
holomorphic structure of the Lagrangian, an auxiliary Riemann surface appears, whose 
period matrix is identified with the gauge couplings of the theory in its Coulomb phase. 
It was subsequently shown how this Riemann surface appears geometrically in string 
compactification on Calabi-Yau manifolds as a supersymmetric two-cycle around which 
the type IIA two-brane wraps, leaving a supersymmetric point-particle in uncompactified 
space-time [2,14,15] ; for excellent recent reviews, see Refs. [ 16,17]. 

Recently, Witten [18] has shown how the Riemann surfaces naturally appear as 
supersymmetric cycles in the M-theory context, by reading the N = 2 supersymmetric 

brane configurations on the type IIA theory as one convoluted M-theory five-brane, 
whose internal part, which extends into the eleventh dimension, is a Riemann surface, 
holomorphically embedded into R 3 × S 1. ~3 are the three internal dimensions tangential 
to the configuration of Dirichlet four-branes (D4-branes) and NS five-branes, and S 1 
is the circle on which the eleventh dimension is compactified. Independently, Evans et 
al. [7] also noticed the connection between M-theory, type IIA brahe configurations 
and Seiberg-Witten curves; their starting point was the generalization of the work of 
Ref. [6] to orthogonal and symplectic groups, with the orientifold plane playing a 
crucial role. Witten's analysis was restricted to the case of Ar gauge groups. We present 
here the extension of his results to the other classical groups. 

Orthogonal and symplectic groups have previously been discussed in the brane con- 
text [7,10,12,13]. Here the appearance of an orientifold plane complicates the discus- 
sion. Our goal is to understand these theories in M-theory. One line of attack would 
be to argue for the brane configuration, which must of course respect the orientifold 
symmetries, and then write down the equation for the Riemann surface which should 
then agree with the hyperelliptic curves which have been constructed purely from field 
theory considerations. We have however chosen the reverse strategy, namely starting 
from the known curves, we infer the brane configurations. Here the curves which have 
been discussed in relation to Seiberg-Witten theory with integrable systems are the most 
appropriate. We find that the curve displays the orientifold plane only indirectly, namely 
via the symmetry of the brane configuration. Since in M-theory the brane configuration 
is smooth, there is no rationale for the jump in RR charge of the orientifold four-plane 
(04  plane) as it crosses an NS five-brane. This was necessary in Ref. [7] to explain 
the symplectic flavor symmetry of the dual orthogonal gauge theory. In addition, in 
order to get a smooth transition from the electric to the magnetic theory, the authors of 
Ref. [ 10] had to assume that two of the D4-branes which extend between the two NS 
five-branes, must position themselves on the 04  plane. In the M-theory picture we find 
two infinite D4-branes which account for both of these phenomena. 

An outline of this paper is as follows. In Section 2 we present our interpretation of the 
Seiberg-Witten curves in M- and type IIA theory. We also comment on the interpretation 
of the orientifold plane. In this section matter always comes, in the type II language, 
from D4-branes. D6-branes enter the stage in Section 3. We end with conclusions and 
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an outlook. 

While we were completing this manuscript, a preprint by Landsteiner et al. [26] 

appeared, which has a substantial overlap with our work. 

2. Models with SO and Sp gauge groups 

2.1. Generali t ies 

We will use the same conventions as Ref. [ 18]. The classical brane configuration 

in the type IIA theory consists of  infinite solitonic five-branes with the world-volume 
extending in the x °, x I , x 2, x 3 , x 4, x 5 directions and Dirichlet four-branes with the world- 

volume along x ° , x  I ,X2,X3,X6.  In Section 3 we will also introduce D6-branes with 

the world-volume along (x °, x I , x 2, x 3 , x 7, x 8, x 9 ). All brane configurations considered 

preserve ¼ of  the 32 supercharges of  the type IIA theory. As in Ref. [ 18] we have 

effectively a four-dimensional N = 2 supersymmetric theory on the world-volume of  the 

D4-branes. We define 

v = x  4 + i x  5, (1) 

s = (x 6 + i x l ° ) / R ,  (2) 

where x l° is a periodic coordinate x l° ,-~ x 1° + 2~rR. It is convenient to make a trans- 

formation from the cylinder with coordinate s to the complex plane t = exp ( - s ) .  

In M-theory (compactified in the x l° direction on a circle of  radius R) the configu- 

ration is described by a single five-brane with a complicated world-volume history, 

~3,1 × 2;. (3) 

Here 2: is a (non-compact) Riemann surface holomorphically embedded in the complex 

two-plane parametrized by v and t. 2? is a supersymmetric cycle in the sense of  Ref. [ 19]. 

Since in the type I IA theory we deal with infinitely extended branes, the Riemann surface 

which appears in M-theory is non-compact. Here we always refer to the compactified 

surface; see Ref. [ 18] for an explanation. We will now discuss the case of  single Br, Cr 

and Dr group factors, followed by the discussion of  multiple group factors. The starting 

point will be the spectral curves associated with the various simple groups, as given in 
Refs. [20,21 ]. 

2.2. SO(  2r) 

For the curve for N = 2 gauge theories with gauge group S O ( 2 r )  we take 

F ( t , c )  = t2v 2 + 2 tPr ( v )  + v 2 = 0 (4) 

with 

Pr( U ) = U 2r -[- C2 U2r-2 -~- ¢4U 2r-4 -~ . . .  -k- ~2. (5) 
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c2n, n = 1 . . . . .  r -- 1 denote gauge invariant operators (Casimirs)  of  order 2n and Pr is 

the exceptional Casimir  of  order r. Via the substitution t --* ( t  - P r ) / V  2 these curves 

assume the form of  the S O ( 2 r )  hyperell iptic curves of  Ref. [22].  Substituting t ~ t / v  2 

we find the Dn curves of  Refs. [20,21].  

For fixed v the polynomial  is of  degree two in t and the two roots of  Eq. (4)  

correspond to the fact that we have a type I IA configuration with two NS five-branes. 

In general, the degree of  the polynomial  in t equals the number of  NS five-branes. 

On the other hand F ( t ,  u) is of  degree 2r in v, reflecting the presence of  2r  D4-branes. 

Since the polynomial  is even in v the configuration is symmetric under v --~ - v .  This 

hints towards the existence of  an orientifold plane at v = 0, parallel to the D4-branes, 

in the classical type I IA picture. This 0 4  plane enforces a reflection-symmetric brane 

configuration. This incidentally, automatically removes the IR divergence in the five- 

brane kinetic energy, which, in the U ( r )  case discussed in Ref. [ 18] led to a freezing 

out of  the U(1)  C U ( r )  factor associated with the motion of  the center of  position of  

the D4-branes. 

To get further information on the brane configuration, we now investigate the behavior 

of  the curve in certain limits. 

First we want to look at the limit where v is small. I f  ~r = 0 the polynomial  factors 

into v 2 times a factor which is appropriate for the curve for gauge group S U ( 2 r  - 2) 

with all odd Casimir invariants set to zero. This corresponds to the situation where two 

infinite D4-branes coincide at v = 0 which, naively, would imply additional massless 

states from zero length strings between these two branes. But from a careful analysis in 

field theory [22] we know that the monodromy at this singularity is trivial. Therefore 

there are no additional particles becoming massless. This observation was first made in 

the context of  type I IA brane configurations in Ref. [7] .  

In the case of  non-zero Pr the curve becomes, again in the limit of  small v, 

tv 2 + 2~2r + v2 / t  = 0. (6)  

Going to small t (i.e. s ---, oo) requires t ~ v 2, which means that two roots of  F ( v )  

asymptotical ly approach v = 0. For large t (s  ---, - o ~ )  we find t ,~ 1 / v  2 which indicates 

two roots of  F ( v )  approaching v = 0. We interpret this as two infinite D4-branes which 

are deformed in the region of  small x 6 but approach the position v = 0 as x 6 ~ :t:oo. 

The question of  how to identify segments of  the curve with branes of  type I IA can be 

addressed as follows. Eq. (4)  defines a multivalued map from the v plane to the t plane 

with 4r  branch points. We want to identify the objects that extend to x 6 ~ o~ with v 

small. Examining the map mentioned above, we find that circling v = 0 once maps to 

circling t --- 0 twice. But a closed contour around the origin of  the t plane means going 

around the S I. A D4-brane is dist inguishable from an NS brane in that the former wraps 

S I and the latter does not. We thus identify the objects that stretch to x6 = +o~  as two 

D4-branes. Another way to see that we are dealing with two semi-infinite D4-branes is 

that for the codimension-one subspace of  the moduli  space defined by ar = 0 we have 

two branes precisely at v = 0, which means that they have to wrap around the S I. By 

continuity this also holds for generic values of  ~r. 
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Let us now consider the situation where v is large. For t large (s --+ - o o ) ,  the roots 

for v are approximately at 

t - v 2~-2, (7) 

and for t very small (s --+ oo) approximately at 

I ~ V - ( 2 r - 2 ) .  (8) 

This describes the bending of  an NS five-brane when a net number of  2r - 2 D4-branes 

end on it from the right and the left, respectively. Again, note that the D4-branes are 

located symmetrically with respect to the v = 0 plane. 2 ( r -  1 ) of  the D4-branes have the 

same asymptotics which diverges exponentially. It is to be identified with the position 
of  the NS five-branes at large v. In addition, there are two infinite D4-branes which 

asymptotically approach v = 0, the position of  the IIA orientifold plane which is not 

directly visible in the M-theory picture; it is encoded in the curve only through the 

symmetry and the presence of  the infinite D4-branes. 

As an example we have drawn in Fig. 1 the M5-brane for the gauge group SO(10) 
with generic values o f  the moduli. Each line corresponds to two D4-branes due to the 

v --+ - v  symmetry. More specifically, we have chosen a specific slice through Z with 

x I° = 0. Therefore, each of  the lines is actually a tube (times IR 3'1 ). The horizontal axis 

corresponds to x 6 and the vertical axis to the absolute value of  v. 

The generalization to the cases with Nf = NI + N2 matter multiplets is 

Nl NI 

U2t2H(V2-- m 2) + 2 t P r ( v ) + v  2 1"I (v2--m2)=0, 
.j= I i=N1 + 1 

(9) 

which corresponds to adding N1 semi-infinite mirror pairs of  four-branes to the left of  
all five-branes and N2 to the right. 
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Fig. 2. SO(5). 

For the gauge groups SO(2r + 1 ) we need a brane setup with 2r  + 1 D4-branes 

between the two NS five-branes. This is achieved by curves of  the form 

F ( t ,  v)  = t2v 2 + 2 t v P r ( v  2) + v 2 = O, 

Pr( o) = o 2r -k- c2 U2r-2 + c4o 2r-4 -} - . . .  + Czr, (10)  

which are related, via the substitution t ~ t/v 2 to the Br curves of  Refs. [20,21 ], 

whereas t ~ ( t -  P ) / v  reproduces those of  Ref. [23] .  Important  is the overall factor v, 

which is needed to get the correct number of  D4-branes. Note that the same argument 

that was used in Section 2.2 to demonstrate that there are indeed two semi-infinite 

D4-branes stretching to x 6 ---+ +c~ ,  now tells us that there is just  one of  these branes. 

In addition, there is still the infinite D4-brane at v = 0 which necessarily wraps around 

the S ~. 

Fig. 2 shows an example with gauge group SO(5) .  Every branch corresponds now to 

one D4-brane in contrast to the SO(2r) case because of  a different reflection symmetry; 

see below. Furthermore, the horizontal line corresponds to the additional infinite D4- 

brane at v = 0. 

We now have again two D4-branes in the region to the left and to the right of  the NS 

branes. As for SO(2r) they approach v = 0 as x 6 --+ ~cx~. F(t ,v)  = 0 is now invariant 

under ( t , v )  ---, ( - t , - v ) .  Note that t ~ - t  implies x l° ~ x l ° +  ~R.  This means that 

the orientifolding also involves a non-trivial transformation in the x l° direction. 

In the SO(2r + 1) case the singularity at car = 0 has a non-trivial monodromy, in 

contrast to the Cr = 0 singularity of  the SO(2r) case, and a dyon becomes massless, 

which is related to a short root of  the Lie algebra of  SO(2r + 1) [22].  In the type I IA 

picture there is an additional D4-brane on top of  the orientifold plane such that there are 

additional states from strings between this special D4-brane and the other D4-branes. 

These states are necessary to lift the SO(2r) multiplet  to an SO(2r + 1) multiplet. In 

our M-theory configuration we have taken into account this additional D4-brane at v = 0 
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by introducing an additional factor of  v in the curve. As C2r ----+ 0 the curve develops 

another infinite D4-brane on top of  that which gives rise to an additional massless state, 

as expected. 

Adding  matter in the fundamental representation is straightforward: we attach N1 

semi-infinite D4-branes (and their mirror images) from the left to the left NS five-brane 

and N2 semi-infinite D4-branes (and their mirror images) from the right to the right 

NS five-brane, with N1 + N2 = NF being the total number of  fundamental flavors. The 

curve then takes the form 

Nl N/ 

t ~ 2 t 2 I I ( v 2 - - m } )  + 2 t v P ~ ( v ) + v  2 H ( v 2 - m / 2 ) = 0 .  

.i = 1 i = N ,  + 1 

(11) 

2.4. Sp(2r) 

We take the holomorphic curve which is to represent the brane configuration in the 

pure gauge case to be 

12 + 2tv2Pr(v) + 1 = O, Pr(V) = V 2r + C2C 2r-2 + . . .  +C2r. (12)  

Note the symmetry under v -+ - v .  Via the substitution t ~ tv 2 this curve is seen to be 

equivalent to the Cr curve in Ref. [21] .  The relation with the curves of  Ref. [24] is 
however not so obvious. 2 

Fig. 3 shows the generic form of  the curve for the gauge group Sp (6 ) .  As in the 

SO(2r) case each branch corresponds to two D4-branes. From the form of  the curve we 

read off that there are two additional D4-branes between the two NS five-branes. These 

two addit ional D4-branes have the property that they touch the orientifold at c = 0, 

tj,2 = ± i  for all values of  the moduli.  This is not visible in Fig. 3 since we took a slice 
where t is real. 

2 We acknowledge the instructive correspondence about the various forms of the curves with A. Mironov 
and A. Morozov. Note that there is also a disagreement between the Cr curves of Refs. [20] and 121 ]. 



182 A. Brandhuber et al./Nuclear Physics B 504 (1997) 175-188 

Again, adding matter in the fundamental 2r-dimensional representation of Sp(2r) is 
straightforward: we simply add N1 and N2 semi-infinite D4-branes (and their mirror 
images) to the left and to the right, respectively, with N1 + N2 = NF. 

We have thus seen that there is a natural correspondence between the At, Br, Cr, Dr 
Seiberg-Witten curves as spectral curves of appropriate integrable systems and the 

type IIA brane configuration which leads to SU(r), SO(2r), SO(2r + 1) and Sp(2r) 
gauge theories on the D4-branes. In the M-theory context these curves simply describe 

the internal part of the five-brahe. 

2.5. The orientifold plane 

We would now like to examine the question how the structure of an orientifold 

emerges from the M-theory curves that correspond to the orthogonal and symplectic 

groups. In string theory we have, as a consequence of dividing by the world-sheet parity 

inversion times a space-time symmetry, an orientifold plane which also carries an RR 
charge, namely if p is the dimension of the orientifold plane, ~2 p-s  units of charge 

of a physical Dp-brane, i.e. the Dp-brane and its mirror image. If we normalize the 
RR charge of a physical D4-brane to be +2, the charge of an 04  plane is +1. In 
the geometric brane arrangement of the type IIA theory, the orientifold plane makes 

its appearance by enforcing symmetry under reflection on the orientifold plane, but, 

in the discussion of Seiberg dualities with SO and Sp gauge groups, also via its RR 
charge, in particular via its charge induced on the NS branes. Central in the discussion 
of Refs. [7,10] was the fact that the charge of the orientifold plane switches sign on 

traversing an NS five-brane, so that in the simplest arrangement of two NS five-branes 
its charge is - 1  between the five-branes and +1 outside. This is for orthogonal gauge 

groups and the sign of the charge is reversed for symplectic groups. 
Let us now see how the orientifold plane and these charge assignments might be 

understood from the M-theoretic point of view. We saw that with the SO(2r) projec- 
tion we get additional semi-infinite D4-branes, two on each side of the NS five-brane 

arrangement, while with the SO(2r + 1) projection we get one infinite D4- and one 

additional semi-infinite D4-brane on each side. The Sp projection leads to two addi- 
tional D4-branes between the two NS five-branes. If we now agree to assign the RR 
charge - 1 to an infinite four-dimensional four-plane along the (x I , x 2, x 3, x 6) direction, 
with x 4 = x 5 = 0 and X7,xS,x 9 fixed by the NS five-branes, we find that the SO(2r) 
projection effectively leads to a charge assignment ( + 1 , - 1 ,  +1)  for the three regions 

to the left, between, and to the right of the two NS five-branes. For the Sp projection 
we get ( - 1 , + 1 , - 1 )  and for the SO(2r+ 1) projection ( + 1 , 0 , + 1 )  instead. 

2.6. Product gauge groups 

We now consider more general models with chains of NS five-branes connected by 
D4-branes. The n + 1 five-branes are labeled from 0 to n and the ( a  - 1)th five-brane 
is connected to the ath five-brane by k~ D4-branes. 
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Fig. 4. Sp(6) x SO(10) × Sp(6).  

As in the N = 1 supersymmetric case [ 11 ] it is not possible to create models with 
gauge groups SO-SO- . . .  or Sp-Sp - . . . ,  only alternating chains of  the form SO-Sp-  

SO- . . .  or S p - S O - S p - . . .  are possible. For example, the second possibility is realized 
by the following curve: 

F ( t , v ) = t n + t n - J v Z P l ( v ) + t n - 2 p 2 ( v ) + t n - 3 v 2 P 3 ( v ) + t n - 4 p 4 +  . . . .  0 (13) 

with 

,.(4) (14) P , ( v )  = v 2r" + £(2a)u 2r"-2 ÷ c(a)v 2r'~-4 ÷ . . .  --}- ~2r." 

From the previous sections it is clear that this must correspond to a gauge theory with 

gauge group 

G = Sp(2rl )  ® S0(2r2) ® Sp(2r3) ® . . .  (15) 

and matter content 

n--I 

~ )  (2r,~, 2r,~+ l ). (16) 
ct=l 

In the case that the chain starts with an SO gauge factor, the first terms of the curve are 

t"v 2 + t"-J Pl (v) + t"-2v2p2(v) + . . . .  0. (17) 

In Fig. 4 we have drawn a simple example with three gauge group factors G = Sp(6)  x 

SO(10) x Sp(6) .  The branches going to infinity for large R e s  correspond to the four NS 

five-branes. They are all bent differently according to the number of  D4-branes ending 
on them from the left and the right. Each branch corresponds to two D4-branes in a 
type IIA configuration. Chains without matter and SO(2r + 1) factors are not possible 
as tbllows immediately from our discussion of  the curves and the brane configurations 
derived from it. 

We can add matter by putting semi-infinite D4-branes in the usual way. For example, 
we can multiply the highest power of  t by 11i=l,vvrNrt'2 _ m~) which will lead to  N f  
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matter hypermultiplets in the fundamental representation of the first gauge group factor, 
SO(2rl  ) or Sp(2r l  ). 

If  we compactify these chains on a circle S 1 in the x 6 direction we find the general- 
izations of  the elliptic models of  Ref. [ 18]. This means that the semi-infinite D4-branes 

to the left and to the right are connected and produce an additional gauge group factor. 

This is only consistent if we have an even number of  NS branes. In this case the gauge 

group is 

G = SO(2r l )  x Sp(2r2)  x S0 (2r3 )  x Sp(2r4)  x . . .  x Sp(2r2 , ) ,  (18) 

and matter comes in the usual mixed representations with the exception that there is an 
additional hypermultiplet in the (2r2n, 2rl ) representation. If  the number of  D6-branes 

bt = 0 (see below) one can make the beta functions vanish for all gauge group factors, 

r2i+l = r2j + 1 = n + 1 for 1 ~ i , j  <. n. (19) 

In this case the gauge group is SO(2n + 2) × Sp(2n)  × . . .  

3. Configurations with D6-branes 

We now incorporate D6-branes in our configurations, following closely Ref. [ 18]. We 
now place d,~ D6-branes between the (o~ - 1 )th and o~th NS five-brane. Each D6-brane 
is located at definite values of  x 4, x 5 and x 6. Due to the symmetry v -+ - v  we always 

have to place D6-branes in pairs at locations v and - v .  
The interpretation of  the resulting world-volume theory is clear with the gauge group 

and matter from D4-branes as before. In addition, we have d,~ hypermultiplets in the 

fundamental representation of the corresponding orthogonal or symplectic gauge group. 
The v positions of  the D6-branes give the bare masses. Their x 6 positions decouple 
from the low energy four-dimensional physics; they become relevant in the discussion 

of Higgs or mixed branches only [ 18]. 
In this section we will discard the semi-infinite D4-branes which gave rise to (mas- 

sive) hypermultiplets; we can generate an arbitrary number of  hypermultiplets using 
D6-branes only. 

Our basic guideline throughout this paper is to interpret type IIA brane configurations 
in M-theory. So we have to identify the type IIA six-brane in M-theory which was first 
done in Ref. [25].  We consider M-theory on R l° × S l which is equivalent to type IIA 

on R t°. The RR U(1)  gauge field of  type IIA is associated in M-theory with shifts 
along the S 1. Momentum states in the S l direction are electrically charged with respect 
to this U(1)  and are interpreted in type IIA as D0-branes. The monopoles of  this U(1)  
correspond to D6-branes in type IIA. 

The object that is magnetically charged under this U( 1 ) is the Kaluza-Klein monopole 
~6 )< 0 ,  where ~) is a Taub-NUT space. It can be described as 
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( I Q =  ( v , y , z )  E C 3 = l - I ( v 2 - e 2 ) = _ Q ( v 2 ) .  (20) 
a=l 

Here we have incorporated the fact that the D6-branes come in pairs located at q-Ca. As 
explained in Ref. [18], asymptotically y and z can be identified with t and t - l .  0 is 

smooth as long as e~ v~ eb Va ~ b. Otherwise the singularity has to be resolved. 
We start with models with a single gauge group and matter hypermultiplets. To 

incorporate D6-branes we have to replace Q = ~3 × S l by Q. As before, the type IIA 

configuration of D4- and NS five-branes is described by a complex curve S, now 

embedded in 0 .  2; will again be given by an polynomial equation F(y, v) = 0; any 

dependence on z has been eliminated using z = Q ( v ) / y .  The C, and Dn configurations 

are symmetric under (v, y, z ) ~ ( - v ,  y, z) ,  the Bn configurations are symmetric under 

(c ,y,  z ) --+ ( - v , - y , - z )  due to the asymptotic relation between t, t - l ,  and y, z. 

With two NS five-branes, F(y, o) is quadratic in y. Furthermore, we assume that 

there are no semi-infinite D4-branes to the left or to the right, except those needed 

for the orthogonal gauge groups. In this example we will choose G = SO(2r) but the 

discussion also applies to gauge groups of the Br and Cr series. Thus F has the form 

A(v)v2y 2 + B(v)y  + C(v)v 2 = 0, (21) 

where A, B, and C are relatively prime polynomials, which as all polynomials appearing 
here and below, depend on v through v 2 only. The condition that there be no semi-infinite 

D4-branes implies that A is constant; we set it to 1. Expressing (21) in terms of z = 
Q(vZ)/y, we obtain 

C(v)v2z 2 + B(v )Q(v ) z  + Q(v)Zv 2 = 0. (22) 

The absence of semi-infinite D4-branes implies that C divides BQ and Q2. In particular 

this means that Q2 is divisible by C. So any zero of C must be a zero of Q and may 

appear at most quadratically in C. This means we can split Q into three factors: Q0, Ql, 

and Q2, whose roots are roots of C of order 0, 1, and 2, respectively. We will denote 
the number of zeroes of the Qi by qi. Thus we have 

C(v) = fQ2(v)2Q1 (v),  (23) 

with f being a non-zero constant. In addition, BQ = BQoQIQ2 has to be divisible by C, 
leading to 

B(v) = B(v)Q2(v) (24) 

for some polynomial B(v) .  Now F assumes the form 

v2y 2 + B(v)Q2(v)y  ÷ v2 fQ2(v)2Qi (v) = 0. (25) 

In terms of the coordinate y = y/Q2(v) this becomes 

uZy 2 ÷ n ( o ) y  -q-- v2fQ1 (v) = o. (26) 
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If B(v) is a polynomial of degree 2N in v, this presents a curve for SO(2N) with ql 

flavors in the fundamental representation. The zeroes of Q1 correspond to D6-branes 

between the two NS five-branes, the zeroes of Q0 and Q2 correspond to D6-branes to 
the right and to the left of all NS five-branes, respectively. As long as ql 4: 2N - 2 we 

can set f = 1 by rescaling v and y. 

Finally, we want to include D6-branes in the models with chains of NS five-branes. 

The curve X will now be defined by the zero locus of a polynomial F(y, v) of the form 

yn+l + pl(v)v2yn + p2(v)yn-t + p3(v)v2yn-2 + p4(v)yn--3 + . . .  

+P,+I (v) = 0. (27) 

The substitution y = Q (v) / z leads to 

pn+lZ,,+l + v2Qpnz n + Q2p._lZn-1 + . . .  + Qn+l = 0. (28) 

The absence of semi-infinite D4-branes implies that Qmpn_m+ ! is divisible by P.+j. 

Hence all zeroes of P.+l are zeroes of Q and the multiplicities of the zeroes of Pn+l 

must lie between 0 and n + 1. Define polynomials 

im+l n+l 

Q"'=  H ( v 2 - e 2 . ) '  Q = H  Q.,, o<~io<~i, <<....<~i. (29) 
a=in, + 1 m--'O 

such that 

n+l 
I I  on+l - m  Pn+l = f ~., (30) 
m=0 

and for l ~<m<~n 

m - -  I 

P., = Bin(v) H om-J ~.j . (31) 
j---0 

Via the transformation y ~ yQo the curve (27) takes the following form: 

yn+l + v2B1 (v)yn + B2(v)Ql (v)y  n-1 + v2B3(v)Qj(v)2Q2(v) + . . .  
n 

+f(~- l ,~ -~ , ,  + V2~l.~-~.) I I a ~  +~-j = o. (32) 
j=| 

For n = 1 this reduces to the case of two NS five-branes, discussed earlier in this section. 

For general n we conclude from the matter content that ds = is+l - is is the number of 
D6-branes between the sth and the (s-4- l)th NS five-brane. If the degree of Bs is 2r~., 

the gauge group is 

G = SO(2rl) x Sp(2r2) x S0(2r3) x . . .  (33) 

The hypermultiplets are in the representations (2rs, 2rs+l ) plus ds hypermultiplets in 
the fundamental representation of SO(2r,) (Sp(2rs)) for even (odd) s. 
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4. Conclusions and outlook 

Using the ideas o f  Ref. [ 18] we have generalized the interpretation o f  the type IIA 
brane configuration giving rise to N = 2 supersymmetric field theories with and without 

matter, to all classical groups. To a large part this is a straightforward extension of  

Ref. [18] .  The interesting new aspect is how the orientifold plane, which is present in 

the type IIA picture, manifests itself from the M-theory point of  view. Here we have 

taken the point of  view that the orientifold plane is not directly visible in the Riemann 

surface which describes the internal, one-complex-dimensional part of  the M5-brane. 

We only detect it via the presence of  additional semi-infinite D4-branes, which do not 

add to the spectrum and via the symmetry of  the brane configuration. We do not use the 

knowledge from type IIA theory about the charge assignment of  the orientifold plane 

but try to understand it from the M-theoretic brane configuration. We determined the 

RR charge of  D4-branes, for instance those that stretch to x6 = q-cx~ in the S O ( 2 r )  case, 

by observing that they have a non-trivial monodromy around the origin of  the t plane, 

namely, they are wrapped around the circle in the x l° direction. In fact, this may be 

a useful tool in general to determine the RR charge. A five-brane of  M-theory, when 

it wraps the circle N times, implies a configuration of  N D4-branes in the type IIA 

description. A similar situation applies to the NS charge of  the strings in type IIA 

that are obtained from wrapping the M-theory membrane. Our starting point was the 

known curves for the various gauge groups. We find a satisfactory picture, which can 

be connected to the type IIA picture for Br, Cr and Dr gauge groups. 

The real challenge, in our mind, is the generalization to N = 1 theories. The type IIA 

picture has been fully developed for all classical groups. The Riemann surface in this 

case will be embedded in R 5 × S I. Presumably it encodes information about the Coulomb 

branch of  the N = 1 theories, but many new insights into N = 1 theories might be gained 

by a better understanding in the framework of  M-theory. 
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