
ELSEVIER Nuclear Physics B 500 (1997) 405-420 

llllilt lB 

Simplifying the spectral analysis 
of the volume operator 

R. L o l l  1 
Max-Planck-lnstitut fiir Gravitationsphysik, Schlaatzweg 1, D-14473 Potsdam, Germany 

Received 17 March 1997; accepted 21 May 1997 

Abstract 

The volume operator plays a central role in both the kinematics and dynamics of canonical 
approaches to quantum gravity which are based on algebras of generalized Wilson loops. We 
introduce a method for simplifying its spectral analysis, for quantum states that can be realized 
on a cubic three-dimensional lattice. This involves a decomposition of Hilbert space into sectors 
transforming according to the irreducible representations of a subgroup of the cubic group. As an 
application, we determine the complete spectrum for a class of states with six-valent intersections. 
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1. Introduct ion 

Researchers in gravitational physics these days can look back on a ten-year long effort 

of  quantizing the theory canonically in terms of  a set of  "new" connection variables 

[ 1 ]. These developments have led to many new insights, but at the same time have not 

been free of  Irrungen und Wirrungen, and the process is by no means finished yet. 

From a technical point o f  view, the problem of  representing non-polynomial quantities 
in the quantum theory (a  central difficulty in ADM-type quantization appE.~roaches) in this 

formulation has now been recast into that of  diagonalizing the operator det E, where det E 

is up to a sign the classical determinant det g of  the Riemannian metric gab on spatial 
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slices. The fact that non-polynomiality can be re-expressed as "polynomiality modulo 
powers of dvfd-~ '' is not specific to the connection formulation (see, for example, 

Ref. [2] ). However, what distinguishes this new approach is the fact that (certain 
functions of) detg have well-defined finite, self-adjoint operator analogues. 

The reason for this is that in the quantization the classical conjugate variable pairs 
(A/, E/a) - like in Yang-Mills theory - are represented by multiplication and differen- 
tiation with respect to A~. This implies that suitably quantized versions of the classical 
determinant 

de tE(x )  = lrlabceiJkE~(x)E~(x)ECk(x) (1.1) 

are third-order differential operators. Moreover, if the quantization is based on one- 
dimensional flux line states, as is the case in the so-called "loop quantization" schemes 
[ 3,4], and also in lattice-discretized versions of canonical quantum gravity [5], E-flux 
is quantized. This is ultimately responsible for the finiteness of quantities like the volume 
operator, which is the quantization of the integral f~ d3x dv/-de-(-~, for a spatial region 7~. 

The framework we will be using in the following is not the one originally proposed 
in [1], since the reality conditions that have to be imposed on its sl(2,C)-valued 
connections Aia(X) seem to be intractable in the quantum theory. Instead, we will use 
a closely related version in terms of real, su(2)-valued connection forms [6], which 
avoids this difficulty. In this formulation, the Hamiltonian constraint function is non- 
polynomial. 

The subject of this paper is the introduction of a method for simplifying the diagona- 
lization of the volume operator (and potentially other operators relevant in loop quantum 
gravity), by exploiting symmetries of the Wilson loop states that form the Hilbert space 
it is defined on. Our discussion will take place in the discretized version of the theory 
on a cubic lattice. The discrete volume operator one can define on the lattice [7,8] 
is closely related to the finite volume operators one obtains after regularization in the 
continuum theory [9-14]. The type of intersection of Wilson loop states that can occur 
on the lattice is at most six-valent, and therefore not the most general from the point of 
view of the continuum theory, but also in this case it may well be sufficiently generic 
from a physical standpoint. 

The operator det E occurs in a variety of contexts. It was originally conceived as an 
ingredient in the definition of the volume operator, i.e. the quantization of f~ d3x 
mentioned above [9,10]. Defined on the kinematical Hilbert space of the loop represen- 
tation, this kind of geometric operator enables one to associate well-known geometric 
properties with Wilson loop states, or possibly coarse-grained ensembles of such states 
[9]. 

With the return to real connection variables in canonical quantum gravity, knowledge 
of the spectrum of det E has become a necessary prerequisite in the study of the quantum 
Hamiltonian constraint. The fact that the quantum dynamics can still be made well 
defined, in spite of the non-polynomiality of the Hamiitonian, was first demonstrated 
in the context of the lattice theory [ 15]. A quantum Hamiltonian for the continuum 
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theory was constructed in [ 16]. In order to get rid of the inverse powers of detE that 
i (which are non- occur naturally, an identity was employed by which the dreibeins e a 

polynomial functions of the inverse, densitized dreibeins E a that constitute half of the 
basic canonical variables) can be re-expressed as the Poisson brackets of A / with the 
total volume function, ei(x) = 2{A / (x), f d3y ~ } .  (This identity holds only if 

no modulus signs are used around the det E-term, otherwise one has to include a factor 
of sign(det E) in the equation.) In the quantization one substitutes the Poisson brackets 
by commutators. Again the volume...., operator plays a pivotal role. 

Another role of the operator det E was pointed out recently [ 17]. This is related to 

the fact that one has to impose a constraint det E > 0 classically, if the basic variables 
are chosen to be the Yang-Mills conjugate pairs i a ( Aa, E i ). This constraint distinguishes 
the phase space of gravity already at the kinematical level from that of a ga~uge theory. 
In the lattice theory, one can show that all non-vanishing eigenvalues of det E come in 
pairs of opposite sign [ 17], and a quantum analogue of detE > 0 can be imposed. In 
practice, this requires an explicit diagonalization of the operator det E. 

Finally, another application is the possible inclusion of a cosmological constant term 
of the form ~ f d3x ~ in the Hamiltonian, with the integral taken over the entire 
spatial manifold. There are suggestions that this may be necessary in order to construct 
a non-trivial continuum limit of the (discretized) theory [ 18]. 

Our present knowledge of the spectrum of det E or the volume operator is only partial. 
It was observed in [9,10] that its spectrum is discrete and non-zero contributions can 
only come from intersections of the Wilson loop states it acts on. Its diagonalization 
can in a so-called spin-network basis [ 19] be reduced to a diagonalization on finite- 
dimensional subspaces of Hilbert space. In [7], we gave a general proof for why 
intersections have to be at least four-valent in order to give a non-trivial contribution. 
Part of the non-vanishing spectrum for such four-valent intersections was first given 
in [8]. These calculations were confirmed in [11], where also a general formula for 
the matrix elements of the volume operator was derived. These were given in terms of 
an orthogonal basis, obtained by decomposing spin-network states (closely related to 
Wilson loop states) with n-valent intersections into three-valent ones. Another general 
expression for matrix elements, with respect to a different orthogonal basis, was given 
in [ 14], together with formulae for spectra for simple special cases of classes of four- 
valent intersections. (In order to avoid confusion, it should be pointed out that different 
volume operators may differ by overall factors and modulus signs (see, for example, 
the comments in [ 13] ). Still, re...~sults on their spectra tend to be closely related.) 

As we mentioned above, det E can be diagonalized on finite-dimensional subspaces. 
These are given by fixing the flux line (or spin) assignments on the edges incoming 

A 

at a given intersection where det E acts. Another way of saying this is that there exist 
operators associated with these edges that commute with det E. On the lattice, these 

are of the form W/~i~a(l)~ai(l) (no sum over a) with spectrum x/J(J + 2 ) / 4 ,  j = 
0, 1,2 . . . . .  and related to the measurement of area in the a-direction [20]. 

One does not expect to be able to derive analytic formulae for the spectrum of det E 
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as the dimension of the finite-dimensional subspaces obtained by fixing the quantum 

numbers j for the incoming edges grows. The explicit evaluation of the spectrum is 

therefore limited by one's computational ability to diagonalize large matrices. A suitable 
choice of basis in which the matrix elements are evaluated will eventually also be 
determined by the form of the Hamiltonian. 

In this paper we construct further local operators, related to the geometry of the 

intersection of a spin network state, that commute with detE, and lead to a further 
reduction of the finite-dimensional Hilbert spaces into smaller subspaces on which 
det E can be diagonalized separately. In mathematical terms, we will be analyzing the 

irreducible representations of a discrete local symmetry group of the quantum states, 
and decompose the Hilbert space accordingly. The method is general and can also be 

applied to other operators, most importantly the Hamiltonian constraint. This leads to a 

considerable simplification, as we will demonstrate for a class of six-valent intersections, 
with some of the resulting "superselection sectors" becoming totally non-degenerate with 

respect to their volume spectrum. 

Our analysis will take place on a cubic lattice, and is therefore valid for all quantum 
states that can be realized on connected subsets of edges from such a lattice. The 

discrete symmetry group is in this case the 24-element group O, the so-called cubic or 
orthogonal group [21 ]. The analysis may be generalized to intersections with a different 

geometry and symmetry group. 
In the next section, we introduce a labelling of local spin network states (more 

precisely, a labelling for the so-called intertwiners at an intersection) with a simple 

transformation behaviour under the cubic group. For the construction of the superselec- 

tion sectors, the relevant discrete group is a subgroup 0 (6) of the cubic group times 

the Z2-factor associated with total spatial reflection. We describe its irreducible repre- 
sentations and give an explicit construction for states transforming according to a given 

irreducible representation from the elements of 0 (6))< Z 2 orbits. In Section 3 we give 
the explicit form of the operator detE associated with a vertex (or intersection) n. 

For a special class of six-valent intersections, corresponding to flux line assignments 
j = ( j ,  j ,  j ,  j ,  j ,  j ) ,  we perform the orbit decomposition, the construction of the superse- 
lection sectors, and diagonalization of det E up to j = 10. All eigenvalues, together with 
their multiplicities in the individual sectors, are listed in Table 9. We end in Section 4 
with a summary of our results and a brief discussion of the condition detE > 0. 

2. Action of  the orthogonai group on the quantum state space 

Our kinematical quantum state space is the gauge-invariant sector of the Hilbert space 
of an SU(2) lattice gauge theory in the Hamiltonian formulation [22]. Following the 
philosophy of spin network states [ 19], we use flux line labels j = 0, 1,2 . . . .  for lattice 
edges or links l. As an overcomplete set of labels for the contractors or intertwiners 
situated at a vertex n of the lattice we use 9 numbers jik, i, k = 1,2, 3 [ 17 ]. The index 
i denotes the incoming edges at n from the 1-, 2-, or 3-direction (with respect to some 



R. Loll~Nuclear Physics B 500 (1997) 405-420 

Table 1 
Multiplication table for the subgroup O(6) of the octagonal group 

409 

1 RI R2 R3 SI $2 

1 1 RI R2 R3 SI $2 
RI RI 1 SI $2 R2 R3 
R2 R2 $2 1 SI R3 R1 
R3 R3 SI $2 1 RI R2 
SI SI R3 RI R2 $2 1 
$2 $2 R2 R3 RI 1 SI 

fixed orientation for the three lattice axes), and the index k the corresponding outgoing 
edges. That is, jl= denotes the number of (unoriented) flux lines routed through n 
between the ( - 1 ) -  and the 2-direction, etc.. It is convenient to arrange the set of nine 
numbers into matrix form, 

i { j l l  j12 j13)  
J := | j21  j22 j23 • (2.1) 

\ j31 j32 j33 

Given flux line assignments Ji, i = - 1, - 2 ,  - 3 ,  1,2, 3, for the in- and outgoing links, it 
is easy to generate all allowed intertwiner configurations J. The elements of the rows and 
columns of J simply have to add up to the appropriate ji, for example, ~ = l  jl,i = j - l ,  

3 . ff~i=l Ji,1 = jl .  General elements of the cubic group O do not map intertwiners of the 
form (2.1) into themselves (but lead to configurations that by virtue of Mandelstam 
identities can be re-expressed as linear combinations of J-configurations). However, 
a six-dimensional subgroup 0 (6) of O leaves the label set invariant. Apart from the 
identity transformation, the non-trivial elements of this subgroup 0 (6) act on the J 's 
according to 

[ j l l  j31 j21'~ 
RI ( J )  := / j13  j33 j23]  , 

\ j12  j32 j22]  

[ J22 J12 j32 
R3(J)  := [j21 jll  j31]  , 

\ j23 j13 j33]  

{ j 2 2 j 2 3  j2 l~  
SI(J )  ;= ~j32 j33 J31 / , 

\ j12  j13 j l l /  

The multiplication 
total space reflection 

R2(J) := 

& ( J )  := 

j33 j23 j13)  
j32 j22 j12 , 
j31 j21 jll  

j33 j31 j32~ 
jl3 jll  j12] • 
j23 j21 j 2 2 /  

(2.2) 

table for the group 0 (6) is given in Table 1. We will also need the 
T, corresponding to the transform of the matrix J, 

T( J) := 
jll  j21 j31~ 

jl2 j22 j32 1 
J13 j23 J33] 

(2.3) 
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Table 2 
Character table for the group O C6) × Z2 

{1} {Ri} {Si} {V} {TRi} {TSi} 

A + 1 I 1 1 1 1 / 

A2 ~ 1 --1 I 1 -1  1 
E + 2 0 -1  2 0 -1  
Ai- 1 I 1 -1  - I  -1  
A 2 1 -1  1 - 1  1 -1  
E -  2 0 - I  - 2  0 I 

Since T commutes with all elements of O (6), adjoining it we obtain a 12-element group 
(.9 (6) × T - 0 (6) x Z2. This group is important because it is a subgroup of the classical 

invariance group of the lattice function (detE) 2 (see Section 3 below). There is still a 

redundancy in the set of allowed J ' s  which is associated with Mandelstam constraints 

and consists of all identities of the form 

jll+l it2 jl2 j13) 
J31 j32 j33 + 1 \ J31 j32 + l j33 

. Jl it2+1 jl3)  11, j2+l J3) 
- [j21 + 1 j22 j23 + J21 j22 j23 + 1 

\ j31 j32 J33 + 1 \j31 + 1 j32 j33 

+ j21 + 1 j22 j23 -- [ J21 J22 + 1 j23 

j31 J32 + 1 j33 \ j31  + 1 J32 J33 

= 0. (2.4) 

As already mentioned in the introduction, our aim is to identify the irreducible repre- 
sentations of  the discrete group 0 (6) ( 0  (6) × Z2), and construct corresponding super- 

selection sectors on which the operator det-~ ( ( d ' ~ ) 2 )  can be diagonalized separately. 
The group 0 (6) contains three conjugacy classes of elements namely, {1}, {R1, R2, R3} 

and {Sl, $2}. 
Following Ref. [ 21 ], one establishes the existence of three irreducible representations: 

two one-dimensional ones (called A1 and A2) and one two-dimensional one (called E). 
They can be identified by the values of their characters, i.e. the traces of the matrices 

representing the group elements (which only depend on the conjugacy class). The 
enlarged group (.Q(6) >( T has six conjugacy classes and six irreducible representations, 
since each of the previous representations gives rise to one of positive and one of 
negative parity, denoted by a subscript + or - .  The characters for the group (Q(6) X T 
are given in Table 2. 

In order to establish the contents of irreducible representations of some general repre- 
sentation, one can make use of  the following character formula. It relates the multiplicity 
mR of a given irreducible representation R in a general representation .A4 to the number 
nr  of elements in the conjugacy class K, the traces Xx ~ of matrices in the representation 
.A4 in class K, and the characters X~- of the irreducible representation R, 
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Table 3 
Representation contents of the O (6} × Z2 orbits 
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l-d even 
2-d odd 
3-d even 
6-d odd 
6-d even 
12-d odd 

A+(1) 
A~(1), AI(1) 
A~-(1), E+(2) 
A~ (1), A?(1), E+(2), E-(2) 
a~(1- ),A~(1),E+(4) 
a+(1), aT( l  ), A~-(1), A2(1 ), E+(4), E-(4) 

1 
m R  -d ~ n x  M R = Xr Xr. (2.5) 

K 

For the group (9 {6), d = 6, and for the group 0 (6) x Z2, d = 12. 

The possible orbit sizes that occur under the action of the group (.9 (6) x Z2 on states of 
the form (2.1) are l, 2, 3, 6 and 12. We distinguish between parity-even and parity-odd 
orbits. In the former, all elements are parity-invariant, i.e. T(J) = J, whereas in the 
latter T ( J )  ¢ J for all J. The contents of irreducible representations of the individual 
orbit types is listed in Table 3 (the numbers in brackets denote the number of J-states). 

Instead of diagonalizing a maximal set of commuting operators built from the elements 
of 0 (6) X Z 2 (for example, given by {1, Rn + R2 + R3,$1 + S2,T}) in a given finite- 
dimensional sector of Hilbert space, we have found it computationally simpler to first 
construct the orbits and from those the states transforming according to a definite 
irreducible representation. One way of how this may be done is illustrated in Table 4 
(by J we denote in this context an arbitrary, fixed element of an orbit). Note that 
A+-states change sign whenever one of the Ri  is applied. The prescriptions for the 
E-states in the two-dimensional representations are of course non-unique. Remember 
also that (2.4) induces a residual redundancy in the sets of states constructed according 
to Table 4, leading to relations among elements from different orbits. For the explicit 
calculations of the next section (which were performed using Mathematica on a DEC 
AlphaStation 255 4/232 with 64 Mb RAM) these could be handled without particular 
problems. 

3. Determining the spectrum of the operator (det E) 

We will now apply the results of the previous section to the discretized version 
det E(n) of the function (1.1), acting at a lattice vertex n. The corresponding self- 
adjoint quantum operator we will call /5(n) (for convenience rescaled by a factor of 
! with respect to the definition in [8]) .  In terms of the symmetrized link momenta 6 
Pi(n,g/),  it is given as 

1 eijk ^ ^ ^ 
/~(n) := ~.p~Tabe pi(n,a)pj(n,b)~k(n,d), (3.1) 

where 
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Table 4 
How to construct states transforming in a given irreducible representation from the elements of 0 (6) x Z2 
orbits 

A? 
A, 
At 

Z~ 
E + 

E -  

all orbits: (1 + T) (J  + RiJ + R2J + R3J + SIJ + S2J) 

all odd orbits: (1 - T) (J  + R~J + R2J + R3J + SIJ + S2J) 

6-d even orbit: J + SI J + $2 J - RI J - R1SI J - RI $2 J 
12-d odd orbit: (1 + T) ( J + SI J + $2 J - RI J - Rl S1J - RI S2J) 

12-d odd orbit: (1 + T)( J 3- SIJ 3- S2J - RIJ - RISIJ - R1S2J) 

3-d even orbit: J - Sl J, J - S2J, 
6-d odd orbit: (1 + T ) ( J  - S I J ) ,  (1 3- T ) ( J  - S2J)  

6-d even orbit: (1 - $1)(J3- RIJ), (1 - S2)(J 3- RIJ), (1 - Sz)(R2J 3- S2J), 
(1 - S2)(R2J 3- SzJ) 

12-d odd orbit: (1 3- T)(1 - S t ) ( J +  RIJ), (1 3- T)(1 - $2) ( J +  RiJ), 
(1 3- T)(1 - SI)(R2J3- S2J), (1 3- T)(1 - S2)(R2J3- S2J) 

6-d odd orbit: (1 - T) (J  - SiJ), (1 3- T)(J  - S2J) 
12-d odd orbit: (1 - T)(1 - S l ) ( J +  RIJ), (1 - T)(1 - $2)(J3- R1J), 

(1 - T)(1 - SI)(R2J 3- S2J), (1 - T)(I  - S2)(R2J3- S2J) 

i i 
f i i (n ,  gt) = ~ (X+ (n ,  a )  + X / (n  - la,  h)  ),  (3 .2)  

and X k ( n ,  gt) denote  the left- and r ight- invariant  vector fields on the group manifo ld  

associated with the l ink l = (n ,  ~) ,  with commutators  [X/~, xJ~ ] = ~eiJkxk, .  

The key observat ion is that the classical lattice funct ion D ( n )  - det E ( n )  is invariant  

under  the action o f  the 24-e lement  cubic  group O [ 21 ] (whose  elements  can be thought  

of  as the or ienta t ion-preserving permutat ions  of  the three (or iented)  lattice axes meet ing  

at the intersect ion n) .  By contrast,  D ( n )  changes sign under  the total space reflection 

T (i.e. under  s imul taneous  inversion of  the three axes).  

As a result  o f  this classical symmetry,  eigenstates of  b ( n )  can be classified according 

to the i r reducible  representat ions o f  O. This set-up is famil iar  to lattice gauge theorists, 

because it has been employed  in ana lyz ing  the glueball  spectrum o f  the Hami l ton ian  in 

four-d imensional  S U ( 3 )  lattice gauge theory [23] .  As explained in Section 2, in the 

present  S U ( 2 )  context it is convenient  to work with a set o f  local states that is part ial ly 

gauge-fixed with respect to the O-act ion,  leaving us with 0 (6) as the residual symmetry  

group. 

The action of  the operator / ~ (n )  on states of  the form (2.1)  can be obtained by 

consider ing  all possible  ways in which the triple derivatives contained i n / 5 ( n )  can act 

on sets o f  flux l ines routed through the vertex n. Its explicit  form is given by 

( j l l  j12 j 1 3 )  

/~ ~j21 j22 j23 
\ j 3 1  j32 J33 

i [[j,,.- 1 
= ~j l l j22j33 ~ J21 

\ j 3 1  + 1 

J2+, j3) J2 j+,)] 
j22 -- 1 j23 + 1 -- [ j 21  + 1 J22 -- 1 j23 

j32 j33 - -  1 \ j31 j32h-  1 j33- -  1 
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i . . .  i:j,, j12_1 j13+1):j,l+, 
+-~J12J23J31 [j21 + 1 j22 j23 -- 1 -- [ j21 

\ j 31  - 1 j3z + 1 j33 \ j31  - 1 

q-~-~j13j21j32 ~j21 -- 1 j22 + 1 j23 - / j21 - 1 
\ j31 j32 - 1 j33 + 1 \ j 3 !  + 1 

i ° ° 

+'7-TJllJ32(J12 + 2j33 - J13 
l O -  

i . , ° 

+-~-~JllJ23(J12-2j22-J13 

j l l , -  
- j21  +2 j22+ j31  + 2 )  / Jzl 

\ j31 + 
{ j l l  -- 

-- j21 -- 2j33 +j31 -- 2) [j21 + 
k j31 

i . . { j l l  j12 + 1 

+"~j22J13(J23 + 2jll  -- J21 - j32 + 2j33 + j12 + 2) ~j21 j22 - 1 
\j31 J32 

f j l l  i 
+'i--~j22j31 (j23 - 2j33 - J21 - j32 - 2jll + j12 - 2) ~j21 + 1 

k j31 - 1 
i . .  . { j l l  j12 

+'~J33J21 (J31 + 2j22 - J32 - j13 + 2jll  + j23 + 2) ~ j21 - 1 j22 
\ j31 + 1 j32 

i . . . { j l l  j 1 2 - 1  
+-~J33J12(J31 - 2jll - J32 - j13 - 2j22 + j23 - 2) (j21 j22 

\ j31 j32 + 1 
i [ j l l  j l 2 -  1 

-- 1--~j23(jllj12 + j12j22 + j12j33 + j12j13 + 2j12) / j21 j22 + 1 
\ j31 j32 
{ j l l  j12 

i 
- "i--~j31 (jzzj23 + j23j33 + jl  1j23 + j21j23 + 2j23) ~ j21 + 1 

\ j31 - 1 

[ j l l  + 1 

-~-~j12(j31j33 +jl l j31 +jzzj31 +j31j32 + 2j31) ~ j21 
k J31- 1 

i . . . { j l l  + 1 

+]'-~J13 (J1U21 + j21j22 + j21j33 + j21j23 + 2j21) ~ j21 - 1 
\ j31 
{ jll 

i . . 

+~-~j21 (J22J32 + j32j33 + jllj32 + j31j32 + 2j32) [ j21 - 1 
\ j31 + 1 j32 

i . . ( j l l  j 1 2 + 1  
+"~j32(J13J33 + j l l j l3 + j13j22 + j12j13 + 2j13) ~ j21 j22 

k j31 j32 - 1 

J12 - 1 j13 
j22 + 1 j23 - 

j32 j33 + 
jl2 + 1 j13 - -  

j22 j23 + 
j32 -- 1 j33 

1 j | 2 + l  jl3 "~ 
j22 j23 

1 j32 -- I j33 
1 j12 j 1 3 +  1~ 

I j22 j23 -  1 
j32 j33 

j13-- ) 
j23 + 

j33 
j12 j13 

j22-1 j2~j 
j32 + 1 j33 /  

j23 + 
J33 - 

j23 
J33 - 

j13+ 1~ 
j 2 3 -  1 

j33 
J13 ) 

J22 J23 -  1 
j32 j33 + 1 
J12 -  1 J13"~ 

J22 j23 ) 
j32 + 1 j33 
j12 j 1 3 -  1 
j22 j23 + 1 
J32 j33 

j12 j13 "~ 
j22 + 1 j23 

-- 1 j33 
j13 -- 1 \ 

j23 ) 
j33 + 1 

413 

)] 
')] l 
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i { j l l - - 1  j 1 2 + l  j13~ 
+-~jllj22(j23 --J32 +j31 --j13) ~j21 + 1 j22 -- 1 j23J 

\ j31 j32 j33 / 
i . .  { j l l  - 1 j12 j13 + 1 )  

+-~JllJ33(j12--j2! + j 2 3 - J 3 2 )  / j21 J22 j23 
\j31 + 1 j32 j33-- l 

i . ( j l l  j '2 J'3 ) 
+-~j22j33(J12 -j21 +j31 --j13) ~J21 j22 - 1 j23 + 1 

\j31 j32+ 1 j 3 3 -  1 
i 

+ i 6  ( j l l  (j12j31 - j12j32 + j13j23 - j13j21 + j21j23 - j31j32 + j23 - j32) 

+j22(j21j31 - j12j13 + j12j23 - j21j32 + J31j32 - j13j23 + j31 - j13) 

+j33(j12j13 - j21j23 + j23j31 - j21j31 + j12j32 - j13j32 + jlx - j21) 

+j12j13j23 - j12j13j32 + j21j23j31 - J13j21j23 + j12j31j32 - j21j31j32 
( j l l  j12 j l 3 )  

+j12j23 +jl2j31 --j13j21 --J13j32 +j23j31 --j21j32 ) ~J21 J22 j23 • (3.3) 
\J31 j32 j33 

Note that the J-states are not orthogonal with respect to the Haar measure on the 
lattice. Still, we will see that within the superselection sectors of the cubic group, 
degeneracy of the eigenvalues of D(n) is largely lifted, which makes orthogonality 
largely automatic. One can verify the following conjugation relations by using the 
explicit form (3.3) for the operator/3: 

RiDRi=/3, i =  1,2,3, 

SibSi=l~, i= 1,2, 

TDT = - /3 ,  (3.4) 

whence it follows that b obeys the (anti-)commutation relations 

[/3, R i ]=0 ,  i = 1 , 2 , 3 ,  

[/3,s~ +&] =0, 

[D,T]+ =0. (3.5) 

We conclude that 15 does not alter the (9 (6) quantum numbers, but maps positive- into 
negative-parity states and vice versa. This latter property suggests a different approach 
to the diagonalization o f /3 (n ) .  Firstly, it follows from [/3, T]+ = 0 that [/32, T] = 0. 
Secondly, we have shown in [17] that eigenstates of 15 can be obtained from those 
of/32. For any eigenstate X of /32 with eigenvalue v 4= 0, /32(n) X = v2x, one may 
construct a pair of eigenstates o f /3 (n )  with eigenvalues i v ,  namely, 

1 ^ ^ = ( X  + 1 ^ /3 ( X ±  - ~ D x )  =+~vlD2X+/3X +Iv] \ - ~ D x ) .  (3.6' 

Since in our search for eigenstates we would like to reduce the size of matrices that 
have to be diagonalized, it is simpler to diagonalize /3(n) 2 first, and then construct 
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= ( j , j , j , j , j , j )  
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j 1 2 3 4 5 6 7 8 9 10 

1-d even 1 2 2 3 3 4 4 5 5 6 
2-d odd 1 2 4 6 9 12 16 20 25 30 
3-d even 1 3 5 9 12 18 22 30 35 45 
6-d odd 0 1 4 9 18 30 48 70 100 135 
6-d even 0 0 1 2 5 8 14 20 30 40 
12-d odd 0 0 0 1 3 8 16 30 50 80 
total 3 8 16 30 50 80 120 175 245 336 

eigenstates o f / 5 ( n )  using (3.6).  The explicit form f o r / ~ ( n )  2 contains 142 terms and 

can be obtained from (3.3).  

One further observation turns out to be useful. Since parity-odd wave functions are 

constructed by weighted sums (with factors + l )  of  spin network states, which may 

sometimes vanish, there are always fewer states transforming according to the represen- 
tations A [ ,  E - ,  than those transforming according to A +, E +. The most efficient way 

of diagonal iz ing/~ (and the one which we follow below) is therefore to start from the 

wave functions transforming in one of the negative-parity irreducible representations, 

diagonal ize/~2,  construct the images unde r /5  of  the resulting states (which all have 

positive pari ty) ,  and then form linear combinations according to (3.6).  The number of  

zero-volume states is given by the difference of  positive- and negative-parity states. 
As an application of the scheme outlined above, we have analyzed the irreducible 

representation contents of  the sub-Hilbert spaces with flux line numbers 

j = ( j - l , j - 2 , j - 3 , j l , j 2 , j 3 )  = ( j , j , j , j , j , j )  

(i.e. for genuine six-valent intersections) up to j = 10, and obtained the spectrum of  
/5 (n) .  This class of  configurations is special in the sense that states with fixed j are 

mapped into themselves by the action of  O ~6) x Z2. The numbers of  orbits of  a given 

type for fixed j (before imposing the constraints (2 .4))  are listed in Table 5. 

We then proceeded as described above by diagonalizing / ) (n )  2 separately on the 
superselection sectors corresponding to different quantum numbers for the action of  
O (6) x Z2. The resulting numbers of  linearly independent eigenstates of  /5(n)  with 
strictly positive and vanishing eigenvalues are listed in Tables 6 and 7. 

Comparing the rows for the Al-, A2- and E-sectors in Table 6 to the total numbers of  
states in the Hilbert spaces before the O c6) x T-action is taken into account (Table 8), 
one observes that the matrix sizes are reduced considerably when the superselection 
sectors are treated separately. Another interesting feature is that the number of  zero- 
eigenvalues grows less rapidly with j than that of  the non-vanishing ones (by curve fits 
we found the dependences 3j2 + ~j + 3 for j odd and 3j2 + 3j + 1 for j even, as 
opposed to ½j3 + 3j2 + 2j  + 1). 

F ina l ly ,  here are our results for the non-negative eigenvalues of  the ope ra to r /~ (n )  = 
det E ( n ) .  The numbers in Table 9 are given in length units, i.e. we have taken the sixth 
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Table 6 
Numbers of linearly independent 
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eigenstates of D(n) with eigenvalue > 0 

j 1 2 3 4 5 6 7 8 9 10 

A 1 1 2 5 8 14 20 30 40 55 70 
A2 0 0 0 1 2 5 8 14 20 30 
E 0 2 6 14 26 44 68 100 140 190 
total 1 4 I 1 23 42 69 106 154 215 290 

Table 7 
Numbers of linearly independent eigenstates of b (n) with eigenvalue = 0 

j 1 2 3 4 5 6 7 8 9 10 

total 3 7 12 19 27 37 48 61 75 91 

Table 8 
Number of linearly independent states with fixed flux lines j = (j, j, j, j, j, j) 

j 1 2 3 4 5 6 7 8 9 10 

total 5 15 34 65 111 175 260 369 505 671 

root of  the eigenvalues o f / 5 ( n ) .  The three numbers in brackets give the degeneracy of  

eigenvalues in the Al-, A2- and E-sectors, respectively. 

The spectrum is rather complex, and becomes more and more spread out with in- 

creasing j. There seem to be only three different degeneracy patterns, ( 1,0, 0), ( 1,0, 2) 

and (1, 1,4).  Every eigenvalue that occurs is already contained in the O(6)-invariant 

(i.e. the A1-) sector, and is non-degenerate. It would be interesting to see whether this 

is also the case for more general flux line configurations. Note also that the highest 

eigenvalue for fixed j is always non-degenerate. The "volume deficit" observed in [24] 

(the fact that all volume eigenvalues are systematically smaller than expected from the 

(Laplacian) area eigenvalues, compared to the relation one would obtain for a Euclidean 

reference metric), persists for higher j ,  although it becomes less pronounced. 

4. Summary and outlook 

We have explained in this paper how the diagonalization of  the volume operator in the 

loop representation of  quantum gravity can be simplified by taking into account discrete 

symmetries at the intersections of  the Wilson loop states. Applied to the case of  up 
to six-valent intersections on a cubic lattice, this requires the decomposition of  Hilbert 
space into the irreducible representations of  a six-dimensional subgroup 0 (6) of  the cubic 

group. One finds a set of  local operators that commute with det E, and therefore can be 
diagonalized simultaneously. A further simplification arises when one includes the total 

spatial reflection, and diagonalizes the operator ( ~ ' ~ ) 2 ,  from which the eigenstates 
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Table 9 
Values for x 1/6, where x is a non-negative eigenvalue of D(n) 

j = 1 0.820977 (1,0,0), 0 (3) 

j = 2 1.07707 (1,0,0), 0.933429 (1,0,2), 0 (7) 

j = 3 1.28653 (1,0,0), 1.17666 (1,0,2), 1.03890 (1,0,2), 
0.915413 (1,0,0), 0 (12) 

j = 4 1.46726 
1.16697 

j = 5 1.62835 
1.37044 
1.19678 
1.09057 

j = 6 1.77500 (1,0,0), 1.70234 (1,0,2), 
1.54569 (1,0,0), 1.53375 (1,1,4), 
1.42448 (1,0,2), 1.41907 (1,1,4), 
1.32815 (1,0,2), 1.26214 (1,1,4), 
1.22270 (1,0,2), 1.18305 (1,1,4), 

j = 7 1.91050 (1,0,0), 1.84387 (1,0,2), 1.77395 
1.70204 (1,0,0), 1.69398 (1,1,4), 1.68357 
1.60414 (1,0,2), 1.59947 (1,1,4), 1.58195 
1.51891 (1,0,2), 1.48980 (1,1,4), 1.48107 
1.43533 (1,0,0), 1.41349 (1,1,4), 1.39331 
1.32056 (1,1,4), 1.31437 (1,0,2), 1.30965 
1.25331 (1,0,2), 1.24732 (1,1,4), 1.21785 
1.14257 ( 1,0,2), 1.02552 ( 1,0,0), 0 (48) 

j = 8 2.03705 (1,0,0), 1.97517 (1,0,2), 1.91074 
1.84463 (1,0,0), 1.83874 (1,1,4), 1.83056 
1.76040 (1,0,2), 1.75651 (1,1,4), 1.74290 
1.68385 (1,0,2), 1.66720 (1,1,4), 1.65942 
1.60893 (1,0,0), 1.59606 ( 1,1,4), 1.58113 
1.54891 (1,1,4), 1.53771 (1,1,4), 1.50965 
1.48282 (1,0,2), 1.47687 (1,1,4), 1.45221 
1.38309 (1,0,2), 1.37801 (1,1,4), 1.37367 
1.32393 (1,0,2), 1.31397 (1,1,4), 1.30466 
1.27155 (1,0,2), 1.23247 (1,1,4), 1.20595 

j = 9 2.15620 (1,0,0), 2.09818 (1,0,2), 2.03812 
1.97663 (1,0,0), 1.97209 (1,1,4), 1.96545 
1.90159 (1,0,2), 1.89833 (1,1,4), 1.88744 
1.83172 (1,0,2), 1.82081 (1,1,4), 1.81415 
1.76329 (1,0,0), 1.75461 (1,1,4), 1.74332 
1.72491 (1,1,4), 1.71478 (1,1,4), 1.69154 
1.66205 (1,0,2), 1.65696 (1,1,4), 1.63812 
1.60323 (1,1,4), 1.58998 (1,1,4), 1.58435 
1.55793 (1,0,2), 1.54379 (1,1,4), 1.53433 
1.48851 (1,0,0), 1.46554 (1,1,4), 1.44411 
1.42829 (1,1,4), 1.42251 (1,1,4), 1.40779 
1.36866 ( 1,0,2), 1.36845 (1,1,4), 1.36330 
1.32054 (1,0,2), 1.29967 (1,0,2), 1.29326 
1.20555 (1,0,2), 1.18508 (1,0,2), 1.06412 

(1,0,0), 1.37521 (1,0,2), 1.27163 (1,0,2), 
(1,0,0), 1.12099 (1,1,4), 1.09850 (1,0,2), 

(1,0,0), 1.54767 (1,0,2), 1.46030 (1,0,2), 
(1,0,0), 1.35016 (1,1,4), 1.33173 1,0,2), 
(!,0,2), 1.19140 (1,1,4), 1.16425 1,0,2), 
(1,0,2), 0.978018 (1,0,0), 0 (27) 

1.62518 1,0,2), 
1.52004 (1,0,2), 
1.39619 (1,0,2), 
1.25364 (1,1,4), 
1.15815 (1,0,2), 

(1,o,2), 
( 1,0,2), 
(1,0,2), 
(1,1,4), 
(1,0,2), 
(I,1,4), 
(1,0,2), 

1.02292 1,0,2), 

1.25951 1,0,2), 
1.01217 1,0,2), 0 (19) 

1.45180 (1,0,2), 
1,25452 (1,0,2), 
1.10871 (1,0,2), 

1.61898 (1,0,2), 
1.44981 (1,0,2), 
1.34168 (1,0,2), 
1.23241 ( 1,0,0), 
1.06919 (1,0,2), 0 (37) 

1.76921 (1,0,2), 
1.61870 (1,0,2), 
1.52832 (1,0,2), 
1.45463 (1,0,2), 
1.32314 (1,0,2), 
1.27555 (1,0,2), 
1.16207 (1,0,2), 

(1,0,2), 1.90697 (1,0,2), 
(1,0,2), 1.77001 (1,0,2), 
(1,0,2), 1.69067 (1,0,2), 
(1,1,4), 1.63881 (1,0,2), 
(1,0,2), 1.55187 (1,0,2), 
(1,0,2), 1.50826 (1,0,2), 
(1,0,2), 1.39757 (1,0,2), 
(1,1,4), 1.36072 (1,1,4), 
(1,1,4), 1.28429 (1,0,0), 
(1,0,2), 1.11432 (1,0,2), 0 (61) 

(1,0,2), 2.03504 (1,0,2), 
(1,0,2), 1.90848 (1,0,2), 
(1,0,2), 1.83691 (1,0,2), 
(1,1,4), 1.79792 (1,0,2), 
(1,0,2), 1.72777 (1,0,2), 
(1,0,2), 1.67749 (1,0,2), 
(1,0,2), 1.60819 (1,1,4), 
(1,0,2), 1.57430 (1,0,2), 
(1,1,4), 1.50616 (1,0,2), 
(1,0,2), 1.42977 ( 1,0,2), 
(1,1,4), 1.37128 (1,0,2), 
(1,0,2), 1.35667 (1,1,4), 
(1,1,4), 1.26211 (1,0,2), 
(1,0,0), 0 (75) 
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j = l O  2.26912 (1,0,0), 2.21432 (1,0,2), 2.15784 
2.10012 (1,0,0), 2.09649 (1,1,4), 2.09097 
2.03180 (1,0,2), 2.02905 (1,1,4), 2.02009 
1.96720 (1,0,2), 1.95944 (1,1,4), 1.95376 
1.90385 (1,0,0), 1.89752 (1,1,4), 1.88867 
1.87664 (1,1,4), 1.86783 (1,1,4), 1.84934 
1.81716 (1,0,2), 1.81294 (1,1,4), 1.79834 
1.77840 (1,1,4), 1.76633 (1,1,4), 1.74596 
1.73868 (1,0,2), 1.72121 (1,1,4), 1.71284 
1.66208 (1,0,0), 1.66200 (1,0,2), 1.66017 
1.64853 (1,1,4), 1.63864 ( 1,1,4), 1.63269 
1.60238 (1,0,2), 1.59918 (1,1,4), 1.58717 
1.55607 (1,0,2), 1.53183 (1,0,2), 1.52550 
1.47744 (1,1,4), 1.47486 (1,1,4), 1.46780 
1.44430 (1,0,2), 1.42912 (1,0,2), 1.42294 
1.41035 (1,0,2), 1.40442 (1,1,4), 1.36572 
1.34758 (1,1,4), 1.32752 (1,0,0), 1.31283 
1.24600 (1,0,2), 1.15189 (1,0,2), 0 (91) 

(1,0,2), 2.15526 (1,0,2), 
(1,0,2), 2.03703 (1,0,2), 
(1,0,2), 1.97130 (1,0,2), 
(1,1,4), 1.94061 (1,0,2), 
(1,0,2), 1.87925 (1,0,2), 
(1,0,2), 1.82734 (1,0,2), 
(1,0,2), 1.78328 (1,1,4), 
(1,0,2), 1.74079 (1,0,2), 
(1,1,4), 1.69092 (1,0,2), 
(1,1,4), 1.65364 (1,1,4), 
(1,0,2), 1.60428 (1,0,2), 
(1,1,4), 1.55981 (1,0,2), 
(1,1,4), 1.49950 (1,0,2), 
(1,1,4), 1.45154 (1,1,4), 
(1,1,4), 1.41825 (1,1,4), 
(1,0,2), 1.35747 (1,1,4), 
(1,0,2), 1.27374 (1,1,4), 

A 

of  de tE  can be obtained using the results in [ 17]. To demonstrate the viability of  the 

method, we have calculated the spectrum for a class of  six-valent intersections with 

flux line numbers ( j , j , j , j , j , j ) ,  for j ~< 10. We found that all eigenvalues are already 

contained in the O(6)-invariant sector, without degeneracy. It is conceivable that this 

sector is also distinguished on physical grounds, but this depends on how the continuum 

limit of  the lattice theory will be taken. 

Let us close with some comments on the condition det E > 0 which, as we have 

argued in [ 17], should be imposed on the quantum state space. It remains to be seen at 

which stage of  the quantization it is imposed most conveniently. Ignoring for the moment 

the zero-eigenvalue states, this condition reduces the dimensionality of  the Hilbert space 

by a factor 2 x, where x is the number of  intersections of  the lattice. In addition, one 

obtains a condition on physical operators 75, namely, that they should not map out of  

the subspace of  states with de tE  eigenvalues ~> 0 (or > 0). A sufficient condition is 

given by the vanishing of  the commutator 

[75, sign(d--e~) ] = O. (4.1) 

However, we have not found a simple form of  this condition which would not require 
A 

the explicit knowledge of  the eigenstates of  detE. Note that (4.1) is a rather strong 

condition which, for example, is not satisfied by the lattice analogues of  the area 
operators defined in [25].  A less stringent condition is to require that (4.1) be satisfied 

in the limit as the lattice spacing is taken to zero. This is also sensible from a physical 

point of  view, since the condition should be independent of  the regularization (for 
example, the version of  the area operator corresponding to a pure Laplacian [ 10,20] 

obviously fulfills (4.1), but coincides with other discretized forms of  the area to lowest 
order in the lattice spacing). 

A 

We do not know whether there is a way to formulate a condition like det E > 0 in the 
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continuum theory. The regularization used for the volume operator in [14] forces one 

to use modulus signs around the operator, in order that the square root ~ / I~ 'E I  is well- 
defined, something not necessary in the case of the lattice regularization. Nevertheless, 
we think that such a constraint on states, along with operator conditions of the type (4.1), 
should be imposed in the quantum theory - even if this leads to new complications - 
because they describe a property of the gravitational theory. 
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